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Abstract
The 3D organization of the genome plays a key role in many cellular processes, such as gene regulation,
differentiation, and replication. Assays like Hi-C measure DNA-DNA contacts in a high-throughput
fashion, and inferring accurate 3D models of chromosomes can yield insights hidden in the raw
data. For example, structural inference can account for noise in the data, disambiguate the distinct
structures of homologous chromosomes, orient genomic regions relative to nuclear landmarks, and
serve as a framework for integrating other data types. Although many methods exist to infer the 3D
structure of haploid genomes, inferring a diploid structure from Hi-C data is still an open problem.
Indeed, the diploid case is very challenging, because Hi-C data typically does not distinguish between
homologous chromosomes. We propose a method to infer 3D diploid genomes from Hi-C data. We
demonstrate the accuracy of the method on simulated data, and we also use the method to infer
3D structures for mouse chromosome X, confirming that the active homolog exhibits a bipartite
structure, whereas the active homolog does not.
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1 Introduction

The 3D organization of the genome plays an important role in regulating basic cellular
functions, including gene regulation [30, 34], differentiation [21, 12], and the cell cycle
[27]. Chromosome conformation capture techniques such as Hi-C measure the frequency of
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interactions between pairs of loci, thereby allowing a systematic analysis of genome structure.
Although Hi-C contact matrices yield valuable insights, modeling and visualizing genome
structures in 3D can unveil relationships and higher-order structural patterns that are not
apparent in the raw data [13, 37, 27, 24] by providing a humanly interpretable 3D structure,
orienting genomic regions relative to various nuclear landmarks, and serving as a framework
for integrating other data types [5]. Embedding contact count data in a 3D Euclidean space
can also reduce noise in the underlying Hi-C data.

Previous methods to inferring chromatin structure from population Hi-C data fall into
one of two broad categories. “Ensemble” approaches create populations of 3D structures that
jointly explain the observed Hi-C data [29, 37, 8, 17, 20, 36, 15, 25, 39, 40, 19]. Theoretically,
structural ensembles can mimic the heterogeneity of cells in a population. However, these
methods are frequently underdetermined because there are often more parameters to estimate
for a large population of cells than data points. Ensemble models can also be difficult to
validate and interpret. “Consensus” approaches, on the other hand, make the assumption
that bulk Hi-C data can be accurately summarized in a single, consensus 3D structure
[13, 10, 35, 38, 2, 23, 16]. Modeling a single structure tends to be less computationally
demanding than modeling an entire population of structures. Furthermore, the resulting
model has the advantage of relatively straightforward visualization and interpretation.

For either ensemble or consensus approaches, a particular challenge is presented by Hi-C
data derived from diploid organisms. As in most high-throughput sequencing experiments, a
typical Hi-C experiment does not produced phased data; that is, the data does not distinguish
between allelic copies. Thus, an observation of a single Hi-C contact between loci i and j
corresponds to one of four possible events: either copy of locus i coming into contact with
either copy of locus j. Any 3D inference method that aims to model diploid genomes must
accurately account for this allelic uncertainty.

A variety of strategies have been developed to account for diploidy in Hi-C 3D models. In
general, ensemble models face less of a challenge on this front, since the two allelic copies can
be treated like additional members of the ensemble. Among consensus methods, by far the
most common approach is to assume that the two homologous copies of a given chromosome
share the same 3D structure [38, 23, 41] and then to model each chromosome separately.

We are aware of only three previous attempts to model diploidy in non-ensemble methods.
Previously, we described an extension of our PASTIS software to handle the near-haploid
cell line KBM7 [3]. We proposed to infer jointly the distribution of contact counts between
homologs and the 3D structures by maximizing a constrained and relaxed likelihood. However,
this relaxation is unsatisfying, as it yields non-integer counts modeled as random Poisson
variables. More recently, two separate research groups have developed methods for modeling
diploid genomes from single-cell data [7, 33]. However, these methods cannot be directly
applied to bulk Hi-C data, which is much more widely available.

In this work, we propose a method to infer diploid consensus 3D models from Hi-C
data. Our approach builds upon PASTIS [38], which infers 3D models by using a Poisson
model of Hi-C counts coupled with a simple biophysical model of polymer packing. The key
idea of extending PASTIS to infer diploid genomes is to explicitly model the uncertainty
of allelic assignments for each observed read. We consider two distinct settings: the more
challenging setting where the data is fully ambiguous, and the setting where a subset of the
reads can be mapped to a single parental allele. To assist in inference, we incorporate several
constraints into our objective function, reflecting our prior knowledge of genome architecture.
Through extensive simulations, we demonstrate that our approach can successfully model
two distinct homologous chromosome structures, given a sufficient number of reads, even
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when the data is fully ambiguous. We also apply our approach to real Hi-C data derived
from a first generation (F1) cross of two divergent mouse strains (F121 and Castaneus). The
resulting diploid model of the X chromosome exhibits the expected “superdomain” structure
[11], and is quite distinct from the inferred structure of the inactive X.

2 Method

Hi-C experiments involve sequencing pairs of interacting DNA fragments. Specifically, cells
are cross-linked, DNA is digested using a restriction enzyme, and interacting fragments are
then ligated together. Fragments are subsequently sequenced through paired-end sequencing,
and each mate is associated with one interacting locus. Hi-C data can then be summarized
in a symmetric n× n contact count matrix C, where each row and column corresponds to
a genomic locus and each matrix entry cij to the number of time those two loci have been
observed to interact.

For diploid organisms, reads from homologous chromosomes cannot be distinguished
from one another, and the resulting Hi-C matrix aggregates contact counts from homologous
chromosomes into a single Hi-C matrix (Figure 1). The challenge of inferring diploid structures
from Hi-C data lies in disambiguating the contact counts from the two homolog chromosomes.
We call these aggregated counts “ambiguous,” and denote by CA the corresponding contact
count matrix. If the parental genomes are known a priori, then a small proportion of reads
can be mapped to each haplotype: contact counts from the two homolog chromosomes
can be disambiguated based on heterozygous positions, yielding a single-allele Hi-C count
matrix [30, 11]. We refer to these counts as “unambiguous” and denote the corresponding
matrix by CU . On the other hand, if only one mate can be mapped uniquely to one of the
homologous chromsosome, then the contact count is only partially disambiguated between
the two homologs. We refer to these as “partially ambiguous” contact counts, and we denote
the corresponding matrix by CP .

We model chromosomes as m evenly-spaced beads, and we denote by X = (x1, · · · , xm) ∈
R3×m the coordinate matrix of the structure. The variable m denotes the total number of
beads in the genome, and x` ∈ R3 corresponds to the 3D coordinate of the `-th bead. In
the case of a haploid structure, the number of beads corresponds to the number of rows and
columns in the contact count matrix C: n = m.

2.1 Inferring haploid structures with a Poisson model
Before we turn to inferring diploid structures, let us first review the approach proposed
by PASTIS [38] to infer haploid 3D structures from a bulk Hi-C contact map C. PASTIS
models the interaction frequency between genomic loci i and j as a random independent
Poisson variable, where the intensity of the Poisson distribution is a decreasing function f of
the Euclidean distance between the two beads (dij). Leveraging relationships found from
studying biophysical properties of DNA as a polymer, PASTIS sets this function as follows:
f(dij) ∼ dαij , α < 0. The α parameter can be set using prior knowledge (e.g., α = −3),
or inferred jointly with the 3D structure. Inference is thus performed by maximizing the
likelihood of the following Poisson model:

cij ∼ Poisson
(
bibjβd

α
ij

)
, (1)

where β scales for the total number of contacts in the matrix (“coverage”), and bi and bj are
locus-specific biases that are estimated using a standard procedure [18].

WABI 2019
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Figure 1 Inferring 3D structure using ambiguous diploid data. Each observed count
(left) corresponds to a sum of four pairs of genomic loci (right). The Poisson model must be adjusted
to account for this ambiguity.

Our strategy to infer diploid structures builds upon this approach. Note that inferring a
diploid structure from “unambiguous” contact counts CU is similar to inferring a haploid
structure from a classic Hi-C experiment, with the only difference concerning the biases,
which are computed using all contact counts available per locus.

2.2 Modeling contact counts of diploid structures with a Poisson model
We propose to extend PASTIS to diploid genomes by leveraging the properties of each type
of Hi-C contact map: ambiguous, partially ambiguous, and unambiguous. Let us first take a
closer look at the common scenario, where the data is fully ambiguous.

For a given ambiguous contact count matrix CA, each observed contact count cAij between
a given pair of loci (i, j) corresponds to the sum of four different unambiguous contact counts
(Figure 1):

cAij =
∑

`:Φ(`)=i

∑
p:Φ(p)=j

cU`p , (2)

where Φ : [1, n]→ [1,m] is the mapping that associates bead ` with locus i. Leveraging the
property that the sum of i Poisson variables of intensities λi is a Poisson variable of intensity∑
i λi, we model the interaction count as

cAij ∼ Poisson

bibjβA ∑
`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

 , (3)

wherem is the number of loci, n is the number of beads, d`,p is the Euclidean distance between
beads ` and p, and βA is a scaling factor determined by the coverage of the ambiguous
contact count matrix.

Similarly, for a given partially ambiguous contact count matrix CP , each observed contact
count cPij between a given pair of loci corresponds to the sum of two unambiguous contact
counts, and is modeled by the interaction frequency of two pairs of loci.

cPij ∼ Poisson

bibjβP ∑
`:Φ(`)=i

dα`j

 (4)

βP is a scaling factor determined by coverage of the partially ambiguous contact count matrix.
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We can thus cast the 3D structure inference as maximizing the log-likelihood

max
X

L(X) = LU (X) + LP (X) + LN (X)

=
∑

1≤i<j≤m
cU
ij log(bibjβUdαij)− bibjβUdαij+

∑
1≤i≤n

∑
1≤j≤n,i 6=j

cP
ij log

(
bibjβ

P ∑
`:Φ(`)=i

dα`j

)
− bibjβP ∑

`:Φ(`)=i
dα`j+

∑
1≤i<j≤n

cA
ij log

(
bibjβ

A ∑
`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

)
− bibjβA ∑

`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

(5)

Note that this approach holds for polyploid genomes in addition to diploid genomes.

2.3 Incorporating prior knowledge
Because the resulting optimization is challenging, we add two constraints that reflect our
prior knowledge about chromatin 3D structure: two neighboring beads should not be too
far apart from one another, and homologs of most organisms occupy distinct territories
[33, 32, 4, 28].

The first constraint maintains bead chain connectivity by minimizing the variance in the
distance between neighboring beads:

h1(X) = (m− 1)
∑m−1
`=1 (d`,`+1)2(∑m−1
`=1 d`,`+1

)2 − 1 (6)

where ` and ` + 1 are on the same chromosome. This type of constraint has been used
previously in Simba3D [31].

The second constraint aims to disentangle the structures of the two homologs, and
operates on the distance between homolog centers of mass:

h2(X) =
∑
c

max

0,

rc −
∥∥∥∥∥∥ 1
card(cA)

∑
j∈cA

X` −
1

card(cB)
∑
p∈cB

Xp

∥∥∥∥∥∥
2

 , (7)

where c denotes the chromosome, cA and cB denote the set of beads associated to the two
homologs of chromosome c, and rc is a predefined scalar that increases relative to the space
between the two homologs of chromosome c. We note that such a penalty may be interpreted
as a log-prior in a Bayesian setting, where the distance between homolog centers of mass of
chromosome c is a priori normally distributed with mean rc.

When unambiguous data is available, the values of rc may be estimated via the distances
between homolog centers of mass in an extremely coarse-grained structure inferred from
unambiguous data alone. Alternatively, when unambiguous data is not available, rc may be
estimated as the mean distance between chromosome centers of mass in a coarse-grained
structure inferred from ambiguous data, since this distance is expected to be similar to that
between homologs.

We penalize the likelihood in Equation 5 and solve the following optimization problem
via L-BFGS-B, a widely used quasi-Newton method[6]:

max
X

L(X) + λ1h1(X) + λ2h2(X) , (8)

where λ1 and λ2 are penalization parameters, the values of which were chosen via a grid
search. A version of PASTIS that implements the diploid inference approach is available at
https://github.com/hiclib/pastis.
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2.4 Data
2.4.1 Simulated Hi-C data
To validate our approach, we generated 10 simulated genomes with coverage, number of
beads, and ratios of disambiguated contact counts corresponding to those of Hi-C data
from the mouse Patski cell line (described in Section 2.4.2) at 500 kb resolution. We also
generated additional sets of 10 simulated genomes with the same number of beads, varying
the proportion of ambiguous, unambiguous, and partially ambiguous contact counts.

To simulate “true” structures, we applied a random walk algorithm. This algorithm
places beads successively along each chromosome, constraining each bead to lie within a
given distance of the previous bead, provided the new bead does not overlap with any of
the previously placed beads and that the entire homolog fits within a sphere of a predefined
radius. We then derive unambiguous counts using the following model:

cij = Poisson
(
βdαij

)
, (9)

where α = −3, corresponding to a previously used theoretical exponent for the contact-to-
distance transfer function [38]. To convert unambiguous counts to ambiguous or partially
ambiguous counts, we summed contacts from the appropriate pairs of loci. In all experiments,
we simulated a 343-bead chromosome with 9.3× 106 reads, which corresponds to the number
of beads and reads in the real data we examined. All simulated Hi-C data used for this project
is available at available at https://noble.gs.washington.edu/proj/diploid-pastis/.

2.4.2 Real Hi-C data
We applied our method to publicly available in situ DNAse Hi-C of Patski fibroblast mouse
kidney cells [11]. This line was derived from F1 female embryos, obtained by mating a
BL6 female with a Spretus male. The BL6 female had an Hprt mutation, so hypoxanthine-
aminopterin-thymidine medium was used to select for cells with X chromosome inactivation
on the maternal allele. All real Hi-C data used for this project is available at available at
https://noble.gs.washington.edu/proj/diploid-pastis/.

2.5 Structure similarity measures
We use the following quantitative measures of similarity between 3D structures to determine
the quality of structures inferred from simulated data and assess the stability of chromatin
structures across biological replicates.

Root mean square deviation (RMSD) is a common way of comparing two three dimensional
structures described by their coordinates X, X′ ∈ R3×m. RMSD is defined as

RMSD = min
X∗

√∑m
i=1(Xi −X∗i )2

m
, (10)

where X∗ is obtained by translating, rotating, and rescaling X′ (X∗ = sRX′ − t where
R ∈ R3×3 is a rotation matrix, t ∈ R3 is a translation vector, and s is a scaling factor).
RMSD values are computed independently on each homolog of each chromosome and summed.

Distance error [38] assesses the similarity between two distance matrices. This measure
assigns more weight to long distances than RMSD. It is given by

distError = min
X∗

√∑
i∈γ(di(X)− di(X∗))2

m
, (11)

https://noble.gs.washington.edu/proj/diploid-pastis/
https://noble.gs.washington.edu/proj/diploid-pastis/
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where γ is a set of distances of interest (e.g., intra-chromosomal distances). The structure
X∗ is obtained by rescaling X′ (X∗ = sX′ where s is a scaling factor). To distinguish
discrepancies in intra-chromosomal structure from those affecting the relative orientation of
each pair of homologs or the relative orientation of different chromosome pairs, we compute
distance error in two ways. Intra-chromosomal distance error is computed separately for each
homolog of each chromosome, and γ encompasses distances between all beads of the given
homolog. Inter-homolog distance error is computed separately for chromosome pair, and γ
encompasses distances connecting all beads of two different homologs of a given chromosome.
For both measures, values are summed for all chromosomes.

3 Results

3.1 Constraints improve ambiguous inference
First, we assessed the accuracy of our method on simulated datasets (Section 2.4.1) using
ambiguous data alone, with and without our proposed constraints. Because of the lack of
disambiguated contact counts, we expected this inference task to be difficult. Our results
demonstrated that the two sets of constraints – bead connectivity and homolog separation –
are necessary for successful inference. In the absence of the constraints, ambiguous inference
performed poorly (Figure 2). Specifically, inferred homolog structures overlapped one
another, and adjacent beads sometimes had large gaps between one another. The homolog
separation constraint (Equation 7) and the bead connectivity constraint (Equation 6) were
specifically designed to address these problems. Therefore, we repeated the inference with
each constraint individually and the two constraints in combination. In this experiment,
we compared results generated with and without each constraint at the optimal λ values
(λ1 = 108 and λ2 = 1010, respectively). The results showed that RMSD and distance error
are lowest when both constraints were incorporated (Figure 2), and error scores obtained
from structures inferred with both constraints were significantly lower than those obtained
from structures inferred without constraints (pairwise t-test, Bonferroni corrected p-value
<0.05, Supplementary Table 1). 3D structures produced with the constraints had fewer
large gaps between neighboring beads and exhibited distinct territories for the two homologs.
With both constraints, optimization on a heterogeneous CPU cluster running at 1.90-2.4
GHz took an average of two hours to converge (averaged over 50 jobs).

As an additional control for the previous experiment, we sought to confirm that the
Poisson model for ambiguous diploid contact counts improved inference above what could be
attained by the constraints alone. Accordingly, we compared results generated with simulated
ambiguous data to “null” structures, which were inferred with the same initialization and
constraints but without the Poisson model. Both measures of intra-homolog similarity showed
a clear improvement when the Poisson model was incorporated in inference (Figure 2). On
the other hand, the inter-homolog distance error did not improve with the addition of the
Poisson model, suggesting that the constraints are the primary influence in orienting the
homologs relative to one another.

3.2 Best results obtained by incorporation of disambiguated data
We expected that more accurate structure inference could be achieved using data where one
or more ends of each contact count was disambiguated, relative to fully ambiguous data.
We also expected that unambiguous data, in which both ends of each contact count are
disambiguated, would yield better models than partially ambiguous data, in which only

WABI 2019
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A

B Inferred

Simulated No constraints
Homolog
separating
constraint

Bead
connectivity
constraint

Both constraints

Figure 2 Constraints improve ambiguous inference. The simulated data consists of a single
diploid chromosome with 9.3× 106 reads and 343 beads, the size of which corresponds to mouse
chromosome X at 500 kb resolution. (A) The quality of the inferred structure, as measured by
three different error scores (y-axis), improves upon application of the bead connectivity constraint
(λ1 = 108) and the homolog separating constraint (λ2 = 1010). Best results are seen when both
constraints are applied simultaneously. Each point corresponds to a single inferred structure, and
colors indicate the simulated true structure from which counts were derived. “Null” indicates
inference performed without the Poisson model. Corresponding p-values are in Supplementary
Table 1. (B) A simulated chromosome is shown alongside inferred versions of the same chromosomes
using various strategies. Each panel also lists the RMSD and distance error associated with the
given structure, relative to the true structure.

one end of each contact count is disambiguated. To test these hypotheses, we simulated
partially ambiguous data and unambiguous data. Across all similarity measures, inference
with unambiguous data performed best, and inference with ambiguous data performed worst,
as expected (Figure 3). Partially ambiguous contacts seem especially beneficial in inference
of intra-homolog structure, since intra-homolog RMSD and distance error of structures
inferred with partially ambiguous counts was significantly lower than intra-homolog RMSD
and distance error of structures inferred with ambiguous counts (pairwise t-test, Bonferroni
corrected p-value <0.05, Supplementary Table 2).

3.3 Inference successfully identifies the superdomain structure of the
inactive X chromosome

Deng et al. [11] previously showed that inactive X chromosome adopts a bipartite structure
with two large superdomains, whereas the active homolog does not. We sought to validate
our approach by inferring the mouse X chromosome structure and examining the degree
to which each homolog exhibits a bipartite structure. Bipartite structure was assessed
via the “bipartite index,” which refers to the ratio of the frequency of counts within each
superdomain to those between superdomains [11]. To determine the bipartite index of an
inferred 3D structure, we induced counts by applying the biophysical model used during
inference (Equation 9) to the distances between beads.

We inferred a 3D structure for the mouse X chromosome at 500 kb resolution and computed
the bipartite index at each bin along the chromosome. The boundary between superdomains
of the inactive X chromosome has been shown to center at position 72.8–72.9 Mb (mm9,
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Figure 3 Inference with ambiguous and disambiguated data. The simulated data consists
of a single chromosome with 9.36 reads and 343 beads, the size of which corresponds to mouse
chromosome X at 500 kb resolution. The quality of the inferred structure, as measured by three
different error scores (y-axis), improves when one or both ends of a contact are disambiguated, and
best results are seen in the latter case. “A” indicates ambiguous data, “U” indicates unambiguous data,
and “P” indicates partially ambiguous data. Each point corresponds to a single inferred structure,
and colors indicate the simulated true structure from which counts were derived. Corresponding
p-values are in Supplementary Table 2.

corresponding to bead 146 in our structure) [11]. In our analysis, the bipartite index of the
inferred inactive homolog exhibited a prominent peak around position 75 Mb (corresponding
to bead 150), whereas the active homolog only had a relatively small peak at this position
(Figure 4). This observation suggests that the inference method has successfully recovered
this known feature of the mouse inactive X chromosome.

4 Discussion

Three-dimensional structural inference of diploid genomes is a challenging problem because
most Hi-C data is inherently ambiguous and does not discriminate between contact counts
from the two homologs of a given chromosome. Even in the rare cases when parental genotype
information is available, only a minority of reads can be disambiguated. As a consequence,
many inference methods have modeled a single structure per diploid chromosome [38, 23, 41].
Such an approach assumes that the two homologous copies of a given chromosome have
the same 3D structure and prevents structural inference of more than one chromosome at a
time. Because of these limitations, the degree of structural similarity between homologous
autosomes is not currently well understood.

In this work, we show how to carry out true diploid structural inference by modifying
the objective function of PASTIS, a previously published haploid inference method [38].
PASTIS models each contact count via a Poisson distribution of a biophysical model between
pairwise distances connecting the corresponding beads. In this work, we model each diploid
contact count as the sum of biophysical models between all possible distances between
the corresponding bead on each homolog. We combine this modified Poisson model with
two constraints that limit the scope of possible solutions to more realistic structures. One
constraint enforces even spacing of beads along the chain of the chromosome, and the other
serves to spatially separate homologs. Using simulations, we show that the most accurate
structures are obtained by inferring with the Poisson model in conjunction with both
constraints. We note that the homologs of our simulated structures occupy distinct territories.
While this is the case for many organisms, there are some exceptions [26, 33, 32, 4, 28];
therefore, the weight assigned to the homolog-separating constraint should be tuned for each
organism based on prior knowledge. These analyses were performed at the relatively coarse
resolution of 500 kb, and the relationship between resolution, coverage, computational cost,
and accuracy of this method remains unexplored.

WABI 2019
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Figure 4 Bipartite structure of the mouse inactive X chromosome. The bipartite index
(y-axis) at each genomic distance bin (x-axis) for the active (orange) and inactive (blue) homologs of
the mouse X chromosome. The black line corresponds to the known boundary between superdomains
of the inactive homolog at bin 146.

A limitation to this method involves the distribution of contact count data, which may
be better fit by a negative binomial model than a Poisson model [9]. Unfortunately, our
method of diploid inference relies on a specific property of Poisson models, namely, that the
sum of multiple Poisson variables is also a Poisson variable. Another caveat involves the
biophysical model used during inference (Equation 9), which may not accurately capture the
relationship between contact counts and pairwise distances in all situations. For example,
this relationship may vary depending on the organism, resolution, genomic distance range,
and cell cycle status [42, 1, 2, 22, 14]. We also note that in the completely ambiguous case,
it is possible that the inferred homologs represent different subpopulations within the sample
rather than separating the two haplotypes.

We envision several ways in which diploid PASTIS could be further improved. First,
diploid PASTIS could allowing for joint estimation of the α parameter of the biophysical
model alongside the 3D structure, as is possible for haploid PASTIS. Second, results could
potentially be improved by incorporating a multiscale optimization strategy, in which a high-
resolution structures is inferred in a stepwise fashion through multiple rounds of inference with
gradually increasing resolution. Similarly, inference of the whole genome may be improved
by a stepwise approach where each chromosome is first inferred individually before being
placed in the context of the whole genome.
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A Supplement

Table 1 Constraints improve ambiguous inference. Each entry is a Bonferroni adjusted
p-value for a t-test applied to the specified pair of methods. Values <0.05 are in boldface.

RMSD
per homolog

Distance error
per homolog

Distance error,
inter-homolog

No constraints Bead chain connectivity 0.0458 0.0104 0.275
No constraints Homolog separating 1.3 0.222 4.14
No constraints Both constraints 0.00309 0.00667 0.0179
No constraints Both constraints + Null 0.0000404 0.00000773 0.0000883
Bead chain connectivity Homolog separating 0.00731 0.00588 1.62
Bead chain connectivity Both constraints 4.89 8.74 0.159
Bead chain connectivity Both constraints + Null 0.000018 0.00000054 0.000263
Homolog separating Both constraints 0.0018 0.00713 0.183
Homolog separating Both constraints + Null 0.0000397 0.152 0.103
Both constraints Both constraints + Null 0.0000179 0.00000387 0.981

Table 2 Inference with ambiguous and disambiguated data. Each entry is a Bonferroni
adjusted p-value for a t-test applied to the specified pair of methods. Values <0.05 are in boldface.

RMSD
per homolog

Distance error
per homolog

Distance error,
inter-homolog

Ambiguous Partially ambiguous 0.000231 0.0000669 0.654
Ambiguous Unambiguous 3.36E-09 2.88E-08 0.00000369
Partially ambiguous Unambiguous 0.00000462 0.00000345 0.00000342
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