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Abstract
Despite the recent developments of long-read sequencing technologies, it is still difficult to produce
complete assemblies of eukaryotic genomes in an automated fashion. Genome assembly software
typically output assembled fragments (contigs) along with assembly graphs, that encode all possible
layouts of these contigs. Graph representation of the assembled genome can be useful for gene
discovery, haplotyping, structural variations analysis and other applications. To facilitate the
development of new graph-based approaches, it is important to develop algorithms for comparison
and evaluation of assembly graphs produced by different software. In this work, we introduce
synteny paths: maximal paths of homologous sequence between the compared assembly graphs. We
describe Asgan – an algorithm for efficient synteny paths decomposition, and use it to evaluate
assembly graphs of various bacterial assemblies produced by different approaches. We then apply
Asgan to discover structural variations between the assemblies of 15 Drosophila genomes, and
show that synteny paths are robust to contig fragmentation. The Asgan tool is freely available at:
https://github.com/epolevikov/Asgan.
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1 Introduction

Genome assembly is the problem of reconstructing a DNA sequence from sequencing reads -
short, overlapping substrings of the original DNA. This reconstruction is challenging because
of the presence of genomic repeats - multiple copies (precise or imprecise) of the same sequence
within the genome. Since the read length is limited, even simple bacterial assemblies from
short Illumina reads may contain hundreds of unresolved repeats, which results in fragmented
assemblies [22]. The increased read length of the Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT) sequencers significantly improved the contiguity of many de
novo assemblies [27]. However, other genomes are still incomplete due to very long unresolved
repeats, such as segmental duplications in human genomes [34].
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To reduce the assembly fragmentation and optimally resolve repeats, genome assemblers
construct various assembly graphs from input reads. One popular representation is the
overlap graph [23], where each input read corresponds to a node, and directed edges represent
overlaps between the corresponding reads. A limitation of this approach is that it does not
reveal precise boundaries of genomic repeats as they might be hidden inside the nodes [10].
Alternatively, de Bruijn graphs [26] proved to be a useful framework that represents read
information in a compact form and reveals repeat boundaries [25]. A recently introduced
Flye algorithm [12] utilizes repeat graphs, which are similar to de Bruijn graphs, but are
built using approximate, rather than exact sequence matches.

A typical genome assembly workflow includes building and simplifying an assembly graph,
afterwards contigs are generated as unambiguous paths in this graph [32, 4]. Many studies
focus only on the resulting contig fragments for downstream analysis, however it was shown
that incorporating the adjacency information from assembly graphs can be useful for gene
discovery [33], structural variation analysis [9], hybrid assembly [2, 35], haplotyping [30],
segmental duplication analysis [12] and other applications.

To facilitate the development of new assembly graph-based approaches, it is important
to develop algorithms for comparison and evaluation of various assembly graphs produced
by different approaches. Recently, a GTED distance metric [5] has been introduced as an
attempt to generalize the string edit distance [14] to sequence graphs. While theoretically
sound, this approach has only been applied to small viral genomes due to the computational
constraints. Additionally, Earth mover’s distance (EMD) was proposed as a probabilistic
distance measure between de Bruijn graphs of metagenomic assemblies [18]. The authors have
shown that incorporating the connectivity information from de Bruijn graphs improves the
accuracy of metagenomic sample classification, comparing to the read mapping approaches.
However, the described algorithm works only with de Bruijn graphs built with small values
of k (less than 10), which makes it unsuitable to analyse the structure of the assembly
graphs produced by the most genome assemblers. Finally, various visualization tools, such as
Bandage [36] or AGB [19] allow for visual inspection of assembly graphs, but do not support
automatic graphs comparison.

In this work, we propose a new method for assembly graphs analysis and comparison,
which could be used for benchmarking various assembly algorithms, and for improving
comparative genomics capabilities of fragmented assemblies. We introduce synteny paths -
maximal paths of homologous sequence between the compared assembly graphs, which are
inspired by synteny blocks that are commonly used for structural comparison of complete
genomes [24, 8]. We formulate the minimum synteny paths decomposition problem, prove
that its exact solution is NP-hard and provide an efficient heuristic algorithm. Then, we
illustrate the application of synteny paths for evaluating assembly graphs of various bacterial
genomes produced by different assemblers. Finally, we apply synteny paths to compare 15
Drosophila assemblies and show that our approach is robust to contig fragmentation, and
reveals structural divergences between the compared genomes.

2 Background

De Bruijn graphs. Given a set of reads R and a parameter k, de Bruijn graph DBG(R, k)
is constructed by first representing each read of length L as a set of L− k + 1 overlapping
k-mers (substrings of length k). Each unique k-mer k1 from the constructed set is translated
into a node vk1 in the de Bruijn graph. Two nodes vk1 and vk2 are connected by a directed
edge, if the corresponding k-mers k1 and k2 are adjacent in at least one of the input reads
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(Figure 1a-d). Note that it also means: (i) k1 and k2 overlap by k − 1 nucleotides and (ii)
edge (vk1 , vk2) spells a (k + 1)-mer, constructed from two overlapping k-mers. Since each
read could also be represented as a sequence of consecutive (k + 1)-mers: (k1, k2, . . . , kn),
the corresponding edges in DBG form a path. Similarly, because every read is a substring
of the original genome G, there is a path in DBG, that spells G (assuming no sequencing
errors and uniform read coverage).

(f) Annotated de Bruijn
graph

(e) Condensed de Bruijn
graph

(a) Genome with one repeat

(b) Reads

(c) Reads split into k-mers

(d) de Bruijn graph

Figure 1 De Bruijn graph construction and annotation. (a) Genome with one repeat of multiplicity
two (shown in red). (b) Reads sampled from the genome. (c) Each read of length L represented as
sequences of L− k + 1 k-mers. (d) De Bruijn graph is built by gluing k-mers that spell the same
sequence. The repeat copies are collapsed into a path, with first and last nodes of this path revealing
the repeat boundaries. (e) Condensed de Bruijn graph is constructed by collapsing non-branching
paths into single edges. (f) Annotated de Bruijn graph, with unique edges shown in green and a
repetitive edge shown in black.

For simplicity, we assume that the genome consists of one circular chromosome, thus every
node in DBG has at least one incoming and outgoing edge. Because some k-mers appear
multiple times in the genome, the corresponding DBG nodes might have multiple incoming or
outgoing edges. We call a node non-branching, if it has one incoming and one outgoing edge
(and branching otherwise). A maximal non-branching path is a path in which two terminal
nodes are branching, and all intermediate nodes are non-branching. Many assemblers simplify
the described de Bruijn graph by collapsing every maximal non-branching path into a single
edge, labelled with a sequence spelled by the original path. This transformation results in a
condensed de Bruijn graph (Figure 1e). Further in text, we assume that de Bruijn graphs
are condensed, meaning that edge sequences might be longer than k.

Double-stranded de Bruijn graphs. De novo assembly algorithms assume that reads might
originate from either forward or reverse DNA strand, therefore it is convenient to represent
both strands of the assembled genome in a double-stranded de Bruijn graph. For any edge
e that spells sequence S in such graph, there exists a single complementary edge e′ that
spells S′ (reverse-complement of S). Further, a double-stranded DBG is symmetric with
respect to the complement operation: for any path P = (e1, e2, e3, ..., el−1, el) of size l

that spells sequence S, there exists a complementary path P ′ = (e′l, e′l−1, ..., e′3, e′2, e′1) of
size l that spells S′.

WABI 2019
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3 Methods

Annotated de Bruijn graph (ADBG). If all k-mers in a genome G were unique, DBG(G)
would consist of a single non-branching cyclic path, however repetitive k-mers complicate
the graph structure. If a k-mer originates from a genomic repeat (of length ≥ k), all copies
of this k-mer in the genome will be collapsed into a single node on DBG. Similarly, multiple
consecutive repetitive k-mers from the genome will be collapsed into a non-branching path
in the graph (or a single edge in case of the condensed DBG).

We define annotated de Bruijn graph (ADBG) as a de Bruijn graph with each edge labeled
as either unique or repetitive. If the complete genome sequence G is available, one can
classify each edge of ADBG(G) as either unique or repetitive by checking how many times
the corresponding sequence appears in G. If the genome sequence is unknown (as in de novo
assembly), edges could be classified based on read coverage, edge length distribution and
other criteria (we provide an implementation below).

Analyzing different ADBGs derived from the same genome. First, we consider a case
when two ADBGs AG1 and AG2 are constructed from the same genome G, but with different
values of k (k1 < k2). Assuming uniform read coverage and no sequencing errors, both AG1
and AG2 contain a path that spells G. However, AG1 might have more repetitive edges than
AG2 corresponding to repeats varying in length from k1 to k2. To reveal similarities between
two graphs, we focus on their unique edges, because mapping of repetitive edges could be
ambiguous. For each unique edge e1 in AG1, there is a unique edge e2 in AG2 that has a
substring that is identical to the string spelled by e1. We call this pair of edges e1, e2 syntenic.
In the case of condensed DBG, a unique edge e2 from AG2 might correspond to multiple
unique edges {e1

1, e1
2, ..., e1

k} from AG1 due to higher fragmentation level. In this case, we
split e2 into a path of syntenic edges (e2

1, e2
2, ..., e2

k) that spells the original sequence of e2.
This defines unique syntenic edge pairs between AG1 and AG2. (Figure 2a-b).

Synteny paths. We say that two unique edges u and v are compatible in an ADBG AG if
either (i) u and v are adjacent or (ii) AG contains a path between u and v such that all
intermediate edges in this path are repetitive. Intuitively, we allow arbitrary insertions of
repetitive sequences between the compatible unique edges, but prohibit unique sequence to be
rearranged. Given two ADBGs AG1 and AG2 with two pairs of syntenic edges U = {u1, u2}
and V = {v1, v2}, we call pairs U and V colinear if u1 and v1 are compatible in AG1, and
u2 and v2 are compatible in AG2. Synteny path is defined as a sequence of syntenic edge
pairs P = (E1, E2, ..., Ek), in which every two consecutive pairs (Ei−1, Ei) are colinear
(Figure 2c). A single syntenic edge pair is also considered a trivial synteny path.

Minimum synteny paths (MSP) decomposition. Each synteny path reveals local similar-
ities between edges of ADBGs. To compare two graphs globally, we formulate the following
decomposition problem. Given two ADBGs AG1 and AG2 with unique edges decomposed
into the set of syntenic edge pairs E = {(u1, u2), (v1, v2), (w1, w2), ...}, find the minimum
number of synteny paths that cover all edge pairs from E. Intuitively, we want to find a
minimal set of sequences that traverse all unique edges in AG1 and AG2 in the same order,
while allowing arbitrary repeat insertions.

If AG1 and AG2 are built from the same unichromosomal genome G, they share a synteny
path that spells G (with repeats removed) and solves MSP. However, because multiple MSP
solutions may exist, a single path that solves MSP might not correspond to the original
genome. Because each syntenic edge pair is considered a trivial synteny path, the maximum
number of synteny paths in MSP equals to the number of syntenic edge pairs.
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Figure 2 An example of synteny paths decomposition. (a) A genome with two repeats of lengths
|R1| > |R2| shown in black. Unique sequences between repeats is shown in color. Each repeat is
represented in two exact copies. (b) Two ADBGs built with different values of k. The left graph is
built with |R2| < k < |R1|, so that only R1 is collapsed in the graph. The graph on the right is built
for k < |R2| < |R1|, thus both R1 and R2 are collapsed in the graph. Colors denote edge pairs that
spell the same genome subsequences (syntenic egdes). (c) Syntenic edges are joined into a single
synteny path (shown in orange). The path traverses unique edges in the same order (a, b, c, d, e) and
reveals the similarity between two graphs.

In case of double-stranded ADBG, we require the resulting set of synteny paths to
be symmetric with respect to the complement operation: for any path P from the MSP
solution, P ′ also belongs to the solution. Further in text we assume the symmetric version of
the MSP decomposition.

MSP decomposition is NP-hard. Following we prove that the MSP decomposition is NP-
hard by reducing the Hamiltonian path problem in directed graphs to the MSP decomposition.
Let G be an arbitrary directed graph. We construct a new ADBG H from G, by translating
nodes from G into a unique edges in H, and edges from G into repetitive edges in H. For
each node u from G, we create two nodes in H: ut and uh (tail and head nodes, respectively),
which are connected with a unique (directed) edge (ut, uh). Next, for each edge (u, v) from
G, we connect the nodes uh and vt of H with a repetitive edge (uh, vt). Note that unique
edges in H always start at tail nodes and end at head nodes, while repetitive edges start
at head nodes and end at tail nodes (Figure 3a-b). Afterwards, we build a complementary
graph Hrev as a copy of H with all edges reversed. Each unique edge (ut

i, uh
i ) from H and

its complement (uh
i , ut

i) from Hrev are labelled as +i and −i, respectively. The described
transformation could be performed in O(|V |+ |E|) time. For simplicity, we first prove that
single-stranded MSP version is NP-hard using H, and then extend it to the double-stranded
case with Hds = H ∪ Hrev (Figure 3c). We also assume that indegree and outdegree of
nodes in H is unlimited – below we show how to extend our proof to ADBGs over the DNA
alphabet, in which indegree and outdegree of each node is at most four.

I Lemma 1. If there is a Hamiltonian path in the initial graph G, it corresponds to a path
in H that covers all unique edges.

WABI 2019
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H
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Figure 3 Reducing the Hamiltonian path problem to the MSP problem. (a-b) Each node in the
initial graph G is translated to a unique edge (shown in pink) in the new graph H, while the edges
of G are translated into repetitive edges (shown in black) in H. (c) A complementary graph Hrev is
constructed by inverting the directions of all edges in H. A union of two graphs Hds = H ∪Hrev is
then used to solve the double-stranded MSP decomposition.

Proof. Let pG = (u1, u2, ..., un) be a Hamiltonian path in G. By construction, it corresponds
to the following path in H: pH = (ut

1, uh
1 , ut

2, uh
2 , ..., ut

n, uh
n). Since each node ui of G is

covered by pG, each unique edge (ut
i, uh

i ) of H is covered by pH . J

I Lemma 2. If there is a path in H that covers all unique edges, it corresponds to a
Hamiltonian path in G.

Proof. Let pH = (ut
1, uh

1 , ut
2, uh

2 , ..., ut
n, uh

n) be a path of length n in H that covers all
unique edges (ut

i, uh
i ). By construction, consecutive pairs of nodes (uh

i , ut
i+1) correspond to

repetitive edges in H. Thus, pH is an alternating sequence of unique and repetitive edges
in H, and is translated to the following node path of length n in G: pG = (u1, u2, ..., un),
which traverses all nodes in G. J

I Theorem 3. Minimum synteny paths decomposition is NP-hard.

Proof. Note that Lemmas 1-2 were formulated for paths in a single graph H. The lemmas
could be trivially extended to pairwise synteny paths by duplicating H into Hcopy and
defining the duplicated unique edges as syntenic. Likewise, we can trivially extend the
single-stranded version of the MSP decomposition to the double-stranded case by considering
Hds = H ∪Hrev, since H and Hrev are symmetric and independent.

Finally, to overcome the maximum node degree limit in ADBGs constructed over the
DNA alphabet, we apply the following transformation to H. Each node with indegree or
outdegree more than four is split into multiple nodes, and the original edges are distributed
among the new nodes so as to satisfy the degree limit. The new nodes are also connected via
additional repetitive edges in both directions. This forms supernodes, which are equivalent
to the original nodes in H with respect to the connectivity of the unique edges.

The extended versions of Lemmas 1-2 prove the theorem. J

A heuristic algorithm for the MSP decomposition. Since the exact solution for the MSP
decomposition is NP-hard, we propose an efficient heuristic algorithm. Given two double-
stranded ADBGs AG1 and AG2 with unique edges decomposed into 2n syntenic pairs
{±1, ±2, ..., ±n} (complementary edges have opposite sign), we construct a breakpoint
graph [24, 3] as described below.

For each syntenic pair +i, we create two nodes in the breakpoint graph: it and ih. A
complementary syntenic pair −i corresponds to the same pair of nodes, but in reversed
order: ih and it. Then, for each pair of colinear syntenic edges (u, v), we put an undirected
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edge between uh and vt (denoted as adjacency edge). Note that the complementary colinear
syntenic pair (−v, −u) will correspond to the same connection on the breakpoint graph, hence
providing a convenient way to represent two strands of a de Bruijn graph [16] (Figure 4a-b).

AG1

+1 +1

+4 +5

-5

-4

-5

+4+5

-4

-1 -1+2

+2

-2
-2

-3

+3
-3

+3

AG2

4t 5t 1t 2t 3t

4h 5h 1h 2h 3h

4t 5t 1t 2t 3t

4h 5h 1h 2h 3h

(a) Annotated de Bruijn graphs (double-stranded)

Breakpoint graph Synteny paths(b) (c)

Figure 4 A heuristic algorithm for minimum synteny paths problem. (a) Two double-stranded
ADBGs AG1 and AG2 with edges decomposed into synteny pairs. Repetitive edges shown in black,
and unique edges are colored into green and red, highlighting two synteny paths in the graphs.
Dashed edges represent complementary edges. (b) Breakpoint graph constructed from AG1 and
AG2. The nodes correspond to the ends of synteny blocks (head or tail) and edges represent the
corresponding colinear blocks. Solid edges show the selected maximum matching (dashed edge was
not selected). (c) Synteny paths are revealed by removing edges that are not part of the matching,
and adding trivial edges (shown in black).

The resulting breakpoint graph encodes all possible colinear syntenic pairs, therefore a
matching on this graph defines a set of synteny paths. To minimize the number of synteny
paths, we find a maximum matching on the breakpoint graph using the Blossom algorithm [7]
(Figure 4b). Given the maximum matching, we reconstruct synteny paths from the breakpoint
graph by adding edges that connect nodes {ih, it}, i = 1, ..., n (trivial edges). The resulting
set of paths on the breakpoint graph defines a set of synteny paths between AG1 and AG2
(Figure 4c). Note that because the complementary colinear connections are represented
by the same adjacency edges in the breakpoint graph, the constructed MSP solution will
automatically be symmetric.

In some cases, the reconstructed matching might not yield to the optimal MSP solution.
Consider an initial breakpoint graph with only trivial edges present. When a new adjacency
edge is added into the graph it either (i) connects two paths into one (reducing the number
of synteny paths by one), or (ii) transforms an existing path into a cycle (the number of
paths is not reduced). After the initial maximal matching is reconstructed, we modify it
using the following heuristic to minimize the number of edges of the second type and improve
the MSP solution. The algorithm finds pairs of cycles in the graph that could be merged by
exchanging two adjacency edges with two another adjacency edges (similarly to the 2-break
operation [3]). Such pairs of cycles are then merged in a greedy manner. In practice, the
described heuristic was not triggered for the most of the real datasets we describe below.

WABI 2019



24:8 Synteny Paths for Assembly Graphs Comparison

Analyzing ADBGs of two closely related genomes. For the sake of simplicity, we previously
were assuming that de Bruijn graphs are built from the same genome using different values
of k. Here we extend the proposed algorithm to the comparison of two closely related
genomes. This comparison is more challenging as the genomes might contain small mutations
or structural variations. Comparative genomics studies typically decompose genomes into
sets of coarse synteny blocks to mask small-scale sequence polymorphisms [24, 8]. We apply
a similar principle to decompose the assembly graph edges into syntenic segments.

Given two ADBGs AG1 and AG2, we perform local pairwise alignment of all unique
edges from AG1 to all unique edges of AG2 using minimap2 [15]. We discard alignments that
are shorter than 50 Kbp to focus on large-scale structure. Afterwards, colinear alignments
(that appear in the same order and orientation in both genomes) are chained into synteny
blocks [11]. Similarly to the described above, if an edge contains multiple synteny blocks, we
split this edge into a path of new edges, each corresponding to a single synteny block. Since
each unique edge now contains one synteny block, this defines the syntenic edge pairs. It is
possible that some unique edges might not be aligned because the corresponding sequence is
missing in the other genome. Such edges are flagged as inserted, and are logically equivalent
to repetitive edges in the MSP decomposition. To be robust to possible chimeric connections
in the graphs, we also require nucleotide distance between the chained alignments as well as
the distance between the colinear synteny blocks to be less than 1 Mb.

Annotated repeat graphs. Recently, it has been shown how to apply repeat graphs for
long-read assembly [12]. Similarly to de Bruijn graphs, repeat graphs reveal the repeat
structure of the genome, which makes them suitable for the synteny paths analysis. Instead of
relying on exact k-mer matches, repeat graphs are built from local sequence alignments and
thus are more robust to high error rate of long reads. By design, repeat graphs can hide small
sequence polymorphisms, and are well suited for the analysis of large structural variations.

The described algorithms have been implemented into a tool named Asgan (Assembly
Graphs Analyzer). Asgan takes two annotated de Bruijn or repeat graphs as input (in
the GFA format), and outputs synteny paths visualized using Graphviz along with various
statistics. The Flye assembler [12] produces annotated repeat graphs as a part of its output.
For assemblers based on the overlap graph approach, such as Canu [13], we construct
repeat graphs by running the Flye graph construction algorithm on the assembled contigs
(that contain flanking repeat sequences). The implementation is freely available at: https:
//github.com/epolevikov/Asgan.

4 Results

Comparing Flye and Canu assembly graphs using bacterial datasets from the NCTC
collection. First, we illustrate the application of synteny paths for comparison of graphs
produced by different assembly methods. We focus on the assembly graphs reconstructed
from long-read sequencing data because they are typically less tangled and easier to visualize,
comparing to short Illumina assemblies. We used two assemblers, Canu [13] and Flye [12]
for the comparison, because they represent two different approaches for repeat resolution.
We did not attempt to evaluate the GTED and EMD implementations since they were not
designed for overlap / repeat graphs input (as discussed above).

We used Flye and Canu to assemble 21 bacterial genomes from the National Collection
of Type Cultures (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/).
When running Flye, we turned off the Trestle module (that resolves extra unbridged repeats)
to make Flye graphs potentially more tangled. Each dataset contains P5C3 PacBio reads

https://github.com/epolevikov/Asgan
https://github.com/epolevikov/Asgan
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
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Table 1 Comparison of the assembly graphs produced by Flye and Canu using 21 bacterial genomes
from the NCTC collection. Edges shorter than 50 Kb were ignored. Only one orientation (forward or
reverse) of each edge and connected components was counted. Fourteen concordant datasets (where
each connected component is covered by a single synteny path) are marked with the * symbol.

Flye Canu Flye & Canu

ID Unique edges Connected
components Unique edges Connected

components
Unique
edges

Connected
components

4450 7 1 8 6 12 8
6134 1 1 2 2 3 2
8333 8 1 3 1 8 2
8781 10 1 4 1 11 2
9657 6 2 6 6 9 7
11692 6 1 4 3 6 3
11962 4 1 3 1 5 2
5052* 7 2 5 2 7 2
7921* 3 1 1 1 4 1
9002* 1 1 1 1 2 1
9006* 7 1 2 1 7 1
9007* 2 1 2 1 2 1
9012* 4 1 2 1 4 1
9016* 4 1 1 1 4 1
9024* 4 2 4 2 4 2
9103* 3 3 3 3 3 3
9964* 4 1 1 1 4 1
10864* 6 1 1 1 7 1
11022* 4 1 1 1 4 1
12158* 3 2 2 2 3 2
12993* 2 2 2 2 2 2

with coverage varying from 70× to 271×. For each assembly, the number of unique edges
(longer than 50 Kb) ranged from 1 to 11 for Flye, and 1 to 8 for Canu. Since the assembly
graphs were double-stranded, we only counted one orientation (forward or reverse) of each
edge. Similarly, we counted only one orientation of each connected component, which might
represent a bacterial chromosome, a plasmid, or a mixture of them.

The results are shown in the Table 1. We call two assembly graphs concordant, if each
connected component in both graphs is covered by a single synteny path. Fourteen out of
21 datasets were concordant, which is expected for assemblies generated from the same set
of reads. In 8 out of 14 concordant datasets, Flye had more unique edges than Canu. This
suggests that in these 8 datasets Canu resolved more repeats than Flye (as expected due to
not using Trestle). Figure 5 shows examples of concordant and discordant assembly graphs.

In five out of seven datasets that were not concordant, Canu graphs, but not Flye graphs
contained “dead end” edges (disconnected from the rest of the graph from either beginning or
end). These missing connections might have contributed to the increased number of synteny
paths. In two remaining cases, both assemblers produced tangled graphs with complex
unresolved repeats.

Asgan took less than a minute of wall clock time and less than 100 Mb of RAM to process
each bacterial dataset. The running time was dominated by the minimap2 alignments (using
three threads).

WABI 2019
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Figure 5 (Top left) Comparison of bacterial assembly graphs produced by Flye and Canu for the
NCTC9016 dataset. Synteny paths are shown in green. Complement paths are dashed. In the Canu
graph, two strands of one connected component are separated, while in the Flye graph both strands
are merged into one component through the unresolved repeats. Although the assembly produced
by Flye is more fragmented, a single synteny path (−2,−1,−4, +3) reveals the structural similarity.
(Top right) Synteny paths decomposition for the NCTC9024 dataset. Both assemblies resulted into
tangled repeat graphs with different number of unresolved repeats. Two synteny paths cover each
connected component in full: (+1, +3,−2) and (+4). (Bottom) Two synteny paths (green and blue)
in the NCTC11962 dataset reveal structural inconsistencies between the Flye and Canu graphs.

Comparing assembly graphs of 15 Drosophila genomes. Synteny paths decomposition
could also be applied to structurally compare assemblies of different genomes. We used Flye
to assemble 15 different Drosophila species from ONT data [20]. Read coverage was varying
from 23x to 44x, read length N50 was varying from 7 Kb to 28 Kb. Flye produced contiguous
assemblies with N50 over 1Mb for 14 out of 15 datasets (Table 2).

First, we applied synteny paths to compare each assembly against the high-quality
Drosophila melanogaster reference genome. Table 2 shows various assembly statistics, as
well as the number of synteny blocks and synteny paths for each genome. The most
distant species exhibit more than 10% nucleotide divergence, and pairwise alignments were
problematic to compute. Instead, we estimated the evolutionary divergence of each genome
from D. melanogaster as the number of matched 15-mers within the synteny blocks (reported
by minimap2). K-mer survival rate could be estimated from point mutation rate d as:
(1− d)k. For example, 0.87 k-mer match rate of the D. melanogaster assembly corresponds
to approximately 1% base difference, which is typical for the current ONT assemblies [12].
Synteny block coverage (total length of all synteny blocks divided by the assembly size) was
varying from 94% for the D. melanogaster assembly to low 2% for the D. virilis assembly,
which highlights the challenge of recovering synteny blocks between diverged genomes.

As expected, we observed an increase in the number of synteny blocks, as the distance
between an assembly and the reference increases, excluding the three most distant genome
which had reduced the number of blocks due to the difficulties in alignment (Table 2). On
average, the number of synteny paths was 18% smaller than the number of synteny blocks
within each genome (varying from 0% to 56%). Under the assumption that the breakpoint
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reuse rate is low, the length of large synteny blocks should be exponentially distributed [24].
Thus, N50 contiguity metric could be used as a complement to the number of synteny blocks
or paths (defined as the largest possible number L, such that all blocks/paths of length L or
longer cover at least 50% of total blocks/paths length). Table 2 shows that synteny paths
N50 correlates with the evolutionary distance between the compared genomes and also robust
to the decreased synteny blocks coverage.

Table 2 Drosophila assembly graphs statistics and comparison against the D. melanogaster
reference. Genomes are sorted according to the k-mer identity, computed as the number of matching
15-mers against the D. melanogaster reference. Synteny blocks coverage was calculated as the total
length of the blocks divided by the total assembly length. Only the sequences that are contained in
a component with at least one synteny block were considered.

Genome Asm.
size, Mb

Asm.
N50,
Mb

Blocks,
No.

Paths,
No.

Blocks
N50,
Mb

Paths
N50,
Mb

Blocks
cov.

K-mer
identity

D. melanogaster 137.0 11.7 78 39 11.7 14.8 94% 0.87
D. mauritiana 128.1 13.9 32 16 13.5 20.8 88% 0.50
D. simulans 124.8 21.3 16 13 20.9 20.9 90% 0.48
D. sechellia 139.6 20.0 30 27 12.1 12.1 81% 0.47
D. yakuba 146.1 16.5 77 72 2.4 2.4 77% 0.30
D. erecta 131.8 12.4 46 39 4.3 4.8 86% 0.30

D. eugracilis 159.5 2.1 159 103 1.3 2.0 69% 0.19
D. biarmipes 168.8 4.9 194 181 0.8 0.9 64% 0.15
D. ananassae 176.8 3.1 286 281 0.4 0.42 40% 0.09
D. bipectinata 179.2 0.8 317 266 0.28 0.39 35% 0.09

D. pseudoobscura 151.8 2.7 238 230 0.24 0.28 28% 0.07
D. persimilis 156.4 2.3 237 229 0.26 0.28 26% 0.07
D. willistoni 187.1 2.9 27 26 0.16 0.18 2% 0.06

D. mojavensis 162.5 7.6 19 19 0.08 0.08 1% 0.06
D. virilis 161.7 10.8 82 36 0.08 0.08 2% 0.06

To further illustrate that synteny paths reveal structural variations and are robust to contig
fragmentation, we computed synteny paths between all pairs of assemblies. On average, the
number of synteny paths in each dataset was 20.4% smaller than the number of synteny blocks.
We defined the similarity between two assemblies as S = 1−N50syn/N50max, where N50syn

corresponds to the synteny paths N50, and N50max is the maximum synteny paths N50 among
all assembly pairs. Given the similarity matrix, we used Neighbor-Joining algorithm [31]
to infer the phylogenetic tree of all assemblies (Figure 6). The reconstructed tree was
structurally consistent with the tree reconstructed based on genomic mutation distances [6].

The running time of Asgan was less than six minutes of wall clock time for each pair of
Drosophila assemblies. The typical RAM usage was varying from 2 Gb to 6 Gb.

5 Discussion

In this work, we presented Asgan – an algorithm for comparison and evaluation of assembly
graphs produced by various assembly approaches. We introduced the concept of synteny
paths, which are similar to the synteny blocks abstraction, but take advantage of assembly
graph structure. The result of the minimum synteny paths decomposition problem returns
the minimal set of synteny paths that traverse all unique edges in two graphs in the same
order. We proved that the exact solution of the MSP decomposition is NP-hard and provided
a heuristic algorithm that scales to eukaryotic assembly graphs.

WABI 2019
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Figure 6 (Left) Heatmap showing synteny paths N50 between all pairs of assemblies. (Right).
Phylogenetic tree reconstructed based on normalized synteny paths N50 using the Neighbor-
Joining method.

We used synteny paths to compare the assembly graphs produced by Canu and Flye
from the 21 bacterial datasets. In 14 out of 21 cases, each graph component was covered
by a single synteny path, suggesting that both assemblers produced valid assembly graphs
with no missing connections. In the remaining seven cases, some graph components were
covered by multiple synteny paths, which is not expected for a unichromosomal genome.
This reveals possible missing or erroneous connections in the assembly graphs, where the
problematic regions are highlighted by synteny path breakpoints. Note that this type of
assembly error could not be captured by the alignment of contigs to a reference genome.
Thus, the proposed analysis could be useful for validation and debugging of assembly graphs
produced by different approaches.

Synteny analysis is a powerful technique for comparative genomics, and a number of tools
for synteny blocks decomposition has been developed [29, 28, 21, 8]. However, most of these
tools were designed for comparing complete genomes, and it was recently shown [17] that
their performance deteriorates when analysing fragmented assemblies. In contrast, synteny
paths are taking advantage of the assembly graph structure, and are more robust to the contig
fragmentation. We have demonstrated this by analysing the assemblies of 15 Drosophila
species. As expected, the structure of the reconstructed synteny paths was correlated with
mutation distances between the genomes. Using the synteny paths length distribution as a
similarity measure, we reconstructed the phylogenetic tree of the analysed species, which
was in agreement with the accepted Drosohila taxonomy.

It should be possible to extend the synteny paths approach to the comparison of multiple
assembly graphs, which could be useful for assembly reconciliation [37, 1]. Intuitively, if one
can prove that given assembly graphs share only one optimal MSP solution, this solution
will likely correspond to the correct genomic path. However, it is currently unknown how to
enumerate all optimal / suboptimal MSP solutions efficiently.
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