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Abstract
The strength or weakness of an algorithm is ultimately governed by the confidence of its result.
When the domain of the problem is large (e.g. traversal of a high-dimensional space), an exact
solution often cannot be obtained, so approximations must be made. These approximations often
lead to a reported quantity of interest (QOI) which varies between runs, decreasing the confidence
of any single run. When the algorithm further computes this QOI based on uncertain or noisy
data, the variability (or lack of confidence) of the QOI increases. Unbounded, these two sources of
uncertainty (algorithmic approximations and uncertainty in input data) can result in a reported
statistic that has low correlation with ground truth.

In molecular biology applications, this is especially applicable, as the search space is generally
large and observations are often noisy. This research applies uncertainty quantification techniques to
the difficult protein-protein docking problem, where uncertainties arise from the explicit conversion
from continuous to discrete space for protein representation (introducing some uncertainty in the
input data), as well as discrete sampling of the conformations. It describes the variability that exists
in existing software, and then provides a method for computing probabilistic certificates in the form
of Chernoff-like bounds. Finally, this paper leverages these probabilistic certificates to accurately
bound the uncertainty in docking from two docking algorithms, providing a QOI that is both robust
and statistically meaningful.

2012 ACM Subject Classification Applied computing → Molecular structural biology; Mathematics
of computing → Hypothesis testing and confidence interval computation; Computing methodologies
→ Uncertainty quantification

Keywords and phrases protein-protein docking, uncertainty quantification, protein flexibility, low-
discrepancy sampling, high-dimensional sampling

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.3

Related Version A full version of the paper is available at http://arxiv.org/abs/1906.10253.

Acknowledgements I would like to thank all those who have supported and helped advise on this
work, for their valuable feedback and suggestions for improvement.

1 Introduction

Predicting the bound conformation of two proteins (protein-protein docking) has many
applications in medicine and biology [26, 19]. The simpler form of this problem is the
so-called “bound-bound” case, where the 3-dimensional coordinates of the in situ protein
complex is resolved (via e.g. X-ray crystallography, NMR, etc.), and atoms corresponding to
individual proteins are then extracted from the complex. The more difficult version is the
“unbound-unbound” case, where each protein in the pair is imaged in its separate native state,
and the algorithm must predict the correct in situ bound complex [18]. Importantly, the
final quantity of interest (QOI) in many cases is the change in binding free energy: protein
complexes with a high change in free energy are more likely to be found as a bound complex,
and are likely good targets for drug discovery pathways. The difficulty of the unbound-
unbound case then arises from the inherent flexibility of proteins: large-scale movements
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3:2 Uncertainty Quantified Protein Docking

may occur along the pathway from a closed conformation (unbound) to an open (bound)
one, or visa versa. If docking is performed on only the unbound complexes, the final delta
energy could be completely misleading. (To aid in discussion, here and through the paper we
will refer to one protein, typically the bigger, as the receptor, and the other as the ligand.)

A subsequent difficulty of the unbound-unbound docking problem is that computational
approaches must search two high-dimensional spaces. The first is that of possible protein
structures, a naive description of which is R3m × R3n, where m and n are the number of
atoms in the ligand and receptor, respectively. The second is the space of possible docked
conformations. In rigid-body docking (each protein is static), this is the 6-dimensional real
space of 3 rotational + 3 translational degrees of freedom, SE(3) = SO(3) × R3 [1, 25].
Without approximation, searching this high-dimensional space is computationally intractable.
To achieve meaningful results, successful algorithms must employ some sort of simplification.

One of the biggest issues that arises from these simplifications is uncertainty propagation.
A computational representation of a protein is, by nature, an approximation (discrete
representation of a continuous space). Computing a simple statistic, or quantity of interest
(QOI), on these representations is then by nature uncertain [27]. Algorithmic approximations
(due to randomness or variations in the inputs) in one stage of a protein docking pipeline
lead to uncertainty in the input for the next stage. If these uncertainties are not quantified
at each stage, the uncertainties propagate to future levels of the pipeline, leading to a result
or QOI that is unbounded, and may contain little valuable information.

This paper provides a framework for bounding the uncertainty of protein-protein docking.
For a docking procedure where the QOI, f(X), is some complicated function or optimization
functional involving noisy data X, we seek to provide a probabilistic certificate as a function
of parameter t that the computed value f(X) is not more that t away from the true value,
with high probability. This certificate is expressed as a Chernoff-Hoeffding like bound [8]:

Pr [|f(X)− E[f ]| > t] ≤ ε, (1)

where E[f ] is the expectation of f , computed over all permutations of X. The primary
QOI we are interested in bounding is the change in Gibbs free energy, or ∆G, as this is
the metric most useful for real-world experiments. However, we also consider the interface
RMSD (iRMSD), which is defined as the RMSD between Cα atoms on the interface of
the bound pair.

Instead of providing a new docking algorithm as a solution to bounding the above
certificate, this research instead considers the docking algorithm, f(X), as a black box,
exploring the landscape of possible structures, X ∈ X, as inputs to f and computing the
certificates from the output. This then provides a framework by which any two algorithms
can be compared, and by which conclusive results can be reported.

In this work, we expand upon our previous research [27, 10] in the following manner.
First, the model used in the previous research was simplistic, and, while useful for modeling
small uncertainties, does not provide insight into uncertainty of large-scale protein movement.
Second, we consider the impact of this conformational uncertainty to provide certificates for
black-box docking functions. This second contribution can be used when trying to interpolate
results of a given docking algorithm to biological equivalents.

The only known research that applies uncertainty quantification to protein-protein docking
is a recent preprint by Cau and Shen [5]. The authors use Bayesian active learning to explore
protein-protein docking samples using a black-box energy function. Once the energy landscape
has been sufficiently sampled, they provide posterior distributions of the desired QOI, which
enables computing confidence intervals for each model. The major differences between this
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work and our own work is 1) the treatment of the entire docking algorithm as a black box
(instead of just the energy function), and 2) the use of a hierarchical model convolved with a
von Mises distribution to generate samples local to the unbound input.

The paper is organized as follows. First, we provide the theoretical and technical details
of our approach, including probabilistic certificates through effective sampling, protein
representation, sampling protocol, and benchmark dataset. Second, we show that the protein
sampling protocol used improves upon the results of both rigid-body and flexible docking
metrics, computing the probabilistic certificates for the change in Gibbs free energy for sets
of docked proteins. Finally, we discuss the importance of these results both in terms of UQ
for docking algorithms and biological relevance.

2 Materials and methods

2.1 Computing Chernoff-like bounds
Our primary motivation in this work is to compute a probabilistic certificate to bound the
uncertainty in a computed statistics. We are most concerned with providing the Chernoff-
Hoeffding like bound expressed in Equation 1, which provides a probabilistic guarantee for
the moments of a QOI computed on noisy data.

We can provide a theoretic bound for the uncertainty by using the McDiarmid inequality,
defined in [22] and extended to support summations of decaying kernels such as the Leonnard-
Jones potential in [27]. Let (Xi) be independent random variables with discrete space Ai,
let f : ΠiAi → R, and let |f(x1, . . . , xk, . . . , xn) − f(x1, . . . , x

′
k, . . . , xn)| ≤ ck, or ck is the

degree of change influenced on f over all variations of xk. Then, for any t > 0:

Pr [|f(X)− E [f ]| > t] < 2 exp
(
−2t2/

∑
k

c2
k

)
.

Thus, to provide theoretic bounds, all that is required is to determine the value of ck for
each xk. However, computing ck analytically may be difficult, and even if it were possible,
theoretical bounds these often overestimate the error. An alternate approach is then to
empirically compute these certificates using quasi-Monte Carlo (QMC) methods [24, 16].
Assuming the distribution of (Xi) is known, we sample this space and evaluate f at each
sample. This leads to an estimate of the distribution of f over the joint space of all Ai, which
provides sufficient data to compute certificates on the uncertainty, as defined in Equation 1.

Correctness of this approach relies on the correctness of the QMC methods and the
description of the joint sampling space. For this reason, we will spend the next section
describing our protein representation and the corresponding sampling space. In the Res-
ults and discussion section we will show that our sampling space is accurate (e.g. a good
representation of the distribution of (Xi)), and thus the provided certificates are also sound.

2.2 Protein representations
The base structure of a protein is a linear chain of amino acids (also called “residues”). Each
amino acid consists of a set of atoms, and all the atoms connected by covalent bonds into a
single 3-dimensional structure. Such atoms divide into two groups: backbone atoms: two
carbons, one nitrogen, and one oxygen; and zero or more side-chain atoms. The carbon
connecting the backbone to the side-chain atoms is called the Cα atom, and the first side-
chain carbon (if it exists) is called the Cβ atom (see Figure 1). The native representation of
a protein is thus a graph in 3-dimensional Cartesian space, where each node of the graph

WABI 2019



3:4 Uncertainty Quantified Protein Docking

Figure 1 Torsion angles for a protein chain. The backbone atoms are labeled Ci, Oi, Cαi, and
Ni. For a constrained internal coordinate representation, only the ψi, φi, and potentially χi torsion
angles are considered (ωi is fixed at 180◦).

represents atoms and edges represent bonds. The position of each node/atom is represented
by a vector in R3, requiring three parameters for each atom. If t̂ is the average number of
side-chain atoms per residue for a given protein, then this representation requires a total of
n = 3(t̂+ 4)N parameters (3 degrees of freedom each for the t̂ side-chain and 4 backbone
atoms), or degrees of freedom (DOFs), for a protein with N amino acids.

An alternate representation of proteins, employed by most sampling protocols (e.g. [23, 12]
and others) is the internal coordinates representation. Under this representation, the position
of each atom is only defined in relation to the atoms around it, and the free variables are
bond angles, bond lengths, and torsion angles (the degree of “twist” defined by 2 planes
or 4 atoms, see Figure 1). This does not immediately reduce the total degrees of freedom
(since in general, each atom needs to be described by bond angles, bond lengths, and torsion
angles); however, if small-scale atomic vibrations are ignored, then bond lengths and angles
can be approximated as constant, leaving the only DOFs as the ψ, φ, and χi torsion angles
(the ω torsion angle on the backbone is held at ∼ 180◦ by the sp2 partial double bond [4]). If
k̂ is the average number of χi angles for a given residue (k varies from 0 to 5 in the standard
20 amino acids), then the number of DOFs for this representation for a protein with N

amino acids is m = (k̂ + 2)N . Since in most cases k̂ + 2� 3(t̂+ 4), this constrained internal
coordinate method allows for a lower-dimensional specification of the protein conformational
space without a loss in representation [13].

2.3 Hierarchical domain decomposition and motion graph
Roughly speaking, proteins decompose into rigid and flexible parts. Rigid contiguous parts
are called domains, which exhibit little movement in several conformations. In turn, flexible
parts, also known as hinges, interconnect domains. These flexible parts show three types
of motion: shearing or gliding (i.e. a lateral movement along domain interfaces), bending
(i.e. an angular movement between axes of two connected domains), and twisting (i.e. a
rotational movement around the longitudinal axis of a domain).

When representing large-scale protein motion, we are primarily interested in hinges, or
flexible regions connecting large mostly-rigid bodies or domains. However, since there may
be multiple levels of motion, we use a hierarchical representation of the constrained internal
angles representation of the protein. The hierarchical representation is not a recursive
subdivision of the protein, but rather a description of (possibly overlapping) protein motions.
This allows us to represent motions at one level that consist of atoms from different domains
in the previous level.

To obtain this hierarchical domain decomposition for a given protein, we model the
protein as a Cα (one node per residue) GNM (Gaussian network model), and compute
the NMA (normal modes analysis) decomposition of the protein (in this work, we use the
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Figure 2 The NMA decomposition of 1RKE receptor, for the second non-trivial mode. From left
to right: the cross-correlation fluctuation matrix, [F ]2; the sign of entries of [F ]2, with short domains
removed; the domain graph representation of the protein, where the size of each node represents
the number of residues in that domain; and the domain graph representation mapped onto the 3d
structure of the protein, colored according to domain with hinge residues colored red. Hinges that
are also flexible connectors separate all domains but f (gray) and g (green), which are connected by
segments (hinges) that would not form a cut in the domain graph representation.

implementation from the R Bio3D package [14]). Each of the k modes represents a separate
direction of motion, from large-scale motions (the smallest eigenvalues) to the high-frequency
vibrations of hydrogen atoms. Each mode corresponds to a different level in our hierarchical
representation; that is, each hierarchical level corresponds to a distinct rigidity threshold.

Hinges are obtained in a similar fashion to that demonstrated by HingeProt[11], as follows.
For each mode, i, we compute the mean square fluctuation matrix as follows:

[F ]i = 3kBT

γ
λ−1

i uiuᵀ
i , (2)

where λi and ui is the eigenvalue and eigenvector of mode i, and kB, T , and γ are the
Boltzmann constant, temperature, and uniform force constant, respectively. Regions of
this matrix with the same sign form the rigid domains, and individual residues where the
sign changes (from positive to negative) become hinges. For practical purposes, we collapse
domains with only a small number of residues.

The final stage at a given level is to construct a domain graph representation, where nodes
in the graph represent rigid domains and edges in the graph exist wherever two domains are
in contact with each other, i.e. any atom from one rigid domain is within rc of any atom
from another domain (see Figure 2 for the decomposition a single level in the hierarchy).
From this graph, we categorize each hinge as flexible connector if the removal of the hinge
would form a cut of the domain graph representation, i.e. its removal would result in two
disjoint subgraphs.

Once we have obtained the domain graph representation of the protein for each of the k
NMA modes, we construct a multi-graph of the domain hierarchy for the entire protein [2].
At the top level of the hierarchy are the hinges and domains computed by the first non-trivial
mode (i.e. with the smallest eigenvalue), representing more broad, global motions. The next
level of the hierarchy is represented by the second smallest eigenvalue, and so on until all k
modes have been used. We also assign a weight, wk, to all hinges at level k of the hierarchy,
arising from Equation 2:

wk = 3kBTλ
−1
k . (3)

The final dimension of the product space of sampling is then KR +KL, where KR (KL)
is the number of hinges from all k levels for the receptor (ligand), creating a product space
of SO(3)KR+KL (SO(3) is the special orthogonal group of rotations about a fixed axis). For
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Figure 3 Ramachandran distributions for aspartic acid under different parameterizations. Left:
ssi is a helix; middle: ssi is a loop; right: ssi−1, ssi, and ssi+1 are respectively sheet-sheet-loop.
Note that the distributions are more tightly clustered with the gain of additional context.

the dataset used in this paper, the value of KR +KL range from 21 hinge residues (3FN1) to
70 (1BKD). It is well known that generating a small number of good (i.e. low discrepancy)
samples is difficult in high dimensions, so to overcome this issue, we use the low-discrepancy
sampling protocol developed by [3] when generating samples.

2.4 Sampling protocol and Ramachandran distributions of amino acids
Based on the hierarchical protein decomposition described above, we now describe how to
obtain a set of representative samples of the protein. Even with a good low-discrepancy
sampling, this high-dimensional product space still requires a large number of samples to
completely cover the product space. However, most of these samples will lead to physically
impossible protein structures: clashes between nearby atoms, steric strain, or even a protein
that is no longer biologically active. We would like to reduce the sampling space for a given
torsion angle from all of SO(3) to only the relevant, low-energy regions.

To establish a set of generic neighbor-dependent Ramachandran probability distribution,
we compute the torsion angles from a set of ∼15k high-quality, non-homologous protein
structures obtained from the Pisces server [29]. From this set, we generate discrete probability
distributions for each backbone torsion angle pair, conditioned on the amino acid type and
secondary structure type of the previous and following residues. In other words,

ProbN (φ, ψ, i) = Pr (φ, ψ|ssi−1, ssi, ssi+1, aai) , (4)

where ssi and aai are the secondary structure and amino acid types of residue i, respectively,
and φ and ψ are the backbone torsion angles (see Figure 1). Figure 3 shows the conditional
distributions for aspartic acid.

To generate samples of a given protein, we would like to draw samples for each flexible
residue from the neighbor-dependent Ramachandran distributions. However, we also recognize
that the input protein has important structural elements that should be preserved. For
this reason, we convolve the discrete Ramachandran distribution with a bivariate von Mises
distribution (the two-dimensional variant of the approximately-Gaussian distribution on a
unit circle, e.g. [−π, π)2 [21]), centered at the given backbone torsion angle. The cosine
variant of the bivariate von Mises distribution is given as follows:

Pr (φ, ψ) = Zc(κ1, κ2, κ3) exp (κ1 cos (φ− µ) + κ2 cos (ψ − ν) + κ3 cos (φ− µ− ψ + ν)) , (5)

where µ and ν describe the mean for φ and ψ, κ1 and κ2 describe their concentration, and κ3
describes their correlation. If κ3 is zero and κ1 = κ2 = σ, then σ can be used to increase or



N. L. Clement 3:7

decrease the amount of bias the input structure has on the Ramachandran distributions. Lower
values of σ (lower concentration) bias more toward the general Ramachandran distributions,
while higher values of σ bias more towards the input protein structure.

The final probability of a given (φ, ψ) pair at position i, Prob(i, φ, ψ), is the convolution of
the neighbor-dependent Ramachandran distribution with the specific von-Mises distribution:

Prob (φ, ψ, i) ∝ Pr (φ, ψ|ssi−1, ssi, ssi+1, aai)∗exp
[
σ cos

(
φ− φ̂i

)
+ σ cos

(
ψ − φ̂i

)]
, (6)

where φ̂i and ψ̂i are the values of φ and ψ for residue i in the input protein.
With the internal angles representation and hierarchical decomposition of the protein as

input, we perform the following importance sampling protocol on each level, l:
1. For each hinge at level l, h(l)

j , let i be the index of the residue corresponding to this hinge.
a. Generate the pair (φ̂, ψ̂), drawn from the von Mises-convolved neighbor-dependent

Ramachandran distributions
b. Let ρl be the probability of a given hinge residue changing, arising from wl in Equation 3:

ρl = min(1, wl)
c. If h(l)

j is a cut or no other non-cut hinges have been sampled at level l, set (φi, ψi) to
(φ̂, ψ̂) with probability ρl; otherwise, keep the original (φi, ψi) pair

2. From the internal angle sample, generate the explicit structure in R3

3. Compute the number of clashes caused by hinges at level l, and accept the torsion angle
changes for level l if the number of clashes are less than some parameter c. We define a
clash as two atoms occupying the same space in R3.

As we are most interested in modeling the large-scale uncertainty that arises from domain
movements, we then find the optimal placement of side-chain atoms using SCWRL4 [17],
followed by a brief energy minimization step with Amber16 [6] to remove any steric strain.
Finally, we rank each sample by free energy, and keep only the samples with the lowest
energy. These final two steps (minimization and ranking by energy) prevent us from using
samples that are biologically irrelevant.

2.5 Benchmark dataset
In this research, we are interested in 1) modeling the uncertainty of a given protein-protein
docking algorithm, but also 2) improving the existing docking results in the unbound-unbound
case. The Zlab benchmark 5 [28] contains a set of proteins that have had the X-ray structure
determined both in isolation and together, and consist of 254 protein pairs classified as either
difficult, medium difficulty, or rigid-body, depending on the interface RMSD (iRMSD). The
difficult class of proteins have an iRMSD of > 2.2Å, which means there is typically some
movement between bound and unbound conformations.

To select our set of input structures, we docked each protein classified as “difficult” in both
the bound and unbound conformations with F2Dock [1, 9], a rigid-body docking algorithm.
We selected those proteins that performed well in the bound structure but poorly with the
unbound structure as candidates in our benchmark. The criteria we use for differentiating
between success and failure is whether there exists a “hit” in the top 1000 reported poses.
We define a “hit” as a bound pair with iRMSD within 5Å of the actual bound conformation.

Since we are primarily interested in the single-body docking problem (and not the multi-
body docking problem), we only kept the single-chain proteins for our experiment, which
led to 10 single-chain proteins that perform well when using the bound conformation but
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Table 1 Protein structures used in dataset, labeled according to the ID from the ZLab bench-
mark 5 [28]. The top section contain those that performed well when bound, the bottom section
containing those that did not.

ID # Residues iRMSD (Å) ∆Energy (J)
receptor ligand contact

1ATN 372 258 36 42 131
1F6M 320 108 62 16 87
1FQ1 183 295 53 53 367
1BKD 439 166 97 20 425
1R8S 160 187 61 28 439
1RKE 262 176 68 52 524
1ZLI 306 74 77 13 212
2C0L 292 122 92 17 366
2I9B 265 122 101 29 387
2J7P 292 265 80 20 370
2OT3 253 157 69 17 428
3FN1 160 90 38 14 315
1H1V 368 327 74 33 180
1Y64 411 357 66 39 192
3AAD 264 153 42 37 66

not when unbound. In addition, we also included the 3 single-chain proteins that performed
poorly when both the bound and unbound conformation were used. Statistics on the size
and free energy of each protein are given in Table 1.

3 Results and discussion

3.1 Conformational sampling distributions
Our primary concern for generating a good set of samples is that the samples cover a good
portion of the feasible set of the protein conformational space. We consider two metrics
for measuring coverage: 1) the free energy of individual proteins, and 2) the iRMSD from
the sample to the bound conformation. The first of these metrics is an unbiased measure
of protein stability: if all samples have abnormally high energy, they are unlikely to be
biologically feasible. However, it is possible that the bound conformation lies in an energy
well made more available when in combination with the second protein. For this reason, we
are not interested in only finding the energy minimum, but also the distance from the bound
conformation. Figure 4 shows the energy vs iRMSD for 1000 samples of each protein.

3.2 Improvements in unbound-unbound docking
By generating a set of proteins that have a closer iRMSD to the bound conformation, we are
able to improve on the blind unbound-unbound docking protocol, for both rigid-body and
flexible docking algorithms. We compare the results for the bound and unbound case for
F2Dock (a rigid-body docking algorithm) [1], Rosetta (a semi-flexible docking algorithm)
[15, 7], and SwarmDock (a flexible docking algorithm) [20]. We perform bound-bound and
unbound-unbound docking for each program, and compute the iRMSD on the reported poses.
For F2Dock and Rosetta, the number of reported poses is variable, which we set to 1000.
SwarmDock reports a fixed number of results, so this number varies from 465–548 poses.
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Figure 4 Plot of iRMSD (against the bound conformation) vs energy for samples generated from
the unbound conformation. Proteins are separated by ligand (top) and receptor (bottom) to show
the difference in individual protein movement. The black dashed line shows iRMSD= 5, or the value
at which a match is considered a “hit,” and the red “X” marks the spot of the original unbound
protein. For all proteins, there exist some samples that improve on both the iRMSD and energy;
some of the proteins, such as 3AAD receptor and 1ZLI ligand, improve upon the iRMSD greatly.
Strong convergence is shown by a funnel-shaped energy landscape, and is seen for many protein
pairs. Protein labels are colored red (good when bound) and blue (bad when bound).

Since F2Dock and Rosetta both have command-line interfaces, we also perform docking 50
samples of the unbound conformation of each protein. The minimum iRMSD for each protein
(bound, unbound, and samples for F2Dock and Rosetta) are found in Table 2.

The results from the iRMSD statistics suggest a few findings. First, the flexible algorithms
(Rosetta and SwarmDock) are better at docking the bound-bound conformations than the
rigid-body one (F2Dock). This is potentially due to the fact that clashes in side-chain atoms
prevent the rigid body docking algorithm from correctly identifying the best conformation,
but also could be due to the fact that each program uses a different energy function, and
may be better tuned for these specific proteins in the flexible programs. The most important
observation, however, is the huge difference in iRMSD between the bound and unbound
pairs. This suggests that the input to the algorithm (e.g. unbound or bound) is an important
characteristic of the docking result, and variations in input structure must be accounted for
and described in the output QOI as empirical certificates. Finally, we also note that for each
protein, using many different sampled proteins always improves the iRMSD of the docking
result (sometimes drastically), suggesting that the sampling protocol is sound (leading to
better results).

3.3 Probabilistic certificates from Quasi-Monti Carlo samples

To describe the uncertainty of the results of the docking algorithm, we compute the probabil-
istic certificates arising from the Chernoff-like bounds of the sampled algorithms, given in
Equation 1. This provides a metric that can compare across proteins (for the same docking
algorithm) and across docking algorithms (for the same protein, or over all proteins). We
could provide probabilistic certificates for any QOI; however, we are primarily interested
in bounding the binding free energy. If the reported free energy is tightly bound by a
probabilistic certificate, we are more confident that we have identified the correct free energy.

WABI 2019



3:10 Uncertainty Quantified Protein Docking

Table 2 Best RMSD (over top 1000 poses for F2Dock and Rosetta and all poses for SwarmDock)
for proteins included in this dataset. A single asterisk marks proteins not in the bound form with at
least one hit (iRMSD < 5Å) in the top poses. F2Dock and Rosetta statistics for sampled proteins are
also included. Note the great improvement on Rosetta docking when using the sampled proteins, and
that the sampled proteins are always better than the unbound case. The large differences between
bound and unbound input suggests the output QOI is highly dependent on the input to the model.

F2Dock Rosetta SwarmDock
ID bound unbound sampled bound unbound sampled bound unbound
1ATN 1.2 7.2 *4.6 0.08 8.6 6.8 0.98 *4.6
1BKD 1.3 8.7 *4.9 0.23 16.9 5.4 0.68 8.7
1F6M 1.2 8.1 *5.0 0.11 17.9 13.4 0.69 5.6
1FQ1 2.3 6.4 *4.4 0.48 15.0 8.2 3.55 5.6
1R8S 1.7 9.4 6.2 0.22 14.5 6.2 0.72 5.1
1RKE 0.8 7.1 5.8 0.15 15.1 12.8 0.65 5.4
1ZLI 0.6 10.0 *4.6 0.13 10.6 7.1 0.71 9.0
2C0L 0.5 *4.8 *4.0 0.30 12.2 8.2 0.75 *3.8
2I9B 1.1 8.4 *4.7 0.09 13.6 8.8 7.93 6.5
2J7P 1.4 7.2 *3.4 1.12 17.2 14.9 0.60 6.6
2OT3 1.1 5.1 *3.9 0.16 15.6 6.8 0.92 6.0
3FN1 1.0 5.5 *4.9 0.10 9.9 *4.8 0.53 *4.1
1H1V 8.8 11.0 8.0 0.27 18.8 13.5 0.68 9.1
1Y64 9.3 11.4 10.7 1.9 35.0 15.6 1.37 11.7
3AAD 7.0 8.2 5.3 0.39 22.0 9.2 2.36 7.1

Figure 5 shows a comparison of the certificate for ∆G of each protein (at Pr = 0.9,
see Equation 1), and includes the true QOI (red dot), computed on the bound-bound
conformation. For some of the proteins (e.g. 3FN1), the provided certificate is much tighter
than others (e.g. 2C0L). This also allows us to directly compare the two different programs
in terms of docking uncertainty. While the rigid F2Dock algorithm occasionally has higher
bounds, with high probability the true statistic lies within the Pr = 0.9 certificate range.
The Rosetta results usually contain the true QOI, but is not contained within the min/max
range for 3FN1.

4 Conclusion

In this work, we provide a framework for providing probabilistic certificates on uncertainty in
a docking algorithm. Fundamental to these certificates is the contribution of a low-discrepancy
hierarchical sampling protocol that includes general amino acid information in the form of
Ramachandran plots, but also structural information that is specific to the input protein in
the form of a bivariate von Mises distribution. We show that the low-discrepancy samples
generated by this protocol explore the energy landscape for the unbound protein, which
includes samples closer to the bound conformation.

With these samples, we compare three different docking algorithms, ranging from rigid-
body to completely flexible. We show that docking results vary substantially depending on
the input protein structure – even for the flexible docking algorithms – further substantiating
our claim that uncertainty quantification is essential to protein-protein docking.
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Figure 5 Probabilistic bounds compared to ground truth for values of ∆G. Protein labels are
colored red (good when bound) and blue (bad when bound). The box shows the value of the
certificate at Pr = 0.9 and the tails show the min/max values, and the red point shows the true
statistic, computed on the bound-bound form of the protein.

Finally, we repeat the protein-protein docking experiments with different structures from
our hierarchical sampling protocol and assess the variations in reported binding free energy.
We compute a probablistic certificate for the binding free energy, and compare the 90%
confidence interval with the value computed on the bound complex. This provides a tool for
comparing not only uncertainty across proteins, but also across docking algorithms.
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