19th International Workshop on
Algorithms in Bioinformatics

WABI 2019, September 8-10, 2019, Niagara Falls, NY, USA

Edited by

Katharina T. Huber
Dan Gusfield

\\v LIPICS

LIPlcs — Vol. 143 - WABI 2019

www.dagstuhl.de/lipics

Editors

Katharina T. Huber
University of East Anglia, Norwich, UK
K.Huber@uea.ac.uk

Dan Gusfield
University of California, Davis, California, USA
dmgusfield@ucdavis.edu

ACM Classification 2012

Applied computing — Bioinformatics; Theory of computation — Design and analysis of algorithms;
Mathematics of computing — Probabilistic inference problems; Computing methodologies — Machine
learning approaches

ISBN 978-3-95977-123-8

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-123-8.

Publication date
September, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.WABI.2019.0

ISBN 978-3-95977-123-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:K.Huber@uea.ac.uk
mailto:dmgusfield@ucdavis.edu
https://www.dagstuhl.de/dagpub/978-3-95977-123-8
https://www.dagstuhl.de/dagpub/978-3-95977-123-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.WABI.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-123-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU Miinchen)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

WABI 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Katharina T. Huber and Dan Gusfield

Building a Small and Informative Phylogenetic Supertree
Jesper Jansson, Konstantinos Mampentzidis, and Sandhya T. P.

Alignment- and Reference-Free Phylogenomics with Colored de Bruijn Graphs
Roland Wittler

Quantified Uncertainty of Flexible Protein-Protein Docking Algorithms
Nathan L. Clement oot

TRACTION: Fast Non-Parametric Improvement of Estimated Gene Trees
Sarah Christensen, Erin K. Molloy, Pranjal Vachaspati, and Tandy Warnow

Better Practical Algorithms for rSPR Distance and Hybridization Number
Kohei Yamada, Zhi-Zhong Chen, and Lusheng Wangt

pClay: A Precise Parallel Algorithm for Comparing Molecular Surfaces
Georgi D. Georgiev, Kevin F. Dodd, and Brian Y. Chen

Read Mapping on Genome Variation Graphs
Kavya Vaddadi, Rajgopal Srinivasan, and Naveen Sivadasan

Finding All Maximal Perfect Haplotype Blocks in Linear Time
Jarno Alanko, Hideo Bannai, Bastien Cazauz, Pierre Peterlongo, and Jens Stoye

A New Paradigm for Identifying Reconciliation-Scenario Altering Mutations
Conferring Environmental Adaptation
Roni Zoller, Meirav Zehavi, and Michal Ziv-Ukelsonccoo...

Jointly Embedding Multiple Single-Cell Omics Measurements
Jie Liu, Yuanhao Huang, Ritambhara Singh, Jean-Philippe Vert, and
William Stafford Noble i i

Inferring Diploid 3D Chromatin Structures from Hi-C Data
Alexandra Gesine Cauer, Girkan Yardvmci, Jean-Philippe Vert,
Nelle Varoquauz, and William Stafford Noble i iiii..

Consensus Clusters in Robinson-Foulds Reticulation Networks
Alexey Markin and Oliver Fulensteino,

Weighted Minimum-Length Rearrangement Scenarios
Pijus Simonaitis, Annie Chateau, and Krister M. Swenson

Fast and Accurate Structure Probability Estimation for Simultaneous Alignment
and Folding of RNAs
Milad Miladi, Martin Raden, Sebastian Will, and Rolf Backofen

Context-Aware Seeds for Read Mapping
Hongyi Xin, Mingfu Shao, and Carl Kingsford

Bounded-Length Smith-Waterman Alignment
Alexander Tiskin

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

0:vii

1:1-1:14

2:1-2:14

3:1-3:12

4:1-4:16

5:1-5:12

6:1-6:13

7:1-7:17

8:1-8:9

9:1-9:13

10:1-10:13

11:1-11:13

12:1-12:12

13:1-13:17

14:1-14:13

15:1-15:13

16:1-16:12

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Validating Paired-End Read Alignments in Sequence Graphs
Chirag Jain, Haowen Zhang, Alexander Dilthey, and Srinivas Aluru 17:1-17:13

Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the
Multiple Compatible Arrangements Problem
Yutong Qiu, Cong Ma, Han Xie, and Carl Kingsford 18:1-18:5

Faster Pan-Genome Construction for Efficient Differentiation of Naturally
Occurring and Engineered Plasmids with Plaster

Qi Wang, R. A. Leo Elworth, Tian Rui Liu, and Todd J. Treangen 19:1-19:12
Rapidly Computing the Phylogenetic Transfer Index

Jakub Truszkowski, Olivier Gascuel, and Krister M. Swenson 20:1-20:12
Empirical Performance of Tree-Based Inference of Phylogenetic Networks

Zhen Cao, Jiafan Zhu, and Luay Nakhleh i, 21:1-21:13
A Combinatorial Approach for Single-cell Variant Detection via Phylogenetic
Inference

Mohammadamin Edrisi, Hamim Zafar, and Luay Nakhleh 22:1-22:13

Topological Data Analysis Reveals Principles of Chromosome Structure in
Cellular Differentiation
Natalie Sauerwald, Yihang Shen, and Carl Kingsford, 23:1-23:16

Synteny Paths for Assembly Graphs Comparison
FEvgeny Polevikov and Mikhail Kolmogorov oo, 24:1-24:14

Preface

This proceedings volume contains papers presented at the 19th Workshop on Algorithms in
Bioinformatics (WABI 2019), which was held in Niagara Falls, New York, USA, September
8-10, 2019. WABI 2019 was held together with the 10th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM BCB).

The Workshop on Algorithms in Bioinformatics is an annual conference established
in 2001 to cover all aspects of algorithmic work in bioinformatics, computational biology,
and systems biology. The workshop is intended as a forum for discrete algorithms and
machine-learning methods that address important problems in biology (particularly problems
based on molecular data and phenomena); that are founded on sound models; that are
computationally efficient; and that have been implemented and tested in simulations and
on real data-sets. The meeting’s focus is on recent research results, including significant
work-in-progress, as well as identifying and exploring directions of future research.

In 2019, a total of 47 manuscripts were submitted to WABI from which 24 were selected
for presentation at the conference and are included in this proceedings volume as full papers.
Extended versions of selected papers have been invited for publication in a thematic series in
the journal Algorithms for Molecular Biology (AMB), published by BioMed Central. The 24
papers selected for the conference underwent a thorough peer review, involving at least three
(and often four or five) independent reviewers per submitted paper, followed by discussions
among the WABI Program Committee members. The selected papers cover a wide range
of topics including phylogenetic trees and networks, biological network analysis, sequence
alignment and assembly, genomic-level evolution, sequence and genome analysis, RNA and
protein structure, topological data analysis, and more.

We thank all the authors of submitted papers and the members of the WABI Program
Committee and their reviewers for their efforts that made this conference possible. We are
also grateful to the WABI Steering Committee for their help and advice. We thank all
the conference participants and speakers who contributed to a great scientific program. In
particular, we are indebted to the keynote speaker of the conference, Nadia El-Mabrouk,
for her presentation. WABI 2019 is grateful for the support of the sponsors of ACM BCB
2019, The ACM, and SIGBio. We thank Letu Qingge for setting up the WABI webpage,
Michael Wagner for his assistance with putting together the WABI conference proceedings,
and the ACM BCB Organizing Committee, especially Xinghua (Mindy) Shi for her efforts
to coordinate WABI and ACM-BCB 2019. Finally, we also thank Dong Si, Michael Buck
and Pierangelo Veltri for their hard work in making all the local arrangements to ensure an
exciting and successful WABI and ACM BCB.

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Jarno Alanko (8)
Department of Computer Science, University of
Helsinki, Finland

Srinivas Aluru (17)

School of Computational Science and
Engineering, Georgia Institute of Technology,
USA

Rolf Backofen (14)

Bioinformatics Group, Department of Computer
Science, University of Freiburg, Germany;
Signalling Research Centres BIOSS and CIBSS,
University of Freiburg, Germany

Hideo Bannai (8)
Department of Informatics, Kyushu University,
Japan

Zhen Cao (21)

Department of Computer Science, Rice
University, 6100 Main Street, Houston, TX
77005, USA

Alexandra Gesine Cauer (11)
Department of Genome Sciences, University of
Washington, Seattle, WA, USA

Bastien Cazaux (8)
Department of Computer Science, University of
Helsinki, Finland

Annie Chateau (13)
LIRMM - Université Montpellier, France

Brian Y. Chen (6)

Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA,
USA

Zhi-Zhong Chen (5)
Division of Information System Design, Tokyo
Denki University, Japan

Sarah Christensen (4)
University of Illinois at Urbana-Champaign,
USA

Nathan L. Clement (3)
Department of Computer Science, University of
Texas at Austin, USA

Alexander Dilthey (17)
Institute of Medical Microbiology, University
Hospital of Diisseldorf, Germany

Kevin F. Dodd (6)

Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA,
USA

Mohammadamin Edrisi (22)
Department of Computer Science, Rice
University, Houston, TX, USA

R. A. Leo Elworth (19)
Department of Computer Science, Rice
University, Houston, TX 77005, USA

Oliver Eulenstein (12)
Department of Computer Science, lowa State
University, Ames, TA, USA

Olivier Gascuel (20)

Unité Bioinformatique Evolutive, Département
de Biologie Computationnelle, USR, 3756,
Institut Pasteur et CNRS, Paris, France;
LIRMM, CNRS, Université Montpellier,
Montpellier, France

Georgi D. Georgiev (6)

Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA,
USA

Yuanhao Huang (10)

Department of Computational Medicine and
Bioinformatics, University of Michigan, Ann
Arbor, MI, USA

Chirag Jain (17)

School of Computational Science and
Engineering, Georgia Institute of Technology,
USA

Jesper Jansson (1)
The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong

Carl Kingsford (15, 18, 23)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Mikhail Kolmogorov (24)

Department of Computer Science and
Engineering, University of California, San Diego,
CA, USA

Jie Liu (10)

Department of Computational Medicine and
Bioinformatics, University of Michigan, Ann
Arbor, MI, USA

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).

Editors: Katharina T. Huber and Dan Gusfield

\\v LIPICS

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8003-9225
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.8
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.17
https://orcid.org/0000-0001-8231-3323
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.14
https://orcid.org/0000-0002-6856-5185
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.8
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.21
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.11
https://orcid.org/0000-0002-1761-4354
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.8
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.13
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.6
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.5
https://orcid.org/0000-0001-5790-6266
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.4
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.3
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.17
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.6
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.22
https://orcid.org/0000-0002-3945-0661
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.19
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.12
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.20
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.6
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.10
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.17
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.1
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.15
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.18
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.23
https://orcid.org/0000-0002-5489-9045
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.24
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.10
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Authors

Tian Rui Liu (19)
Department of Computer Science, Rice
University, Houston, TX 77005, USA

Cong Ma (18)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Konstantinos Mampentzidis (1)
Department of Computer Science, Aarhus
University, Aarhus, Denmark

Alexey Markin (12)
Department of Computer Science, Iowa State
University, Ames, TA, USA

Milad Miladi (14)
Bioinformatics Group, Department of Computer
Science, University of Freiburg, Germany

Erin K. Molloy 4)
University of Illinois at Urbana-Champaign,
USA

Luay Nakhleh (21, 22)

Department of Computer Science, Rice
University, 6100 Main Street, Houston, TX
77005, USA

William Stafford Noble (10, 11)
Department of Genome Sciences, University of
Washington, Seattle, WA, USA; Paul G. Allen
School of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

Pierre Peterlongo (8)
Univ. Rennes, Inria, CNRS, Irisa, France

Evgeny Polevikov (24)
Bioinformatics Institute, Saint Petersburg,
Russia

Yutong Qiu (18)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Martin Raden (14)
Bioinformatics Group, Department of Computer
Science, University of Freiburg, Germany

Natalie Sauerwald (23)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, 15213, USA

Mingfu Shao (15)

Department of Computer Science and
Engineering, The Pennsylvania State University,
University Park, PA, USA

Yihang Shen (23)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, 15213, USA

Pijus Simonaitis (13)
LIRMM - Université Montpellier, France

Ritambhara Singh (10)
Department of Genome Sciences, University of
Washington, Seattle, WA, USA

Naveen Sivadasan (7)
TCS Research, Hyderabad, India

Rajgopal Srinivasan (7)
TCS Research, Hyderabad, India

Jens Stoye (8)

Faculty of Technology and Center for
Biotechnology (CeBiTec), Bielefeld University,
Germany

Krister M. Swenson (13, 20)
LIRMM, CNRS - Université Montpellier, France

Sandhya T. P. (1)
The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong

Alexander Tiskin (16)
Department of Computer Science, University of
Warwick, Coventry CV4 7AL, United Kingdom

Todd J. Treangen (19)
Department of Computer Science, Rice
University, Houston, TX 77005, USA

Jakub Truszkowski (20)
LIRMM, CNRS, Université Montpellier,
Montpellier, France

Pranjal Vachaspati (4)
University of Illinois at Urbana-Champaign,
USA

Kavya Vaddadi (7)
TCS Research, Hyderabad, India

Nelle Varoquaux (11)
Department of Statistics, UC Berkeley, CA,
USA

Jean-Philippe Vert (10, 11)

Google Brain, Paris, France; Centre for
Computational Biology, MINES ParisTech, PSL
University, Paris, France

Lusheng Wang (5)
Department of Computer Science, City
University of Hong Kong, China

https://orcid.org/0000-0002-0290-2812
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.19
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.18
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.1
https://orcid.org/0000-0003-3280-9050
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.12
https://orcid.org/0000-0002-0173-3009
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.14
https://orcid.org/0000-0001-5553-3312
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.4
https://orcid.org/0000-0003-3288-6769
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.21
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.22
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.10
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.11
https://orcid.org/0000-0003-0776-6407
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.8
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.24
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.18
https://orcid.org/0000-0002-7926-5911
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.14
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.23
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.15
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.23
https://orcid.org/0000-0003-3576-8098
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.13
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.10
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.7
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.7
https://orcid.org/0000-0002-4656-7155
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.8
https://orcid.org/0000-0001-8690-1261
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.13
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.20
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.1
https://orcid.org/0000-0003-0680-4192
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.16
https://orcid.org/0000-0002-3760-564X
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.19
https://orcid.org/0000-0002-0312-2981
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.20
https://orcid.org/0000-0001-8623-5414
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.4
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.7
https://orcid.org/0000-0002-8748-6546
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.11
https://orcid.org/0000-0001-9510-8441
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.10
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.11
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.5

Authors

Qi Wang (19)

Systems, Synthetic, and Physical Biology
(SSPB) Graduate Program, Rice University,
Houston, TX 77005, USA

Tandy Warnow (4)
University of Illinois at Urbana-Champaign,
USA

Sebastian Will (14)

Theoretical Biochemistry Group (TBI), Institute
for Theoretical Chemistry, University of Vienna,
Austria

Roland Wittler (2)

Genome Informatics, Faculty of Technology,
Bielefeld University, Germany; Center for
Biotechnology, Bielefeld University, Germany

Han Xie (18)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Hongyi Xin (15)

Computer Science Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Kohei Yamada (5)
Division of Information System Design, Tokyo
Denki University, Japan

Giirkan Yardimer (11)
Department of Genome Sciences, University of
Washington, Seattle, WA, USA

Hamim Zafar (22)

Computational Biology Department, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Meirav Zehavi (9)
Ben Gurion University of the Negev, Israel

Haowen Zhang (17)
School of Computational Science and

Engineering, Georgia Institute of Technology,
USA

Jiafan Zhu (21)

Department of Computer Science, Rice
University, 6100 Main Street, Houston, TX
77005, USA

Michal Ziv-Ukelson (9)

Ben Gurion University of the Negev, Israel

Roni Zoller (9)

Ben Gurion University of the Negev, Israel

0:xi

WABI 2019

https://orcid.org/0000-0002-0134-1726
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.19
https://orcid.org/0000-0001-7717-3514
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.4
https://orcid.org/0000-0002-2376-9205
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.14
https://orcid.org/0000-0002-2249-9880
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.2
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.18
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.15
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.5
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.11
https://orcid.org/0000-0002-1617-2806
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.22
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.9
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.17
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.21
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.9
https://dx.doi.org/10.4230/LIPIcs.WABI.2019.9

Building a Small and Informative Phylogenetic
Supertree

Jesper Jansson
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
jesper.jansson@polyu.edu.hk

Konstantinos Mampentzidis
Department of Computer Science, Aarhus University, Aarhus, Denmark
kmampent@Qcs.au.dk

Sandhya T. P.
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

tp.sandhya@gmail.com

—— Abstract

We combine two fundamental, previously studied optimization problems related to the construction
of phylogenetic trees called mazimum rooted triplets consistency (MAXRTC) and minimally resolved
supertree (MINRS) into a new problem, which we call g-mazimum rooted triplets consistency
(¢-MAXRTC). The input to our new problem is a set R of resolved triplets (rooted, binary
phylogenetic trees with three leaves each) and the objective is to find a phylogenetic tree with
exactly ¢ internal nodes that contains the largest possible number of triplets from R. We first prove
that ¢-MAXRTC is NP-hard even to approximate within a constant ratio for every fixed ¢ > 2, and
then develop various polynomial-time approximation algorithms for different values of q. Next, we
show experimentally that representing a phylogenetic tree by one having much fewer nodes typically
does not destroy too much triplet branching information. As an extreme example, we show that
allowing only nine internal nodes is still sufficient to capture on average 80% of the rooted triplets
from some recently published trees, each having between 760 and 3081 internal nodes. Finally, to
demonstrate the algorithmic advantage of using trees with few internal nodes, we propose a new
algorithm for computing the rooted triplet distance between two phylogenetic trees over a leaf label
set of size n that runs in O(gn) time, where ¢ is the number of internal nodes in the smaller tree,
and is therefore faster than the currently best algorithms for the problem (with O(nlogn) time
complexity [SODA 2013, ESA 2017]) whenever g = o(logn).

2012 ACM Subject Classification Mathematics of computing — Trees
Keywords and phrases phylogenetic tree, supertree, rooted triplet, approximation algorithm
Digital Object Identifier 10.4230/LIPIcs.WABI.2019.1

Funding Konstantinos Mampentzidis was funded by the Danish National Research Foundation,
grant DNRF84, via the Center for Massive Data Algorithmics (MADALGO).

1 Introduction

Background. Phylogenetic trees are used in biology to represent evolutionary relationships.
The leaves in such a tree correspond to species that exist today and internal nodes to ancestor
species that existed in the past. An important problem when studying the evolution of
species is, given some data describing the species, to construct a phylogenetic tree that
supports the input data as much as possible. The supertree approach [3] deals with the
challenging problem of constructing a reliable phylogenetic tree for a large set of species by
combining several accurate trees for small, overlapping subsets of the species into one final
tree. Depending on the type of data that is available and the type of trees that we want to
construct, we obtain several variants of the same problem.

© Jesper Jansson, Konstantinos Mampentzidis, Sandhya T. P.;
37 licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 1; pp. 1:1-1:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jesper.jansson@polyu.edu.hk
mailto:kmampent@cs.au.dk
mailto:tp.sandhya@gmail.com
https://doi.org/10.4230/LIPIcs.WABI.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Building a Small and Informative Phylogenetic Supertree

4 2 1 2 4
Figure 1 Let L = {1,2,3,4,5} and R = {45|3,25|3, 13|5, 24|5,23|1}. In this example no tree T’
such that |[R N r¢(T)| = 5 exists. Left figure: optimal solution for MAXRTC with value 4. Right
figure: optimal solution for 3-MAXRTC with value 3.

Problem Definition. A rooted phylogenetic tree is a rooted unordered tree in which every
leaf has a distinct label and every internal node has at least two children. In this article, for
simplicity we use the word “tree” to refer to a “rooted phylogenetic tree”. A resolved triplet
is a binary tree with three leaves. The resolved triplet with leaf labels x, y, and z where z is
closest to the root is denoted by zy|z. From now on when referring to a “triplet” we mean a
“resolved triplet”. Let T be a tree on a leaf label set L of size n. For anode u € T, deg(u) is the
number of children of w and T'(u) is the subtree induced by u and all the proper descendants
of u. For two nodes u and v in T', lca(u, v) is the lowest common ancestor node of v and v in T
We say that the triplet xy|z is induced by T if lca(z, z) = lca(y, z) and lca(x,y) # lea(z, 2).
Let rt(T') be the set of all triplets induced by T. Given a set R of triplets, we say that R is
consistent with T, or equivalently T is consistent with R, if R C r¢(T).

Given a set R of triplets on a leaf label set L of size n, in the g-maximum rooted triplets
consistency problem, denoted ¢-MAXRTC, the goal is to find a tree T" with exactly ¢ internal
nodes such that |[R N r¢(7T")| is maximized, i.e., the total number of triplets induced by T that
are also in R is as large as possible. An example can be seen in Figure 1.

Let A be an algorithm for any maximization problem. Given an input instance I,
let opt(I) be the value of an optimal solution and A([I) the value of the solution returned
by A. Let 0 <r < 1. We say that A is an r-approximation algorithm with relative ratio r,
if A(I) > r-opt(I) for any I. Similarly, A is an r-approximation algorithm with absolute ratio r,
if A(I) > r-|I] for any I. In particular, for ¢-MAXRTC we have that A(I) > r - |R|. From
here on and unless otherwise stated, when we refer to any ratio r, we imply an absolute ratio.

Previous Work. Aho et al. [1] proposed a polynomial-time algorithm, called BUILD, that
can determine if there exists a tree inducing all triplets from an input R, and if such a tree
exists, output it. As observed by Bryant [6], the BUILD algorithm does not always produce a
tree with the minimal number of internal nodes. In fact, BUILD might return a tree with Q(n)
more internal nodes than needed [12], which is undesirable because unnecessary internal nodes
may suggest false groupings of the leaves, also known as spurious novel clades [3]. Moreover,
scientists typically look for the simplest possible explanation for some given observations and
would prefer a tree that makes as few additional statements as possible about evolutionary
relationships that are not supported by the input data. This motivates the minimally resolved
phylogenetic supertree (MINRS) problem, where the output is a tree (if one exists) inducing
all triplets from R while having the minimum number of internal nodes. The decision version
of MINRS is NP-complete for ¢ > 4 and polynomial-time solvable for ¢ < 3 [12], where q is
the total number of internal nodes in the output tree. An exact exponential-time algorithm
for MINRS and experimental results for the non-optimality of BUILD for MINRS were given
n [14]. For the special case of caterpillar trees (trees in which every internal node has at
most one non-leaf child), MINRS is polynomial-time solvable for any ¢ [12].

The above problems only consider finding trees that induce all triplets from R. How-
ever, in situations where such a tree cannot be constructed, e.g., due to a single error in
the input triplets, it is still useful to build a tree that induces as many of the triplets

J. Jansson, K. Mampentzidis, and S. T. P.

from R as possible. This has been formalized as the maximum rooted triplets consistency
problem (MAXRTC). Bryant [6] showed that MAXRTC is NP-hard and Gasieniec et al. [10]
proposed a polynomial-time top-down %—approximation algorithm that always returns a
caterpillar tree. Byrka et al. [8] showed that a bottom-up algorithm by Wu [21] can be mod-
ified to also obtain a polynomial-time %—approximation algorithm. In [7], Byrka et al. gave
a %—approximation algorithm by derandomizing a randomized algorithm. In Section 3 below,
we refer to the algorithm in [10] as One-Leaf-Split (OLS) and the algorithm in [8] as Wu’s

algorithm (WU). For more results related to the computational complexity of MAXRTC, see [8].

Motivation. The existing approximation algorithms for MAXRTC typically produce trees
with an arbitrary number of internal nodes. For example, the algorithms in [7, 8] always
produce a tree with n — 1 internal nodes and the algorithm in [10], n — 1 for certain R.
However, due to the issue of spurious novel clades [3] mentioned above, biologists may prefer
to build a supertree with few internal nodes that is still consistent with a large number of
input triplets, which leads to the new problem ¢-MAXRTC introduced in this paper. More
precisely, -MAXRTC can be regarded as a combination of MINRS and MAXRTC that
models how well the triplet branching information contained in the set of input triplets can
be preserved while forcing the size of the output tree to be bounded by a user-specified
parameter g. On a high level, -MAXRTC is related to the problem of compressing a large
data file into a small data file; as an analogy, consider the widely used JPEG compression
method for images. Both JPEG and ¢-MAXRTC are examples of lossy compression where
the user controls a parameter yielding a trade-off between the size of the compressed data (the
number of bits for JPEG and the number of internal nodes for ¢-MAXRTC) and the amount
of preserved information (the image quality for JPEG and the number of induced triplets
in R for ¢-MAXRTC). Finally, in the design of phylogenetic tree comparison algorithms,
trees with fewer internal nodes sometimes admit faster running times. For example, given two
trees built on the same leaf label set of size n, the fastest known algorithms for computing
the so-called rooted triplet distance between the two trees takes O(nlogn) time [4, 5], but
if at least one of the input trees has O(1) internal nodes then the time complexity can be
reduced to O(n); see Section 5. As the available published trees get larger and larger (the
total number of species on Earth was recently estimated to be 1 trillion [17]), to make their
comparison practical, it may become necessary to approximate them using trees with fewer
internal nodes while keeping enough triplet branching structure to represent them accurately.

New Results and Outline of the Article. Section 2 shows that ¢-MAXRTC is NP-hard
for every fixed ¢ > 2 and gives some inapproximability results. Section 3 describes our new
approximation algorithms. Section 4 provides implementations and our experimental results.
Section 5 presents a new algorithm for computing the rooted triplet distance between two
trees. Finally, Section 6 contains some open problems. For a summary of previous and new
results related to ¢-MAXRTC refer to the table below. Due to space constraints, some proofs
and experimental results have been deferred to the journal version.

Year Reference Deterministic q Approximation Type

1999 Gasieniec et al. [10] yes unbounded 1/3 absolute
2010 Byrka et al. [7, §] yes n—1 1/3 absolute
2019 new [Section 3.1] no 2 1/2 relative
2019 new [Section 3.1] yes 2 1/4 relative
2019 new [Theorem 7] yes 2 4/27 absolute
2019 new [Theorem 9] yes qg>3 1/3 —4/(3(q + g mod 2)?) absolute

1:3

WABI 2019

1:4

Building a Small and Informative Phylogenetic Supertree

2 Computational Complexity of g-MAXRTC

In this section, we study the computational complexity of ¢-MAXRTC. We first address the
NP-hardness of -MAXRTC, and then present some inapproximability results.

» Theorem 1. ¢-MAXRTC is NP-hard for every fixed q > 2.

Proof. We consider the known NP-hard problem MAX ¢-CUT [15], in which the input is an
undirected graph G = (V, E') and the goal is to find a partition (Ai, As,...,Aq) of V such
that the total number of edges connecting two nodes residing in different sets, i.e., the size
of the cut, is maximized. We prove that ¢-MAXRTC is NP-hard by reducing MAX ¢-CUT
to ¢-MAXRTC as follows: let L =V U {z} and R = {zz|y,yz|x : {x,y} € E}. We claim
that there exists a cut (Aq, Aa,..., Aq) of size k in G if and only if there exists a solution
to -MAXRTC that is consistent with k triplets from R. We now prove the claim.

First, assume that there exists a cut (Aq, As,..., 4y) of size k in G. We construct a
tree T' that is rooted at the vertex a; with additional internal nodes as, ..., a, such that a;4;
is a child of a; for 1 <i < g—1. Fori € {1,2,...,q}, we attach |A;| leaves bijectively labeled
by A; as children of a;, and the vertex z is added as a child of a,. Consider any edge {z,y}
in the cut. By the definition of a cut, € A; and y € A; for two different ¢, j € {1,2,...,¢}.
If © < j, then yz|z will be consistent with T, since lca(y,2) = a; is a proper descendant
of leca(x,y) = lea(x,z) = a,;. Similarly, if ¢ > j, then zz|y will be consistent with T. For
every edge in the cut, exactly one triplet will be consistent with T', so T will be consistent
with exactly k triplets from R.

Conversely, assume that there exists a tree T" with g internal nodes ay,as,...,aq that
is consistent with k triplets from R. Let A; = {x : z is a child of a;} \ {#,a1,0a2,...,a4}
for 1 < i < q. Define S = RN rt(T). For each zz|ly € S, clearly x and y belong to
different sets A; and A; for some 4,5 € {1,2,...,q}, and thus the corresponding edge {z,y}
contributes one to the size of the cut, making the size of the cut |S| = k. <

From the inapproximability of MAXCUT [11], we obtain the following corollary:

» Corollary 2. Unless P=NP, 2-MAXRTC cannot be approximated in polynomial time within
a relative ratio of 16/17 + €, for any constant € > 0.

From the inapproximability of MAX ¢-CUT [15], we obtain the following corollary:

» Corollary 3. Unless P=NP, for any q > 3, it holds that g-MAXRTC cannot be approximated
in polynomial time within a relative ratio of 1 — 1/(34q) + €, for any constant € > 0.

3 Approximability of g-MAXRTC

Intuitively, a tree with a larger number of internal nodes should be able to induce more
triplets from a given R. The next lemma shows that this is indeed so, and upper bounds the
total number of triplets that can be induced. Define opt(g) to be the maximum number of
triplets that can be consistent with a tree T' with ¢ internal nodes.

» Lemma 4. Let 2 < ¢ < q<n—1. We have that opt(q') < opt(q) < ({;{__11] opt(q’).

Proof. We start by showing that opt(¢’) < opt(q). Let T be the tree with ¢’ internal nodes
that induces opt(q’) triplets from R. We can create a tree T with ¢ internal nodes that
induces at least as many triplets from R as follows. Let T = T'. While T does not have ¢
internal nodes, let u € T such that deg(u) > 2 and uy, us be two children of u. Create an
internal node w15, make u; and wus the children of w15 and u1o the child of u.

J. Jansson, K. Mampentzidis, and S. T. P.

4 5 6 7 8 10 11 12 13 45678 910111213

Figure 2 An example. Let T be the tree on the left with 9 internal nodes. The tree 7" on the
right with 3 internal nodes is created by deleting all internal nodes in T except W = {a, d, g}.

To show the second half of the inequality, proceed as follows. Define the delete operation
on any non-root node w in a tree as the operation of making the children of u become children
of the parent of u, and then removing v and all edges incident to u. Let T be the tree that
induces opt(q) triplets from R. Let t = ab|c be a triplet induced in T that is also in R.
Anchor ¢ in lca(a,b). Let W = {uq,usg,...,uy} be any set of ¢’ internal nodes in T such
that the root of T is included in W. Create a tree T’ with ¢’ internal nodes by letting 7" be
a copy of T and applying the delete operation to every internal node of T” not in W. Note
that for a node w in T such that u € W, every triplet anchored in u will also be induced
by T’. An example can be found in Figure 2.

Let T7,T5,..., T be trees that are built like T/, but in a way such that every internal
node u € T except (T, corresponds to an internal node of exactly one such tree. Observe
that A = (g,__ll] .We can create these trees with the following procedure:

Store all internal nodes of T except (T) in the ordered set S, in any order from left to

right and set j = 1.

If |S| > ¢’ — 1, pick and remove from S the first ¢ — 1 internal nodes to define W, and

construct TJ’» . Otherwise, pick the remaining nodes in .S to define W and create TJ{ just

like 7" but with |S| = |W| nodes instead of ¢' — 1. Set j = j + 1.

if |S| = 0 stop. Otherwise go to the previous step.

We then have: |7t(T) N R| = opt(q) < Zf‘zl [rt(T)) NR| < dopt(¢') = [qq,__ll] opt(q’). <

3.1 Approximation Algorithms Based on MAX 3-CSP

In this subsection, we consider polynomial-time approximation algorithms. MAX 3-AND is
a Boolean satisfiability problem in which we are given as input a logical formula consisting
of a set of clauses, each being a conjunction (AND) of three literals formed from a set of
Boolean variables, and the goal is to assign each Boolean variable a True/False-value so
that the total number of satisfied clauses is maximized. Both MAX 3-AND and the well-
known MAX 3-SAT problem are special cases of the MAX 3-CSP problem [22], where a clause
can be an arbitrary function over three literals. The following lemma shows that 2-MAXRTC
can be reduced to MAX 3-AND in polynomial time while preserving the approximation ratio.

» Lemma 5. If MAX 3-AND can be approximated within a factor of r, then 2-MAXRTC
can also be approximated within a factor of r.

Lemma 5 allows every approximation algorithm for MAX 3-AND to be used to approx-
imate 2-MAXRTC. For MAX 3-AND, Zwick [22] presented a randomized 3-approximation

algorithm with relative ratio based on semi definite programming. Trevisan [19] presented a

deterministic i—approximation algorithm with relative ratio based on linear programming. A

deterministic algorithm based on local search by Alimonti [2], would satisfy > £|C| number
of clauses, giving a %—approximation ratio for 2-MAXRTC. Since this ratio is absolute, from

Lemma 4 this algorithm also gives a %—approximation ratio for ¢-MAXRTC, where ¢ > 3.

1:5

WABI 2019

1:6

Building a Small and Informative Phylogenetic Supertree

3.2 Approximation Algorithms Based on Derandomization

This subsection also assumes that all approximation algorithms run in polynomial time. Re-
ducing 2-MAXRTC to MAX 3-AND can produce a deterministic é—approximation algorithm
for -MAXRTC, however from Lemma 4, we should be able to capture more triplets by
allowing more internal nodes. The algorithms based on MAX 3-AND cannot be directly
extended to support Lemma 4. We propose a new deterministic algorithm for ¢-MAXRTC
that achieves a %—approximation ratio, based on a randomized algorithm for 2-MAXRTC,
and then show how to extend it to get better approximation ratios for higher values of g.
Note that the only available related algorithm based on derandomization by Byrka et al. [7],
always constructs a binary tree on n leaves, i.e. the case ¢ < n—1 is not considered. Moreover,
as we will show below, our derandomization procedure is highly optimized for trees instead
of the more complex phylogenetic networks (for a definition see Section 2 of [7]).

» Lemma 6. There exists a randomized %—appmximation algorithm for g-MAXRTC.

Proof. Let R = {r1,...,r g} be the set of triplets and L = {x1,...,2,} the leaf label set.
Build a tree T' with two internal nodes, with a being the root and b the child of the root. Make
every leaf x; € L with probability % a child of b and probability % a child of a. Let Y; be a
random variable that is 1 if r; € r¢(T) and 0 otherwise. Let W = le@l Y. For the expected

number of triplets consistent with 7" we have E[W] = lez‘l ElY;] = Z‘fill = ==|R|. <

» Theorem 7. There exists a deterministic %-appmximation algorithm for -MAXRTC
that runs in O(|R]|) time.

Proof. We derandomize the algorithm in Lemma 6 with the method of conditional expect-
ations [20] in a way that differs from Byrka et al. [7], where the main focus is the general
case of phylogenetic networks. In our method, the leaves x1, ..., x, are scanned from left to
right, and each leaf is deterministically assigned to either be the child of b, denoted z; < b,
or the child of a, denoted x; +— a. The leaves are assigned in a way, such that after every
assignment the expected value of the solution is preserved. From probability theory we
have E[W] = LE[W|z; « a] + 2E[W|z; < b]. We choose n; = a or ny = b such that
E[W |z < ni] = max(E[W |z « a], E[W|zy < b]). Then E[W|z1 < ni] > E[W] = 5-|R|.
Suppose that the first ¢ leaves have been assigned to ni,...,n;. Let IN; contain those assign-
ments, i.e., N; = {x1 < n1,...,z; < n;}. To find the assignment for x;1 we follow the same
approach as that for z1, i.e., we have E[W|N;] = E[W|N;, 211 < a] + 2E[W|N;, ;41 < b]
and then n; 1 is chosen so that E[W|N; 1] = max(E[W|N;, z;41 < a], E]W|N;, z;41 < b]).
By induction, we then get that E[W|N; 1] > E[W|N;] > --- > %|R|

To compute E[W|N;], we use the fact that E[W|N;] = Z‘j@l Prlr; € rt(T)|N;], where
Prlr; € rt(T)|N;] can be computed in O(1) time (see procedure PR2() of Algorithm 1). A
trivial implementation that scans the leaves and for every possible assignment of a leaf z;, com-
putes the expected value E[W|N;] by scanning the entire set R would require O(n|R|) time.

We can achieve a more efficient implementation (see procedure 2-MAXRTC-FAST() of
Algorithm 1) that would require O(|R|) time, by maintaining for every leaf x; € L, a list of
all the triplets that z; is part of, denoted R[x;]. At the beginning of the i-th iteration of
the first for loop in Algorithm 1, the value of the variable prev is E[W|N;_1]. To determine
the assignment for leaf z;, we need to compute E[W|N;_1,z; < a] and E[W|N;_1,x; < b],
and for this we use the second for loop. At the end of the execution of the second for
loop, the value of E[W|N;_1,z; < a] will be stored in the variable aValue and the value of
E[W|N;_1,z; < b] in the variable b Value. To compute aValue (resp. bValue), we initialize it

J. Jansson, K. Mampentzidis, and S. T. P.

Algorithm 1 O(|R|) 5=-approximation algorithm for ¢-MAXRTC based on 2-MAXRTC.

1: procedure PR2(zy|z) > Computing Prizy|z € rt(T)|N;]
2 if x < a or y < a or z < b then return 0

3: p=4/27

4: if # 0 and z <+ bthen p=3p/2 > z # () meaning that = has been assigned
5 if y# 0 and y < b then p=3p/2

6 if z#0 and z <+ a thenp=3p

7 return p

8: procedure 2-MAXRTC-FAST(R) > The main procedure
9: prev = 4|R|/27 > Storing E[W|Ny], where Ny = ()
10: fori=1 to ndo

11: aValue = prev > To compute E[W|N;_1,x; < a]
12: bValue = prev > To compute E[W|N,_1,z; < b]
13: for j=1 to |R[z;]| do

14: z; 0

15: aValue = aValue — PR2(R[x;][4])

16: bValue = bValue — PR2(R[z;][4])

17: €T; < a

18: aValue = aValue + PR2(R[x;][5])

19: T; < b
20: bValue = bValue + PR2(R[z;][4])
21: T; < b
22: prev = bValue
23: if aValue > bValue then
24 €T; < a
25: prev = aValue

to the value of prev, and then for every triplet in the list R[x;], we subtract the contribution of
that triplet to the value of prev when z; < 0, and add its new contribution by having z; + a
(resp. x; < b). Since every triplet in R will be part of 3 lists, every triplet will induce O(1) calls
to the procedure PR2() of Algorithm 1, giving the O(|R|) final bound of the algorithm. <«

In the following theorem, we prove that the best possible absolute approximation ratio
for 2-MAXRTC is 2%, making the approximation algorithm in Theorem 7 optimal when
considering algorithms with absolute approximation ratios.

» Theorem 8. For any ¢ > 0, there exists some n and set R of triplets on a leaf label set of
size n, such that the approrimation ratio > % + € for 2-MAXRTC is impossible.

Proof. Forany n,let L, = {1,2,...,n} and R,, = {ab|c, ac|b,bc|a : a,b,c € L, |{a,b, c}| = 3}.

Since |L,| = n, we have |R,| = 3(3). Next, we construct a tree T with two internal

nodes, which is rooted at the vertex a with an internal node b (b is a child of a). Let

A ={x:xzisachildofa}\ {b} and B = {z : = is a child of b}. Assume that m = |A|.

Then |B| = n —m and |rt(T) N R,| = m(Z52)(n —m). By taking derivatives, we obtain

2
that T is consistent with the largest number of triplets when m = 2fltvni—ntl Vgﬁ’”“ For
that given m, we then have |rt(T)NR,| = ("+1+V;2_"+1) ("‘2+ngz_"+1) (22=1= V3"2_"+1)

[rt(T)NRn| _ 4
nl

and lim = 5. |

n—oo

1:7

WABI 2019

1:8

Building a Small and Informative Phylogenetic Supertree

To obtain an algorithm that has a better approximation ratio for ¢ > 3, we allow
the output tree T' to have ¢ internal nodes {ui,...,uq}. Every internal node u; € T
has a probability p(u;), which is the probability of a fixed leaf being assigned to that
node. Given that 23:1 p(uj) = 1, we can obtain a randomized algorithm, the ana-
lysis of which follows from Lemma 6. Let E[W] be the expected value of that ran-

domized algorithm. Like in Theorem 7, we can derandomize the algorithm to obtain
2 ST
of possible assignments is ¢ instead of 2, i.e., given IV;, we choose n;y; for x;41 such
that E[W|Ni, Tit1 < ’I’LH_1] = maX(E[W|Ni,xi+1 — U,y ... ,E[W|Ni,xi+1 < uq). The pI‘Ob—
lem is thus reduced to finding a tree with ¢ internal nodes and a choice of probabilit-
ies p(u1), ..., p(ug) such that E[W] > o£|R|.

-approximation ratio. The only difference in the proof is that the total number

» Theorem 9. Given q > 3, there exists a randomized algorithm for g-MAXRTC that achieves
a (% — W)—appmximation. The algorithm can be derandomized while preserving
the approzimation ratio. The running time of the deterministic algorithm is O(q|R]).

4 Implementation and Experiments

We used the C+4 programming language to implement the algorithm from Theorem 7
for 2-MAXRTC, and the algorithm from Theorem 9 for ¢-MAXRTC when ¢ > 2. The
implementation is publicly available at https://github. com/kmampent/qMAXRTC. Below, we
describe some experiments on both simulated and real datasets and the results.

Simulated Dataset. The input to ¢-MAXRTC is a set of triplets R and a parameter q. We
define the following types of sets for R:
dense consistent (abbreviated dc): if |R| = (}) and R is consistent with a tree T
containing n — 1 internal nodes. The tree T is created using the uniform model [18].
probabilistic: if |[R| = n? and R is a set of triplets on n leaf labels created as follows. After
building a binary tree T on n leaves following the uniform model, start extracting triplets
from T to add into R. For every extracted triplet zy|z, permute the leaves uniformly at
random with probability p. Depending on whether p = 0.25, p = 0.50 or p = 0.75 the
abbreviations we use are prob25, prob50, and prob75 respectively.
In the experiments of this dataset, the performance of an algorithm for any fixed ¢, n, and
dataset model is defined as its mean approximation ratio, taken over 100 randomly generated
instances of size n. Figure 3 compares the performance of ¢-MAXRTC, WU, and OLS in the dc
and prob50 models, for small values of ¢ and n at most 1000. In both models, the larger
the value of ¢, the better the performance of -MAXRTC. Moreover, the improvement in
performance decreases as the value of ¢ increases, which is expected. For the dc dataset, which
contains no conflicting triplets, the performance is much better. Significantly, when ¢ =9
we can capture close to 80% of the triplets even if the input tree contains as many as 1000
leaves. When compared against WU & OLS, we can see that while WU & OLS perform better,
the difference in performance is small compared to the difference in the number of internal
nodes used by the algorithms.

Real Dataset. We considered five trees from recently published papers ([9] and [16]).
From [9] we used the trees from the supplementary datasets 2 and 4, denoted nmS2 and nmS4
respectively. From [16] we used the trees from the supplementary datasets 1, 2, and 4,
denoted poS1, poS2, and poS4 respectively. All trees are binary except nmS2 and nmS4.
However, we removed the leaf that is a child of nmS2’s root to make nmS2 binary. Similarly,

https://github.com/kmampent/qMAXRTC

J. Jansson, K. Mampentzidis, and S. T. P.

dc model prob50 model
3-MAXRTC & 7-MAXRTC < OLS 3-MAXRTC = 7-MAXRTC = OLS
4 5-MAXRTC + 9-MAXRTC - WU 4 5-MAXRTC + 9-MAXRTC - WU
0.951 0.65
0.90 A
0.60 1
0.85 A
0.80 0.551
£ 0.754 8
S © 0.501
0.70 1
0.65 A 0.454
0.60 A
0.40
0.55 A
T T T T : 0.3541+ T T T T
0 250 500 750 1000 0 250 500 750 1000
n n

Figure 3 Performance of {3,5,7,9}-MAXRTC compared to WU and OLS in the dc and prob50
models. Every data point corresponds to the mean of 100 runs. Observe that the performance
of -MAXRTC is very close to that of WU & OLS, even though 9-MAXRTC uses only 9 internal
nodes, while WU uses exactly n — 1 internal nodes and OLS at most n — 1.

Table 1 Performance of ¢-MAXRTC on real datasets. Every cell corresponds to the best ratio (as
defined below) over 100 runs. The size of each leaf label set is written inside the parenthesis.

g poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082) Average
2 0.27 0.36 0.43 0.41 0.29 0.35
3 0.67 0.54 0.48 0.41 0.46 0.51
5 0.77 0.81 0.67 0.66 0.72 0.73
7 0.82 0.75 0.76 0.62 0.73 0.74
9 0.86 0.71 0.87 0.80 0.79 0.81
11 0.91 0.89 0.87 0.79 0.87 0.87

we removed the two leaves that are children of nmS4’s root to make nmS4 binary as well. The
total number of leaves in nmS2, nmS4, poS1, poS2, and poS4 is 1869, 3082, 761, 761, and 841.
Since the trees are binary, the total number of internal nodes is 1868, 3081, 760, 760, and 840.

For a tree T € {nmS2,nmS4, poS1, poS2, poS4} with n leaf labels, let Tj, be the tree pro-
duced by the new algorithm. Let D(T,T;) be the rooted triplet distance between T' and T,
(for a definition see Section 5 below). The performance of ¢-MAXRTC in the experiments of
this dataset is then defined by the ratio S(T,T,)/(}), where S(T,T,) = (3) — D(T, T). To
compute this ratio efficiently, we used the rooted triplet distance implementation in [5]. We
measured the performance of ¢-MAXRTC for g € {2,3,5,7,9,11}. Every experiment con-
sisted of 100 runs, and in each run n? triplets were picked at random from the corresponding
tree to define the set R. We made sure that each leaf from a given tree appeared in R so
that the size of the leaf label set was as big as the leaf label set of the tree.

Table 1 shows the best ratios achieved, and the corresponding trees in Newick format can be
found at https://github.com/kmampent/qMAXRTC. As can be seen from the results, larger
number of internal nodes tend to improve performance. Significantly, with only 9 nodes we
can capture between 71% and 86% of the triplets in each case, and with 11 nodes between 79%
and 91%. When ¢ > 11, we did not observe a significant improvement in performance.

1:9

WABI 2019

https://github.com/kmampent/qMAXRTC

1:10

Building a Small and Informative Phylogenetic Supertree

5 Motivation for g-MAXRTC: Faster Computation of the Rooted
Triplet Distance

Finally, we give an example of the algorithmic advantage of using phylogenetic trees with
few internal nodes. More precisely, we develop an algorithm for computing the rooted triplet
distance between two phylogenetic trees in O(gn) time, where ¢ is the number of internal
nodes in the smaller tree and n is the number of leaf labels.

Problem Definition. The rooted triplet distance between two trees T} and T built on the
same leaf label set, is the total number of trees with three leaves that appear as embedded
subtrees in 77 but not in 75. Intuitively, two trees with very similar branching structure will
share many embedded subtrees, so the rooted triplet distance between them will be small.

Formally, let T and T, be two trees built on the same leaf label set of size n. We need
to distinguish between two types of triplets. The first type is the resolved triplet, previously
defined in Section 1. In addition, since T7 and T5 can be non-binary, we also need to define
the fan triplet. We call t = z|y|z a fan triplet, if ¢t is a tree with the three leaves z, y,
and z, and one internal node that is the root of ¢. The definition of when a resolved triplet
is consistent with a tree T follows from Section 1. Similarly to a resolved triplet, we say
that the fan triplet z|y|z is consistent with a tree T, where z, y, and z are leaves in T,
if lea(x,y) = lca(x, 2z) = lca(y, z). In this section only, we use the word ¢riplet to refer to
both fan and resolved triplets. Moreover, when we refer to a fan triplet x|y|z or a resolved
triplet zy|z induced by a tree T, there exists a left to right ordering of z, y, and z in T.

Let D(Ty,T5) be the rooted triplet distance between T and Ty. Define S(T3,T%) to be
the total number of triplets that are consistent with both T and T5, commonly referred to
as shared triplets. For the rooted triplet distance we then have D(Ty,T3) = (g) — S(Ty,).
The Algorithm. It is known how to compute D(T},T%) in O(nlogn) time [4, 5]. Below, we
show how to compute D(Ty,T») in O(gn) time, which is faster than [4, 5] when ¢ = o(logn).
There is a preprocessing step and a counting step.

Preprocessing. The leaves in T are relabeled according to their discovery time by a depth
first traversal of Tb, in which the children of a node are discovered from left to right. Notice
that for a node v in T5, the labels of the leaves in T»(v) will correspond to a continuous
range of numbers. Afterwards, we transfer the new labels of the leaves in T5 to the leaves
in Ty. For T}, we define the ¢ X n table A such that for a node w in T} we have Afu][¢] =1
if ¢ is a leaf in T1(u), and A[u][f] = 0 otherwise. We construct another table C' to answer
one dimensional range queries as follows. For 1 < i < n we have Clu][i] = Z;:l Alul[j]
and C[u][0] = 0. The C table will be used to answer queries asking for the total number
of leaves in T5(v) that are also in T (u) in O(1) as follows. Let [I,...,7] be the continuous
range of leaf labels in T5(v). The answer to the query will be exactly Clu][r] — C[u][l — 1].

Counting. We extend the technique introduced in [5]. Let t = zy|z or t = z|y|z be a
triplet induced by a tree T', which in our problem can be either 7} or T5. We anchor ¢ in
the edge {v, ¢}, where v = lca(x,y) and ¢ is the child of v such that T(v) contains y. The
following lemma shows that every triplet induced by T is anchored in exactly one edge of T.

» Lemma 10. Let T be a tree in which every triplet t with the three leaves x, y, and z
is anchored in the edge {u,c}, such that u = lca(z,y) and T(c) contains y. Every triplet
induced by T is anchored in exactly one edge of T.

Suppose that a node v in 75 has the children vy,...,v;,...,v; where 1 < j <i. To
capture all triplets anchored in edge {v,v;} of T, we color the leaves of T5 as follows. Let

J. Jansson, K. Mampentzidis, and S. T. P.

every leaf in T5(v1),...,T>(v;j—1) have the color red, every leaf in T5(v;) have the color
blue, every leaf in Tg(vj+1), ..., T5(v;) have the color green and every other leaf in T,
have the color white. The red, blue, and green colors will be used to capture fan triplets
and the red, blue, and white colors, resolved triplets. By the relabeling scheme of the
leaves, we have that the red, blue, and green colors correspond to exactly one continuous
range of leaf labels each. Let those ranges be R = [ared;- - - Ahoql, B = [blues - - - s Chjuol»
and G = [agreen, - - -
Ablue = Groq + 1 and if G is non-empty, agreen = G, + 1. Finally, note that a leaf has the

s Ggreen); for the colors red, blue, and green respectively. Note that
color white if and only if it does not have any other color.

We are now going to describe how to compute the total number of triplets anchored
in some edge {v,v'} in Ty, where v is the parent of v/, that are also consistent with Tj,
denoted S{”’”l}(Tl,Tg). Let S}{v’v,}(Tl,Tg) denote the shared resolved triplets anchored
in {v,v'} and similarly let S}U’UI}(Tl,Tg) denote the shared fan triplets. Note that we

have S{"’”l}(Tl,Tg) = S,{”’“/}(Tl,Tg) + S}v’v,}(Tth). The following lemma gives an al-
gorithm for computing S{”’”l}(Tl, T5) efficiently.

» Lemma 11. Given the ranges R, B, and G that define a coloring of the leaves in Ty accord-
ing to an edge {v,v'} of Ty, there exists a O(q)-time algorithm for computing ST} (Ty, Ty).

Proof. Since both T7 and T, are built on the same leaf label set, a coloring of the leaves
of Ty defines a coloring of the leaves of T7. Suppose that a node w in T; has the m
children uq, ..., u;,, where m > 2. Some children could be leaves and others, internal nodes.
Let I denote the set containing the children that are internal nodes and L the children that
are leaves. Let T(I) = {T'(u) : u € I'}. Define the following counters:

Uhite: total number of leaves with the white color in T} but not in 77 (u).

u;, for i € {red, blue, green}: total number of leaves with color ¢ in T3 (u).

u;r, for ¢ € {red, blue, green}: total number of leaves with color 4 in T'(T).

u;r, for i € {red, blue, green}: total number of leaves with color 4 in L.

Ll o

u; 5, for (¢,7) € {(red, blue), (red, green), (blue, green)}: total number of pairs of leaves
in T'(I), such that one has color i, the other has color j, and both come from different
subtrees attached to w.

6. Ured, blue, green: total number of leaf triples in T'(1), such that one leaf has the color red,
another the color blue, another the color green, and they all come from different subtrees
attached to u.

To compute these counters for every internal node of T} efficiently, a depth first traversal
is applied on T; while making sure that we only visit internal nodes. For every such internal
node u visited, a simple dynamic programming procedure is used to compute the counters
of u in O(]I]) time, thus making the total time required to compute all counters O(q).

Algorithm 2 shows how to compute S]{cv’v/}(Tl, T>) and S{n{v’v,}(Tl,Tg) in O(¢) time as
well. It counts shared triplets by considering for every internal node u in T;, all possible cases
for the location of the leaves of a shared triplet anchored in any edge {u,u'} in 77, where u
is the parent of v’. More precisely, for the leaves of a fan triplet anchored in any edge {u, u'}
in Ty, we have the following cases: (1) all three leaves come from T'(I), (2) two leaves come
from T'(I) and one from L, (3) one leaf comes from T'(I) and two from L, and (4) all three
leaves come from L. Similarly, for the leaves of a resolved triplet we have the following
cases: (1) two leaves come from T'(I) and one not from T7(u), (2) one leaf comes from T'(I),
one from L, and one not from T3 (u), and (3) two leaves come from L and one not from 77 (u).

Since STV N (T, Ty) = Si”’v/}(Tl, T) + S}v’v/}(Tl, T»), the statement follows. <

1:11

WABI 2019

1:12

Building a Small and Informative Phylogenetic Supertree

Algorithm 2 Computing S}U’UI}(TLTQ) and Si”’”l}(Tl,Tg) in O(q) time.

1: procedure S}U’UI}(Tl,Tg)

2 fans =0

3 for every internal node u in 77 do

4 fans = fans + Ured,blue,green

5: fans = fans + Ured,blue * UgreenL + Ured,green * UblueL + Ublue,green * UredL

6 fans = fans + tredrs - Ubluer - UgreenL + Ubluel * UredL * UgreenL + Ugreen’ * UredL * UblueL
7 fans = fans + Uredr * UblueL * UgroenL

8 return fans

9: procedure S,{»U’”/}(Tl,Tg)
10: resolved = 0

11: for every internal node v in 77 do

12: resolved = resolved + Ured,blue * Uwhite

13: resolved = resolved + Uredr * UblueL * Uwhite + Ubluel * UredL - Uwhite
14: resolved = resolved + Uredr, * Ubluel * Uwhite

15: return resolved

Algorithm 3 O(gn)-time algorithm for computing D(T1,T%).

: procedure D(Ty,T5)
: Compute the ¢ x n table C.

1
2
3 For every w in Ty compute the parameter u;, which is the number of leaves in T'(u).
4 sharedTriplets = 0

5: for every internal node v in 75 do

6 for every child v' of v do

7 Let R, B, and G be the color ranges defined by edge {v,v'}

8 Given C, R, B, and GG, compute the counters of Ty accqrding to Lemma 11
9 sharedTriplets = sharedTriplets + S}v’v N1y, To) 481 (T, Ty)

10: return (g) — sharedTriplets

In Algorithm 3 we show how to compute D(Ty,T3). From the preprocessing step,
line 2 requires O(gn) time. Line 3 is performed by a depth first traversal of T, thus
requiring O(n) time. From Lemma 11, lines 7-9 require O(q) time. Since we also have
that >, deg(v) = O(n), the total time required to compute D(73,73) is O(gn). The
correctness is ensured by Lemma 10, thus we obtain the following theorem:

» Theorem 12. The rooted triplet distance between two rooted phylogenetic trees Ty and T
built on the same leaf label set of size n, can be computed in O(gn) time, where q is the total
number of internal nodes in Tj.

An implementation of the algorithm in C++ is available at https://github.com/
kmampent/qtd. Preliminary experiments indicate that our prototype implementation uses
less space and is faster than the state-of-the-art, optimized implementation of the O(nlogn)-
time algorithm from [5] for large inputs, e.g., when n = 1,000,000 and ¢ < 50. Details will
be reported in the full version of the paper.

https://github.com/kmampent/qtd
https://github.com/kmampent/qtd

J. Jansson, K. Mampentzidis, and S. T. P.

)
3) 34 4)
1 2 4 1 2 1 2 3

(a) (b) ()

Figure 4 Let R = {12|3,13|4,24|5}. (a) The optimal tree for 2-MAXRTC induces 2 triplets
from R. (b) The tree returned by the BUILD algorithm from [1]. (¢) The best tree obtainable by
contracting all internal edges except one in the tree from (b) induces only 1 triplet from R, so this
method is not optimal for 2-MAXRTC.

6 Open Problems

The optimal polynomial-time approximation ratio for any fixed ¢ > 3 is an open problem, as
well as the existence of algorithms achieving that ratio. Moreover, for the special case where
all the triplets in R are consistent with a tree 7', the computational complexity of ¢-MAXRTC
is an open problem as well. Note that just applying BUILD [1] to obtain such a 7" and then
trying every bipartition of L induced by an edge of T fails to produce an optimal solution
to 2-MAXRTC (see Figure 4 for a counterexample). Another open problem is the existence of
approximation algorithms for ¢-MAXRTC in the weighted case, where each triplet in R has
a weight and the objective is to build a tree that maximizes the total weight of the triplets
induced from R. This addresses the case where some triplets in R are more important than
others. Moreover, another open problem is the following: given a set of triplets R on a leaf
label set of size n and a parameter ¢, build a tree T with ¢ leaves such that |rt(T) N R|
is maximized. Just like -MAXRTC is a combination of MINRS and MAXRTC, this new
problem is a combination of the mazimum agreement supertree problem studied in [13] and
MAXRTC. Finally, for the rooted triplet distance computation, a major open problem [4, 5]
is whether it can be computed in O(n) time. When ¢ = O(1), our proposed algorithm runs
in O(n) time. If ¢; is the total number of internal nodes of one tree and g2 of the other, is it
possible to obtain an algorithm with a O(g1¢2 + n) running time?

—— References

1 A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a Tree from Lowest
Common Ancestors with an Application to the Optimization of Relational Expressions. STAM
Journal on Computing, 10(3):405-421, 1981.

2 P. Alimonti. New local search approximation techniques for maximum generalized satisfiability
problems. Information Processing Letters, 57(3):151-158, 1996.

3 O. R. P. Bininda-Emonds. The evolution of supertrees. Trends in Ecology & Evolution,
19(6):315-322, 2004.

4 G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, T. Mailund, and A. Sand. Efficient Algorithms
for Computing the Triplet and Quartet Distance Between Trees of Arbitrary Degree. In Proc.
SODA 2013, pages 1814-1832, 2013.

5 G. S. Brodal and K. Mampentzidis. Cache Oblivious Algorithms for Computing the Triplet
Distance between Trees. Proc. ESA 2017, pages 21:1-21:14, 2017.

6 D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees - Theory and Methods in
Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, NZ, 1997.

7 J. Byrka, P. Gawrychowski, K. T. Huber, and S. Kelk. Worst-case optimal approximation
algorithms for maximizing triplet consistency within phylogenetic networks. Journal of Discrete
Algorithms, 8(1):65-75, 2010.

1:13

WABI 2019

1:14

Building a Small and Informative Phylogenetic Supertree

10

11
12

13

14

15

16

17

18

19

20

21

22

J. Byrka, S. Guillemot, and J. Jansson. New Results on Optimizing Rooted Triplets Consistency.
Discrete Appl. Math., 158(11):1136-1147, 2010.

L. A. Hug et al. A new view of the tree of life. Nature Microbiology, 1, 2016.

L. Gasieniec, J. Jansson, A. Lingas, and A. Ostlin. On the Complexity of Constructing
Evolutionary Trees. Journal of Combinatorial Optimization, 3(2):183-197, 1999.

Johan Hastad. Some Optimal Inapproximability Results. J. ACM, 48(4):798-859, 2001.

J. Jansson, R. S. Lemence, and A. Lingas. The Complexity of Inferring a Minimally Resolved
Phylogenetic Supertree. SIAM Journal on Computing, 41(1):272-291, 2012.

J. Jansson, Joseph H.-K. Ng, K. Sadakane, and W.-K. Sung. Rooted Maximum Agreement
Supertrees. Algorithmica, 43(4):293-307, 2005.

J. Jansson, R. Rajaby, and W.-K. Sung. Minimal Phylogenetic Supertrees and Local Consensus
Trees. AIMS Medical Science, 5:181, 2018.

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the Hardness of Approximating
Max k-Cut and Its Dual. Chicago Journal of Theoretical Computer Science, 1997.

J. M. Lang, A. E. Darling, and J. A. Eisen. Phylogeny of bacterial and archaeal genomes
using conserved genes: supertrees and supermatrices. PLoS ONE, 8(4), 2013.

K. J. Locey and J. T. Lennon. Scaling laws predict global microbial diversity. Proceedings of
the National Academy of Sciences, 2016.

A. McKenzie and M. Steel. Distributions of cherries for two models of trees. Mathematical
Biosciences, 164(1):81-92, 2000.

L. Trevisan. Parallel Approximation Algorithms by Positive Linear Programming. Algorithmica,
21(1):72-88, 1998.

D. P. Williamson and D. B. Shmoys. The Design of Approzimation Algorithms, pages 108—109.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

B. Y. Wu. Constructing the Maximum Consensus Tree from Rooted Triples. Journal of
Combinatorial Optimization, 8(1):29-39, 2004.

U. Zwick. Approximation Algorithms for Constraint Satisfaction Problems Involving at Most
Three Variables Per Constraint. Proc. SODA 1998, pages 201-210, 1998.

Alignment- and Reference-Free Phylogenomics
with Colored de Bruijn Graphs

Roland Wittler

Genome Informatics, Faculty of Technology, Bielefeld University, Germany
Center for Biotechnology, Bielefeld University, Germany
https://www.cebitec.uni-bielefeld.de/~roland
roland.wittler@uni-bielefeld.de

—— Abstract

We present a new whole-genome based approach to infer large-scale phylogenies that is alignment-
and reference-free. In contrast to other methods, it does not rely on pairwise comparisons to
determine distances to infer edges in a tree. Instead, a colored de Bruijn graph is constructed,
and information on common subsequences is extracted to infer phylogenetic splits. Application
to different datasets confirms robustness of the approach. A comparison to other state-of-the-art
whole-genome based methods indicates comparable or higher accuracy and efficiency.

2012 ACM Subject Classification Applied computing — Bioinformatics; Applied computing —
Molecular sequence analysis

Keywords and phrases Phylogenomics, phylogenetics, phylogenetic splits, colored de Bruijn graphs

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.2

Acknowledgements I thank Guillaume Holley for support on Bifrost, Nina Luhmann for pointers to
data sets, and Andreas Rempel for programming assistance.

1 Introduction

A common task in comparative genomics is the reconstruction of the evolutionary relationships
of species or other taxonomic entities, their phylogeny. Today’s wealth of available genome
data enables large-scale comparative studies, where phylogenetics is faced with the following
problems: first, the sequencing procedure itself is becoming cheaper and faster, but finishing
a genome sequence remains a laborious step. Thus, more and more genomes are published
in an unfinished state, i.e., only assemblies (composed of contigs), or raw sequencing data
(composed of read sequences) are available. Hence, traditional approaches for phylogenetic
inference can often not be applied, because they are based on the identification and comparison
of marker sequences, which relies on computing multiple alignments — an NP-hard task in
theory, and in practice even heuristics are often too slow. Second, the low sequencing cost
allow new large-scale studies of certain niches and/or aloof from model organisms, where
reference sequences would be too distant or not available at all.

Whole-genome approaches that are usually alignment- and reference-free solve these
problems, see e.g. [5, 7, 13, 18, 19, 22]. However, the sheer number of genomes to be analysed
is still posing limits in large-scale scenarios as almost all whole-genome approaches are
based on a pairwise comparison of some characteristics of the genomes (e.g. occurrences or
frequencies of k-mers or other patterns) to define distances which are then used to reconstruct
a tree (e.g. by using neighbor joining [15]). This means, for n genomes, O(n?) comparisons
are performed in order to infer O(n) edges. To the best of our knowledge, only MultiSpaM [4]
follows a different approach by sampling small, gap-free alignments involving four genomes
each, which are used to infer a super tree on quartets. According to our experiments, this
method is not suitable for large-scale settings (see Results), though.

© Roland Wittler;
37 licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 2; pp. 2:1-2:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2249-9880
https://www.cebitec.uni-bielefeld.de/~roland
mailto:roland.wittler@uni-bielefeld.de
https://doi.org/10.4230/LIPIcs.WABI.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Alignment- and Reference-Free Phylogenomics with Colored DBGs

Apart from computational issues, the actual objective of phylogenetic inference in terms
of how to represent a phylogeny is not obvious in the first place. Taking only intra-genomic
mutations into account, i.e., assuming a genome mutating independently of others, genomes
would have unique lines of ancestors and their phylogeny would thus be a tree. Several reasons
however conflict this simple tree model. Inter-genomic exchange of genomic segments such as
crossover in diploid or polyploid organisms, lateral gene transfer in bacteria, or introgression
in insects contradict the assumption of unique ancestry. Furthermore, incomplete, ambiguous,
or even misleading information can hamper resolving a reliable phylogenetic tree.

Here, we propose a new methodology that is whole-genome based, alignment- and reference-
free, and does not rely on a pairwise comparison of the genomes or their characteristics. An
implementation called SANS (“Symmetric Alignment-free phylogeNomic Splits”) is available
at https://gitlab.ub.uni-bielefeld.de/gi/sans. The k-mers of all genomic sequences
(assemblies or reads) are stored in a colored de Bruijn graph, which is then traversed to extract
phylogenetic signals. The reconstructed phylogenies are not restricted to trees. Instead, the
generalized model of phylogenetic splits [2] is used to infer phylogenetic networks that can
indicate a tree structure and also point to ambiguity in the reconstruction.

In the following Section 2, we will first introduce two building blocks of our approach,
splits and colored de Bruijn graphs. Then, we will describe and motivate our method in
Section 3. After an evaluation on several real data sets in Section 4, we will give a brief
summary and an outlook in Section 5.

2 Background

Before presenting our method in Section 3, we will introduce two basic concepts it builds
upon. Firstly, as motivated above, our phylogenies will be represented by sets of splits, a
generalization of trees. Secondly, to extract phylogenetic signals from the given genomes in
the first place, they are stored in a colored de Bruijn graph.

2.1 Phylogenetic splits

In the following, we briefly recapitulate some notions and statements from the split decom-
position theory introduced by Bandelt and Dress [2], and put them into context.

» Definition 1 (Unordered split). Given a set O, if for two subsets A, B C O, both ANB =)
and AU B = O, then the unordered pair {A, B} is a bipartition or (unordered) split of O.
If either A or B is empty, a split is called trivial.

We extend the above commonly used terminology of (unordered) splits to ordered splits —
a central concept in our approach.

» Definition 2 (Ordered split). If {A, B} is an unordered split of O, the ordered pairs (A, B)
and (B, A) are ordered splits. (B, A) is called the inverse (split) of (A, B) and vice versa.

Note that one unordered split {A, B} = {B, A} corresponds to two ordered splits (A, B) #
(B, A). Our method will first infer ordered splits and their inverse, which will then be combined
to form unordered splits. If clear from the context, we may denote an ordered split (A, B)
by simply A.

A set of splits & may be supplemented with weights w : § — R, e.g., in [2], splits
are weighted by a so-called isolation index. Strong relations between metrics and sets of
weighted unordered splits have been shown. In particular, one can canonically decompose
any distance d into a set of weighted splits Sy that is weakly compatible in the following sense.

https://gitlab.ub.uni-bielefeld.de/gi/sans

R. Wittler

» Definition 3 (Weak compatibility [2]). A set of unordered splits S on O is weakly compatible
if for any three splits { A1, B1}, {As, Ba}, {As, B3} € S, there are no elements a,ay,as,a3 €
O with {a,a1,a2,a3} N A; = {a,a;} fori=1,2,3.

Then, d(a,b) = >_(4 pyes, W{A, B}) da(a,b) + do where §4(a,b) := 1 if either a or b
in A, but not both, and d4(a,b) := 0 otherwise, i.e., the weights of all splits separating
a from b are accumulated, and where dy is a so-called split prime residue that cannot be
decomposed further.

As a peculiarity of our approach is being not distance-based, we mention the above
relation of weakly compatible splits and distances only for the sake of completeness. We will
make use of the above property to filter a general set of splits such that it can be displayed
as a — in most cases planar — network.

A distance d is a tree metric (also called additive), if and only if there is a set of splits Sy
with d(a,b) =>4 pyes, W{A, B}) da(a,b) that is compatible in the following sense.

» Definition 4 (Compatibility [2]). A set of unordered splits S on O is compatible if for any
two splits {A, B} and {A’, B'}, one of the four intersections ANA', ANB', BNA, and
BN B’ is empty.

We will make use of the implied one to one correspondence of edges in a tree and
compatible splits: an edge of length w whose removal separates a tree into two trees with
leaf sets A and B, respectively, corresponds to a split {A, B} of weight w.

2.2 Colored de Bruijn graphs

A string s is a sequence of characters over a finite, non-empty set, called alphabet. Its length is
denoted by |s|, the character at position ¢ by s[i], and the substring from position ¢ through j
by s[i..j]. A string of length k is called k-mer.

We consider a genome as a set of strings over the DNA alphabet {A,C,G,T}. The

reverse complement of a string s is 5 := s||s|] - - - s[1], where A :=T,C := G,G := C,T := A.

An abstract data structure that is often used to efficiently store and process a collection
of genomes is the colored de Bruijn graph (C-DGB) [11]. Tt is a node-labeled graph (V, E, col)
where each vertex v € V represents a k-mer associated with a set of colors col(v) representing
the set of genomes the k-mer occurs in. A directed edge from v to v’ exists if and only if
for the corresponding k-mers = and 2/, respectively, x[2..k] = z/[1..k — 1]. We call a path
p=v1,...,v of length |p| =1 in a C-DBG non-branching if all contained vertices have an
in- and outdegree of one with the possible exception of v; having an arbitrary indegree and

v; having an arbitrary outdegree, and it has the same set of colors assigned to all its vertices.

A maximal non-branching path is a unitig. In a compacted C-DBG, all unitigs are merged
into single vertices.

In practice, since a genomic sequence can be read in both directions, and the actual
direction of a given sequence is usually unknown, a string and its reverse complement are
assumed equivalent. Thus, in many C-DBG implementations, both a k-mer and its reverse
complement are represented by the same vertex. In the following, we will assume this being
internally handled by the data structure.

3 Method

The basic idea of our new approach is that a sequence which is contained as substring in a
subset A of all genomes G but not contained in any of the other genomes is interpreted as a
signal that A should be separated from G\ A in the phylogeny. The more of those sequences
exist and the longer they are, the stronger is the signal for separation.

2:3

WABI 2019

2:4

Alignment- and Reference-Free Phylogenomics with Colored DBGs

Algorithm 1 SANS: Symmetric, Alignmet-free phylogeNomic Splits.

INPUT: List of genomes G
OUTPUT: Weighted splits over G

T := empty trie // initialize T[S] := (0,0) on first access by S
C-DBG := colored de Bruijn graph of G
foreach unitig U in C-DBG:

S := color list of U (sublist of G)

// add ordered split S or its inverse G\S to trie

if IS8l < IGI/2 or (|S| == |G|/2 and S[0] == G[0]) then:

increase first element of T[S] by length of U
else:
increase second element of T[G\S] by length of U
foreach entry S in T with values (w,w’):
output unordered split {S,G\S} of weight sqrt (w*xw’)

To efficiently extract common sequences, we first construct a C-DBG of all given genomes.
Then, we collect all separation signals as ordered splits, where any unitig u contributes |ul
to the weight of an ordered split col(u). Since both an ordered split (A, B) and its inverse
(B, A) indicate that A and B should be separated in the phylogeny, we combine them to
one unordered split {A, B} with an overall weight that is a combination of the individual
weights. The individual steps will be explained in more detail next.

C-DBG

Among several available implementations of C-DGBs (e.g. [1, 9, 11, 14]), we decided to
use Bifrost [8] (https://github.com/pmelsted/bifrost) for the following reasons: it is
easy to install and use; it is efficiently implemented; it can process full genome sequences,
assemblies, read data or even combinations of these; for read data as input, it offers some
basic assembly-like filtering of k-mers; and it realizes a compacted C-DBG and provides a
C++ API such that a traversal of the unitigs could be easily and efficiently implemented —
only unitigs with heterogeneous color sets had to be split, because colors are not considered
during compaction.

Like other implementations of DBGs on the DNA alphabet, Bifrost saves space by not
storing edges explicitly — with the trade-off of having to determine neighboring vertices by
querying the graph for all possible preceding and succeeding k-mers. Since we do not make
use of the topology of the C-DBG, this common design decision accommodates our needs.

Accumulating split weights

Because splits often share many genomes, we use a trie data structure to store a split (as
key) as path from the root to a terminal vertex, along with its weight (as value) assigned to
the terminal vertex. We represent the set of genomes G as a list with some fixed order, and
any subset of G as sublist of G, i.e., with the same relative order. For a split (A, B) and its
inverse (B, A), we take as key the shorter of A and B, breaking ties by selecting that split
containing G[0], and as value the pair of weights (w,w’), where w is the accumulated weight
of the key, and w’ the accumulated weight of its inverse. When the trie is accessed for a key
the first time, the value is initialized with (0,0).

The overall method SANS is shown in Algorithm 1, the very last step of which will be
motivated in the following.

https://github.com/pmelsted/bifrost

R. Wittler

Combining splits and their inverses

To combine an ordered split (A4, B) of weight w4 and its inverse (B, A) of weight wp, a naive
argument would be: both indicate the same separation, so they should be taken into account
equivalently, and thus take the sum w4 + wp or arithmetic mean (w4 + wpg)/2. However, in
our evaluation, this weighting scheme often assigned higher weight to wrong splits than to
correct splits (compared to reliable reference trees; exemplified in Section 4.1). Instead, we
revert the above argument: consider a mutation on a (true) phylogenetic branch separating
the set of genomes into subgroups A and B. The corresponding two variants of the affected
segment will induce two unitigs with color sets A and B, respectively. Under the infinite
sites assumption, these unitigs would not be affected by other events. So, each mutation on
a branch in the phylogeny contributes to both splits (A, B) and (B, A). We hence take the
geometric mean /w4 - wp such that in case of asymmetric splits, the lower weight diminishes
the total weight, and only symmetric splits receive a high overall weight.

Considering different scenarios that would affect the observation of common substrings in
the C-DBG, some of which are illustrated in Figure 1, we observe beneficial behavior of the
weighting scheme in almost all cases: A single nucleotide variation would cause a bubble
in the C-DBG composed of two unitigs of similar length k each — a symmetric scenario in
accordance with the above weighting scheme. Both an insertion or deletion of length [
would cause an asymmetric bubble and thus asymmetric weights k — 1 and [+ k — 1. Here, the
geometric mean has the positive effect to weaken the impact of the length of the event on the
overall split weight. E.g., the total weight for = deletions of length [would increase linearly
with 2 whereas those for one deletion of length z - I would increase with y/z. For both a
transposition or inversion of arbitrary length, the color set of the segment itself remains
the same, and only those k-mers spanning the breakpoint regions would be affected, inducing
symmetric bubbles in accordance with the weighting scheme. Lateral gene transfer is
challenging phylogenetic reconstruction, because a subsequence of length [that is contained
in both the group A containing the donor genome as well as the target genome b from the
other genomes B := G\ A can easily be misinterpreted as a signal to separate AU {b} from
the remainder B\{b} instead of separating A from B, where the strength of this erroneous
signal grows with [. Our approach will be affected only little: on the one hand, the unitig
corresponding to the copied subsequence has color set AU {b} and thus contributes to an
ordered split (AU {b}, B\{b}) of weight [— k + 1. On the other hand, because the transfer
does not remove any subsequence in the donor sequence, only those k k-mers spanning the
breakpoint region will be affected, inducing a unitig with color set B\{b} whose length is
independent of . Missing or additional data may arise from genomic segments that are
difficult to sequence or assemble and might thus be missing in some assemblies, due to the
usage of different sequencing protocols, assembly tools, or filter criteria, or simply because
some input files contain plasmid or mitochondrial sequences and others do not. This does
not affect our approach, because additional sequence induces unitigs and thus an ordered
split, but the absence of sequence does not induce any split, not even due to breakpoint

regions, because in such cases usually whole reads, contigs or chromosomes are involved.

Thus, the weight of the additional ordered split would be multiplied by zero for the absent
split, resulting in a total weight of zero. Copy number changes can only be detected if
the change is from one to two or vice versa, adding or removing k-mers spanning the juncture
of the two copies. Beyond that, because the k-mer counts are not captured, our approach is
not sensible for copy number changes.

In practice, the structure of a C-DBG is much more complex than the simplified picture
we draw above. Nevertheless, using the geometric yields high accuracy of the approach
compared to other methods.

2:5

WABI 2019

2:6 Alignment- and Reference-Free Phylogenomics with Colored DBGs

ACG CGC GCA
CGT | & | GCG | «+» | TGC
AAC {a,b} {a, b} {a,b} CAA
GTT 4 ~ TTG
Tabedy | ¥ ACT | foTe || ToA | gy
AGT | | GAG | +» | TGA
{e.d} {e.d} {e.d}

(a) Single nucleotide variation in genomes a = b = AACGCAA and ¢ = d = AACTCAA. The induced
ordered split {a,b} and its inverse {c,d} of weight k = 3 each yield a corresponding unordered split

{{a,b},{c,d}} of weight Vkk =k = 3.

ACG CGG GG- -CA CAC ACA
CGT |+ | CCG |+| -CC |« -+ | TG- || GTG |+ | TGT

AAC {a, 0} {a,b} {a,0} {a,} {a, b} {a,b} CAA

GTT < ™ TTG

{a,b,c,d} ACC CCA 4 {a,b,c,d}
GGT TGG
{c,d} {c,d}
(b) Insertlon/deletlon of length [= 4 (or longer, indicated by dots) in genomes a = b =

AACGG .- CACAA and ¢ = d = AACCAA. The induced ordered split {a, b} of weight [+k —1 =1+ 2
and its inverse {c,d} of constant weight k — 1 = 2 yield a corresponding unordered split {{a, b}, {c,d}} of

weight \/(l-‘rk—l) \/2(l+2
ACG CGG CAC ACA
CGT [elele! GTG |« | TGT
” | es CA Ty | | Tab)
AAC g {a, b} {a, b} .cCc o ..o TG < CAA
GTT X {a,b,c,d} {a,b,c,d} f TTG
{a,b,c,d} ACT cTG ggg ;‘gé {a,b,c,d}
AGT |+ | CAG {)‘& o
{c,d} {c,d} {c,d} {e,d}

(c) Inversion of length [= 4 (or longer, indicated by dots) between genomes a = b = AACGG - .- CACAA
and ¢ = d = AACTG--- CCCAA. The induced ordered split {a,b} and its inverse {c,d} of con-
stant weight 2(k — 1) = 4 each yield a corresponding unordered split {{a, b}, {c,d}} of constant weight

2k —1)2(k —1) =2(k—1) = 4.

AGG GG- -CA CAG
CCT |+ | -CC | -+ | TG- | & | CTG
{a} {a, b} {a,0} {a}
s N
ACG CGG CAC ACA
CGT |« | CCG GTG |+ | TGT
{0} {0} {b} {0}
AAC | ACC CCA N CAA
GTT GGT |+— | TGG TTG
{b,c,d} {c,d} {c,d} {b,¢,d}

(d) Lateral gene transfer of length { = 4 (or longer, indicated by dots) from genome a = AGG--- CAG
to b = AACGG --- CACAA but not to c =d = AACCAA. Apart from mutation-independent splits for
the boundaries, and the trivial split {b} (without its inverse), the split {a, b} of weight | —k+1=1—2
and its inverse {c,d} of constant length & — 1 = 2 are induced, yielding a corresponding unordered split

{{a,b}, {c,d}} of weight /(I —k+1) (k =./2(-2).

Figure 1 Toy examples for different mutations within four genomes a, b, c and d to illustrate their
effect on a C-DBG with k£ = 3. Each vertex of the C-DBG is labelled with both its k-mer and the
reverse complement (in arbitrary order), as well as its color set. Due to the small value of k, the
C-DBG contains edges corresponding to pairs of overlapping k-mers that are not contained in the
given strings. For the purpose of clarity, these are not drawn. Mutations are highlighted in bold
and/or italics.

R. Wittler

Postprocessing

Even though the geometric mean filters out many asymmetric splits, the total number of
positively weighted splits can be many-fold higher than 2n — 3, the number of edges in a
fully resolved tree for n genomes. Unfortunately, the observed distribution of split weights
did not indicate any obvious threshold to separate high-weighted splits from low-weighted
noise. Nevertheless, a rough cutoff can safely be applied by keeping only the ¢ highest
weighting splits, e.g., in our evaluation ¢ = 10 has been used for all datasets. Additionally,
we evaluated two filtering approaches: greedy weakly, i.e., greedily approximating a maximum
weight subset that is weakly compatible and can thus be displayed as a network, and greedy
tree, i.e., greedily approximating a maximum weight subset that is compatible and thus
corresponds to a tree. To this end, we used the corresponding options of the software tool
SplitsTree [10, 12]. As we will demonstrate in the Results section, in particular the tree filter
proved to be very effective in practice.

Run time complexity

Consider n genomes of length O(m) each. In Bifrost, the compacted C-DBG is built by
indexing a k-mer by its minimizer, i.e., a substring with the smallest hash value among
all substrings of length ¢ in a k-mer. According to the developers of Bifrost (personal
communication), inserting a k-mer and its color takes O(4*~9)log(n)) time in the worst
case. In practice, however, each of the O(mn) k-mers can be inserted in O(log(n)) time,
and hence, building the complete C-DGB takes O(mnlog(n)) time. While iterating over all
positions in the graph, we verify whether a unitig has to be split due to a change in the color
set. Because each of the n genomes adds O(m) color assignments to the graph, we have to
do O(mmn) color comparisons in total, which does not increase the overall complexity.

Each genome contributes to at most O(m) ordered splits. So the sum of the cardinality
of all ordered splits, i.e., the total length of all splits in Algorithm 1, is O(mn). Hence, the
insertion and lookups of all S in trie T takes |S| time each and O(mn) in total, and the
number of terminal vertices of T, i.e., the final number of unordered splits, is in O(mn),
too. For ease of postprocessing, splits are ordered by decreasing weight, increasing the run
time for split extraction to O(mnlog(mn)), or O(mnlog(n)) to output only the ¢, t € O(n),
highest weighting splits, respectively.

4 Results

In this section, we present several use cases in order to exemplify robustness and different
other characteristics of our approach SANS. We compare to the following other whole-genome
based reconstruction tools.

MultiSpaM [4] samples a constant, high number of small, gap-free alignments of four
genomes. The implied quartet topologies are combined to an overall tree topology. To the

best of our knowledge, all other tools are distance-based and rely on pairwise comparisons.

Interestingly, although all methods are based on lengths or numbers of common subsequences
or patterns, their results differ considerably from those of SANS. Co-phylog [18] analyses each
genome in terms of certain patterns (C-grams, O-grams) and compares their characteristics
(context). In andi [7], enhanced suffix arrays are used to detect pairs of maximal unique
matches that are used to anchor ungapped local alignments, based on which pairwise distances
are computed. CVTree3 [22] corrects k-, k—1, and k—2-mer counts by subtracting random
background of neutral mutations using a (k—2)-th Markov assumption. In FSWM [13],
matches of patterns including match and don’t-care position are scored and filtered to estimate
evolutionary distances.

2:7

WABI 2019

2:8

Alignment- and Reference-Free Phylogenomics with Colored DBGs

©
o
7 -
= arithmetic mean, correct
¢ arithmetic mean, false
5 * geometric mean, correct
N + geometric mean, false
[} -
(s}
12
j=2) >
g g PN
£ %
] oooe moj
= *
= 0,
z 8 haasd
@ ¥ .
3 *os
< | T
o |\ e,
T
[T T T T \
-
0 10 20 30 40 50
- ak ere
rank g y
(a) Comparison of accuracy for using arithmetic (b) Visualization of greedily extracted weakly com-

or geometric mean for combining weights of splits patible subset of splits using SplitsTree [10, 12].
and their inverse each. Splits have been sorted by As by default, geometric mean has been used for
the combined weight and the 50 highest weighting combining weights of splits and their inverse each.
splits are shown. Color indicates whether a split

agrees with the reference [17].

Figure 2 Reconstructed phylogenetic splits on the Drosophila dataset [17].

Unless stated otherwise, a k-mer length of 31 (Bifrost default) has been used for construct-
ing the C-DBG for SANS. All tools have been run on a single 2 GHz processor and times
are given in CPU hours (user time). Accuracy has been measured in terms of topological
Robinson-Foulds distance, i.e., a predicted edge (split) is correct if and only if the reference
tree contains an edge that separates the same two sets of leaves. As recall, we count the
number of correct edges (splits) divided by the total number of edges in the reference, and
as precision, we count the number of correct edges (splits) divided by the total number of
predicted edges (splits).

4.1 Drosophila

This dataset comprises assemblies from 12 species of the genus drosophila obtained from
the database FlyBase (flybase.org, latest release before Feb. 2019 of all-chromosome-files
each) [17]. As reference, we consider the commonly accepted phylogeny published by the
FlyBase consortium [3, Figure 2] also shown on the database website.

Although being “simple” in the sense that it contains only a small number of genomes,
its analysis exemplifies the following aspects: (i) The effectiveness of our method for medium
sized input files: for a total of more than 2161 Mbp (180 Mbp on average), SANS inferred
the correct tree within 168 minutes and using up to 25 GB of memory. We ran CVTree3
with various values of k. In the best cases (k = 12 and 13), 7 of 9 internal edges have
been inferred correctly taking 95 and 162 minutes, and up to 26 and 87 GB of memory,
respectively. (For k = 11, only 4 internal edges were correct, and for k > 13, the computation
ran out of memory.) Both Co-phylog and FSWM did not finish within 48 hours, and both
MultiSpaM and andi could not process this dataset successfully. (ii) As can be seen in
Figure 2a, combining splits and their inverse using the geometric instead of the arithmetic
mean strengthens the tendency of correct splits having a high weight. (iii) Even though the
reconstruction shown in Figure 2b contains 45 splits — in comparison to 21 edges in a binary
tree — , the visualization is close to a tree structure.

flybase.org
all-chromosome

R. Wittler 2:9

o
9 A / o "y
X FSWM < ..
+ Co-phylog o
w - |0 andi g _ ol
¢« SANS ‘ ‘+ Y3
? o s 2| k2t « W
&) k=31 1l
< + 8 || k45 o M
£ ¥ 7 e S |- k=63 \‘;
- A greedy tree “
y + © « greedy weakly ﬂ
N / o || + Co—phylog H
_ o |
I | O andi
o - & o——"=9 . 0 |
T T T T T © T T T T ; T T
0 50 100 150 200 0.5 0.6 0.7 0.8 0.9 1.0
#assemblies recall

(a) Running time for computing phylogenies on (b) For different values of k, weakly compatible sub-
random subsamples. Times for SANS include DBG sets (bullets) and trees (triangles) have been greed-
construction with £ = 31, split extraction and ag- ily extracted. Each point on a line corresponds to a
glomeration. different threshold to discard low weighting splits.

Figure 3 Comparison of running time and accuracy of different methods on the ParaC dataset [20]
comprising assemblies of n = 220 genomes.

4.2 Salmonella enterica Para C

This dataset is of special interest as the contained assemblies from 220 genomes of different
serovars within the Salmonella enterica Para C lineage include that of an ancient Para-
typhi C genome obtained from 800 year old DNA [20], the placement of which is especially
difficult due to missing data. As reference, we consider a maximum-likelihood based tree on
nonrecombinant SNP data [20, Figure 5a].

We studied the running time behaviour of the different methods for random subsamples
of increasing size. As shown in Figure 3a, for this high number of closely related genomes,
we observed a super-linear running time of up to 41 minutes for andi, about 5 hours for
Co-phylog, and up to 43 hours for FSWM, whereas the reconstruction of SANS shows a
linear increase (Pearson correlation coefficient 0.9994) to about 10 minutes. The memory
requirement of both SANS and Co-phylog remained below 0.5 GB, whereas andi required
about 1 GB, and FSWM required up to about 17 GB. We ran CVTree3 with ten values of k
between 5 and 27, but none of the resulting trees contained more than 5 correct internal
edges. For MultiSpaM, we increased the number of sampled quartets from the default of
10% to up to 108, which increased the running time from about one hour to about 66 hours.
Both recall and precision improved but were still below 0.2 for internal edges.

The accuracy of the reconstructions with respect to the reference is visualized in Figure 3b.
In particular, we observe: (i) the split reconstruction by SANS and the tree inferred by
Co-phylog are comparably accurate and both are more accurate than the FSWM and andi
tree, (ii) greedily extracting high weighting splits to filter for a tree selects correct splits
while discarding false splits with very high precision, (iii) greedily extracting high weighting
splits to filter for a weakly compatible subset also selects correct splits, but, as expected, has
a lower precision than the tree filter, because more splits are kept than there are edges in a
tree, and (iv) the results of SANS are robust for a wide range of k from 21 to 63.

WABI 2019

2:10

Alignment- and Reference-Free Phylogenomics with Colored DBGs

8 - g o |
® = time - v
g || memory ©
N -*- time C-DBG ° S ve, *
o -o- memory C-DBG T © @ -
8 N e © | 3
< - > 5 °
£ 2 / - 2 E @ O / m greedy tree, 250 assemblies
g A R X g § g —{| o / * greedy tree, 500 assemblies
= x . ~ & < | & greedy tree, 1000 assemblies
S /x’ 3 « v | v greedy tree, 1500 assemblies
&7] = S ||+ / B Co-phylog, 250 assemblies
g /x X | % FSWM, 250 assemblies
¥ o _||* /¢ andi 250 assemblies
o 0 —me- g === 0TSmO -mm-ooooo ° . © (all edges / internal only)
T T T T T T T T T T
0 500 1000 1500 0.0 0.2 0.4 0.6 0.8 1.0
#assemblies recall
(a) Running time and peak memory usage of SANS. (b) Accuracy with respect to the reference

Values including C-DBG construction, split extraction phylogeny [21, Fig. 2A].
and agglomeration, as well as C-DBG construction only
are given.

Figure 4 Efficiency and accuracy on the Salmonella enterica dataset [21]. Values have been
averaged over processing two random subsamples each.

4.3 Salmonella enterica subspecies enterica

In comparison to the ParaC dataset, the 2964 genomes studied by Zhou et al. [21] are not
only a larger but also a more diverse selection of Salmonella enterica strains. As reference, we
consider a maximum-likelihood based tree on 3002 concatenated core genes [21, Figure 2A,
supertree 3].

The probability to observe long k-mers that are conserved in such a high number of more
diverse genomes is lower than for the previous datasets. Hence, we selected a smaller k-mer
length of k = 21. To assess the efficiency and accuracy for increasing number of genomes, we
sampled subsets of up to 1500 assemblies. To process the smallest considered subsample of
size 250, andi took about 110 minutes, whereas Co-phylog and FSWM took already more
than 9 and 50 hours, respectively, and MultiSpam was not able to process this dataset at all.
We ran CVTree3 with all values of k between 6 and 14, but in the best case (k = 8), the
resulting tree contained only 33 (of 247) correct internal edges such that we did not further
consider CVTree3 in our evaluation.

The memory usage for split extraction and agglomeration clearly dominates those of
the C-DBG construction by Bifrost such that processing the complete dataset was not
possible with our current implementation of SANS. Figure 4a shows a slightly super-linear
runtime and memory consumption of up to about 300 minutes and 80 GB for processing
1500 assemblies. As can be seen in Figure 4b, both precision and recall vary only slightly
for this wide range of input size. Keeping in mind that a final split of high weight strictly
requires the observation of both unordered pairs, this is a quite promising result for this
first investigation of the methodology. In particular, whereas for distance-based methods,
all leaf-edges are inferred by construction and can never be false, a trivial split separating a
leaf from the remaining tree, requires not only some sequence(s) unique to the leaf but also
sequences that are unique to all other n—1 genomes. Also note that measuring accuracy by
counting correct and false splits corresponding to the topological Robinson-Foulds distance
has to be interpreted with care. A single misplaced leaf breaks all splits between its correct
and actual location. However, this is a desired behaviour in this context, because, in a
phylogeny of several hundred genomes, each genome should at least be located in the correct
area, whereas the complete misplacement even of a single genome can easily lead to wrong
biological conclusions.

R. Wittler
o - T
- v
.. e
AN
oo} DA MpV-SPLfa
> | Py .
o ..
o7
: wveLLI
©
s o]
@
3 - | - SANS Arissta
= Z-,’- 1| & / A SANS, greedy tree
v | v CVTree3 (k=8) MpVLla
~ & | ¢ co-phylog
S 7| e/ FSWM
0 / = MultiSpaM
o (w.r.t. ref. 1 /ref. 2)
s & ‘ : ‘ ‘ ‘ overs .
00 02 04 06 08 10
recall O ovire ovia
(a) Accuracy of different tools w.r.t. two refer- (b) Visualization of greedily extracted weakly compat-

ence trees [6, Figures 3 and 4] shown in blue ible subset of splits using SplitsTree [10, 12].
and red, respectively. For SANS, each point

corresponds to a different threshold to discard

low weighting splits.

Figure 5 Reconstruction results on the prasinovirus dataset [6].

4.4 Prasinoviruses

Viral genomes are short and highly diverse — posing the limits of phylogenetic reconstruction
based on sequence conservation. Here we consider complete genomes of 13 prasinoviruses,
which are relatively large (213 Kbp on average) [6]. As references, we consider two trees
reported in the original study, one of which is based on the presence and absence of shared
putative genes [6, Figure 3], and the other is a maximum likelihood estimation based on a
marker gene (DNA polymerase B) [6, Figure 4].

Due to the small size of the input, it could be processed by all tools, where time and
memory consumption were negligible. Only andi could not process this dataset successfully
(“very little homology was found”). Results are shown in Figure 5a. The visualization of
the predicted splits in Figure 5b exemplifies the explanatory power of the split framework.
While main separations supported by both reference trees are recognizable as strong splits
in the net, separations in which the two reference trees disagree are also shown as weakly
compatible splits.

4.5 Vibrio cholerae

The dataset comprises 22 genomes from the species Vibrio cholerae, 7 of which have been
sequenced from clinical samples and are labelled “pandemic genome” (PG), and the remaining
15 have been sequenced from non-clinical samples and are labelled “environmental genome”
(EG) [16, primary dataset]. As already observed in the original study, for these genomes, it is
difficult to reconstruct a reliable, fully resolved tree. Nevertheless, representing the phylogeny
in form of splits shows a strong separation of the pandemic from the environmental group.
The phylogeny presented by the authors of the original study [16, Supplementary Figure 1a]
is based on 126 099 sites extracted from alignment blocks.

Comparing our reconstruction results to the reference, both shown in Figure 6, we make
two observations. (i) Our reconstruction also separates the pandemic from the environmental
group, and agrees to the reference in further sub-groups. (ii) When collecting the sequence
data, for some of the genomes, we found assemblies, whereas for others, only read data was

2:11

WABI 2019

2:12

Alignment- and Reference-Free Phylogenomics with Colored DBGs

GBE0658 Bod1
GBE1068

Bgd8 MQ1795
NI6961

MI1236
GBE0428

GBED428 0395

LMA38944
™A2L

GBE1114

Bgds GBE1173

— © 12129
CT536093 > Bods

LMA38944

MQ1795
Mj1236

05 CT536993

TM1107980
GBEO6SS

GBE1068

RC38S
albensisvL426

GBE1173

GBE1114 0o

(a) Visualization of greedily extracted weakly compatible (b) Reference phylogeny. Figure reprin-
subset of splits. For taxa highlighted in bold, only read data ted from Shapiro et al. [16, Supplement-
was available on NCBI (input option -s of Bifrost has been ary Figure la.

used); for Taxon TM1107980, no data was available on NCBI

(February 2019).

Figure 6 Splits reconstructed for the V. cholerae dataset [16] by SANS (left) and by Shapiro et
al. [16] (right) visualized with SplitsTree [10, 12].

available. Because the used C-DBG implementation Bifrost supports a combination of both
types as input, we were able to reconstruct a joint phylogeny without extra effort or obvious
bias in the result.

5 Discussion and Outlook

We proposed a new k-mer based method for phylogenetic inference that neither relies on
alignments to a reference sequence nor on pairwise or multiple alignments to infer markers.
Prevailing whole-genome approaches perform pairwise comparisons to determine a quadratic
number of distances to finally infer a linear number of tree edges. In contrast, in our approach,
the length of conserved sequences is extracted from a colored de Bruijn graph to first infer
signals for phylogenetic sub-groups. These signals are then combined with a symmetry
assumption to weighted phylogenetic splits. Evaluations on several real datasets have proven
comparable or better efficiency and accuracy compared to other whole-genome approaches.
Our results indicate robustness in terms of k-mer length, as well as the taxonomic order, size
and number of the genomes. The analysis of a dataset composed of both assembly and read
data indicated also robustness in this regard — an important characteristic, which we want to
investigate further.

A distinctive feature of the proposed methodology is the direct association of a phylogenetic
split to the conserved subsequences it has been derived from, which is not possible for distance-
based methods. We plan to enrich our implementation with this valuable possibility to
allow the analysis of characteristic subsequences of identified subgroups, or subsequences
inducing phylogenetic splits off the main tree, e.g. horizontal gene transfer. Here, the applied
generalization of trees plays an important role, e.g., circular split systems are more strict
than weakly compatible sets and might thus be a promising alternative to be studied further.

Another direction of future work is the incorporation of the topology of the de Bruijn
graph. Currently, it is simply used as a collection of unitigs. But specific substructures, in
particular with regard to the colors in the graph, could be used to identify phylogenetic events.

R. Wittler

Finally, we want to emphasize the simplicity of the new approach as presented here. At

its current state, apart from iterating a colored de Bruijn graph and agglomerating unitig
lengths, the only elaborate ingredient so far is the symmetry assumption realized by applying
the geometric mean. We believe that the general approach still harbors much potential to be

further refined by, e.g., statistical models, advanced data structures, pre- or postprocessing,

to further increase its accuracy and efficiency.

—— References

1

10

11

12

13

14

15

Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: a succinct colored de
Bruijn graph representation. In International Workshop on Algorithms in Bioinformatics
(WABI 2017), volume 88, pages 18:1-18:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

Hans-Jiirgen Bandelt and Andreas WM Dress. Split decomposition: a new and useful approach
to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1(3):242-252,
1992.

Madeline A Crosby, Joshua L. Goodman, Victor B Strelets, Peili Zhang, William M Gelbart,
and the FlyBase Consortium. FlyBase: genomes by the dozen. Nucleic Acids Research,
35(suppl__1):D486-D491, 2006.

Thomas Dencker, Chris-André Leimeister, Michael Gerth, Christoph Bleidorn, Sagi Snir,
and Burkhard Morgenstern. Multi-SpaM: a maximum-likelihood approach to phylogeny
reconstruction using multiple spaced-word matches and quartet trees. In Proc. of RECOMB
Comparative Genomics, pages 227-241. Springer, 2018.

Huan Fan, Anthony R Ives, Yann Surget-Groba, and Charles H Cannon. An assembly and
alignment-free method of phylogeny reconstruction from next-generation sequencing data.
BMC Genomics, 16(1):522, 2015.

Jan Finke, Danielle Winget, Amy Chan, and Curtis Suttle. Variation in the genetic repertoire
of viruses infecting Micromonas pusilla reflects horizontal gene transfer and links to their
environmental distribution. Viruses, 9(5):116, 2017.

Bernhard Haubold, Fabian Kl6tzl, and Peter Pfaffelhuber. andi: Fast and accurate estimation
of evolutionary distances between closely related genomes. Bioinformatics, 31(8):1169-1175,
2014.

Guillaume Holley and Pall Melsted. Bifrost—Highly parallel construction and indexing of
colored and compacted de Bruijn graphs. BioRziv, page 695338, 2019.

Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom Filter Trie: an alignment-free
and reference-free data structure for pan-genome storage. Algorithms for Molecular Biology,
11(1):3, 2016.

Daniel H Huson, Tobias Kloepper, and David Bryant. SplitsTree 4.0-computation of phylogen-
etic trees and networks. Bioinformatics, 14:68-73, 2008.

Zamin Igbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44(2):226, 2012.
Tobias H Kloepper and Daniel H Huson. Drawing explicit phylogenetic networks and their
integration into SplitsTree. BMC' Evolutionary Biology, 8(1):22, 2008.

Chris-André Leimeister, Salma Sohrabi-Jahromi, and Burkhard Morgenstern. Fast and accurate
phylogeny reconstruction using filtered spaced-word matches. Bioinformatics, 33(7):971-979,
2017.

Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert
Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de Bruijn
graphs. Bioinformatics, 33(20):3181-3187, 2017.

Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, 1987.

2:13

WABI 2019

2:14

Alignment- and Reference-Free Phylogenomics with Colored DBGs

16

17

18

19

20

21

22

B Jesse Shapiro, Ines Levade, Gabriela Kovacikova, Ronald K Taylor, and Salvador Almagro-
Moreno. Origins of pandemic Vibrio cholerae from environmental gene pools. Nature Microbi-
ology, 2(3):16240, 2017.

Jim Thurmond, Joshua L. Goodman, Victor B Strelets, Helen Attrill, L. Sian Gramates,
Steven J Marygold, Beverley B Matthews, Gillian Millburn, Giulia Antonazzo, Vitor Trovisco,
Thomas C Kaufman, Brian R Calvi, and the FlyBase Consortium. FlyBase 2.0: the next
generation. Nucleic Acids Research, 47(D1):D759-D765, 2018.

Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for closely
related organisms. Nucleic Acids Research, 41(7):e75-€75, 2013.

Xiaoyu Yu and Oleg N Reva. SWPhylo-a novel tool for phylogenomic inferences by comparison
of oligonucleotide patterns and integration of genome-based and gene-based phylogenetic trees.
Evolutionary Bioinformatics, 14:1176934318759299, 2018.

Zhemin Zhou, Nabil-Fareed Alikhan, Martin J Sergeant, Nina Luhmann, Catia Vaz, Alexan-
dre P Francisco, Jodo André Carrico, and Mark Achtman. GrapeTree: visualization of core
genomic relationships among 100,000 bacterial pathogens. Genome Research, 28(9):1395-1404,
2018.

Zhemin Zhou, Inge Lundstrgm, Alicia Tran-Dien, Sebastian Duchéne, Nabil-Fareed Alikhan,
Martin J Sergeant, Gemma Langridge, Anna K Fotakis, Satheesh Nair, Hans K Stengien,
Stian S. Hamre, Sherwood Casjens, Axel Christophersen, Christopher Quince, Nicholas R.
Thomson, Francgois-Xavier Weill, Simon Y.W. Ho, M. Thomas P. Gilbert, and Mark Achtman.
Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability
of the invasive para C lineage for millennia. Current Biology, 28(15):2420-2428, 2018.
Guanghong Zuo and Bailin Hao. CVTree3 web server for whole-genome-based and alignment-
free prokaryotic phylogeny and taxonomy. Genomics, Proteomics & Bioinformatics, 13(5):321—
331, 2015.

Quantified Uncertainty of Flexible Protein-Protein
Docking Algorithms
Nathan L. Clement

Department of Computer Science, University of Texas at Austin, USA
nclement@cs.utexas.edu

—— Abstract

The strength or weakness of an algorithm is ultimately governed by the confidence of its result.

When the domain of the problem is large (e.g. traversal of a high-dimensional space), an exact
solution often cannot be obtained, so approximations must be made. These approximations often
lead to a reported quantity of interest (QOI) which varies between runs, decreasing the confidence
of any single run. When the algorithm further computes this QOI based on uncertain or noisy
data, the variability (or lack of confidence) of the QOI increases. Unbounded, these two sources of
uncertainty (algorithmic approximations and uncertainty in input data) can result in a reported
statistic that has low correlation with ground truth.

In molecular biology applications, this is especially applicable, as the search space is generally
large and observations are often noisy. This research applies uncertainty quantification techniques to
the difficult protein-protein docking problem, where uncertainties arise from the explicit conversion
from continuous to discrete space for protein representation (introducing some uncertainty in the
input data), as well as discrete sampling of the conformations. It describes the variability that exists
in existing software, and then provides a method for computing probabilistic certificates in the form
of Chernoff-like bounds. Finally, this paper leverages these probabilistic certificates to accurately
bound the uncertainty in docking from two docking algorithms, providing a QOI that is both robust
and statistically meaningful.

2012 ACM Subject Classification Applied computing — Molecular structural biology; Mathematics
of computing — Hypothesis testing and confidence interval computation; Computing methodologies
— Uncertainty quantification

Keywords and phrases protein-protein docking, uncertainty quantification, protein flexibility, low-
discrepancy sampling, high-dimensional sampling

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.3
Related Version A full version of the paper is available at http://arxiv.org/abs/1906.10253.

Acknowledgements I would like to thank all those who have supported and helped advise on this
work, for their valuable feedback and suggestions for improvement.

1 Introduction

Predicting the bound conformation of two proteins (protein-protein docking) has many
applications in medicine and biology [26, 19]. The simpler form of this problem is the
so-called “bound-bound” case, where the 3-dimensional coordinates of the in situ protein
complex is resolved (via e.g. X-ray crystallography, NMR, etc.), and atoms corresponding to
individual proteins are then extracted from the complex. The more difficult version is the
“unbound-unbound” case, where each protein in the pair is imaged in its separate native state,
and the algorithm must predict the correct in situ bound complex [18]. Importantly, the
final quantity of interest (QOI) in many cases is the change in binding free energy: protein
complexes with a high change in free energy are more likely to be found as a bound complex,
and are likely good targets for drug discovery pathways. The difficulty of the unbound-
unbound case then arises from the inherent flexibility of proteins: large-scale movements

© Nathan L. Clement;
37 licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 3; pp. 3:1-3:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nclement@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.WABI.2019.3
http://arxiv.org/abs/1906.10253
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Uncertainty Quantified Protein Docking

may occur along the pathway from a closed conformation (unbound) to an open (bound)
one, or visa versa. If docking is performed on only the unbound complexes, the final delta
energy could be completely misleading. (To aid in discussion, here and through the paper we
will refer to one protein, typically the bigger, as the receptor, and the other as the ligand.)

A subsequent difficulty of the unbound-unbound docking problem is that computational
approaches must search two high-dimensional spaces. The first is that of possible protein
structures, a naive description of which is R3™ x R3", where m and n are the number of
atoms in the ligand and receptor, respectively. The second is the space of possible docked
conformations. In rigid-body docking (each protein is static), this is the 6-dimensional real
space of 3 rotational + 3 translational degrees of freedom, SE(3) = SO(3) x R3 [1, 25].
Without approximation, searching this high-dimensional space is computationally intractable.
To achieve meaningful results, successful algorithms must employ some sort of simplification.

One of the biggest issues that arises from these simplifications is uncertainty propagation.
A computational representation of a protein is, by nature, an approximation (discrete
representation of a continuous space). Computing a simple statistic, or quantity of interest
(QOI), on these representations is then by nature uncertain [27]. Algorithmic approximations
(due to randomness or variations in the inputs) in one stage of a protein docking pipeline
lead to uncertainty in the input for the next stage. If these uncertainties are not quantified
at each stage, the uncertainties propagate to future levels of the pipeline, leading to a result
or QOI that is unbounded, and may contain little valuable information.

This paper provides a framework for bounding the uncertainty of protein-protein docking.
For a docking procedure where the QOI, f(X), is some complicated function or optimization
functional involving noisy data X, we seek to provide a probabilistic certificate as a function
of parameter ¢ that the computed value f(X) is not more that ¢ away from the true value,
with high probability. This certificate is expressed as a Chernoff-Hoeffding like bound [8]:

Pr{[f(X) — Elf][> t] <e, (1)

where E[f] is the expectation of f, computed over all permutations of X. The primary
QOI we are interested in bounding is the change in Gibbs free energy, or AG, as this is
the metric most useful for real-world experiments. However, we also consider the interface
RMSD (iRMSD), which is defined as the RMSD between Cav atoms on the interface of
the bound pair.

Instead of providing a new docking algorithm as a solution to bounding the above
certificate, this research instead considers the docking algorithm, f(X), as a black boz,
exploring the landscape of possible structures, X € X, as inputs to f and computing the
certificates from the output. This then provides a framework by which any two algorithms
can be compared, and by which conclusive results can be reported.

In this work, we expand upon our previous research [27, 10] in the following manner.
First, the model used in the previous research was simplistic, and, while useful for modeling
small uncertainties, does not provide insight into uncertainty of large-scale protein movement.
Second, we consider the impact of this conformational uncertainty to provide certificates for
black-box docking functions. This second contribution can be used when trying to interpolate
results of a given docking algorithm to biological equivalents.

The only known research that applies uncertainty quantification to protein-protein docking
is a recent preprint by Cau and Shen [5]. The authors use Bayesian active learning to explore
protein-protein docking samples using a black-box energy function. Once the energy landscape
has been sufficiently sampled, they provide posterior distributions of the desired QOI, which
enables computing confidence intervals for each model. The major differences between this

N. L. Clement

work and our own work is 1) the treatment of the entire docking algorithm as a black box
(instead of just the energy function), and 2) the use of a hierarchical model convolved with a
von Mises distribution to generate samples local to the unbound input.

The paper is organized as follows. First, we provide the theoretical and technical details
of our approach, including probabilistic certificates through effective sampling, protein
representation, sampling protocol, and benchmark dataset. Second, we show that the protein
sampling protocol used improves upon the results of both rigid-body and flexible docking
metrics, computing the probabilistic certificates for the change in Gibbs free energy for sets
of docked proteins. Finally, we discuss the importance of these results both in terms of UQ
for docking algorithms and biological relevance.

2 Materials and methods

2.1 Computing Chernoff-like bounds

Our primary motivation in this work is to compute a probabilistic certificate to bound the
uncertainty in a computed statistics. We are most concerned with providing the Chernoff-
Hoeffding like bound expressed in Equation 1, which provides a probabilistic guarantee for
the moments of a QOI computed on noisy data.

We can provide a theoretic bound for the uncertainty by using the McDiarmid inequality,
defined in [22] and extended to support summations of decaying kernels such as the Leonnard-
Jones potential in [27]. Let (X;) be independent random variables with discrete space 4;,
let f:ILA;, — R, and let |f(z1,..., 2k, ..., 2n) — f(z1,..., 2, ..., Zn)| < ck, OF ¢ is the
degree of change influenced on f over all variations of xy. Then, for any ¢ > 0:

Pr|f(X) —E[f]| > t] < 2exp <—2t2/zcz> :
k

Thus, to provide theoretic bounds, all that is required is to determine the value of ¢ for
each x. However, computing ¢; analytically may be difficult, and even if it were possible,
theoretical bounds these often overestimate the error. An alternate approach is then to
empirically compute these certificates using quasi-Monte Carlo (QMC) methods [24, 16].
Assuming the distribution of (X;) is known, we sample this space and evaluate f at each
sample. This leads to an estimate of the distribution of f over the joint space of all A;, which
provides sufficient data to compute certificates on the uncertainty, as defined in Equation 1.

Correctness of this approach relies on the correctness of the QMC methods and the
description of the joint sampling space. For this reason, we will spend the next section
describing our protein representation and the corresponding sampling space. In the Res-
ults and discussion section we will show that our sampling space is accurate (e.g. a good
representation of the distribution of (X;)), and thus the provided certificates are also sound.

2.2 Protein representations

The base structure of a protein is a linear chain of amino acids (also called “residues”). Each
amino acid consists of a set of atoms, and all the atoms connected by covalent bonds into a
single 3-dimensional structure. Such atoms divide into two groups: backbone atoms: two
carbons, one nitrogen, and one oxygen; and zero or more side-chain atoms. The carbon
connecting the backbone to the side-chain atoms is called the Ca atom, and the first side-
chain carbon (if it exists) is called the C5 atom (see Figure 1). The native representation of
a protein is thus a graph in 3-dimensional Cartesian space, where each node of the graph

3:3

WABI 2019

3:4

Uncertainty Quantified Protein Docking

Figure 1 Torsion angles for a protein chain. The backbone atoms are labeled C;, O;, Ca;, and
N;. For a constrained internal coordinate representation, only the v;, ¢;, and potentially x; torsion
angles are considered (w; is fixed at 180°).

represents atoms and edges represent bonds. The position of each node/atom is represented
by a vector in R®, requiring three parameters for each atom. If ¢ is the average number of
side-chain atoms per residue for a given protein, then this representation requires a total of
n = 3(f + 4)N parameters (3 degrees of freedom each for the # side-chain and 4 backbone
atoms), or degrees of freedom (DOFs), for a protein with N amino acids.

An alternate representation of proteins, employed by most sampling protocols (e.g. [23, 12]
and others) is the internal coordinates representation. Under this representation, the position
of each atom is only defined in relation to the atoms around it, and the free variables are
bond angles, bond lengths, and torsion angles (the degree of “twist” defined by 2 planes
or 4 atoms, see Figure 1). This does not immediately reduce the total degrees of freedom
(since in general, each atom needs to be described by bond angles, bond lengths, and torsion
angles); however, if small-scale atomic vibrations are ignored, then bond lengths and angles
can be approximated as constant, leaving the only DOFs as the ¢, ¢, and x; torsion angles
(the w torsion angle on the backbone is held at ~ 180° by the sp? partial double bond [4]). If
k is the average number of y; angles for a given residue (k varies from 0 to 5 in the standard
20 amino acids), then the number of DOFs for this representation for a protein with N
amino acids is m = (k 4+ 2)N. Since in most cases k + 2 < 3(f +4), this constrained internal
coordinate method allows for a lower-dimensional specification of the protein conformational
space without a loss in representation [13].

2.3 Hierarchical domain decomposition and motion graph

Roughly speaking, proteins decompose into rigid and flexible parts. Rigid contiguous parts
are called domains, which exhibit little movement in several conformations. In turn, flexible
parts, also known as hinges, interconnect domains. These flexible parts show three types
of motion: shearing or gliding (i.e. a lateral movement along domain interfaces), bending
(i.e. an angular movement between axes of two connected domains), and twisting (i.e. a
rotational movement around the longitudinal axis of a domain).

When representing large-scale protein motion, we are primarily interested in hinges, or
flexible regions connecting large mostly-rigid bodies or domains. However, since there may
be multiple levels of motion, we use a hierarchical representation of the constrained internal
angles representation of the protein. The hierarchical representation is not a recursive
subdivision of the protein, but rather a description of (possibly overlapping) protein motions.
This allows us to represent motions at one level that consist of atoms from different domains
in the previous level.

To obtain this hierarchical domain decomposition for a given protein, we model the
protein as a Ca (one node per residue) GNM (Gaussian network model), and compute
the NMA (normal modes analysis) decomposition of the protein (in this work, we use the

N. L. Clement

¥ T ,
MR ? S B
¥ Wl @ CMQ:«"»‘:% ¥
BWe
¥ i ® K«
£ 4
y @ e ®.)
ssmsa:asa b ® ® %
4

Figure 2 The NMA decomposition of 1IRKE receptor, for the second non-trivial mode. From left
to right: the cross-correlation fluctuation matrix, [F2; the sign of entries of [F]z, with short domains
removed; the domain graph representation of the protein, where the size of each node represents
the number of residues in that domain; and the domain graph representation mapped onto the 3d
structure of the protein, colored according to domain with hinge residues colored red. Hinges that
are also flexible connectors separate all domains but f (gray) and g (green), which are connected by
segments (hinges) that would not form a cut in the domain graph representation.

implementation from the R Bio3D package [14]). Each of the & modes represents a separate
direction of motion, from large-scale motions (the smallest eigenvalues) to the high-frequency
vibrations of hydrogen atoms. Each mode corresponds to a different level in our hierarchical
representation; that is, each hierarchical level corresponds to a distinct rigidity threshold.

Hinges are obtained in a similar fashion to that demonstrated by HingeProt[11], as follows.

For each mode, 7, we compute the mean square fluctuation matrix as follows:

_ 3kpT

[F],L)\i_luiuiT, (2)
where \; and u; is the eigenvalue and eigenvector of mode i, and kg, T, and ~y are the
Boltzmann constant, temperature, and uniform force constant, respectively. Regions of
this matrix with the same sign form the rigid domains, and individual residues where the
sign changes (from positive to negative) become hinges. For practical purposes, we collapse
domains with only a small number of residues.

The final stage at a given level is to construct a domain graph representation, where nodes
in the graph represent rigid domains and edges in the graph exist wherever two domains are
in contact with each other, i.e. any atom from one rigid domain is within r, of any atom

from another domain (see Figure 2 for the decomposition a single level in the hierarchy).

From this graph, we categorize each hinge as flexible connector if the removal of the hinge
would form a cut of the domain graph representation, i.e. its removal would result in two
disjoint subgraphs.

Once we have obtained the domain graph representation of the protein for each of the k
NMA modes, we construct a multi-graph of the domain hierarchy for the entire protein [2].
At the top level of the hierarchy are the hinges and domains computed by the first non-trivial
mode (i.e. with the smallest eigenvalue), representing more broad, global motions. The next
level of the hierarchy is represented by the second smallest eigenvalue, and so on until all &
modes have been used. We also assign a weight, wy, to all hinges at level k of the hierarchy,
arising from Equation 2:

wy, = 3kpTA; L. (3)

The final dimension of the product space of sampling is then Kg + K, where Kr (Kp)
is the number of hinges from all k levels for the receptor (ligand), creating a product space
of SO(3)Kr+EL (SO(3) is the special orthogonal group of rotations about a fixed axis). For

3:5

WABI 2019

3:6

Uncertainty Quantified Protein Docking

ASP helix ASP sheet ASP sheet: sheet:loop
no context no context context of 1 residue
m - 1 . o n T |
TIPS L . |
O i . q = 3
}nﬁ w 3. . Sy,
.d#.\.-\.:‘ HY 7 . - . 2L"_"‘"_|I._. N
= o e n TR
& 3 . ~LRrF
- a0 - \
5 .-' " M.
!;. ‘:-' - > 0- = L o
=
2. . _ . : 2
=7 _._-':-_'\.._ -
L - . - . =L
n e) == . I i L Y
-1 -2 0 w2 n 0 2 14 T -2 0 2 |
o ¢ [

Figure 3 Ramachandran distributions for aspartic acid under different parameterizations. Left:
ss; is a helix; middle: ss; is a loop; right: ss;—1, ss;, and ss;1+1 are respectively sheet-sheet-loop.
Note that the distributions are more tightly clustered with the gain of additional context.

the dataset used in this paper, the value of Kr + K, range from 21 hinge residues (3FN1) to
70 (1BKD). It is well known that generating a small number of good (i.e. low discrepancy)
samples is difficult in high dimensions, so to overcome this issue, we use the low-discrepancy
sampling protocol developed by [3] when generating samples.

2.4 Sampling protocol and Ramachandran distributions of amino acids

Based on the hierarchical protein decomposition described above, we now describe how to
obtain a set of representative samples of the protein. Even with a good low-discrepancy
sampling, this high-dimensional product space still requires a large number of samples to
completely cover the product space. However, most of these samples will lead to physically
impossible protein structures: clashes between nearby atoms, steric strain, or even a protein
that is no longer biologically active. We would like to reduce the sampling space for a given
torsion angle from all of SO(3) to only the relevant, low-energy regions.

To establish a set of generic neighbor-dependent Ramachandran probability distribution,
we compute the torsion angles from a set of ~15k high-quality, non-homologous protein
structures obtained from the Pisces server [29]. From this set, we generate discrete probability
distributions for each backbone torsion angle pair, conditioned on the amino acid type and
secondary structure type of the previous and following residues. In other words,

Proby (¢,1,1) = Pr (¢, 9¥|ssi—1, $5i, $8i41, aa;) , (4)

where ss; and aa; are the secondary structure and amino acid types of residue i, respectively,
and ¢ and ¢ are the backbone torsion angles (see Figure 1). Figure 3 shows the conditional
distributions for aspartic acid.

To generate samples of a given protein, we would like to draw samples for each flexible
residue from the neighbor-dependent Ramachandran distributions. However, we also recognize
that the input protein has important structural elements that should be preserved. For
this reason, we convolve the discrete Ramachandran distribution with a bivariate von Mises
distribution (the two-dimensional variant of the approximately-Gaussian distribution on a
unit circle, e.g. [—m, m)? [21]), centered at the given backbone torsion angle. The cosine
variant of the bivariate von Mises distribution is given as follows:

Pr (¢,) = Ze(r1, ko, ki3) exp (k1 cos (¢ — p) + kg cos (Y — v) + kg cos (¢ —p— ¢ +v)), (5)

where p and v describe the mean for ¢ and 1, k1 and ko describe their concentration, and k3
describes their correlation. If k3 is zero and k1 = ko = o, then ¢ can be used to increase or

N. L. Clement

decrease the amount of bias the input structure has on the Ramachandran distributions. Lower
values of o (lower concentration) bias more toward the general Ramachandran distributions,
while higher values of ¢ bias more towards the input protein structure.

The final probability of a given (¢, v) pair at position 7, Prob(i, ¢, 1), is the convolution of
the neighbor-dependent Ramachandran distribution with the specific von-Mises distribution:

Prob(¢,1,1) < Pr(p,|ss;_1, 88, $Si+1, aa;) * €xXp |:O' cos (¢> — (51) + o cos (w — d%)} , (6)

where gigz and @El are the values of ¢ and 1 for residue ¢ in the input protein.

With the internal angles representation and hierarchical decomposition of the protein as
input, we perform the following importance sampling protocol on each level, I:
1. For each hinge at level [, hé.l), let ¢ be the index of the residue corresponding to this hinge.

a. Generate the pair (qﬁ, ’(/AJ), drawn from the von Mises-convolved neighbor-dependent
Ramachandran distributions
b. Let p; be the probability of a given hinge residue changing, arising from w; in Equation 3:
pi = min(1, w;)
c. If h;l) is a cut or no other non-cut hinges have been sampled at level I, set (¢;,1;) to
(quS,z/AJ) with probability p;; otherwise, keep the original (¢;, ;) pair
2. From the internal angle sample, generate the explicit structure in R?
3. Compute the number of clashes caused by hinges at level [, and accept the torsion angle
changes for level [if the number of clashes are less than some parameter c. We define a
clash as two atoms occupying the same space in R3.

As we are most interested in modeling the large-scale uncertainty that arises from domain
movements, we then find the optimal placement of side-chain atoms using SCWRIL4 [17],
followed by a brief energy minimization step with Amberl16 [6] to remove any steric strain.
Finally, we rank each sample by free energy, and keep only the samples with the lowest
energy. These final two steps (minimization and ranking by energy) prevent us from using
samples that are biologically irrelevant.

2.5 Benchmark dataset

In this research, we are interested in 1) modeling the uncertainty of a given protein-protein
docking algorithm, but also 2) improving the existing docking results in the unbound-unbound
case. The Zlab benchmark 5 [28] contains a set of proteins that have had the X-ray structure
determined both in isolation and together, and consist of 254 protein pairs classified as either
difficult, medium difficulty, or rigid-body, depending on the interface RMSD (iRMSD). The
difficult class of proteins have an iRMSD of > 2.2A, which means there is typically some
movement between bound and unbound conformations.

To select our set of input structures, we docked each protein classified as “difficult” in both
the bound and unbound conformations with F2Dock [1, 9], a rigid-body docking algorithm.
We selected those proteins that performed well in the bound structure but poorly with the
unbound structure as candidates in our benchmark. The criteria we use for differentiating
between success and failure is whether there exists a “hit” in the top 1000 reported poses.
We define a “hit” as a bound pair with iRMSD within 5A of the actual bound conformation.

Since we are primarily interested in the single-body docking problem (and not the multi-
body docking problem), we only kept the single-chain proteins for our experiment, which
led to 10 single-chain proteins that perform well when using the bound conformation but

3:7

WABI 2019

3:8

Uncertainty Quantified Protein Docking

Table 1 Protein structures used in dataset, labeled according to the ID from the ZLab bench-
mark 5 [28]. The top section contain those that performed well when bound, the bottom section
containing those that did not.

D # Residues iRMSD (A) AEnergy (J)
receptor ligand contact
1ATN 372 258 36 42 131
1F6M 320 108 62 16 87
1FQ1 183 295 53 53 367
1BKD 439 166 97 20 425
1R8S 160 187 61 28 439
1RKE 262 176 68 52 524
1711 306 74 T 13 212
2COL 292 122 92 17 366
219B 265 122 101 29 387
2J7P 292 265 80 20 370
20T3 253 157 69 17 428
3FN1 160 90 38 14 315
1H1V 368 327 74 33 180
1Y64 411 357 66 39 192
3AAD 264 153 42 37 66

not when unbound. In addition, we also included the 3 single-chain proteins that performed
poorly when both the bound and unbound conformation were used. Statistics on the size
and free energy of each protein are given in Table 1.

3 Results and discussion

3.1 Conformational sampling distributions

Our primary concern for generating a good set of samples is that the samples cover a good
portion of the feasible set of the protein conformational space. We consider two metrics
for measuring coverage: 1) the free energy of individual proteins, and 2) the iRMSD from
the sample to the bound conformation. The first of these metrics is an unbiased measure
of protein stability: if all samples have abnormally high energy, they are unlikely to be
biologically feasible. However, it is possible that the bound conformation lies in an energy
well made more available when in combination with the second protein. For this reason, we
are not interested in only finding the energy minimum, but also the distance from the bound
conformation. Figure 4 shows the energy vs iRMSD for 1000 samples of each protein.

3.2 Improvements in unbound-unbound docking

By generating a set of proteins that have a closer iRMSD to the bound conformation, we are
able to improve on the blind unbound-unbound docking protocol, for both rigid-body and
flexible docking algorithms. We compare the results for the bound and unbound case for
F2Dock (a rigid-body docking algorithm) [1], Rosetta (a semi-flexible docking algorithm)
[15, 7], and SwarmDock (a flexible docking algorithm) [20]. We perform bound-bound and
unbound-unbound docking for each program, and compute the iRMSD on the reported poses.
For F2Dock and Rosetta, the number of reported poses is variable, which we set to 1000.
SwarmDock reports a fixed number of results, so this number varies from 465-548 poses.

N. L. Clement

1ATN 1BKD 1F6M 1FQ1 1R8S 1RKE 1zu 2CoL 2198 7P 20T3 3FN1 1H1V 1Y64 3AAD
50~ s

40-
30-

20-

3 ...h_.\.._

10- IE-. %‘ ¢ - T
- PRI QG g . -~
0- B= % X

iRMSD

015105 0-10 5 0 -5
energy (kJ)

Figure 4 Plot of iRMSD (against the bound conformation) vs energy for samples generated from
the unbound conformation. Proteins are separated by ligand (top) and receptor (bottom) to show
the difference in individual protein movement. The black dashed line shows iRMSD= 5, or the value
at which a match is considered a “hit,” and the red “X” marks the spot of the original unbound
protein. For all proteins, there exist some samples that improve on both the iRMSD and energy;
some of the proteins, such as 3AAD receptor and 1ZLI ligand, improve upon the iRMSD greatly.
Strong convergence is shown by a funnel-shaped energy landscape, and is seen for many protein
pairs. Protein labels are colored red (good when bound) and blue (bad when bound).

Since F2Dock and Rosetta both have command-line interfaces, we also perform docking 50
samples of the unbound conformation of each protein. The minimum iRMSD for each protein
(bound, unbound, and samples for F2Dock and Rosetta) are found in Table 2.

The results from the iRMSD statistics suggest a few findings. First, the flexible algorithms
(Rosetta and SwarmDock) are better at docking the bound-bound conformations than the
rigid-body one (F2Dock). This is potentially due to the fact that clashes in side-chain atoms
prevent the rigid body docking algorithm from correctly identifying the best conformation,
but also could be due to the fact that each program uses a different energy function, and
may be better tuned for these specific proteins in the flexible programs. The most important
observation, however, is the huge difference in iRMSD between the bound and unbound
pairs. This suggests that the input to the algorithm (e.g. unbound or bound) is an important
characteristic of the docking result, and variations in input structure must be accounted for
and described in the output QOI as empirical certificates. Finally, we also note that for each
protein, using many different sampled proteins always improves the iRMSD of the docking
result (sometimes drastically), suggesting that the sampling protocol is sound (leading to
better results).

3.3 Probabilistic certificates from Quasi-Monti Carlo samples

To describe the uncertainty of the results of the docking algorithm, we compute the probabil-
istic certificates arising from the Chernoff-like bounds of the sampled algorithms, given in
Equation 1. This provides a metric that can compare across proteins (for the same docking
algorithm) and across docking algorithms (for the same protein, or over all proteins). We
could provide probabilistic certificates for any QOI; however, we are primarily interested
in bounding the binding free energy. If the reported free energy is tightly bound by a
probabilistic certificate, we are more confident that we have identified the correct free energy.

3:9

WABI 2019

3:10

Uncertainty Quantified Protein Docking

Table 2 Best RMSD (over top 1000 poses for F2Dock and Rosetta and all poses for SwarmDock)
for proteins included in this dataset. A single asterisk marks proteins not in the bound form with at
least one hit (iRMSD < SA) in the top poses. F2Dock and Rosetta statistics for sampled proteins are
also included. Note the great improvement on Rosetta docking when using the sampled proteins, and
that the sampled proteins are always better than the unbound case. The large differences between
bound and unbound input suggests the output QOI is highly dependent on the input to the model.

F2Dock Rosetta SwarmDock
1D bound unbound sampled bound unbound sampled bound unbound
1ATN 1.2 7.2 *4.6 0.08 8.6 6.8 0.98 *4.6
1BKD 1.3 8.7 *4.9 0.23 16.9 5.4 0.68 8.7
1F6M 1.2 8.1 *5.0 0.11 17.9 13.4 0.69 5.6
1FQ1 2.3 6.4 *4.4 0.48 15.0 8.2 3.55 5.6
1R8&S 1.7 9.4 6.2 0.22 14.5 6.2 0.72 5.1
1RKE 0.8 7.1 5.8 0.15 15.1 12.8 0.65 5.4
1711 0.6 10.0 *4.6 0.13 10.6 7.1 0.71 9.0
2CO0L 0.5 *4.8 *4.0 0.30 12.2 8.2 0.75 *3.8
219B 1.1 8.4 *4.7 0.09 13.6 8.8 7.93 6.5
2J7P 1.4 7.2 *3.4 1.12 17.2 14.9 0.60 6.6
20T3 1.1 5.1 *3.9 0.16 15.6 6.8 0.92 6.0
3FN1 1.0 5.5 *4.9 0.10 9.9 *4.8 0.53 *4.1
1H1V 8.8 11.0 8.0 0.27 18.8 13.5 0.68 9.1
1Y64 9.3 11.4 10.7 1.9 35.0 15.6 1.37 11.7
3AAD 7.0 8.2 5.3 0.39 22.0 9.2 2.36 7.1

Figure 5 shows a comparison of the certificate for AG of each protein (at Pr = 0.9,
see Equation 1), and includes the true QOI (red dot), computed on the bound-bound
conformation. For some of the proteins (e.g. 3FN1), the provided certificate is much tighter
than others (e.g. 2COL). This also allows us to directly compare the two different programs
in terms of docking uncertainty. While the rigid F2Dock algorithm occasionally has higher
bounds, with high probability the true statistic lies within the Pr = 0.9 certificate range.
The Rosetta results usually contain the true QOI, but is not contained within the min/max
range for 3FN1.

4 Conclusion

In this work, we provide a framework for providing probabilistic certificates on uncertainty in
a docking algorithm. Fundamental to these certificates is the contribution of a low-discrepancy
hierarchical sampling protocol that includes general amino acid information in the form of
Ramachandran plots, but also structural information that is specific to the input protein in
the form of a bivariate von Mises distribution. We show that the low-discrepancy samples
generated by this protocol explore the energy landscape for the unbound protein, which
includes samples closer to the bound conformation.

With these samples, we compare three different docking algorithms, ranging from rigid-
body to completely flexible. We show that docking results vary substantially depending on
the input protein structure — even for the flexible docking algorithms — further substantiating
our claim that uncertainty quantification is essential to protein-protein docking.

N. L. Clement
1000~
2 program
g 07 - Rosetta
E - F2Dock
-1000-

1ATN
1F6M
1FQ1L
1R8S
1RKE
2198
2J7P
20T3
3FN1
1H1V -
1Y64
3AAD

2COL

Figure 5 Probabilistic bounds compared to ground truth for values of AG. Protein labels are

colored red (good when bound) and blue (bad when bound). The box shows the value of the
certificate at Pr = 0.9 and the tails show the min/max values, and the red point shows the true
statistic, computed on the bound-bound form of the protein.

Finally, we repeat the protein-protein docking experiments with different structures from

our hierarchical sampling protocol and assess the variations in reported binding free energy.
We compute a probablistic certificate for the binding free energy, and compare the 90%
confidence interval with the value computed on the bound complex. This provides a tool for
comparing not only uncertainty across proteins, but also across docking algorithms.

—— References

1

10

C. Bajaj, R. Chowdhury, and V. Siddahanavalli. F2Dock: Fast Fourier Protein-protein Docking.
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 8(1):45-58, 2011.

Chandrajit Bajaj, Rezaul Alam Chowdhury, and Vinay Siddavanahalli. F3Dock: A fast,
flexible and Fourier based approach to protein-protein docking. The University of Tezxas at
Austin, ICES Report, pages 0801, 2008.

Chandrajit L. Bajaj, Abhishek Bhowmick, Eshan Chattopadhyay, and David Zuckerman.
On Low Discrepancy Samplings in Product Spaces of Motion Groups. arXiv e-prints, page
arXiv:1411.7753, November 2014. arXiv:1411.7753.

Tan David Brown. Recent developments in the methods and applications of the bond valence
model. Chemical reviews, 109(12):6858-6919, 2009.

Yue Cao and Yang Shen. Bayesian active learning for optimization and uncertainty quantifica-
tion in protein docking. arXiv preprint, 2019. arXiv:1902.00067.

D.A. Case, R.M. Betz, D.S. Cerutti, et al. AMBER 2016. University of California, San
Francisco, 2016.

Sidhartha Chaudhury, Monica Berrondo, Brian D Weitzner, Pravin Muthu, Hannah Bergman,
and Jeffrey J Gray. Benchmarking and analysis of protein docking performance in Rosetta v3.
2. PloS One, 6(8):¢22477, 2011.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, 23(4):493-507, 1952.

R. Chowdhury, D. Keidel, M. Moussalem, M. Rasheed, A. Olson, M. Sanner, and C. Bajaj.
Protein-Protein Docking with F?Dock 2.0 and GB-rerank. Biophys. J., 8(3):1-19, 2013.
Nathan Clement, Muhibur Rasheed, and Chandrajit Lal Bajaj. Viral capsid assembly: A
quantified uncertainty approach. Journal of Computational Biology, 25(1):51-71, 2018.

3:11

WABI 2019

http://arxiv.org/abs/1411.7753
http://arxiv.org/abs/1902.00067

3:12

Uncertainty Quantified Protein Docking

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Ugur Emekli, Dina Schneidman-Duhovny, Haim J Wolfson, Ruth Nussinov, and Turkan
Haliloglu. HingeProt: automated prediction of hinges in protein structures. Proteins: Structure,
Function, and Bioinformatics, 70(4):1219-1227, 2008.

Vamshi K. Gangupomu, Jeffrey R. Wagner, In-Hee Park, Abhinandan Jain, and Nagarajan
Vaidehi. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations.
Biophysical Journal, 104(9):1999-2008, 2013.

Bryant Gipson, David Hsu, Lydia E Kavraki, and Jean-Claude Latombe. Computational
models of protein kinematics and dynamics: Beyond simulation. Annual Review of Analytical
Chemistry, 5:273-291, 2012.

Barry J Grant, Ana PC Rodrigues, Karim M ElSawy, J Andrew McCammon, and Leo SD
Caves. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics,
22(21):2695-2696, 2006.

Jeffrey Gray, Stewart Moughon, Chu Wang, Ora Schueler-Furman, Brian Kuhlman, Carol
Rohl, and David Baker. Protein—protein docking with simultaneous optimization of rigid-body
displacement and side-chain conformations. Journal of Molecular Biology, 331(1):281-299,
2003.

Fred James, Jiri Hoogland, and Ronald Kleiss. Quasi-Monte Carlo, discrepancies and error
estimates. Methods, page 9, 1996. arXiv:physics/9611010.

Georgii G Krivov, Maxim V Shapovalov, and Roland L. Dunbrack. Improved prediction
of protein side-chain conformations with SCWRL4. Proteins: Structure, Function, and
Bioinformatics, 77(4):778-795, 2009.

Daisuke Kuroda and Jeffrey J Gray. Pushing the backbone in protein-protein docking. Structure,
24(10):1821-1829, 2016.

Loren M LaPointe, Keenan C Taylor, Sabareesh Subramaniam, Ambalika Khadria, Ivan
Rayment, and Alessandro Senes. Structural organization of FtsB, a transmembrane protein of
the bacterial divisome. Biochemistry, 52(15):2574-2585, 2013.

Xiaofan Li, Iain H Moal, and Paul A Bates. Detection and refinement of encounter complexes
for protein—protein docking: taking account of macromolecular crowding. Proteins: Structure,
Function, and Bioinformatics, 78(15):3189-3196, 2010.

Kanti Mardia, Charles Taylor, and Ganesh Subramaniam. Protein bioinformatics and mixtures
of bivariate von Mises distributions for angular data. Biometrics, 63(2):505-512, 2007.

C McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141(141):148—
188, 1989.

R. J. Milgram, G. Liu, and J. C. Latombe. On the structure of the inverse kinematics map of
a fragment of protein backbone. Journal of Computational Chemistry, 29(1):50-68, 2008.
Harald Niederreiter. Quasi-Monte Carlo methods. FEncyclopedia of Quantitative Finance,
24(1):55-61, 1990.

Dzmitry Padhorny, Andrey Kazennov, Brandon S Zerbe, Kathryn A Porter, Bing Xia, Scott E
Mottarella, Yaroslav Kholodov, David W Ritchie, Sandor Vajda, and Dima Kozakov. Protein—
protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Proceedings
of the National Academy of Sciences, 113(30):E4286-E4293, 2016.

Muhibur Rasheed, Radhakrishna Bettadapura, and Chandrajit Bajaj. Computational Refine-
ment and Validation Protocol for Proteins with Large Variable Regions Applied to Model HIV
Env Spike in CD4 and 17b Bound State. Structure, 23(6):1138-1149, 2015.

Muhibur Rasheed, Nathan Clement, Abhishek Bhowmick, and Chandrajit L. Bajaj. Statistical
framework for uncertainty quantification in computational molecular modeling. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2017.

Thom Vreven, Iain H Moal, Anna Vangone, Brian G Pierce, et al. Updates to the Integ-
rated Protein—Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity
Benchmark Version 2. Journal of Molecular Biology, 427(19):3031-3041, 2015.

Guoli Wang and Roland L Dunbrack Jr. PISCES: a protein sequence culling server. Bioin-
formatics, 19(12):1589-1591, 2003.

http://arxiv.org/abs/physics/9611010

TRACTION: Fast Non-Parametric Improvement
of Estimated Gene Trees

Sarah Christensen
University of Illinois at Urbana-Champaign, USA
sac2@illinois.edu

Erin K. Molloy
University of Illinois at Urbana-Champaign, USA
emolloy2@illinois.edu

Pranjal Vachaspati
University of Illinois at Urbana-Champaign, USA
vachasp2@illinois.edu

Tandy Warnow!

University of Illinois at Urbana-Champaign, USA
http://tandy.cs.illinois.edu
warnow@illinois.edu

—— Abstract

Gene tree correction aims to improve the accuracy of a gene tree by using computational techniques
along with a reference tree (and in some cases available sequence data). It is an active area
of research when dealing with gene tree heterogeneity due to duplication and loss (GDL). Here,
we study the problem of gene tree correction where gene tree heterogeneity is instead due to
incomplete lineage sorting (ILS, a common problem in eukaryotic phylogenetics) and horizontal
gene transfer (HGT, a common problem in bacterial phylogenetics). We introduce TRACTION, a
simple polynomial time method that provably finds an optimal solution to the RF-Optimal Tree
Refinement and Completion Problem, which seeks a refinement and completion of an input tree
t with respect to a given binary tree 7" so as to minimize the Robinson-Foulds (RF) distance.
We present the results of an extensive simulation study evaluating TRACTION within gene tree
correction pipelines on 68,000 estimated gene trees, using estimated species trees as reference
trees. We explore accuracy under conditions with varying levels of gene tree heterogeneity due to
ILS and HGT. We show that TRACTION matches or improves the accuracy of well-established
methods from the GDL literature under conditions with HGT and ILS, and ties for best under the
ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. TRACTION is
available at https://github.com/pranjalv123/TRACTION-RF and the study datasets are available
at https://doi.org/10.13012/B2IDB-1747658_V1.

2012 ACM Subject Classification Applied computing — Molecular evolution; Applied computing
— Population genetics

Keywords and phrases Gene tree correction, horizontal gene transfer, incomplete lineage sorting
Digital Object Identifier 10.4230/LIPIcs.WABIL.2019.4

Funding Sarah Christensen: Ira & Debra Cohen Fellowship

Erin K. Molloy: NSF Graduate Research Fellowship Grant Number DGE-1144245 and Ira & Debra
Cohen Fellowship

Pranjal Vachaspati: NSF Graduate Research Fellowship Grant Number DGE-1144245
Tandy Warnow: NSF CCF-1535977

Acknowledgements We thank Mike Steel for encouragement and the members of the Warnow lab
for valuable feedback. This study was performed on the Illinois Campus Cluster and Blue Waters, a
computing resource that is operated and financially supported by UIUC in conjunction with the

National Center for Supercomputing Applications.

! Corresponding author

© Sarah Christensen, Erin K. Molloy, Pranjal Vachaspati, and Tandy Warnow;
37 licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).

Editors: Katharina T. Huber and Dan Gusfield; Article No. 4; pp.4:1-4:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5790-6266
mailto:sac2@illinois.edu
https://orcid.org/0000-0001-5553-3312
mailto:emolloy2@illinois.edu
https://orcid.org/0000-0001-8623-5414
mailto:vachasp2@illinois.edu
https://orcid.org/0000-0001-7717-3514
http://tandy.cs.illinois.edu
mailto:warnow@illinois.edu
https://github.com/pranjalv123/TRACTION-RF
https://doi.org/10.13012/B2IDB-1747658_V1
https://doi.org/10.4230/LIPIcs.WABI.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

TRACTION: Non-Parametric Gene Tree Correction

1 Introduction

Reconstructing the evolutionary history of a gene is a core task in phylogenetics, and our
ability to infer these evolutionary relationships accurately can have important implications for
a variety of downstream analyses. For example, estimated gene trees are used in the inference
of adaptation, evolutionary event detection (such as gene loss, gene duplication, and horizontal
gene transfer), ortholog identification, analysis of functional trait evolution, and species tree
estimation. However, unlike species tree estimation techniques that leverage information
encoded across the entire genome, gene tree estimation based on a single locus may not
contain enough signal to determine the correct gene tree topology with high confidence [27].
Indeed, many phylogenomic datasets have gene trees with average branch support well below
75%, which is a common lower bound for branches to be considered reliable. For example,
the Avian Phylogenomic Project [17] reported average branch support values below 30%,
and many other studies (surveyed in [25]) have had similar challenges. Estimating gene and
species trees is further complicated by biological processes such as gene duplication/loss
(GDL), incomplete lineage sorting (ILS), and horizontal gene transfer (HGT), that create
heterogeneous tree topologies across the genome [21]. HGT has long been known to cause
problems for bacterial phylogenetics, and ILS by itself has emerged as a major issue in
phylogenomics, affecting most, if not all, genome-scale datasets [10].

Because gene trees often have low accuracy, a natural problem is to try to improve
gene tree estimation using an estimated or known species tree. An approach from the gene
duplication and loss literature is to modify estimated gene trees with respect to a reference
species tree, which may either be an established tree from prior literature or an estimated
species tree (e.g., based on an assembled multi-locus dataset). Some of these methods use the
available sequence data as well as the estimated gene tree and species tree, and are referred to
as “integrative methods”; examples include ProfileNJ [27], TreeFix [33], and TreeFix-DTL [2].
Other methods, called “gene tree correction methods”, use just the topologies of the gene tree
and species tree, and are typically based on parametric models of gene evolution; Notung [6, 9]
and ecceTERA [16] are two of the well known methods of this type. Integrative methods
are generally expected to be more accurate than gene tree correction methods when gene
tree heterogeneity is due to GDL, but as a result of using likelihood calculations they are
also more computationally intensive. See [4, 26, 31, 18, 15, 16, 34] for an entry into the vast
literature on this subject.

Here, we examine the problem of gene tree correction for the case where gene tree
heterogeneity is due to ILS or HGT, and where each gene tree has at most one copy of
each species. We present a new approach to gene tree correction that is based on a very
simple non-parametric polynomial-time method, TRACTION, that is agnostic to the cause
of gene tree heterogeneity. In addition to correcting gene trees, TRACTION is also capable of
completing gene trees that do not contain all the species present in the reference species tree,
a condition that may occur in a multi-locus study as a result of taxon sampling strategies
or unavailable data (such as when not all genomes have been sequenced and assembled).
The input to TRACTION is a pair (¢,7) of unrooted phylogenetic trees. The leaf set of
t is a subset of the leaf set of T, tree T is binary, and tree ¢ will generally be non-binary.
We seek a tree T” created by refining ¢ and adding any missing leaves so that 7" has the
minimum Robinson-Foulds (RF) [28] distance to T. We call this optimization problem
the “RF-Optimal Tree Refinement and Completion Problem” (RF-OTRC). We show that
TRACTION finds an optimal solution to this problem in O(n!-%logn) time, where n is the
number of leaves in the species tree T. To use TRACTION for gene tree correction, we

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

assume we are given an estimated gene tree with branch support values and an estimated (or
known) binary species tree, which may have additional species. The low support branches
in the gene tree are collapsed, forming the (unresolved) tree t. TRACTION has two steps:
first it refines the input gene tree t into a binary tree ¢/, and then it adds the missing species
to t. Although the algorithm is quite simple, the proof of correctness is non-trivial. We
present the results of an extensive simulation study (on 68,000 gene trees, each with up to 51

species) in which gene tree heterogeneity is either due to only ILS or to both ILS and HGT.

We explore TRACTION for gene tree correction with estimated species trees in comparison
to Notung, ecceTERA, ProfileNJ, TreeFix, and TreeFix-DTL, evaluating the accuracy of the
corrected gene trees by computing the RF distance to the true gene tree. Overall, while many
methods (including TRACTION) tie for best on the ILS-only data, TRACTION dominates
the other gene tree correction methods with respect to topological accuracy on the HGTHILS
data, and ties for fastest. Importantly, TRACTION provides good accuracy even when the
estimated species tree is far from the true gene tree. The simplicity of the approach and its
good accuracy under a range of different model conditions indicates that non-parametric
approaches to gene tree correction may be promising, and encourages future research.

2 TRACTION

2.1 Terminology and Basics

Each edge e in an unrooted phylogenetic tree defines a bipartition w. (also referred to as a
split) on the leaves of the tree induced by the deletion of e (but not its endpoints). Each

bipartition of the leaf set into two non-empty disjoint parts, A and B, is denoted by A|B.

The set of bipartitions of a tree T is given by C(T') = {n. : e € E(T)}, where E(T) is the
edge set for T. Tree T" is a refinement of T' if T' can be obtained from T’ by contracting a
set of edges in F(T"). A tree T is fully resolved (i.e., binary) if there is no tree that refines T
other than itself.

A set Y of bipartitions on some leaf set S is compatible if there exists an unrooted tree T
leaf-labelled by S such that ¥ C C(T); furthermore, when a set of bipartitions is compatible
then there is a unique tree such that Y = C(T'). In addition, pairwise compatibility of a
set of bipartitions ensures setwise compatibility [11, 12]. A bipartition 7, of a set S is said
to be compatible with a tree T with leaf set S if and only if there is a tree T' such that
C(T)=C(T)JU{r} (i.e.,, T" is a refinement of T that includes the bipartition 7). Similarly,
two trees on the same leaf set are said to be compatible if they share a common refinement; it
then follows that two trees are compatible if and only if the union of their sets of bipartitions
is compatible.

Given a phylogenetic tree T on taxon set S, T restricted to R C S is the minimal
subgraph of T" connecting elements of R and suppressing nodes of degree two. We denote
this as T|gr. If T and T” are two trees with R as the intersection of their leaf sets, their

shared edges are edges whose bipartitions restricted to R are in the set C(T|g) N C(T"|r).

Correspondingly, their unique edges are edges whose bipartitions restricted to R are not in

the set C(T'|g) NC(T’|r). See Figure 1 for a pictorial depiction of unique and shared edges.

The Robinson-Foulds (RF) distance [28] between two trees T' and T” on the same set of
leaves is the number of bipartitions present in only one tree; equivalently, the RF distance is
equal to the total number of unique edges in both trees. The normalized RF distance is the
RF distance divided by 2n — 6, where n is the number of leaves in each tree; this produces a
value between 0 and 1 since the two trees can only disagree with respect to internal edges
and n — 3 is the maximum number of internal edges in an unrooted tree with n leaves.

4:3

WABI 2019

4:4

TRACTION: Non-Parametric Gene Tree Correction

2.2 RF-Optimal Tree Refinement and Completion (RF-OTRC) Problem

Input: An unrooted binary tree 7' on S and an unrooted tree t on R C S
Output: An unrooted binary tree 7" on S with two key properties: (1) 7" contains all the
leaves of S and is compatible with ¢ (i.e., 7| is a refinement of ¢) and (2) 7" minimizes
the RF distance to T among all binary trees satisfying condition (1).
If the trees t and T have the same set of taxa, then the RF-OTRC problem becomes the
RF-OTR (RF-Optimal Tree Refinement) problem, while if ¢ is already binary but can
be missing taxa, then the RF-OTRC problem becomes the RF-OTC (RF-Optimal Tree
Completion) problem. OCTAL, presented in [7], solves the RF-OTC problem in O(n?) time,
and an improved approach presented by Bansal [1] solves the RF-OTC problem in linear
time. We refer to this faster approach as Bansal’s algorithm. In this paper we present
an algorithm that solves the RF-OTR problem exactly in polynomial time and show that
the combination of this algorithm with Bansal’s algorithm solves the RF-OTRC problem
exactly in O(n'®logn) time, where T has n leaves. We refer to the two steps together as
TRACTION (Tree Refinement And CompleTION).

2.3 TRACTION Algorithm

The input to TRACTION is a pair of unrooted trees (¢,T"), where ¢ is the estimated gene
tree on set R of species and T is the binary reference tree on .S, with R C S. We note that
t may not be binary (e.g., if low support edges have already been collapsed) and may be
missing species (i.e., R C S is possible).

Step 1: Refine ¢ so as to produce a binary tree t* with as many shared bipartitions with

T as possible (using a polynomial time algorithm described below).

Step 2: Add the missing species from T into t*, minimizing the RF distance.

2.3.1 Step 1: Greedy Refinement of

To compute t*, we first refine ¢ by adding all bipartitions from T'|r that are compatible with
t; this produces a unique tree t’. If ¢ is not fully resolved, then there are multiple optimal
solutions to the RF-OTR problem, as we will later prove. The algorithm selects one of these
optimal solutions as follows. First, we add edges from ¢ that were previously collapsed (if
such edges are available). Next, we randomly refine the tree until we obtain a fully resolved
refinement, t*. Note that if ¢’ is not binary, then ¢* is not unique. We now show that the
first step of TRACTION solves the RF-OTR problem.

» Theorem 1. Let T be an unrooted binary tree on leaf set S, and let t be an unrooted tree
on leaf set R C S. A fully resolved (i.e. binary) refinement of t minimizes the RF distance
to T|r if and only if it includes all compatible bipartitions from T|g.

Proof. Let Cy denote the set of bipartitions in T'|g that are compatible with ¢. By the
theoretical properties of compatible bipartitions (Section 2.1), this means the set Cy U C(t)
is a compatible set of bipartitions that define a unique tree ¢’ where C(t') = Co U C(t). We
now prove that for any binary tree B that refines ¢, B minimizes the RF distance to T'|g if
and only if B refines t'.

Consider a sequence of trees t = tg, t1,ts2,...,tx, cach on leaf set R, where t; is obtained
from t;—; by adding one edge to t;_1, and thus adds one bipartition to C(t;—1). Let
d; = RF(t;,T|r) — RF(ti—1,T|r), so that ¢; indicates the change in RF distance produced
by adding a specific edge to t;—; to get t;. Hence,

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

RF(t;,T|r) = RF(to,T|r) + »_ ;.

J<i

Since T is fully resolved, a new bipartition m; added to C(t;—;) is in C(T|g) if and only
if m; € Cp. If this is the case, then the RF distance will decrease by one (i.e., §; = —1).
Otherwise, m; &€ Cy, and the RF distance to T'|g will increase by one (i.e., §; = 1).

Now suppose B is a binary refinement of ¢. We split the bipartitions in C'(B) \ C(¢) into
two sets, X and Y, where X are bipartitions in Cy and Y are bipartitions not in Cy. By
the argument just provided, it follows that RF(B,T|g) = RF(t,T|r) — |X|+ |Y]. Note that
|X UY| must be the same for all binary refinements of ¢, because all binary refinements of ¢
have the same number of edges. Thus, RF (B, T|g) is minimized when |X| is maximized, so
B minimizes the RF distance to T|g if and only if C'(B) contains all the bipartitions in Cp.
In other words, RF(B,T|r) is minimized if and only if B refines ¢'. |

» Corollary 2. TRACTION finds an optimal solution to the RF-OTR problem.

Proof. Given input gene tree ¢ and reference tree T, both on the same leaf set, TRACTION
produces a tree ¢ that refines ¢ and contains every bipartition in T that is compatible with
t; hence by Theorem 1, TRACTION solves the RF-OTR problem. <

2.3.2 Step 2: Adding in missing species

The second step of TRACTION can be performed using OCTAL or Bansal’s algorithm,
each of which finds an optimal solution to the RF-OTC problem in polynomial time. More
generally, we show that any method that optimally solves the RF-OTC problem can be used
as an intermediate step to solve the RF-OTRC problem.

To prove this, we first restate several prior theoretical results. In the proof of correctness
for OCTAL, [7] showed the minimum achievable RF distance between T and T" is given by:

RE(T,T") = RF(T|g,t) +2m (1)
where m is the number of Type II superleaves in T relative to ¢, which we now define.

» Definition 3. Let T be a binary tree on leaf set S and t be a tree on leaf set R C S. The
superleaves of T with respect to t are defined as follows (see Figure 1). The set of edges in
T that are on a path between two leaves in R define the backbone; when this backbone is
removed, the remainder of T breaks into pieces. The components of this graph that contain
vertices from S\ R are the superleaves. Each superleaf is rooted at the node that was incident
to one of the edges in the backbone, and is one of two types:

Type I superleaves: the edge e in the backbone to which the superleaf was attached is a
shared edge in T|r and t
Type II superleaves: the edge e in the backbone to which the superleaf was attached is a
unique edge in T|g and t

» Theorem 4 (Restatement of Theorem in [7]). Given unrooted binary trees t and T with the
leaf set of t a subset of the leaf set S of T, OCTAL(T, t) solves the RF-OTC problem and
runs in O(n?) time, where T has n leaves.

4:5

WABI 2019

4:6

TRACTION: Non-Parametric Gene Tree Correction

Tree Ton S Tree t on RES

Figure 1 Type I and Type II superleaves of a tree T" with respect to ¢. Edges in the backbone
(defined to be the edges on paths between nodes in the common leaf set) are colored green for shared
and red for unique; all other edges are colored black. The deletion of the backbone edges in T defines
the superleaves; one is a Type I superleaf because it is attached to a shared (green) edge and the
other is a Type II superleaf because it is attached to a unique (red) edge. This figure is taken from

7).

2.4 Proof of correctness for TRACTION

» Theorem 5. Let T be an unrooted binary tree on leaf set S with |S| =n, and let t be an
unrooted tree on leaf set R € S. TRACTION returns a binary unrooted tree T’ on leaf set S
such that RF(T',T) is minimized subject to T'|r refines t. The first stage (refining t) takes
O(|S| + |R|*5log(|R|)) time. Hence, TRACTION runs in O(n*®logn) time if used with
Bansal’s algorithm and O(n?) time if used with OCTAL.

Proof. By construction TRACTION outputs a tree 7" that, when restricted to the leaf set
of t, is a refinement of ¢. Hence, it is clear that T”|g refines t. Now, it is only necessary to
prove that RF(T”, T') is minimized by TRACTION. Since the intermediate tree t* produced
in the first step of TRACTION is binary, Theorem 4 gives that TRACTION using OCTAL
(or any method exactly solving the RF-OTC problem) will add leaves to ¢* in such a way as
to minimize the RF distance to T'.

As given in Equation 1, the optimal RF distance between T’ and T is the sum of two
terms: 1) RF(t*, T|g) and 2) the number of Type II superleaves in T relative to t*. Theorem
1 shows that TRACTION produces a refinement ¢* that minimizes the first term. All that
remains to be shown is that ¢* is a binary refinement of ¢ minimizing the number of Type II
superleaves in T relative to t*.

Consider a superleaf X in T with respect to t. If ¢ were already binary, then every
superleaf X is either a Type I or a Type II superleaf. Also, note that every Type I superleaf
in T with respect to t will be a Type I superleaf for any refinement of ¢t. However, when ¢ is
not binary, it is possible for a superleaf X in T to be a Type II superleaf with respect to ¢ but
a Type I superleaf with respect to a refinement of ¢. This happens when the refinement of ¢
introduces a new shared edge with T to which the superleaf X is attached in 7. Notice that
since the set of all possible shared edges that could be created by refining ¢ is compatible, any
refinement that maximizes the number of shared edges with 7" also minimizes the number of
Type II superleaves. Theorem 1 shows that TRACTION produces such a refinement t* of
t. Thus, TRACTION finds a binary unrooted tree 7" on leaf set S such that RF(T’, T) is
minimized subject to the requirement that T”|g refine t.

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

We now analyze the running time, focusing on the first stage. Constructing 7’| takes
O(]S|) time. Checking compatibility of a single bipartition with a tree on K leaves, and then
adding the bipartition to the tree if compatible, can be performed in only O(|K|%®log(|K]))
after a fast preprocessing step (see Lemmas 3 and 4 from [14]). Hence, determining the set of
edges of T|r that are compatible with ¢ takes only O(|S| + |R|*-®log(|R|)) time. Therefore,
the first stage of TRACTION takes O(|S|+|R|'5 log(|R|)) time. Hence, if used with OCTAL,
TRACTION takes O(|S|?) time and if used with Bansal’s algorithm TRACTION takes
O(]S|5log |S|) time. <

3 Evaluation

Overview. We evaluated TRACTION in comparison to Notung, ecceTERA, profileNJ,
TreeFix, and TreeFix-DTL on estimated gene trees under two different model conditions
(ILS-only and ILS+HGT), using estimated species trees. In total, we analyzed 68,000 genes:
8,000 with 26 species under ILS-only models and 60,000 with 51 species under ILS+HGT
models. All estimated gene trees we correct in these experiments were complete (i.e., have all
the species). The motivation for this is two-fold. First, the methods we benchmark against
do not provide an option for completing gene trees with missing data. This is understandable
since these methods were developed for GDL, where missing species in a gene tree are
interpreted as true loss events rather than incomplete sampling. Second, an experimental
evaluation of OCTAL, the algorithm that performs the completion step of TRACTION, was
previously performed in [7].

Datasets. We briefly describe the datasets used in this study (all are from prior studies
[8, 7] and available online). The datasets include single copy genes with 26 or 51 species
(each with a known outgroup), and were generated under model conditions where true gene
trees and true species trees differed due to only ILS (two levels of ILS) or to both ILS and
HGT (one ILS level but two levels of HGT). The true gene tree heterogeneity (GT-HET,
the topological distance between true species trees and true gene trees) ranged from 10% (for
the ILS-only condition with moderate ILS) to as high as 68% (for the ILS+HGT condition
with high HGT). Each model condition has 200 genes, and we explore multiple replicates per
model condition with different sequence lengths per gene. See Table 1 for details.

Estimated gene trees and estimated reference species trees. For each gene, we used
RAXML v8.2.11 [29] under the GTRGAMMA model to produce maximum likelihood gene
trees, with branch support computed using bootstrapping. Because sequence lengths varied,
this produced estimated gene trees with different levels of gene tree estimation error (GTEE)
(defined to be the average RF distance between the true gene tree and the estimated gene
tree), ranging from 32% to 63% as defined by the missing branch rate (see Table 1). We
estimated a species tree using ASTRID v1.4 [32] on the RAXML gene trees. Since we know
the true outgroup for all species trees and gene trees, we used this in our performance study
to root the input species tree and the estimated gene trees, given as input to all methods.
The gene trees given as input to the different methods were computed as follows. Each
edge in each RAxXxML gene tree we computed was annotated with its bootstrap branch
support, and we identified all the branches with bootstrap support less than 75% (the
standard threshold for “low support”). Low support branches were collapsed in the gene trees
before being given to TRACTION, Notung, and ProfileNJ. When we ran ecce TERA, we gave
the binary gene trees with the threshold value (i.e., minimum required bootstrap support

4:7

WABI 2019

4:8

TRACTION: Non-Parametric Gene Tree Correction

Table 1 Empirical properties of the simulated datasets used in this study: GT-HET (gene tree
heterogeneity, the average normalized RF distance between true gene trees and true species trees);
GTEE (average gene tree estimation error); and the average distance of the ASTRID reference
tree to the true gene trees. The publications from which the simulated datasets are taken are
also indicated. In total we analyzed 68,000 genes with varying levels and causes of true gene tree
heterogeneity (to the true species tree) and gene tree estimation error. The ILS-only conditions each
had 20 replicates, and the ILS+HGT conditions each had 50 replicates.

GT-HET GTEE Distance ASTRID to true gene trees

ILS-only, Low ILS, 26 species [7]

sites varies 0.10 0.32 0.08
ILS-only, High ILS, 26 species [7]

sites varies 0.36 0.40 0.33
ILS+HGT, Moderate HGT (mb), 51 species [8]

100 sites 0.54 0.63 0.55

250 sites 0.54 0.47 0.55

500 sites 0.54 0.47 0.54
ILS+HGT, High HGT (m6), 51 species [8]

100 sites 0.68 0.62 0.68

250 sites 0.68 0.46 0.68

500 sites 0.68 0.38 0.68

value) of 75%; ecce TERA then collapses all branches that have support less than 75%, and
explores the set of refinements. Thus, the protocol we followed ensures that ecceTERA,
ProfileNJ, Notung, and TRACTION all used the same set of collapsed gene trees. TreeFix
and Treefix-DTL used the uncollapsed gene trees.

Gene tree correction and integrative methods. The RAxML gene trees were corrected
using TRACTION v1.0, Notung v2.9, ecce TERA v1.2.4, ProfileNJ (as retrieved from GitHub
after the March 20, 2018 commit with ID 560b8b2) [27], TreeFix v1.1.10 (for the ILS-
only datasets), and TreeFix-DTL v1.0.2 (for the HGT+ILS datasets), each with a species
tree estimated using ASTRID v1.4 [32] as the reference tree rooted at the outgroup. The
integrative methods (TreeFix, TreeFix-DTL, and ProfileNJ) also required additional input
data related to the gene alignments, which we detail in the appendix. All estimated gene
trees are complete (i.e., there are no missing taxa), so TRACTION only refines the estimated
gene tree and does not add any taxa.

Evaluation criteria. We use RF tree error (the standard criterion in performance studies
evaluating phylogeny estimation methods) to quantify error in estimated and corrected gene
trees as compared to the known true gene tree (as defined in the simulation protocol) and
the impact of TRACTION, Notung, ecceTERA, and TreeFix-DTL, on these errors. Note
that although we use the RF distance within the OTR, optimization criterion, there it refers
to the distance between the corrected gene tree and the reference tree (which is an estimated
species tree); in contrast, when we use the RF error rate in the evaluation criterion, in that
context it refers to the distance between the corrected gene tree and the true gene tree. Since

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

MODL = ils-10M

ceses o
-

False negative rate

cce oo -

cose

MTHD
- RAXML
= TreeFix
MODL = ils-2M = TRACTION
= Notung

B ecceTERA
= ProfileN)
.
.

.
]
[
. .
]
‘

ccscss

False negative rate

0
0 . 0

(-0.001,0.2] 0.2,04) 0.4,06) (0.6,08] (0.8,1.0]
Gene Tree Estimation Error

Figure 2 Comparison of methods on the ILS-only datasets with respect to average RF error rate,
as a function of GTEE. Results are only shown for those datasets on which all methods complete.
Each model condition (characterized by ILS level) has 20 replicate datasets, each with 200 genes.

the reference trees used in our experiments are typically very topologically different from
the true gene tree (8% RF distance for the moderate ILS condition, 33% for the high ILS
condition, 54% to 68% for the ILS+HGT conditions, see Table 1), optimizing the RF distance
to the reference tree is quite different from optimizing the RF distance to the true gene tree.

Experiments. We performed two main experiments: one in which we explored performance
on ILS-only datasets and the other in which we explored performance on datasets with
HGT and ILS. In each case, we directly explored how the GTEE level impacted absolute
and relative accuracy of the gene tree correction methods. We also indirectly explored how
GT-HET affects relative and absolute accuracy. The heterogeneity is higher on the HGT+ILS
datasets than on the ILS-only datasets, as HGT adds to the heterogeneity between gene
trees and species trees (see Table 1).

4 Results and Discussion

Experiment 1: Comparison of methods on ILS-only datasets. Not all methods completed
on all datasets: ecceTERA failed to complete on 67 datasets, profileNJ failed to complete on
two datasets, and all other methods completed on all datasets. Results shown in Figure 2 are
restricted to those datasets on which all methods completed; see the Appendix for additional
results. For the moderate ILS condition (Figure 2 (top)), all methods are able to improve on
RAxML, and the degree of improvement increases with GTEE. For the high ILS condition
(Figure 2 (bottom)), methods improve on RAXML only when GTEE is at least 20%. Thus,
GTEE and ILS level both impact whether methods can improve on RAxML. Furthermore, the
methods group into two sets: TRACTION, Notung, and TreeFix performing very similarly
and ProfileNJ and ecceTERA having somewhat higher error.

4:9

WABI 2019

4:10 TRACTION: Non-Parametric Gene Tree Correction

ILS + Moderate HGT

| ‘ ’ :;" 'H

< im b H

PR]
ff ;ﬁ ! !

, 1L ¥

g
o

5

=]
©

RF Error
o
o

=]

0.0 method

BB notung
ILS + High HGT [TRACTION
1.0 B profilenj
B TreeFix-DTL
‘ 8 4 B raxml
0.8 oy
0]
_ 06 $! * T
N = |
w [}
& o4 ; i | i
3 ﬁ ‘ . 0 .
+ +
0.2 .
‘
0.0 [
(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

Gene Tree Estimation Error

Figure 3 Comparison of methods on ILS+HGT datasets with respect to average RF error rate
(max is 1.0), as a function of GTEE (gene tree estimation error of the RAXML gene trees); ecceTERA
failed on many datasets (with increasing failure rate as GTEE increases), and so those results are
not shown. Results shown here are for only those datasets on which all methods completed.

Experiment 2: Comparison of methods on the HGT+ILS datasets. The HGT-ILS
datasets have heterogeneity due to both HGT and ILS, with the degree of HGT varying
from moderate (m5) to high (m6). On these data, ecceTERA failed on 1,318 datasets with
the failure rates increasing as the gene tree estimation error of the initial RAXxML gene
tree (GTEE) increased: it failed 0% of the time when GTEE is less than 40%, 0.4% of
the time when GTEE is 40-60%, 23.6% of the time when GTEE is 60-80%, and 90.8% of
the time when GTEE is at least 80%. Because of the high failure rate, we do not report
results for ecceTERA under these conditions. Figure 3 shows the impact of the remaining
methods on RAXxML gene trees as a function of GTEE. The relative performance between
the remaining methods show that TRACTION and Notung are more accurate than profileNJ
and TreeFix-DTL, with the gap between the two groups increasing with GTEE. We also see
that TRACTION has an advantage over Notung for the low GTEE condition and matches
the accuracy on the higher GTEE conditions. Finally, for the lowest GTEE bin, no method
improves the RAXML gene tree, some methods make the gene trees much less accurate (e.g.,
profileNJ), and only TRACTION maintains the accuracy of the RAXML gene tree. Overall,
on the HGTHILS datasets, TRACTION consistently does well and has a clear advantage
over the other methods in terms of accuracy.

Running Times. We selected a random sample of the 51-taxon HGT+ILS datasets to
evaluate the running time (see Table 2). From fastest to slowest, the average running times
were 0.5 seconds for TRACTION, 0.8 seconds for Notung, 1.7 seconds for ProfileNJ, 3.8
seconds for TreeFix-DTL, and 29 seconds for ecceTERA. Furthermore, most of the methods
had consistent running times from one gene to another, but ecceTERA had high variability,

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

depending on the size of the largest polytomy. When the largest polytomy was relatively
small, it completed in just a few seconds, but it took close to a minute when the largest
polytomy had a size at the limit of 12. Results on other HGTHILS replicates and model
conditions gave very similar results.

Table 2 Total time (in seconds) for each method to correct 50 gene trees with 51 species on one
replicate (label 01) of the HGT+HILS dataset with moderate HGT and sequences of length 100bp.

Method Time (s)
EcceTERA 1470
NOTUNG 43
TRACTION 30
ProfileNJ 87
TreeFix-DTL 188

Overall comments. This study shows that the better methods for gene tree correction
(TRACTION, Notung, and TreeFix) reliably produce more accurate gene trees than the
initial RAXML gene trees for the ILS-only conditions (except for cases where the initial gene
tree is already very accurate), and the improvement can be very large when the initial gene
trees are poorly estimated. However, the impact of gene tree correction is reduced for the
HGT+ILS scenarios, where improvement over the initial gene tree is only obtained when
GTEE is fairly high. As shown in Table 1, the average normalized RF distance between the
reference tree (ASTRID) and the true gene trees is never more than 33% for the ILS-only
scenarios but very high for the HGT+ILS scenarios (54% for moderate HGT and 68% for
high HGT). Since the reference tree is the basis for the correction of the gene trees, it is not
surprising that improvements in accuracy are difficult to obtain for the HGT+ILS scenario.
On the other hand, given the large distance between the reference tree and the true gene
tree, the fact that improvements are obtained for several methods (TRACTION, Notung,
and TreeFix-DTL) is encouraging.

5 Conclusions

We presented TRACTION, a method that solves the RF-OTRC problem exactly in
O(n'®logn) time, where n is the number of species in the species tree; the algorithm
itself is very simple, but the proof of optimality is non-trivial. TRACTION performs well,
matching or improving on the accuracy of competing methods on the ILS-only datasets and
dominating the other methods on the HGT+ILS datasets. Furthermore, although all the
methods are reasonably fast on these datasets, TRACTION is the fastest on the 51-taxon
gene trees, with Notung a close second.

The observation that TRACTION performs as well (or better) than the competing
methods (ecceTERA, ProfileNJ, Notung, TreeFix, and TreeFix-DTL) is encouraging. How-
ever, the competing methods are all based on stochastic models of gene evolution that are
inherently derived from gene duplication and loss (GDL) scenarios (and in one case also
allowing for HGT), and thus it is not surprising that GDL-based methods do not provide
the best accuracy on the ILS-only or HGT+ILS model conditions we explore (and to our
knowledge, all the current methods for gene tree correction are based on GDL models). Yet,
TRACTION has good accuracy under a wide range of scenarios. We conjecture that this
generally good performance is the result of its non-parametric criterion which can help it to
be robust to model mis-specification (of which gene tree estimation error is one aspect).

4:11

WABI 2019

4:12

TRACTION: Non-Parametric Gene Tree Correction

This study showed that when the reference tree is very far from the true gene trees (as
for our HGT+ILS data), gene tree correction typically fail to improve the initial gene tree
(and even here, some methods can make the gene tree worse). This brings into question why
the species tree (whether true or estimated) is used as a reference tree. We note that while
the GDL-based methods may benefit from the use of a species tree as a reference tree (since
the correction is based on GDL scenarios), this type of reference tree may not be optimal
for TRACTION, which has no such dependency. Thus, part of our future work will be to
explore techniques (such as statistical binning [3, 23]) that might enable the estimation of a
better reference tree for TRACTION in the context of a multi-locus phylogenomic analysis.

This study suggests several other directions for future research. The GDL-based methods
have variants that may enable them to provide better accuracy (e.g., alternative techniques
for rooting the gene trees, selecting duploss parameter values, etc.), and future work should
explore these variants. Most gene tree correction methods have been developed specifically
to address the case where genes have multiple copies of species as a result of gene duplication
events. TRACTION is currently restricted to gene trees with at most one copy of each
species. In future work, we will explore extensions of TRACTION to handle multi-copy genes
by using a generalization of the RF distance, such as proposed in [5]. In particular, one could
construct the extended species tree to use as a reference along with a full differentiation of
the gene tree as described in [5]. Recent work has shown how Notung could be extended
to address HGT [19]; a comparison between TRACTION and a new version of Notung
that addresses HGT will need to be made when Notung is modified to handle HGT (that
capability is not yet available). Finally, the effect of gene tree correction on downstream
analyses should be evaluated carefully.

—— References

1 M.S. Bansal. Linear-Time Algorithms for Some Phylogenetic Tree Completion Problems
Under Robinson-Foulds Distance. In M. Blanchette and A. Ouangraoua, editors, Comparative
Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science, vol 11183. Springer, 2018.

2 M.S. Bansal, Y.-C. Wu, E.J. Alm, and M. Kellis. Improved gene tree error correction in the
presence of horizontal gene transfer. Bioinformatics, 31(8):1211-1218, 2015.

3 Md Shamsuzzoha Bayzid, Siavash Mirarab, Bastien Boussau, and Tandy Warnow. Weighted
statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. PLoS
One, 10(6):0129183, 2015.

4 R. Chaudhary, J.G. Burleigh, and O. Eulenstein. Efficient error correction algorithms for gene
tree reconciliation based on duplication, duplication and loss, and deep coalescence. BMC'
Bioinformatics, 13(10):S11, 2012.

5 Ruchi Chaudhary, John Gordon Burleigh, and David Ferndndez-Baca. Inferring species trees
from incongruent multi-copy gene trees using the Robinson-Foulds distance. Algorithms for
Molecular Biology, 8(1):28, 2013.

6 K. Chen, D. Durand, and M. Farach-Colton. NOTUNG: a program for dating gene duplications
and optimizing gene family trees. Journal of Computational Biology, 7(3-4):429-447, 2000.

7 S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow. OCTAL: optimal completion of
gene trees in polynomial time. Algorithms for Molecular Biology, 13(1):6, March 2018.

8 R. Davidson, P. Vachaspati, S. Mirarab, and T. Warnow. Phylogenomic species tree estimation
in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics,
16:S1, 2015.

9 D. Durand, B.V. Halldérsson, and B. Vernot. A hybrid micro-macroevolutionary approach to
gene tree reconstruction. Journal of Computational Biology, 13(2):320-335, 2006.

10 S.V. Edwards. Is a new and general theory of molecular systematics emerging? FEvolution,
63(1):1-19, 2009.

11 George F Estabrook, CS Johnson Jr, and Fred R Mc Morris. An idealized concept of the true
cladistic character. Mathematical Biosciences, 23(3-4):263-272, 1975.

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

George F Estabrook, CS Johnson Jr, and FR McMorris. A mathematical foundation for the
analysis of cladistic character compatibility. Mathematical Biosciences, 29(1-2):181-187, 1976.
W. Fletcher and Z. Yang. INDELible: A Flexible Simulator of Biological Sequence Evolution.
Molecular Biology and Evolution, 26(8):1879-1888, 2009. 10.1093/molbev/msp098.

P. Gawrychowski, G.M. Landau, W.-K. Sung, and O. Weimann. A Faster Construction of
Phylogenetic Consensus Trees. arXiv preprint, 2017. arXiv:1705.10548.

E. Jacox, C. Chauve, G.J. Szoll6si, Y. Ponty, and C. Scornavacca. ecceTERA: comprehensive
gene tree-species tree reconciliation using parsimony. Bioinf., 32(13):2056—-2058, 2016.

E. Jacox, M. Weller, E. Tannier, and C. Scornavacca. Resolution and reconciliation of
non-binary gene trees with transfers, duplications and losses. Bioinf., 33(7):980-987, 2017.
E.D. Jarvis, S. Mirarab, A.J. Aberer, B. Li, P. Houde, C. Li, S. Ho, B.C. Faircloth, B. Nabholz,
J.T. Howard, et al. Whole-genome analyses resolve early branches in the tree of life of modern
birds. Science, 346(6215):1320-1331, 2014.

M. Lafond, C. Chauve, N. El-Mabrouk, and A. Ouangraoua. Gene tree construction and
correction using supertree and reconciliation. IEEE/ACM Trans Comp Biol Bioinf (TCBB),
15(5):1560-1570, 2018.

H. Lai, M. Stolzer, and D. Durand. Fast Heuristics for Resolving Weakly Supported Branches
Using Duplication, Transfers, and Losses. In J. Meidanis and L. Nakhleh, editors, Comparative
Genomics, pages 298-320, Cham, 2017. Springer International Publishing.

Vincent Lefort, Richard Desper, and Olivier Gascuel. FastME 2.0: A Comprehensive, Accurate,
and Fast Distance-Based Phylogeny Inference Program. Molecular Biology and Evolution,
32(10):2798-2800, 2015.

W. Maddison. Gene Trees in Species Trees. Systematic Biology, 46(3):523-536, 1997.

D. Mallo, L. Martins, and D. Posada. SimPhy: phylogenomic simulation of gene, locus, and
species trees. Systematic Biology, 65(2):334-344, 2016.

S. Mirarab, M.S. Bayzid, B. Boussau, and T. Warnow. Statistical binning enables an accurate

coalescent-based estimation of the avian tree. Science, 346(6215), 2014. doi:10.1126/science.

1250463.

S. Mirarab and T. Warnow. ASTRAL-II: Coalescent-based Species Tree Estimation with
Many Hundreds of Taxa and Thousands of Genes. Bioinformatics, 31(12):144, 2015.

E. Molloy and T. Warnow. To include or not to include: The impact of gene filtering on
species tree estimation methods. Systematic Biology, 67(2):285-303, 2018.

T.H. Nguyen, V. Ranwez, S. Pointet, A.-M. Chifolleau, J.-P. Doyon, and V. Berry. Reconcili-
ation and local gene tree rearrangement can be of mutual profit. Algorithms for Molecular
Biology, 8(1):1, 2013.

E. Noutahi, M. Semeria, M. Lafond, J. Seguin, B. Boussau, L. Guéguen, N. El-Mabrouk,
and E. Tannier. Efficient gene tree correction guided by genome evolution. PLoS One,
11(8):e0159559, 2016.

D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical biosciences,
53(1-2):131-147, 1981.

A. Stamatakis. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of
Large Phylogenies. Bioinformatics, 30(9), 2014. 10.1093/bioinformatics/btu033.

J Sukumaran and M.T. Holder. DendroPy: a Python library for phylogenetic computing.
Bioinformatics, 26(12):1569-1571, 2010. 10.1093/bioinformatics/btq228.

G.J. Szollési, W. Rosikiewicz, B. Boussau, E. Tannier, and V. Daubin. Efficient exploration of
the space of reconciled gene trees. Systematic Biology, 62(6):901-912, 2013.

P. Vachaspati and T. Warnow. ASTRID: Accurate Species Trees from Internode Distances.
BMC Genomics, 16(10):S3, 2015. 10.1186/1471-2164-16-S10-S3.

Y.-C. Wu, M.D. Rasmussen, M.S. Bansal, and M. Kellis. TreeFix: statistically informed gene
tree error correction using species trees. Systematic Biology, 62(1):110-120, 2012.

Y. Zheng and L. Zhang. Reconciliation With Nonbinary Gene Trees Revisited. Journal of the
ACM (JACM), 64(4):24, 2017.

4:13

WABI 2019

http://arxiv.org/abs/1705.10548
https://doi.org/10.1126/science.1250463
https://doi.org/10.1126/science.1250463

4:14

TRACTION: Non-Parametric Gene Tree Correction

A Details about the Experimental Design

The datasets we used are from prior publications (which should be consulted for full details).
The information for Steps 1-2 provided here describe the high-level process used to generate
these datasets for those studies, Step 3 describes the process used to estimate gene trees,
and Steps 4-6 describe the high-level process used to correct gene trees.
Step 1: A model species tree and model gene trees (evolved within the model species
tree) were generated using SimPhy [22]. This produced a set of gene trees that could
differ from the species tree due to ILS alone or due to both ILS and HGT. Importantly,
SimPhy modifies gene tree branch lengths to deviate from a strict molecular clock.
Step 2: Molecular sequences were generated using INDELible [13] by evolving sequences
down each true gene tree under the GTR+GAMMA model of sequence evolution without
insertions or deletions. GTR+GAMMA model parameters and sequence lengths were
drawn from distributions as described in [24]. Because the sequence length parameter
was drawn from a distribution, sequences had different lengths. In some experiments,
sequence lengths were truncated to 100, 250, or 500 sites before estimating gene trees in
order to vary the degree of gene tree estimation error.
Step 3: Binary gene trees were estimated on each gene sequence alignment using RAxML,
a maximum likelihood (ML) heuristic, under the GTR+GAMMA model, with all numeric
parameters estimated directly from the data. Branch support for each internal branch in
the best ML tree was computed using the RAxML rapid bootstrapping procedure [29]
with 100 bootstrap replicates for the ILS-only datasets and 50 bootstrap replicates for
the ILS+HGT datasets.
Step 4: Species trees were estimated on each multi-gene dataset using ASTRID [32] on
the estimated (best ML) gene trees from Step 3.
Step 5: For each estimated (best ML) gene tree, all edges with branch support below
75% were collapsed to produce a set of “collapsed gene trees”.
Step 6: Estimated gene trees were corrected using the ASTRID tree from Step 4 as
the reference tree. The input reference tree was rooted at the outgroup for all gene tree
correction methods except for TRACTION. TRACTION and Notung were given the
collapsed gene trees as input, whereas TreeFix, TreeFix-DTL, and ecceTERA were given
the best ML gene trees (without any edges collapsed) as input. To run ecceTERA, we
specified the threshold value (i.e., minimum required bootstrap support value), with
the default setting of 75%; ecceTERA then collapses all branches that have support
less than that value and exhaustively evaluates all refinements. However, when the
collapsed gene trees have polytomies of degree greater than 12, then ecceTERA lowers
the threshold until all polytomies have degree at most 12. Finally, Notung, ProfileNJ,
and ecceTERA required that the input gene trees be rooted, so we rooted these input
gene trees at the outgroup.

B Commands

In the following commands, “resolved gene trees” refers to the gene trees estimated using
RAxML, “unresolved gene trees” refers to these estimated gene trees with branches having
bootstrap support less than 75% collapsed, and “reference species tree” refers to the species
tree estimated using ASTRID. Rooted means the input tree was rooted at the outgroup.

RAxML v8.2.11 was run as
raxml -f a -m GTRGAMMA -p 12345 -x 12345 -N <# bootstrap replicates> \
-s <alignment file> -n <output name>

S. Christensen, E. K. Molloy, P. Vachaspati, and T. Warnow

ASTRID v1.4 was run as
ASTRID -i <resolved gene trees> -o <output>
Notung v2.9 was run as
java -jar Notung-2.9.jar --resolve -s <rooted reference species tree> \
-g <rooted unresolved gene tree> --speciestag postfix \
--treeoutput newick --nolosses

TRACTION v1.0 was run as
traction.py --refine -r -s 12345 -b <unrooted reference species tree> \
-u <unrooted resolved gene trees> -i <unrooted unresolved gene trees> \
-o <output>
ecceTERA v1.2.4 was run as
eccetera resolve.trees=0 \
collapse.mode=1 \
collapse.threshold=75 \
dated=0 print.newick=true \
species.file=<rooted reference species tree> \
gene.file=<rooted resolved gene tree>
Since ecceTera enters an infinite loop on some gene trees, the “timeout” command was used
to kill ecceTera if it took more than five minutes on a single gene tree.
ProfileNJ requires a distance matrix; to compute distance matrices (with K2P-corrected
distances) for ProfileNJ, FastME v2.1.6.1 [20] was run as
fastme -i <input gene alignment> -0 <output distance matrix> -dK
ProfileNJ was run as
profileNJ \
-g <rooted unresolved gene tree> \
-s <rooted reference species tree> \
-d <distance matrix> \
-o <output> \
-S <name map> \
-r none \
-c nj \
--slimit 1 \
--plimit 1 \
--firstbest \
--cost 1 0.99999
TreeFix v1.1.10 was run on the ILS-only datasets as
treefix -s <rooted reference species tree> \
-S <name map> \
-A <alignment file extension> \
-0 <old tree file extension> \
-n <new tree file extension> \
<resolved gene tree>

TreeFix-DTL v1.0.2 was run on the HGT+ILS datasets as
treefixDTL -s <rooted reference species tree> \
-S <map file> \
-A <alignment file extension> \
-0 <old gene tree file extension> \
-n <new gene tree file extension> \
<resolved gene tree>
Normalized Robinson-Foulds distances were computed using Dendropy v4.2.0 [30] as
nl len(tl.internal_edges(exclude_seed_edge=True))
n2 = len(t2.internal_edges(exclude_seed_edge=True))
[fp, fn] = false_positives_and_negatives(tl, t2)
rf = float(fp + fn) / (nl + n2)

4:15

WABI 2019

4:16 TRACTION: Non-Parametric Gene Tree Correction

B.1 Details about failures

No method other than ecceTERA and profileNJ failed on any datasets.

B.1.1 ecceTERA failures

In our analyses for the ILS-only datasets, ecceTERA failed on 10/4000 genes (moderate ILS)
and 57/4000 genes (high ILS). In our analyses for the ILS+HGT datasets, ecceTERA failed
on 744/7500 genes (moderate HGT) and 574/7500 genes (high HGT). Notably, the number
of datasets that ecceTERA failed on increased with gene trees estimation error; for example,
for datasets with ILS and HGT, ecceTERA completed on 100% of datasets with GTEE in
(0.0, 0.4], 99.6% of datasets with GTEE in (0.4, 0.6], 76.4% of datasets with GTEE in (0.6,
0.8], and 9.2% of datasets with GTEE in (0.8, 1.0].

B.1.2 profileNJ failures

ProfileNJ computes distances to construct the corrected gene tree; when used with FastME,
it failed on 2/4000 genes for the ILS-only condition (moderate ILS).

Better Practical Algorithms for rSPR Distance
and Hybridization Number
Kohei Yamada

Division of Information System Design, Tokyo Denki University, Japan
19rmd38@ms.dendai.ac.jp

Zhi-Zhong Chen

Division of Information System Design, Tokyo Denki University, Japan
zzchen@mail.dendai.ac.jp

Lusheng Wang
Department of Computer Science, City University of Hong Kong, China
cswangl@cityu.edu.hk

—— Abstract

The problem of computing the rSPR distance of two phylogenetic trees (denoted by RDC) is NP-hard
and so is the problem of computing the hybridization number of two phylogenetic trees (denoted by

HNC). Since they are important problems in phylogenetics, they have been studied extensively in
the literature. Indeed, quite a number of exact or approximation algorithms have been designed
and implemented for them. In this paper, we design and implement one exact algorithm for HNC
and several approximation algorithms for RDC and HNC. Our experimental results show that the
resulting exact program is much faster (namely, more than 80 times faster for the easiest dataset
used in the experiments) than the previous best and its superiority in speed becomes even more
significant for more difficult instances. Moreover, the resulting approximation programs output
much better results than the previous bests; indeed, the outputs are always nearly optimal and often
optimal. Of particular interest is the usage of the Monte Carlo tree search (MCTS) method in the
design of our approximation algorithms. Our experimental results show that with MCTS, we can
often solve HNC exactly within short time.

2012 ACM Subject Classification Theory of computation — Theory and algorithms for application
domains

Keywords and phrases phylogenetic tree, fixed-parameter algorithms, approximation algorithms,
Monte Carlo tree search

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.5

Supplement Material Our programs are available at http://rnc.r.dendai.ac.jp/rsprHN.html.

1 Introduction

Constructing the evolutionary history of a set of species is an important problem in the study
of biological evolution. Phylogenetic trees are used in biology to represent the ancestral
history of a collection of existing species. This is appropriate for many groups of species.
However, due to reticulation events such as hybridization, recombination, and lateral gene
transfer, there are certain groups for which the ancestral history cannot be represented
by a tree. For this kind of groups of species, it is more appropriate to represent their
ancestral history by rooted acyclic digraphs, where vertices of in-degree at least two represent
reticulation events.

More specifically, by looking at two different segments of sequences or two different sets
of genes of a set of extant species, we may obtain two different phylogenetic trees T7 and T5
of the same extant species with high confidence. Given 77 and T5, we want to construct a
reticulate network N with the smallest number of reticulation events needed to explain the

© Kohei Yamada, Zhi-Zhong Chen, and Lusheng Wang;

licensed under Creative Commons License CC-BY
19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 5; pp. 5:1-5:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:19rmd38@ms.dendai.ac.jp
mailto:zzchen@mail.dendai.ac.jp
mailto:cswangl@cityu.edu.hk
https://doi.org/10.4230/LIPIcs.WABI.2019.5
http://rnc.r.dendai.ac.jp/rsprHN.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

rSPR Distance and Hybridization Number

evolution of the species under consideration [13]. Roughly speaking, N is the smallest rooted
acyclic digraph such that each of 77 and T5 is homeomorphic to a subgraph of N. The number
of vertices of in-degree larger than 1 in N is called the hybridization number of Ty and T5.
The problem of computing the hybridization number of two given phylogenetic trees, denoted
by HNC, is NP-hard [12, 4]. For this reason, quite a number of approximation algorithms and
fixed-parameter algorithms have been designed and implemented for HNC [1, 9, 11, 14, 16, 20].
To the best of our knowledge, the software in [10] for solving HNC exactly achieves the
previously best speed in practice, while the software in [16] for solving HNC approximately
achieves the previously best approximation-ratio in practice.

A problem closely related to HNC is the problem of computing the rSPR. distance of two
given phylogenetic trees 77 and T5 of the same extant species. The rSPR distance between T;
and T» can be defined as the minimum number of edges that should be deleted from each of T}
and 75 in order to transform them into homeomorphic rooted forests F; and F5. The problem
of computing the rSPR, distance of two trees, denoted by RDC, is NP-hard [4, 12]. This has
motivated researchers to design and implement either exact or approximation algorithms
for RDC [4, 6, 7, 8, 10, 12, 15, 17, 20, 19]. To the best of our knowledge, the software in [7]
for solving RDC exactly (respectively, approximately) achieves the previously best speed
(respectively, approximation-ratio) in practice (http://rnc.r.dendai.ac.jp/rspr.html).

In this paper, we first improve Chen et al.’s exact algorithm [10] for HNC. Since rSPR
distance is a lower bound on hybridization number, the main idea is to use the lower bound
on rSPR distance outputted by Chen et al.’s algorithm [7] to cut unnecessary branches of the
search tree. Another main idea is to arrange the child recursive calls of each recursive call
carefully. Our experimental results show that the resulting algorithm can be implemented
into a program that runs more than 80 times faster than Chen et al.’s UltraNet [10] for
the easiest dataset used in the experiments. Moreover, its superiority in speed becomes even
more significant for more difficult instances.

We then present a new approximation algorithm for RDC. Although this algorithm does
not necessarily always output a better result than the algorithm in [7], we can obtain a
new algorithm which calls the two algorithms and outputs the better result returned by
them. Our experimental results show that the resulting algorithm can be implemented into
a program that often outputs better results than Chen et al.’s program [7]. We further
propose to use the so-called Monte Carlo tree search (MCTS) method [5] to improve any
approximation algorithm A for RDC. In our application of MCTS, instead of performing a
number of random play-outs ! in the simulation phase of each round, we make a single call
of A and then in the backpropagation phase, use its returned result to update information
in the sequence of nodes selected for this round. Our experimental results show that the
MCTS-based algorithm (denoted by MCTS__A) can be implemented into a program that
outputs much better and indeed always nearly optimal results. It is worth mentioning that
even if A has a theoretical performance guarantee (say, a 2-approximation ratio), we are
unable to prove any theoretical performance guarantee for MCTS__A. Nevertheless, our
experimental results show that MCTS__A almost always outputs better results than A. Of
course, if we want MCTS__A to have the same theoretical performance guarantee as A, then
we can modify MCTS__A so that it calls A and uses A’s output instead if its own is worse.

! Roughly speaking, a random play-out here means computing an approximate solution by always making
a random choice whenever a decision has to be made among a set of multiple choices.

http://rnc.r.dendai.ac.jp/rspr.html

K. Yamada, Z.-Z. Chen, and L. Wang

We further combine our MCTS-based approximation algorithm for RDC with the integer-
linear programming (ILP) approach in [16] to obtain a new approximation algorithm for
HNC. Our experimental results show that the new algorithm can be implemented into a
program that outputs much better (indeed always nearly optimal and often optimal) results
than the previous best in [16].

Our programs are available at http://rnc.r.dendai.ac. jp/rsprHN.html.

2 Preliminaries

Throughout this paper, a rooted forest always means a directed acyclic graph in which every
vertex has in-degree at most 1 and out-degree at most 2.

Let F be a rooted forest. The roots (respectively, leaves) of F are those vertices whose
in-degrees (respectively, out-degrees) are 0. The size of F, denoted by |F|, is the number of
roots in F' minus 1. A vertex v of F' is unifurcate if it has only one child in F. If a root v of
F is unifurcate, then contracting v in F is the operation that modifies F' by deleting v. If a
non-root vertex v of F' is unifurcate, then contracting v in F is the operation that modifies
F by first adding an edge from the parent of v to the child of v and then deleting v.

For a vertex v of F, the subtree of F' rooted at v, denoted by F", is the subgraph of F’
whose vertices are the descendants of v in F' and whose edges are those edges connecting two
descendants of v in F. If v is a root of F', then F" is a component tree of F'; otherwise, it
is a pendant subtree of F'. For convenience, we view each vertex u of F' as an ancestor and
descendant of u itself. A vertex w is lower than another vertex v # w in F' if u is a descendant
of v in F. The lowest common ancestor (LCA) of a set U of vertices in F, denoted by £z (U),
is the lowest vertex v in F' such that for every vertex u € U, v is an ancestor of u in F. Note
that if no component tree of F' contains all vertices of U, then £r(U) does not exist. Two
vertices u and v of F' are incomparable if neither of them is an ancestor of the other in F'.
For two incomparable vertices u and v appearing in the same component tree of F, Dp(u,v)
denotes the set of all vertices w such that w is not a vertex of the (undirected) path P, ,
between v and v in F' but is the child of some inner vertex of P, ,. For each pendant subtree
T of F that has at least two leaves, the leaf-label set of T is a cluster of F.

A rooted binary forest is a rooted forest in which the out-degree of every non-leaf vertex
is 2. Let F' be a rooted binary forest. F' is a rooted binary tree if it has only one root. If v is
a non-root vertex of F' with parent p, then detaching F" is the operation that modifies F’
by first deleting the edge (p,v) and then contracting p. A detaching operation on F is the
operation of detaching a pendant subtree of F.

2.1 Phylogenetic Trees and Forests

Let X be a set of existing species. A phylogenetic tree on X is a rooted binary tree whose
leaf set is X. A phylogenetic forest is the graph obtained by applying a sequence of zero or
more detaching operations on a phylogenetic tree. In other words, a phylogenetic forest is a
graph whose connected components are phylogenetic trees on different sets of species.

An FF pair is a pair (Fy, Fy), where Fy and Fy are two phylogenetic forests on the same
set X of species. A TT pair is an FF pair (F1, Fy) such that both F; and F» are trees.

For an FF pair (Fy, Fy), the labeled leaves of F; naturally one-to-one correspond to
those of Fy (i.e., each pair of corresponding leaves have the same label). We extend the
correspondence between the labeled leaves of Fy and F» to (some of) their ancestors recursively
as follows. Suppose that vy is a non-leaf vertex of Fy, v is a non-leaf vertex of Fy, and the
children of vy in F} one-to-one correspond to those of vy in F5. Then, vy corresponds to vs.

5:3

WABI 2019

http://rnc.r.dendai.ac.jp/rsprHN.html

5:4

rSPR Distance and Hybridization Number

An FF pair (Fy, F») is proper if every root of Fy, except at most one, corresponds to a root
in Fy. Obviously, a TT pair is also a proper FF pair. Simplifying a proper FF pair (Fy, F»)
is to repeatedly perform the following operation on F} and F5 until it is not applicable:

If some non-root vertex v of F} corresponds to a root of Fy, then modify F} by detach-

ing FY.

Obviously, if (Fy, Fy) is proper, then it remains proper after being simplified.

Throughout the remainder of this paper, an FF pair always means a proper FF pair. A
sub-FF pair of a TT pair (T1,T3) is an FF pair (Fy, F») such that for each i € {1,2}, F; is
obtained from 7; by performing zero or more detaching operations.

For an FF-pair (F1, Fy), if a vertex vy of F; and a vertex vq of Fy correspond to each other,
then both v, and ve are matched and they are the mates of each other. For brevity, if v is a
matched vertex of F; for some i € {1,2}, then we will also use v to denote its mate in Fs_;.

2.2 Agreement Forests

Let (Fy, F3) be a sub-FF pair of a TT pair (71, T5). If we can apply a sequence of detaching
operations on each of F; and F5 so that they become the same forest F', then we refer to F’
as an agreement forest (AF) of (F1, Fy). A mazimum agreement forest (MAF) of (Fy, Fy)
is an AF of (Fy, F») whose size is minimized over all AFs of (Fy, F»). The size of an MAF
of (Fy, Fy) minus |F3| is called the rSPR distance of (Fy, F»), and is denoted by d(F}, F»).
Obviously, an AF F of (Fy, F3) is also an AF of (T1,Tz). The following lemma is shown in [7].

» Lemma 1 ([7]). Given an FF-pair (F1,Fy), we can compute a lower bound by and an
upper bound b, on the rSPR distance of (F1, Fy) in cubic time such that b, < 2by.

Suppose that F is an AF of (T1,T%). For each i € {1,2}, we can define an injective
mapping f; from the vertex set of F' to that of T; as follows. For each leaf u of F, f;(u) is the
leaf of T; with the same label. For each non-leaf vertex u of F, f;(u) is g, (fi(v1), ..., fi(vq)),
where vy, ..., v, are the leaf descendants of u in F'. For convenience, we hereafter also use
each vertex u of F to denote f;(u) in T;. We can now use F, Ty, and T, to construct a
directed graph G as follows:

The vertices of G are the roots of F.

For every two roots r; and 79 of F', there is an edge from r; to 79 in G if and only if

is an ancestor of ro in 17 or T5.
We refer to G as the decision graph associated with F. If Gp is acyclic, then F is an
acyclic agreement forest (AAF) of (T1.T3); otherwise, F is a cyclic agreement forest (CAF) of
(Th,T5). If Fis an AAF of (T1,T5>) and its size is minimized over all AAFs of (T7,T5), then
F' is a mazimum acyclic agreement forest (MAAF) of (T1,T»). The hybridization number of
(Th,T>) is the size of an MAAF of (T1,7T3), and is denoted by h(T7,T3).

We are now ready to define the problems studied in this paper:

Hybridization Number Computation (HNC):
Input: A TT-pair (T1,T5).

Output: The hybridization number of (71, T5).
rSPR Distance Computation (RDC):

Input: A TT-pair (T1,T3).

Output: The rSPR distance of (T3, T3).

K. Yamada, Z.-Z. Chen, and L. Wang

2.3 Transforming a CAF to an AAF

Suppose that F' is a CAF of a TT-pair (T1,T5). We construct a directed graph D as follows.

For every non-leaf vertex of F', we create a vertex in D. There is an edge in D from a vertex

u to a vertex v precisely if in either F; or Fy (or in both), there is a directed path from u to v.

A minimum directed feedback vertexr set (MDFVS) of D is a minimum-sized set U of vertices
in D such that modifying D by removing the vertices in U yields a directed acyclic graph.

» Lemma 2 ([14]). Let U be an MDFVS of D. Then, to transform F to an AAF of (Fy, F3)
by performing a minimum number of detaching operations on F, it suffices to modify F by

removing the vertices corresponding to those in U and further contracting unifurcate vertices.

Let V be the set of vertices in D. By Lemma 2, to compute an MDFS U of D, it suffices
to solve the following integer linear programming (ILP) model [16]:

Minimize : Z Ty (1)
veV

s.t. 0<¢, <|V|-1 forallveV (2)

by >l +1— Ve, —|V]z, forall e = (u,v) € E (3)

b, €Z forallveV (4)

x, € {0,1} forallveV (5)

Fortunately, in our application, we will have an integer k£ and only want to know whether
the optimal value of the objective function is bounded by k from above. So, we modify
the model by replacing the objective function with any constant (say, 0) and adding the
new constraint y, ., z, < k. We refer to this modified model as the ILP model associated
with (Ty, To, F, k).

veV

3 Solving HNC Exactly

Our algorithm for solving HNC exactly will use a subroutine for the following parameterized
version of HNC.

Parameterized HNC (PHNC):

Input: (T1,T5, Fy, Fs, k), where (T1,T») is a TT pair, (F1, F3) is a sub-FF pair of (71, T5),
and k is an integer.

Output: “Yes” if performing k& more detaching operations on F» leads to an AAF of (11, T%);
“no” otherwise.

Several definitions are in order. Let (Fi, F3) be an FF-pair, and i € {1,2}. A vertex v
of F; is active if v is a matched non-root vertex of F; and its parent in F; is not matched.
Since (Fy, Fy) is an FF-pair, all active vertices of F} fall into the same component tree of
Fi. An active sibling-pair of F; is a pair (u,v) of active vertices in F; such that v and v are
siblings in Fj.

3.1 Key ldeas

Basically, our algorithm is a significantly refined version of the algorithm for HNC implemented
in Chen and Wang’s UltraNet [10]. In this subsection, we list the key new ideas behind our
new algorithm for HNC.

5:5

WABI 2019

5:6

rSPR Distance and Hybridization Number

First, the new algorithm builds on a recent 2-approximation algorithm for RDC [7].
When we compute the hybridization number, we use the lower bound outputted by the
approximation algorithm to bound the search of the hybridization number. Since the lower
bound is often nearly optimal, this bounding idea makes it possible for our algorithm to find
the hybridization number in short time. Since the exact algorithm for RDC in [7] is also
fast, we can use it to bound the search of the hybridization number instead of using the
2-approximation algorithm for RDC.

Secondly, the new algorithm is recursive and we make child recursive-calls in a careful
order. More precisely, child recursive-calls that appear to finish in shorter time are made
earlier than those that look likely to finish in longer time.

Thirdly, when we make a recursive call, we may know certain vertices v such that the
subtree rooted at v should not be detached, and so we lock these vertices so that the subtrees
rooted at them will never be detached in subsequent recursive calls. Moreover, the locked
vertices help us make fewer child recursive-calls.

Finally, when our algorithm needs to transform a CAF F of a TT-pair (T1,7%) to an
AAF of (T1,T5), we use the ILP-based method outlined in Section 2.3. However, we modify
the ILP model in Section 2.3 as follows.

Let D be the digraph constructed from F and (71,7%) as in Section 2.3. Since F is a

CAF, D has a cycle and we need to remove at least one vertex from D to make D acyclic.

Once D becomes acyclic, its number of vertices has decreased by at least 1. So, it is safe

to modify the ILP model by changing the upper bound on the value of ¢, from |[V|—1 to

V|- 2.

Some vertices of F' may have been locked. So, for each locked vertex v of F', we can

modify the model by fixing z, = 0.

By Lemma 4 in [9], we know that for each edge (p, ¢) of F, if removing a set U of vertices

from D with {p,c} C U makes D acyclic, then removing the vertices of U \ {c} also

makes D acyclic. Thus, for each edge (p,c) of F, we can add the constraint z. < z,

to the model.

3.2 The Algorithm

Throughout this subsection, fix an instance (T}, 7T5) of HNC.

Our algorithm for computing h(77,T3) exactly first repeatedly performs a cluster reduction
on 77 and 75 until no such reduction is applicable. For the detail of cluster reductions,
the reader is referred to [2]. As the result of zero or more cluster reductions on 7} and
T, we obtain a sequence (111,721), ..., (T1,4,T2,4) of instances of HNC such that ¢ >
1 and h(Ty,T) = >, h(T1,,Ts,). Hence, it suffices to compute h(Ty;,T5;) for each
i € {1,...,q}. Therefore, for simplicity, we hereafter assume that ¢ = 1 and in turn
(Th,T2) = (Th1,T2,1).

Our algorithm then uses the program in [7] for RDC to compute d(77,T%). The program
can also output an AF F of (T1,T») with size d(T7,T3). So, our algorithm checks whether F
is indeed an AAF of (T1,T») (by constructing the decision graph G associated with F' and
testing if G is acyclic or not). If it is, then d(Ty,T5) is also h(7T1,T%) and so the algorithm
outputs d(T1,T») and stops. Thus, we hereafter assume that F' is not an AAF of (T1,T5).

To compute h(Ty,T»), it suffices to solve PHNC on input (Ty,7%,T1,Ts, k) for k =
d(Ty,Ts), d(Ty,T2) + 1, ... (in this order) until a “yes” is returned. So, it remains to detail
our algorithm for PHNC. During its execution, our algorithm will lock certain non-root
vertices v of F; at certain time points so that F3 will never be detached thereafter; it will
always maintain the following invariant:

K. Yamada, Z.-Z. Chen, and L. Wang

Invariant 1: Whenever a non-root vertex is locked by the algorithm, it knows that it
will return “yes” with the locking if and only if it will return “yes” without the locking.

Our algorithm for PHNC is recursive and proceeds as follows. It starts by checking
whether £ > 0. If £ < 0, then this is Base Case 1 and it returns “no”. So, we hereafter
assume k > 0. Then, it simplifies (Fy, F») and further checks the following base case:

Base Case 2: All roots of Fy are matched. In this case, F} and Fy are the same forest
and hence Fy is an AF of (T1,T,). To test if Fy is an AAF, our algorithm constructs the
decision graph G, associated with Fy and tests if it is acyclic or not. If G, is acyclic, then
it returns “yes”. Otherwise, it checks if k£ > 1 or not. If £ < 0, then it returns “no”. On the
other hand, if £ > 1, then it constructs the ILP model associated with (77, Ts, F5, k) and
solves the ILP model by an ILP solver (say, CPLEX or GUROBI); it returns “yes” if and
only if the model is feasible.

We hereafter assume that one or more roots of Fj are still not matched. Our algorithm

then uses the program in [7] to compute a lower bound b, and an upper bound b,, on d(Fy, Fs).

The program will also return an AF F of (Fy, Fy) with size b, as a witness for b,. If k < by,
then this is Base Case 3, and the algorithm returns “no”. Otherwise, the algorithm checks
if the ILP model associated with (T, T5, F, k) is feasible or not. If it is feasible, then this is
Base Case 4, and the algorithm returns “yes”.

We hereafter assume that k > by, and the ILP model associated with (71, T», F, k) is
infeasible. Clearly, both F} and F; must have at least one active sibling-pair. Our algorithm
now distinguishes several cases in the following order.

Case 1: There is an active sibling-pair (u,v) in Fy such that |Dp,(u,v)| = 1. In this
case, we clearly know that to transform F» into an AF of (F, Fy), we need to select at least
one z € {u,v,w} and detach Fy, where Dp,(u,v) = {w}. So, if all vertices of {u,v,w} are
locked, then this is Base Case 5, and the algorithm returns “no”. Thus, we may assume that
at least one vertex of {u, v, w} is not locked. As observed in [18], selecting « = w is the same
as selecting « = v (which means that the former selection leads to a “yes”-output if and only
if so does the latter). Hence, if u or v is not locked, then our algorithm chooses an arbitrary
unlocked z € {u,v} and makes a recursive call on input (71,75, F1, Fy, k — 1), where Fj is
obtained from F5 by detaching F¥. In addition, if w is also not locked, then our algorithm
makes a recursive call on input (71, Ts, Fy, Fy,k — 1), where FY' is obtained from F» by
detaching F3’ and further locking x in case the recursive call on input (T3, Ty, Fy, F5, k — 1)
has been made. So, we make one or two recursive calls. If at least one call returns “yes”, the
algorithm returns “yes”; otherwise, it returns “no”.

Case 2: There is an active sibling-pair (u,v) in Fy such that |Dp, (u,v)| = 1 and the
unique vertex w in Dp, (u,v) is active. This case is symmetric to Case 1; so, the algorithm
proceeds as in Case 1 except that each of u, v, and w is replaced by its mate.

Case 3: Neither Case 1 nor 2 occurs. In this case, our algorithm searches F} for an active
sibling-pair (u,v) in the following order:
Type 1: Both uw and v are locked in F5.
Type 2: u and v belong to different connected components of F5.
Type 3: Either u or v is locked in F5.
Type 4: The sibling s of the parent of w and v in F} satisfies that either s is active or both
children of s in F} are active.
Type 5: (u,v) is of none of the above types.
We emphasize that the smaller type of an active sibling-pair in F} is, the more our algorithm
prioritizes it. Intuitively speaking, choosing an active sibling-pair of a smaller type in F} will
likely lead to fewer recursive calls.

5:7

WABI 2019

5:8

rSPR Distance and Hybridization Number

Suppose that our algorithm has selected an active sibling-pair (u,v) in Fy as above. Our
algorithm constructs a family F of sets as follows. Initially, F is empty. For each y € {u,v}
such that y is not locked in F», we add the set {y} to F. Moreover, if no vertex in D, (u,v)
is locked in Fy, then we add Dp, (u,v) to F. Since Case 1 does not occur, |Dp, (u,v)| > 2.
Clearly, to transform F» into an AF of (Fy, Fy), we need to select a set S € F and detach
Fy for all w € S. Thus, if F is empty, then our algorithm returns “no”. Otherwise, it sorts
the sets in F so that larger sets precede smaller sets. Let Si, ..., S; be the sets in F. For
each i € {1,...,t}, let Fy; be the phylogenetic forest obtained from F; by first detaching
FJ for all y € S; and further distinguishing two cases as follows:

1. If |S;| > 2, then lock both u and v in Fs.

2. If i > 2 and |S;—1| = |S;| = 1, then lock the vertex of S;_; in Fb.

Now, our algorithm makes ¢ recursive calls on input (71, Ts, F1, Fo1,k—|S1|), - .., (11, T, F1,
Fy .,k — 1S¢]). If at least one call returns “yes”, the algorithm returns “yes”; otherwise,
it returns “no”.

4 Solving RDC Approximately

Basically, we want an approximate algorithm that outputs better results than the algorithm
in [7]. Although the algorithm in [8] has a worse theoretical-guarantee than the algorithm
in [7], it does not necessarily mean that the former always outputs worse results. So, we
obtain a new approximation algorithm for RDC which simply runs the algorithms in [7, §]
and outputs the better result returned by them.

Our new idea is to use MCTS to improve the performance of any approximation algorithm
for RDC. MCTS has a number of variants, but we here use the basic one (namely, the UCT
algorithm) for its simplicity.

4.1 Outline of the Algorithm

In the remainder of this section, fix an FF-pair (Fy, F5). Our algorithm for computing
d(Fy, F») approximately is recursive and starts by simplifying (Fy, F5) and further checking
whether F is already an AF of (Fy, Fy). If it is, then this is Base Case 1 and it returns 0.
So, assume that Fy is not an AF of (Fy, F5). Then, F; has a unique non-matched root r. If r
has at most 6 leaf descendants in F7i, then this is Base Case 2 and our algorithm computes
d(Fy, F3) in O(1) time by brute force. Thus, we further assume that r has more than 6 leaf
descendants in F;. Now, our algorithm finds a promising vertex z in Fy, next detaches F¥,
further makes a recursive call on the modified (Fy, F3), and finally returns ¢ + 1, where c is
the value returned by the recursive call.

It remains to consider how to find a promising z. In the following two cases, we know an
optimal choice of z, i.e., we know that the choice of z will lead to an optimal solution [6]:

Optimal Case 1: (u,v) is an active sibling-pair in Fy with |Dg,(u,v)| = 1. In this case,

z is the unique vertex in Dg, (u,v).

Optimal Case 2: (u,v) is an active sibling-pair in Fy with |Dp, (u,v)] = 1 and the

unique vertex in D, (u,v) is a leaf. In this case, z is the mate of the unique vertex in

Dp, (u,v).

We hereafter assume that none of the above optimal cases occurs. Next, we outline how
to find a promising z with MCTS. The idea behind MCTS is to build a small-sized search
tree I'. We will always use p to denote the root of I'. In our case, each node « of I' holds the
following information:

K. Yamada, Z.-Z. Chen, and L. Wang

f(a) : A sub-FF pair of (Fy, Fy). (Comment: We use f(a); and f(a)2 to denote the first
and the second forest in f(«), respectively.)

t(a) : The number of times « has been visited so far.

s(a) : The score of a.

Q(a) : the reward « has received so far.

When creating a node «, we are always given a sub-FF pair (Fl,ﬁ’g) of (Fy, Fy) and
initialize f(a) = (Fi, Fa), t(a) =0, s(a) =0, and Q(«) = 0. To evaluate a child « of a node
B of T, we use the UCT walue of o, which is computed as follows:

Q@) . [2mip)
i) TN T

where C is a constant (called the balance constant and fixed to be 0.2 in our experiments).

The best child of a node 8 in I" is the child of # in I" whose UCT value is maximized over all

children of g in T.

Initially, T has a unique node, namely, the root p created with (F}, F3). We then grow

I by repeatedly performing the following steps (in this order) for a predetermined number

(fixed to be 60 in our experiments) of repetitions:

1. Select a leaf-node « in I" by starting at p and repeatedly descending to the best child of
the current node until reaching a leaf. (Comment: Ties are broken arbitrarily.)

2. Expand «a. (Comment: See Section 4.2.)

3. Perform a simulation for a by calling an approximation algorithm (say, the algorithm
in [7]) on input f(c), and then update s(a) to App(f(a)) + |f(a)2| — |f(p)z2|, where
App(f(«)) means the approximate rSPR distance of f(«) returned by the approximation
algorithm. (Comment: We refer to this step as the simulation step.)

1 if s(a) < the average score of the nodes in I’
4. Compute the reward Q(«) = (o) < 8 .
0 otherwise

5. Backpropagate the reward Q(«) from « all the way to the root p by performing the
following step for all ancestors 5 of o in I':
Increase t(8) by 1 and increase Q(3) by Q(«),
Once finishing growing I' as above, we select the best child v of p. As will be detailed in
Section 4.2, f(7)2 is obtained from f(p)2 by detaching the subtrees rooted at the vertices of
a set S. Finally, we set z to be an arbitrary vertex in S.

4.2 Expanding a Node o

Suppose that we have selected a leaf node « to expand. We first simplify f(a) and then

search f(a); and f(a)2 for an active sibling-pair (u,v) in the following order:

Type 1: (u,v) is an active sibling-pair in f(a)1 with [Dyg(q), (u,v)] = 1.

Type 2: (u,v) is an active sibling-pair in f(a)2 such that Dy, (u,v)| = 1 and the unique
vertex in Dy, (u,v) is a leaf

Type 3: (u,v) is an active sibling-pair in f(«); such that v and v belong to different connected
components of f(«a)s.

Type 4: (u,v) is an active sibling-pair in f(a); such that u and v belong to the same
connected component of f(a)z and £y (4, (u,v) is a root of f(a)s.

Type 5: (u,v) is of none of the above types.

We emphasize that the smaller type of an active sibling-pair is, the more our algorithm

prioritizes it.

5:9

WABI 2019

5:10

rSPR Distance and Hybridization Number

If (u,v) is not found, we know that f(a)s is an AF of f(«) and hence we have nothing
to do with expanding «. Thus, we hereafter assume that (u,v) has been found. Then, we
construct a family F of sets as follows.

If (u,v) is of Type 1 (respectively, 2), then F consists of only Dy(q), (u,v) (respectively,
Dy (a), (u,v)).

If (u,v) is of Type 3 or 4, then F consists of {u} and {v}.

If (u,v) is of Type 5, then F consists of {u}, {v}, and Dy (4, (u,v).

We now use F to create the children of a as follows. For each set S € F, we create a
child Bg, where f(8s)1 = f(a)1 and f(Bs)2 is obtained from f(«)s by detaching the subtrees
rooted at the vertices in S.

5 Solving HNC Approximately

We say that an approximation algorithm A for RDC is useful if given a TT-pair (T1,T3),
A can not only output an approximate value d’ of d(T1,Tz) but also output an AF F of
(Ty,Tz) with |F| = d'. Our approximation algorithm given in Section 4 is useful and so are
all known approximation algorithms for RDC. Using a useful approximation A for RDC,
we can design an approximation algorithm for HNC, denoted by Ay, as follows. Given a
TT-pair (T1,T3), Ap, calls A to obtain an approximate value d’ of d(T1,T>) and an AF F of
(Th,Tz) with |F| = d'. If F is an AAF of (T1,T»), then d’ is also an approximate value of
h(Ty,Ty) and hence Ay, returns d’. So, assume that F is a CAF of (T},T>). Then, as in
Section 2.3, we can transform F' into an AAF of (T7,7T3) by solving an ILP model. Thus, d’
plus the optimal value of the objective function of the model gives us an approximate value
of h(Ty,T») and so A, returns it.

6 Experimental Results

To compare our new algorithms against the previous bests, we have implemented them in
Java. In this section, we compare the real performance of our programs against that of the
previous bests. In our experiments, we use a Linux (x64) desktop PC with Intel i7-4790 CPU
(4.00GHz, 8 threads) and 32GB RAM. As the ILP solver, we use the IBM CPLEX which is
freely available for academic research.

We define the average approzimation ratio (AAR) of an approximation algorithm A (for
RDC or HNC) as follows. For a given instance I, we use A(I) (respectively, B(I)) to denote
the value outputted by A (respectively, an exact algorithm) on input I; the approzimation
ratio of A for I, denoted by r4(I), is %. The AAR of A for a set Z of instances is
ZIEI ra(l)

1])

As in previous studies [1, 3, 7, 10, 16, 17], we here generate simulated datasets randomly.
More specifically, for a given pair (n, m) of parameters, we use the program of [3] to generate
a dataset consisting of 120 TT-pairs, where each TT-pair is generated by first generating a
random phylogenetic tree T with n leaves and then obtaining another phylogenetic tree T5
by applying m random rSPR operations on T;. So, the rSPR distance of each pair (T7,75»)
in the dataset is at most m, but the hybridization number of (T}, T5) may be larger than m.
In our experiments stated below, we choose (n,m) from {(100,50), (200, 80), (200,100)} and
generate a dataset Z(n, m) for each (n,m) in this set.

K. Yamada, Z.-Z. Chen, and L. Wang

Table 1 Comparing the AARs of Approximation Algorithms for RDC.

Svv | CMW | CHN | CombApp | MCTS_CMW | MCTS_CHN | CombMCTS
141 1.133 | 1.135 1.104 1.03 1.03 1.019
1.391 | 1.141 | 1.127 1.108 1.048 1.044 1.031

The first and the second rows show the results for Z(100,50) and Z(200, 100), respectively;
Svv, CMW, and CHN mean the algorithm in [15], [8], and [7], respectively; MCTS__ CMW
and MCTS_ CHN mean our MCTS algorithm with CMW and CHN used in the simulation
step, respectively; CombApp (respectively, CombMCTS) means the algorithm which runs
CMW and CHN (respectively, MCTS_CMW and MCTS__CHN) and outputs the better
solution returned by them.

Table 2 Comparing the AARs of Approximation Algorithms for HNC.

SVV;”L CMW}”L CHN}”L CombApp;m MCTSicMW}m MCTSicHN}m CombMCTS;m
1.397 1.146 1.134 1.1 1.032 1.031 1.02
1.419 1.087 1.083 1.062 1.021 1.02 1.015

The first and the second rows show the results for Z(100,50) and Z(200, 80), respectively.

6.1 Results on Approximating RDC

Since all programs used in our experiments for approximating RDC are fast, it is meaningless
to compare them in terms of running time. So, we compare them in terms of their AARs. We
use Z(100, 50) and Z(200, 100) in the experiment. Our experimental results are summarized in
Table 1. From the table, we can see that MCTS is very helpful in improving the performance of
approximation algorithms for RDC. In particular, our best algorithm (namely, CombMCTS)
achieves a significantly better AAR than the previous best (namely, CHN). We did not test
MCTS__ Svv because the source code of Svv has not been made public.

6.2 Results on Approximating HNC

Since we want the exact hybridization number to be known, we use the two easiest data-
sets (namely, Z(100,50) and Z(200,80)) in this experiment to compare the AARs of our
approximation algorithms for HNC against the previous bests. Our experimental results
are summarized in Table 1. From the table, we can see that MCTS is very helpful in
improving the performance of approximation algorithms for HNC as well. In particular, our
best algorithm (namely, CombMCTS;,,) achieves a much better AAR than the previous
best (namely, Svvy,). Indeed, our experimental results show that for about half the tested
instances, CombMCTSy,,, found optimal solutions.

6.3 Results on Computing HNC Exactly

To compare the speed of our new exact algorithm for HNC against the previous best (namely,
UltraNet in [10]), we use Z(100, 50) and Z(200, 80) again. For each tested instance, we set a
1-hour time limit on the running time of each program. As the result, UltraNet fails to solve
1 (respectively, 16) instances of Z(100, 50) (respectively, Z(200,80)), while our new program
fails to solve none. With the failed instances excluded, the average running time of UltraNet
is 54.46 (respectively, 323.86) seconds for the first (respectively, second) dataset, while that

5:11

WABI 2019

5:12

rSPR Distance and Hybridization Number

of our new program is only 0.66 (respectively, 0.86) seconds. So, our new program is more
than 82 times faster than UltraNet and its superiority in speed over UltraNet becomes
more significant for larger instances.

—— References

1

10

11

12

13

14

15

16

17

18

19

20

B. Albrecht, C. Scornavacca, A. Cenci, and D.H. Huson. Fast computation of minimum
hybridization networks. Bioinformatics, 28(2):191-197, 2012.

M. Baroni, C. Semple, and M. Steel. Hybrids in real time. Systematic Biology, 55(1):46-56,
2006.

R.G. Beiko and N. Hamilton. Phylogenetic identification of lateral genetic transfer events.
BMC Ewvolutionary Biology, 6(15):159-169, 2006.

M. Bordewich and C. Semple. On the computational complexity of the rooted subtree prune
and regraft distance. Annals of Combinatorics, 8(4):409-423, 2005.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and Al in Games, 4(1):1-49, 2012.

Z.-7. Chen, Y. Fan, and L. Wang. Faster exact computation of rSPR distance. Journal of
Combinatorial Optimization, 29(3):605-635, 2015.

Z.-7Z. Chen, Y. Harada, Y. Nakamura, and L. Wang. Faster exact computation of rSPR
distance via better approximation. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, to appear.

Z.-7Z. Chen, E. Machida, and L. Wang. An Approximation Algorithm for rSPR Distance. In
22nd International Computing and Combinatorics Conference, Ho Chi Minh City, Vietnam,
August 2-4, 2016, pages 468-479, 2016.

Z.-7. Chen and L. Wang. Algorithms for reticulate networks of multiple phylogenetic trees.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, 9(2):372-384, 2012.

Z.-Z. Chen and L. Wang. An ultrafast tool for minimum reticulate networks. Journal of
Computational Biology, 20(1):38-41, 2013.

L. Collins, S. Linz, and C. Semple. Quantifying hybridization in realistic time. J. of Comput.
Biol., 18(10):1305-1318, 2011.

J. Hein, T. Jing, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees.
Disc. Appl. Math., 71(1-3):153-169, 1996.

D.H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms and
Applications. Cambridge University Press, 2010.

S. Kelk, L. van Iersel, N. Lekic, S. Linz, C. Scornavacca, and L. Stougie. Cycle killer...qu’est-ce
que c’est? On the comparative approximability of hybridization number and directed feedback
vertex set. STAM J. Discrete Math., 26(4):1635-1656, 2012.

F. Schalekamp, A. van Zuylen, and S. van der Ster. A Duality Based 2-Approximation
Algorithm for Maximum Agreement Forest. In 43rd International Colloquium on Automata,
Languages and Programming, Rome, Italy, July 11-15, 2016, pages 70:1-70:14, 2016.

L. van Iersel, S. Kelk, N. Lekic, and C. Scornavacca. A practical approximation algorithm
for solving massive instances of hybridization number for binary and nonbinary trees. BMC
Bioinformatics, 15(127), 2014.

C. Whidden, R.G. Beiko, and N. Zeh. Fast FPT algorithms for computing rooted agreement
forest: theory and experiments. In International Symposium on Experimental Algorithms,
Naples, Italy, May 20-22, 2010, pages 141-153, 2010.

C. Whidden, R.G. Beiko, and N. Zeh. Fixed-parameter algorithms for maximum agreement
forests. SIAM J. Comput., 42(4):1431-1466, 2013.

C. Whidden and N. Zeh. A unifying view on approximation and FPT of agreement forests.
In 9th International Workshop on Algorithms in Bioinformatics, Philadelphia, PA, USA,
September 12-13, 2009, pages 390-401, 2009.

Y. Wu. A practical method for exact computation of subtree prune and regraft distance.
Bioinformatics, 25(2):190-196, 2009.

pClay: A Precise Parallel Algorithm for Comparing
Molecular Surfaces

Georgi D. Georgiev*
Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

Kevin F. Dodd*
Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

Brian Y. Chen!
Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
chen@cse.lehigh.edu

—— Abstract

Comparing binding sites as geometric solids can reveal conserved features of protein structure that

bind similar molecular fragments and varying features that select different partners. Due to the
subtlety of these features, algorithmic efficiency and geometric precision are essential for comparison
accuracy. For these reasons, this paper presents pClay, the first structure comparison algorithm to
employ fine-grained parallelism to enhance both throughput and efficiency. We evaluated the parallel
performance of pClay on both multicore workstation CPUs and a 61-core Xeon Phi, observing
scaleable speedup in many thread configurations. Parallelism unlocked levels of precision that
were not practical with existing methods. This precision has important applications, which we
demonstrate: A statistical model of steric variations in binding cavities, trained with data at the level
of precision typical of existing work, can overlook 46% of authentic steric influences on specificity
(p < .02). The same model, trained with more precise data from pClay, overlooked 0% using the
same standard of statistical significance. These results demonstrate how enhanced efficiency and
precision can advance the detection of binding mechanisms that influence specificity.

2012 ACM Subject Classification Applied computing — Molecular structural biology; Computing
methodologies — Volumetric models; Computing methodologies — Parallel algorithms

Keywords and phrases Specificity Annotation, Structure Comparison, Cavity Analysis

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.6

1 Introduction

Molecular shape and electric fields have a strong influence on binding specificity. At binding
interfaces, complementary molecular shapes can accommodate some ligands and hinder
those that fit poorly. Electric fields attract molecules with complementing charges and repel
others. This connection, between molecular recognition and the geometric complementarity
of surfaces and fields, is evidence by which human investigators infer the roles of individual
mechanisms in function. Comparison software can detect this kind of evidence and use it to
make similar inferences. Some methods detect proteins with geometrically conserved binding
sites, supporting the inference that they bind similar partners [12, 7, 4, 27, 33, 11, 15, 18].
Other methods find variations in the electric fields near binding sites, suggesting that they
accommodate differently charged ligands [19, 5, 29, 34]. These techniques, and their potential
for large scale and accurate applications, depend on rapid and precise digital representations
of molecular shape, which are the focus of this paper.

Rapid and precise algorithms can integrate many observations to support inferences that
are impossible with single comparisons. For example, a single comparison does not provide a

1 Corresponding Author * Equal contribution

© Georgi D. Georgiev, Kevin F. Dodd, and Brian Y. Chen;

37 licensed under Creative Commons License CC-BY
19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 6; pp. 6:1-6:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:chen@cse.lehigh.edu
https://doi.org/10.4230/LIPIcs.WABI.2019.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

pClay: A Precise Parallel Algorithm for Comparing Molecular Surfaces

frame of reference that would be needed to assess whether or not two binding sites are different
enough that they have different binding preferences. After all, conformational variations
and single mutations can occur in many ways that change nothing about binding. This kind
of inference is traditionally reserved for experts with a wealth of biochemical experience.
However, statistical models can be trained on the steric differences between closely related
ligand binding sites that prefer the same ligands. In such cases, structures of close homologs
or even single mutants could provide the primary data, but the subtle variations needed to
train the model would have to be found with many individual comparisons. Once trained,
the statistical model provides a frame of reference that reveals steric variations that are too
large to be typical of binding sites with the same binding preferences. The large variations
found would therefore be indicators of binding sites that have different binding preferences
[6]. To support and advance statistical models like these, this paper presents pClay, the first
structure comparison algorithm that maximizes precision and computational throughput
using arbitrary precision representations and parallel algorithms.

a) Output d) e), "y f)

Q

Input Int;r-s_t-::ction b) C)
Union

Difference

Figure 1 CSG operations on Molecular Surfaces. a) Basic CSG operations. Input solids are
yellow with dotted outlines. Outputs have solid outlines. b) Ligand with grey atoms and white
bonds, with spheres centered on each atom (light blue). ¢) The union of atom-centered spheres.
d) Two molecular surfaces (blue, red) in complex with two ligands shown as sphere unions (black
lines). e) CSG difference of the sphere unions minus molecular surfaces (dotted lines), shown with
molecular surfaces (blue and red, no outline) and envelope surfaces (black outline). f) Intersection
of differences with envelope surfaces (light blue and red). g) The CSG difference between binding
cavities reveals a variation in steric hindrance that causes differences in binding preferences.

pClay performs geometric comparisons using Constructive Solid Geometry (CSG) opera-
tions (Fig. la) on analytically represented three dimensional solids. These operations, which
include unions, intersections and differences, can be combined like arithmetic operators to
sculpt a geometric solid. This sculptural nature of CSG inspires both the name pClay, a
portmanteau of “protein” and “clay,” and also the solid geometric approach to the analysis of
protein shape that pClay makes possible. For example, the union of large spheres centered at
ligand atoms can represent the neighborhood of a ligand (Fig. 1b,c). The difference between
the spheres and the molecular surface of a receptor can describe the solvent-accessible binding
cavity in the receptor (Fig. 1d,e). The CSG difference between one binding cavity and another
is the cavity region that is solvent accessible in one protein and inaccessible in the other (Fig.
1g). This difference, the variation between the two cavities, could be small, when binding
preferences are similar, or large, when steric hindrance creates differences in specificity.

The utility of these computations can be seen in multiple applications: When applying
this approach to the S1 subsites of trypsins and elastases, we observed that it could identify
threonine 226 which, in elastases, sterically hinders the longer substrates prefered by trypsins
that might otherwise bind [8]. To illustrate the importance of precision, that region of
hindrance is only 50 percent larger than a carbon atom (31 A3). A similar approach identified

G. D. Georgiev, K. F. Dodd, and B.Y. Chen

“gatekeeper” residue 338 in the tyrosine kinases [14], which creates steric clash with larger
drugs [22]. We have also observed that a CSG-based comparison of electrostatic isopotentials
can reveal single amino acids crucial for selecting ligands in the in the cysteine proteases [5]
and for stabilizing the three interfaces of the SMAD trimer [29]. Experimental validation has
demonstrated the correctness of our prediction that arginine 235 forms critical electrostatic
interactions for the activity of the ricin toxin [34]. By making CSG analysis possible on
geometric solids that are exact, up to machine precision, pClay ensures that subtle but
influential details cannot be overlooked.

The precision that pClay achieves derives from solids that have analytical representations,
like spheres and tetrahedra. pClay can assemble these primitives into solvent excluded
regions, which we call molecular solids. The boundary of a molecular solid is the classic
molecular surface, also known as the solvent excluded surface or Connolly surface, which was
originally developed by Richardson and others [21, 9]. While we can construct molecular solids
with CSG operations on many individual primitives, pClay exploits molecular properties to
sidestep those operations and achieve greater efficiency. The resulting molecular solids avoid

the “photocopier effect”, where multiple CSG operations can accumulate geometric errors.

They can also be exported as triangle meshes, generated at an arbitrary degree of precision,
for compatibility with other software.

pClay enhances computational efficiency through parallelism. We achieve parallelism in
pClay in a number of ways, most notably by recasting Marching Cubes, a traditional method
for implementing CSG operations [23, 17], into a series of parallel breadth first searches
(BFS). In pClay, we use BFS to traverse cubic lattices and identify contiguous regions of cubes
within defined boundary regions. These breadth first traversals can be distributed evenly
across arbitrary numbers of threads. By dividing the computation in this way, parallelism
can make comparisons faster and also enable more detail to be considered. This advancement

stands in qualitative contrast with existing efforts to parallelize structure comparisons (e.g.

[7]), where throughput was increased without enhancing precision. To demonstrate the
parallel scalability of our method, pClay was tested on both modern multicore processors as
well as on a Xeon Phi, a manycore processor with 61 cores.

Relative to existing methods, pClay is the first algorithm to use arbitrarily precise
representations of molecular surfaces for protein structure comparison. It is also the first
structure comparison method to use fine grained parallelization, enhancing both precision and
computational throughput. Several methods do employ arbitrarily precise representations of
the molecular surface, using NURBs [2], alpha shapes [32] or spherical coordinates [26, 28],

but they are used for visualization and have not been integrated into comparison algorithms.

Other methods parallelize structure comparison to refine representations of binding sites
[7], to accelerate database searches [20], or create cloud-based search services [16], but use
parallelism to enhance throughput and not also precision. To our knowledge, pClay is the
first integration of arbitrary precision and parallelism into a structure comparison method.

2 Methods

As input, pClay accepts a collection of geometric solids and an expression of CSG operations.

We convert the CSG expression into a binary tree, a CSG tree, where the nodes of the
tree are geometric solids. The input solids, which include spheres, spindles, tetrahedra or
molecular surfaces, are leaves on the CSG tree, while the result of CSG operations are the
nonleaf nodes. The final result of all operations, the root node, is the output. pClay can also
generate a closed triangular mesh at user-defined resolutions to approximate the boundary

6:3

WABI 2019

6:4

pClay: A Precise Parallel Algorithm for Comparing Molecular Surfaces

of the output.

To perform CSG operations, pClay implements a parallel version of Marching Cubes [23]
(Section 2.1), which we summarize below. Our method requires three basic functions to be
performed by every node in the CSG tree. These functions are containsPoint(), intersectSeg-
ment(), and findSurfaceCubes(). Given any point p in three dimensions, containsPoint(p)
determines exactly if p is inside or outside the solid. A point exactly on the surface is said
to be inside the solid. Second, given a line segment s, intersectSegment(s) determines all
points of intersection between the surface of the operand and s, as well as the interior or
exterior state of each interval on the segment. Finally, given a cubic lattice 1 that surrounds
the primitive, findStartingCubes(l) finds a few cubes of the lattice that are surface cubes,
having at least one corner inside and one corner outside the solid. These cubes are used
to initiate a parallel breadth first search for all surface cubes, called findAllSurfaceCubes(),
which is implemented once for all primitives (Section 2.2). To implement leaf nodes it is
thus sufficient to describe how these basic functions are implemented for that solid. Nonleaf
nodes implement the basic functions as logical operations, as we will explain in Section 2.3.

Below, we first describe how the output approximations are generated using a paral-
lelization of Marching Cubes and how we find all surface cubes beginning the output from
the starting cubes generated by the basic function. We next explain how the three basic
functions are implemented for every primitive. Finally, we detail how the basic functions are
implemented in nonleaf nodes.

2.1 Parallel Marching Cubes

As input, Marching Cubes accepts a set of geometric solids (Fig. 2a), which we will refer to
as operands, and a CSG expression tree to be performed on the operands. It also accepts a
resolution parameter in angstrom units that specifies the degree to which the result of the
CSG expression should be approximated in the output.

We begin by defining an axis aligned cubic lattice surrounding the input operands, where
each cube has sides equal to the user-specified resolution parameter (Fig. 2b). This step is
performed by examining the sizes of all operands and the related CSG operations.

Once the lattice is defined, we invoke findStartingCubes(l) on each input solid (Fig. 2c¢,f).
The surface cubes identified are provided as input to findAllSurfaceCubes(), which identifies
all remaining surface cubes of all inputs solids in parallel (Fig. 2h). The process of identifying
surface cubes for all input solids also necessarily determines the interior/exterior state of the
points on these cubes in relation to specific solids. We then compute the interior/exterior
state of these points in relation to all other solids in an embarrassingly parallel manner. Once
this assessment is made for any point, we can access whether that point is inside or outside
the output region (Fig. 2i). In this way, we find the subset of cubes that contain a corner
inside and a corner outside the output region.

Next, on each cube of the output surface, we identify edges that connect one corner that is
inside the output region to one that is outside (Fig. 2j). Since these edges must pass through
the output surface, we call segIntersect() on the root node to find the point of intersection
between the edge and the output surface (Fig. 2k). This process is parallelized across the list
of edges, ensuring that the calculation is never duplicated when dealing with adjacent cubes.

Finally, once intersections for every edge on every surface cube are determined, triangles
are generated in each cube following a lookup table (Fig. 21). The collection of all resulting
triangles form a closed triangular mesh that approximates the output region (Fig. 2m,n).

G. D. Georgiev, K. F. Dodd, and B.Y. Chen

Figure 2 a) Input operands (red, green). b) Cubic lattice around operands (gray). c,f) surface
cubes (gray boxes). d,e,g) several steps of floodfill propagation (starting at yellow circle, following
yellow arrow). i) Corner points of each surface cube with exterior (yellow) or interior (red) state. j)
Segments that cross the boundary of the output surfaces (Black lines). k) Intersection points (white
circles) segments intersect the output surface. 1) Lookup table of 3D surface constructions with
different edge intersection patterns. m,n) Triangles (black lines) approximating output region (gray).

2.2 Finding All Surface Cubes

find AllSurfaceCubes() accepts a cubic lattice (Fig. 2b), a list of starting cubes (e.g. Fig. 2c¢,f),
and a CSG tree node for which to find all remaining surface cubes. We perform a parallel
floodfill algorithm to find all remaining surface cubes: Each available thread is assigned a
cube from the queue. Each thread tests cubes adjacent to the assigned cube to find any
that are also on the surface of the input solid (Fig. 2d). This test is performed by calling
containsPoint() on the corners of the adjacent cube. If at least one corner is inside the input
solid and another corner is outside, the adjacent cube is stored on a queue of upcoming
cubes. Once all cubes adjacent to the initial surface cubes have been either added to the
queue or discarded, all threads are then directed to find cubes adjacent to those still on the
queue (e.g. Fig. 2e), and so on, until the queue is empty, and all cubes on the surface of the
input solid have been identified. Duplicate entries onto the queue are avoided by recording
previously-examined cubes on a parallel hash table.

2.3 Nodes of the CSG Tree

pClay supports several kinds of simple and complex solids for CSG operations. These are
spheres, tetrahedra, spindles, and molecular surfaces. Our implementation of each type

supports three basic functions: containsPoint(), intersectSegment(), and findSurfaceCubes().

To describe the implementation of these solids, we describe how each method is implemented

for the solid. Spheres and tetrahedra are excluded because their implementations are trivial.

Spindles. Spindles (Fig. 3a) define the solvent excluded region between two atoms that are

too close to permit a sphere representing a solvent molecule to pass between them (Fig. 3b).

“Broken” spindles (Fig. 3c) can occur when the edge of the solvent sphere can pass beyond
the centerline of the two atoms. Conceptually, spindles are the volume within a cylinder
minus the volume within a coaxial torus. We define spindles by center point, perpendicular
vector, major radius, and minor radius taken from the torus (Fig. 3d), and end cap positions
along the perpendicular vector (Fig. 3e). The center point is the perpendicular projection
of the center of the solvent sphere onto the segment between atom centers (Fig. 3b). The
perpendicular vector points from the center point towards the center of one atom. The major
radius is the radius of the circle defined by the center of the solvent sphere as it rotates

6:5

WABI 2019

6:6

pClay: A Precise Parallel Algorithm for Comparing Molecular Surfaces

Figure 3 a) Spindle. b) Formation of a spindle (gray) from two atoms (red) and a solvent sphere
(yellow). ¢) “Broken” spindle. d) Torus defining the characteristics of a spindle, including center
point (black dot), perpendicular vector (vertical arrow), major radius (arrow from center point to
ellipse), minor radius (arrow from ellipse to torus surface). e) Cylinder (light blue).

about the two atoms. The minor radius is the radius of the solvent sphere. The endcaps are
circles perpendicular to the perpendicular vector that are defined by the point of tangency
between the solvent sphere and the atoms, as the solvent sphere rotates about the atoms.
The boundary surface of a spindle is defined by the end caps and elsewhere by the interior
curve of the torus (Fig. 3d).

To implement containsPoint(p), note that the spindle is rotationally symmetric about the
perpendicular vector. Thus, a plane K can be defined coplanar to p and the perpendicular
vector of the torus. In K, p is inside the spindle only if it is inside the rectangle that
defines the rotational cross section of the cylinder and also outside the circle that defines the
rotational cross section of the torus.

intersectSegment(s) is computed by first setting up the calculation by translating the
center of the spindle to the origin and rotating its axis to align it with the x axis. s is
translated and rotated with it. We can describe the torus aligned to the x axis as

(x2+y2+22+R2—r2)2—4R2(y2+22):O

where R is the major radius, and r is the minor radius of the torus. In the torus equation,
we substitute z, y and z with the line expressions xg + tds, yo + tdy, and 2o + td., where
Zo, Yo, 2o are segment starting points, and ¢ parameterizes the line containing the line segment.
The result of this substitution is a quartic equation on ¢, and roots of the equation will be
parameters on the segment at points of intersection between the segment and the torus. We
converted this equation into a monic quartic using Maxima, a computer algebra system [25].

To find the roots of this equation, we produce the Frobenius companion matrix of this
quartic polynomial. The roots are the eigenvalues of this matrix. Here, complex eigenvalues
will correspond to nonexistent points of intersection between the segment and the torus while
real eigenvalues correspond to intersection points on the torus. We find these intersection
points and eliminate any intersections that are outside of the cylinder. Separately, we also
find intersections with the end caps of the spind<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>