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Preface

This proceedings volume contains papers presented at the 19th Workshop on Algorithms in
Bioinformatics (WABI 2019), which was held in Niagara Falls, New York, USA, September
8–10, 2019. WABI 2019 was held together with the 10th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM BCB).

The Workshop on Algorithms in Bioinformatics is an annual conference established
in 2001 to cover all aspects of algorithmic work in bioinformatics, computational biology,
and systems biology. The workshop is intended as a forum for discrete algorithms and
machine-learning methods that address important problems in biology (particularly problems
based on molecular data and phenomena); that are founded on sound models; that are
computationally efficient; and that have been implemented and tested in simulations and
on real data-sets. The meeting’s focus is on recent research results, including significant
work-in-progress, as well as identifying and exploring directions of future research.

In 2019, a total of 47 manuscripts were submitted to WABI from which 24 were selected
for presentation at the conference and are included in this proceedings volume as full papers.
Extended versions of selected papers have been invited for publication in a thematic series in
the journal Algorithms for Molecular Biology (AMB), published by BioMed Central. The 24
papers selected for the conference underwent a thorough peer review, involving at least three
(and often four or five) independent reviewers per submitted paper, followed by discussions
among the WABI Program Committee members. The selected papers cover a wide range
of topics including phylogenetic trees and networks, biological network analysis, sequence
alignment and assembly, genomic-level evolution, sequence and genome analysis, RNA and
protein structure, topological data analysis, and more.

We thank all the authors of submitted papers and the members of the WABI Program
Committee and their reviewers for their efforts that made this conference possible. We are
also grateful to the WABI Steering Committee for their help and advice. We thank all
the conference participants and speakers who contributed to a great scientific program. In
particular, we are indebted to the keynote speaker of the conference, Nadia El-Mabrouk,
for her presentation. WABI 2019 is grateful for the support of the sponsors of ACM BCB
2019, The ACM, and SIGBio. We thank Letu Qingge for setting up the WABI webpage,
Michael Wagner for his assistance with putting together the WABI conference proceedings,
and the ACM BCB Organizing Committee, especially Xinghua (Mindy) Shi for her efforts
to coordinate WABI and ACM-BCB 2019. Finally, we also thank Dong Si, Michael Buck
and Pierangelo Veltri for their hard work in making all the local arrangements to ensure an
exciting and successful WABI and ACM BCB.
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Abstract
We combine two fundamental, previously studied optimization problems related to the construction
of phylogenetic trees called maximum rooted triplets consistency (MAXRTC) and minimally resolved
supertree (MINRS) into a new problem, which we call q-maximum rooted triplets consistency
(q-MAXRTC). The input to our new problem is a set R of resolved triplets (rooted, binary
phylogenetic trees with three leaves each) and the objective is to find a phylogenetic tree with
exactly q internal nodes that contains the largest possible number of triplets from R. We first prove
that q-MAXRTC is NP-hard even to approximate within a constant ratio for every fixed q ≥ 2, and
then develop various polynomial-time approximation algorithms for different values of q. Next, we
show experimentally that representing a phylogenetic tree by one having much fewer nodes typically
does not destroy too much triplet branching information. As an extreme example, we show that
allowing only nine internal nodes is still sufficient to capture on average 80% of the rooted triplets
from some recently published trees, each having between 760 and 3081 internal nodes. Finally, to
demonstrate the algorithmic advantage of using trees with few internal nodes, we propose a new
algorithm for computing the rooted triplet distance between two phylogenetic trees over a leaf label
set of size n that runs in O(qn) time, where q is the number of internal nodes in the smaller tree,
and is therefore faster than the currently best algorithms for the problem (with O(n log n) time
complexity [SODA 2013, ESA 2017]) whenever q = o(log n).
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1 Introduction

Background. Phylogenetic trees are used in biology to represent evolutionary relationships.
The leaves in such a tree correspond to species that exist today and internal nodes to ancestor
species that existed in the past. An important problem when studying the evolution of
species is, given some data describing the species, to construct a phylogenetic tree that
supports the input data as much as possible. The supertree approach [3] deals with the
challenging problem of constructing a reliable phylogenetic tree for a large set of species by
combining several accurate trees for small, overlapping subsets of the species into one final
tree. Depending on the type of data that is available and the type of trees that we want to
construct, we obtain several variants of the same problem.
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Figure 1 Let L = {1, 2, 3, 4, 5} and R = {45|3, 25|3, 13|5, 24|5, 23|1}. In this example no tree T

such that |R ∩ rt(T )| = 5 exists. Left figure: optimal solution for MAXRTC with value 4. Right
figure: optimal solution for 3-MAXRTC with value 3.

Problem Definition. A rooted phylogenetic tree is a rooted unordered tree in which every
leaf has a distinct label and every internal node has at least two children. In this article, for
simplicity we use the word “tree” to refer to a “rooted phylogenetic tree”. A resolved triplet
is a binary tree with three leaves. The resolved triplet with leaf labels x, y, and z where z is
closest to the root is denoted by xy|z. From now on when referring to a “triplet” we mean a
“resolved triplet”. Let T be a tree on a leaf label set L of size n. For a node u ∈ T , deg(u) is the
number of children of u and T (u) is the subtree induced by u and all the proper descendants
of u. For two nodes u and v in T , lca(u, v) is the lowest common ancestor node of u and v in T .
We say that the triplet xy|z is induced by T if lca(x, z) = lca(y, z) and lca(x, y) 6= lca(x, z).
Let rt(T ) be the set of all triplets induced by T . Given a set R of triplets, we say that R is
consistent with T , or equivalently T is consistent with R, if R ⊆ rt(T ).

Given a set R of triplets on a leaf label set L of size n, in the q-maximum rooted triplets
consistency problem, denoted q-MAXRTC, the goal is to find a tree T with exactly q internal
nodes such that |R∩ rt(T )| is maximized, i.e., the total number of triplets induced by T that
are also in R is as large as possible. An example can be seen in Figure 1.

Let A be an algorithm for any maximization problem. Given an input instance I,
let opt(I) be the value of an optimal solution and A(I) the value of the solution returned
by A. Let 0 ≤ r ≤ 1. We say that A is an r-approximation algorithm with relative ratio r,
ifA(I) ≥ r·opt(I) for any I. Similarly, A is an r-approximation algorithm with absolute ratio r,
if A(I) ≥ r · |I| for any I. In particular, for q-MAXRTC we have that A(I) ≥ r · |R|. From
here on and unless otherwise stated, when we refer to any ratio r, we imply an absolute ratio.

Previous Work. Aho et al. [1] proposed a polynomial-time algorithm, called BUILD, that
can determine if there exists a tree inducing all triplets from an input R, and if such a tree
exists, output it. As observed by Bryant [6], the BUILD algorithm does not always produce a
tree with the minimal number of internal nodes. In fact, BUILD might return a tree with Ω(n)
more internal nodes than needed [12], which is undesirable because unnecessary internal nodes
may suggest false groupings of the leaves, also known as spurious novel clades [3]. Moreover,
scientists typically look for the simplest possible explanation for some given observations and
would prefer a tree that makes as few additional statements as possible about evolutionary
relationships that are not supported by the input data. This motivates the minimally resolved
phylogenetic supertree (MINRS) problem, where the output is a tree (if one exists) inducing
all triplets from R while having the minimum number of internal nodes. The decision version
of MINRS is NP-complete for q ≥ 4 and polynomial-time solvable for q ≤ 3 [12], where q is
the total number of internal nodes in the output tree. An exact exponential-time algorithm
for MINRS and experimental results for the non-optimality of BUILD for MINRS were given
in [14]. For the special case of caterpillar trees (trees in which every internal node has at
most one non-leaf child), MINRS is polynomial-time solvable for any q [12].

The above problems only consider finding trees that induce all triplets from R. How-
ever, in situations where such a tree cannot be constructed, e.g., due to a single error in
the input triplets, it is still useful to build a tree that induces as many of the triplets
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from R as possible. This has been formalized as the maximum rooted triplets consistency
problem (MAXRTC). Bryant [6] showed that MAXRTC is NP-hard and Ga̧sieniec et al. [10]
proposed a polynomial-time top-down 1

3 -approximation algorithm that always returns a
caterpillar tree. Byrka et al. [8] showed that a bottom-up algorithm by Wu [21] can be mod-
ified to also obtain a polynomial-time 1

3 -approximation algorithm. In [7], Byrka et al. gave
a 1

3 -approximation algorithm by derandomizing a randomized algorithm. In Section 3 below,
we refer to the algorithm in [10] as One-Leaf-Split (OLS) and the algorithm in [8] as Wu’s
algorithm (WU). For more results related to the computational complexity of MAXRTC, see [8].

Motivation. The existing approximation algorithms for MAXRTC typically produce trees
with an arbitrary number of internal nodes. For example, the algorithms in [7, 8] always
produce a tree with n − 1 internal nodes and the algorithm in [10], n − 1 for certain R.
However, due to the issue of spurious novel clades [3] mentioned above, biologists may prefer
to build a supertree with few internal nodes that is still consistent with a large number of
input triplets, which leads to the new problem q-MAXRTC introduced in this paper. More
precisely, q-MAXRTC can be regarded as a combination of MINRS and MAXRTC that
models how well the triplet branching information contained in the set of input triplets can
be preserved while forcing the size of the output tree to be bounded by a user-specified
parameter q. On a high level, q-MAXRTC is related to the problem of compressing a large
data file into a small data file; as an analogy, consider the widely used JPEG compression
method for images. Both JPEG and q-MAXRTC are examples of lossy compression where
the user controls a parameter yielding a trade-off between the size of the compressed data (the
number of bits for JPEG and the number of internal nodes for q-MAXRTC) and the amount
of preserved information (the image quality for JPEG and the number of induced triplets
in R for q-MAXRTC). Finally, in the design of phylogenetic tree comparison algorithms,
trees with fewer internal nodes sometimes admit faster running times. For example, given two
trees built on the same leaf label set of size n, the fastest known algorithms for computing
the so-called rooted triplet distance between the two trees takes O(n logn) time [4, 5], but
if at least one of the input trees has O(1) internal nodes then the time complexity can be
reduced to O(n); see Section 5. As the available published trees get larger and larger (the
total number of species on Earth was recently estimated to be 1 trillion [17]), to make their
comparison practical, it may become necessary to approximate them using trees with fewer
internal nodes while keeping enough triplet branching structure to represent them accurately.

New Results and Outline of the Article. Section 2 shows that q-MAXRTC is NP-hard
for every fixed q ≥ 2 and gives some inapproximability results. Section 3 describes our new
approximation algorithms. Section 4 provides implementations and our experimental results.
Section 5 presents a new algorithm for computing the rooted triplet distance between two
trees. Finally, Section 6 contains some open problems. For a summary of previous and new
results related to q-MAXRTC refer to the table below. Due to space constraints, some proofs
and experimental results have been deferred to the journal version.

Year Reference Deterministic q Approximation Type

1999 Ga̧sieniec et al. [10] yes unbounded 1/3 absolute
2010 Byrka et al. [7, 8] yes n− 1 1/3 absolute
2019 new [Section 3.1] no 2 1/2 relative
2019 new [Section 3.1] yes 2 1/4 relative
2019 new [Theorem 7] yes 2 4/27 absolute
2019 new [Theorem 9] yes q ≥ 3 1/3− 4/(3(q + q mod 2)2) absolute

WABI 2019
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2 Computational Complexity of q-MAXRTC

In this section, we study the computational complexity of q-MAXRTC. We first address the
NP-hardness of q-MAXRTC, and then present some inapproximability results.

I Theorem 1. q-MAXRTC is NP-hard for every fixed q ≥ 2.

Proof. We consider the known NP-hard problem MAX q-CUT [15], in which the input is an
undirected graph G = (V,E) and the goal is to find a partition (A1, A2, . . . , Aq) of V such
that the total number of edges connecting two nodes residing in different sets, i.e., the size
of the cut, is maximized. We prove that q-MAXRTC is NP-hard by reducing MAX q-CUT
to q-MAXRTC as follows: let L = V ∪ {z} and R = {xz|y, yz|x : {x, y} ∈ E}. We claim
that there exists a cut (A1, A2, . . . , Aq) of size k in G if and only if there exists a solution
to q-MAXRTC that is consistent with k triplets from R. We now prove the claim.

First, assume that there exists a cut (A1, A2, . . . , Aq) of size k in G. We construct a
tree T that is rooted at the vertex a1 with additional internal nodes a2, . . . , aq such that ai+1
is a child of ai for 1 ≤ i ≤ q− 1. For i ∈ {1, 2, . . . , q}, we attach |Ai| leaves bijectively labeled
by Ai as children of ai, and the vertex z is added as a child of aq. Consider any edge {x, y}
in the cut. By the definition of a cut, x ∈ Ai and y ∈ Aj for two different i, j ∈ {1, 2, . . . , q}.
If i < j, then yz|x will be consistent with T , since lca(y, z) = aj is a proper descendant
of lca(x, y) = lca(x, z) = ai. Similarly, if i > j, then xz|y will be consistent with T . For
every edge in the cut, exactly one triplet will be consistent with T , so T will be consistent
with exactly k triplets from R.

Conversely, assume that there exists a tree T with q internal nodes a1, a2, . . . , aq that
is consistent with k triplets from R. Let Ai = {x : x is a child of ai} \ {z, a1, a2, . . . , aq}
for 1 ≤ i ≤ q. Define S = R ∩ rt(T ). For each xz|y ∈ S, clearly x and y belong to
different sets Ai and Aj for some i, j ∈ {1, 2, . . . , q}, and thus the corresponding edge {x, y}
contributes one to the size of the cut, making the size of the cut |S| = k. J

From the inapproximability of MAXCUT [11], we obtain the following corollary:

I Corollary 2. Unless P=NP, 2-MAXRTC cannot be approximated in polynomial time within
a relative ratio of 16/17 + ε, for any constant ε > 0.

From the inapproximability of MAX q-CUT [15], we obtain the following corollary:

I Corollary 3. Unless P=NP, for any q ≥ 3, it holds that q-MAXRTC cannot be approximated
in polynomial time within a relative ratio of 1− 1/(34q) + ε, for any constant ε > 0.

3 Approximability of q-MAXRTC

Intuitively, a tree with a larger number of internal nodes should be able to induce more
triplets from a given R. The next lemma shows that this is indeed so, and upper bounds the
total number of triplets that can be induced. Define opt(q) to be the maximum number of
triplets that can be consistent with a tree T with q internal nodes.

I Lemma 4. Let 2 ≤ q′ ≤ q ≤ n− 1. We have that opt(q′) ≤ opt(q) ≤ d q−1
q′−1eopt(q′).

Proof. We start by showing that opt(q′) ≤ opt(q). Let T ′ be the tree with q′ internal nodes
that induces opt(q′) triplets from R. We can create a tree T with q internal nodes that
induces at least as many triplets from R as follows. Let T = T ′. While T does not have q
internal nodes, let u ∈ T such that deg(u) > 2 and u1, u2 be two children of u. Create an
internal node u12, make u1 and u2 the children of u12 and u12 the child of u.
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Figure 2 An example. Let T be the tree on the left with 9 internal nodes. The tree T ′ on the
right with 3 internal nodes is created by deleting all internal nodes in T except W = {a, d, g}.

To show the second half of the inequality, proceed as follows. Define the delete operation
on any non-root node u in a tree as the operation of making the children of u become children
of the parent of u, and then removing u and all edges incident to u. Let T be the tree that
induces opt(q) triplets from R. Let t = ab|c be a triplet induced in T that is also in R.
Anchor t in lca(a, b). Let W = {u1, u2, . . . , uq′} be any set of q′ internal nodes in T such
that the root of T is included in W . Create a tree T ′ with q′ internal nodes by letting T ′ be
a copy of T and applying the delete operation to every internal node of T ′ not in W . Note
that for a node u in T such that u ∈ W , every triplet anchored in u will also be induced
by T ′. An example can be found in Figure 2.

Let T ′1, T ′2, . . . , T ′λ be trees that are built like T ′, but in a way such that every internal
node u ∈ T except r(T ), corresponds to an internal node of exactly one such tree. Observe
that λ = d q−1

q′−1e.We can create these trees with the following procedure:
Store all internal nodes of T except r(T ) in the ordered set S, in any order from left to
right and set j = 1.
If |S| ≥ q′ − 1, pick and remove from S the first q′ − 1 internal nodes to define W , and
construct T ′j . Otherwise, pick the remaining nodes in S to define W and create T ′j just
like T ′ but with |S| = |W | nodes instead of q′ − 1. Set j = j + 1.
if |S| = 0 stop. Otherwise go to the previous step.

We then have: |rt(T ) ∩R| = opt(q) ≤
∑λ
i=1 |rt(T ′i ) ∩R| ≤ λopt(q′) = d q−1

q′−1eopt(q′). J

3.1 Approximation Algorithms Based on MAX 3-CSP
In this subsection, we consider polynomial-time approximation algorithms. MAX 3-AND is
a Boolean satisfiability problem in which we are given as input a logical formula consisting
of a set of clauses, each being a conjunction (AND) of three literals formed from a set of
Boolean variables, and the goal is to assign each Boolean variable a True/False-value so
that the total number of satisfied clauses is maximized. Both MAX 3-AND and the well-
known MAX 3-SAT problem are special cases of the MAX 3-CSP problem [22], where a clause
can be an arbitrary function over three literals. The following lemma shows that 2-MAXRTC
can be reduced to MAX 3-AND in polynomial time while preserving the approximation ratio.

I Lemma 5. If MAX 3-AND can be approximated within a factor of r, then 2-MAXRTC
can also be approximated within a factor of r.

Lemma 5 allows every approximation algorithm for MAX 3-AND to be used to approx-
imate 2-MAXRTC. For MAX 3-AND, Zwick [22] presented a randomized 1

2 -approximation
algorithm with relative ratio based on semi definite programming. Trevisan [19] presented a
deterministic 1

4 -approximation algorithm with relative ratio based on linear programming. A
deterministic algorithm based on local search by Alimonti [2], would satisfy ≥ 1

8 |C| number
of clauses, giving a 1

8 -approximation ratio for 2-MAXRTC. Since this ratio is absolute, from
Lemma 4 this algorithm also gives a 1

8 -approximation ratio for q-MAXRTC, where q ≥ 3.

WABI 2019
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3.2 Approximation Algorithms Based on Derandomization
This subsection also assumes that all approximation algorithms run in polynomial time. Re-
ducing 2-MAXRTC to MAX 3-AND can produce a deterministic 1

8 -approximation algorithm
for q-MAXRTC, however from Lemma 4, we should be able to capture more triplets by
allowing more internal nodes. The algorithms based on MAX 3-AND cannot be directly
extended to support Lemma 4. We propose a new deterministic algorithm for q-MAXRTC
that achieves a 4

27 -approximation ratio, based on a randomized algorithm for 2-MAXRTC,
and then show how to extend it to get better approximation ratios for higher values of q.
Note that the only available related algorithm based on derandomization by Byrka et al. [7],
always constructs a binary tree on n leaves, i.e. the case q < n−1 is not considered. Moreover,
as we will show below, our derandomization procedure is highly optimized for trees instead
of the more complex phylogenetic networks (for a definition see Section 2 of [7]).

I Lemma 6. There exists a randomized 4
27 -approximation algorithm for q-MAXRTC.

Proof. Let R = {r1, . . . , r|R|} be the set of triplets and L = {x1, . . . , xn} the leaf label set.
Build a tree T with two internal nodes, with a being the root and b the child of the root. Make
every leaf xi ∈ L with probability 2

3 a child of b and probability 1
3 a child of a. Let Yj be a

random variable that is 1 if rj ∈ rt(T ) and 0 otherwise. Let W =
∑|R|
j=1 Yj . For the expected

number of triplets consistent with T we have E[W ] =
∑|R|
j=1 E[Yj ] =

∑|R|
j=1

4
27 = 4

27 |R|. J

I Theorem 7. There exists a deterministic 4
27 -approximation algorithm for q-MAXRTC

that runs in O(|R|) time.

Proof. We derandomize the algorithm in Lemma 6 with the method of conditional expect-
ations [20] in a way that differs from Byrka et al. [7], where the main focus is the general
case of phylogenetic networks. In our method, the leaves x1, . . . , xn are scanned from left to
right, and each leaf is deterministically assigned to either be the child of b, denoted xi ← b,
or the child of a, denoted xi ← a. The leaves are assigned in a way, such that after every
assignment the expected value of the solution is preserved. From probability theory we
have E[W ] = 1

3E[W |x1 ← a] + 2
3E[W |x1 ← b]. We choose n1 = a or n1 = b such that

E[W |x1 ← n1] = max(E[W |x1 ← a], E[W |x1 ← b]). Then E[W |x1 ← n1] ≥ E[W ] = 4
27 |R|.

Suppose that the first i leaves have been assigned to n1, . . . , ni. Let Ni contain those assign-
ments, i.e., Ni = {x1 ← n1, . . . , xi ← ni}. To find the assignment for xi+1 we follow the same
approach as that for x1, i.e., we have E[W |Ni] = 1

3E[W |Ni, xi+1 ← a] + 2
3E[W |Ni, xi+1 ← b]

and then ni+1 is chosen so that E[W |Ni+1] = max(E[W |Ni, xi+1 ← a], E[W |Ni, xi+1 ← b]).
By induction, we then get that E[W |Ni+1] ≥ E[W |Ni] ≥ · · · ≥ 4

27 |R|.
To compute E[W |Ni], we use the fact that E[W |Ni] =

∑|R|
j=1 Pr[rj ∈ rt(T )|Ni], where

Pr[rj ∈ rt(T )|Ni] can be computed in O(1) time (see procedure PR2() of Algorithm 1). A
trivial implementation that scans the leaves and for every possible assignment of a leaf xi, com-
putes the expected value E[W |Ni] by scanning the entire set R would require O(n|R|) time.

We can achieve a more efficient implementation (see procedure 2-MAXRTC-FAST() of
Algorithm 1) that would require O(|R|) time, by maintaining for every leaf xi ∈ L, a list of
all the triplets that xi is part of, denoted R[xi]. At the beginning of the i-th iteration of
the first for loop in Algorithm 1, the value of the variable prev is E[W |Ni−1]. To determine
the assignment for leaf xi, we need to compute E[W |Ni−1, xi ← a] and E[W |Ni−1, xi ← b],
and for this we use the second for loop. At the end of the execution of the second for
loop, the value of E[W |Ni−1, xi ← a] will be stored in the variable aValue and the value of
E[W |Ni−1, xi ← b] in the variable bValue. To compute aValue (resp. bValue), we initialize it
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Algorithm 1 O(|R|) 4
27 -approximation algorithm for q-MAXRTC based on 2-MAXRTC.

1: procedure PR2(xy|z) . Computing Pr[xy|z ∈ rt(T )|Ni]
2: if x← a or y ← a or z ← b then return 0
3: p = 4/27
4: if x 6= ∅ and x← b then p = 3p/2 . x 6= ∅ meaning that x has been assigned
5: if y 6= ∅ and y ← b then p = 3p/2
6: if z 6= ∅ and z ← a then p = 3p
7: return p

8: procedure 2-MAXRTC-FAST(R) . The main procedure
9: prev = 4|R|/27 . Storing E[W |N0], where N0 = ∅
10: for i = 1 to n do
11: aValue = prev . To compute E[W |Ni−1, xi ← a]
12: bValue = prev . To compute E[W |Ni−1, xi ← b]
13: for j = 1 to |R[xi]| do
14: xi ← ∅
15: aValue = aValue −PR2(R[xi][j])
16: bValue = bValue −PR2(R[xi][j])
17: xi ← a

18: aValue = aValue + PR2(R[xi][j])
19: xi ← b

20: bValue = bValue + PR2(R[xi][j])
21: xi ← b

22: prev = bValue
23: if aValue > bValue then
24: xi ← a

25: prev = aValue

to the value of prev, and then for every triplet in the list R[xi], we subtract the contribution of
that triplet to the value of prev when xi ← ∅, and add its new contribution by having xi ← a

(resp. xi ← b). Since every triplet inR will be part of 3 lists, every triplet will induce O(1) calls
to the procedure PR2() of Algorithm 1, giving the O(|R|) final bound of the algorithm. J

In the following theorem, we prove that the best possible absolute approximation ratio
for 2-MAXRTC is 4

27 , making the approximation algorithm in Theorem 7 optimal when
considering algorithms with absolute approximation ratios.

I Theorem 8. For any ε > 0, there exists some n and set R of triplets on a leaf label set of
size n, such that the approximation ratio ≥ 4

27 + ε for 2-MAXRTC is impossible.

Proof. For any n, let Ln = {1, 2, . . . , n} andRn = {ab|c, ac|b, bc|a : a, b, c ∈ L, |{a, b, c}| = 3}.
Since |Ln| = n, we have |Rn| = 3

(
n
3
)
. Next, we construct a tree T with two internal

nodes, which is rooted at the vertex a with an internal node b (b is a child of a). Let
A = {x : x is a child of a} \ {b} and B = {x : x is a child of b}. Assume that m = |A|.
Then |B| = n −m and |rt(T ) ∩ Rn| = m(m−1

2 )(n −m). By taking derivatives, we obtain
that T is consistent with the largest number of triplets when m = n+1+

√
n2−n+1
3 . For

that given m, we then have |rt(T )∩Rn| =
(
n+1+

√
n2−n+1
3

)(
n−2+

√
n2−n+1
6

)( 2n−1−
√
n2−n+1

3
)

and lim
n→∞

|rt(T )∩Rn|
|Rn| = 4

27 . J

WABI 2019
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To obtain an algorithm that has a better approximation ratio for q ≥ 3, we allow
the output tree T to have q internal nodes {u1, . . . , uq}. Every internal node uj ∈ T

has a probability p(uj), which is the probability of a fixed leaf being assigned to that
node. Given that

∑q
j=1 p(uj) = 1, we can obtain a randomized algorithm, the ana-

lysis of which follows from Lemma 6. Let E[W ] be the expected value of that ran-
domized algorithm. Like in Theorem 7, we can derandomize the algorithm to obtain
a E[W ]
|R| -approximation ratio. The only difference in the proof is that the total number

of possible assignments is q instead of 2, i.e., given Ni, we choose ni+1 for xi+1 such
that E[W |Ni, xi+1 ← ni+1] = max(E[W |Ni, xi+1 ← u1, . . . , E[W |Ni, xi+1 ← uq). The prob-
lem is thus reduced to finding a tree with q internal nodes and a choice of probabilit-
ies p(u1), . . . , p(uq) such that E[W ] > 4

27 |R|.

I Theorem 9. Given q ≥ 3, there exists a randomized algorithm for q-MAXRTC that achieves
a ( 1

3 −
4

3(q+q mod 2)2 )-approximation. The algorithm can be derandomized while preserving
the approximation ratio. The running time of the deterministic algorithm is O(q|R|).

4 Implementation and Experiments

We used the C++ programming language to implement the algorithm from Theorem 7
for 2-MAXRTC, and the algorithm from Theorem 9 for q-MAXRTC when q > 2. The
implementation is publicly available at https://github.com/kmampent/qMAXRTC. Below, we
describe some experiments on both simulated and real datasets and the results.

Simulated Dataset. The input to q-MAXRTC is a set of triplets R and a parameter q. We
define the following types of sets for R:

dense consistent (abbreviated dc): if |R| =
(
n
3
)
and R is consistent with a tree T

containing n− 1 internal nodes. The tree T is created using the uniform model [18].
probabilistic: if |R| = n2 and R is a set of triplets on n leaf labels created as follows. After
building a binary tree T on n leaves following the uniform model, start extracting triplets
from T to add into R. For every extracted triplet xy|z, permute the leaves uniformly at
random with probability p. Depending on whether p = 0.25, p = 0.50 or p = 0.75 the
abbreviations we use are prob25, prob50, and prob75 respectively.

In the experiments of this dataset, the performance of an algorithm for any fixed q, n, and
dataset model is defined as its mean approximation ratio, taken over 100 randomly generated
instances of size n. Figure 3 compares the performance of q-MAXRTC, WU, and OLS in the dc
and prob50 models, for small values of q and n at most 1000. In both models, the larger
the value of q, the better the performance of q-MAXRTC. Moreover, the improvement in
performance decreases as the value of q increases, which is expected. For the dc dataset, which
contains no conflicting triplets, the performance is much better. Significantly, when q = 9
we can capture close to 80% of the triplets even if the input tree contains as many as 1000
leaves. When compared against WU & OLS, we can see that while WU & OLS perform better,
the difference in performance is small compared to the difference in the number of internal
nodes used by the algorithms.

Real Dataset. We considered five trees from recently published papers ([9] and [16]).
From [9] we used the trees from the supplementary datasets 2 and 4, denoted nmS2 and nmS4
respectively. From [16] we used the trees from the supplementary datasets 1, 2, and 4,
denoted poS1, poS2, and poS4 respectively. All trees are binary except nmS2 and nmS4.
However, we removed the leaf that is a child of nmS2’s root to make nmS2 binary. Similarly,

https://github.com/kmampent/qMAXRTC
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Figure 3 Performance of {3, 5, 7, 9}-MAXRTC compared to WU and OLS in the dc and prob50
models. Every data point corresponds to the mean of 100 runs. Observe that the performance
of 9-MAXRTC is very close to that of WU & OLS, even though 9-MAXRTC uses only 9 internal
nodes, while WU uses exactly n− 1 internal nodes and OLS at most n− 1.

Table 1 Performance of q-MAXRTC on real datasets. Every cell corresponds to the best ratio (as
defined below) over 100 runs. The size of each leaf label set is written inside the parenthesis.

q poS1(761) poS2(761) poS4(841) nmS4(1869) nmS2(3082) Average

2 0.27 0.36 0.43 0.41 0.29 0.35
3 0.67 0.54 0.48 0.41 0.46 0.51
5 0.77 0.81 0.67 0.66 0.72 0.73
7 0.82 0.75 0.76 0.62 0.73 0.74
9 0.86 0.71 0.87 0.80 0.79 0.81
11 0.91 0.89 0.87 0.79 0.87 0.87

we removed the two leaves that are children of nmS4’s root to make nmS4 binary as well. The
total number of leaves in nmS2, nmS4, poS1, poS2, and poS4 is 1869, 3082, 761, 761, and 841.
Since the trees are binary, the total number of internal nodes is 1868, 3081, 760, 760, and 840.

For a tree T ∈ {nmS2, nmS4, poS1, poS2, poS4} with n leaf labels, let Tq be the tree pro-
duced by the new algorithm. Let D(T, Tq) be the rooted triplet distance between T and Tq
(for a definition see Section 5 below). The performance of q-MAXRTC in the experiments of
this dataset is then defined by the ratio S(T, Tq)/

(
n
3
)
, where S(T, Tq) =

(
n
3
)
−D(T, Tq). To

compute this ratio efficiently, we used the rooted triplet distance implementation in [5]. We
measured the performance of q-MAXRTC for q ∈ {2, 3, 5, 7, 9, 11}. Every experiment con-
sisted of 100 runs, and in each run n2 triplets were picked at random from the corresponding
tree to define the set R. We made sure that each leaf from a given tree appeared in R so
that the size of the leaf label set was as big as the leaf label set of the tree.

Table 1 shows the best ratios achieved, and the corresponding trees in Newick format can be
found at https://github.com/kmampent/qMAXRTC. As can be seen from the results, larger
number of internal nodes tend to improve performance. Significantly, with only 9 nodes we
can capture between 71% and 86% of the triplets in each case, and with 11 nodes between 79%
and 91%. When q > 11, we did not observe a significant improvement in performance.

WABI 2019
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5 Motivation for q-MAXRTC: Faster Computation of the Rooted
Triplet Distance

Finally, we give an example of the algorithmic advantage of using phylogenetic trees with
few internal nodes. More precisely, we develop an algorithm for computing the rooted triplet
distance between two phylogenetic trees in O(qn) time, where q is the number of internal
nodes in the smaller tree and n is the number of leaf labels.

Problem Definition. The rooted triplet distance between two trees T1 and T2 built on the
same leaf label set, is the total number of trees with three leaves that appear as embedded
subtrees in T1 but not in T2. Intuitively, two trees with very similar branching structure will
share many embedded subtrees, so the rooted triplet distance between them will be small.

Formally, let T1 and T2 be two trees built on the same leaf label set of size n. We need
to distinguish between two types of triplets. The first type is the resolved triplet, previously
defined in Section 1. In addition, since T1 and T2 can be non-binary, we also need to define
the fan triplet. We call t = x|y|z a fan triplet, if t is a tree with the three leaves x, y,
and z, and one internal node that is the root of t. The definition of when a resolved triplet
is consistent with a tree T follows from Section 1. Similarly to a resolved triplet, we say
that the fan triplet x|y|z is consistent with a tree T , where x, y, and z are leaves in T ,
if lca(x, y) = lca(x, z) = lca(y, z). In this section only, we use the word triplet to refer to
both fan and resolved triplets. Moreover, when we refer to a fan triplet x|y|z or a resolved
triplet xy|z induced by a tree T , there exists a left to right ordering of x, y, and z in T .

Let D(T1, T2) be the rooted triplet distance between T1 and T2. Define S(T1, T2) to be
the total number of triplets that are consistent with both T1 and T2, commonly referred to
as shared triplets. For the rooted triplet distance we then have D(T1, T2) =

(
n
3
)
− S(T1, T2).

The Algorithm. It is known how to compute D(T1, T2) in O(n logn) time [4, 5]. Below, we
show how to compute D(T1, T2) in O(qn) time, which is faster than [4, 5] when q = o(logn).
There is a preprocessing step and a counting step.

Preprocessing. The leaves in T2 are relabeled according to their discovery time by a depth
first traversal of T2, in which the children of a node are discovered from left to right. Notice
that for a node v in T2, the labels of the leaves in T2(v) will correspond to a continuous
range of numbers. Afterwards, we transfer the new labels of the leaves in T2 to the leaves
in T1. For T1, we define the q × n table A such that for a node u in T1 we have A[u][`] = 1
if ` is a leaf in T1(u), and A[u][`] = 0 otherwise. We construct another table C to answer
one dimensional range queries as follows. For 1 ≤ i ≤ n we have C[u][i] =

∑i
j=1 A[u][j]

and C[u][0] = 0. The C table will be used to answer queries asking for the total number
of leaves in T2(v) that are also in T1(u) in O(1) as follows. Let [l, . . . , r] be the continuous
range of leaf labels in T2(v). The answer to the query will be exactly C[u][r]− C[u][l − 1].

Counting. We extend the technique introduced in [5]. Let t = xy|z or t = x|y|z be a
triplet induced by a tree T , which in our problem can be either T1 or T2. We anchor t in
the edge {v, c}, where v = lca(x, y) and c is the child of v such that T (v) contains y. The
following lemma shows that every triplet induced by T is anchored in exactly one edge of T .

I Lemma 10. Let T be a tree in which every triplet t with the three leaves x, y, and z

is anchored in the edge {u, c}, such that u = lca(x, y) and T (c) contains y. Every triplet
induced by T is anchored in exactly one edge of T .

Suppose that a node v in T2 has the children v1, . . . , vj , . . . , vi where 1 < j ≤ i. To
capture all triplets anchored in edge {v, vj} of T2, we color the leaves of T2 as follows. Let
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every leaf in T2(v1), . . . , T2(vj−1) have the color red, every leaf in T2(vj) have the color
blue, every leaf in T2(vj+1), . . . , T2(vi) have the color green and every other leaf in T2
have the color white. The red, blue, and green colors will be used to capture fan triplets
and the red, blue, and white colors, resolved triplets. By the relabeling scheme of the
leaves, we have that the red, blue, and green colors correspond to exactly one continuous
range of leaf labels each. Let those ranges be R = [ared, . . . , a′red], B = [ablue, . . . , a′blue],
and G = [agreen, . . . , a′green], for the colors red, blue, and green respectively. Note that
ablue = a′red + 1 and if G is non-empty, agreen = a′blue + 1. Finally, note that a leaf has the
color white if and only if it does not have any other color.

We are now going to describe how to compute the total number of triplets anchored
in some edge {v, v′} in T2, where v is the parent of v′, that are also consistent with T1,
denoted S{v,v

′}(T1, T2). Let S{v,v
′}

r (T1, T2) denote the shared resolved triplets anchored
in {v, v′} and similarly let S{v,v

′}
f (T1, T2) denote the shared fan triplets. Note that we

have S{v,v′}(T1, T2) = S
{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2). The following lemma gives an al-

gorithm for computing S{v,v′}(T1, T2) efficiently.

I Lemma 11. Given the ranges R, B, and G that define a coloring of the leaves in T2 accord-
ing to an edge {v, v′} of T2, there exists a O(q)-time algorithm for computing S{v,v′}(T1, T2).

Proof. Since both T1 and T2 are built on the same leaf label set, a coloring of the leaves
of T2 defines a coloring of the leaves of T1. Suppose that a node u in T1 has the m
children u1, . . . , um, where m ≥ 2. Some children could be leaves and others, internal nodes.
Let I denote the set containing the children that are internal nodes and L the children that
are leaves. Let T (I) = {T (u) : u ∈ I}. Define the following counters:
1. uwhite: total number of leaves with the white color in T1 but not in T1(u).
2. ui, for i ∈ {red,blue, green}: total number of leaves with color i in T1(u).
3. uiI , for i ∈ {red,blue, green}: total number of leaves with color i in T (I).
4. uiL, for i ∈ {red,blue, green}: total number of leaves with color i in L.
5. ui,j , for (i, j) ∈ {(red, blue), (red, green), (blue, green)}: total number of pairs of leaves

in T (I), such that one has color i, the other has color j, and both come from different
subtrees attached to u.

6. ured, blue, green: total number of leaf triples in T (I), such that one leaf has the color red,
another the color blue, another the color green, and they all come from different subtrees
attached to u.
To compute these counters for every internal node of T1 efficiently, a depth first traversal

is applied on T1 while making sure that we only visit internal nodes. For every such internal
node u visited, a simple dynamic programming procedure is used to compute the counters
of u in O(|I|) time, thus making the total time required to compute all counters O(q).

Algorithm 2 shows how to compute S{v,v
′}

f (T1, T2) and S{v,v
′}

r (T1, T2) in O(q) time as
well. It counts shared triplets by considering for every internal node u in T1, all possible cases
for the location of the leaves of a shared triplet anchored in any edge {u, u′} in T1, where u
is the parent of u′. More precisely, for the leaves of a fan triplet anchored in any edge {u, u′}
in T1, we have the following cases: (1) all three leaves come from T (I), (2) two leaves come
from T (I) and one from L, (3) one leaf comes from T (I) and two from L, and (4) all three
leaves come from L. Similarly, for the leaves of a resolved triplet we have the following
cases: (1) two leaves come from T (I) and one not from T1(u), (2) one leaf comes from T (I),
one from L, and one not from T1(u), and (3) two leaves come from L and one not from T1(u).
Since S{v,v′}(T1, T2) = S

{v,v′}
r (T1, T2) + S

{v,v′}
f (T1, T2), the statement follows. J
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Algorithm 2 Computing S
{v,v′}
f (T1, T2) and S

{v,v′}
r (T1, T2) in O(q) time.

1: procedure S{v,v
′}

f (T1, T2)
2: fans = 0
3: for every internal node u in T1 do
4: fans = fans + ured,blue,green
5: fans = fans + ured,blue · ugreenL + ured,green · ublueL + ublue,green · uredL
6: fans = fans+uredI ·ublueL ·ugreenL +ublueI ·uredL ·ugreenL +ugreenI ·uredL ·ublueL
7: fans = fans + uredL · ublueL · ugreenL
8: return fans

9: procedure S{v,v
′}

r (T1, T2)
10: resolved = 0
11: for every internal node u in T1 do
12: resolved = resolved + ured,blue · uwhite
13: resolved = resolved + uredI · ublueL · uwhite + ublueI · uredL · uwhite
14: resolved = resolved + uredL · ublueL · uwhite
15: return resolved

Algorithm 3 O(qn)-time algorithm for computing D(T1, T2).

1: procedure D(T1, T2)
2: Compute the q × n table C.
3: For every u in T1 compute the parameter ul, which is the number of leaves in T (u).
4: sharedTriplets = 0
5: for every internal node v in T2 do
6: for every child v′ of v do
7: Let R, B, and G be the color ranges defined by edge {v, v′}
8: Given C, R, B, and G, compute the counters of T1 according to Lemma 11
9: sharedTriplets = sharedTriplets + S

{v,v′}
f (T1, T2)+S{v,v

′}
r (T1, T2)

10: return
(
n
3
)
− sharedTriplets

In Algorithm 3 we show how to compute D(T1, T2). From the preprocessing step,
line 2 requires O(qn) time. Line 3 is performed by a depth first traversal of T1, thus
requiring O(n) time. From Lemma 11, lines 7-9 require O(q) time. Since we also have
that

∑
v∈T2

deg(v) = O(n), the total time required to compute D(T1, T2) is O(qn). The
correctness is ensured by Lemma 10, thus we obtain the following theorem:

I Theorem 12. The rooted triplet distance between two rooted phylogenetic trees T1 and T2
built on the same leaf label set of size n, can be computed in O(qn) time, where q is the total
number of internal nodes in T1.

An implementation of the algorithm in C++ is available at https://github.com/
kmampent/qtd. Preliminary experiments indicate that our prototype implementation uses
less space and is faster than the state-of-the-art, optimized implementation of the O(n logn)-
time algorithm from [5] for large inputs, e.g., when n = 1, 000, 000 and q ≤ 50. Details will
be reported in the full version of the paper.

https://github.com/kmampent/qtd
https://github.com/kmampent/qtd
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Figure 4 Let R = {12|3, 13|4, 24|5}. (a) The optimal tree for 2-MAXRTC induces 2 triplets
from R. (b) The tree returned by the BUILD algorithm from [1]. (c) The best tree obtainable by
contracting all internal edges except one in the tree from (b) induces only 1 triplet from R, so this
method is not optimal for 2-MAXRTC.

6 Open Problems

The optimal polynomial-time approximation ratio for any fixed q ≥ 3 is an open problem, as
well as the existence of algorithms achieving that ratio. Moreover, for the special case where
all the triplets in R are consistent with a tree T , the computational complexity of q-MAXRTC
is an open problem as well. Note that just applying BUILD [1] to obtain such a T and then
trying every bipartition of L induced by an edge of T fails to produce an optimal solution
to 2-MAXRTC (see Figure 4 for a counterexample). Another open problem is the existence of
approximation algorithms for q-MAXRTC in the weighted case, where each triplet in R has
a weight and the objective is to build a tree that maximizes the total weight of the triplets
induced from R. This addresses the case where some triplets in R are more important than
others. Moreover, another open problem is the following: given a set of triplets R on a leaf
label set of size n and a parameter `, build a tree T with ` leaves such that |rt(T ) ∩ R|
is maximized. Just like q-MAXRTC is a combination of MINRS and MAXRTC, this new
problem is a combination of the maximum agreement supertree problem studied in [13] and
MAXRTC. Finally, for the rooted triplet distance computation, a major open problem [4, 5]
is whether it can be computed in O(n) time. When q = O(1), our proposed algorithm runs
in O(n) time. If q1 is the total number of internal nodes of one tree and q2 of the other, is it
possible to obtain an algorithm with a O(q1q2 + n) running time?
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Abstract
We present a new whole-genome based approach to infer large-scale phylogenies that is alignment-
and reference-free. In contrast to other methods, it does not rely on pairwise comparisons to
determine distances to infer edges in a tree. Instead, a colored de Bruijn graph is constructed,
and information on common subsequences is extracted to infer phylogenetic splits. Application
to different datasets confirms robustness of the approach. A comparison to other state-of-the-art
whole-genome based methods indicates comparable or higher accuracy and efficiency.
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1 Introduction

A common task in comparative genomics is the reconstruction of the evolutionary relationships
of species or other taxonomic entities, their phylogeny. Today’s wealth of available genome
data enables large-scale comparative studies, where phylogenetics is faced with the following
problems: first, the sequencing procedure itself is becoming cheaper and faster, but finishing
a genome sequence remains a laborious step. Thus, more and more genomes are published
in an unfinished state, i.e., only assemblies (composed of contigs), or raw sequencing data
(composed of read sequences) are available. Hence, traditional approaches for phylogenetic
inference can often not be applied, because they are based on the identification and comparison
of marker sequences, which relies on computing multiple alignments – an NP-hard task in
theory, and in practice even heuristics are often too slow. Second, the low sequencing cost
allow new large-scale studies of certain niches and/or aloof from model organisms, where
reference sequences would be too distant or not available at all.

Whole-genome approaches that are usually alignment- and reference-free solve these
problems, see e.g. [5, 7, 13, 18, 19, 22]. However, the sheer number of genomes to be analysed
is still posing limits in large-scale scenarios as almost all whole-genome approaches are
based on a pairwise comparison of some characteristics of the genomes (e.g. occurrences or
frequencies of k-mers or other patterns) to define distances which are then used to reconstruct
a tree (e.g. by using neighbor joining [15]). This means, for n genomes, O(n2) comparisons
are performed in order to infer O(n) edges. To the best of our knowledge, only MultiSpaM [4]
follows a different approach by sampling small, gap-free alignments involving four genomes
each, which are used to infer a super tree on quartets. According to our experiments, this
method is not suitable for large-scale settings (see Results), though.
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Apart from computational issues, the actual objective of phylogenetic inference in terms
of how to represent a phylogeny is not obvious in the first place. Taking only intra-genomic
mutations into account, i.e., assuming a genome mutating independently of others, genomes
would have unique lines of ancestors and their phylogeny would thus be a tree. Several reasons
however conflict this simple tree model. Inter-genomic exchange of genomic segments such as
crossover in diploid or polyploid organisms, lateral gene transfer in bacteria, or introgression
in insects contradict the assumption of unique ancestry. Furthermore, incomplete, ambiguous,
or even misleading information can hamper resolving a reliable phylogenetic tree.

Here, we propose a new methodology that is whole-genome based, alignment- and reference-
free, and does not rely on a pairwise comparison of the genomes or their characteristics. An
implementation called SANS (“Symmetric Alignment-free phylogeNomic Splits”) is available
at https://gitlab.ub.uni-bielefeld.de/gi/sans. The k-mers of all genomic sequences
(assemblies or reads) are stored in a colored de Bruijn graph, which is then traversed to extract
phylogenetic signals. The reconstructed phylogenies are not restricted to trees. Instead, the
generalized model of phylogenetic splits [2] is used to infer phylogenetic networks that can
indicate a tree structure and also point to ambiguity in the reconstruction.

In the following Section 2, we will first introduce two building blocks of our approach,
splits and colored de Bruijn graphs. Then, we will describe and motivate our method in
Section 3. After an evaluation on several real data sets in Section 4, we will give a brief
summary and an outlook in Section 5.

2 Background

Before presenting our method in Section 3, we will introduce two basic concepts it builds
upon. Firstly, as motivated above, our phylogenies will be represented by sets of splits, a
generalization of trees. Secondly, to extract phylogenetic signals from the given genomes in
the first place, they are stored in a colored de Bruijn graph.

2.1 Phylogenetic splits
In the following, we briefly recapitulate some notions and statements from the split decom-
position theory introduced by Bandelt and Dress [2], and put them into context.

I Definition 1 (Unordered split). Given a set O, if for two subsets A,B ⊆ O, both A∩B = ∅
and A ∪B = O, then the unordered pair {A,B} is a bipartition or (unordered) split of O.
If either A or B is empty, a split is called trivial.

We extend the above commonly used terminology of (unordered) splits to ordered splits –
a central concept in our approach.

I Definition 2 (Ordered split). If {A,B} is an unordered split of O, the ordered pairs (A,B)
and (B,A) are ordered splits. (B,A) is called the inverse (split) of (A,B) and vice versa.

Note that one unordered split {A,B} = {B,A} corresponds to two ordered splits (A,B) 6=
(B,A). Our method will first infer ordered splits and their inverse, which will then be combined
to form unordered splits. If clear from the context, we may denote an ordered split (A,B)
by simply A.

A set of splits S may be supplemented with weights w : S −→ R, e.g., in [2], splits
are weighted by a so-called isolation index. Strong relations between metrics and sets of
weighted unordered splits have been shown. In particular, one can canonically decompose
any distance d into a set of weighted splits Sd that is weakly compatible in the following sense.

https://gitlab.ub.uni-bielefeld.de/gi/sans
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I Definition 3 (Weak compatibility [2]). A set of unordered splits S on O is weakly compatible
if for any three splits {A1, B1}, {A2, B2}, {A3, B3} ∈ S, there are no elements a, a1, a2, a3 ∈
O with {a, a1, a2, a3} ∩Ai = {a, ai} for i = 1, 2, 3.

Then, d(a, b) =
∑
{A,B}∈Sd

w({A,B}) δA(a, b) + d0 where δA(a, b) := 1 if either a or b
in A, but not both, and δA(a, b) := 0 otherwise, i.e., the weights of all splits separating
a from b are accumulated, and where d0 is a so-called split prime residue that cannot be
decomposed further.

As a peculiarity of our approach is being not distance-based, we mention the above
relation of weakly compatible splits and distances only for the sake of completeness. We will
make use of the above property to filter a general set of splits such that it can be displayed
as a – in most cases planar – network.

A distance d is a tree metric (also called additive), if and only if there is a set of splits Sd

with d(a, b) =
∑
{A,B}∈Sd

w({A,B}) δA(a, b) that is compatible in the following sense.

I Definition 4 (Compatibility [2]). A set of unordered splits S on O is compatible if for any
two splits {A,B} and {A′, B′}, one of the four intersections A ∩ A′, A ∩ B′, B ∩ A′, and
B ∩B′ is empty.

We will make use of the implied one to one correspondence of edges in a tree and
compatible splits: an edge of length w whose removal separates a tree into two trees with
leaf sets A and B, respectively, corresponds to a split {A,B} of weight w.

2.2 Colored de Bruijn graphs
A string s is a sequence of characters over a finite, non-empty set, called alphabet. Its length is
denoted by |s|, the character at position i by s[i], and the substring from position i through j
by s[i..j]. A string of length k is called k-mer.

We consider a genome as a set of strings over the DNA alphabet {A,C,G, T}. The
reverse complement of a string s is s := s[|s|] · · · s[1], where A := T,C := G,G := C, T := A.

An abstract data structure that is often used to efficiently store and process a collection
of genomes is the colored de Bruijn graph (C-DGB) [11]. It is a node-labeled graph (V,E, col)
where each vertex v ∈ V represents a k-mer associated with a set of colors col(v) representing
the set of genomes the k-mer occurs in. A directed edge from v to v′ exists if and only if
for the corresponding k-mers x and x′, respectively, x[2..k] = x′[1..k − 1]. We call a path
p = v1, . . . , vl of length |p| = l in a C-DBG non-branching if all contained vertices have an
in- and outdegree of one with the possible exception of v1 having an arbitrary indegree and
vl having an arbitrary outdegree, and it has the same set of colors assigned to all its vertices.
A maximal non-branching path is a unitig. In a compacted C-DBG, all unitigs are merged
into single vertices.

In practice, since a genomic sequence can be read in both directions, and the actual
direction of a given sequence is usually unknown, a string and its reverse complement are
assumed equivalent. Thus, in many C-DBG implementations, both a k-mer and its reverse
complement are represented by the same vertex. In the following, we will assume this being
internally handled by the data structure.

3 Method

The basic idea of our new approach is that a sequence which is contained as substring in a
subset A of all genomes G but not contained in any of the other genomes is interpreted as a
signal that A should be separated from G\A in the phylogeny. The more of those sequences
exist and the longer they are, the stronger is the signal for separation.

WABI 2019
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Algorithm 1 SANS: Symmetric, Alignmet-free phylogeNomic Splits.
INPUT: List of genomes G
OUTPUT : Weighted splits over G
T := empty trie // initialize T[S] := (0 ,0) on first access by S
C-DBG := colored de Bruijn graph of G
foreach unitig U in C-DBG:

S := color list of U ( sublist of G)
// add ordered split S or its inverse G\S to trie
if |S| < |G|/2 or ( |S| == |G|/2 and S[0] == G[0] ) then:

increase first element of T[S] by length of U
else:

increase second element of T[G\S] by length of U
foreach entry S in T with values (w,w ’):

output unordered split {S,G\S} of weight sqrt(w*w’)

To efficiently extract common sequences, we first construct a C-DBG of all given genomes.
Then, we collect all separation signals as ordered splits, where any unitig u contributes |u|
to the weight of an ordered split col(u). Since both an ordered split (A,B) and its inverse
(B,A) indicate that A and B should be separated in the phylogeny, we combine them to
one unordered split {A,B} with an overall weight that is a combination of the individual
weights. The individual steps will be explained in more detail next.

C-DBG

Among several available implementations of C-DGBs (e.g. [1, 9, 11, 14]), we decided to
use Bifrost [8] (https://github.com/pmelsted/bifrost) for the following reasons: it is
easy to install and use; it is efficiently implemented; it can process full genome sequences,
assemblies, read data or even combinations of these; for read data as input, it offers some
basic assembly-like filtering of k-mers; and it realizes a compacted C-DBG and provides a
C++ API such that a traversal of the unitigs could be easily and efficiently implemented –
only unitigs with heterogeneous color sets had to be split, because colors are not considered
during compaction.

Like other implementations of DBGs on the DNA alphabet, Bifrost saves space by not
storing edges explicitly – with the trade-off of having to determine neighboring vertices by
querying the graph for all possible preceding and succeeding k-mers. Since we do not make
use of the topology of the C-DBG, this common design decision accommodates our needs.

Accumulating split weights

Because splits often share many genomes, we use a trie data structure to store a split (as
key) as path from the root to a terminal vertex, along with its weight (as value) assigned to
the terminal vertex. We represent the set of genomes G as a list with some fixed order, and
any subset of G as sublist of G, i.e., with the same relative order. For a split (A,B) and its
inverse (B,A), we take as key the shorter of A and B, breaking ties by selecting that split
containing G[0], and as value the pair of weights (w,w′), where w is the accumulated weight
of the key, and w′ the accumulated weight of its inverse. When the trie is accessed for a key
the first time, the value is initialized with (0, 0).

The overall method SANS is shown in Algorithm 1, the very last step of which will be
motivated in the following.

https://github.com/pmelsted/bifrost
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Combining splits and their inverses

To combine an ordered split (A,B) of weight wA and its inverse (B,A) of weight wB , a naive
argument would be: both indicate the same separation, so they should be taken into account
equivalently, and thus take the sum wA +wB or arithmetic mean (wA +wB)/2. However, in
our evaluation, this weighting scheme often assigned higher weight to wrong splits than to
correct splits (compared to reliable reference trees; exemplified in Section 4.1). Instead, we
revert the above argument: consider a mutation on a (true) phylogenetic branch separating
the set of genomes into subgroups A and B. The corresponding two variants of the affected
segment will induce two unitigs with color sets A and B, respectively. Under the infinite
sites assumption, these unitigs would not be affected by other events. So, each mutation on
a branch in the phylogeny contributes to both splits (A,B) and (B,A). We hence take the
geometric mean √wA · wB such that in case of asymmetric splits, the lower weight diminishes
the total weight, and only symmetric splits receive a high overall weight.

Considering different scenarios that would affect the observation of common substrings in
the C-DBG, some of which are illustrated in Figure 1, we observe beneficial behavior of the
weighting scheme in almost all cases: A single nucleotide variation would cause a bubble
in the C-DBG composed of two unitigs of similar length k each – a symmetric scenario in
accordance with the above weighting scheme. Both an insertion or deletion of length l
would cause an asymmetric bubble and thus asymmetric weights k−1 and l+k−1. Here, the
geometric mean has the positive effect to weaken the impact of the length of the event on the
overall split weight. E.g., the total weight for x deletions of length l would increase linearly
with x whereas those for one deletion of length x · l would increase with

√
x. For both a

transposition or inversion of arbitrary length, the color set of the segment itself remains
the same, and only those k-mers spanning the breakpoint regions would be affected, inducing
symmetric bubbles in accordance with the weighting scheme. Lateral gene transfer is
challenging phylogenetic reconstruction, because a subsequence of length l that is contained
in both the group A containing the donor genome as well as the target genome b from the
other genomes B := G\A can easily be misinterpreted as a signal to separate A ∪ {b} from
the remainder B\{b} instead of separating A from B, where the strength of this erroneous
signal grows with l. Our approach will be affected only little: on the one hand, the unitig
corresponding to the copied subsequence has color set A ∪ {b} and thus contributes to an
ordered split (A ∪ {b}, B\{b}) of weight l − k + 1. On the other hand, because the transfer
does not remove any subsequence in the donor sequence, only those k k-mers spanning the
breakpoint region will be affected, inducing a unitig with color set B\{b} whose length is
independent of l. Missing or additional data may arise from genomic segments that are
difficult to sequence or assemble and might thus be missing in some assemblies, due to the
usage of different sequencing protocols, assembly tools, or filter criteria, or simply because
some input files contain plasmid or mitochondrial sequences and others do not. This does
not affect our approach, because additional sequence induces unitigs and thus an ordered
split, but the absence of sequence does not induce any split, not even due to breakpoint
regions, because in such cases usually whole reads, contigs or chromosomes are involved.
Thus, the weight of the additional ordered split would be multiplied by zero for the absent
split, resulting in a total weight of zero. Copy number changes can only be detected if
the change is from one to two or vice versa, adding or removing k-mers spanning the juncture
of the two copies. Beyond that, because the k-mer counts are not captured, our approach is
not sensible for copy number changes.

In practice, the structure of a C-DBG is much more complex than the simplified picture
we draw above. Nevertheless, using the geometric yields high accuracy of the approach
compared to other methods.

WABI 2019



2:6 Alignment- and Reference-Free Phylogenomics with Colored DBGs

AAC
GTT

{a, b, c, d}

↗↙
↘↖

ACG
CGT
{a, b}

↔
CGC
GCG
{a, b}

↔
GCA
TGC
{a, b}

ACT
AGT
{c, d}

↔
CTC
GAG
{c, d}

↔
TCA
TGA
{c, d}

↘↖
↗↙

CAA
TTG

{a, b, c, d}

(a) Single nucleotide variation in genomes a = b = AACGCAA and c = d = AACTCAA. The induced
ordered split {a, b} and its inverse {c, d} of weight k = 3 each yield a corresponding unordered split
{{a, b}, {c, d}} of weight

√
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(b) Insertion/deletion of length l = 4 (or longer, indicated by dots) in genomes a = b =
AACGG · · · CACAA and c = d = AACCAA. The induced ordered split {a, b} of weight l + k − 1 = l + 2
and its inverse {c, d} of constant weight k − 1 = 2 yield a corresponding unordered split {{a, b}, {c, d}} of
weight

√
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√
2(l + 2).
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(c) Inversion of length l = 4 (or longer, indicated by dots) between genomes a = b = AACGG · · · CACAA
and c = d = AACTG · · · CCCAA. The induced ordered split {a, b} and its inverse {c, d} of con-
stant weight 2(k − 1) = 4 each yield a corresponding unordered split {{a, b}, {c, d}} of constant weight√
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(d) Lateral gene transfer of length l = 4 (or longer, indicated by dots) from genome a = AGG · · ·CAG
to b = AACGG · · · CACAA but not to c = d = AACCAA. Apart from mutation-independent splits for
the boundaries, and the trivial split {b} (without its inverse), the split {a, b} of weight l − k + 1 = l − 2
and its inverse {c, d} of constant length k − 1 = 2 are induced, yielding a corresponding unordered split
{{a, b}, {c, d}} of weight

√
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√
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Figure 1 Toy examples for different mutations within four genomes a, b, c and d to illustrate their
effect on a C-DBG with k = 3. Each vertex of the C-DBG is labelled with both its k-mer and the
reverse complement (in arbitrary order), as well as its color set. Due to the small value of k, the
C-DBG contains edges corresponding to pairs of overlapping k-mers that are not contained in the
given strings. For the purpose of clarity, these are not drawn. Mutations are highlighted in bold
and/or italics.



R. Wittler 2:7

Postprocessing

Even though the geometric mean filters out many asymmetric splits, the total number of
positively weighted splits can be many-fold higher than 2n − 3, the number of edges in a
fully resolved tree for n genomes. Unfortunately, the observed distribution of split weights
did not indicate any obvious threshold to separate high-weighted splits from low-weighted
noise. Nevertheless, a rough cutoff can safely be applied by keeping only the t highest
weighting splits, e.g., in our evaluation t = 10n has been used for all datasets. Additionally,
we evaluated two filtering approaches: greedy weakly, i.e., greedily approximating a maximum
weight subset that is weakly compatible and can thus be displayed as a network, and greedy
tree, i.e., greedily approximating a maximum weight subset that is compatible and thus
corresponds to a tree. To this end, we used the corresponding options of the software tool
SplitsTree [10, 12]. As we will demonstrate in the Results section, in particular the tree filter
proved to be very effective in practice.

Run time complexity

Consider n genomes of length O(m) each. In Bifrost, the compacted C-DBG is built by
indexing a k-mer by its minimizer, i.e., a substring with the smallest hash value among
all substrings of length g in a k-mer. According to the developers of Bifrost (personal
communication), inserting a k-mer and its color takes O(4(k−g)log(n)) time in the worst
case. In practice, however, each of the O(mn) k-mers can be inserted in O(log(n)) time,
and hence, building the complete C-DGB takes O(mn log(n)) time. While iterating over all
positions in the graph, we verify whether a unitig has to be split due to a change in the color
set. Because each of the n genomes adds O(m) color assignments to the graph, we have to
do O(mn) color comparisons in total, which does not increase the overall complexity.

Each genome contributes to at most O(m) ordered splits. So the sum of the cardinality
of all ordered splits, i.e., the total length of all splits in Algorithm 1, is O(mn). Hence, the
insertion and lookups of all S in trie T takes |S| time each and O(mn) in total, and the
number of terminal vertices of T, i.e., the final number of unordered splits, is in O(mn),
too. For ease of postprocessing, splits are ordered by decreasing weight, increasing the run
time for split extraction to O(mn log(mn)), or O(mn log(n)) to output only the t, t ∈ O(n),
highest weighting splits, respectively.

4 Results

In this section, we present several use cases in order to exemplify robustness and different
other characteristics of our approach SANS. We compare to the following other whole-genome
based reconstruction tools.

MultiSpaM [4] samples a constant, high number of small, gap-free alignments of four
genomes. The implied quartet topologies are combined to an overall tree topology. To the
best of our knowledge, all other tools are distance-based and rely on pairwise comparisons.
Interestingly, although all methods are based on lengths or numbers of common subsequences
or patterns, their results differ considerably from those of SANS. Co-phylog [18] analyses each
genome in terms of certain patterns (C-grams, O-grams) and compares their characteristics
(context). In andi [7], enhanced suffix arrays are used to detect pairs of maximal unique
matches that are used to anchor ungapped local alignments, based on which pairwise distances
are computed. CVTree3 [22] corrects k-, k−1, and k−2-mer counts by subtracting random
background of neutral mutations using a (k−2)-th Markov assumption. In FSWM [13],
matches of patterns including match and don’t-care position are scored and filtered to estimate
evolutionary distances.

WABI 2019
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Figure 2 Reconstructed phylogenetic splits on the Drosophila dataset [17].

Unless stated otherwise, a k-mer length of 31 (Bifrost default) has been used for construct-
ing the C-DBG for SANS. All tools have been run on a single 2GHz processor and times
are given in CPU hours (user time). Accuracy has been measured in terms of topological
Robinson-Foulds distance, i.e., a predicted edge (split) is correct if and only if the reference
tree contains an edge that separates the same two sets of leaves. As recall, we count the
number of correct edges (splits) divided by the total number of edges in the reference, and
as precision, we count the number of correct edges (splits) divided by the total number of
predicted edges (splits).

4.1 Drosophila
This dataset comprises assemblies from 12 species of the genus drosophila obtained from
the database FlyBase (flybase.org, latest release before Feb. 2019 of all-chromosome-files
each) [17]. As reference, we consider the commonly accepted phylogeny published by the
FlyBase consortium [3, Figure 2] also shown on the database website.

Although being “simple” in the sense that it contains only a small number of genomes,
its analysis exemplifies the following aspects: (i) The effectiveness of our method for medium
sized input files: for a total of more than 2 161Mbp (180Mbp on average), SANS inferred
the correct tree within 168 minutes and using up to 25GB of memory. We ran CVTree3
with various values of k. In the best cases (k = 12 and 13), 7 of 9 internal edges have
been inferred correctly taking 95 and 162 minutes, and up to 26 and 87GB of memory,
respectively. (For k = 11, only 4 internal edges were correct, and for k > 13, the computation
ran out of memory.) Both Co-phylog and FSWM did not finish within 48 hours, and both
MultiSpaM and andi could not process this dataset successfully. (ii) As can be seen in
Figure 2a, combining splits and their inverse using the geometric instead of the arithmetic
mean strengthens the tendency of correct splits having a high weight. (iii) Even though the
reconstruction shown in Figure 2b contains 45 splits – in comparison to 21 edges in a binary
tree – , the visualization is close to a tree structure.

flybase.org
all-chromosome


R. Wittler 2:9

0 50 100 150 200

0
2

4
6

8
10

#assemblies

tim
e 

(h
ou

rs
)

● ● ● ●

●

FSWM
Co−phylog
andi
SANS

(a) Running time for computing phylogenies on
random subsamples. Times for SANS include DBG
construction with k = 31, split extraction and ag-
glomeration.

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

recall

pr
ec

is
io

n

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ●

● ● ● ●

● ●

● ●

● ● ● ● ●

●

●

●

● ●

●

●

● ● ●

● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

● ● ● ● ● ●

● ●

● ●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ●

●

●

● ● ●

● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

● ●

●

● ● ●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ● ● ●

● ● ● ●

●

●

● ●

●

● ● ●

●

● ● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ● ● ●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ●

● ●

● ●

● ● ●

●

●

● ● ● ●

●

● ●

● ● ● ●

● ● ●

● ●

● ● ● ● ●

● ● ●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

● ● ●

● ● ●

●

●

●

● ●

● ●

● ● ●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

● ●

●

● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

● ● ●

● ●

●

●

● ● ●

● ●

● ● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ●

●

● ● ● ● ● ●

●

● ●

● ●

● ●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

k=21
k=31
k=45
k=63
greedy tree
greedy weakly
Co−phylog
FSWM
andi

(b) For different values of k, weakly compatible sub-
sets (bullets) and trees (triangles) have been greed-
ily extracted. Each point on a line corresponds to a
different threshold to discard low weighting splits.

Figure 3 Comparison of running time and accuracy of different methods on the ParaC dataset [20]
comprising assemblies of n = 220 genomes.

4.2 Salmonella enterica Para C

This dataset is of special interest as the contained assemblies from 220 genomes of different
serovars within the Salmonella enterica Para C lineage include that of an ancient Para-
typhi C genome obtained from 800 year old DNA [20], the placement of which is especially
difficult due to missing data. As reference, we consider a maximum-likelihood based tree on
nonrecombinant SNP data [20, Figure 5a].

We studied the running time behaviour of the different methods for random subsamples
of increasing size. As shown in Figure 3a, for this high number of closely related genomes,
we observed a super-linear running time of up to 41 minutes for andi, about 5 hours for
Co-phylog, and up to 43 hours for FSWM, whereas the reconstruction of SANS shows a
linear increase (Pearson correlation coefficient 0.9994) to about 10 minutes. The memory
requirement of both SANS and Co-phylog remained below 0.5GB, whereas andi required
about 1GB, and FSWM required up to about 17GB. We ran CVTree3 with ten values of k
between 5 and 27, but none of the resulting trees contained more than 5 correct internal
edges. For MultiSpaM, we increased the number of sampled quartets from the default of
106 to up to 108, which increased the running time from about one hour to about 66 hours.
Both recall and precision improved but were still below 0.2 for internal edges.

The accuracy of the reconstructions with respect to the reference is visualized in Figure 3b.
In particular, we observe: (i) the split reconstruction by SANS and the tree inferred by
Co-phylog are comparably accurate and both are more accurate than the FSWM and andi
tree, (ii) greedily extracting high weighting splits to filter for a tree selects correct splits
while discarding false splits with very high precision, (iii) greedily extracting high weighting
splits to filter for a weakly compatible subset also selects correct splits, but, as expected, has
a lower precision than the tree filter, because more splits are kept than there are edges in a
tree, and (iv) the results of SANS are robust for a wide range of k from 21 to 63.

WABI 2019
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Figure 4 Efficiency and accuracy on the Salmonella enterica dataset [21]. Values have been
averaged over processing two random subsamples each.

4.3 Salmonella enterica subspecies enterica
In comparison to the ParaC dataset, the 2 964 genomes studied by Zhou et al. [21] are not
only a larger but also a more diverse selection of Salmonella enterica strains. As reference, we
consider a maximum-likelihood based tree on 3 002 concatenated core genes [21, Figure 2A,
supertree 3].

The probability to observe long k-mers that are conserved in such a high number of more
diverse genomes is lower than for the previous datasets. Hence, we selected a smaller k-mer
length of k = 21. To assess the efficiency and accuracy for increasing number of genomes, we
sampled subsets of up to 1 500 assemblies. To process the smallest considered subsample of
size 250, andi took about 110 minutes, whereas Co-phylog and FSWM took already more
than 9 and 50 hours, respectively, and MultiSpam was not able to process this dataset at all.
We ran CVTree3 with all values of k between 6 and 14, but in the best case (k = 8), the
resulting tree contained only 33 (of 247) correct internal edges such that we did not further
consider CVTree3 in our evaluation.

The memory usage for split extraction and agglomeration clearly dominates those of
the C-DBG construction by Bifrost such that processing the complete dataset was not
possible with our current implementation of SANS. Figure 4a shows a slightly super-linear
runtime and memory consumption of up to about 300 minutes and 80GB for processing
1 500 assemblies. As can be seen in Figure 4b, both precision and recall vary only slightly
for this wide range of input size. Keeping in mind that a final split of high weight strictly
requires the observation of both unordered pairs, this is a quite promising result for this
first investigation of the methodology. In particular, whereas for distance-based methods,
all leaf-edges are inferred by construction and can never be false, a trivial split separating a
leaf from the remaining tree, requires not only some sequence(s) unique to the leaf but also
sequences that are unique to all other n−1 genomes. Also note that measuring accuracy by
counting correct and false splits corresponding to the topological Robinson-Foulds distance
has to be interpreted with care. A single misplaced leaf breaks all splits between its correct
and actual location. However, this is a desired behaviour in this context, because, in a
phylogeny of several hundred genomes, each genome should at least be located in the correct
area, whereas the complete misplacement even of a single genome can easily lead to wrong
biological conclusions.
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Figure 5 Reconstruction results on the prasinovirus dataset [6].

4.4 Prasinoviruses
Viral genomes are short and highly diverse – posing the limits of phylogenetic reconstruction
based on sequence conservation. Here we consider complete genomes of 13 prasinoviruses,
which are relatively large (213Kbp on average) [6]. As references, we consider two trees
reported in the original study, one of which is based on the presence and absence of shared
putative genes [6, Figure 3], and the other is a maximum likelihood estimation based on a
marker gene (DNA polymerase B) [6, Figure 4].

Due to the small size of the input, it could be processed by all tools, where time and
memory consumption were negligible. Only andi could not process this dataset successfully
(“very little homology was found”). Results are shown in Figure 5a. The visualization of
the predicted splits in Figure 5b exemplifies the explanatory power of the split framework.
While main separations supported by both reference trees are recognizable as strong splits
in the net, separations in which the two reference trees disagree are also shown as weakly
compatible splits.

4.5 Vibrio cholerae
The dataset comprises 22 genomes from the species Vibrio cholerae, 7 of which have been
sequenced from clinical samples and are labelled “pandemic genome” (PG), and the remaining
15 have been sequenced from non-clinical samples and are labelled “environmental genome”
(EG) [16, primary dataset]. As already observed in the original study, for these genomes, it is
difficult to reconstruct a reliable, fully resolved tree. Nevertheless, representing the phylogeny
in form of splits shows a strong separation of the pandemic from the environmental group.
The phylogeny presented by the authors of the original study [16, Supplementary Figure 1a]
is based on 126 099 sites extracted from alignment blocks.

Comparing our reconstruction results to the reference, both shown in Figure 6, we make
two observations. (i) Our reconstruction also separates the pandemic from the environmental
group, and agrees to the reference in further sub-groups. (ii) When collecting the sequence
data, for some of the genomes, we found assemblies, whereas for others, only read data was
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Figure 6 Splits reconstructed for the V. cholerae dataset [16] by SANS (left) and by Shapiro et
al. [16] (right) visualized with SplitsTree [10, 12].

available. Because the used C-DBG implementation Bifrost supports a combination of both
types as input, we were able to reconstruct a joint phylogeny without extra effort or obvious
bias in the result.

5 Discussion and Outlook

We proposed a new k-mer based method for phylogenetic inference that neither relies on
alignments to a reference sequence nor on pairwise or multiple alignments to infer markers.
Prevailing whole-genome approaches perform pairwise comparisons to determine a quadratic
number of distances to finally infer a linear number of tree edges. In contrast, in our approach,
the length of conserved sequences is extracted from a colored de Bruijn graph to first infer
signals for phylogenetic sub-groups. These signals are then combined with a symmetry
assumption to weighted phylogenetic splits. Evaluations on several real datasets have proven
comparable or better efficiency and accuracy compared to other whole-genome approaches.
Our results indicate robustness in terms of k-mer length, as well as the taxonomic order, size
and number of the genomes. The analysis of a dataset composed of both assembly and read
data indicated also robustness in this regard – an important characteristic, which we want to
investigate further.

A distinctive feature of the proposed methodology is the direct association of a phylogenetic
split to the conserved subsequences it has been derived from, which is not possible for distance-
based methods. We plan to enrich our implementation with this valuable possibility to
allow the analysis of characteristic subsequences of identified subgroups, or subsequences
inducing phylogenetic splits off the main tree, e.g. horizontal gene transfer. Here, the applied
generalization of trees plays an important role, e.g., circular split systems are more strict
than weakly compatible sets and might thus be a promising alternative to be studied further.

Another direction of future work is the incorporation of the topology of the de Bruijn
graph. Currently, it is simply used as a collection of unitigs. But specific substructures, in
particular with regard to the colors in the graph, could be used to identify phylogenetic events.
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Finally, we want to emphasize the simplicity of the new approach as presented here. At
its current state, apart from iterating a colored de Bruijn graph and agglomerating unitig
lengths, the only elaborate ingredient so far is the symmetry assumption realized by applying
the geometric mean. We believe that the general approach still harbors much potential to be
further refined by, e.g., statistical models, advanced data structures, pre- or postprocessing,
to further increase its accuracy and efficiency.
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Abstract
The strength or weakness of an algorithm is ultimately governed by the confidence of its result.
When the domain of the problem is large (e.g. traversal of a high-dimensional space), an exact
solution often cannot be obtained, so approximations must be made. These approximations often
lead to a reported quantity of interest (QOI) which varies between runs, decreasing the confidence
of any single run. When the algorithm further computes this QOI based on uncertain or noisy
data, the variability (or lack of confidence) of the QOI increases. Unbounded, these two sources of
uncertainty (algorithmic approximations and uncertainty in input data) can result in a reported
statistic that has low correlation with ground truth.

In molecular biology applications, this is especially applicable, as the search space is generally
large and observations are often noisy. This research applies uncertainty quantification techniques to
the difficult protein-protein docking problem, where uncertainties arise from the explicit conversion
from continuous to discrete space for protein representation (introducing some uncertainty in the
input data), as well as discrete sampling of the conformations. It describes the variability that exists
in existing software, and then provides a method for computing probabilistic certificates in the form
of Chernoff-like bounds. Finally, this paper leverages these probabilistic certificates to accurately
bound the uncertainty in docking from two docking algorithms, providing a QOI that is both robust
and statistically meaningful.

2012 ACM Subject Classification Applied computing → Molecular structural biology; Mathematics
of computing → Hypothesis testing and confidence interval computation; Computing methodologies
→ Uncertainty quantification

Keywords and phrases protein-protein docking, uncertainty quantification, protein flexibility, low-
discrepancy sampling, high-dimensional sampling

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.3

Related Version A full version of the paper is available at http://arxiv.org/abs/1906.10253.

Acknowledgements I would like to thank all those who have supported and helped advise on this
work, for their valuable feedback and suggestions for improvement.

1 Introduction

Predicting the bound conformation of two proteins (protein-protein docking) has many
applications in medicine and biology [26, 19]. The simpler form of this problem is the
so-called “bound-bound” case, where the 3-dimensional coordinates of the in situ protein
complex is resolved (via e.g. X-ray crystallography, NMR, etc.), and atoms corresponding to
individual proteins are then extracted from the complex. The more difficult version is the
“unbound-unbound” case, where each protein in the pair is imaged in its separate native state,
and the algorithm must predict the correct in situ bound complex [18]. Importantly, the
final quantity of interest (QOI) in many cases is the change in binding free energy: protein
complexes with a high change in free energy are more likely to be found as a bound complex,
and are likely good targets for drug discovery pathways. The difficulty of the unbound-
unbound case then arises from the inherent flexibility of proteins: large-scale movements
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may occur along the pathway from a closed conformation (unbound) to an open (bound)
one, or visa versa. If docking is performed on only the unbound complexes, the final delta
energy could be completely misleading. (To aid in discussion, here and through the paper we
will refer to one protein, typically the bigger, as the receptor, and the other as the ligand.)

A subsequent difficulty of the unbound-unbound docking problem is that computational
approaches must search two high-dimensional spaces. The first is that of possible protein
structures, a naive description of which is R3m × R3n, where m and n are the number of
atoms in the ligand and receptor, respectively. The second is the space of possible docked
conformations. In rigid-body docking (each protein is static), this is the 6-dimensional real
space of 3 rotational + 3 translational degrees of freedom, SE(3) = SO(3) × R3 [1, 25].
Without approximation, searching this high-dimensional space is computationally intractable.
To achieve meaningful results, successful algorithms must employ some sort of simplification.

One of the biggest issues that arises from these simplifications is uncertainty propagation.
A computational representation of a protein is, by nature, an approximation (discrete
representation of a continuous space). Computing a simple statistic, or quantity of interest
(QOI), on these representations is then by nature uncertain [27]. Algorithmic approximations
(due to randomness or variations in the inputs) in one stage of a protein docking pipeline
lead to uncertainty in the input for the next stage. If these uncertainties are not quantified
at each stage, the uncertainties propagate to future levels of the pipeline, leading to a result
or QOI that is unbounded, and may contain little valuable information.

This paper provides a framework for bounding the uncertainty of protein-protein docking.
For a docking procedure where the QOI, f(X), is some complicated function or optimization
functional involving noisy data X, we seek to provide a probabilistic certificate as a function
of parameter t that the computed value f(X) is not more that t away from the true value,
with high probability. This certificate is expressed as a Chernoff-Hoeffding like bound [8]:

Pr [|f(X)− E[f ]| > t] ≤ ε, (1)

where E[f ] is the expectation of f , computed over all permutations of X. The primary
QOI we are interested in bounding is the change in Gibbs free energy, or ∆G, as this is
the metric most useful for real-world experiments. However, we also consider the interface
RMSD (iRMSD), which is defined as the RMSD between Cα atoms on the interface of
the bound pair.

Instead of providing a new docking algorithm as a solution to bounding the above
certificate, this research instead considers the docking algorithm, f(X), as a black box,
exploring the landscape of possible structures, X ∈ X, as inputs to f and computing the
certificates from the output. This then provides a framework by which any two algorithms
can be compared, and by which conclusive results can be reported.

In this work, we expand upon our previous research [27, 10] in the following manner.
First, the model used in the previous research was simplistic, and, while useful for modeling
small uncertainties, does not provide insight into uncertainty of large-scale protein movement.
Second, we consider the impact of this conformational uncertainty to provide certificates for
black-box docking functions. This second contribution can be used when trying to interpolate
results of a given docking algorithm to biological equivalents.

The only known research that applies uncertainty quantification to protein-protein docking
is a recent preprint by Cau and Shen [5]. The authors use Bayesian active learning to explore
protein-protein docking samples using a black-box energy function. Once the energy landscape
has been sufficiently sampled, they provide posterior distributions of the desired QOI, which
enables computing confidence intervals for each model. The major differences between this
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work and our own work is 1) the treatment of the entire docking algorithm as a black box
(instead of just the energy function), and 2) the use of a hierarchical model convolved with a
von Mises distribution to generate samples local to the unbound input.

The paper is organized as follows. First, we provide the theoretical and technical details
of our approach, including probabilistic certificates through effective sampling, protein
representation, sampling protocol, and benchmark dataset. Second, we show that the protein
sampling protocol used improves upon the results of both rigid-body and flexible docking
metrics, computing the probabilistic certificates for the change in Gibbs free energy for sets
of docked proteins. Finally, we discuss the importance of these results both in terms of UQ
for docking algorithms and biological relevance.

2 Materials and methods

2.1 Computing Chernoff-like bounds
Our primary motivation in this work is to compute a probabilistic certificate to bound the
uncertainty in a computed statistics. We are most concerned with providing the Chernoff-
Hoeffding like bound expressed in Equation 1, which provides a probabilistic guarantee for
the moments of a QOI computed on noisy data.

We can provide a theoretic bound for the uncertainty by using the McDiarmid inequality,
defined in [22] and extended to support summations of decaying kernels such as the Leonnard-
Jones potential in [27]. Let (Xi) be independent random variables with discrete space Ai,
let f : ΠiAi → R, and let |f(x1, . . . , xk, . . . , xn) − f(x1, . . . , x

′
k, . . . , xn)| ≤ ck, or ck is the

degree of change influenced on f over all variations of xk. Then, for any t > 0:

Pr [|f(X)− E [f ]| > t] < 2 exp
(
−2t2/

∑
k

c2
k

)
.

Thus, to provide theoretic bounds, all that is required is to determine the value of ck for
each xk. However, computing ck analytically may be difficult, and even if it were possible,
theoretical bounds these often overestimate the error. An alternate approach is then to
empirically compute these certificates using quasi-Monte Carlo (QMC) methods [24, 16].
Assuming the distribution of (Xi) is known, we sample this space and evaluate f at each
sample. This leads to an estimate of the distribution of f over the joint space of all Ai, which
provides sufficient data to compute certificates on the uncertainty, as defined in Equation 1.

Correctness of this approach relies on the correctness of the QMC methods and the
description of the joint sampling space. For this reason, we will spend the next section
describing our protein representation and the corresponding sampling space. In the Res-
ults and discussion section we will show that our sampling space is accurate (e.g. a good
representation of the distribution of (Xi)), and thus the provided certificates are also sound.

2.2 Protein representations
The base structure of a protein is a linear chain of amino acids (also called “residues”). Each
amino acid consists of a set of atoms, and all the atoms connected by covalent bonds into a
single 3-dimensional structure. Such atoms divide into two groups: backbone atoms: two
carbons, one nitrogen, and one oxygen; and zero or more side-chain atoms. The carbon
connecting the backbone to the side-chain atoms is called the Cα atom, and the first side-
chain carbon (if it exists) is called the Cβ atom (see Figure 1). The native representation of
a protein is thus a graph in 3-dimensional Cartesian space, where each node of the graph
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Figure 1 Torsion angles for a protein chain. The backbone atoms are labeled Ci, Oi, Cαi, and
Ni. For a constrained internal coordinate representation, only the ψi, φi, and potentially χi torsion
angles are considered (ωi is fixed at 180◦).

represents atoms and edges represent bonds. The position of each node/atom is represented
by a vector in R3, requiring three parameters for each atom. If t̂ is the average number of
side-chain atoms per residue for a given protein, then this representation requires a total of
n = 3(t̂+ 4)N parameters (3 degrees of freedom each for the t̂ side-chain and 4 backbone
atoms), or degrees of freedom (DOFs), for a protein with N amino acids.

An alternate representation of proteins, employed by most sampling protocols (e.g. [23, 12]
and others) is the internal coordinates representation. Under this representation, the position
of each atom is only defined in relation to the atoms around it, and the free variables are
bond angles, bond lengths, and torsion angles (the degree of “twist” defined by 2 planes
or 4 atoms, see Figure 1). This does not immediately reduce the total degrees of freedom
(since in general, each atom needs to be described by bond angles, bond lengths, and torsion
angles); however, if small-scale atomic vibrations are ignored, then bond lengths and angles
can be approximated as constant, leaving the only DOFs as the ψ, φ, and χi torsion angles
(the ω torsion angle on the backbone is held at ∼ 180◦ by the sp2 partial double bond [4]). If
k̂ is the average number of χi angles for a given residue (k varies from 0 to 5 in the standard
20 amino acids), then the number of DOFs for this representation for a protein with N

amino acids is m = (k̂ + 2)N . Since in most cases k̂ + 2� 3(t̂+ 4), this constrained internal
coordinate method allows for a lower-dimensional specification of the protein conformational
space without a loss in representation [13].

2.3 Hierarchical domain decomposition and motion graph
Roughly speaking, proteins decompose into rigid and flexible parts. Rigid contiguous parts
are called domains, which exhibit little movement in several conformations. In turn, flexible
parts, also known as hinges, interconnect domains. These flexible parts show three types
of motion: shearing or gliding (i.e. a lateral movement along domain interfaces), bending
(i.e. an angular movement between axes of two connected domains), and twisting (i.e. a
rotational movement around the longitudinal axis of a domain).

When representing large-scale protein motion, we are primarily interested in hinges, or
flexible regions connecting large mostly-rigid bodies or domains. However, since there may
be multiple levels of motion, we use a hierarchical representation of the constrained internal
angles representation of the protein. The hierarchical representation is not a recursive
subdivision of the protein, but rather a description of (possibly overlapping) protein motions.
This allows us to represent motions at one level that consist of atoms from different domains
in the previous level.

To obtain this hierarchical domain decomposition for a given protein, we model the
protein as a Cα (one node per residue) GNM (Gaussian network model), and compute
the NMA (normal modes analysis) decomposition of the protein (in this work, we use the
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Figure 2 The NMA decomposition of 1RKE receptor, for the second non-trivial mode. From left
to right: the cross-correlation fluctuation matrix, [F ]2; the sign of entries of [F ]2, with short domains
removed; the domain graph representation of the protein, where the size of each node represents
the number of residues in that domain; and the domain graph representation mapped onto the 3d
structure of the protein, colored according to domain with hinge residues colored red. Hinges that
are also flexible connectors separate all domains but f (gray) and g (green), which are connected by
segments (hinges) that would not form a cut in the domain graph representation.

implementation from the R Bio3D package [14]). Each of the k modes represents a separate
direction of motion, from large-scale motions (the smallest eigenvalues) to the high-frequency
vibrations of hydrogen atoms. Each mode corresponds to a different level in our hierarchical
representation; that is, each hierarchical level corresponds to a distinct rigidity threshold.

Hinges are obtained in a similar fashion to that demonstrated by HingeProt[11], as follows.
For each mode, i, we compute the mean square fluctuation matrix as follows:

[F ]i = 3kBT

γ
λ−1

i uiuᵀ
i , (2)

where λi and ui is the eigenvalue and eigenvector of mode i, and kB, T , and γ are the
Boltzmann constant, temperature, and uniform force constant, respectively. Regions of
this matrix with the same sign form the rigid domains, and individual residues where the
sign changes (from positive to negative) become hinges. For practical purposes, we collapse
domains with only a small number of residues.

The final stage at a given level is to construct a domain graph representation, where nodes
in the graph represent rigid domains and edges in the graph exist wherever two domains are
in contact with each other, i.e. any atom from one rigid domain is within rc of any atom
from another domain (see Figure 2 for the decomposition a single level in the hierarchy).
From this graph, we categorize each hinge as flexible connector if the removal of the hinge
would form a cut of the domain graph representation, i.e. its removal would result in two
disjoint subgraphs.

Once we have obtained the domain graph representation of the protein for each of the k
NMA modes, we construct a multi-graph of the domain hierarchy for the entire protein [2].
At the top level of the hierarchy are the hinges and domains computed by the first non-trivial
mode (i.e. with the smallest eigenvalue), representing more broad, global motions. The next
level of the hierarchy is represented by the second smallest eigenvalue, and so on until all k
modes have been used. We also assign a weight, wk, to all hinges at level k of the hierarchy,
arising from Equation 2:

wk = 3kBTλ
−1
k . (3)

The final dimension of the product space of sampling is then KR +KL, where KR (KL)
is the number of hinges from all k levels for the receptor (ligand), creating a product space
of SO(3)KR+KL (SO(3) is the special orthogonal group of rotations about a fixed axis). For
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Figure 3 Ramachandran distributions for aspartic acid under different parameterizations. Left:
ssi is a helix; middle: ssi is a loop; right: ssi−1, ssi, and ssi+1 are respectively sheet-sheet-loop.
Note that the distributions are more tightly clustered with the gain of additional context.

the dataset used in this paper, the value of KR +KL range from 21 hinge residues (3FN1) to
70 (1BKD). It is well known that generating a small number of good (i.e. low discrepancy)
samples is difficult in high dimensions, so to overcome this issue, we use the low-discrepancy
sampling protocol developed by [3] when generating samples.

2.4 Sampling protocol and Ramachandran distributions of amino acids
Based on the hierarchical protein decomposition described above, we now describe how to
obtain a set of representative samples of the protein. Even with a good low-discrepancy
sampling, this high-dimensional product space still requires a large number of samples to
completely cover the product space. However, most of these samples will lead to physically
impossible protein structures: clashes between nearby atoms, steric strain, or even a protein
that is no longer biologically active. We would like to reduce the sampling space for a given
torsion angle from all of SO(3) to only the relevant, low-energy regions.

To establish a set of generic neighbor-dependent Ramachandran probability distribution,
we compute the torsion angles from a set of ∼15k high-quality, non-homologous protein
structures obtained from the Pisces server [29]. From this set, we generate discrete probability
distributions for each backbone torsion angle pair, conditioned on the amino acid type and
secondary structure type of the previous and following residues. In other words,

ProbN (φ, ψ, i) = Pr (φ, ψ|ssi−1, ssi, ssi+1, aai) , (4)

where ssi and aai are the secondary structure and amino acid types of residue i, respectively,
and φ and ψ are the backbone torsion angles (see Figure 1). Figure 3 shows the conditional
distributions for aspartic acid.

To generate samples of a given protein, we would like to draw samples for each flexible
residue from the neighbor-dependent Ramachandran distributions. However, we also recognize
that the input protein has important structural elements that should be preserved. For
this reason, we convolve the discrete Ramachandran distribution with a bivariate von Mises
distribution (the two-dimensional variant of the approximately-Gaussian distribution on a
unit circle, e.g. [−π, π)2 [21]), centered at the given backbone torsion angle. The cosine
variant of the bivariate von Mises distribution is given as follows:

Pr (φ, ψ) = Zc(κ1, κ2, κ3) exp (κ1 cos (φ− µ) + κ2 cos (ψ − ν) + κ3 cos (φ− µ− ψ + ν)) , (5)

where µ and ν describe the mean for φ and ψ, κ1 and κ2 describe their concentration, and κ3
describes their correlation. If κ3 is zero and κ1 = κ2 = σ, then σ can be used to increase or
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decrease the amount of bias the input structure has on the Ramachandran distributions. Lower
values of σ (lower concentration) bias more toward the general Ramachandran distributions,
while higher values of σ bias more towards the input protein structure.

The final probability of a given (φ, ψ) pair at position i, Prob(i, φ, ψ), is the convolution of
the neighbor-dependent Ramachandran distribution with the specific von-Mises distribution:

Prob (φ, ψ, i) ∝ Pr (φ, ψ|ssi−1, ssi, ssi+1, aai)∗exp
[
σ cos

(
φ− φ̂i

)
+ σ cos

(
ψ − φ̂i

)]
, (6)

where φ̂i and ψ̂i are the values of φ and ψ for residue i in the input protein.
With the internal angles representation and hierarchical decomposition of the protein as

input, we perform the following importance sampling protocol on each level, l:
1. For each hinge at level l, h(l)

j , let i be the index of the residue corresponding to this hinge.
a. Generate the pair (φ̂, ψ̂), drawn from the von Mises-convolved neighbor-dependent

Ramachandran distributions
b. Let ρl be the probability of a given hinge residue changing, arising from wl in Equation 3:

ρl = min(1, wl)
c. If h(l)

j is a cut or no other non-cut hinges have been sampled at level l, set (φi, ψi) to
(φ̂, ψ̂) with probability ρl; otherwise, keep the original (φi, ψi) pair

2. From the internal angle sample, generate the explicit structure in R3

3. Compute the number of clashes caused by hinges at level l, and accept the torsion angle
changes for level l if the number of clashes are less than some parameter c. We define a
clash as two atoms occupying the same space in R3.

As we are most interested in modeling the large-scale uncertainty that arises from domain
movements, we then find the optimal placement of side-chain atoms using SCWRL4 [17],
followed by a brief energy minimization step with Amber16 [6] to remove any steric strain.
Finally, we rank each sample by free energy, and keep only the samples with the lowest
energy. These final two steps (minimization and ranking by energy) prevent us from using
samples that are biologically irrelevant.

2.5 Benchmark dataset
In this research, we are interested in 1) modeling the uncertainty of a given protein-protein
docking algorithm, but also 2) improving the existing docking results in the unbound-unbound
case. The Zlab benchmark 5 [28] contains a set of proteins that have had the X-ray structure
determined both in isolation and together, and consist of 254 protein pairs classified as either
difficult, medium difficulty, or rigid-body, depending on the interface RMSD (iRMSD). The
difficult class of proteins have an iRMSD of > 2.2Å, which means there is typically some
movement between bound and unbound conformations.

To select our set of input structures, we docked each protein classified as “difficult” in both
the bound and unbound conformations with F2Dock [1, 9], a rigid-body docking algorithm.
We selected those proteins that performed well in the bound structure but poorly with the
unbound structure as candidates in our benchmark. The criteria we use for differentiating
between success and failure is whether there exists a “hit” in the top 1000 reported poses.
We define a “hit” as a bound pair with iRMSD within 5Å of the actual bound conformation.

Since we are primarily interested in the single-body docking problem (and not the multi-
body docking problem), we only kept the single-chain proteins for our experiment, which
led to 10 single-chain proteins that perform well when using the bound conformation but
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Table 1 Protein structures used in dataset, labeled according to the ID from the ZLab bench-
mark 5 [28]. The top section contain those that performed well when bound, the bottom section
containing those that did not.

ID # Residues iRMSD (Å) ∆Energy (J)
receptor ligand contact

1ATN 372 258 36 42 131
1F6M 320 108 62 16 87
1FQ1 183 295 53 53 367
1BKD 439 166 97 20 425
1R8S 160 187 61 28 439
1RKE 262 176 68 52 524
1ZLI 306 74 77 13 212
2C0L 292 122 92 17 366
2I9B 265 122 101 29 387
2J7P 292 265 80 20 370
2OT3 253 157 69 17 428
3FN1 160 90 38 14 315
1H1V 368 327 74 33 180
1Y64 411 357 66 39 192
3AAD 264 153 42 37 66

not when unbound. In addition, we also included the 3 single-chain proteins that performed
poorly when both the bound and unbound conformation were used. Statistics on the size
and free energy of each protein are given in Table 1.

3 Results and discussion

3.1 Conformational sampling distributions
Our primary concern for generating a good set of samples is that the samples cover a good
portion of the feasible set of the protein conformational space. We consider two metrics
for measuring coverage: 1) the free energy of individual proteins, and 2) the iRMSD from
the sample to the bound conformation. The first of these metrics is an unbiased measure
of protein stability: if all samples have abnormally high energy, they are unlikely to be
biologically feasible. However, it is possible that the bound conformation lies in an energy
well made more available when in combination with the second protein. For this reason, we
are not interested in only finding the energy minimum, but also the distance from the bound
conformation. Figure 4 shows the energy vs iRMSD for 1000 samples of each protein.

3.2 Improvements in unbound-unbound docking
By generating a set of proteins that have a closer iRMSD to the bound conformation, we are
able to improve on the blind unbound-unbound docking protocol, for both rigid-body and
flexible docking algorithms. We compare the results for the bound and unbound case for
F2Dock (a rigid-body docking algorithm) [1], Rosetta (a semi-flexible docking algorithm)
[15, 7], and SwarmDock (a flexible docking algorithm) [20]. We perform bound-bound and
unbound-unbound docking for each program, and compute the iRMSD on the reported poses.
For F2Dock and Rosetta, the number of reported poses is variable, which we set to 1000.
SwarmDock reports a fixed number of results, so this number varies from 465–548 poses.
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Figure 4 Plot of iRMSD (against the bound conformation) vs energy for samples generated from
the unbound conformation. Proteins are separated by ligand (top) and receptor (bottom) to show
the difference in individual protein movement. The black dashed line shows iRMSD= 5, or the value
at which a match is considered a “hit,” and the red “X” marks the spot of the original unbound
protein. For all proteins, there exist some samples that improve on both the iRMSD and energy;
some of the proteins, such as 3AAD receptor and 1ZLI ligand, improve upon the iRMSD greatly.
Strong convergence is shown by a funnel-shaped energy landscape, and is seen for many protein
pairs. Protein labels are colored red (good when bound) and blue (bad when bound).

Since F2Dock and Rosetta both have command-line interfaces, we also perform docking 50
samples of the unbound conformation of each protein. The minimum iRMSD for each protein
(bound, unbound, and samples for F2Dock and Rosetta) are found in Table 2.

The results from the iRMSD statistics suggest a few findings. First, the flexible algorithms
(Rosetta and SwarmDock) are better at docking the bound-bound conformations than the
rigid-body one (F2Dock). This is potentially due to the fact that clashes in side-chain atoms
prevent the rigid body docking algorithm from correctly identifying the best conformation,
but also could be due to the fact that each program uses a different energy function, and
may be better tuned for these specific proteins in the flexible programs. The most important
observation, however, is the huge difference in iRMSD between the bound and unbound
pairs. This suggests that the input to the algorithm (e.g. unbound or bound) is an important
characteristic of the docking result, and variations in input structure must be accounted for
and described in the output QOI as empirical certificates. Finally, we also note that for each
protein, using many different sampled proteins always improves the iRMSD of the docking
result (sometimes drastically), suggesting that the sampling protocol is sound (leading to
better results).

3.3 Probabilistic certificates from Quasi-Monti Carlo samples

To describe the uncertainty of the results of the docking algorithm, we compute the probabil-
istic certificates arising from the Chernoff-like bounds of the sampled algorithms, given in
Equation 1. This provides a metric that can compare across proteins (for the same docking
algorithm) and across docking algorithms (for the same protein, or over all proteins). We
could provide probabilistic certificates for any QOI; however, we are primarily interested
in bounding the binding free energy. If the reported free energy is tightly bound by a
probabilistic certificate, we are more confident that we have identified the correct free energy.
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Table 2 Best RMSD (over top 1000 poses for F2Dock and Rosetta and all poses for SwarmDock)
for proteins included in this dataset. A single asterisk marks proteins not in the bound form with at
least one hit (iRMSD < 5Å) in the top poses. F2Dock and Rosetta statistics for sampled proteins are
also included. Note the great improvement on Rosetta docking when using the sampled proteins, and
that the sampled proteins are always better than the unbound case. The large differences between
bound and unbound input suggests the output QOI is highly dependent on the input to the model.

F2Dock Rosetta SwarmDock
ID bound unbound sampled bound unbound sampled bound unbound
1ATN 1.2 7.2 *4.6 0.08 8.6 6.8 0.98 *4.6
1BKD 1.3 8.7 *4.9 0.23 16.9 5.4 0.68 8.7
1F6M 1.2 8.1 *5.0 0.11 17.9 13.4 0.69 5.6
1FQ1 2.3 6.4 *4.4 0.48 15.0 8.2 3.55 5.6
1R8S 1.7 9.4 6.2 0.22 14.5 6.2 0.72 5.1
1RKE 0.8 7.1 5.8 0.15 15.1 12.8 0.65 5.4
1ZLI 0.6 10.0 *4.6 0.13 10.6 7.1 0.71 9.0
2C0L 0.5 *4.8 *4.0 0.30 12.2 8.2 0.75 *3.8
2I9B 1.1 8.4 *4.7 0.09 13.6 8.8 7.93 6.5
2J7P 1.4 7.2 *3.4 1.12 17.2 14.9 0.60 6.6
2OT3 1.1 5.1 *3.9 0.16 15.6 6.8 0.92 6.0
3FN1 1.0 5.5 *4.9 0.10 9.9 *4.8 0.53 *4.1
1H1V 8.8 11.0 8.0 0.27 18.8 13.5 0.68 9.1
1Y64 9.3 11.4 10.7 1.9 35.0 15.6 1.37 11.7
3AAD 7.0 8.2 5.3 0.39 22.0 9.2 2.36 7.1

Figure 5 shows a comparison of the certificate for ∆G of each protein (at Pr = 0.9,
see Equation 1), and includes the true QOI (red dot), computed on the bound-bound
conformation. For some of the proteins (e.g. 3FN1), the provided certificate is much tighter
than others (e.g. 2C0L). This also allows us to directly compare the two different programs
in terms of docking uncertainty. While the rigid F2Dock algorithm occasionally has higher
bounds, with high probability the true statistic lies within the Pr = 0.9 certificate range.
The Rosetta results usually contain the true QOI, but is not contained within the min/max
range for 3FN1.

4 Conclusion

In this work, we provide a framework for providing probabilistic certificates on uncertainty in
a docking algorithm. Fundamental to these certificates is the contribution of a low-discrepancy
hierarchical sampling protocol that includes general amino acid information in the form of
Ramachandran plots, but also structural information that is specific to the input protein in
the form of a bivariate von Mises distribution. We show that the low-discrepancy samples
generated by this protocol explore the energy landscape for the unbound protein, which
includes samples closer to the bound conformation.

With these samples, we compare three different docking algorithms, ranging from rigid-
body to completely flexible. We show that docking results vary substantially depending on
the input protein structure – even for the flexible docking algorithms – further substantiating
our claim that uncertainty quantification is essential to protein-protein docking.
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Finally, we repeat the protein-protein docking experiments with different structures from
our hierarchical sampling protocol and assess the variations in reported binding free energy.
We compute a probablistic certificate for the binding free energy, and compare the 90%
confidence interval with the value computed on the bound complex. This provides a tool for
comparing not only uncertainty across proteins, but also across docking algorithms.
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Abstract
Gene tree correction aims to improve the accuracy of a gene tree by using computational techniques
along with a reference tree (and in some cases available sequence data). It is an active area
of research when dealing with gene tree heterogeneity due to duplication and loss (GDL). Here,
we study the problem of gene tree correction where gene tree heterogeneity is instead due to
incomplete lineage sorting (ILS, a common problem in eukaryotic phylogenetics) and horizontal
gene transfer (HGT, a common problem in bacterial phylogenetics). We introduce TRACTION, a
simple polynomial time method that provably finds an optimal solution to the RF-Optimal Tree
Refinement and Completion Problem, which seeks a refinement and completion of an input tree
t with respect to a given binary tree T so as to minimize the Robinson-Foulds (RF) distance.
We present the results of an extensive simulation study evaluating TRACTION within gene tree
correction pipelines on 68,000 estimated gene trees, using estimated species trees as reference
trees. We explore accuracy under conditions with varying levels of gene tree heterogeneity due to
ILS and HGT. We show that TRACTION matches or improves the accuracy of well-established
methods from the GDL literature under conditions with HGT and ILS, and ties for best under the
ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. TRACTION is
available at https://github.com/pranjalv123/TRACTION-RF and the study datasets are available
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1 Introduction

Reconstructing the evolutionary history of a gene is a core task in phylogenetics, and our
ability to infer these evolutionary relationships accurately can have important implications for
a variety of downstream analyses. For example, estimated gene trees are used in the inference
of adaptation, evolutionary event detection (such as gene loss, gene duplication, and horizontal
gene transfer), ortholog identification, analysis of functional trait evolution, and species tree
estimation. However, unlike species tree estimation techniques that leverage information
encoded across the entire genome, gene tree estimation based on a single locus may not
contain enough signal to determine the correct gene tree topology with high confidence [27].
Indeed, many phylogenomic datasets have gene trees with average branch support well below
75%, which is a common lower bound for branches to be considered reliable. For example,
the Avian Phylogenomic Project [17] reported average branch support values below 30%,
and many other studies (surveyed in [25]) have had similar challenges. Estimating gene and
species trees is further complicated by biological processes such as gene duplication/loss
(GDL), incomplete lineage sorting (ILS), and horizontal gene transfer (HGT), that create
heterogeneous tree topologies across the genome [21]. HGT has long been known to cause
problems for bacterial phylogenetics, and ILS by itself has emerged as a major issue in
phylogenomics, affecting most, if not all, genome-scale datasets [10].

Because gene trees often have low accuracy, a natural problem is to try to improve
gene tree estimation using an estimated or known species tree. An approach from the gene
duplication and loss literature is to modify estimated gene trees with respect to a reference
species tree, which may either be an established tree from prior literature or an estimated
species tree (e.g., based on an assembled multi-locus dataset). Some of these methods use the
available sequence data as well as the estimated gene tree and species tree, and are referred to
as “integrative methods”; examples include ProfileNJ [27], TreeFix [33], and TreeFix-DTL [2].
Other methods, called “gene tree correction methods”, use just the topologies of the gene tree
and species tree, and are typically based on parametric models of gene evolution; Notung [6, 9]
and ecceTERA [16] are two of the well known methods of this type. Integrative methods
are generally expected to be more accurate than gene tree correction methods when gene
tree heterogeneity is due to GDL, but as a result of using likelihood calculations they are
also more computationally intensive. See [4, 26, 31, 18, 15, 16, 34] for an entry into the vast
literature on this subject.

Here, we examine the problem of gene tree correction for the case where gene tree
heterogeneity is due to ILS or HGT, and where each gene tree has at most one copy of
each species. We present a new approach to gene tree correction that is based on a very
simple non-parametric polynomial-time method, TRACTION, that is agnostic to the cause
of gene tree heterogeneity. In addition to correcting gene trees, TRACTION is also capable of
completing gene trees that do not contain all the species present in the reference species tree,
a condition that may occur in a multi-locus study as a result of taxon sampling strategies
or unavailable data (such as when not all genomes have been sequenced and assembled).
The input to TRACTION is a pair (t, T ) of unrooted phylogenetic trees. The leaf set of
t is a subset of the leaf set of T , tree T is binary, and tree t will generally be non-binary.
We seek a tree T ′ created by refining t and adding any missing leaves so that T ′ has the
minimum Robinson-Foulds (RF) [28] distance to T . We call this optimization problem
the “RF-Optimal Tree Refinement and Completion Problem” (RF-OTRC). We show that
TRACTION finds an optimal solution to this problem in O(n1.5 logn) time, where n is the
number of leaves in the species tree T . To use TRACTION for gene tree correction, we
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assume we are given an estimated gene tree with branch support values and an estimated (or
known) binary species tree, which may have additional species. The low support branches
in the gene tree are collapsed, forming the (unresolved) tree t. TRACTION has two steps:
first it refines the input gene tree t into a binary tree t′, and then it adds the missing species
to t′. Although the algorithm is quite simple, the proof of correctness is non-trivial. We
present the results of an extensive simulation study (on 68,000 gene trees, each with up to 51
species) in which gene tree heterogeneity is either due to only ILS or to both ILS and HGT.
We explore TRACTION for gene tree correction with estimated species trees in comparison
to Notung, ecceTERA, ProfileNJ, TreeFix, and TreeFix-DTL, evaluating the accuracy of the
corrected gene trees by computing the RF distance to the true gene tree. Overall, while many
methods (including TRACTION) tie for best on the ILS-only data, TRACTION dominates
the other gene tree correction methods with respect to topological accuracy on the HGT+ILS
data, and ties for fastest. Importantly, TRACTION provides good accuracy even when the
estimated species tree is far from the true gene tree. The simplicity of the approach and its
good accuracy under a range of different model conditions indicates that non-parametric
approaches to gene tree correction may be promising, and encourages future research.

2 TRACTION

2.1 Terminology and Basics
Each edge e in an unrooted phylogenetic tree defines a bipartition πe (also referred to as a
split) on the leaves of the tree induced by the deletion of e (but not its endpoints). Each
bipartition of the leaf set into two non-empty disjoint parts, A and B, is denoted by A|B.
The set of bipartitions of a tree T is given by C(T ) = {πe : e ∈ E(T )}, where E(T ) is the
edge set for T . Tree T ′ is a refinement of T if T can be obtained from T ′ by contracting a
set of edges in E(T ′). A tree T is fully resolved (i.e., binary) if there is no tree that refines T
other than itself.

A set Y of bipartitions on some leaf set S is compatible if there exists an unrooted tree T
leaf-labelled by S such that Y ⊆ C(T ); furthermore, when a set of bipartitions is compatible
then there is a unique tree such that Y = C(T ). In addition, pairwise compatibility of a
set of bipartitions ensures setwise compatibility [11, 12]. A bipartition πe of a set S is said
to be compatible with a tree T with leaf set S if and only if there is a tree T ′ such that
C(T ′) = C(T ) ∪ {π} (i.e., T ′ is a refinement of T that includes the bipartition π). Similarly,
two trees on the same leaf set are said to be compatible if they share a common refinement; it
then follows that two trees are compatible if and only if the union of their sets of bipartitions
is compatible.

Given a phylogenetic tree T on taxon set S, T restricted to R ⊆ S is the minimal
subgraph of T connecting elements of R and suppressing nodes of degree two. We denote
this as T |R. If T and T ′ are two trees with R as the intersection of their leaf sets, their
shared edges are edges whose bipartitions restricted to R are in the set C(T |R) ∩ C(T ′|R).
Correspondingly, their unique edges are edges whose bipartitions restricted to R are not in
the set C(T |R) ∩ C(T ′|R). See Figure 1 for a pictorial depiction of unique and shared edges.

The Robinson-Foulds (RF) distance [28] between two trees T and T ′ on the same set of
leaves is the number of bipartitions present in only one tree; equivalently, the RF distance is
equal to the total number of unique edges in both trees. The normalized RF distance is the
RF distance divided by 2n− 6, where n is the number of leaves in each tree; this produces a
value between 0 and 1 since the two trees can only disagree with respect to internal edges
and n− 3 is the maximum number of internal edges in an unrooted tree with n leaves.
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2.2 RF-Optimal Tree Refinement and Completion (RF-OTRC) Problem
Input: An unrooted binary tree T on S and an unrooted tree t on R ⊆ S
Output: An unrooted binary tree T ′ on S with two key properties: (1) T ′ contains all the

leaves of S and is compatible with t (i.e., T ′|R is a refinement of t) and (2) T ′ minimizes
the RF distance to T among all binary trees satisfying condition (1).

If the trees t and T have the same set of taxa, then the RF-OTRC problem becomes the
RF-OTR (RF-Optimal Tree Refinement) problem, while if t is already binary but can
be missing taxa, then the RF-OTRC problem becomes the RF-OTC (RF-Optimal Tree
Completion) problem. OCTAL, presented in [7], solves the RF-OTC problem in O(n2) time,
and an improved approach presented by Bansal [1] solves the RF-OTC problem in linear
time. We refer to this faster approach as Bansal’s algorithm. In this paper we present
an algorithm that solves the RF-OTR problem exactly in polynomial time and show that
the combination of this algorithm with Bansal’s algorithm solves the RF-OTRC problem
exactly in O(n1.5 logn) time, where T has n leaves. We refer to the two steps together as
TRACTION (Tree Refinement And CompleTION).

2.3 TRACTION Algorithm
The input to TRACTION is a pair of unrooted trees (t, T ), where t is the estimated gene
tree on set R of species and T is the binary reference tree on S, with R ⊆ S. We note that
t may not be binary (e.g., if low support edges have already been collapsed) and may be
missing species (i.e., R ⊂ S is possible).

Step 1: Refine t so as to produce a binary tree t∗ with as many shared bipartitions with
T as possible (using a polynomial time algorithm described below).
Step 2: Add the missing species from T into t∗, minimizing the RF distance.

2.3.1 Step 1: Greedy Refinement of t

To compute t∗, we first refine t by adding all bipartitions from T |R that are compatible with
t; this produces a unique tree t′. If t′ is not fully resolved, then there are multiple optimal
solutions to the RF-OTR problem, as we will later prove. The algorithm selects one of these
optimal solutions as follows. First, we add edges from t that were previously collapsed (if
such edges are available). Next, we randomly refine the tree until we obtain a fully resolved
refinement, t∗. Note that if t′ is not binary, then t∗ is not unique. We now show that the
first step of TRACTION solves the RF-OTR problem.

I Theorem 1. Let T be an unrooted binary tree on leaf set S, and let t be an unrooted tree
on leaf set R ⊆ S. A fully resolved (i.e. binary) refinement of t minimizes the RF distance
to T |R if and only if it includes all compatible bipartitions from T |R.

Proof. Let C0 denote the set of bipartitions in T |R that are compatible with t. By the
theoretical properties of compatible bipartitions (Section 2.1), this means the set C0 ∪ C(t)
is a compatible set of bipartitions that define a unique tree t′ where C(t′) = C0 ∪ C(t). We
now prove that for any binary tree B that refines t, B minimizes the RF distance to T |R if
and only if B refines t′.

Consider a sequence of trees t = t0, t1, t2, . . . , tk, each on leaf set R, where ti is obtained
from ti−1 by adding one edge to ti−1, and thus adds one bipartition to C(ti−1). Let
δi = RF (ti, T |R)−RF (ti−1, T |R), so that δi indicates the change in RF distance produced
by adding a specific edge to ti−1 to get ti. Hence,
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RF (ti, T |R) = RF (t0, T |R) +
∑
j≤i

δj .

Since T is fully resolved, a new bipartition πi added to C(ti−1) is in C(T |R) if and only
if πi ∈ C0. If this is the case, then the RF distance will decrease by one (i.e., δi = −1).
Otherwise, πi 6∈ C0, and the RF distance to T |R will increase by one (i.e., δi = 1).

Now suppose B is a binary refinement of t. We split the bipartitions in C(B) \ C(t) into
two sets, X and Y , where X are bipartitions in C0 and Y are bipartitions not in C0. By
the argument just provided, it follows that RF (B, T |R) = RF (t, T |R)− |X|+ |Y |. Note that
|X ∪ Y | must be the same for all binary refinements of t, because all binary refinements of t
have the same number of edges. Thus, RF (B, T |R) is minimized when |X| is maximized, so
B minimizes the RF distance to T |R if and only if C(B) contains all the bipartitions in C0.
In other words, RF (B, T |R) is minimized if and only if B refines t′. J

I Corollary 2. TRACTION finds an optimal solution to the RF-OTR problem.

Proof. Given input gene tree t and reference tree T , both on the same leaf set, TRACTION
produces a tree t′′ that refines t and contains every bipartition in T that is compatible with
t; hence by Theorem 1, TRACTION solves the RF-OTR problem. J

2.3.2 Step 2: Adding in missing species

The second step of TRACTION can be performed using OCTAL or Bansal’s algorithm,
each of which finds an optimal solution to the RF-OTC problem in polynomial time. More
generally, we show that any method that optimally solves the RF-OTC problem can be used
as an intermediate step to solve the RF-OTRC problem.

To prove this, we first restate several prior theoretical results. In the proof of correctness
for OCTAL, [7] showed the minimum achievable RF distance between T and T ′ is given by:

RF (T, T ′) = RF (T |R, t) + 2m (1)

where m is the number of Type II superleaves in T relative to t, which we now define.

I Definition 3. Let T be a binary tree on leaf set S and t be a tree on leaf set R ⊆ S. The
superleaves of T with respect to t are defined as follows (see Figure 1). The set of edges in
T that are on a path between two leaves in R define the backbone; when this backbone is
removed, the remainder of T breaks into pieces. The components of this graph that contain
vertices from S \R are the superleaves. Each superleaf is rooted at the node that was incident
to one of the edges in the backbone, and is one of two types:

Type I superleaves: the edge e in the backbone to which the superleaf was attached is a
shared edge in T |R and t
Type II superleaves: the edge e in the backbone to which the superleaf was attached is a
unique edge in T |R and t

I Theorem 4 (Restatement of Theorem in [7]). Given unrooted binary trees t and T with the
leaf set of t a subset of the leaf set S of T , OCTAL(T, t) solves the RF-OTC problem and
runs in O(n2) time, where T has n leaves.

WABI 2019
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Figure 1 Type I and Type II superleaves of a tree T with respect to t. Edges in the backbone
(defined to be the edges on paths between nodes in the common leaf set) are colored green for shared
and red for unique; all other edges are colored black. The deletion of the backbone edges in T defines
the superleaves; one is a Type I superleaf because it is attached to a shared (green) edge and the
other is a Type II superleaf because it is attached to a unique (red) edge. This figure is taken from
[7].

2.4 Proof of correctness for TRACTION
I Theorem 5. Let T be an unrooted binary tree on leaf set S with |S| = n, and let t be an
unrooted tree on leaf set R ⊆ S. TRACTION returns a binary unrooted tree T ′ on leaf set S
such that RF (T ′, T ) is minimized subject to T ′|R refines t. The first stage (refining t) takes
O(|S| + |R|1.5 log(|R|)) time. Hence, TRACTION runs in O(n1.5 logn) time if used with
Bansal’s algorithm and O(n2) time if used with OCTAL.

Proof. By construction TRACTION outputs a tree T ′ that, when restricted to the leaf set
of t, is a refinement of t. Hence, it is clear that T ′|R refines t. Now, it is only necessary to
prove that RF(T ′, T ) is minimized by TRACTION. Since the intermediate tree t∗ produced
in the first step of TRACTION is binary, Theorem 4 gives that TRACTION using OCTAL
(or any method exactly solving the RF-OTC problem) will add leaves to t∗ in such a way as
to minimize the RF distance to T .

As given in Equation 1, the optimal RF distance between T ′ and T is the sum of two
terms: 1) RF(t∗, T |R) and 2) the number of Type II superleaves in T relative to t∗. Theorem
1 shows that TRACTION produces a refinement t∗ that minimizes the first term. All that
remains to be shown is that t∗ is a binary refinement of t minimizing the number of Type II
superleaves in T relative to t∗.

Consider a superleaf X in T with respect to t. If t were already binary, then every
superleaf X is either a Type I or a Type II superleaf. Also, note that every Type I superleaf
in T with respect to t will be a Type I superleaf for any refinement of t. However, when t is
not binary, it is possible for a superleaf X in T to be a Type II superleaf with respect to t but
a Type I superleaf with respect to a refinement of t. This happens when the refinement of t
introduces a new shared edge with T to which the superleaf X is attached in T . Notice that
since the set of all possible shared edges that could be created by refining t is compatible, any
refinement that maximizes the number of shared edges with T also minimizes the number of
Type II superleaves. Theorem 1 shows that TRACTION produces such a refinement t∗ of
t. Thus, TRACTION finds a binary unrooted tree T ′ on leaf set S such that RF(T ′, T ) is
minimized subject to the requirement that T ′|R refine t.
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We now analyze the running time, focusing on the first stage. Constructing T |R takes
O(|S|) time. Checking compatibility of a single bipartition with a tree on K leaves, and then
adding the bipartition to the tree if compatible, can be performed in only O(|K|0.5 log(|K|))
after a fast preprocessing step (see Lemmas 3 and 4 from [14]). Hence, determining the set of
edges of T |R that are compatible with t takes only O(|S|+ |R|1.5 log(|R|)) time. Therefore,
the first stage of TRACTION takes O(|S|+ |R|1.5 log(|R|)) time. Hence, if used with OCTAL,
TRACTION takes O(|S|2) time and if used with Bansal’s algorithm TRACTION takes
O(|S|1.5 log |S|) time. J

3 Evaluation

Overview. We evaluated TRACTION in comparison to Notung, ecceTERA, profileNJ,
TreeFix, and TreeFix-DTL on estimated gene trees under two different model conditions
(ILS-only and ILS+HGT), using estimated species trees. In total, we analyzed 68,000 genes:
8,000 with 26 species under ILS-only models and 60,000 with 51 species under ILS+HGT
models. All estimated gene trees we correct in these experiments were complete (i.e., have all
the species). The motivation for this is two-fold. First, the methods we benchmark against
do not provide an option for completing gene trees with missing data. This is understandable
since these methods were developed for GDL, where missing species in a gene tree are
interpreted as true loss events rather than incomplete sampling. Second, an experimental
evaluation of OCTAL, the algorithm that performs the completion step of TRACTION, was
previously performed in [7].

Datasets. We briefly describe the datasets used in this study (all are from prior studies
[8, 7] and available online). The datasets include single copy genes with 26 or 51 species
(each with a known outgroup), and were generated under model conditions where true gene
trees and true species trees differed due to only ILS (two levels of ILS) or to both ILS and
HGT (one ILS level but two levels of HGT). The true gene tree heterogeneity (GT-HET,
the topological distance between true species trees and true gene trees) ranged from 10% (for
the ILS-only condition with moderate ILS) to as high as 68% (for the ILS+HGT condition
with high HGT). Each model condition has 200 genes, and we explore multiple replicates per
model condition with different sequence lengths per gene. See Table 1 for details.

Estimated gene trees and estimated reference species trees. For each gene, we used
RAxML v8.2.11 [29] under the GTRGAMMA model to produce maximum likelihood gene
trees, with branch support computed using bootstrapping. Because sequence lengths varied,
this produced estimated gene trees with different levels of gene tree estimation error (GTEE)
(defined to be the average RF distance between the true gene tree and the estimated gene
tree), ranging from 32% to 63% as defined by the missing branch rate (see Table 1). We
estimated a species tree using ASTRID v1.4 [32] on the RAxML gene trees. Since we know
the true outgroup for all species trees and gene trees, we used this in our performance study
to root the input species tree and the estimated gene trees, given as input to all methods.

The gene trees given as input to the different methods were computed as follows. Each
edge in each RAxML gene tree we computed was annotated with its bootstrap branch
support, and we identified all the branches with bootstrap support less than 75% (the
standard threshold for “low support”). Low support branches were collapsed in the gene trees
before being given to TRACTION, Notung, and ProfileNJ. When we ran ecceTERA, we gave
the binary gene trees with the threshold value (i.e., minimum required bootstrap support
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Table 1 Empirical properties of the simulated datasets used in this study: GT-HET (gene tree
heterogeneity, the average normalized RF distance between true gene trees and true species trees);
GTEE (average gene tree estimation error); and the average distance of the ASTRID reference
tree to the true gene trees. The publications from which the simulated datasets are taken are
also indicated. In total we analyzed 68,000 genes with varying levels and causes of true gene tree
heterogeneity (to the true species tree) and gene tree estimation error. The ILS-only conditions each
had 20 replicates, and the ILS+HGT conditions each had 50 replicates.

GT-HET GTEE Distance ASTRID to true gene trees

ILS-only, Low ILS, 26 species [7]
# sites varies 0.10 0.32 0.08

ILS-only, High ILS, 26 species [7]
# sites varies 0.36 0.40 0.33

ILS+HGT, Moderate HGT (m5), 51 species [8]
100 sites 0.54 0.63 0.55

250 sites 0.54 0.47 0.55

500 sites 0.54 0.47 0.54

ILS+HGT, High HGT (m6), 51 species [8]
100 sites 0.68 0.62 0.68

250 sites 0.68 0.46 0.68

500 sites 0.68 0.38 0.68

value) of 75%; ecceTERA then collapses all branches that have support less than 75%, and
explores the set of refinements. Thus, the protocol we followed ensures that ecceTERA,
ProfileNJ, Notung, and TRACTION all used the same set of collapsed gene trees. TreeFix
and Treefix-DTL used the uncollapsed gene trees.

Gene tree correction and integrative methods. The RAxML gene trees were corrected
using TRACTION v1.0, Notung v2.9, ecceTERA v1.2.4, ProfileNJ (as retrieved from GitHub
after the March 20, 2018 commit with ID 560b8b2) [27], TreeFix v1.1.10 (for the ILS-
only datasets), and TreeFix-DTL v1.0.2 (for the HGT+ILS datasets), each with a species
tree estimated using ASTRID v1.4 [32] as the reference tree rooted at the outgroup. The
integrative methods (TreeFix, TreeFix-DTL, and ProfileNJ) also required additional input
data related to the gene alignments, which we detail in the appendix. All estimated gene
trees are complete (i.e., there are no missing taxa), so TRACTION only refines the estimated
gene tree and does not add any taxa.

Evaluation criteria. We use RF tree error (the standard criterion in performance studies
evaluating phylogeny estimation methods) to quantify error in estimated and corrected gene
trees as compared to the known true gene tree (as defined in the simulation protocol) and
the impact of TRACTION, Notung, ecceTERA, and TreeFix-DTL, on these errors. Note
that although we use the RF distance within the OTR optimization criterion, there it refers
to the distance between the corrected gene tree and the reference tree (which is an estimated
species tree); in contrast, when we use the RF error rate in the evaluation criterion, in that
context it refers to the distance between the corrected gene tree and the true gene tree. Since
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Figure 2 Comparison of methods on the ILS-only datasets with respect to average RF error rate,
as a function of GTEE. Results are only shown for those datasets on which all methods complete.
Each model condition (characterized by ILS level) has 20 replicate datasets, each with 200 genes.

the reference trees used in our experiments are typically very topologically different from
the true gene tree (8% RF distance for the moderate ILS condition, 33% for the high ILS
condition, 54% to 68% for the ILS+HGT conditions, see Table 1), optimizing the RF distance
to the reference tree is quite different from optimizing the RF distance to the true gene tree.

Experiments. We performed two main experiments: one in which we explored performance
on ILS-only datasets and the other in which we explored performance on datasets with
HGT and ILS. In each case, we directly explored how the GTEE level impacted absolute
and relative accuracy of the gene tree correction methods. We also indirectly explored how
GT-HET affects relative and absolute accuracy. The heterogeneity is higher on the HGT+ILS
datasets than on the ILS-only datasets, as HGT adds to the heterogeneity between gene
trees and species trees (see Table 1).

4 Results and Discussion

Experiment 1: Comparison of methods on ILS-only datasets. Not all methods completed
on all datasets: ecceTERA failed to complete on 67 datasets, profileNJ failed to complete on
two datasets, and all other methods completed on all datasets. Results shown in Figure 2 are
restricted to those datasets on which all methods completed; see the Appendix for additional
results. For the moderate ILS condition (Figure 2 (top)), all methods are able to improve on
RAxML, and the degree of improvement increases with GTEE. For the high ILS condition
(Figure 2 (bottom)), methods improve on RAxML only when GTEE is at least 20%. Thus,
GTEE and ILS level both impact whether methods can improve on RAxML. Furthermore, the
methods group into two sets: TRACTION, Notung, and TreeFix performing very similarly
and ProfileNJ and ecceTERA having somewhat higher error.

WABI 2019
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Figure 3 Comparison of methods on ILS+HGT datasets with respect to average RF error rate
(max is 1.0), as a function of GTEE (gene tree estimation error of the RAxML gene trees); ecceTERA
failed on many datasets (with increasing failure rate as GTEE increases), and so those results are
not shown. Results shown here are for only those datasets on which all methods completed.

Experiment 2: Comparison of methods on the HGT+ILS datasets. The HGT+ILS
datasets have heterogeneity due to both HGT and ILS, with the degree of HGT varying
from moderate (m5) to high (m6). On these data, ecceTERA failed on 1,318 datasets with
the failure rates increasing as the gene tree estimation error of the initial RAxML gene
tree (GTEE) increased: it failed 0% of the time when GTEE is less than 40%, 0.4% of
the time when GTEE is 40-60%, 23.6% of the time when GTEE is 60-80%, and 90.8% of
the time when GTEE is at least 80%. Because of the high failure rate, we do not report
results for ecceTERA under these conditions. Figure 3 shows the impact of the remaining
methods on RAxML gene trees as a function of GTEE. The relative performance between
the remaining methods show that TRACTION and Notung are more accurate than profileNJ
and TreeFix-DTL, with the gap between the two groups increasing with GTEE. We also see
that TRACTION has an advantage over Notung for the low GTEE condition and matches
the accuracy on the higher GTEE conditions. Finally, for the lowest GTEE bin, no method
improves the RAxML gene tree, some methods make the gene trees much less accurate (e.g.,
profileNJ), and only TRACTION maintains the accuracy of the RAxML gene tree. Overall,
on the HGT+ILS datasets, TRACTION consistently does well and has a clear advantage
over the other methods in terms of accuracy.

Running Times. We selected a random sample of the 51-taxon HGT+ILS datasets to
evaluate the running time (see Table 2). From fastest to slowest, the average running times
were 0.5 seconds for TRACTION, 0.8 seconds for Notung, 1.7 seconds for ProfileNJ, 3.8
seconds for TreeFix-DTL, and 29 seconds for ecceTERA. Furthermore, most of the methods
had consistent running times from one gene to another, but ecceTERA had high variability,
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depending on the size of the largest polytomy. When the largest polytomy was relatively
small, it completed in just a few seconds, but it took close to a minute when the largest
polytomy had a size at the limit of 12. Results on other HGT+ILS replicates and model
conditions gave very similar results.

Table 2 Total time (in seconds) for each method to correct 50 gene trees with 51 species on one
replicate (label 01) of the HGT+ILS dataset with moderate HGT and sequences of length 100bp.

Method Time (s)
EcceTERA 1470
NOTUNG 43
TRACTION 30
ProfileNJ 87

TreeFix-DTL 188

Overall comments. This study shows that the better methods for gene tree correction
(TRACTION, Notung, and TreeFix) reliably produce more accurate gene trees than the
initial RAxML gene trees for the ILS-only conditions (except for cases where the initial gene
tree is already very accurate), and the improvement can be very large when the initial gene
trees are poorly estimated. However, the impact of gene tree correction is reduced for the
HGT+ILS scenarios, where improvement over the initial gene tree is only obtained when
GTEE is fairly high. As shown in Table 1, the average normalized RF distance between the
reference tree (ASTRID) and the true gene trees is never more than 33% for the ILS-only
scenarios but very high for the HGT+ILS scenarios (54% for moderate HGT and 68% for
high HGT). Since the reference tree is the basis for the correction of the gene trees, it is not
surprising that improvements in accuracy are difficult to obtain for the HGT+ILS scenario.
On the other hand, given the large distance between the reference tree and the true gene
tree, the fact that improvements are obtained for several methods (TRACTION, Notung,
and TreeFix-DTL) is encouraging.

5 Conclusions

We presented TRACTION, a method that solves the RF-OTRC problem exactly in
O(n1.5 logn) time, where n is the number of species in the species tree; the algorithm
itself is very simple, but the proof of optimality is non-trivial. TRACTION performs well,
matching or improving on the accuracy of competing methods on the ILS-only datasets and
dominating the other methods on the HGT+ILS datasets. Furthermore, although all the
methods are reasonably fast on these datasets, TRACTION is the fastest on the 51-taxon
gene trees, with Notung a close second.

The observation that TRACTION performs as well (or better) than the competing
methods (ecceTERA, ProfileNJ, Notung, TreeFix, and TreeFix-DTL) is encouraging. How-
ever, the competing methods are all based on stochastic models of gene evolution that are
inherently derived from gene duplication and loss (GDL) scenarios (and in one case also
allowing for HGT), and thus it is not surprising that GDL-based methods do not provide
the best accuracy on the ILS-only or HGT+ILS model conditions we explore (and to our
knowledge, all the current methods for gene tree correction are based on GDL models). Yet,
TRACTION has good accuracy under a wide range of scenarios. We conjecture that this
generally good performance is the result of its non-parametric criterion which can help it to
be robust to model mis-specification (of which gene tree estimation error is one aspect).
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This study showed that when the reference tree is very far from the true gene trees (as
for our HGT+ILS data), gene tree correction typically fail to improve the initial gene tree
(and even here, some methods can make the gene tree worse). This brings into question why
the species tree (whether true or estimated) is used as a reference tree. We note that while
the GDL-based methods may benefit from the use of a species tree as a reference tree (since
the correction is based on GDL scenarios), this type of reference tree may not be optimal
for TRACTION, which has no such dependency. Thus, part of our future work will be to
explore techniques (such as statistical binning [3, 23]) that might enable the estimation of a
better reference tree for TRACTION in the context of a multi-locus phylogenomic analysis.

This study suggests several other directions for future research. The GDL-based methods
have variants that may enable them to provide better accuracy (e.g., alternative techniques
for rooting the gene trees, selecting duploss parameter values, etc.), and future work should
explore these variants. Most gene tree correction methods have been developed specifically
to address the case where genes have multiple copies of species as a result of gene duplication
events. TRACTION is currently restricted to gene trees with at most one copy of each
species. In future work, we will explore extensions of TRACTION to handle multi-copy genes
by using a generalization of the RF distance, such as proposed in [5]. In particular, one could
construct the extended species tree to use as a reference along with a full differentiation of
the gene tree as described in [5]. Recent work has shown how Notung could be extended
to address HGT [19]; a comparison between TRACTION and a new version of Notung
that addresses HGT will need to be made when Notung is modified to handle HGT (that
capability is not yet available). Finally, the effect of gene tree correction on downstream
analyses should be evaluated carefully.
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A Details about the Experimental Design

The datasets we used are from prior publications (which should be consulted for full details).
The information for Steps 1-2 provided here describe the high-level process used to generate
these datasets for those studies, Step 3 describes the process used to estimate gene trees,
and Steps 4-6 describe the high-level process used to correct gene trees.

Step 1: A model species tree and model gene trees (evolved within the model species
tree) were generated using SimPhy [22]. This produced a set of gene trees that could
differ from the species tree due to ILS alone or due to both ILS and HGT. Importantly,
SimPhy modifies gene tree branch lengths to deviate from a strict molecular clock.
Step 2: Molecular sequences were generated using INDELible [13] by evolving sequences
down each true gene tree under the GTR+GAMMA model of sequence evolution without
insertions or deletions. GTR+GAMMA model parameters and sequence lengths were
drawn from distributions as described in [24]. Because the sequence length parameter
was drawn from a distribution, sequences had different lengths. In some experiments,
sequence lengths were truncated to 100, 250, or 500 sites before estimating gene trees in
order to vary the degree of gene tree estimation error.
Step 3: Binary gene trees were estimated on each gene sequence alignment using RAxML,
a maximum likelihood (ML) heuristic, under the GTR+GAMMA model, with all numeric
parameters estimated directly from the data. Branch support for each internal branch in
the best ML tree was computed using the RAxML rapid bootstrapping procedure [29]
with 100 bootstrap replicates for the ILS-only datasets and 50 bootstrap replicates for
the ILS+HGT datasets.
Step 4: Species trees were estimated on each multi-gene dataset using ASTRID [32] on
the estimated (best ML) gene trees from Step 3.
Step 5: For each estimated (best ML) gene tree, all edges with branch support below
75% were collapsed to produce a set of “collapsed gene trees”.
Step 6: Estimated gene trees were corrected using the ASTRID tree from Step 4 as
the reference tree. The input reference tree was rooted at the outgroup for all gene tree
correction methods except for TRACTION. TRACTION and Notung were given the
collapsed gene trees as input, whereas TreeFix, TreeFix-DTL, and ecceTERA were given
the best ML gene trees (without any edges collapsed) as input. To run ecceTERA, we
specified the threshold value (i.e., minimum required bootstrap support value), with
the default setting of 75%; ecceTERA then collapses all branches that have support
less than that value and exhaustively evaluates all refinements. However, when the
collapsed gene trees have polytomies of degree greater than 12, then ecceTERA lowers
the threshold until all polytomies have degree at most 12. Finally, Notung, ProfileNJ,
and ecceTERA required that the input gene trees be rooted, so we rooted these input
gene trees at the outgroup.

B Commands

In the following commands, “resolved gene trees” refers to the gene trees estimated using
RAxML, “unresolved gene trees” refers to these estimated gene trees with branches having
bootstrap support less than 75% collapsed, and “reference species tree” refers to the species
tree estimated using ASTRID. Rooted means the input tree was rooted at the outgroup.
RAxML v8.2.11 was run as

raxml -f a -m GTRGAMMA -p 12345 -x 12345 -N <# bootstrap replicates> \
-s <alignment file> -n <output name>
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ASTRID v1.4 was run as
ASTRID -i <resolved gene trees> -o <output>

Notung v2.9 was run as
java -jar Notung-2.9.jar --resolve -s <rooted reference species tree> \

-g <rooted unresolved gene tree> --speciestag postfix \
--treeoutput newick --nolosses

TRACTION v1.0 was run as
traction.py --refine -r -s 12345 -b <unrooted reference species tree> \

-u <unrooted resolved gene trees> -i <unrooted unresolved gene trees> \
-o <output>

ecceTERA v1.2.4 was run as
eccetera resolve.trees=0 \

collapse.mode=1 \
collapse.threshold=75 \
dated=0 print.newick=true \
species.file=<rooted reference species tree> \
gene.file=<rooted resolved gene tree>

Since ecceTera enters an infinite loop on some gene trees, the “timeout” command was used
to kill ecceTera if it took more than five minutes on a single gene tree.
ProfileNJ requires a distance matrix; to compute distance matrices (with K2P-corrected
distances) for ProfileNJ, FastME v2.1.6.1 [20] was run as

fastme -i <input gene alignment> -O <output distance matrix> -dK
ProfileNJ was run as

profileNJ \
-g <rooted unresolved gene tree> \
-s <rooted reference species tree> \
-d <distance matrix> \
-o <output> \
-S <name map> \
-r none \
-c nj \
--slimit 1 \
--plimit 1 \
--firstbest \
--cost 1 0.99999

TreeFix v1.1.10 was run on the ILS-only datasets as
treefix -s <rooted reference species tree> \

-S <name map> \
-A <alignment file extension> \
-o <old tree file extension> \
-n <new tree file extension> \
<resolved gene tree>

TreeFix-DTL v1.0.2 was run on the HGT+ILS datasets as
treefixDTL -s <rooted reference species tree> \

-S <map file> \
-A <alignment file extension> \
-o <old gene tree file extension> \
-n <new gene tree file extension> \
<resolved gene tree>

Normalized Robinson-Foulds distances were computed using Dendropy v4.2.0 [30] as
n1 = len(t1.internal_edges(exclude_seed_edge=True))
n2 = len(t2.internal_edges(exclude_seed_edge=True))
[fp, fn] = false_positives_and_negatives(t1, t2)
rf = float(fp + fn) / (n1 + n2)

WABI 2019



4:16 TRACTION: Non-Parametric Gene Tree Correction

B.1 Details about failures
No method other than ecceTERA and profileNJ failed on any datasets.

B.1.1 ecceTERA failures
In our analyses for the ILS-only datasets, ecceTERA failed on 10/4000 genes (moderate ILS)
and 57/4000 genes (high ILS). In our analyses for the ILS+HGT datasets, ecceTERA failed
on 744/7500 genes (moderate HGT) and 574/7500 genes (high HGT). Notably, the number
of datasets that ecceTERA failed on increased with gene trees estimation error; for example,
for datasets with ILS and HGT, ecceTERA completed on 100% of datasets with GTEE in
(0.0, 0.4], 99.6% of datasets with GTEE in (0.4, 0.6], 76.4% of datasets with GTEE in (0.6,
0.8], and 9.2% of datasets with GTEE in (0.8, 1.0].

B.1.2 profileNJ failures
ProfileNJ computes distances to construct the corrected gene tree; when used with FastME,
it failed on 2/4000 genes for the ILS-only condition (moderate ILS).
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Abstract
The problem of computing the rSPR distance of two phylogenetic trees (denoted by RDC) is NP-hard
and so is the problem of computing the hybridization number of two phylogenetic trees (denoted by
HNC). Since they are important problems in phylogenetics, they have been studied extensively in
the literature. Indeed, quite a number of exact or approximation algorithms have been designed
and implemented for them. In this paper, we design and implement one exact algorithm for HNC
and several approximation algorithms for RDC and HNC. Our experimental results show that the
resulting exact program is much faster (namely, more than 80 times faster for the easiest dataset
used in the experiments) than the previous best and its superiority in speed becomes even more
significant for more difficult instances. Moreover, the resulting approximation programs output
much better results than the previous bests; indeed, the outputs are always nearly optimal and often
optimal. Of particular interest is the usage of the Monte Carlo tree search (MCTS) method in the
design of our approximation algorithms. Our experimental results show that with MCTS, we can
often solve HNC exactly within short time.
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Supplement Material Our programs are available at http://rnc.r.dendai.ac.jp/rsprHN.html.

1 Introduction

Constructing the evolutionary history of a set of species is an important problem in the study
of biological evolution. Phylogenetic trees are used in biology to represent the ancestral
history of a collection of existing species. This is appropriate for many groups of species.
However, due to reticulation events such as hybridization, recombination, and lateral gene
transfer, there are certain groups for which the ancestral history cannot be represented
by a tree. For this kind of groups of species, it is more appropriate to represent their
ancestral history by rooted acyclic digraphs, where vertices of in-degree at least two represent
reticulation events.

More specifically, by looking at two different segments of sequences or two different sets
of genes of a set of extant species, we may obtain two different phylogenetic trees T1 and T2
of the same extant species with high confidence. Given T1 and T2, we want to construct a
reticulate network N with the smallest number of reticulation events needed to explain the
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evolution of the species under consideration [13]. Roughly speaking, N is the smallest rooted
acyclic digraph such that each of T1 and T2 is homeomorphic to a subgraph of N . The number
of vertices of in-degree larger than 1 in N is called the hybridization number of T1 and T2.
The problem of computing the hybridization number of two given phylogenetic trees, denoted
by HNC, is NP-hard [12, 4]. For this reason, quite a number of approximation algorithms and
fixed-parameter algorithms have been designed and implemented for HNC [1, 9, 11, 14, 16, 20].
To the best of our knowledge, the software in [10] for solving HNC exactly achieves the
previously best speed in practice, while the software in [16] for solving HNC approximately
achieves the previously best approximation-ratio in practice.

A problem closely related to HNC is the problem of computing the rSPR distance of two
given phylogenetic trees T1 and T2 of the same extant species. The rSPR distance between T1
and T2 can be defined as the minimum number of edges that should be deleted from each of T1
and T2 in order to transform them into homeomorphic rooted forests F1 and F2. The problem
of computing the rSPR distance of two trees, denoted by RDC, is NP-hard [4, 12]. This has
motivated researchers to design and implement either exact or approximation algorithms
for RDC [4, 6, 7, 8, 10, 12, 15, 17, 20, 19]. To the best of our knowledge, the software in [7]
for solving RDC exactly (respectively, approximately) achieves the previously best speed
(respectively, approximation-ratio) in practice (http://rnc.r.dendai.ac.jp/rspr.html).

In this paper, we first improve Chen et al.’s exact algorithm [10] for HNC. Since rSPR
distance is a lower bound on hybridization number, the main idea is to use the lower bound
on rSPR distance outputted by Chen et al.’s algorithm [7] to cut unnecessary branches of the
search tree. Another main idea is to arrange the child recursive calls of each recursive call
carefully. Our experimental results show that the resulting algorithm can be implemented
into a program that runs more than 80 times faster than Chen et al.’s UltraNet [10] for
the easiest dataset used in the experiments. Moreover, its superiority in speed becomes even
more significant for more difficult instances.

We then present a new approximation algorithm for RDC. Although this algorithm does
not necessarily always output a better result than the algorithm in [7], we can obtain a
new algorithm which calls the two algorithms and outputs the better result returned by
them. Our experimental results show that the resulting algorithm can be implemented into
a program that often outputs better results than Chen et al.’s program [7]. We further
propose to use the so-called Monte Carlo tree search (MCTS) method [5] to improve any
approximation algorithm A for RDC. In our application of MCTS, instead of performing a
number of random play-outs 1 in the simulation phase of each round, we make a single call
of A and then in the backpropagation phase, use its returned result to update information
in the sequence of nodes selected for this round. Our experimental results show that the
MCTS-based algorithm (denoted by MCTS_A) can be implemented into a program that
outputs much better and indeed always nearly optimal results. It is worth mentioning that
even if A has a theoretical performance guarantee (say, a 2-approximation ratio), we are
unable to prove any theoretical performance guarantee for MCTS_A. Nevertheless, our
experimental results show that MCTS_A almost always outputs better results than A. Of
course, if we want MCTS_A to have the same theoretical performance guarantee as A, then
we can modify MCTS_A so that it calls A and uses A’s output instead if its own is worse.

1 Roughly speaking, a random play-out here means computing an approximate solution by always making
a random choice whenever a decision has to be made among a set of multiple choices.

http://rnc.r.dendai.ac.jp/rspr.html
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We further combine our MCTS-based approximation algorithm for RDC with the integer-
linear programming (ILP) approach in [16] to obtain a new approximation algorithm for
HNC. Our experimental results show that the new algorithm can be implemented into a
program that outputs much better (indeed always nearly optimal and often optimal) results
than the previous best in [16].

Our programs are available at http://rnc.r.dendai.ac.jp/rsprHN.html.

2 Preliminaries

Throughout this paper, a rooted forest always means a directed acyclic graph in which every
vertex has in-degree at most 1 and out-degree at most 2.

Let F be a rooted forest. The roots (respectively, leaves) of F are those vertices whose
in-degrees (respectively, out-degrees) are 0. The size of F , denoted by |F |, is the number of
roots in F minus 1. A vertex v of F is unifurcate if it has only one child in F . If a root v of
F is unifurcate, then contracting v in F is the operation that modifies F by deleting v. If a
non-root vertex v of F is unifurcate, then contracting v in F is the operation that modifies
F by first adding an edge from the parent of v to the child of v and then deleting v.

For a vertex v of F , the subtree of F rooted at v, denoted by F v, is the subgraph of F
whose vertices are the descendants of v in F and whose edges are those edges connecting two
descendants of v in F . If v is a root of F , then F v is a component tree of F ; otherwise, it
is a pendant subtree of F . For convenience, we view each vertex u of F as an ancestor and
descendant of u itself. A vertex u is lower than another vertex v 6= u in F if u is a descendant
of v in F . The lowest common ancestor (LCA) of a set U of vertices in F , denoted by `F (U),
is the lowest vertex v in F such that for every vertex u ∈ U , v is an ancestor of u in F . Note
that if no component tree of F contains all vertices of U , then `F (U) does not exist. Two
vertices u and v of F are incomparable if neither of them is an ancestor of the other in F .
For two incomparable vertices u and v appearing in the same component tree of F , DF (u, v)
denotes the set of all vertices w such that w is not a vertex of the (undirected) path Pu,v
between u and v in F but is the child of some inner vertex of Pu,v. For each pendant subtree
T of F that has at least two leaves, the leaf-label set of T is a cluster of F .

A rooted binary forest is a rooted forest in which the out-degree of every non-leaf vertex
is 2. Let F be a rooted binary forest. F is a rooted binary tree if it has only one root. If v is
a non-root vertex of F with parent p, then detaching F v is the operation that modifies F
by first deleting the edge (p, v) and then contracting p. A detaching operation on F is the
operation of detaching a pendant subtree of F .

2.1 Phylogenetic Trees and Forests
Let X be a set of existing species. A phylogenetic tree on X is a rooted binary tree whose
leaf set is X. A phylogenetic forest is the graph obtained by applying a sequence of zero or
more detaching operations on a phylogenetic tree. In other words, a phylogenetic forest is a
graph whose connected components are phylogenetic trees on different sets of species.

An FF pair is a pair (F1, F2), where F1 and F2 are two phylogenetic forests on the same
set X of species. A TT pair is an FF pair (F1, F2) such that both F1 and F2 are trees.

For an FF pair (F1, F2), the labeled leaves of F1 naturally one-to-one correspond to
those of F2 (i.e., each pair of corresponding leaves have the same label). We extend the
correspondence between the labeled leaves of F1 and F2 to (some of) their ancestors recursively
as follows. Suppose that v1 is a non-leaf vertex of F1, v2 is a non-leaf vertex of F2, and the
children of v1 in F1 one-to-one correspond to those of v2 in F2. Then, v1 corresponds to v2.
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An FF pair (F1, F2) is proper if every root of F1, except at most one, corresponds to a root
in F2. Obviously, a TT pair is also a proper FF pair. Simplifying a proper FF pair (F1, F2)
is to repeatedly perform the following operation on F1 and F2 until it is not applicable:

If some non-root vertex v of F1 corresponds to a root of F2, then modify F1 by detach-
ing F v1 .

Obviously, if (F1, F2) is proper, then it remains proper after being simplified.
Throughout the remainder of this paper, an FF pair always means a proper FF pair. A

sub-FF pair of a TT pair (T1, T2) is an FF pair (F1, F2) such that for each i ∈ {1, 2}, Fi is
obtained from Ti by performing zero or more detaching operations.

For an FF-pair (F1, F2), if a vertex v1 of F1 and a vertex v2 of F2 correspond to each other,
then both v1 and v2 are matched and they are the mates of each other. For brevity, if v is a
matched vertex of Fi for some i ∈ {1, 2}, then we will also use v to denote its mate in F3−i.

2.2 Agreement Forests

Let (F1, F2) be a sub-FF pair of a TT pair (T1, T2). If we can apply a sequence of detaching
operations on each of F1 and F2 so that they become the same forest F , then we refer to F
as an agreement forest (AF) of (F1, F2). A maximum agreement forest (MAF) of (F1, F2)
is an AF of (F1, F2) whose size is minimized over all AFs of (F1, F2). The size of an MAF
of (F1, F2) minus |F2| is called the rSPR distance of (F1, F2), and is denoted by d(F1, F2).
Obviously, an AF F of (F1, F2) is also an AF of (T1, T2). The following lemma is shown in [7].

I Lemma 1 ([7]). Given an FF-pair (F1, F2), we can compute a lower bound b` and an
upper bound bu on the rSPR distance of (F1, F2) in cubic time such that bu ≤ 2b`.

Suppose that F is an AF of (T1, T2). For each i ∈ {1, 2}, we can define an injective
mapping fi from the vertex set of F to that of Ti as follows. For each leaf u of F , fi(u) is the
leaf of Ti with the same label. For each non-leaf vertex u of F , fi(u) is `Ti(fi(v1), . . . , fi(vq)),
where v1, . . ., vq are the leaf descendants of u in F . For convenience, we hereafter also use
each vertex u of F to denote fi(u) in Ti. We can now use F , T1, and T2 to construct a
directed graph GF as follows:

The vertices of GF are the roots of F .
For every two roots r1 and r2 of F , there is an edge from r1 to r2 in GF if and only if r1
is an ancestor of r2 in T1 or T2.

We refer to GF as the decision graph associated with F . If GF is acyclic, then F is an
acyclic agreement forest (AAF) of (T1.T2); otherwise, F is a cyclic agreement forest (CAF) of
(T1, T2). If F is an AAF of (T1, T2) and its size is minimized over all AAFs of (T1, T2), then
F is a maximum acyclic agreement forest (MAAF) of (T1, T2). The hybridization number of
(T1, T2) is the size of an MAAF of (T1, T2), and is denoted by h(T1, T2).

We are now ready to define the problems studied in this paper:

Hybridization Number Computation (HNC):
Input: A TT-pair (T1, T2).
Output: The hybridization number of (T1, T2).

rSPR Distance Computation (RDC):
Input: A TT-pair (T1, T2).
Output: The rSPR distance of (T1, T2).
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2.3 Transforming a CAF to an AAF
Suppose that F is a CAF of a TT-pair (T1, T2). We construct a directed graph D as follows.
For every non-leaf vertex of F , we create a vertex in D. There is an edge in D from a vertex
u to a vertex v precisely if in either F1 or F2 (or in both), there is a directed path from u to v.
A minimum directed feedback vertex set (MDFVS) of D is a minimum-sized set U of vertices
in D such that modifying D by removing the vertices in U yields a directed acyclic graph.

I Lemma 2 ([14]). Let U be an MDFVS of D. Then, to transform F to an AAF of (F1, F2)
by performing a minimum number of detaching operations on F , it suffices to modify F by
removing the vertices corresponding to those in U and further contracting unifurcate vertices.

Let V be the set of vertices in D. By Lemma 2, to compute an MDFS U of D, it suffices
to solve the following integer linear programming (ILP) model [16]:

Minimize :
∑
v∈V

xv (1)

s.t. 0 ≤ `v ≤ |V | − 1 for all v ∈ V (2)
`v ≥ `u + 1− |V |xu − |V |xv for all e = (u, v) ∈ E (3)
`v ∈ Z for all v ∈ V (4)
xv ∈ {0, 1} for all v ∈ V (5)

Fortunately, in our application, we will have an integer k and only want to know whether
the optimal value of the objective function is bounded by k from above. So, we modify
the model by replacing the objective function with any constant (say, 0) and adding the
new constraint

∑
v∈V xv ≤ k. We refer to this modified model as the ILP model associated

with (T1, T2, F, k).

3 Solving HNC Exactly

Our algorithm for solving HNC exactly will use a subroutine for the following parameterized
version of HNC.
Parameterized HNC (PHNC):
Input: (T1, T2, F1, F2, k), where (T1, T2) is a TT pair, (F1, F2) is a sub-FF pair of (T1, T2),

and k is an integer.
Output: “Yes” if performing k more detaching operations on F2 leads to an AAF of (T1, T2);

“no” otherwise.

Several definitions are in order. Let (F1, F2) be an FF-pair, and i ∈ {1, 2}. A vertex v
of Fi is active if v is a matched non-root vertex of Fi and its parent in Fi is not matched.
Since (F1, F2) is an FF-pair, all active vertices of F1 fall into the same component tree of
F1. An active sibling-pair of Fi is a pair (u, v) of active vertices in Fi such that u and v are
siblings in Fi.

3.1 Key Ideas
Basically, our algorithm is a significantly refined version of the algorithm for HNC implemented
in Chen and Wang’s UltraNet [10]. In this subsection, we list the key new ideas behind our
new algorithm for HNC.
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First, the new algorithm builds on a recent 2-approximation algorithm for RDC [7].
When we compute the hybridization number, we use the lower bound outputted by the
approximation algorithm to bound the search of the hybridization number. Since the lower
bound is often nearly optimal, this bounding idea makes it possible for our algorithm to find
the hybridization number in short time. Since the exact algorithm for RDC in [7] is also
fast, we can use it to bound the search of the hybridization number instead of using the
2-approximation algorithm for RDC.

Secondly, the new algorithm is recursive and we make child recursive-calls in a careful
order. More precisely, child recursive-calls that appear to finish in shorter time are made
earlier than those that look likely to finish in longer time.

Thirdly, when we make a recursive call, we may know certain vertices v such that the
subtree rooted at v should not be detached, and so we lock these vertices so that the subtrees
rooted at them will never be detached in subsequent recursive calls. Moreover, the locked
vertices help us make fewer child recursive-calls.

Finally, when our algorithm needs to transform a CAF F of a TT-pair (T1, T2) to an
AAF of (T1, T2), we use the ILP-based method outlined in Section 2.3. However, we modify
the ILP model in Section 2.3 as follows.

Let D be the digraph constructed from F and (T1, T2) as in Section 2.3. Since F is a
CAF, D has a cycle and we need to remove at least one vertex from D to make D acyclic.
Once D becomes acyclic, its number of vertices has decreased by at least 1. So, it is safe
to modify the ILP model by changing the upper bound on the value of `v from |V | − 1 to
|V | − 2.
Some vertices of F may have been locked. So, for each locked vertex v of F , we can
modify the model by fixing xv = 0.
By Lemma 4 in [9], we know that for each edge (p, c) of F , if removing a set U of vertices
from D with {p, c} ⊆ U makes D acyclic, then removing the vertices of U \ {c} also
makes D acyclic. Thus, for each edge (p, c) of F , we can add the constraint xc ≤ xp
to the model.

3.2 The Algorithm
Throughout this subsection, fix an instance (T1, T2) of HNC.

Our algorithm for computing h(T1, T2) exactly first repeatedly performs a cluster reduction
on T1 and T2 until no such reduction is applicable. For the detail of cluster reductions,
the reader is referred to [2]. As the result of zero or more cluster reductions on T1 and
T2, we obtain a sequence (T1,1, T2,1), . . . , (T1,q, T2,q) of instances of HNC such that q ≥
1 and h(T1, T2) =

∑q
i=1 h(T1,i, T2,i). Hence, it suffices to compute h(T1,i, T2,i) for each

i ∈ {1, . . . , q}. Therefore, for simplicity, we hereafter assume that q = 1 and in turn
(T1, T2) = (T1,1, T2,1).

Our algorithm then uses the program in [7] for RDC to compute d(T1, T2). The program
can also output an AF F of (T1, T2) with size d(T1, T2). So, our algorithm checks whether F
is indeed an AAF of (T1, T2) (by constructing the decision graph GF associated with F and
testing if GF is acyclic or not). If it is, then d(T1, T2) is also h(T1, T2) and so the algorithm
outputs d(T1, T2) and stops. Thus, we hereafter assume that F is not an AAF of (T1, T2).

To compute h(T1, T2), it suffices to solve PHNC on input (T1, T2, T1, T2, k) for k =
d(T1, T2), d(T1, T2) + 1, . . . (in this order) until a “yes” is returned. So, it remains to detail
our algorithm for PHNC. During its execution, our algorithm will lock certain non-root
vertices v of F2 at certain time points so that F v2 will never be detached thereafter; it will
always maintain the following invariant:
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Invariant 1: Whenever a non-root vertex is locked by the algorithm, it knows that it
will return “yes” with the locking if and only if it will return “yes” without the locking.

Our algorithm for PHNC is recursive and proceeds as follows. It starts by checking
whether k ≥ 0. If k < 0, then this is Base Case 1 and it returns “no”. So, we hereafter
assume k ≥ 0. Then, it simplifies (F1, F2) and further checks the following base case:

Base Case 2: All roots of F1 are matched. In this case, F1 and F2 are the same forest
and hence F2 is an AF of (T1, T2). To test if F2 is an AAF, our algorithm constructs the
decision graph GF2 associated with F2 and tests if it is acyclic or not. If GF2 is acyclic, then
it returns “yes”. Otherwise, it checks if k ≥ 1 or not. If k ≤ 0, then it returns “no”. On the
other hand, if k ≥ 1, then it constructs the ILP model associated with (T1, T2, F2, k) and
solves the ILP model by an ILP solver (say, CPLEX or GUROBI); it returns “yes” if and
only if the model is feasible.

We hereafter assume that one or more roots of F1 are still not matched. Our algorithm
then uses the program in [7] to compute a lower bound b` and an upper bound bu on d(F1, F2).
The program will also return an AF F of (F1, F2) with size bu as a witness for bu. If k < b`,
then this is Base Case 3, and the algorithm returns “no”. Otherwise, the algorithm checks
if the ILP model associated with (T1, T2, F, k) is feasible or not. If it is feasible, then this is
Base Case 4, and the algorithm returns “yes”.

We hereafter assume that k ≥ b` and the ILP model associated with (T1, T2, F, k) is
infeasible. Clearly, both F1 and F2 must have at least one active sibling-pair. Our algorithm
now distinguishes several cases in the following order.

Case 1: There is an active sibling-pair (u, v) in F1 such that |DF2(u, v)| = 1. In this
case, we clearly know that to transform F2 into an AF of (F1, F2), we need to select at least
one x ∈ {u, v, w} and detach F x2 , where DF2(u, v) = {w}. So, if all vertices of {u, v, w} are
locked, then this is Base Case 5, and the algorithm returns “no”. Thus, we may assume that
at least one vertex of {u, v, w} is not locked. As observed in [18], selecting x = u is the same
as selecting x = v (which means that the former selection leads to a “yes”-output if and only
if so does the latter). Hence, if u or v is not locked, then our algorithm chooses an arbitrary
unlocked x ∈ {u, v} and makes a recursive call on input (T1, T2, F1, F

′
2, k − 1), where F ′2 is

obtained from F2 by detaching F x2 . In addition, if w is also not locked, then our algorithm
makes a recursive call on input (T1, T2, F1, F

′′
2 , k − 1), where F ′′2 is obtained from F2 by

detaching Fw2 and further locking x in case the recursive call on input (T1, T2, F1, F
′
2, k − 1)

has been made. So, we make one or two recursive calls. If at least one call returns “yes”, the
algorithm returns “yes”; otherwise, it returns “no”.

Case 2: There is an active sibling-pair (u, v) in F2 such that |DF1(u, v)| = 1 and the
unique vertex w in DF1(u, v) is active. This case is symmetric to Case 1; so, the algorithm
proceeds as in Case 1 except that each of u, v, and w is replaced by its mate.

Case 3: Neither Case 1 nor 2 occurs. In this case, our algorithm searches F1 for an active
sibling-pair (u, v) in the following order :
Type 1: Both u and v are locked in F2.
Type 2: u and v belong to different connected components of F2.
Type 3: Either u or v is locked in F2.
Type 4: The sibling s of the parent of u and v in F1 satisfies that either s is active or both

children of s in F1 are active.
Type 5: (u, v) is of none of the above types.
We emphasize that the smaller type of an active sibling-pair in F1 is, the more our algorithm
prioritizes it. Intuitively speaking, choosing an active sibling-pair of a smaller type in F1 will
likely lead to fewer recursive calls.
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Suppose that our algorithm has selected an active sibling-pair (u, v) in F1 as above. Our
algorithm constructs a family F of sets as follows. Initially, F is empty. For each y ∈ {u, v}
such that y is not locked in F2, we add the set {y} to F . Moreover, if no vertex in DF2(u, v)
is locked in F2, then we add DF2(u, v) to F . Since Case 1 does not occur, |DF2(u, v)| ≥ 2.
Clearly, to transform F2 into an AF of (F1, F2), we need to select a set S ∈ F and detach
Fw2 for all w ∈ S. Thus, if F is empty, then our algorithm returns “no”. Otherwise, it sorts
the sets in F so that larger sets precede smaller sets. Let S1, . . . , St be the sets in F . For
each i ∈ {1, . . . , t}, let F2,i be the phylogenetic forest obtained from F2 by first detaching
F y2 for all y ∈ Si and further distinguishing two cases as follows:
1. If |Si| ≥ 2, then lock both u and v in F2.
2. If i ≥ 2 and |Si−1| = |Si| = 1, then lock the vertex of Si−1 in F2.
Now, our algorithm makes t recursive calls on input (T1, T2, F1, F2,1, k−|S1|), . . . , (T1, T2, F1,

F2,t, k − |St|). If at least one call returns “yes”, the algorithm returns “yes”; otherwise,
it returns “no”.

4 Solving RDC Approximately

Basically, we want an approximate algorithm that outputs better results than the algorithm
in [7]. Although the algorithm in [8] has a worse theoretical-guarantee than the algorithm
in [7], it does not necessarily mean that the former always outputs worse results. So, we
obtain a new approximation algorithm for RDC which simply runs the algorithms in [7, 8]
and outputs the better result returned by them.

Our new idea is to use MCTS to improve the performance of any approximation algorithm
for RDC. MCTS has a number of variants, but we here use the basic one (namely, the UCT
algorithm) for its simplicity.

4.1 Outline of the Algorithm
In the remainder of this section, fix an FF-pair (F1, F2). Our algorithm for computing
d(F1, F2) approximately is recursive and starts by simplifying (F1, F2) and further checking
whether F2 is already an AF of (F1, F2). If it is, then this is Base Case 1 and it returns 0.
So, assume that F2 is not an AF of (F1, F2). Then, F1 has a unique non-matched root r. If r
has at most 6 leaf descendants in F1, then this is Base Case 2 and our algorithm computes
d(F1, F2) in O(1) time by brute force. Thus, we further assume that r has more than 6 leaf
descendants in F1. Now, our algorithm finds a promising vertex z in F2, next detaches F z2 ,
further makes a recursive call on the modified (F1, F2), and finally returns c+ 1, where c is
the value returned by the recursive call.

It remains to consider how to find a promising z. In the following two cases, we know an
optimal choice of z, i.e., we know that the choice of z will lead to an optimal solution [6]:

Optimal Case 1: (u, v) is an active sibling-pair in F1 with |DF2(u, v)| = 1. In this case,
z is the unique vertex in DF2(u, v).
Optimal Case 2: (u, v) is an active sibling-pair in F2 with |DF1(u, v)| = 1 and the
unique vertex in DF1(u, v) is a leaf. In this case, z is the mate of the unique vertex in
DF1(u, v).

We hereafter assume that none of the above optimal cases occurs. Next, we outline how
to find a promising z with MCTS. The idea behind MCTS is to build a small-sized search
tree Γ. We will always use ρ to denote the root of Γ. In our case, each node α of Γ holds the
following information:
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f(α) : A sub-FF pair of (F1, F2). (Comment: We use f(α)1 and f(α)2 to denote the first
and the second forest in f(α), respectively.)
t(α) : The number of times α has been visited so far.
s(α) : The score of α.
Q(α) : the reward α has received so far.

When creating a node α, we are always given a sub-FF pair (F̂1, F̂2) of (F1, F2) and
initialize f(α) = (F̂1, F̂2), t(α) = 0, s(α) = 0, and Q(α) = 0. To evaluate a child α of a node
β of Γ, we use the UCT value of α, which is computed as follows:

Q(α)
t(α) + C ·

√
2 ln t(β)
t(α) ,

where C is a constant (called the balance constant and fixed to be 0.2 in our experiments).
The best child of a node β in Γ is the child of β in Γ whose UCT value is maximized over all
children of β in Γ.

Initially, Γ has a unique node, namely, the root ρ created with (F1, F2). We then grow
Γ by repeatedly performing the following steps (in this order) for a predetermined number
(fixed to be 60 in our experiments) of repetitions:
1. Select a leaf-node α in Γ by starting at ρ and repeatedly descending to the best child of

the current node until reaching a leaf. (Comment: Ties are broken arbitrarily.)
2. Expand α. (Comment: See Section 4.2.)
3. Perform a simulation for α by calling an approximation algorithm (say, the algorithm

in [7]) on input f(α), and then update s(α) to App(f(α)) + |f(α)2| − |f(ρ)2|, where
App(f(α)) means the approximate rSPR distance of f(α) returned by the approximation
algorithm. (Comment: We refer to this step as the simulation step.)

4. Compute the reward Q(α) =
{

1 if s(α) ≤ the average score of the nodes in Γ
0 otherwise

.

5. Backpropagate the reward Q(α) from α all the way to the root ρ by performing the
following step for all ancestors β of α in Γ:

Increase t(β) by 1 and increase Q(β) by Q(α),
Once finishing growing Γ as above, we select the best child γ of ρ. As will be detailed in
Section 4.2, f(γ)2 is obtained from f(ρ)2 by detaching the subtrees rooted at the vertices of
a set S. Finally, we set z to be an arbitrary vertex in S.

4.2 Expanding a Node α

Suppose that we have selected a leaf node α to expand. We first simplify f(α) and then
search f(α)1 and f(α)2 for an active sibling-pair (u, v) in the following order :
Type 1: (u, v) is an active sibling-pair in f(α)1 with |Df(α)2(u, v)| = 1.
Type 2: (u, v) is an active sibling-pair in f(α)2 such that |Df(α)1(u, v)| = 1 and the unique

vertex in Df(α)1(u, v) is a leaf
Type 3: (u, v) is an active sibling-pair in f(α)1 such that u and v belong to different connected

components of f(α)2.
Type 4: (u, v) is an active sibling-pair in f(α)1 such that u and v belong to the same

connected component of f(α)2 and `f(α)2(u, v) is a root of f(α)2.
Type 5: (u, v) is of none of the above types.
We emphasize that the smaller type of an active sibling-pair is, the more our algorithm
prioritizes it.
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If (u, v) is not found, we know that f(α)2 is an AF of f(α) and hence we have nothing
to do with expanding α. Thus, we hereafter assume that (u, v) has been found. Then, we
construct a family F of sets as follows.

If (u, v) is of Type 1 (respectively, 2), then F consists of only Df(α)2(u, v) (respectively,
Df(α)1(u, v)).
If (u, v) is of Type 3 or 4, then F consists of {u} and {v}.
If (u, v) is of Type 5, then F consists of {u}, {v}, and Df(α)2(u, v).

We now use F to create the children of α as follows. For each set S ∈ F , we create a
child βS , where f(βS)1 = f(α)1 and f(βS)2 is obtained from f(α)2 by detaching the subtrees
rooted at the vertices in S.

5 Solving HNC Approximately

We say that an approximation algorithm A for RDC is useful if given a TT-pair (T1, T2),
A can not only output an approximate value d′ of d(T1, T2) but also output an AF F of
(T1, T2) with |F | = d′. Our approximation algorithm given in Section 4 is useful and so are
all known approximation algorithms for RDC. Using a useful approximation A for RDC,
we can design an approximation algorithm for HNC, denoted by Ahn, as follows. Given a
TT-pair (T1, T2), Ahn calls A to obtain an approximate value d′ of d(T1, T2) and an AF F of
(T1, T2) with |F | = d′. If F is an AAF of (T1, T2), then d′ is also an approximate value of
h(T1, T2) and hence Ahn returns d′. So, assume that F is a CAF of (T1, T2). Then, as in
Section 2.3, we can transform F into an AAF of (T1, T2) by solving an ILP model. Thus, d′
plus the optimal value of the objective function of the model gives us an approximate value
of h(T1, T2) and so Ahn returns it.

6 Experimental Results

To compare our new algorithms against the previous bests, we have implemented them in
Java. In this section, we compare the real performance of our programs against that of the
previous bests. In our experiments, we use a Linux (x64) desktop PC with Intel i7-4790 CPU
(4.00GHz, 8 threads) and 32GB RAM. As the ILP solver, we use the IBM CPLEX which is
freely available for academic research.

We define the average approximation ratio (AAR) of an approximation algorithm A (for
RDC or HNC) as follows. For a given instance I, we use A(I) (respectively, B(I)) to denote
the value outputted by A (respectively, an exact algorithm) on input I; the approximation
ratio of A for I, denoted by rA(I), is A(I)

B(I) . The AAR of A for a set I of instances is∑
I∈I

rA(I)
|I| .
As in previous studies [1, 3, 7, 10, 16, 17], we here generate simulated datasets randomly.

More specifically, for a given pair (n,m) of parameters, we use the program of [3] to generate
a dataset consisting of 120 TT-pairs, where each TT-pair is generated by first generating a
random phylogenetic tree T1 with n leaves and then obtaining another phylogenetic tree T2
by applying m random rSPR operations on T1. So, the rSPR distance of each pair (T1, T2)
in the dataset is at most m, but the hybridization number of (T1, T2) may be larger than m.
In our experiments stated below, we choose (n,m) from {(100, 50), (200, 80), (200, 100)} and
generate a dataset I(n,m) for each (n,m) in this set.
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Table 1 Comparing the AARs of Approximation Algorithms for RDC.

Svv CMW CHN CombApp MCTS_CMW MCTS_CHN CombMCTS
1.41 1.133 1.135 1.104 1.03 1.03 1.019
1.391 1.141 1.127 1.108 1.048 1.044 1.031

The first and the second rows show the results for I(100, 50) and I(200, 100), respectively;
Svv, CMW, and CHN mean the algorithm in [15], [8], and [7], respectively; MCTS_CMW
and MCTS_CHN mean our MCTS algorithm with CMW and CHN used in the simulation
step, respectively; CombApp (respectively, CombMCTS) means the algorithm which runs
CMW and CHN (respectively, MCTS_CMW and MCTS_CHN) and outputs the better
solution returned by them.

Table 2 Comparing the AARs of Approximation Algorithms for HNC.

Svvhn CMWhn CHNhn CombApphn MCTS_CMWhn MCTS_CHNhn CombMCTShn

1.397 1.146 1.134 1.1 1.032 1.031 1.02
1.419 1.087 1.083 1.062 1.021 1.02 1.015

The first and the second rows show the results for I(100, 50) and I(200, 80), respectively.

6.1 Results on Approximating RDC
Since all programs used in our experiments for approximating RDC are fast, it is meaningless
to compare them in terms of running time. So, we compare them in terms of their AARs. We
use I(100, 50) and I(200, 100) in the experiment. Our experimental results are summarized in
Table 1. From the table, we can see that MCTS is very helpful in improving the performance of
approximation algorithms for RDC. In particular, our best algorithm (namely, CombMCTS)
achieves a significantly better AAR than the previous best (namely, CHN). We did not test
MCTS_Svv because the source code of Svv has not been made public.

6.2 Results on Approximating HNC
Since we want the exact hybridization number to be known, we use the two easiest data-
sets (namely, I(100, 50) and I(200, 80)) in this experiment to compare the AARs of our
approximation algorithms for HNC against the previous bests. Our experimental results
are summarized in Table 1. From the table, we can see that MCTS is very helpful in
improving the performance of approximation algorithms for HNC as well. In particular, our
best algorithm (namely, CombMCTShn) achieves a much better AAR than the previous
best (namely, Svvhn). Indeed, our experimental results show that for about half the tested
instances, CombMCTShn found optimal solutions.

6.3 Results on Computing HNC Exactly
To compare the speed of our new exact algorithm for HNC against the previous best (namely,
UltraNet in [10]), we use I(100, 50) and I(200, 80) again. For each tested instance, we set a
1-hour time limit on the running time of each program. As the result, UltraNet fails to solve
1 (respectively, 16) instances of I(100, 50) (respectively, I(200, 80)), while our new program
fails to solve none. With the failed instances excluded, the average running time of UltraNet
is 54.46 (respectively, 323.86) seconds for the first (respectively, second) dataset, while that
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of our new program is only 0.66 (respectively, 0.86) seconds. So, our new program is more
than 82 times faster than UltraNet and its superiority in speed over UltraNet becomes
more significant for larger instances.
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Abstract
Comparing binding sites as geometric solids can reveal conserved features of protein structure that
bind similar molecular fragments and varying features that select different partners. Due to the
subtlety of these features, algorithmic efficiency and geometric precision are essential for comparison
accuracy. For these reasons, this paper presents pClay, the first structure comparison algorithm to
employ fine-grained parallelism to enhance both throughput and efficiency. We evaluated the parallel
performance of pClay on both multicore workstation CPUs and a 61-core Xeon Phi, observing
scaleable speedup in many thread configurations. Parallelism unlocked levels of precision that
were not practical with existing methods. This precision has important applications, which we
demonstrate: A statistical model of steric variations in binding cavities, trained with data at the level
of precision typical of existing work, can overlook 46% of authentic steric influences on specificity
(p ≤ .02). The same model, trained with more precise data from pClay, overlooked 0% using the
same standard of statistical significance. These results demonstrate how enhanced efficiency and
precision can advance the detection of binding mechanisms that influence specificity.

2012 ACM Subject Classification Applied computing → Molecular structural biology; Computing
methodologies → Volumetric models; Computing methodologies → Parallel algorithms

Keywords and phrases Specificity Annotation, Structure Comparison, Cavity Analysis

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.6

1 Introduction

Molecular shape and electric fields have a strong influence on binding specificity. At binding
interfaces, complementary molecular shapes can accommodate some ligands and hinder
those that fit poorly. Electric fields attract molecules with complementing charges and repel
others. This connection, between molecular recognition and the geometric complementarity
of surfaces and fields, is evidence by which human investigators infer the roles of individual
mechanisms in function. Comparison software can detect this kind of evidence and use it to
make similar inferences. Some methods detect proteins with geometrically conserved binding
sites, supporting the inference that they bind similar partners [12, 7, 4, 27, 33, 11, 15, 18].
Other methods find variations in the electric fields near binding sites, suggesting that they
accommodate differently charged ligands [19, 5, 29, 34]. These techniques, and their potential
for large scale and accurate applications, depend on rapid and precise digital representations
of molecular shape, which are the focus of this paper.

Rapid and precise algorithms can integrate many observations to support inferences that
are impossible with single comparisons. For example, a single comparison does not provide a
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frame of reference that would be needed to assess whether or not two binding sites are different
enough that they have different binding preferences. After all, conformational variations
and single mutations can occur in many ways that change nothing about binding. This kind
of inference is traditionally reserved for experts with a wealth of biochemical experience.
However, statistical models can be trained on the steric differences between closely related
ligand binding sites that prefer the same ligands. In such cases, structures of close homologs
or even single mutants could provide the primary data, but the subtle variations needed to
train the model would have to be found with many individual comparisons. Once trained,
the statistical model provides a frame of reference that reveals steric variations that are too
large to be typical of binding sites with the same binding preferences. The large variations
found would therefore be indicators of binding sites that have different binding preferences
[6]. To support and advance statistical models like these, this paper presents pClay, the first
structure comparison algorithm that maximizes precision and computational throughput
using arbitrary precision representations and parallel algorithms.

a)

Input

Union

Intersection

Difference

Output

b) c)

d)

g)

f)e)

Figure 1 CSG operations on Molecular Surfaces. a) Basic CSG operations. Input solids are
yellow with dotted outlines. Outputs have solid outlines. b) Ligand with grey atoms and white
bonds, with spheres centered on each atom (light blue). c) The union of atom-centered spheres.
d) Two molecular surfaces (blue, red) in complex with two ligands shown as sphere unions (black
lines). e) CSG difference of the sphere unions minus molecular surfaces (dotted lines), shown with
molecular surfaces (blue and red, no outline) and envelope surfaces (black outline). f) Intersection
of differences with envelope surfaces (light blue and red). g) The CSG difference between binding
cavities reveals a variation in steric hindrance that causes differences in binding preferences.

pClay performs geometric comparisons using Constructive Solid Geometry (CSG) opera-
tions (Fig. 1a) on analytically represented three dimensional solids. These operations, which
include unions, intersections and differences, can be combined like arithmetic operators to
sculpt a geometric solid. This sculptural nature of CSG inspires both the name pClay, a
portmanteau of “protein” and “clay,” and also the solid geometric approach to the analysis of
protein shape that pClay makes possible. For example, the union of large spheres centered at
ligand atoms can represent the neighborhood of a ligand (Fig. 1b,c). The difference between
the spheres and the molecular surface of a receptor can describe the solvent-accessible binding
cavity in the receptor (Fig. 1d,e). The CSG difference between one binding cavity and another
is the cavity region that is solvent accessible in one protein and inaccessible in the other (Fig.
1g). This difference, the variation between the two cavities, could be small, when binding
preferences are similar, or large, when steric hindrance creates differences in specificity.

The utility of these computations can be seen in multiple applications: When applying
this approach to the S1 subsites of trypsins and elastases, we observed that it could identify
threonine 226 which, in elastases, sterically hinders the longer substrates prefered by trypsins
that might otherwise bind [8]. To illustrate the importance of precision, that region of
hindrance is only 50 percent larger than a carbon atom (31 Å3). A similar approach identified
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“gatekeeper” residue 338 in the tyrosine kinases [14], which creates steric clash with larger
drugs [22]. We have also observed that a CSG-based comparison of electrostatic isopotentials
can reveal single amino acids crucial for selecting ligands in the in the cysteine proteases [5]
and for stabilizing the three interfaces of the SMAD trimer [29]. Experimental validation has
demonstrated the correctness of our prediction that arginine 235 forms critical electrostatic
interactions for the activity of the ricin toxin [34]. By making CSG analysis possible on
geometric solids that are exact, up to machine precision, pClay ensures that subtle but
influential details cannot be overlooked.

The precision that pClay achieves derives from solids that have analytical representations,
like spheres and tetrahedra. pClay can assemble these primitives into solvent excluded
regions, which we call molecular solids. The boundary of a molecular solid is the classic
molecular surface, also known as the solvent excluded surface or Connolly surface, which was
originally developed by Richardson and others [21, 9]. While we can construct molecular solids
with CSG operations on many individual primitives, pClay exploits molecular properties to
sidestep those operations and achieve greater efficiency. The resulting molecular solids avoid
the “photocopier effect”, where multiple CSG operations can accumulate geometric errors.
They can also be exported as triangle meshes, generated at an arbitrary degree of precision,
for compatibility with other software.

pClay enhances computational efficiency through parallelism. We achieve parallelism in
pClay in a number of ways, most notably by recasting Marching Cubes, a traditional method
for implementing CSG operations [23, 17], into a series of parallel breadth first searches
(BFS). In pClay, we use BFS to traverse cubic lattices and identify contiguous regions of cubes
within defined boundary regions. These breadth first traversals can be distributed evenly
across arbitrary numbers of threads. By dividing the computation in this way, parallelism
can make comparisons faster and also enable more detail to be considered. This advancement
stands in qualitative contrast with existing efforts to parallelize structure comparisons (e.g.
[7]), where throughput was increased without enhancing precision. To demonstrate the
parallel scalability of our method, pClay was tested on both modern multicore processors as
well as on a Xeon Phi, a manycore processor with 61 cores.

Relative to existing methods, pClay is the first algorithm to use arbitrarily precise
representations of molecular surfaces for protein structure comparison. It is also the first
structure comparison method to use fine grained parallelization, enhancing both precision and
computational throughput. Several methods do employ arbitrarily precise representations of
the molecular surface, using NURBs [2], alpha shapes [32] or spherical coordinates [26, 28],
but they are used for visualization and have not been integrated into comparison algorithms.
Other methods parallelize structure comparison to refine representations of binding sites
[7], to accelerate database searches [20], or create cloud-based search services [16], but use
parallelism to enhance throughput and not also precision. To our knowledge, pClay is the
first integration of arbitrary precision and parallelism into a structure comparison method.

2 Methods

As input, pClay accepts a collection of geometric solids and an expression of CSG operations.
We convert the CSG expression into a binary tree, a CSG tree, where the nodes of the
tree are geometric solids. The input solids, which include spheres, spindles, tetrahedra or
molecular surfaces, are leaves on the CSG tree, while the result of CSG operations are the
nonleaf nodes. The final result of all operations, the root node, is the output. pClay can also
generate a closed triangular mesh at user-defined resolutions to approximate the boundary
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of the output.
To perform CSG operations, pClay implements a parallel version of Marching Cubes [23]

(Section 2.1), which we summarize below. Our method requires three basic functions to be
performed by every node in the CSG tree. These functions are containsPoint(), intersectSeg-
ment(), and findSurfaceCubes(). Given any point p in three dimensions, containsPoint(p)
determines exactly if p is inside or outside the solid. A point exactly on the surface is said
to be inside the solid. Second, given a line segment s, intersectSegment(s) determines all
points of intersection between the surface of the operand and s, as well as the interior or
exterior state of each interval on the segment. Finally, given a cubic lattice l that surrounds
the primitive, findStartingCubes(l) finds a few cubes of the lattice that are surface cubes,
having at least one corner inside and one corner outside the solid. These cubes are used
to initiate a parallel breadth first search for all surface cubes, called findAllSurfaceCubes(),
which is implemented once for all primitives (Section 2.2). To implement leaf nodes it is
thus sufficient to describe how these basic functions are implemented for that solid. Nonleaf
nodes implement the basic functions as logical operations, as we will explain in Section 2.3.

Below, we first describe how the output approximations are generated using a paral-
lelization of Marching Cubes and how we find all surface cubes beginning the output from
the starting cubes generated by the basic function. We next explain how the three basic
functions are implemented for every primitive. Finally, we detail how the basic functions are
implemented in nonleaf nodes.

2.1 Parallel Marching Cubes

As input, Marching Cubes accepts a set of geometric solids (Fig. 2a), which we will refer to
as operands, and a CSG expression tree to be performed on the operands. It also accepts a
resolution parameter in angstrom units that specifies the degree to which the result of the
CSG expression should be approximated in the output.

We begin by defining an axis aligned cubic lattice surrounding the input operands, where
each cube has sides equal to the user-specified resolution parameter (Fig. 2b). This step is
performed by examining the sizes of all operands and the related CSG operations.

Once the lattice is defined, we invoke findStartingCubes(l) on each input solid (Fig. 2c,f).
The surface cubes identified are provided as input to findAllSurfaceCubes(), which identifies
all remaining surface cubes of all inputs solids in parallel (Fig. 2h). The process of identifying
surface cubes for all input solids also necessarily determines the interior/exterior state of the
points on these cubes in relation to specific solids. We then compute the interior/exterior
state of these points in relation to all other solids in an embarrassingly parallel manner. Once
this assessment is made for any point, we can access whether that point is inside or outside
the output region (Fig. 2i). In this way, we find the subset of cubes that contain a corner
inside and a corner outside the output region.

Next, on each cube of the output surface, we identify edges that connect one corner that is
inside the output region to one that is outside (Fig. 2j). Since these edges must pass through
the output surface, we call segIntersect() on the root node to find the point of intersection
between the edge and the output surface (Fig. 2k). This process is parallelized across the list
of edges, ensuring that the calculation is never duplicated when dealing with adjacent cubes.

Finally, once intersections for every edge on every surface cube are determined, triangles
are generated in each cube following a lookup table (Fig. 2l). The collection of all resulting
triangles form a closed triangular mesh that approximates the output region (Fig. 2m,n).
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Figure 2 a) Input operands (red, green). b) Cubic lattice around operands (gray). c,f) surface
cubes (gray boxes). d,e,g) several steps of floodfill propagation (starting at yellow circle, following
yellow arrow). i) Corner points of each surface cube with exterior (yellow) or interior (red) state. j)
Segments that cross the boundary of the output surfaces (Black lines). k) Intersection points (white
circles) segments intersect the output surface. l) Lookup table of 3D surface constructions with
different edge intersection patterns. m,n) Triangles (black lines) approximating output region (gray).

2.2 Finding All Surface Cubes
findAllSurfaceCubes() accepts a cubic lattice (Fig. 2b), a list of starting cubes (e.g. Fig. 2c,f),
and a CSG tree node for which to find all remaining surface cubes. We perform a parallel
floodfill algorithm to find all remaining surface cubes: Each available thread is assigned a
cube from the queue. Each thread tests cubes adjacent to the assigned cube to find any
that are also on the surface of the input solid (Fig. 2d). This test is performed by calling
containsPoint() on the corners of the adjacent cube. If at least one corner is inside the input
solid and another corner is outside, the adjacent cube is stored on a queue of upcoming
cubes. Once all cubes adjacent to the initial surface cubes have been either added to the
queue or discarded, all threads are then directed to find cubes adjacent to those still on the
queue (e.g. Fig. 2e), and so on, until the queue is empty, and all cubes on the surface of the
input solid have been identified. Duplicate entries onto the queue are avoided by recording
previously-examined cubes on a parallel hash table.

2.3 Nodes of the CSG Tree
pClay supports several kinds of simple and complex solids for CSG operations. These are
spheres, tetrahedra, spindles, and molecular surfaces. Our implementation of each type
supports three basic functions: containsPoint(), intersectSegment(), and findSurfaceCubes().
To describe the implementation of these solids, we describe how each method is implemented
for the solid. Spheres and tetrahedra are excluded because their implementations are trivial.

Spindles. Spindles (Fig. 3a) define the solvent excluded region between two atoms that are
too close to permit a sphere representing a solvent molecule to pass between them (Fig. 3b).
“Broken” spindles (Fig. 3c) can occur when the edge of the solvent sphere can pass beyond
the centerline of the two atoms. Conceptually, spindles are the volume within a cylinder
minus the volume within a coaxial torus. We define spindles by center point, perpendicular
vector, major radius, and minor radius taken from the torus (Fig. 3d), and end cap positions
along the perpendicular vector (Fig. 3e). The center point is the perpendicular projection
of the center of the solvent sphere onto the segment between atom centers (Fig. 3b). The
perpendicular vector points from the center point towards the center of one atom. The major
radius is the radius of the circle defined by the center of the solvent sphere as it rotates
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Figure 3 a) Spindle. b) Formation of a spindle (gray) from two atoms (red) and a solvent sphere
(yellow). c) “Broken” spindle. d) Torus defining the characteristics of a spindle, including center
point (black dot), perpendicular vector (vertical arrow), major radius (arrow from center point to
ellipse), minor radius (arrow from ellipse to torus surface). e) Cylinder (light blue).

about the two atoms. The minor radius is the radius of the solvent sphere. The endcaps are
circles perpendicular to the perpendicular vector that are defined by the point of tangency
between the solvent sphere and the atoms, as the solvent sphere rotates about the atoms.
The boundary surface of a spindle is defined by the end caps and elsewhere by the interior
curve of the torus (Fig. 3d).

To implement containsPoint(p), note that the spindle is rotationally symmetric about the
perpendicular vector. Thus, a plane K can be defined coplanar to p and the perpendicular
vector of the torus. In K, p is inside the spindle only if it is inside the rectangle that
defines the rotational cross section of the cylinder and also outside the circle that defines the
rotational cross section of the torus.

intersectSegment(s) is computed by first setting up the calculation by translating the
center of the spindle to the origin and rotating its axis to align it with the x axis. s is
translated and rotated with it. We can describe the torus aligned to the x axis as

(x2 + y2 + z2 +R2 − r2)2 − 4R2(y2 + z2) = 0

where R is the major radius, and r is the minor radius of the torus. In the torus equation,
we substitute x, y and z with the line expressions x0 + tdx, y0 + tdy, and z0 + tdz, where
x0, y0, z0 are segment starting points, and t parameterizes the line containing the line segment.
The result of this substitution is a quartic equation on t, and roots of the equation will be
parameters on the segment at points of intersection between the segment and the torus. We
converted this equation into a monic quartic using Maxima, a computer algebra system [25].

To find the roots of this equation, we produce the Frobenius companion matrix of this
quartic polynomial. The roots are the eigenvalues of this matrix. Here, complex eigenvalues
will correspond to nonexistent points of intersection between the segment and the torus while
real eigenvalues correspond to intersection points on the torus. We find these intersection
points and eliminate any intersections that are outside of the cylinder. Separately, we also
find intersections with the end caps of the spindle, treating them first as infinite planes and
then determining if the intersection point is within the circle on the plane. Intersections
between the segment and the endcaps or between the segment and the torus are returned as
intervals where the segment is inside the spindle.

findStartingCubes() is implemented by first generating the segment between the endcap
centers. The lattice cube containing one center is identified, and if it is not a surface cube,
the adjoining cube, through whose face which the segment passes, is identified as the next
cube to examine. This process is repeated along the segment until the segment ends at the
other encap center or a surface cube has been found. In the case where the spindle is broken
(Fig. 3d), two segments are generated, with the same process performed on each segment
starting at the center of each endcap.
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Molecular Solids. pClay generates molecular solids from unions and differences of solids,
such as spheres, spindles, and tetrahedra, that are positioned with the power diagram [1, 10].
This approach follows the classic methods for generating molecular surfaces, such as CASTp
[32], MSMS [31], GRASP2 [30], which also use power diagrams or similar constructs like alpha
shapes. For this reason, we paraphrase our approach here, expanding on points that differ
from classic methods. As in the earlier methods, our approach represents water molecules as
solvent spheres, which can be of any given radius. By calling basic functions from simpler
primitives, pClay achieves an efficient implementation of the basic functions for the entire
molecular solid without describing it as a CSG operation of many individual primitives.

Figure 4 Molecular Surface Construction. a) Dual graph of a power diagram on four atoms
(black lines, points). b) Sphere primitives from atoms (teal). c) Atoms (yellow) with one spindle
(teal). d) Atoms with all spindles from edges of the dual graph. e) Tetrahedron primitive (teal). f)
One triangle of the dual graph (black lines, dots). g) Solvent sphere (yellow) tangent to three atoms.
h) New tetrahedron (teal) with corners in the center of the three atoms of the triangle and the
solvent sphere. i) Cup region inside the new tetrahedron (teal). j) Cup, shown with three adjacent
spindles (teal) and three atoms of the triangle (yellow). k) Finished molecular solid.

We begin with an input file from the Protein Data Bank (PDB). Using atomic coordinates
and Van der Waals radii for each atom, we first compute a power diagram with REGTET [3].
The power diagram divides three dimensional space into cells corresponding to each atom of
the input. The size of a cell relates to the Van der Waals radius of the atom, through the
power function. Using the power diagram, we construct a topologically dual geometric graph
(Fig. 4a), which has a vertex at the center of each atom and an edge between any vertices
that correspond to adjacent cells. This dual graph defines the location of the primitives that
will comprise the molecular solid. In sequential stages, we generate all primitives of the same
type in parallel, starting with sphere primitives, then spindles, tetrahedra, and so on.

At every vertex of the dual graph, we create sphere primitives with the appropriate Van
der Waals radius of each atom (Fig. 4b). Next, we examine every edge on the dual graph and
generate a spindle between the atoms on at the endpoint of each edge, except for overlong
edges that are longer than the sum of Van set Waals radius of the endpoint atoms and the
diameter of the solvent sphere (Fig. 4c,d). Once all spindles are completed, we identify
all tetrahedra in the dual graph that lack an overlong edge and we generate a tetrahedron
primitive for each one (Fig. 4e).

Next, we identify triangles on the dual graph that are not between two tetrahedra (Fig.
4f). These triangles define triplets of atoms that may be on the molecular surface. To
determine whether the atoms are on the surface, we place a solvent sphere tangent to all
three atoms (Fig. 4g). If the solvent sphere does not collide with any other atoms, we
create a negsphere: a sphere primitive in the tangent location in the same size as the solvent
that describes a region of the solvent outside the molecular surface. We also generate a
tetrahedron with corners on the triangle and at the center of the negsphere (Fig. 4h). The
region inside this tetrahedron and outside the negsphere is both inside the solvent excluded

WABI 2019



6:8 pClay: A Precise Parallel Algorithm for Comparing Molecular Surfaces

region and not occupied by spindles or atoms or other tetrahedra. We call this concave
subset of a tetrahedron a cup (Fig. 4i), and describe cups as a negsphere-tetrahedron pair.
The concave surface of the cup is continuous with the three adjacent spindles and atoms
(Fig. 4j). Once all triangles that are not between two tetrahedra have been examined for the
presence of a cup, the combination of spheres, spindles, tetrahedra and negspheres form a
molecular solid (Fig. 4k).

To support the three basic functions, we store all of these primitives in a data structure
for rapid range-based lookup. First, we generate a bounding box for each primitive. Next, we
generate a lattice of cubes, where each cube is 2 angstroms on a side. Finally, we associate
each primitive with all lattice cubes that intersect its bounding box. These associations
act as a hashing function that enables us to rapidly identify any primitives nearby a given
cube in the lattice. Since real molecules have finite atomic density, and since primitives are
constructed from atoms and between atoms, the number of primitives associated with any
cube is finite. As a result, a hashing function based on the lattice achieves algorithmically
constant time lookup of nearby primitives.

For containsPoint(p), given a point p, if p is outside the coarse lattice, then we immediately
return false, because p must be outside the molecular surface. If not, we determine which
cube c of the coarse lattice contains p. Next, we identify all primitives associated with c. We
use the containsPoint() function of each associated primitive to determine if p is inside the
primitive. If p is inside a negSphere, then p is outside the molecular surface. if p is inside
any other primitives, then p is considered inside the molecular surface. If p is not inside any
primitives, it is outside.

For intersectSegment(s), given a segment s, we generate a list of cubes C that contain
some interval of s. Next, we generate a list of primitives P associated with the cubes in C.
We then query each primitive p in the list P for an interval of intersection between p and s
using the intersectSegment() method of each primitive. The output intervals generated are
the union of the intervals in tetrahedra, spindles and spheres minus the union of intervals
inside negspheres.

For findStartingCubes(l), during the construction of the molecular solid, we record the
points of tangency between all negspheres and atom spheres. For each of these points, we
identify the lattice cubes of l that contain them. We also generate starting cubes from all
spindles and isolated spheres in the protein structure, calling findStartingCubes() on each of
these primitives. From these cubes, we return only cubes that exhibit at least one corner
inside and at least one corner outside the molecular solid.

CSG Operations. CSG operation nodes are non-leaf nodes that represent the outcome of a
CSG operation on its operand nodes. They fulfill the three basic functions by calling on its
operand nodes, which we refer to as A and B in the text below.

Given a point p, the CSG union returns true only when containsPoint(p) returns true
on at least one operand. The CSG intersection returns true only when containsPoint(p)
returns true on both operands. The CSG difference between A and B returns true only when
A.containsPoint(p) is true and B.containsPoint(p) is false.

For a given segment s, intersectSegment(s) on any CSG operation calls intersectSegment(s)
on operands A and B, generating intervals a and b. When run on a CSG Union, Intersection
or Difference, the output is, respectively, the union, intersection, or difference of a and b.

Given a cubic lattice l, calling getSurfaceCubes(l) on a CSG union, intersection, or
difference returns the setwise union of cubes returned by calling A.getSurfaceCubes() and
B.getSurfaceCubes(). We always return a union of cubes because examining the union
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of cubes can avoid circumstances where a disconnected region in the final solid is lost.
Performance profiling revealed that considering the union of all cubes is a minor cost in
overall performance, except in artificially constructed cases that create many irrelevant cubes.

Implementation Details. pClay is implemented in C and C++. Interprocess communication
was built with Intel’s Threading Building Blocks library. A C wrapper connects REGTET
[3] to pClay. Benchmarks were run on a dual Xeon E5-2609 system with 8 cores at 2.5 Ghz
and 32GB of ram and on a Xeon Phi 7120P with 61 cores at 1.2 Ghz and 16GB ram.

Datasets Used. Dataset A is 100 nonredundant pdb structures from VAST [24], with
BLAST p-value cutoff 10e-7. Dataset B is 30 spheres, spindles and tetrahedra randomly
generated in a cube with 10Å sides. Dataset C is 14 binding cavities from a nonredundant
subset of the trypsins (1a0j,1aks,1ane,1aq7,1bzx,1fn8,1hrw,1trn,2eek,2f91), chymotrypsins
(1eq9,8gch) and elastases (1b0e,1elt). More info: http://www.cse.lehigh.edu/~chen/
papers/WABI2019/appendix.pdf

3 Experimental Results

3.1 Accuracy of molecular solid generation
We compared the surfaces of molecular solids from pClay to surfaces made with the trollbase
library, an established tool for molecular surface generation used in GRASP2 [30], VASP [8],
VASP-E [5], and MarkUs [13]. pClay surfaces were created at 0.25Å resolution to yield a
similar number of triangles and thus a fairer comparison. Using proteins from dataset A,
surfaces generated by pClay had an average of 197,718.54 points. From these points, we
measured the distance to the closest point on the surface generated by trollbase for the same
protein. That distance averaged 0.00383 Å (sd 0.0004 Å, max .22024 Å). This tiny deviation,
on surfaces built from thousands of atoms, demonstrates the accuracy of pClay surfaces.

3.2 Performance Comparison and Parallel Scaling
To our knowledge, VASP [5] is the only existing algorithm for comparing molecular solids
using CSG. It lacks exact primitives or parallelism, but it can identify steric elements of
protein structure that control specificity [8, 6, 14]. We compared the performance of pClay
and VASP on the same CSG operations using Xeon (CPU) and Xeon Phi (PHI) processors.

Random Primitives. First, we compared CSG performance on the union of primitives in
dataset B, generating mesh outputs at resolutions 1.0Å, .5Å, .25Å and .125Å. Since VASP
does not use primitives, it was provided triangle meshes of identical primitives. All CSG trees
were balanced, but imbalanced trees had nearly identical runtimes (not shown for brevity).

On one CPU core, pClay required .113 seconds to compute the union at 1.0Å resolution.
9.492 seconds were required to compute the same union at .125Å resolution (Fig. 5a).
Increasing to 8 threads, runtime dropped to .03 seconds for unions at 1.0Å resolution, and
1.465 seconds to at .125Å. In contrast, single-threaded VASP required 3 seconds to compute
the same union at 1.0Å , and 64 at .125Å. pClay far outperformed VASP on one thread.

On 8, 16, 32, and 60 PHI cores, which are slower than CPU cores, runtimes exhibited
sublinear improvement (Fig. 5b). Runtimes on coarser resolutions improved less than for
finer resolutions. The difference in parallel speedup (Fig. 5c) arises from small problem
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sizes at coarse resolutions, where communications and setup outweigh the advantages of
parallelism.

Figure 5 a) Time to compute the union of 30 random primitives at varying resolutions and CPU
cores. VASP performance (single threaded) is shown in vertical bars. b) Time spent to compute the
unions on PHI cores. c) Parallel speedup on PHI cores. d) Time spent for pClay to produce several
binding cavities on CPU cores, compared to single-core VASP. e) Time to produce the same cavities
on PHI cores. e) Parallel speedup of pClay in cavity production on varying PHI cores.

Binding Cavities. We also tested pClay by generating binding cavities, using the method
from Fig. 1, on dataset C. While pClay is capable of much finer resolutions, all cavities were
generated at .25Å, the practical resolution limit for VASP. Figure 5d plots cavity generation
times for these cavities. pClay required between 493 and 643 seconds on one CPU core,
and between 149 and 233 seconds on 8 cores. Single threaded VASP required between 499
and 538 seconds to perform the same work. Single threaded, pClay was slightly slower than
VASP, but much faster when adding a second core, and faster still when adding more.

Cavity generation was also run on 8, 16, 32, and 60 Xeon Phi cores. Runtimes on PHI
cores are slower than on CPU cores because PHI cores have slower clock speeds. Runtimes
fell slowly as threads increased (Fig. 5e). Substantial increases in the number of PHI cores
resulted in only modest improvements in runtimes (Fig. 5f). This result contrasted from
those performed on CPU cores, where performance improved substantially with increases in
parallelism. These results point to bottlenecks in the PHI architecture affected by cavity
generation, which is more data intensive than unions of random primitives.

3.3 Evaluating pClay on Existing Applications
The added precision of pClay creates several new applications. We demonstrate one such
application by producing training data for VASP-S, a statistical model for detecting differences
in ligand binding specificity with steric causes [6]. VASP-S is trained on the volumes of
individual CSG differences computed from cavities with the same binding preference. This
training enables VASP-S to estimate the probability (the p-value) that two given cavities have
similar binding preferences. If p is lower than a threshold α, VASP-S rejects the hypothesis
that two cavities have similar binding preferences, and predicts that they are different.

We hypothesized that training the VASP-S model with data generated at finer resolutions
will produce more accurate predictions than a VASP-S model trained with coarser data.
To test this hypothesis, we used cavities from the trypsins, which prefer to bind positively
charged amino acids. These cavities contrast from those of the chymotrypsins and the
elastases, which prefer large aromatics or small hydrophobics, respectively. Three training
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Figure 6 The p-value of the largest fragment between every trypsin-elastase and trypsin-
chymotrypsin pair in Dataset C, estimated with training data generated at several resolutions
(red, blue, orange lines). Fragments are sorted in ascending p-values along the horizontal axis.
The black line indicates the α threshold of 0.02, below which we predict that the fragment is
representative of proteins with different binding preferences. The finer-resolution training data,
made possible with pClay, yielded more accurate predictions.

sets were constructed from these cavities by generating all possible CSG differences between
all pairs of trypsins. VASP was used to produce a copy of the training set at 0.25 Å resolution
and pClay was used to produce the same set at resolutions of 0.125 Å and .0625 Å. We then
computed CSG differences between every trypsin and every nontrypsin at these resolutions.
Finally, we estimate the p-value of the largest CSG difference between every trypsin and
every non-trypsin in Dataset C, at all three resolutions (Fig. 6). We expect VASP-S to
produce a low p-value on these CSG differences.

Using the conservative α threshold of 2%, when trained at 0.25 Å resolution, VASP-S
predicts that 43 of the 81 CSG differences between trypsin and non-trypsin cavities indicate
binding preferences. This discrepancy indicates 38 false negative predictions, where VASP-S
incorrectly overlooked cavities with different binding preferences. However, when trained
at 0.125 Å or 0.0625 Å resolution, VASP-S correctly predicts that all CSG differences
were from cavities with different binding preferences, a 0% false negative rate. These results
demonstrate that pClay can provide superior precision, ensuring that existing aggregate
methods do not lose accuracy by overlooking useful predictions.

4 Discussion

We have presented pClay, the first parallel algorithm for performing CSG analysis of protein
structures at arbitrarily high resolutions, up to machine precision. It leverages mathematically
exact primitives that can be assembled into molecular solids and parallel depth first search
to compute CSG operations with multiple threads.

Molecular solids from pClay are nearly identical to molecular surfaces generated by
existing, widely used software. At hundreds of thousands of positions, pClay surfaces differed
from surfaces generated by existing methods by only thousandths of an angstrom. While
existing surface methods have generally been validated by visual examination, this exhaustive
comparison sets a new standard for validation. Surface generation stresses the algorithms
that underpin CSG operations, illustrating that pClay is making accurate comparisons.

We showed that pClay performs CSG operations efficiently on both artificial and realistic
data. Evaluating the method on both Xeon CPU and Xeon Phi architectures, pClay exhibited
scaleable multithreaded performance on all tests, though scaling was modest on the Xeon
Phi for cavity generation. These results show that parallelism can drive both efficiency and
precision for the comparison of protein structures.
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Finally, we showed how the precision of pClay can advance existing methods by training
a statistical classifier to distinguish elements of protein structures that have a steric influence
on binding specificity. pClay provided training data to the classifier that was more precise
than what could have been provided by existing methods, enabling more accurate estimates
of statistical significance, and ultimately a total elimination of false negative predictions.

These capabilities enable applications in the detection and explanation of structural
features that influence binding preferences. For example, the statistical model tested here
finds elements of protein structures that could have a steric influence on specificity, thereby
generating an explanation based on a steric mechanism that typically requires human
expertise. As high throughput technologies increasingly reveal the ways in which disease
proteins can vary, pClay is a glimpse into a new space of techniques that can use protein
variants to supplement human experience in deciphering the structural mechanisms of
molecular recognition.
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Abstract
Genome variation graphs are natural candidates to represent a pangenome collection. In such
graphs, common subsequences are encoded as vertices and the genomic variations are captured by
introducing additional labeled vertices and directed edges. Unlike a linear reference, a reference
graph allows a rich representation of the genomic diversities and avoids reference bias. We address
the fundamental problem of mapping reads to genome variation graphs. We give a novel mapping
algorithm V-MAP for efficient identification of small subgraph of the genome graph for optimal
gapped alignment of the read. V-MAP creates space efficient index using locality sensitive minimizer
signatures computed using a novel graph winnowing and graph embedding onto metric space for
fast and accurate mapping. Experiments involving graph constructed from the 1000 Genomes data
and using both real and simulated reads show that V-MAP is fast, memory efficient and can map
short reads, as well as PacBio/Nanopore long reads with high accuracy. V-MAP performance was
significantly better than the state-of-the-art, especially for long reads.
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1 Introduction

Conventional genome analysis relies primarily on a linear reference. A pangenome reference
collection, on the other hand, is a richer representation of the genomic diversity and suffer less
from reference bias [26]. Genome variation graphs are natural candidates for representing the
genomic variations in a pangenome collection [26, 28]. In genome variation graphs, common
subsequences are encoded as vertices and the genomic variations are captured by additional
labeled vertices and directed edges. Such pangenome based representations and analysis
are becoming increasingly popular also due to several ongoing large scale population-wide
sequencing projects worldwide. As a result, there is an increasing need for developing efficient
genome analysis pipelines that can work with graph genomes in place of linear genomes
[26, 28]. The non-linear graph structure poses additional challenges to even the fundamental
problems of sequence alignment and read mapping [28].
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In this work, we consider the problem of efficiently mapping reads to genome variation
graphs. Performing gapped alignment of reads to the whole graph is prohibitively expensive
due to the large graph size and its complex structure. To achieve high throughput, the
mapping algorithms have to restrict the expensive gapped alignment to only small regions of
the reference graph where the read can align optimally. Several high throughput mapping
tools are available for linear references [20, 21, 22, 24, 4]. Alignment based mappers use
techniques such as Burrows-Wheeler Transforms [3, 9, 11, 23, 20, 17] to construct a search
index of the reference along with backtracking to compute target alignment. Seed-and-extend
approaches [2, 8, 5] use seeds or short read fragments to identify the target region and extend
this to compute the final gapped alignment. Hashing based approaches [14, 21, 22] create
hash signatures of the reference for fast identification of the target region. In particular, using
locality sensitive hash functions (LSH) such as minhash have gained popularity due to their
robustness to small read errors and gaps [14]. For instance, Mashmap [14] combines LSH with
sequence winnowing technique [30] to build space efficient index with probabilistic guarantees
on the identified target regions for long reads. Some of the tools that are optimized for short
reads are not well suited for long reads due to higher error rates and longer read length.
BWA-MEM [20], GraphMap [34], MashMap [14], Minimap2 [22] are a few of the mappers
that provide long read support.

Linear reference mappers can be extended to a pangenome by treating the pangenome as a
collection of linear sequences [25, 37, 12, 36]. One drawback of this approach is the increasing
space/time requirements with increasing number of sequences. A unified representation, on
the other hand, is significantly more compact and generalizes well to the space of possible
variations and recombinations. GenomeMapper[31], MuGI [7], RCSI [37], BWBBLE [12] are
some of the recent examples of mapping short reads to genome collection. They work based
on the seed-and-extend paradigm with restrictions on the read length and gaps.

Similar to the linear reference setting, for genome graphs, the mapping algorithm has
to restrict the costly alignment to small regions of the graph where the read is likely to
align optimally to achieve high throughput. The Variation Graph (VG) project provides a
state-of-the-art read mapping tool VG Mapper (VG) [10] on genome variation graphs. VG
can handle directed acyclic graphs as well as variation graphs with cycles. VG considers the
de Bruijn graph associated with the input graph and constructs an exact search index of the
de Bruijn graph using Burrows-Wheeler extensions (GCSA2) for graphs [33, 32]. The index is
used to identify hits on the graph based on the input read. These hits are then clustered and
the final alignment is performed on the subgraph corresponding to the largest cluster. The
BWT indexing of the graph is highly compute-intensive and requires an enormous amount of
RAM and disk space. Further, de Bruijn graph can introduce false positives as it can encode
paths that are not present in the graph [32]. Similarly, isolated hits in the graph produced
by the read hits can affect the overall performance. The adverse effect on mapping quality
and efficiency can be pronounced in the case of long reads.

1.1 Our Results
We present an algorithm V-MAP for efficient identification of subgraph of the genome
variation graph for optimal read alignment. In this work, we consider variation graphs that
are directed acyclic. The read can be aligned with affine gaps to the identified subgraph
using any of the existing graph-based gapped aligners [10, 16, 15, 18, 29]. V-MAP creates a
space efficient index of the graph G by computing locality sensitive minimizer signatures
of G using a novel graph winnowing technique and combining it with a graph embedding
onto a metric space. Graph winnowing creates a compact index which reduces the signature
look-ups and also isolated false positive hits. Additionally, graph embedding allows fast
subgraph identification based on signature hits.
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We performed mapping experiments using real and simulated short/long read datasets on
the graph constructed from the 1000 genomes variation data [1]. The variation data contained
about 85 million variations and the resulting variation graph consisted of about 3 × 108

vertices and 4× 108 edges. The 1000 genomes variation graph is a directed acyclic graph.We
compared the performance of V-MAP with the state-of-the-art graph-based read mapper
VG [10] and the popular linear reference mappers BWA-MEM [20] and Minimap2 [22].

V-MAP index has ∼20GB size and is constructed in just 2 hours using 16GB RAM,
which is significantly smaller than VG in terms of the time/resource requirements. In terms
of the final alignment score, V-MAP achieved higher alignment scores for a significantly
large fraction of long reads. The performance was also significantly better than the linear
mappers. Also, V-MAP accuracy in identifying the target region were 96.6% and 99% for
short and long reads respectively. V-MAP identifies the target subgraph in milliseconds,
even for long reads. In contrast to the whole graph size, the subgraph sizes were significantly
smaller and were proportional to the read lengths. This lead to a significant reduction in
time for gapped alignment time of reads to target subgraphs. We also provide analytical
bounds for the V-MAP index size and for the V-MAP path sampling approach while indexing
dense graph regions.

2 Preliminaries

2.1 Notations

Let G = (V,E, `) be a connected directed acyclic graph with vertex set V , edge set E and
vertex labels given by `(v). Edges in E are ordered pairs from V × V . Let σ+ denote the
set of all sequences of one or more elements from an alphabet σ. Each member in σ+ is
called a σ-sequence. When σ is the set of nucleotides, the σ-sequences are the nucleotide
sequences. For a vertex v ∈ V , its label `(v) ∈ σ+ is a σ-sequence. For an ordered sequence
x = (x1, x2, . . . , xm), |x| = m denotes its length. The ith element of x is denoted by x[i].
For the sake of brevity, we also denote `(v) simply as v and use v[i] to denote `(v)[i] when
there is no ambiguity.

A directed path p of length r in G is denoted by the ordered sequence (u1, . . . , ur) of
r vertices, where ui ∈ V and (ui, ui+1) ∈ E. We say that the path p starts at u1 and
ends at ur. The σ-sequence corresponding to p is obtained by concatenating the labels
`(u1), . . . , `(ur) in the same order. For each vertex u in G, we associate a σ-path given
by an ordered sequence of pairs of the form (〈u, 0〉, . . . , 〈u, |`(u)| − 1〉), where 〈u, i〉 denotes
the pair of vertex u and the offset i to its label `(u). We call each such vertex offset pair
a graph coordinate of G or coordinate in short. A σ-path q in G is given by a sequence
(〈u1, i〉, . . . , 〈u1, |`(u1)| − 1〉, 〈u2, 0〉, . . . , 〈u2, |`(u2)| − 1〉, . . . , 〈ur−1, 0〉, . . . , 〈ur−1, |`(ur−1)| −
1〉, 〈ur, 0〉, . . . , 〈ur, j〉), where u1, . . . , ur is a path in G and i and j are offsets to `(u1) and
`(ur) respectively. Here, the σ-path q is composed of the suffix of u1 starting at offset i
followed by the complete σ-paths of vertices u2, . . . , ur−1 and finally by a prefix of ur ending
at offset j. Clearly, the σ-path q has a corresponding σ-sequence say q′ of the same length
obtained by concatenating the corresponding label symbols along the σ-path in the same
order. We say that G contains a σ-sequence if it corresponds to some σ-path in G. We also
say that G contains a σ-path q (or a σ-sequence q′) starting at the graph coordinate 〈u1, i〉.
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2.2 Sequence Winnowing

Given a σ-sequence s, let Ks denote the set of distinct k-mers in s. We assume random
mapping of k-mers to distinct non-negative integers uniformly at random. For simplicity,
the integer associated with a k-mer x is also denoted by x. Let z(s) denote the minimizer
k-mer, which is the minimum valued k-mer, in Ks. We denote by h(s), the minimizer offset
in s. That is, h(s) is the offset of z(s) in s. If the minimizer occurs at multiple offsets in s
then h(s) is defined as the rightmost offset. The function z is locality sensitive in the sense
that two sequences r and s have the same minimizer with probability |Kr ∩Ks|/|Kr ∪Ks|,
which is the Jaccard similarity of the underlying sets Kr and Ks [6].

The standard winnowing of a linear sequence s [30] extends h(s) to a function hw(s)
that maps s to a subset of distinct minimizer offsets from {0, . . . , |s| − 1} by considering
a moving window of some fixed size w ≤ |s| over s starting at offsets 0, . . . , |s| − w. Let
s0, s1, . . . , s|s|−w denote the corresponding subsequences. More precisely, hw(s) maps s to
the set of distinct offsets from the set{

i+ h(si)
∣∣ 0 ≤ i ≤ |s| − w

}
The function hw(s) creates a fingerprint of s as a sequence of minimizers with a bounded

positional gap between consecutive minimizers. The minimizer sequence can be used for
sequence similarity. The expected size of the minimizer set is upper bound by 2|s|/|w| [30].
In [14], it was shown empirically that the minimizers computed by hw can be used to well
approximate the Jaccard similarity between sequences and this allows efficient alignment of
reads to linear reference databases with higher precision under certain read error models.

3 Indexing

In this section, we describe our approach for indexing G that allows efficient mapping of reads
to G. For this, we extend the notion of sequence winnowing to graph winnowing. We combine
the graph winnowing with a graph embedding to generate a space efficient index of G that
allows fast read mapping. We also discuss approaches to improve indexing performance.

3.1 Graph Winnowing

We extend the above winnowing of linear sequences to graph G by considering σ-sequences
in G. Let p be a σ-path in G where |p| ≥ w and let p′ be its corresponding σ-sequence.
We define

h(p) = p[h(p′)] and hw(p) =
{
p[i]

∣∣ i ∈ hw(p′)
}

That is, for a σ-path p, h(p) maps p to the graph coordinate corresponding to the
minimizer of p′ and hw maps p to the set of graph coordinates corresponding to the minimizer
set obtained by winnowing p′.

Let S denote the set of all σ-paths in G each of length ≥ w. Let H = ∪p∈Shw(p) denote
the set of all distinct minimizer coordinates in G obtained by winnowing all paths in S.
Similarly, let Hw = ∪p∈Sw

hw(p) where Sw is the set of all σ-paths in G each of length exactly
w. It is straightforward to see that H = Hw because the minimizers obtained by winnowing
any σ-path in G are already present in Hw. In graph winnowing, we therefore compute Hw.
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3.2 Graph Embedding and Indexing Approach

In this section, we describe our indexing approach which combines the graph winnowing and
graph embedding to compute the graph index. Let N denote the set of natural numbers. We
consider an embedding λ : V × N→ Y of coordinates 〈v, i〉 in G to a target metric space Y .
Let dλ(x1, x2) ∈ R≥0 denote the distance between the embedding of coordinates x1 and x2
in Y , given by λ(x1) and λ(x2) respectively.

Let Sw denote the set of all σ-paths in G each of length w. We do graph winnowing on
G and create the index as follows. Let p be a σ-path in Sw and let p′ be its corresponding
σ-sequence. Consider the set of minimizer locations hw(p′) in p′ obtained by winnowing of
p′. For each offset i in hw(p′), let ki denote the corresponding minimizer k-mer. The graph
coordinate of ki is given by p[i]. Let TG be a key value table (dictionary) where for each
minimizer k-mer, the corresponding graph coordinate and its embedding are stored. That is,
TG[ki] stores the tuple 〈p[i], λ(p[i])〉. Since k-mer ki can be the minimizer for multiple paths
from Sw, TG[ki] stores all such tuples corresponding to ki. The specific choice of embedding
and the final structure of the V-MAP graph index are discussed later.

Creating an index in the above manner that combines graph winnowing along with
graph embedding results in a space efficient index which at the same time supports fast
querying for read mapping. To identify regions in the graph where the read could optimally
align, winnowing is performed on the input read and its minimizers are looked up in TG.
The hits from TG are then clustered in the embedded space to identify maximum density
cluster. Though each read minimizer can occur at multiple graph coordinates, the minimizer
coordinates belonging to target subgraph tend to cluster in the embedded space. After
identifying this cluster, read minimizer hits in this cluster are back-projected to construct
the pruned subgraph where the input read is finally aligned. Different choices of embedding
allow fast identification of the cluster while also ensuring that the corresponding subgraph is
sufficiently pruned. For instance, using an embedding λ : V × N → Nd, the target cluster
can be identified by computing the maximum enclosing d-dimensional axis parallel box of
bounded side lengths in Nd, where the side length is related to the read length. In particular,
this can be done efficiently for small d [27]. If t is the total number of minimizer elements
for an input query read, then the computation can be done in O(t log t) time for d = 1 by
scanning the elements in the sorted order (in the embedded space). Similar bounds are also
known for d = 2 [27].

V-MAP specific Embedding and Index

V-MAP uses an embedding λ : V × N → N defined as follows. Consider an auxiliary
undirected edge weighted graph G′ derived from G as follows. For each vertex v in G,
we include two vertices v1 and v2 in G′ which are connected by edge (v1, v2) with weight
|`(v)| − 1. Also, for every edge (u, v) in G, an edge (u2, v1) with weight 1 is included in G′. If
u is the vertex in G with zero in-degree, we designate u1 as the source vertex in G′. In case
of multiple vertices with zero in-degree, a dummy source vertex is included that connects
to these vertices with zero weight edges. For a vertex v in G′, let sp(v) denote the shortest
path distance from the source vertex to v in G′. The embedding λ(〈v, i〉) for a coordinate
〈v, i〉 in G is defined with respect to the shortest path distances of the corresponding vertices
v1 and v2 in G′ as

λ(〈v, i〉) = min{sp(v1) + i, sp(v2) + |`(v)| − i− 1}
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Under the above embedding, any two coordinates u and v with λ(v) ≥ λ(u) satisfies that
λ(v)− λ(u) is upper bound by the length of the shortest σ-path that connects u and v in G
if there is any such path. Thus, nearby minimizers tend to cluster under this embedding.

In summary, the V-MAP indexing winnows all the w length σ-paths in G and the resulting
set of minimizer coordinates are embedded onto the integer line based on their shortest path
distances (length of σ-paths ) from a designated source vertex coordinate in an undirected
version of G. These embeddings are stored against the minimizer values.

The V-MAP index is a key/value table IG which is a trimmed version of the table TG
discussed earlier. For each minimizer k-mer r, only the embedding of its corresponding
coordinates in G are stored in IG[r], whereas TG[r] stores the respective coordinates along
with their embedding. That is,

IG[r] = {λ(x) | TG[r] contains the coordinate x}

The set IG[r] is a multiset in the sense that for each entry in TG[r], a separate, not necessarily
distinct, element is present in IG[r].

V-MAP index also contains an adjacency representation of G sorted by the vertex
embedding values. In this, the adjacency list for each vertex is also maintained as a sorted
skip list or sorted array. This allows efficient extraction of the subgraph identified by V-MAP
in order to compute the optimal gapped alignment of the read to the subgraph.

Dynamic Programming for Indexing

Enumerating all w length σ-paths in G for graph winnowing could be computationally
expensive. Nevertheless, a dynamic programming heuristic can be used to winnow all w
length σ-paths in G to reduce recomputations. The details are given in the Appendix
(Section A).

4 Minimizer Density

We provide bounds on the expected number of minimizers created by V-MAP for an
input graph G. Specifically, we suppose that the graph G is constructed from a collection
C = {s1, . . . , sN} of N related random sequences each of length at most n. The sequences
in C are generated by a coupled random process, where, starting with a designated random
sequence, random independent mutations with probability p are introduced to generate each
of the remaining sequences in C. The generation model is inspired by the mutation model
approximations proposed in [35]. Due to the space limitation, the details are provided in
Appendix B. For k-mer length k, we show the following theorem.

I Theorem 1. The expected number of minimizers for G is upper bound by 2n
w−k (1 + p(N −

1))w+1 for winnow length w.

To prove the above theorem, we first show that the expected number of w length σ-paths
in G is bounded from above by n (1 + p(N − 1))w. Combining this with a charging argument,
which is an extension of [30] for linear random sequences to our graph setting, we obtain the
theorem. The proofs are provided in Appendix B.

It follows that similar to the linear reference case, in the worst case, the number of
minimizers on expectation, which is O( nw exp(pwN)), grows as 1/w fraction of the expected
number of w length windows (σ-paths ) in G.
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4.1 Random Sampling
Dense regions of the graph can lead to increased time and space requirements for V-MAP
indexing as the number of possible w length σ-paths in these regions could be very large.
We use random sampling in such dense regions where, instead of considering all w length
paths, M such paths are randomly sampled (random walk with replacement) where M is a
parameter. This helps in reducing the time and space requirements and at the same time
maintain high mapping accuracy. V-MAP indexing switches to random sampling mode for a
coordinate when the total number of w length σ-paths starting from that coordinate exceeds
M . Clearly, the final minimizer set of any graph under sampling is a subset of the minimizer
set without sampling.

We analyze the effect of random sampling on the minimizer set. In particular, missing
out minimizers due to sampling. Consider a k-mer x in a graph G. We analyze the expected
number of w length σ-path samples in G that have x as a minimizer. Let U = {u1, . . . , ur}
be the set of coordinates in G such that x is reachable from them through a σ-path of length
at most w. Let q be the probability that a random w length σ-path sample from a randomly
chosen (uniformly at random) u ∈ U contains x. We suppose the worst case that the number
of w length σ-paths from each ui ∈ U exceeds M . In the analysis, we assume that the k-mers
in any w length σ-path are distinct.

I Lemma 2. The expected number of path samples each having x as the minimizer ≥ qM .

Proof. We observe that |U | ≥ w − k + 1 as there are at least w − k + 1 coordinates lying
on some w length σ-path leading to x in G. Consider any coordinate ui from U . Let αi
denote the probability that a random w length σ-path sample from ui contains the k-mer
x. Then, the probability that a random sampled path contains x as minimizer is at least
αi/(w − k + 1). The total number of path samples (with repetition) from all of u1, . . . , ur is
rM . In this sampling, let Z denote the the expected number of path samples where each of
them have x as a minimizer. We have Z ≥ M

(w−k+1)
∑r
i=1 αi. Recalling that r ≥ w − k + 1,

we obtain that Z ≥ M
r

∑r
i=1 αi = qM J

It is straightforward to see that, under no sampling, the expected number of w length
σ-paths in G each having x as minimizer is S/(w − k + 1), where S denote the total number
of w length σ-paths from all the coordinates in U where each path contains the k-mer x.

From the above lemma, we infer that when a minimizer k-mer x of graph G is present in
a dense region with high q value, then with a suitable sampling parameter M , sufficiently
many paths under sampling also have x as a minimizer on expectation. For example, Figure 1
shows part of a commonly occurring dense subgraph topology which is a cascade of variations.
The number of w length σ-paths from a fixed graph coordinate grows by a multiplicative
factor depending on the number of cascade elements it can pass through. For the k-mer
x as shown in the subgraph, there are several w length σ-paths from every coordinate in
U . However, a random path sample from any coordinate in U will pass through the vertex
containing x with probability 1/3, implying a higher q value.

Figure 1 Dense subgraph region with a cascade of variations.
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If there is prior information available about the likelihood of certain paths over others in a
graph region, such as the underlying haplotype information, edge weights can be introduced
to capture non-uniform transition probabilities between vertices. Graph winnowing is easily
generalizable to this setting resulting in biased path sampling for winnowing. Such a haplotype
aware sampling can strike a balance between using haplotype prior and allowing newer paths
that could arise due to recombinations. Further generalizations that allow a k-step Markov
walk for path sampling can tilt the balance further in favour of haplotype prior.

5 Read Mapping

We describe the V-MAP read mapping algorithm in this section. For an input read s, the
mapper aims to efficiently find a small subgraph G′ of the graph G where s can align optimally.
That is, G′ has a path where s aligns optimally among all paths in G. The alignment of s to
G′ with affine gaps could be performed with any of the existing graph-based gapped aligners
for sequences [10, 16, 15, 18, 29].

The minimizer set R of the input read s is first computed by applying the winnow hashing
hw on s. For each distinct minimizer x ∈ R, the entries stored at I[x] in the index I are
included in the hit set H. We recall that I[x] contains the embedding in N of all coordinates
in G where x is a minimizer. Set I[x] is assumed to be empty if x is not present as a
minimizer in G. The final union H is a multiset. We now identify a maximum cardinality
enclosing interval in N of fixed width D that covers the maximum number of elements in
H. This can be done easily in O(|H| log |H|) time by sorting H followed by a linear scan.
The interval width D is fixed to be the length ` of the read s. Let hl and hr be the left end
and right end respectively of the final enclosing interval. The final graph region identified
by V-MAP is given by the subgraph induced by the vertices whose embedding lies in the
interval [hl − `/2, hr + `/2]. The vertex set and the adjacency information of each vertex are
stored in a sorted fashion based on the embedding of the start and the end coordinates of
the vertices. This allows efficient extraction of the subgraph identified by V-MAP. Optimal
gapped alignment of the read to the extracted subgraph can be computed using any graph
alignment algorithm.

Reverse Complement

Reads from reverse complement strand can be handled using strand prediction in a straightfor-
ward way using techniques in [14] with a marginal increase in the index size. While indexing,
each k-mer is transformed to its canonical form (either itself or its reverse complement
based on their lexicographic ordering). For a minimizer k-mer x stored in the index IG,
we store an additional bit along with each of the coordinate embeddings stored in the set
IG[x]. The canonical bit records whether x appeared in the canonical form or not at that
coordinate. While mapping, the canonical bit is computed for the read minimizers as well.
Strand prediction is done based on the consensus of the canonical bits of the minimizers in
the final cluster and bits of the read minimizers.

6 Experimental Results

We performed experiments to measure mapping accuracy and run time performance of
V-MAP. We compared V-MAP with the state-of-the-art VG mapper [10] and popular linear
reference mappers BWA-MEM [20] and Minimap2 [22].
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Genome Variation Graph Construction

Human reference genome GRCh37 and the 1000 Genomes [1] variation data (phase 3) were
used to construct a Human genome graph for our experiments. The variation data consisted
of about 85 million variations. The VG graph construction tool [10] was used with default
parameter setting to construct the reference graph. The reference graph consisted of about
3.2× 108 vertices and 4.1× 108 edges in total.

Read Set

The Illumina, PacBio and ONT real reads of AshkenazimTrio HG002_NA24385_son made
available by Genome In A Bottle (GIAB) Consortium [39] were used. Around 104 reads of
average length 117 formed the Illumina readset. For PacBio, ∼ 104 reads of length 5k or
above were used. For ONT, about 8000 reads were available in the GIAB dataset with read
length 1000 or above.

Simulated reads were also used in the experiments. Reads were generated using read
simulation tools from sequences arising from random paths in the reference graph. The
ART tool [13] was used to generate Illumina short reads of lengths in the range 100 to 200
with its default error profile. PacBio and Nanopore (ONT) long reads of average lengths
of 5k, 10k and 50k were generated using ReadSim tool [19]. In total, 144× 105 short reads
and 3.8× 105 long reads were generated. All reads in the read set are from forward strand.
Strand prediction aspect is not considered in this work.

Implementation Details

V-MAP was implemented in C++. The index construction and mapping were performed on
200 GB RAM Linux machine with 48 threads and with 6TB HDD. Choices for the V-MAP
parameters w and k were determined by a grid search based on the mapping accuracy on
a separate set of random reads. Values w = 35, k = 20 were chosen for short reads and
w = 40, k = 20 were chosen for long reads (PacBio/ONT). The random sampling parameter
M for indexing was set to 30, 000.

6.1 Mapping Accuracy
The final alignment score achieved by the candidate methods V-MAP, VG, BWA-MEM, and
Minimap2 were measured for the real read set. In V-MAP, as in VG, the GSSW graph-based
aligner [38, 10] was used to compute the gapped alignment score to the identified subgraph.
The default alignment score parameters of BWA-MEM for gap open, gap extension, match,
and mismatch were used across all tools. Table 2 gives the percentage of reads where each
tool was a top scorer. That is, its score is no less than the score of other tools. The best
value among BWA-MEM and Minimap2 is shown under the linear mapper column. The
low percentage for linear mapper especially for long reads can be attributed to the fact that
unlike the graph-based mappers, linear mappers have to work with only the linear reference
and without any variant information. The graph mappers like V-MAP, on the other hand,
achieve higher alignment score by working on a unified space of reference and variations
encoded as a graph. The purpose of including the linear mappers in the comparison is only
to bring out the advantage of using a pangenome reference over a linear reference and not to
highlight the performance of any specific linear mapper. In Table 1, we show the average
percentage gain in the alignment score achieved respectively by V-MAP and VG for reads
where they were top scorers. As seen in Table 1, the percentage gain is pronounced in the
case of long reads.
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Table 1 Average percentage gain in the alignment score for V-MAP and VG.

% Reads Illumina PacBio ONT
V-MAP VG Linear V-MAP VG Linear V-MAP VG Linear

mapper mapper mapper
Top scorer 95.28 99.79 87.98 81.15 52.01 3.2 80.73 62.43 3.43

Table 2 Comparison of the candidate methods based on the final alignment scores achieved. The
best performance among BWA-MEM and Minimap2 is shown under linear mapper.

Illumina PacBio ONT
V-MAP VG V-MAP VG V-MAP VG
0.0004 0.05 5.85 3.29 7.06 6.42

Using simulated reads, we calculated the mapping accuracy measured as the fraction of
reads for which the subgraph identified by the mapper contained the path in the graph from
which the read was generated. Table 3 shows the mapping accuracy of V-MAP and VG.
V-MAP exhibits consistently superior performance for long reads with a much smaller index.
In addition to higher accuracy, V-MAP also achieved considerably higher final alignment
score. The average score difference was in excess of 680 for reads in the 5k to 10k range and
3590 for 10k to 50k range and 18300 for above 50k length reads. For short reads, the V-MAP
alignment score was less than VG by 2 on average. In a related experiment of mapping
24k simulated reads of length 10k each from the graph with no sequencing errors, V-MAP
achieved full alignment score for all but 2 reads in comparison to 96.8% of the reads for VG.

Table 3 Mapping accuracies for different read classes.

Read class 100 150 200 Pac 5k Pac 10k Pac 50k ONT 5k ONT 10k ONT 50k

V-MAP 95.22 96.21 98.49 96.90 99.04 99.63 99.47 99.57 99.95
VG 99.67 99.80 99.98 71.62 70.48 71.27 94.28 94.13 93.93

6.2 Mapping Performance

Table 4 gives the indexing performance, i.e., index construction time, index size, intermediate
storage and RAM requirements for V-MAP and VG.

Table 5 gives the average read mapping time (single thread) for V-MAP and VG for
short and long reads. The map time is the subgraph identification time and align time is
the time taken for gapped alignment of the read to the identified subgraph using the GSSW
graph-based aligner [38, 10]. The difference in alignment time between the two tools can
be attributed to the smaller subgraphs identified by V-MAP for the alignment phase as
shown in Figure 2.

Figure 2 shows the average size statistics of identified subgraphs for short and long reads.
The figure shows the number of edges, vertices and the total number of nucleotides in the
vertex label sequences of the subgraph. The reduced subgraphs sizes significantly improve
the gapped alignment time. Also, improved algorithms and implementations for gapped
alignment on graphs can further improve the overall time.
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Table 4 Index construction and Mapping performance.

Index Parameters V-MAP VG

Construction Time 2 hours 36 hours

Intermediate storage 0 ∼ 2 TB

Index Size 21 GB (short reads) 80 GB

18 GB (long reads)

RAM 16 GB 200 GB

# indexing threads 4 32

Mapping RAM 27 GB 75 GB

Table 5 Map and align timings. Map time is the subgraph identification time. Align time is the
time to perform gapped alignment of the read to subgraph using GSSW.

Read length Map time (ms) Align time (ms) Total time (ms)
V-MAP VG V-MAP VG V-MAP VG

100 0.45 4.56 1.88 33 2.33 37.56
150 0.67 12.02 2.94 94.85 3.61 106.87
200 1.24 37.5 3.91 153.15 5.15 190.65
5k 5.84 144.16 540.28 4300.22 546.12 4444.39
10k 11.35 292.22 1831.34 9010.63 1842.69 9302.85
50k 63.63 1223.1 39,584.69 48,652.42 39,648.13 49,875.5
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Figure 2 Average size statistics of identified subgraphs for short and long reads. The figure shows
the number of edges, number of vertices and the total number of nucleotides in the vertex label
sequences of the subgraph.

7 Discussion

We present V-MAP for efficient identification of a subgraph of the input genome variation
graph for optimal read alignment. Our tool exhibited significantly improved performance
in comparison to the state-of-the-art. Improved algorithms and implementations of gapped
aligners for graphs can further improve the overall performance significantly. Also, better
graph embedding, say in N2 or other metric spaces including trees or other simpler graphs,
could result in finer graph pruning and hence faster alignment.
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A Dynamic Programming for Indexing

Enumerating all w length σ-paths in G for graph winnowing could be computationally
expensive. Nevertheless, a dynamic programming approach can be used to winnow all
w length σ-paths in G to avoid recomputations. It is based on the observation that the
minimizer set Ht of the set of all t length paths, each starting at a given graph coordinate
〈u, i〉, can be obtained recursively from the minimizer set Ht−1 of the set of all t− 1 length
paths in G having the property that for each of these paths, its start coordinate, say 〈v, j〉,
occurs immediately after 〈u, i〉 in some σ-path in G. As a consequence, each of these t− 1
length σ-path p is extended to a t length σ-path p+ by appending 〈u, i〉 to its beginning.
Winnowing of p+ is easily done by finding the minimum of the already computed minimizer
of p and the leftmost k-mer of p+. The details of the DP formulation are given below.

Let Pt(v, j, s) denote the set of all t length σ-paths in G each starting at the graph
coordinate 〈v, j〉 and having the k − 1 length sequence s as the prefix of its corresponding
σ-sequence. For a σ-path p ∈ Pt(v, j, s), associate a triplet 〈u, i, r〉 corresponding to the
minimizer of p where 〈u, i〉 = h(p) denotes the minimizer coordinate and r denotes the
minimizer k-mer. Corresponding to Pt(v, j, s), let

Ht(v, j, s) = {〈u, i, r〉 associated with a p ∈ Pt(v, j, s)}

We use Ht(v, j, s) to also denote an underlying max heap of its triplets where the ordering
is based on the k-mer values. In the following, we define a recurrence on Ht+1(v, j, s) where s
is a k− 1 length prefix of some σ-sequence starting at 〈v, j〉. Clearly `(v)[j] = s[0]. Let s′ be
the k − 2 length suffix of s. Define the set R of successor coordinates of the coordinate 〈v, j〉
as follows. If j < |v| − 1 then R = {〈v, j + 1〉}. If j = |v| − 1 then R = {〈u, 0〉 | u ∈ No(v)},
where No(v), called the out-neighbors of v, denote the set of all vertices that have directed
edges from v.

We now compute Ht+1(v, j, s), where |s| = k − 1, recursively from the Ht sets of the
successor coordinates of 〈v, j〉 in R. For this, we define Ht which is a set of non-empty sets
Ht(u, i, z), where |z| = k − 1, as

Ht = {Ht(u, i, z) | 〈u, i〉 ∈ R and s′ is prefix of z}

For each Ht(u, i, z) ∈ Ht, let z+ denote the k-mer obtained by concatenating s[0] followed
by z. We modify the max heap Ht(u, i, z) to obtain a modified max heap (and the underlying
triplet set) H ′t(u, i, z) by removing all triplets from Ht(u, i, z) whose k-mer values are greater
than or equal to z+. Also, insert the triplet 〈v, j, z+〉 in H ′t(u, i, z) if at least one triplet was
removed from Ht(u, i, z). Finally, the required Ht+1(v, j, s) is obtained as

Ht+1(v, j, s) =
⋃

Ht(u,i,z)∈Ht

H ′t(u, i, z)

The final set of triplets L to be indexed is given by the union of all non-empty Hw(v, j, s) sets
computed as above. For each triplet 〈u, i, r〉 in L, λ(〈u, i〉) is included in the index set IG[r].

The above recurrence is defined for t > k. For the base case t = k, we construct Hk(v, j, s)
for each coordinate 〈v, j〉 in G by including all triplets 〈v, j, r〉 in Hk(v, j, s) where s is the
k − 1 length prefix of the k-mer r occurring at 〈v, j〉 in G.

In the above dynamic programming based minimizer computation, after round t of the
dynamic programming updation, for each graph coordinate 〈v, j〉 and for each k − 1 length
string (σ-sequence ) s starting from the coordinate 〈v, j〉, we maintain a separate heap
Ht(v, j, s). In the next round t + 1, the new set Ht+1(u, i, z), for a k − 1 length string z
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starting at coordinate 〈u, i〉, is computed from all sets Ht(v, j, s) such that the k − 2 length
suffix of s and k− 2 prefix of z are identical. Coordinates 〈u, i〉 and 〈v, j〉 should additionally
satisfy that either (a) u = v; j = i+ 1 or that (b) j = 0; i = |`(u)| − 1; (u, v) is a directed
edge in G. In this case, s and z give rise to a new k-mer r which is z[0] followed by the string
s. Now, Ht+1(u, i, z) is the union of all minimizer entries of such Ht(v, j, s) excluding the
minimizers having value greater than r. A new entry for r is also included in Ht+1(u, i, z) if
at least one minimizer was excluded in the union.

From the complexity perspective, we see that after round t, the number of Ht sets (heaps)
that are present is at most the total number of k − 1 length σ-paths in G. This is because,
a separate Ht(v, j, s) is maintained for each k − 1 length string starting from the graph
coordinate 〈v, j〉. For a minimizer coordinate triplet 〈y, j, x〉, let β(y, j, x) denote the total
number of t length σ-paths in G each having x at coordinate 〈y, j〉 as its minimizer. Then,
it is straightforward to verify that the minimizer triplet 〈y, j, x〉 can be present in at most
β(y, j, x) different Ht sets. Let set B denote the set of all distinct minimizer triplets obtained
by winnowing t length σ-paths in G. Then, the sum total of the sizes of all Ht sets is given
by
∑
r∈B β(r). This in the worst case is upper bound as

∑
|Ht| ≤ |B| × d where d is the

maximum number of t length σ-paths in G such that each give rise to the same minimizer
triplet. That is, d = maxr∈B β(r). In other words, the blowup in space after round t is by a
factor d in the worst case.

From the algorithm description, we can see that, in round t+1, each Ht(v, j, s) with j > 0
is scanned exactly once for obtaining a new Ht+1 set. This is because, only Ht+1(v, j − 1, ·)
requires Ht(v, j, s). However, set Ht(v, 0, s) entries are scanned as many times as the in-
degree of vertex v in G. Hence, the total number of triplet scanning performed in round
t+ 1 is upper bound by

∑
|Ht|+

(∑
v∈V |Ht(v, 0, ·)| × in-degree (v)

)
, which can be crudely

upper bound as O(dm|B|), where m is the total number of edges in G.
In the subsequent section, we discuss random path sampling approach for improving

the indexing performance in the dense graph regions when the winnowing is performed by
scanning w length paths in G. This dynamic programming heuristic does not incorporate the
path sampling strategy. The DP approach can be useful for winnowing non-dense graphs.

B Minimizer Density

We provide bounds on the expected number of minimizers created by V-MAP for an input
graph G corresponding to a collection of random related sequences. Specifically, we suppose
that the graph G is constructed from a collection C = {s1, . . . , sN} of N random related
sequences each of length at most n. The sequences in C are generated by a coupled random
process described in the following, where, starting with a designated random sequence, random
independent mutations with probability p are introduced to generate each of the remaining
sequences in C. This generation model is inspired by the mutation model approximations
proposed in [35]. Sequence s1, also denoted as s∗1, is designated as the basis sequence
which is a random sequence where the nucleotide at each location is chosen independently
and uniformly at random. Each remaining sequence sk for k ∈ {2, . . . , N} is generated
independently as gapped variant of the basis sequence s1 using the following coupled process.
The basis sequence s∗1 is scanned sequentially from left to right for n steps. At each step t,
the nucleotide present in s∗1 is appended to sk independently with probability 1− p for some
fixed p. With probability p, a gap introduced in sk either as a deletion from s∗1 (i.e., skip the
nucleotide in s∗1), a random nucleotide substitution in sk or a nucleotide insertion in sk. In
the case of an insertion, the scan location in s∗1 does not change. It is straightforward to
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verify that any given sequence from C is a random sequence where the nucleotide at each
location is chosen independently and uniformly at random. However, any two sequences from
C are not independent of each other. If the mutation and gap probabilities are unequal, let p
denote the maximum of them in the following analysis.

We now consider a genome variation graph G constructed from C. The above generation
process gives a natural way to construct G. The complete basis sequence s∗1 is initially
represented as a single labeled vertex. Each of the remaining coupled sequence sk for k ≥ 2
is incorporated by introducing alternative paths in G at the gap regions with respect to s∗1.
Specifically, a contiguous gap between sk and s∗1 is handled by introducing a new vertex u
that encodes the subsequence of sk in this gap region. The new vertex u is connected as a
bridge vertex parallel to the corresponding gap subsequence of s∗1 in G. For this, a vertex
split is done at the begin and end locations of this gap in the respective vertices of the path
that encodes the gap subsequence of s∗1. After the split, there is a path in G that exactly
encodes the gap subsequence of s∗1 and the new vertex u is connected as a bridge parallel to
this path. If the gap region consists of only deletions along sk, then the gap subsequence of
sk is empty. In this case, just a bridge edge is introduced across the gap sequence path of s∗1.

In each step, while generating a new sequence, a gap occurs with probability p and each
gap introduces a constant number of additional edges and vertices in G. Hence the expected
number of vertices and edges in G is O(npN). In order to bound the minimizer cardinality,
first, we bound the expected number of w length σ-paths in G.

I Lemma 3. The expected number of w length σ-paths is upper bound by n (1 + p(N − 1))w.

Proof. For the ease of exposition, we assume without loss of generality that each vertex of
G has only single nucleotide label. If a vertex has a longer label, it can be replaced by a
corresponding path of single nucleotide vertices. Let the vertices along the s1 path in G be
U = {u1, . . . , un} and let di be the out-degree of ui. Let X denote the set of all w length
σ-paths in G. Let Xi for i ∈ {1, . . . , n} denote the subset of X where each σ-path x in it has
ui at location x[m− 2]. Let R denote the remaining paths from X not included in any of Xi.
Consider the m− 1 length prefix x[0, · · · ,m− 2] of each σ-path x from an Xi. Let ni be the
number of distinct such prefixes from Xi. Clearly, |X| ≤

∑
nidi + |R|. We observe that ni

is independent of di and that E(di) is approximated by 1 + E(Binomial(N − 1, p)) because
each of s2, . . . , sN can introduce an outgoing edge at ui with probability p. Therefore, we
obtain E(|X|) ≤ (1 + p(N − 1))E(

∑
ni + |R|). Clearly

∑
ni + |R| is no more than the

number of w − 1 length σ-paths in G. Here we observe that w − 1 length prefix of each path
x from R is distinct as the out-degree of a non U vertex (vertex at x[m− 2]) is at most 1.
Repeating the above argument and using the observation that the expected number of 1
length σ-paths (i.e., total nucleotides) in G is at most n(1 + p(N − 1)), we finally obtain
E(X) ≤ n(1 + p(N − 1))w. J

The following Theorem provides a bound on the expected number of minimizers resulting
from winnowing of G.

I Theorem 4. The expected number of minimizers for G is upper bound by 2n
w−k (1 + p(N −

1))w+1 for winnow length w.

Proof. We extend the charging argument in [30] for linear random sequences to our graph
setting. In [30], for a linear sequence s, a w sized window Wi at coordinate i is charged, i.e.,
contributes a new minimizer k-mer say at s[j], if Wi is the leftmost among the windows that
overlap the k-mer at s[j] and the k-mer is a minimizer in them. It was shown in [30] that this
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corresponds to the event that in the w + 1 sized window W which is the union of Wi−1 and
Wi, the minimizer of W is given by either it’s first k-mer or its last k-mer. The probability
of this to happen in a random sequence is 2/(w + 1). The total number of minimizers after
winnowing an n length sequence s is then given by the total number of w length windows
that are charged, which is 2n/(w + 1).

Consider any w + 1 length σ-path in G. Let c′ denote the w length suffix window of c
and let x and x′ denote the (minimizer) k-mers at locations h(c) and h(c′) respectively. We
charge window c′ if and only if x is either the first or the last k-mer in c. It is straightforward
to verify that each minimizer in G is charged to at least one w length σ-path window in G.
In the linear case, a minimizer is charged to exactly one window whereas the same minimizer
could be charged to multiple windows in the case of graphs. This can only overestimate the
desired count. Recalling the generation process of G, we observe that any given w+ 1 length
σ-path c in G encodes a random σ-sequence. Hence, its w length suffix c′ is charged with
probability 2/(w − k + 2). The graph G has an underlying topology from Ω which denote
the space of all graph topologies that can arise from the graph creation process described
earlier. Each topology in Ω has a unique encoding where each vertex u has an associated
distinct triplet id of the form 〈i, j, l〉 denoting that u is uniquely associated with the l length
subsequence of si ∈ C starting from offset j. For a given topology, the specific vertex labels
are still random. It is clear from the generation process that for any fixed topology T , the
σ-sequence for any given σ-path in T is a random sequence. Hence, if nT denote the number
of w + 1 length σ-paths for a topology T , a w + 1 length σ-path is charged in a graph with
topology T with probability 2/(w − k + 2). Let D denote the number of charged k + 1
length σ-sequence in G. The total number of minimizers is upper bound by D. We have
E(D | T ) = 2 · nT /(w − k + 2). Hence, we obtain

E(D) =
∑
T∈Ω

E(D | T ) Pr(T )

= 2
w − k + 2

∑
T∈Ω

nT Pr(T ) ≤ 2n
w − k

(1 + p(N − 1))w+1

where the last inequality follows by applying Lemma 3 as
∑
T∈Ω nT Pr(T ) is the expected

number of w + 1 length σ-paths . J
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Abstract

Recent large-scale community sequencing efforts allow at an unprecedented level of detail the
identification of genomic regions that show signatures of natural selection. Traditional methods
for identifying such regions from individuals’ haplotype data, however, require excessive computing
times and therefore are not applicable to current datasets. In 2019, Cunha et al. (Proceedings of
BSB 2019) suggested the maximal perfect haplotype block as a very simple combinatorial pattern,
forming the basis of a new method to perform rapid genome-wide selection scans. The algorithm
they presented for identifying these blocks, however, had a worst-case running time quadratic in the
genome length. It was posed as an open problem whether an optimal, linear-time algorithm exists.
In this paper we give two algorithms that achieve this time bound, one conceptually very simple one
using suffix trees and a second one using the positional Burrows-Wheeler Transform, that is very
efficient also in practice.
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1 Introduction and Background

As a result of the technological advances that went hand in hand with the genomics efforts
of the last decades, today it is possible to experimentally obtain and study the genomes of
large numbers of individuals, or even multiple samples from an individual. For instance,
the National Human Genome Research Institute and the European Bioinformatics Insti-
tute have collected more than 3500 genome-wide association study publications in their
GWAS Catalog [3].

Probably the most prominent example of large-scale sequencing projects is the 1000
Genomes Project (now International Genome Sample Resource, IGSR), initiated with the
goal of sequencing the genomes of more than one thousand human individuals to identify
95% of all genomic variants in the population with allele frequency of at least 1% (down
toward 0.1% in coding regions). The final publications from phase 3 of the project report
about genetic variations from more than 2,500 genomes [1, 12].

Recently, several countries announced large-scale national research programs to capture
the diversity of their populations, while some of these efforts started already more than
20 years ago. Since 1996 Iceland’s deCODE company is mining Icelanders’ genetic and
medical data for disease genes. In 2015, deCODE published insights gained from sequencing
the whole genomes of 2,636 Icelanders [8]. Genome of the Netherlands (GoNL) is a whole
genome sequencing project aiming to characterize DNA sequence variation in the Dutch
population using a representative sample consisting of 250 trio families from all provinces in
the Netherlands. In 2016, GoNL analysed whole genome sequencing data of 769 individuals
and published a haplotype-resolved map of 1.9 million genome variants [10]. Similar projects
have been established in larger scale in the UK: Following the UK10K project for identifying
rare genetic variants in health and disease (2010–2013), Genomics England was set up in late
2012 to deliver the 100,000 Genomes Project [13]. This flagship project has by now sequenced
100,000 whole genomes from patients and their families, focusing on rare diseases, some
common types of cancer, and infectious diseases. The scale of these projects is culminating in
the US federal Precision Medicine Initiative, where the NIH is funding the All of Us research
program1 to analyze genetic information from more than 1 million American volunteers. Even
more extreme suggestions go as far as to propose “to sequence the DNA of all life on Earth”2.

The main motivation for the collection of these large and comprehensive data sets is the
hope for a better understanding of genomic variation and how variants relate to health and
disease, but basic research in evolution, population genetics, functional genomics and studies
on demographic history can also profit enormously.

One important approach connecting evolution and functional genomics is the search for
genomic regions under natural selection based on population data. The selection coeffi-
cient [7] is an established parameter quantifying the relative fitness of two genetic variants.
Unfortunately, haplotype-based methods for estimating selection coefficients have not been
designed with the massive genome data sets available today in mind, and may therefore take
prohibitively long when applied to large-scale population data. In view of the large population
sequencing efforts described above, methods are needed that – at similar sensitivity – scale
to much higher dimensions.

1 allofus.nih.gov
2 Biologists propose to sequence the DNA of all life on Earth, by Elizabeth Pennisi. Science News, Feb.
24, 2017. https://doi.org/10.1126/science.aal0824.

allofus.nih.gov
https://doi.org/10.1126/science.aal0824
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Only recently a method for the fast computation of a genome-wide selection scan has
been proposed that can be computed quickly even for large datasets [4]. The method is based
on a very simple combinatorial string pattern, maximal perfect haplotype blocks. Although
considerably faster than previous methods, the running time of the algorithm presented
in that paper is not optimal, as it takes O(kn2) time in order to find all maximal perfect
haplotype blocks in k genomes of length n each. This is sufficient to analyse individual
human chromosomes on a laptop computer, for datasets of the size of the 1000 Genomes
Project (1,000s of genomes and 1,000,000s of variations). However, with the larger datasets
currently underway and with higher resolution it will not scale favourably. More efficient
methods are therefore necessary and it was phrased as an open question whether there exists
a linear-time algorithm to find all maximal perfect haplotype blocks.

In this paper we settle this open problem affirmatively. More specifically, after some basic
definitions in Section 2 we present in Sections 3 and 4 two new algorithms for finding all
maximal perfect haplotype blocks in optimal time. The latter of these two algorithms is then
experimentally compared to the one from [4] in Section 5, proving its superiority in running
time by a factor of about 5 and memory usage by up to two orders of magnitude for larger
data sets. Section 6 concludes the paper.

2 Basic Definitions

The typical input to genome-wide selection studies is a set of haplotype-resolved genomes, or
haplotypes for short. Clearly, for a given set of haplotypes only those sites are of interest
where there is variation in the genomes. Therefore, formally, we consider as input to our
methods a k × n haplotype matrix where each of the k rows corresponds to one haplotype
and each of the n columns corresponds to one variable genetic site.

Most methods distinguish only between ancestral and derived allele, a consequence of the
popular infinite sites assumption [11]. Therefore the entries in a haplotype matrix are often
considered binary where the ancestral allele is encoded by 0 and the derived allele is encoded
by 1. However, the computational problem and its solutions considered in this paper do
not depend on this restriction and instead are applicable to any type of sequence over a
constant-size alphabet Σ.

The concept of a maximal perfect haplotype block as defined in [4] is the following, where
S|K denotes the elements of an ordered set S restricted to index set K:

I Definition 1. Given k sequences S = (s1, . . . , sk) of same length n (representing the
rows of a haplotype matrix), a maximal perfect haplotype block is a triple (K, i, j) with
K ⊆ {1, . . . , k}, |K| ≥ 2 and 1 ≤ i ≤ j ≤ n such that
1. s[i, j] = t[i, j] for all s, t ∈ S|K (equality),
2. i = 1 or s[i− 1] 6= t[i− 1] for some s, t ∈ S|K (left-maximality),
3. j = n or s[j + 1] 6= t[j + 1] for some s, t ∈ S|K (right-maximality), and
4. @K ′ ⊆ {1, . . . , k} with K ⊂ K ′ such that s[i, j] = t[i, j] for all s, t ∈ S|K′ (row-

maximality).
Definition 1 is illustrated in Figure 1.

In [4] it was shown that the number of maximal perfect haplotype blocks is in O(kn),
while the algorithm presented there takes O(kn2) time to find all blocks. It is based on the
observation that branching vertices in the trie Tp of the suffixes of the input sequences starting
at position p correspond to right-maximal and row-maximal blocks, while left-maximality
can be tested by comparing Tp and Tp−1. In the next two sections we show how this running
time can be improved.
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0 1 0 1 0 1 0 0
1 0 1 1 1 1 0 1
0 1 0 1 1 1 0 0

Figure 1 Illustration of Definition 1: a binary 3× 8 haplotype matrix with three maximal perfect
haplotype blocks ({1, 3}, 1, 4), ({2, 3}, 4, 7) and ({1, 2, 3}, 6, 7) highlighted. (The example contains
additional maximal perfect haplotype blocks that are not shown.)

3 Linear-Time Method I: Based on Suffix Trees

In this section, we present our first algorithm to find all maximal perfect haplotype blocks
in linear time. This solution is purely theoretical, it would likely require large amounts of
memory while being slow in practice. However, it demonstrates the connection to the concept
of maximal repeats in strings. We recall from [9, Section 7.12] that a maximal repeat is a
substring occurring at least twice in a string or a set of strings and such that it cannot be
extended to the left or to the right without losing occurrences.

Let S = s1$1s2$2 . . . sk$k, with the $i being k different characters absent from the original
alphabet Σ. The key point is that any maximal perfect haplotype block in S is a maximal
repeat in S. The opposite is not true: In a maximal perfect haplotype block, all occurrences
of the repeat are located at the same position of each sequence of S (equality condition in
Definition 1), while this constraint does not exist for maximal repeats in S.

Nevertheless, finding all maximal perfect haplotype blocks in S can be performed by
computing all maximal repeats in S, while keeping only those whose occurrences are located
at the same positions over all si in which they occur. This can be done by performing the
following procedure:
1. “Decorate” each sequence si ∈ S to create s+

i = α0si[1]α1si[2]α2 . . . si[n]αn, where the
index characters α0, α1, . . . , αn are n+ 1 symbols from an alphabet Σ′, disjoint from the
original alphabet Σ.

2. Find in S+ = s+
1 $1s

+
2 $2 . . . s

+
k $k all maximal repeats.

3. Any maximal repeat r = αpr1αp+1r2αp+2 . . . r`αp+` in S+ with ` ≥ 1 corresponds to
a maximal perfect haplotype block of length `, starting at position p + 1 in the input
sequences from S.

The key idea here is that the index characters impose that each maximal repeat occurrence
starts at the same position in all sequences and, as a consequence, ensure that all occurrences
occur in distinct sequences from S.

Hence any maximal repeat r = αpr1αp+1 . . . r`αp+` defines a unique maximal perfect
haplotype block (K, p+ 1, p+ `). The value |K| is the number of occurrences of r. Also the
set K can be derived from occurrence positions of r in S+, as any position in r corresponds
to a unique position in S. We prefer to omit useless technical details here.

The maximal repeat occurrences in S+ may be found using a suffix tree, constructed
in time linear with respect to the size of the input data O(kn), even for large integer
alphabets [6], as we have here. The maximal repeat detection is also linear with the size of
the input data [9, Section 7.12.1]. Therefore the overall time complexity is O(kn).

4 Linear-Time Method II: Based on the Positional BWT

Here we present our second algorithm to find all maximal perfect haplotype blocks in linear
time. It works by scanning the haplotype matrix column by column while maintaining the
positional Burrows-Wheeler Transform (pBWT) [5] of the current column. For simplicity of
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1 2 3 4 5 6 a6 a−1
6

1 0 0 1 0 0 2 3
1 0 0 0 0 0 4 1
0 0 0 1 1 0 1 5
0 1 0 0 0 0 5 2
0 0 1 1 0 0 3 4

1 2 3 4 5 6 d6

1 0 0 0 0 0 7
0 1 0 0 0 0 3
1 0 0 1 0 0 5
0 0 1 1 0 0 4
0 0 0 1 1 0 6

0

0

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

0

Figure 2 Available blocks. Left: an example of a haplotype matrix up to column 6 with the
two arrays a6 and a−1

6 on the right. Center: the colexicographically sorted rows and the array d6

listed on the right. Right: the trie of the reverses of the rows of the matrix. For example, the
block ({1, 2, 4, 5}, 5, 6) is available because a−1

6 (1) = 3, a−1
6 (2) = 1, a−1

6 (4) = 2, a−1
6 (5) = 4 is the

consecutive range [x, y] = [1, 4], we have d6[r] ≤ 5 for all r ∈ [1 + 1, 4] with d6[3] = 5, and we have
x = 1 and d6[4 + 1] = 6 > 5. The repeat in the block is 00, and we see it is a branching node in the
trie on the right.

presentation we assume that all rows of the haplotype matrix S are distinct. Recall that
the pBWT of S consists of a pair of arrays for each column of S: For each l, 1 ≤ l ≤ n,
we have arrays al and dl of length k such that the array al is a permutation of [1, k] with
S [al[1]] [1..l] ≤ . . . ≤ S [al[k]] [1..l] colexicographically (i.e. right-to-left lexicographically) and
the array dl is such that dl[1] = l + 1 and for all r, 1 < r ≤ k, we have dl[r] = 1 + max{j ∈
[1, l] : S [al[r]] [j] 6= S [al[r − 1]] [j]}. Further let us denote by a−1

l the inverse permutation
of al. For readers familiar with string processing terminology, the arrays al and a−1

l are
analogous to the suffix array and the inverse suffix array, respectively, while the arrays dl are
analogous to the LCP array. We note that the term pBWT is somewhat misleading, since
there is no array analogous to the BWT.

Conditions 1, 2 and 4 (equality, left-maximality and row-maximality) of Definition 1 can
be stated in terms of the arrays al and dl as follows. Suppose we have a block (K, i, j). If
the block is a maximal perfect haplotype block, then the set {a−1

j [r] | r ∈ K} must be a
contiguous range [x, y] of indices such that the following holds:

dj [r] ≤ i for all r ∈ [x+ 1, y] (equality),
there exists at least one r ∈ [x+ 1, y] such that dj [r] = i (left-maximality), and
(x = 1 or dj [x] > i) and (y = k or dj [y + 1] > i) (row-maximality).

We call a block satisfying these conditions an available block and [x, y] the colexicographic
range of the block. Let us consider the set Bl of available blocks ending at column l. We
have that |Bl| ≤ k because each available block corresponds to a distinct branching node in
the trie of the reverses of {S[1][1..l], . . . , S[k][1..l]}, and the number of branching nodes in the
trie is bounded from above by the number of leaves k. The branching nodes of the trie can
be enumerated in O(k) time by using a standard algorithm [2] for enumerating LCP intervals
of the LCP array of the trie, LCPl[r] = l− dl[r] + 1. This gives us the colexicographic ranges
[x, y] of all available blocks in Bl. An example is shown in Figure 2.

The only thing left is to show how to check the right-maximality property of an available
block, i.e., whether j = n or |{S[a[r]][j + 1] : r ∈ [x, y]}| ≥ 2. To check the condition in
constant time for j 6= n, we build a bit vector Vj such that Vj [1] = 1 and Vj [r] = 1 if and
only if S[aj [r]][j + 1] 6= S[aj [r − 1]][j + 1]. Now the block is right-maximal if and only if
Vj [x+ 1..y] contains at least one 1-bit. We can build a vector of prefix sums of Vj to answer
this question in constant time.
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Time and space complexity

We assume the column stream model, where we can stream the haplotype matrix column
by column. We can thus build the arrays dl, al and a−1

l on the fly column by column [5],
and also easily build the required prefix sums of arrays Vl from these. The time is O(nk),
since each of the n columns takes O(k) time to process. The algorithm needs to keep
in memory only the data for two adjacent columns at a time, so in space O(k) we can
report the colexicographic ranges of all maximal blocks ending in each column l ∈ [1, n].
If the colexicographic range of a block at column l is [x, y], then the rows in the original
haplotype matrix are al[x], al[x+ 1], . . . , al[y]. There are O(nk) blocks and O(k) rows per
block, so the time to report all rows explicitly is O(nk2). Alternatively, we can store a
complete representation of the answer taking O(nk) space by storing all the al arrays and
the colexicographic ranges of the maximal perfect blocks for each column, from which we
can readily report all rows in any maximal perfect block in constant time per row.

5 Empirical Evaluation

Since the algorithm of Section 3 is mostly of theoretical interest, we evaluate only the pBWT-
based algorithm presented in Section 4. The source code is available from https://gitlab.
com/bacazaux/haploblocks. As a baseline for comparison we use the implementation of the
trie-based algorithm by Cunha et al. [4], available from the same gitlab site. The experiments
were run on a machine with an Intel Xeon E5-2680 v4 2.4GHz CPU, which has a 35 MB
Intel SmartCache. The machine has 256 gigabytes of memory at a speed of 2400MT/s. The
code was compiled with g++ using the -Ofast optimization flag.

Our test data consists of chromosomes 2, 6 and 22 from phase three of the 1000 Genomes
Project [1], which provides whole-genome sequences of 2,504 individuals from multiple
populations worldwide. We preprocessed the data by extracting all biallelic SNPs from
the provided VCF files3 and converting them to a binary haplotype matrix using our own
program vcf2bm, also available from https://gitlab.com/bacazaux/haploblocks.

Our implementation has a user-defined parameter allowing to adjust the minimum size
of a reported maximal perfect haplotype block (K, i, j), where size is defined as the width
(j − i+ 1) times the number of rows (|K|) in the block. Table 1 shows the running times and
memory usage of our implementation on the different chromosomes and for different settings
of the minimum block size parameter. The larger the minimum block size, the faster the
algorithm is, because there are less blocks to report. In general, it takes only a few minutes
to process a complete human chromosome. Locating all 323,163,970 blocks of minimum size
106 in all 22 human autosomes (non-sex chromosomes) took in total 4 hours and 26 minutes
with a memory peak of 12.8 MB (data not shown).

Table 2 shows a comparison of our implementation to the trie-based implementation
from [4]. Our implementation is about 5 times faster on all datasets, and the memory
consumption is up to 93 times smaller.

Using the method for estimating a local selection coefficient from the size of maximal
perfect haplotype blocks covering a certain genomic region presented in [4], it is now possible
to generate chromosome-wide selection scans indicating the loci of maximum selection, as
shown in Figure 3 for the complete human chromosome 2 (size parameter 106), in less than
half an hour.

3 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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Table 1 Running times and memory usage of our pBWT-based implementation. Note that in
our streaming implementation the memory usage is dominated by the number of haplotypes times
the buffer size, and therefore is essentially constant in this study.

data set #lines #columns min block size time memory #blocks
chr. 22 5,008 1,055,454 4min 54s 12.8MB 148,613,645
chr. 22 5,008 1,055,454 500,000 3min 50s 12.8MB 16,076,453
chr. 22 5,008 1,055,454 1,000,000 3min 40s 12.8MB 2,228,762
chr. 22 5,008 1,055,454 2,000,000 3min 43s 12.8MB 4,779
chr. 6 5,008 4,800,101 19min 42s 12.8MB 624,689,548
chr. 6 5,008 4,800,101 500,000 17min 20s 12.8MB 89,840,467
chr. 6 5,008 4,800,101 1,000,000 16min 30s 12.8MB 11,388,982
chr. 6 5,008 4,800,101 2,000,000 16min 36s 12.8MB 5,585
chr. 2 5,008 6,786,300 31min 57s 12.8MB 946,717,897
chr. 2 5,008 6,786,300 500,000 25min 06s 12.8MB 160,094,115
chr. 2 5,008 6,786,300 1,000,000 23min 24s 12.8MB 25,533,314
chr. 2 5,008 6,786,300 2,000,000 23min 18s 12.8MB 120,243

Table 2 Comparison of the trie-based implementation from [4] and our pBWT-based implemen-
tation with minimum block size 106.

trie pBWT
data set time memory time memory
chr. 22 17min 08s 927.8MB 3min 40s 12.8MB
chr. 6 1h 34min 34s 3.23GB 16min 30s 12.8MB
chr. 2 2h 07min 21s 4.46GB 23min 24s 12.8MB

Figure 3 Selection scan for human chromosome 2. Shown is for each position of the chromosome
the largest maximum likelihood estimate derived from any maximal perfect haplotype block over-
lapping that locus. It is easy to spot potential regions of high selection. The centromere, located
around 93 Mbp, shows no signal as sequencing coverage is low here and no SNPs could be called.
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6 Conclusion

In this paper we presented two algorithms that are able to find all maximal perfect haplotype
blocks in a haplotype matrix of size k × n in linear time O(kn). In particular the second
method, based on the positional Burrows-Wheeler Transform, performs also extremely well in
practice, as it allows for a streaming implementation with extremely low memory footprint.

While an initial implementation of the method is available from https://gitlab.com/
bacazaux/haploblocks, a user-friendly software combining the algorithm presented here
with the computation of the selection coefficient suggested in [4] remains to be developed.

References
1 1000 Genomes Project Consortium, Adam Auton, Lisa D Brooks, Richard M Durbin, Erik P

Garrison, Hyun Min Kang, Jan O Korbel, Jonathan L Marchini, Shane McCarthy, Gil A
McVean, and Gonçalo R Abecasis. A global reference for human genetic variation. Nature,
526(7571):68–74, 2015. doi:10.1038/nature15393.

2 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004. doi:10.1016/
S1570-8667(03)00065-0.

3 Annalisa Buniello, Jacqueline A L MacArthur, Maria Cerezo, Laura W Harris, James Hayhurst,
Cinzia Malangone, Aoife McMahon, Joannella Morales, Edward Mountjoy, Elliot Sollis, Daniel
Suveges, Olga Vrousgou, Patricia L Whetzel, Ridwan Amode, Jose A Guillen, Harpreet S
Riat, Stephen J Trevanion, Peggy Hall, Heather Junkins, Paul Flicek, Tony Burdett, Lucia A
Hindorff, Fiona Cunningham, and Helen Parkinson. The NHGRI-EBI GWAS Catalog of
published genome-wide association studies, targeted arrays and summary statistics 2019.
Nucleic Acids Research, 47(D1):D1005–D1012, 2018. doi:10.1093/nar/gky1120.

4 Luís Cunha, Yoan Diekmann, Luis Antonio Brasil Kowada, and Jens Stoye. Identifying
Maximal Perfect Haplotype Blocks. In Advances in Bioinformatics and Computational Biology
- 11th Brazilian Symposium on Bioinformatics, BSB 2018, Niterói, Brazil, October 30 -
November 1, 2018, Proceedings, pages 26–37, 2018. doi:10.1007/978-3-030-01722-4_3.

5 Richard Durbin. Efficient haplotype matching and storage using the positional Burrows–
Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014. doi:10.1093/
bioinformatics/btu014.

6 Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE, 1997.

7 John H. Gillespie. Population Genetics – A Concise Guide. The Johns Hopkins University
Press, Baltimore and London, 1998.

8 Daniel F Gudbjartsson, Hannes Helgason, Sigurjon A Gudjonsson, Florian Zink, Asmundur
Oddson, Arnaldur Gylfason, Søren Besenbacher, Gisli Magnusson, Bjarni V Halldorsson,
Eirikur Hjartarson, Gunnar Th Sigurdsson, Simon N Stacey, Michael L Frigge, Hilma Holm,
Jona Saemundsdottir, Hafdis Th Helgadottir, Hrefna Johannsdottir, Gunnlaugur Sigfusson,
Gudmundur Thorgeirsson, Jon Th Sverrisson, Solveig Gretarsdottir, G Bragi Walters, Thorunn
Rafnar, Bjarni Thjodleifsson, Einar S Bjornsson, Sigurdur Olafsson, Hildur Thorarinsdottir,
Thora Steingrimsdottir, Thora S Gudmundsdottir, Asgeir Theodors, Jon G Jonasson, Asgeir
Sigurdsson, Gyda Bjornsdottir, Jon J Jonsson, Olafur Thorarensen, Petur Ludvigsson, Hakon
Gudbjartsson, Gudmundur I Eyjolfsson, Olof Sigurdardottir, Isleifur Olafsson, David O Arnar,
Olafur Th Magnusson, Augustine Kong, Gisli Masson, Unnur Thorsteinsdottir, Agnar Helgason,
Patrick Sulem, and Kari Stefansson. Large-scale whole-genome sequencing of the Icelandic
population. Nature Genetics, 47:435–444, 2015. doi:10.1038/ng.3247.

9 Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, Cambridge, 1997.

https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1007/978-3-030-01722-4_3
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1038/ng.3247


J. Alanko, H. Bannai, B. Cazaux, P. Peterlongo, and J. Stoye 8:9

10 Jayne Y Hehir-Kwa, Tobias Marschall, Wigard P Kloosterman, Laurent C Francioli, Jasmijn A
Baaijens, Louis J Dijkstra, Abdel Abdellaoui, Vyacheslav Koval, Djie Tjwan Thung, René
Wardenaar, Ivo Renkens, Bradley P Coe, Patrick Deelen, Joep de Ligt, Eric-Wubbo Lameijer,
Freerk van Dijk, Fereydoun Hormozdiari, The Genome of the Netherlands Consortium, Jasper A
Bovenberg, Anton J M de Craen, Marian Beekman, Albert Hofman, Gonneke Willemsen, Bruce
Wolffenbuttel, Mathieu Platteel, Yuanping Du, Ruoyan Chen, Hongzhi Cao, Rui Cao, Yushen
Sun, Jeremy Sujie Cao, Pieter B T Neerincx, Martijn Dijkstra, George Byelas, Alexandros
Kanterakis, Jan Bot, Martijn Vermaat, Jeroen F J Laros, Johan T den Dunnen, Peter
de Knijff, Lennart C Karssen, Elisa M van Leeuwen, Najaf Amin, Fernando Rivadeneira, Karol
Estrada, Jouke-Jan Hottenga, V Mathijs Kattenberg, David van Enckevort, Hailiang Mei,
Mark Santcroos, Barbera D C van Schaik, Robert E Handsaker, Steven A McCarroll, Arthur
Ko, Peter Sudmant, Isaac J Nijman, André G Uitterlinden, Cornelia M van Duijn, Evan E
Eichler, Paul I W de Bakker, Morris A Swertz, Cisca Wijmenga, Gert-Jan B van Ommen,
P Eline Slagboom, Dorret I Boomsma, Alexander Schönhuth, Kai Ye, and Victor Guryev.
A high-quality human reference panel reveals the complexity and distribution of genomic
structural variants. Nature Communications, 7:12989, 2016. doi:10.1038/ncomms12989.

11 Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite population
due to steady flux of mutations. Genetics, 61(4):893, 1969.

12 Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker, Alexej Abyzov,
John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz, Miriam K Konkel,
Ankit Malhotra, Adrian M Stütz, Xinghua Shi, Francesco Paolo Casale, Jieming Chen,
Fereydoun Hormozdiari, Gargi Dayama, Ken Chen, Maika Malig, Mark J P Chaisson, Klaudia
Walter, Sascha Meiers, Seva Kashin, Erik Garrison, Adam Auton, Hugo Y K Lam, Xinmeng
Jasmine Mu, Can Alkan, Danny Antaki, Taejeong Bae, Eliza Cerveira, Peter Chines, Zechen
Chong, Laura Clarke, Elif Dal, Li Ding, Sarah Emery, Xian Fan, Madhusudan Gujral, Fatma
Kahveci, Jeffrey M Kidd, Yu Kong, Eric-Wubbo Lameijer, Shane McCarthy, Paul Flicek,
Richard A Gibbs, Gabor Marth, Christopher E Mason, Androniki Menelaou, Donna M Muzny,
Bradley J Nelson, Amina Noor, Nicholas F Parrish, Matthew Pendleton, Andrew Quitadamo,
Benjamin Raeder, Eric E Schadt, Mallory Romanovitch, Andreas Schlattl, Robert Sebra,
Andrey A Shabalin, Andreas Untergasser, Jerilyn A Walker, Min Wang, Fuli Yu, Chengsheng
Zhang, Jing Zhang, Xiangqun Zheng-Bradley, Wanding Zhou, Thomas Zichner, Jonathan
Sebat, Mark A Batzer, Steven A McCarroll, The 1000 Genomes Project Consortium, Ryan E
Mills, Mark B Gerstein, Ali Bashir, Oliver Stegle, Scott E Devine, Charles Lee, Evan E Eichler,
and Jan O Korbel. An integrated map of structural variation in 2,504 human genomes. Nature,
526(7571):75–81, 2015. doi:10.1038/nature15394.

13 Clare Turnbull, Richard H Scott, Ellen Thomas, Louise Jones, Nirupa Murugaesu, Freya Board-
man Pretty, Dina Halai, Emma Baple, Clare Craig, Angela Hamblin, Shirley Henderson,
Christine Patch, Amanda O’Neill, Andrew Devereau, Katherine Smith, Antonio Rueda Martin,
Alona Sosinsky, Ellen M McDonagh, Razvan Sultana, Michael Mueller, Damian Smedley,
Adam Toms, Lisa Dinh, Tom Fowler, Mark Bale, Tim J P Hubbard, Augusto Rendon, Sue
Hill, Mark J Caulfield, and 100 000 Genomes Project. The 100 000 Genomes Project: bringing
whole genome sequencing to the NHS. BMJ, 361:k1687, 2018. doi:10.1136/bmj.k1687.

WABI 2019

https://doi.org/10.1038/ncomms12989
https://doi.org/10.1038/nature15394
https://doi.org/10.1136/bmj.k1687




A New Paradigm for Identifying
Reconciliation-Scenario Altering Mutations
Conferring Environmental Adaptation
Roni Zoller
Ben Gurion University of the Negev, Israel
ronizo@post.bgu.ac.il

Meirav Zehavi1

Ben Gurion University of the Negev, Israel
meiravze@bgu.ac.il

Michal Ziv-Ukelson1

Ben Gurion University of the Negev, Israel
michaluz@cs.bgu.ac.il

Abstract
An important goal in microbial computational genomics is to identify crucial events in the evolution
of a gene that severely alter the duplication, loss and mobilization patterns of the gene within
the genomes in which it disseminates. In this paper, we formalize this microbiological goal as a
new pattern-matching problem in the domain of Gene tree and Species tree reconciliation, denoted
“Reconciliation-Scenario Altering Mutation (RSAM) Discovery”. We propose an O(m · n · k) time
algorithm to solve this new problem, where m and n are the number of vertices of the input Gene
tree and Species tree, respectively, and k is a user-specified parameter that bounds from above the
number of optimal solutions of interest. The algorithm first constructs a hypergraph representing
the k highest scoring reconciliation scenarios between the given Gene tree and Species tree, and then
interrogates this hypergraph for subtrees matching a pre-specified RSAM Pattern. Our algorithm is
optimal in the sense that the number of hypernodes in the hypergraph can be lower bounded by
Ω(m · n · k). We implement the new algorithm as a tool, denoted RSAM-finder, and demonstrate its
application to the identification of RSAMs in toxins and drug resistance elements across a dataset
spanning hundreds of species.
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1 Introduction

Prokaryotes can be found in the most diverse and severe ecological niches of the planet.
Adaptation of prokaryotes to new niches requires expanding their repertoire of protein families,
via two evolutionary processes: first, by selection of novel gene mutants carrying stable
genetic alterations that confer adaptation, and second, by dissemination of an adaptively
mutated gene. These two processes are correlated: an adaptation-conferring mutation in a
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Figure 1 High-level overview of the RSAM-finder algorithm.

gene could accelerate its mobilization across bacterial lineages populating the corresponding
environmental niche [25], and vice-versa, the mobilization of a gene by transposable elements
increases its chances to mutate or “pick up” novel genomic context. Thus, an important
research goal is to identify gene-level mutations that affect the spreading pattern of the
mutated gene within and across the genomes harboring it.

For example, consider mutations conferring adaptation of bacteria to a human-pathogenesis
environment. Here, a mutation to a resistance or virulence factor could enhance pathogenic
adaptation, thus increasing the horizontal mobilization of the mutated gene within other
human pathogens inhibiting this niche [25]. In this case, we say that the mutation has a
causal association with the observed dissemination pattern of the mutated gene (i.e. the
increased mobilization of the gene among pathogenic bacteria). Identifying such mutations
could inform infectious disease monitoring and outbreak control, and assist in identifying
potential drug targets.

The co-evolution of genes and their host species is classically described by computing the
most parsimonious reconciliation scenario between a given Gene tree G and the corresponding
Species tree S, that is, a mapping of each vertex u ∈ G to a vertex x ∈ S. Three major
evolutionary processes, traditionally considered by reconciliation approaches, are horizontal
gene transfer, gene duplication, and gene loss [36]. Each mapping of a vertex u ∈ G to
a vertex x ∈ S is associated with one of these evolutionary events, and assigned a cost,
accordingly. The optimization problem of computing a least-cost reconciliation between G
and S, where the total cost is computed as the sum of the costs assigned to each of the
mappings, is denoted Duplication-Loss-Transfer (DLT) Reconciliation.

Motivated by examples such as the one given above, we formalize a new pattern-matching
problem in the domain of DLT reconciliation. Given are a Gene tree G, a corresponding
Species tree S, a mapping σ from the leaves of G to the leaves of S, and (optional) an
environmental annotation labeling the leaves of the input trees. Let H denote some data
structure, to be defined later in the paper, that models the space of reconciliations between G
and S. A DLT Reconciliation Scenario Pattern denotes a mapping between a vertex u ∈ G to
a vertex x ∈ S, which obeys a set of user-defined specifications regarding the corresponding
reconciliation event, the labels on the paired vertices, and other features associated with the
mapping. Mappings between pairs of vertices (u ∈ G, x ∈ S) that abide by the requirements
specified by P are denoted instances of P in H. Given a pre-specified DLT Reconcilation
Scenario pattern P and a data structure H modeling the space of reconciliations between G
and S, a Reconciliation Scenario Altering Mutation (RSAM) of P in H is a vertex v ∈ G
representing a gene mutation with a putative causal association to instances of P in H. The
RSAM Discovery problem is to identify RSAMs in G.

In what follows, we propose a three-stage solution to the RSAM Discovery problem defined
above (illustrated in Fig. 1). The first stage constructs a hypergraph H that recursively
aggregates all the k-best reconciliations of G and S. Each supernode in H consists of k
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Figure 2 Various aspects of the problem addressed in this paper. (A) The input trees G and
S. (B) An example of a hypergraph constructed based on the input trees and parameter k. (C)
Three top-scoring solutions. (D) A putative RSAM (blue vertex) with causal association to the
mobilization pattern of the gene among species labeled with the red environmental annotation.

hypernodes, where each hypernode represents a partial solution for the DLT-reconciliation
problem. Our hypergraph-ensemble approach is based on a model proposed by [24] for
network evolution, where here we extend and adapt it to the DLT model. This hypergraph
of k-best reconciliations, intended to provide some robustness to the noise typical of this
data, will serve as the search-space for the pattern-matching stage. The second stage of our
proposed solution consists of assigning a probability to each partial solution, that is, to each
hypernode of H. Finally, in the third stage, instances of the sought RSAM-pattern P are
identified within H, and RSAM-ranking scores are assigned accordingly to the vertices of
G. Based on these scores, vertices representing putative RSAMs are identified in G and
subjected to biological interpretation.

The construction of H, in the first stage, is the computational bottleneck of the RSAM-
Discovery pipeline mentioned above. Here, we adapt the approach proposed by Bansal et
al. [3] for the basic, one-best variant of DLT reconciliation, extending it to an efficient k-best
variant. This yields an O(m · n · k) time algorithm for the problem, where m and n are
the number of vertices of the input Gene tree and Species tree, respectively, and k is a
user-specified parameter that bounds from above the number of optimal solutions of interest.
Our algorithm is optimal in the sense that the number of hypernodes in the hypergraph can
be lower bounded by Ω(m · n · k).

Our proposed solution to the problem defined in this paper is implemented as a tool called
RSAM-finder, publicly available on GitHub. We assert the performance of RSAM-finder
in large scale simulations, and exemplify its application to the identification of RSAMs in
toxins and drug resistance elements across a dataset spanning hundreds of species.

Previous Related Works. The DLT Reconciliation problem has been extensively studied. In
particular, two main DLT variants have been considered: (1) the undated DLT-reconciliation
where the species are undated, and (2) the fully-dated DLT-reconciliation where either each
vertex in the Species (and Gene) tree is associated with an estimated date or the vertices of
the Species (and Gene) tree are associated with a total order, and any reconciliation must
respect these dates (i.e. an HT event can occur only between co-existing species).

In the acyclic version of these variants, there cannot exist two genes such that one is a
descendant of the other, yet the descendant is mapped (in the Species tree S) to an ancestor
of the other. Tofigh et al. [36] showed that the acyclic undated version is NP-Hard. However,
the acyclic dated version becomes polynomially solvable [19].
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Tofigh et al. [36, 35] and David et al. [12] studied a version of the undated (cyclic) problem
that ignores losses and proposed an O(mn2) dynamic programming algorithm for it. They
also gave a fixed-parameter tractable algorithm for enumerating all optimal solutions. The
time complexity of the algorithm was improved to O(mn) in [35] (under a restricted model
that ignores the losses) and in [3] (which does not ignore losses).

It is well-known that the biological data used as input to the DLT Reconciliation problem
could be inaccurate, whether due to a sequencing problem, a problem in the reconstruction
of G or S [5], or due to some other problem caused by noise. To overcome this problem,
previous works try to examine more than one optimal solution, for example [13, 27]. A
probabilistic method for exploring the space of optimal solutions was suggested in [4, 14],
where the latter was improved in [15]. Additional studies considered a space of candidate
co-optimal scenarios within special variants of the DLT problem, some of which employed
special constraints to drive the search [30, 34, 22, 10]. Although all of the previous works
reviewed in this paragraph compute a space of candidate reconciliation scenarios, none of
these works mentioned considered the application of pattern matching on this space, as we
do in this work.

DLT Reconcilation algorithm variants, where the reconcilation computation is guided by
constraints derived from vertex-coloring information, were proposed in applications studying
host-parasite co-evolution, such as [6], where the vertex coloring (in both G and S) represents
the geographical area of residence. However, the applied constraints were “hard-wired” to
the specific problem addressed in that paper. In contrast, the approach proposed in this
paper is more general, supporting a pattern-search that is guided by a user-defined pattern.
Our tool RSAM-finder provides the users with a query language able to express more robust
patterns, according to the various applications where the pattern-search is to be employed.

2 Preliminaries

For a (binary) rooted tree T , let L(T ), V (T ), I(T ) and E(T ) denote the sets of leaves,
vertices, internal vertices and edges, respectively, of T . Additionally, let V (T )? denote the
set of finite (ordered) vectors over V (T ), i.e. V (T )? = {(v1, v2, . . . , v`) | vi ∈ V (T ) for all
i ∈ {1, . . . , `}, ` ∈ N}. When T is clear from context, let V ? = V (T )?. Throughout, we treat
any (binary) rooted tree T as a directed graph whose edges are directed from root to leaves.
Then, if (u, v) ∈ E(T ), we say that v is a child of u, and u is the parent of v. For u, v ∈ V (T ),
the notation v ≤T u signifies that v is a descendant of u (alternatively, u is an ancestor of
v), i.e. there is a directed path from u to v or u = v. We say that v is a proper descendent
(proper ancestor) of u if v ≤T u (v ≥T u) and u 6= v, denoted <T (>T ). When both u 6≤T v
and v 6≤T u, we say that u and v are incomparable.

For any u, v ∈ V (T ), let dT (u, v) denote the number of edges in the (unique simple
undirected) path between u and v in T . When T is clear from context, we drop it from the
notations v ≤T u and dT (u, v). For any u ∈ V (T ), let Tu denote the subtree of T rooted in
u (then, V (Tu) = {v ∈ V (T ) | v ≤ u}).

DLT Scenario. A DLT scenario for two binary trees G (the Gene tree) and S (the Species
tree) is a tuple 〈σ, γ,Σ,∆,Θ,Ξ〉 where σ : L(G)→ L(S) is a mapping of the leaves of G to
the leaves of S, γ : V (G)→ V (S) is a mapping of the vertices of G to the vertices of S, and
(Σ,∆,Θ) is a partition of I(G) (the set of internal vertices of G) into three event classes:
Speciation (Σ), Duplication (∆) and Horizontal Transfer (Θ). The subset Ξ ⊆ E(G) specifies
which edges are involved in horizontal transfer events. Additionally, the following constraints
should be satisfied.
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1. Consistency of σ and γ. For each leaf u ∈ L(G), γ(u) = σ(u). This constraint ensures
that γ respects σ – that is, each leaf of G is mapped to the species where it is found.

2. Consistency of γ and ancestorship relations in S. For each u ∈ I(G) with children
v and w:
a. γ(u) 6<S γ(v) and γ(u) 6<S γ(w). This constraint ensures that each of the two children

(in G) of the gene u is mapped by γ to a species that is not a proper ancestor (in S)
of the species to which the gene u is mapped; thus, it can be either a descendant of u
or incomparable to u.

b. At least one of γ(v) and γ(w) is a descendant of γ(u). This constraint ensures that at
least one of the two children (in G) of the gene u is mapped by γ to a species that is a
descendant (in S) of the species to which the gene u is mapped.

3. Identifying horizontal transfer edges. For each edge (u, v) ∈ E(G), it holds that
(u, v) ∈ Ξ if and only if γ(u) 6≤S γ(v) and γ(v) 6≤S γ(u). This constraint identifies which
edges are horizontal transfer edges – specifically, a horizontal transfer edge is an edge
(u, v) ∈ E(G) from a gene u to a gene v that are mapped to species γ(u) and γ(v) that
are incomparable.

4. Associating events with internal vertices. For each u ∈ I(G) with children v, w:
a. Speciation. u ∈ Σ only if both (i) γ(u) = lca(γ(v), γ(w)) and (ii) γ(v) and γ(w) are

incomparable (i.e. γ(v) 6≤S γ(w) and γ(w) 6≤S γ(v)).
b. Duplication. u ∈ ∆ only if γ(u) ≥S lca(γ(v), γ(w)).
c. Horizontal transfer. u ∈ Θ if and only if either (i) (u, v) ∈ Ξ or (ii) (u,w) ∈ Ξ

Fig. S1 demonstrates a DLT scenario.

Costs. We let c∆ and cΘ denote the costs of a duplication event and a horizontal transfer
event, respectively. Accordingly, the cost of a DLT scenario is defined as |∆| · c∆ + |Θ| · cΘ.
When seeking a “best” DLT scenario, the goal is to find one that minimizes this cost. It is
straightforward to extend the cost model, and the corresponding algorithm, to take losses
into account, yet for lack of space, these details are omitted throughout the paper.

3 Hypergraph of k-Best Scenarios

To represent k-best solutions,2 we use a directed hypergraph denoted by H based on the
notation in [17]. The hypergraph is a tuple H = 〈V,E〉 where V is a finite set of vertices, and
E is a finite set of (directed) hyperedges defined as follows. Each e ∈ E is a pair 〈T (e), h(e)〉,
where h(e) ∈ V is the head of e and T (e) ∈ V ∗ (i.e. T (e) is a vector of vertices in V ) is its
tail. In our settings, |T (e)| = 2 for every e ∈ E. In what follows, we define the hypernodes
and hyperedges of H with respect to our problem. In Fig. 2.B, we illustrate the hypergraph
corresponding to the input G and S given in Fig. 2.A, where k = 4. Each hypernode (u, x, i)
represents a DLT scenario, annotated with its cost and with the event that occurred between
u and x in this scenario (where ‘S’, ‘D’ and ‘HT’ stand for speciation, duplication and
horizontal transfer, respectively). For additional details, see the Supplementary Materials.

Hypernodes. For every vertex u in G, a vertex x in S and an integer i ∈ {1, . . . , k}, we
have a node (u, x, i) in H. Such a node (u, x, i) is associated with the ith best (where ties
are broken arbitrarily) solution mapping the subtree of G rooted at u to the subtree of S

2 That is, k DLT scenarios of the highest score(s), where ties (if any exist) can be broken arbitrarily.
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rooted in x that is a DLT scenario. In addition, for every integer i ∈ {1, . . . , k} we have
a node (root, i) in the hypergraph H. Such a node (root, i) is associated with the ith
best solution of mapping G (entirely) to any subtree of S. Each node (u, x, i) has a score
c(u, x, i), and each node (root, i) has a score c(root, i). Moreover, each node (u, x, i) is
associated with the event corresponding to the mapping of u and x in the DLT scenario
of (u, x, i) (speciation, duplication and horizontal transfer), denoted event(u, x, i).
Supernodes. For any vertex u ∈ V (G) and vertex x ∈ V (S), we define the supernode
(u, x) as the list {(u, x, i) : 1 ≤ i ≤ k} (i.e. (u, x) is the set of k hypernodes corresponding
to the mapping of the subtree of G rooted in u to the subtree of G rooted in x). This
notation will simplify our presentation.
Hyperedges. Recall that each hypernode (u, x, i) ∈ V (H) describes a DLT scenario.
Each hypernode has exactly one incoming hyperedge, but it can have multiple outgoing
hyperedges. In particular, for each hypernode (u, x, i) ∈ V (H), the (only) incoming
hyperedge e = 〈T (e), h(e)〉 = 〈[(v, y, j), (w, z, r)], (u, x, i)〉 describes the mapping of the
subtrees of the children of u, namely, v and w, in the scenario of (u, x, i); here, the subtree
of v is mapped to the subtree of y as in the scenario of (v, y, j), and the subtree of w is
mapped to the subtree of z as in the scenario of (w, z, r).

4 Framework and Algorithms

In this section, we elaborate on each of the three stages of the workflow in Section 1.

4.1 Stage 1: Hypergraph Construction

The first stage of our framework constructs the hypergraph described in Section 3. To this
end, we develop an efficient algorithm that runs in time O(m · n · k). The technical details
(including pseudocode) are given in the Supplementary Materials.

The Algorithm. We iterate over all u ∈ V (G) in postorder, as well as over all x ∈ V (S) in
postorder. (However, as explained immediately, when we consider a vertex u ∈ V (G), after
iterating over all vertices x ∈ V (S) in postorder, we also iterate over all vertices x ∈ V (S)
in preorder.) In each iteration, corresponding to a pair (u, x), we construct three lists: pΣ
(speciation), p∆ (duplication) and pΘ (horizontal transfer). Specifically, pΣ should be a list
of k-best solutions that are DLT scenarios where the subtree of G rooted in u is mapped to
the subtree of S rooted in x under the restriction that the event corresponding to matching
u and x is speciation. The meaning of the lists p∆ and pΘ is similar, where the restriction of
speciation is replaced by duplication or horizontal transfer, respectively. Having these three
lists suffices to construct the hypernode (u, x).

To avoid repetitive computation, we maintain two additional lists: subtree and incomp.
Intuitively, subtree(u, x, i) is the ith best cost of a reconciliation of the subtree of G rooted
in u with some subtree of S whose root is a vertex y that is a descendant of x, and
incomp(u, x, i) is the ith best cost of a reconciliation of the subtree of G rooted in u with
some subtree of S whose root is a vertex y incomparable to x. We use subtree to speed-up the
computation of pΣ, p∆ and pΘ, and incomp to speed-up the computation of pΘ. The notations
subtree(u, x) and incomp(u, x) refer to the lists of the k-best scores {subtree(u, x, i)}ki=1 and
{incomp(u, x, i)}ki=1, respectively, similarly to our usage of the notation of a supernode.
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The efficient computation of pΣ, p∆ and pΘ, along with the maintenance of subtree and
incomp themselves, is highly non-trivial. For space constraints, the technical details (in
particular, pseudocode) are delegated to the Supplementary Materials Section 2.1. On a high-
level, we first initialize all five lists to contain only costs of ∞; then, still in the initialization
phase, we add hypernodes that match between leaves of G and S in accordance with σ and
update subtree consequently. After the initialization, the main computation considers each
u ∈ V (G) in postorder, and performs two steps. In the first step, we consider each x ∈ V (S)
in postorder. Then, for each i ∈ {1, . . . , k}, we compute pΣ(u, x, i), p∆(u, x, i) and pΘ(u, x, i)
based on somewhat involved recursive formulas. Afterwards, we construct the surpernode
(u, x), as well as compute the list subtree(u, x). In the second step, we consider each x ∈ I(S)
with children y and z in preorder, and compute the lists incomp(u, y) and incomp(u, z).

Having constructed all hypernodes of the form (u, x, i) along with their ingoing hyperedges,
it is trivial to construct the hypernodes of the form (root, i) and their ingoing edges. Thus, we
conclude the outline with statements of correctness and running time proved in Supplementary
Materials Section 2.1.

I Lemma 1. Given an instance (G,S, σ) of the DLT problem and a positive integer k,
the efficient algorithm correctly constructs a hypergraph H that represents k-best solutions
for (G,S, σ).

I Remark 2. Given an instance (G,S, σ) of the DLT problem and a positive integer k, the
efficient algorithm runs in time O(m · n · k).

4.2 Stage 2: Assigning Probabilities
In the second stage, we assign a probability to each hypernode so that a hypernode with best
score has the highest probability, and hypernodes with score ∞ (the worst possible score)
have probability 0.

Weight Computation. Let γ ∈ R+ be a user-specified parameter. As γ grows lower,
hypernodes with higher (worse) scores are assigned probabilities much lower than hypernodes
with lower scores.

Denote r = root, and let m(r) be the largest integer i ∈ {1, . . . , k} such that c(r, i) 6=∞
(the notation (root, i) was defined in Section 3). For a node (r, i) where i ∈ {1, . . . ,m(r)},
define w′(r, i) = eγ

c(r,1)−c(r,i)
c(r,1)−c(r,m(r)) . Then, the weight of a node (r, i), which stands for the

(unconditional) probability that the scenario described by (r, i) happens, is defined as follows:
if i ∈ {1, . . . ,m(r)}, then w(r, i) = w′(r,i)∑m(r)

j=1
w′(r,j)

; otherwise (i.e. if i ∈ {m(r) + 1,m(r) +

2, . . . , k}), w(r, i) = 0.
We now turn to define the weight of a hypernode (u, x, i), which should stand for the

(unconditional) probability that the scenario described by (u, x, i) happens. The definition is
recursive. In the basis, where u is the root of G, we define w(u, x, i) (for any x ∈ V (S) and
i ∈ {1, . . . , k}) as follows: if there exists an index j ∈ {1, . . . , k} such that (r, j) is derived
from (u, x, i) (here, it means that they represent the same scenario), then w(u, x, i) = w(r, j);
otherwise, w(u, x, i) = 0.

Now, consider v that is not the root of G. We define w(v, y, i) (for any y ∈ V (S) and
i ∈ {1, . . . , k}) as follows. First, let D(v, y, i) denote the collection of nodes (u, x, j) such
that c(u, x, j) was derived from c(v, y, i) – in other words, the hypergraph has an hyperedge
directed from (v, y, i) (and some other node) to (u, x, j). In particular, u is the parent of
v in G, hence the weight w(u, x, j) is calculated before the weight w(v, y, i). Then, define
w(v, y, i) =

∑
(u,x,j)∈D(v,y,i) w(u, x, j).

WABI 2019
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Note that
∑
i∈{1,...,k} w(r, i) = 1. As an additional check, we prove the following in

Supplementary Materials Section 3.

I Lemma 3. For any two compatible leaves u ∈ L(G) and x ∈ L(S), w(u, x, 1) = 1.

Time Complexity. Iterating the hypergraph in O(|V (H)|) = O(m · n · k) time.

4.3 Stage 3: Pattern Discovery
The current version of RSAM-finder allows pattern queries to be specified as follows. A
pattern specification consists of a tuple (EV, color, distance) where:
1. EV ⊆ {S,D,HT} specifies the evolutionary event of the pattern (S for speciation, D for

duplication and HT for horizontal transfer).
2. color ∈ {red, black,None} specifies the color representing the environmental niche to which

the sought RSAM confers adaptation.
3. distance ∈ {True,False} is a boolean indicator specifying whether or not to consider edge

lengths (representing evolutionary distances) in the pattern specification.

For a colored query (having the second parameter in the specification set to red or black),
the user is expected to provide, as part of the input, a function colors : L(X)→ Υ where X
specifies whether the pattern refers to a subtree of S or a subtree of G, and Υ = {red, black}.
Here, colors represent a binary environmental annotation of the leaves. Then, a preprocessing
step is applied, in which the nodes of S and G are colored based on the colors assigned to the
leaves of the subtree they root. We omit the technical details entailing the implementation
of this preprocessing step to Supplementary Materials Section 4.1.

In addition to the settings described above, the user can select one of two modes:
1. Single-pattern mode. In this mode, the user specifies a single pattern and a threshold,

and the sought RSAMs are identified as nodes u ∈ I(G) such that Gu is enriched in the
pattern, and |V (Gu)| is bounded from below by the specified threshold.

2. Dual-pattern (contrasting) mode. In this mode, the user specifies two patterns and
one threshold, and the sought RSAMs are identified as nodes u ∈ I(G) with children
v, w ∈ V (G) such that |V (Gu)| is enriched with one pattern while |V (Gw)|is enriched
with the other pattern. Here, the threshold that bounds (from below) the subtree-size
refers to |Gv| and |Gw|.

The following three queries will be exemplified in Section 5,
Q1 : ({D},None,False). Q1 identifies vertices u ∈ I(G), such that Gu is enriched in
duplication events.
Q2 : ({S,HT},None,True). Q2 identifies vertices u ∈ I(G), such that Gu is enriched in
speciation and horizontal transfer events (at “the expense” of duplication events).
Q3 : (({HT}, red,True), ({S,D,HT}, black,False)). Q3 identifies vertices u ∈ I(G) with
children v, w ∈ V (G), such that Gv is enriched in red-to-red horizontal transfer events
and Gw is enriched in any black events (illustrated in Fig. 2.D).

The Pattern Identification algorithm proceeds as follows.
1. For each pattern P = (EV, color, distance) and for each hypernode (u, x, i) ∈ V (H), check

whether both event(u, x, i) ∈ EV and the colors obey the requirements derived from
the color field of the pattern specification. (described in more details in Supplementary
Materials Section 4.1.1). If so, mark (u, x, i) as interesting.
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2. Reflect the interesting nodes identified in H to G, by assigning corresponding weights
to V (G); Each u ∈ I(G) is assigned a score, which is the cumulative probabilities of
instances of the pattern found in Gu, normalized by the number of possible events in
Gu. Additional book-keeping details regarding how this score is computed are given in
Supplementary Materials Section 4.2.

3. Based on the specified mode of the query (single pattern or dual pattern), identify the t
top scoring vertices u ∈ I(G). In case of a single-pattern mode, the scores are as defined
in (2). In case of dual-pattern mode, let P1 and P2 be the patterns. To each u ∈ V (G)
with children v, w ∈ V (G), we assign two scores: the first score of u is the score of v for
P1 (as defined in (2)) plus the score of w for P2, and the second is the score of w for P1
plus the score of v for P2.

Time Complexity. Iterating over the hypergraph takes O(|V (H)|) = O(m · n · k) time.

5 Applications

In this section we exemplify preliminary applications of RSAM-finder to genomic analysis.
Mobile elements in prokaryotes contribute greatly to the process of gene duplication and
dissemination. For example, toxins and antibiotic resistance factors, conferring adaptation to
the pathogenesis environment, are often encoded on plasmids, prophages, transposons and
other mobile elements in bacteria [25]. Thus, we exemplify two microbiological applications
of RSAM-finder by applying query patterns Q1, Q2, and Q3 (defined in Section 4.3), to the
discovery of RSAMs in toxins and resistance factors.

Supplementary Materials Section 5.2 reports on large scale simulations, where we demon-
strate the engine’s tolerance to noise, and Supplementary Materials Section 5.3 measures the
practical running times of the proposed hypergraph construction algorithm as a function of
increasing input size.

Methods and Data Bases. Genes in our experiment are represented by their membership
in a Cluster of Orthologous Genes [33]. The STRING database [32] was used to extract the
chromosomal protein sequences for the COGs of interest, annotated with their corresponding
species names as well as the corresponding NCBI IDs. Protein sequences were subjected
to multiple sequence alignment and dendogram construction via Clustal Omega [28]. The
list of NCBI IDs was used as input for the NCBI Taxamony Browser which provided a
(non-binary) Species tree. Both Gene and Species trees were converted to binary trees via
the Ape R package [26]. Habitat labels for the species were extracted from PATRIC, and
missing tags were manually annotated by information from the GOLD database [23] and from
literature. MEME motif discovery [2] was employed to identify sequence motifs distinguishing
the RSAM-subtree gene sequences from the background. CD Search [20] was employed to
seek statistically significant discriminating domain-level mutations (i.e. the gain or loss of a
protein functional domain). The simulator and our algorithm were implemented in Python,
using NetworkX package, DendroPy [31] and ETE Toolkit [18]. Visualizations of the trees
and plots were created using Matpllotlib and Seaborn tools.

RSAM Discovery in a Chromosomally Acquired Toxin. Bacterial toxin-antitoxin (TA)
systems are diverse and widespread in the prokaryotic kingdom. They are composed of
closely linked genes encoding a stable toxin that can harm the host cell and its cognate
unstable antitoxin, which protects the host from the toxin’s deleterious effect. TA systems
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invade bacterial genomes through horizontal gene transfer. Their role in stabilization
and maintenance of plasmids or genomic islands by post-segregational killing has been
thoroughly studied [25].

However, much is yet to be learned about how horizontally acquired TA systems are
fixed within the population, and about the functions of the chromosomally encoded TA
systems. Some TA systems, such as higBA [38], have integrated into host regulatory networks,
controlling drug tolerance, growth arrest and programmed cell death.

Here we exemplify how RSAM-finder could be harnessed to advance such studies, e.g. by
identifying chromosomally acquired variants of the same toxin gene, that exhibit distinct
reconciliation patterns: One variant of the toxin follows a “deep and ongoing” invasion
pattern (pattern Q1), i.e. one involving abundant recent duplications within invaded genomes.
The other variant follows a “wide and shallow” invasion pattern (pattern Q2), i.e. the invaded
genomes are far-apart in terms of phylogenetic distance, and a very slow rate of duplications
within the invaded genomes is observed.

The Plasmid Maintenance System Killer Protein higB (represented by COG3549) is the
toxin component of the TA module higBA. This toxin, which is abundant in Proteobacteria
[11], is repressed by the Plasmid Maintenance System Antitoxin higA (represented by
COG3093). Gene trees for COG3549, and for the chromosomes of Protobacterial species
harboring it, were constructed (652 genes versus 493 species), and RSAM-Finder was applied
to interrogate this dataset with queries Q1 and Q2. Parameters for Q1 were set as follows:
k = 50, and the minimum size required per sought subtree was set to 0.05 of the total number
leaves of G. Parameters for Q2 were set in the same manner, without bounding the size
of sought subtrees and c∆ = cΘ = 1. Figures displaying G, where the top-ranking RSAM
nodes are marked with a star, are provided in the supplementary materials, jointly with the
corresponding sequences. Also provided is a figure displaying S, σ, and the full multiple
alignment used for constructing G.

The highest-scoring RSAM identified for Q2 roots a subtree with 23 leaf nodes (shown
in Fig. S2.C), spanning classes α, β, γ and δ of proteobacteria. The sequences of the
genes represented by the leaves of this subtree, denoted the “identified gene set”, were
subjected to distinguishing sequence motif search analysis [2], using the full set of input
genes, denoted “background gene set”, as background. This analysis identifies an insertion
sequence represented by the motif logo given in Fig. S2.E (MEME e-value 4.5e-094). This
insertion is validated by the multiple sequence alignment, based on which the gene tree was
constructed (see Fig. S2.F and the corresponding multiple alignment file provided in the
Supplementary Materials).

Most instances of the higB toxin (473/652) in the background gene set have the antitoxin
higA in their immediate downstream position. In contrast, the instances of higA found
immediately downstream the genes from the identified gene set are enriched in an additional
domain: the Zn-dependent peptidase ImmA, belonging to the M78 peptidase family (14/23
vs. 14/652, hypergeometric p-value = 3.27e-23). Homologues of immA are found in many
mobile genetic elements [7], and it is predicted to participate in a conserved mechanism for
regulation of horizontal gene transfer.

Thus, RSAM-Finder identifies a putative three-component variant of higBA, consisting of
a variant of the higB toxin with a conserved insertion sequence, coupled with an ImmA-higA
fusion protein variant of the higA antitoxin. Further analysis of this result may reveal possible
functional correlation between the insertion sequence identified within this higB toxin variant,
and the additional ImmA domain characterizing the corresponding higA instances.
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In contrast to the top-ranking result for pattern Q2, the top-ranking result for pattern
Q1 identifies a subtree of G whose leaves encode members of a two component variant of the
higBA TA (shown in Fig. S2.D). Further analysis of this result may help decipher whether
the observed duplications of this invading higB variant are tolerated by the invaded genomes
due to mere decay of its addictive properties, or due to some mutations conferring selective
advantage to the host.

RSAM Discovery in a Beta Lactamase. Beta lactamases are versatile enzymes conferring
resistance to the Beta lactam antibiotics, found in a diversity of bacterial sources. Their
commonality is the ability to hydrolyze chemical compounds containing a Beta lactam ring
[9]. The persistent exposure of bacterial strains to a multitude of Beta lactams has induced
dynamic and continuous production and mutation of Beta lactamases in these bacteria,
expanding their activity even against the newly developed Beta lactam antibiotics [29]. Thus,
an important objective is to identify mutations in Beta lactamase genes conferring adaptation
to human and animal hosts.

Among the known classes (A-D) of Beta lactamase, class D (represented by COG2602)
is considered to be the most diverse [16]. Thus, we selected COG2602 (622 genes in 543
genomes) to exemplify the colored RSAM pattern Q3, where colors represent a binary
environmental annotation: human and animal host (219 species) were annotated “red”, while
species associated with all other habitats (324 species), such as soil, water and plant, were
annotated “black”. Parameters were set as follows: k = 50, the minimum size required per
sought subtree was set to 0.1 of the total number leaves of G, and c∆ = cΘ = 1. A figure
displaying G, where the top-ranking RSAM node is marked with a star, are given in the
supplementary materials. Also provided are the corresponding sequences, a figure displaying
the corresponding S, and σ.

Within the top-ranking result for this query, we were interested in the subtree matching
the first part of pattern Q3 (i.e. enrichment in red-to-red HT edges). The gene set represented
by the leaves of this subtree, denoted “identified gene set”, was found to be enriched in an
additional domain, BlaR, a signal transducer membrane protein regulating Beta lactamase
production (87/119 in the identified gene set versus 118/622 in the background, p-val =
3.94e-52). The only transcriptional regulator currently known for Beta lactamase genes is
the repressor protein BlaI, previously predicted to operate in a two-component regulatory
system together with BlaR in Class A Beta lactamase [1]. The positions adjacent to the
instances of the identified gene set in the corresponding genomes were found to be enriched
in BlaI (70/119 of the identified gene set instances versus 90/622 of the background gene set
instances, hypergeometric p-value = 1.11e-41).

In contrast to the identified gene set, the genes represented by the subtree that matches
the second part of Q3 (frequent black HT, S and D events) are not enriched in the BlaR
domain (2/36), nor is there contextual enrichment in BlaI (4/36) in positions immediately
adjacent to instances of these genes. Applying RSAM-finder to this data with simpler queries
that take into account only enrichment in environmental coloring does not yield this result,
nor does the application of RSAM-finder to this data with any part of Q3 on its own.

The identified gene set for this result spans a wide range of Firmicutes, including both
pathogenic (e.g. staphylococcus) and non-pathogenic species (e.g. various gut microbes from
the Clostridiales order). Homology between BlaR receptor proteins and the extra-cellular
domain of Class D Beta-lactamases was previously observed [21, 8], mainly in gram-negative
bacteria (with focus on clinical samples).
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Thus, RSAM-finder identifies a putative Beta lactamase system in gram positive bacteria,
consisting of a COG2602-BlaR Beta lactamase-receptor protein and its BlaI family repressor,
predicted to confer adaptation to animal and human host environment. Further comparative
sequence-level analysis [37] may reveal the affinity of this Beta lactamase system to specific
Beta lactam drugs.
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Abstract
Many single-cell sequencing technologies are now available, but it is still difficult to apply multiple
sequencing technologies to the same single cell. In this paper, we propose an unsupervised manifold
alignment algorithm, MMD-MA, for integrating multiple measurements carried out on disjoint
aliquots of a given population of cells. Effectively, MMD-MA performs an in silico co-assay by
embedding cells measured in different ways into a learned latent space. In the MMD-MA algorithm,
single-cell data points from multiple domains are aligned by optimizing an objective function with
three components: (1) a maximum mean discrepancy (MMD) term to encourage the differently
measured points to have similar distributions in the latent space, (2) a distortion term to preserve the
structure of the data between the input space and the latent space, and (3) a penalty term to avoid
collapse to a trivial solution. Notably, MMD-MA does not require any correspondence information
across data modalities, either between the cells or between the features. Furthermore, MMD-MA’s
weak distributional requirements for the domains to be aligned allow the algorithm to integrate
heterogeneous types of single cell measures, such as gene expression, DNA accessibility, chromatin
organization, methylation, and imaging data. We demonstrate the utility of MMD-MA in simulation
experiments and using a real data set involving single-cell gene expression and methylation data.
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1 Introduction

Next-generation sequencing has enabled high-throughput interrogation of many different
physical properties of the genome, including the primary DNA sequence but also the
expression of messenger RNAs, localized binding of specific factors, histone modifications,
nucleosome occupancy, chromatin accessibility, etc. Most of these sequencing assays have been
performed on populations of cells. However, such bulk measurements do not allow for easy
characterization of systematic or stochastic variations in physical properties of the genome
among cells within a given population. Over the past several years, a variety of genomic assays
have been modified to allow characterization of single cells. These modifications sometimes
involve physically segregating individual cells prior to sequencing, or alternatively involve
successive rounds of DNA bar-coding to identify reads derived from single cells. Examples of
single-cell genomics assays include single-cell RNA-seq (scRNA-seq) for gene expression [14],
single-cell ATAC-seq (scATAC-seq) for chromatin accessibility [3], single-cell Hi-C (scHi-C)
for 3D genome organization [10] and single-cell methylation analysis (scMethyl-seq) [13]. In
each case, the result is a data set that, compared to a standard, bulk genomic assay, has an
additional dimension corresponding to the cells in the sample population.

Single-cell measurements are valuable because they permit a view of the cell-to-cell
variation of a given type of physical measurement of the genome. However, such measurements
would be even more valuable if multiple different measurements could be obtained from the
same individual cell. Such co-assays are feasible, albeit challenging and lower throughput, for
pairs of assays, such as scRNA-seq and scATAC-seq [4] or scRNA-seq and scMethyl-seq [2],
that measure orthogonal physical properties. However, other pairs of single-cell assays, such
as scATAC-seq and scHi-C cannot be paired even in principle, because each assay operates
on (and cleaves) the genomic DNA.

In this paper, we propose a manifold alignment algorithm based on the maximum mean
discrepancy (MMD) measure, called MMD-MA, which can integrate different types of single-
cell measurements. Our MMD-MA algorithm assumes that the cells are drawn from the
same initial population – e.g., cells of the same type or a distribution of cell types from
the same experimental conditions – but the algorithm does not require any correspondence
information either among samples or among the features in different domains. The algorithm
makes no parametric assumptions about the forms of the distributions underlying the various
measurements. The only assumption is that the distributions share a latent structure with
sufficient variability that the MMD term in the optimization can align the distributions. For
example, if both underlying distributions are simple isotropic Gaussian distributions, then
it will not be possible to reconstruct the relative orientation of the alignment. In practice,
visualization of many different single-cell data sets using dimensionality reduction methods
such as PCA, t-SNE or UMAP suggest that they commonly exhibit complex structure
that, we hypothesize, should allow for alignment across data modalities. In particular,
MMD-MA can be applied to many heterogeneous types of single cell measures, including
gene expression, DNA accessibility, chromatin organization, methylation, and imaging data.
Thus, the algorithm allows us, in principle, to obtain the insights offered by a single-cell
co-assay by computationally integrating two or more separate sets of single-cell measurements
derived from the same or similar populations of cells. We demonstrate the performance of
the algorithm on three simulated data set as well as one real data set consisting of gene
expression and methylation profiles of single cells.
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2 Methods

2.1 The unsupervised manifold alignment problem
Our goal is to automatically discover a manifold structure that is shared among two or more
sets of points that have been measured in different ways, i.e., which mathematically live
in different spaces. For simplicity, we describe the case where we have just two types of
measurements, though the approach generalizes to any number of input domains. Let the
two sets of points be X(1) =

(
x

(1)
1 , x

(1)
2 , ..., x

(1)
n1

)
from X (1) and X(2) =

(
x

(2)
1 , x

(2)
2 , ..., x

(2)
n2

)
from X (2). The numbers of data points in the two domains are n1 and n2, respectively. We
do not require any correspondence information regarding the measurements across different
domains or regarding the samples from different domains. Instead, we assume that both sets
of points share a manifold structure, which we aim to discover in an unsupervised fashion.

To ensure the generality of our approach, we frame the optimization using kernels. Hence,
we assume that we have a way of calculating similarities between pairs of entities from the
same domain, using positive definite kernel functions kI : X (I) × X (I) → R for I = 1, 2.
The resulting kernel Gram matrices are denoted by K1 ∈ Rn1×n1 and K2 ∈ Rn2×n2 , where
[KI ]ij = kI

(
x

(I)
i , x

(I)
j

)
for I = 1, 2 and 1 ≤ i, j ≤ nI . As long as both kernel functions

are positive definite, then we are guaranteed that each kernel corresponds to the scalar
product operation in some induced feature space, and that there exists a space of functions
HI , called a reproducing kernel Hilbert space (RKHS), mapping X (I) to R endowed with a
Hilbert space structure. For example, if the input space X is a vector space and we take
the linear kernel k(x, x′) = x⊤x′, then the RKHS is made of linear functions of the form
f(x) = w⊤x, endowed with the norm ||f || = ||w||. If we take a nonlinear kernel such as the
Gaussian RBF kernel k(x, x′) = exp

(
−||x − x′||2/(2σ2)

)
with bandwidth σ > 0, then the

RKHS contains nonlinear functions. The use of kernels allows the MMD-MA algorithm to
operate in principal on any type of entity – vector, graph, string, etc. – for which a kernel
function can be defined.

In order to find a shared structure between the points in X (1) and X (2), we propose to
learn two mappings ϕ1 : X (1) → Rp and ϕ2 : X (2) → Rp, so that input data in different
spaces are all mapped to the same p-dimensional space Rp and can be compared in that space.
For each I = 1, 2, we consider each coordinate of ϕI in the RKHS HI of the corresponding
kernel kI , i.e., ϕI =

(
ϕ

(I)
1 , . . . , ϕ

(I)
p

)
∈ Hp

I . We then consider each function ϕ
(I)
j ∈ HI of the

form ϕ
(I)
j (x) =

∑nI

ℓ=1 α
(I)
ℓj kI(x(I)

ℓ , x), for any x ∈ X (I). This parametrization of ϕ
(I)
j in terms

of α
(I)
ℓj ’s always exists by the representer theorem, provided we regularize the optimization

problem with the RKHS norm of ϕ
(I)
j , as we explain below. Now, if we denote by αi the

ni × p matrix with entries α
(I)
ℓj , then KIαI is the nI × p matrix where the j-th row (for

j = 1, . . . , nI) is the p-dimensional image of x
(I)
j by the mapping ϕI . In addition, α⊤

I KIαI

is the p × p matrix of inner products in the RKHS of the p functions ϕ
(I)
1 , . . . , ϕ

(I)
p , which is

for example equal to the p × p identity matrix Ip when ϕI is a projection onto a subspace
of dimension p in the RKHS. In order to define MMD-MA, we now discuss the criteria to
optimize for α1 and α2 in order to discover shared structures between the two views.

2.2 Characterizing the distribution distance in the shared space
Although we do not assume we know the individual correspondence between points in the two
domains, or even that such a 1-to-1 mapping exists, we do assume that the two distributions
of points are similar in the shared space. Thus, the optimal mapping matrices α1 and α2
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should make the two mapped sets of points in the shared space, namely K1α1 and K2α2, as
similar as possible. To specify the distance between the two mapped manifolds in the shared
space, we use an MMD term MMD(K1α1, K2α2)2, which is a general, differentiable measure
of how similar two clouds of points are [7]. Formally, MMD is defined through a positive
definite kernel KM over Rp through the formula

MMD2
({

u
(1)
1 , . . . , u(1)

n1

}
,
{

u
(2)
1 , . . . , u(2)

n2

})
= 1

n2
1

n1∑
i,j=1

KM (u(1)
i , u

(1)
j )

− 2
n1n2

n1∑
i=1

n2∑
j=1

KM (u(1)
i , u

(2)
j ) + 1

n2
2

n2∑
i,j=1

KM (u(2)
i , u

(2)
j ) ,

where we denote u
(I)
i = ϕI(x(I)

i ) to simplify notation. In this work, we use a Gaussian RBF
kernel for KM , where the bandwidth parameter σ is a user-specified parameter.

Chwialkowski et al. [5] propose two fast methods (with complexity linear in n1 + n2) to
estimate MMD2, both of which are differentiable with respect to the positions of the points.
Because the MMD is small when the distributions are similar, MMD-MA aims to minimize
MMD2 with respect to the embeddings.

2.3 The MMD-MA algorithm
Unfortunately, simply minimizing MMD between the two kernels is insufficient. Most
notably, we need to ensure that the relationships among data points in the input space
is preserved to some extent in the feature space; otherwise, the method may learn very
complicated mappings that completely modify the relative positions of cells in order to
have them aligned between the two views. For that purpose we introduce a distortion term
dis(αI) = ||KI − KIαIα⊤

I K⊤
I ||2, which quantifies how the matrix of inner products between

points in the original space (quantified by the kernel matrix Ki) differs from the matrix of
inner products after mapping in the p-dimensional space. Penalizing dis(αI) ensures that the
distortion between the data in the original space and the data mapped to the low-dimensional
space should be small. In addition, we may wish to ensure that the mappings to Rp are
(almost) projections from the high-dimensional RKHS, which we obtain by adding a penalty
term pen(αI) = ||α⊤

I K⊤
I α − Ip||2.

Thus, MMD-MA optimizes, with respect to α1 and α2, the following objective function:

min
α1,α2

MMD(K1α1, K2α2)2 + λ1(pen(α1) + pen(α2)) + λ2(dis(α1) + dis(α2)) . (1)

where

pen(αI) = ||α⊤
I K⊤

I α − Ip||2 , (2)

and

dis(αI) = ||KI − KIαIα⊤
I K⊤

I ||2. (3)

2.4 Solving the optimization problem
To find a stationary point of (1) we use a simple gradient descent scheme, and use Adam [9] to
adjust the learning rate. Since the optimization problem is not convex, only a local minimum
can be expected. Therefore, for a given data set we run the optimization procedure with
100 different random seed values and keep the solution which provides the lowest objective
function value.
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In practice, solving the optimization requires specifying several hyperparameters. These
include the dimensionality p of the shared space, any parameters of the kernel functions K1,
K2 and KM , and the tradeoff parameters λ1 and λ2. In this work, we assume that p and the
kernel parameters are user-specified, and we investigate the performance of the algorithm as
we vary λ1 and λ2.

3 Related work

We are aware of three other methods that address the unsupervised manifold alignment
problem, which we briefly review here.

3.1 The joint Laplacian manifold alignment (JLMA) algorithm
The joint Laplacian manifold alignment (JLMA) algorithm [15] performs manifold alignment
by constructing a joint Laplacian across multiple domains and then performing eigenvalue
decomposition to find the optimal solution. The joint Laplacian formulation can also be
interpreted as preserving similarities within each view and correspondence information about
instances across views, which is captured by the joint Laplacian matrix. The loss function is
C(F ) =

∑
i,j ||F(i, .) − F(j, .)||2W(i, j), where the summation is over all pairs of instances

from all views. F is the unified representation of all instances, and the output of the algorithm
is the joint adjacency matrix W. To avoid trivial solutions (i.e., mapping all instances to zero),
JLMA includes a constraint F’DF = I where I is an identity matrix. Let F = [f1, f2, . . . , fd].
The optimization problem then becomes

argmin
F:F’DF=I

C(F) = argmin
f1,...,fd

∑
i

f ′
iLfi + λi(1 − f ′

iDfi). (4)

The optimal solution is the d smallest nonzero eigenvectors from the generalized eigen
decomposition problem.

JLMA can be used in an unsupervised or supervised fashion. In supervised mode, the
Laplacian L is given as input. In the unsupervised setting, the key step is to construct the
cross-domain Laplacian submatrix of L. Wang et al. use k-NN graphs to characterize local
geometry and use the minimum distances from scaled permutated k-NN graphs to construct
a cross-view Laplacian submatrix of L. Thereafter, the rest of the algorithm is the same as
the standard JLMA algorithm. Unfortunately, the computational cost of this initial step
is quite high, even for small k values. To deal with this problem, Pe et al. use a B-spline
curve to fit the local geometry and calculate cross-view matching scores from the curves [11].
Thus, in both cases, unsupervised manifold alignment is done via two steps: computing a
cross-domain matching score, and identifying the correspondence via Equation 4.

3.2 The generalized unsupervised manifold alignment (GUMA)
algorithm

The generalized unsupervised manifold alignment (GUMA) algorithm [6] is another method
that does not require any correspondence information a priori. The approach assumes that
instances in the two domains (e.g., in our case, two cells measured using different techniques)
can be matched to one another in a one-to-one fashion. In particular, the algorithm formulates
an optimization problem whose objective function includes a geometry matching term Es

across different domains, a feature matching term Ef , and a geometry preserving term
Ep, subject to a 0-1 correspondence matrix F and feature projections Pi for each domain
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(i.e. domain i). The optimization is performed using alternating minimization, alternating
between optimizing F and Pi with the other fixed. The algorithm outputs both the instance
correspondence between the domains and the feature mapping functions between the domains.

3.3 The manifold alignment generalized adversarial network (MAGAN)
algorithm

MAGAN [1] consists of two GANs that learn reciprocal mappings between two domains; i.e.,
GAN1 learns the mapping from domain 1 to domain 2, and GAN2 learns the mapping from
domain 2 to domain 1. Each GAN’s generator takes input in one domain and outputs in the
other domain, with the hope that the discriminator in the other domain cannot distinguish
the fake samples from true samples. The loss function of the generators consists of three
terms. The reconstruction loss term Lr captures the difference between a sample and itself
after being mapped to the different domain and then mapped back to the original domain.
The discriminator loss term Ld makes sure that the mapped sample in the other domain has
a high likelihood to fool the discriminator in that domain. And the correspondence loss Lc

forces the learned mapping to agree with some prior correspondence, either “unsupervised
correspondence” (e.g., some variables are shared between two domains) or “semi-supervised
correspondence” (e.g., some labeled pairs cross two domains). The paper empirically demon-
strates that the inclusion of correspondence information greatly improves the performance of
the manifold alignment.

3.4 Comparison of these three algorithms with our algorithm
The MMD term in our formulation only ensures that the two distributions agree globally
in the latent space, whereas both JLMA and GUMA have a term that ensures, for each
instance, that the local geometry is preserved between domains. This is the difference between
manifold superimposing [18, 17, 8] and manifold alignment discussed in the MAGAN paper
[1]. Furthermore, GUMA’s assumption that individual cells can be matched 1-to-1 between
the two input domains is not generally true, most obviously when n1 ≠ n2. MAGAN [1] itself
does not include a component for identifying a correspondence in an unsupervised fashion,
and empirical results from the MAGAN paper suggest that the algorithm may not be useful
if there is no known correspondence information between the two domains. When more than
three domains must be aligned, the JLMA, GUMA, and our MMD-MA algorithms can be
easily extended, whereas the formulation of MAGAN makes such an extension difficult.

4 Results

4.1 Three simulations
To validate the performance of MMD-MA, we generated three simulated data sets, each
from a different d-dimensional manifold. The first manifold exhibits a branching structure
in two-dimensional space (i.e., d = 2) to mimic a branching differentiation situation (first
column of Figure 1). The second manifold structure is a nonlinear mapping of the first
structure. The branching structure is mapped onto a Swiss roll manifold (second column
of Figure 1). Samples in the first domain are mapped from the 2D space of simulation 1
into 3D space such that the three dimensions are [x1cos(3x1), x2, x1sin(3x1)], while samples
in the second domain are mapped into 3D space by [x1sin(2x1), x2, x1cos(2x1)]. The third
manifold is a circular frustum in three-dimensional space (i.e., d = 3), which aims to mimic
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Figure 1 Three simulation experiments. The first two rows show the MDS projection of the
data points in domain 1 and domain 2, separately. The third row shows the projection of the data
points in the shared embedding space. The last row plots the fraction of samples closer than the
true match as MMD-MA iterates. Points are included from JLMA when k=5 and k=6.

the cell cycle superimposed on a linear differentiation process (third column of Figure 1).
From each of these d-dimensional manifolds, we simulated n = 300 data points, and we refer
to the corresponding n × d data matrix as Z.

For each manifold, we assume that we have two domains, and we generate a d × p1
mapping matrix T1 and a d × p2 mapping matrix T2. Each element in the two mapping
matrices is sampled from a standard Gaussian distribution. We set the observed data matrix
from domain 1 to be ZT1 and the observed data matrix from domain 2 to be ZT2. For
example, we set p1 = 1000 and p2 = 2000. We also add Gaussian noise (σ = 0.05) to each
element of the covariates. For all of the simulations, we set the kernel matrices K1 and K2
to be the inner product of the z−normalized observed data matrices. For each simulation,
we intentionally mis-specify, as input to MMD-MA, the dimensionality of the latent space as
p = 5, to simulate the scenario in which the true latent dimensionality is unknown a priori.

For all three numerical simulations, we plot the data points in the projected space, namely
K1α

(o)
1 and K2α

(o)
2 (Figure 1). In all three cases, the two domains appear to be aligned

correctly in the latent space. To quantify this alignment, we use the known correspondence
between points in the two domains as follows. For each point x in one domain, we identify
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Table 1 Running time of MMD-MA and JLMA. Times are provided for the three simulation
experiments and the real single cell application.

Sim 1 Sim 2 Sim 3 Methyl-Expr
MMD-MA 0:53 0:58 0:59 0:10
JLMA, k = 5 4:06 4:07 4:20 1:27
JLMA, k = 6 26:11 25:56 32:16 2:16

its (true) nearest neighbor in the other domain. We then rank all data points in the learned
latent space by their distance from x, and we compute the fraction of points that are closer
than the true nearest neighbor. Averaging this fraction across all data points in both domains
yields the “average fraction of samples closer than the true match,” where perfect recovery of
the true manifold structure yields values close to zero. In all three simulations, the observed
fraction of samples closer than the true match decreases monotonically and approaches zero
as the MMD-MA algorithm iterates.

Finally, we attempted to compare the performance of other algorithms on the same
simulated data sets. Unfortunately, we had difficulty running the GUMA algorithm using
the implementation shared by the authors; hence, we leave GUMA out of our comparison.
Similarly, we could not include the MAGAN algorithm because it requires some initial
correspondence information, which we are assuming is not available. Consequently, we only
compare to the JLMA algorithm as a baseline, using k = 5 (the default value) and k = 6.
We find that, in all three simulations, our MMD-MA algorithm outperforms the baseline
JLMA (bottom row of Figure 1).

The running time of MMD-MA is much lower than JLMA using either k = 5 or k = 6.
Timings on an Intel Xeon Gold 6136 CPU at 3.00GHz (Table 1) show that MMD-MA runs
under one minute, considerably faster than JLMA.

4.2 Real world application results
In a recent study, gene expression levels and methylation rates were profiled jointly in 61
single cells [2]. We use this co-assay data to validate our method by hiding the correspondence
between genes from MMD-MA and then measuring how well the correspondence is recovered.
Prior to analysis, we remove the genes where any of the cells have a missing value for either
the methylation rate or gene expression. This step leaves, for the 61 cells, 2486 genes with
both methylation rate and gene expression measured. We regard gene expression as domain
1 and methylation rate as domain 2. We pretend that we do not know the correspondence
information, run our MMD-MA algorithm, and see how well our algorithm can align the two
manifolds and recover the cell correspondence. For calculating the similarity kernel matrices
K1 and K2, we first perform z-score normalization on the gene expression levels and the
methylation rates and then calculate the inner product for the elements in the cell-by-cell
similarity matrices. As in the simulations, we embed the two domains into a latent space of
dimensionality p = 5.

We first plot the Principal Component Analysis (PCA) projection of the single cells based
on their gene expression levels and their methylation rates separately (Figure 2A). In this
plot, when we connect the two dots corresponding to the same cell, we observe that each cell
tends to be projected to two different locations in the latent space. Accordingly, the average
fraction of data points closer than the true match is 0.49. We then run MMD-MA algorithm
on this dataset and plot the PCA projection of the 61 single cells in terms of gene expression
and methylation rate in the shared space recovered by MMD-MA (Figure 2B). In the shared
space projection, we connect the two embeddings from different perspectives, and we observe
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Figure 2 Results from real world single cell applications. (A) PCA projection of single
cells based on their gene expression levels and their methylation rates separately, with dotted lines
connecting the same cell. (B) Projection of the single cells in the shared space from the MMD-MA
algorithm, with dotted lines connecting the same cell. (C) The average fraction of samples closer
than the true match decreases as MMD-MA iterates. This result is consistent across different
learning rates of the optimization. (D) The fraction of samples closer to each cell than its true
match is plotted before and after MMD-MA, with the 61 cells in sorted order along the x-axis. For
each cell, the average is computed separately for each domain, and then the two values are averaged
together. The fraction is high and close to uniformly distributed before running the MMD-MA
algorithm and reduces considerably as the algorithm learns the aligned shared space.

that the cells are embedded well in the shared space. Next, we calculate the fraction of
samples closer to each cell than its true match in the shared space of dimensionality p = 5.
This fraction decreases as MMD-MA iterates, reaching 0.024 in the end, and the trend is
consistent across different learning rates of the optimization (Figure 2C). An alternative
visualization of the per-cell fractions before and after optimization (Figure 2D) further
illustrates that the MMD-MA algorithm successfully maps >50% of the cells closest to their
true neighbor in the other domain.

4.3 MMD-MA’s performance is robust to variations in hyperparameters
Running the MMD-MA algorithm requires specifying several hyperparameters. We investi-
gated the robustness of the learned embedding relative to variations in these hyperparameters.

As noted previously, in all of our studies the dimensionality p of the latent space has
been set to 5 even though the correct number should be p = 2 in the first two simulations,
p = 3 in the third simulation, and is unknown for the Methyl-Expr data set. We observe
that MMD-MA algorithm can still align the two manifolds even when the dimensionality
parameter p is misspecified.

The trade-off parameters λ1 and λ2 determine how much the three terms contribute to
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Table 2 Properties and hyperparameters of the experiments.

Sim 1 Sim 2 Sim 3 Methyl-Expr
number of Samples 300 300 300 61
dimension (Domain 1) 1000 1000 1000 2486
dimension (Domain 2) 2000 2000 2000 2486
λ1 1e-6 1e-9 1e-5 1e-2
λ2 1e-2 1e-7 1e-6 1e-6
σ 0.5 0.1 1.2 10000

the overall objective function. In this work, we set these trade-off parameters by monitoring
whether the three terms have comparable magnitudes or whether one particular term
dominates in the converged solution. We tested eight combinations of these trade-off
parameters for each data set (Supplementary Table 3). In each case, we observe that the
performance of MMD-MA is almost the same with different choices of trade-off parameters,
although some trade-off parameters may lead to a different convergence path (Supplementary
Figure 3 A–D).

The bandwidth parameter σ associated with the Gaussian kernel KM in the MMD term
determines how much each data point contributes to its neighborhood in the calculation
of the MMD. The σ values used in our experiments are shown in Table 2. We also tested
different values of σ and observed that the performance of MMD-MA is quite invariant to
them (Supplementary Figure 3 E–H).

5 Discussion

In this paper, we propose an unsupervised manifold alignment algorithm, MMD-MA, for
integrating multiple types of single-cell measurements carried out on disjoint populations of
single cells drawn from a common source. The key advantage of our MMD-MA algorithm
is that it does not require any correspondence information, either between the samples or
between the features. In many real-world integration applications, such correspondence
information is not available. Another advantage of our MMD-MA algorithm is that it
has only weak distributional requirements for the domains to be aligned, namely, that the
manifolds exhibit sufficient structure to allow for alignment. This flexibility gives MMD-MA
the power to potentially integrate many different types of single cell measures, including
gene expression, DNA accessibility, chromatin organization, methylation, and imaging data.
Furthermore, the MMD-MA framework can easily be extended to more than two domains,
allowing integration of, for example, scRNA-seq, scATAC-seq, and scHi-C of single cells. We
have shown that MMD-MA works well in the presence of nonlinear mappings and is robust
to the choice of several hyperparameters, including the trade-off parameters, the parameters
associated with the MMD term, and the dimensionality of the shared space.

Currently, MMD-MA can be used to align hundreds or thousands of single cells in a
reasonable running time. The gradient descent algorithm could be parallelized to save time
if multiple cores are available. For future work, we will focus on scaling up the MMD-MA
algorithm. Given decreasing sequencing costs, it is likely we will need to apply MMD-MA
to align millions of single cells in the future. Running MMD-MA efficiently without storing
large kernel matrices in memory will be a crucial issue to solve. A possible solution may rely
on random projection [12] or Nystrom approximation [16], which are approximation methods
for large-scale kernel matrices.

All of the data sets used in this study, including the original and mapped simulated data
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and the Methyl-Expr data set, as well as the corresponding MMD-MA outputs, are available
for download from http://noble.gs.washington.edu/proj/mmd-ma.
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Figure 3 Testing sensitivity to hyperparameters. (A–D) The performance of MMD-MA
when the trade-off parameters λ1 and λ2 are set differently in the three numerical simulations
and the one real-world application, respectively. In each case, eight settings were chosen, and the
plot only shows curves (black color) that differ from the one produced by the selected parameters
(red color). (E–H) The performance of MMD-MA when σ is set differently in the three numerical
simulations and the one real-world application, respectively. Again, only settings that yield results
different from the selected results are shown.
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Table 3 Hyperparameter values investigated for each data set.

Data set λ1 λ2

Simulation 1

1e-04 1
1e-04 1e-02
1e-04 1e-04
1e-06 1
1e-06 1e-02
1e-06 1e-04
1e-08 1
1e-08 1e-02
1e-08 1e-04

Simulation 2

1e-07 1e-05
1e-07 1e-07
1e-07 1e-09
1e-09 1e-05
1e-09 1e-07
1e-09 1e-09
1e-11 1e-05
1e-11 1e-07
1e-11 1e-09

Simulation 3

1e-03 1e-04
1e-03 1e-06
1e-03 1e-08
1e-05 1e-04
1e-05 1e-06
1e-05 1e-08
1e-07 1e-04
1e-07 1e-06
1e-07 1e-08

Methyl-Expr

1 1e-04
1 1e-06
1 1e-08
1e-02 1e-04
1e-02 1e-06
1e-02 1e-08
1e-04 1e-04
1e-04 1e-06
1e-04 1e-08
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Abstract
The 3D organization of the genome plays a key role in many cellular processes, such as gene regulation,
differentiation, and replication. Assays like Hi-C measure DNA-DNA contacts in a high-throughput
fashion, and inferring accurate 3D models of chromosomes can yield insights hidden in the raw
data. For example, structural inference can account for noise in the data, disambiguate the distinct
structures of homologous chromosomes, orient genomic regions relative to nuclear landmarks, and
serve as a framework for integrating other data types. Although many methods exist to infer the 3D
structure of haploid genomes, inferring a diploid structure from Hi-C data is still an open problem.
Indeed, the diploid case is very challenging, because Hi-C data typically does not distinguish between
homologous chromosomes. We propose a method to infer 3D diploid genomes from Hi-C data. We
demonstrate the accuracy of the method on simulated data, and we also use the method to infer
3D structures for mouse chromosome X, confirming that the active homolog exhibits a bipartite
structure, whereas the active homolog does not.
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1 Introduction

The 3D organization of the genome plays an important role in regulating basic cellular
functions, including gene regulation [30, 34], differentiation [21, 12], and the cell cycle
[27]. Chromosome conformation capture techniques such as Hi-C measure the frequency of
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interactions between pairs of loci, thereby allowing a systematic analysis of genome structure.
Although Hi-C contact matrices yield valuable insights, modeling and visualizing genome
structures in 3D can unveil relationships and higher-order structural patterns that are not
apparent in the raw data [13, 37, 27, 24] by providing a humanly interpretable 3D structure,
orienting genomic regions relative to various nuclear landmarks, and serving as a framework
for integrating other data types [5]. Embedding contact count data in a 3D Euclidean space
can also reduce noise in the underlying Hi-C data.

Previous methods to inferring chromatin structure from population Hi-C data fall into
one of two broad categories. “Ensemble” approaches create populations of 3D structures that
jointly explain the observed Hi-C data [29, 37, 8, 17, 20, 36, 15, 25, 39, 40, 19]. Theoretically,
structural ensembles can mimic the heterogeneity of cells in a population. However, these
methods are frequently underdetermined because there are often more parameters to estimate
for a large population of cells than data points. Ensemble models can also be difficult to
validate and interpret. “Consensus” approaches, on the other hand, make the assumption
that bulk Hi-C data can be accurately summarized in a single, consensus 3D structure
[13, 10, 35, 38, 2, 23, 16]. Modeling a single structure tends to be less computationally
demanding than modeling an entire population of structures. Furthermore, the resulting
model has the advantage of relatively straightforward visualization and interpretation.

For either ensemble or consensus approaches, a particular challenge is presented by Hi-C
data derived from diploid organisms. As in most high-throughput sequencing experiments, a
typical Hi-C experiment does not produced phased data; that is, the data does not distinguish
between allelic copies. Thus, an observation of a single Hi-C contact between loci i and j
corresponds to one of four possible events: either copy of locus i coming into contact with
either copy of locus j. Any 3D inference method that aims to model diploid genomes must
accurately account for this allelic uncertainty.

A variety of strategies have been developed to account for diploidy in Hi-C 3D models. In
general, ensemble models face less of a challenge on this front, since the two allelic copies can
be treated like additional members of the ensemble. Among consensus methods, by far the
most common approach is to assume that the two homologous copies of a given chromosome
share the same 3D structure [38, 23, 41] and then to model each chromosome separately.

We are aware of only three previous attempts to model diploidy in non-ensemble methods.
Previously, we described an extension of our PASTIS software to handle the near-haploid
cell line KBM7 [3]. We proposed to infer jointly the distribution of contact counts between
homologs and the 3D structures by maximizing a constrained and relaxed likelihood. However,
this relaxation is unsatisfying, as it yields non-integer counts modeled as random Poisson
variables. More recently, two separate research groups have developed methods for modeling
diploid genomes from single-cell data [7, 33]. However, these methods cannot be directly
applied to bulk Hi-C data, which is much more widely available.

In this work, we propose a method to infer diploid consensus 3D models from Hi-C
data. Our approach builds upon PASTIS [38], which infers 3D models by using a Poisson
model of Hi-C counts coupled with a simple biophysical model of polymer packing. The key
idea of extending PASTIS to infer diploid genomes is to explicitly model the uncertainty
of allelic assignments for each observed read. We consider two distinct settings: the more
challenging setting where the data is fully ambiguous, and the setting where a subset of the
reads can be mapped to a single parental allele. To assist in inference, we incorporate several
constraints into our objective function, reflecting our prior knowledge of genome architecture.
Through extensive simulations, we demonstrate that our approach can successfully model
two distinct homologous chromosome structures, given a sufficient number of reads, even
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when the data is fully ambiguous. We also apply our approach to real Hi-C data derived
from a first generation (F1) cross of two divergent mouse strains (F121 and Castaneus). The
resulting diploid model of the X chromosome exhibits the expected “superdomain” structure
[11], and is quite distinct from the inferred structure of the inactive X.

2 Method

Hi-C experiments involve sequencing pairs of interacting DNA fragments. Specifically, cells
are cross-linked, DNA is digested using a restriction enzyme, and interacting fragments are
then ligated together. Fragments are subsequently sequenced through paired-end sequencing,
and each mate is associated with one interacting locus. Hi-C data can then be summarized
in a symmetric n× n contact count matrix C, where each row and column corresponds to
a genomic locus and each matrix entry cij to the number of time those two loci have been
observed to interact.

For diploid organisms, reads from homologous chromosomes cannot be distinguished
from one another, and the resulting Hi-C matrix aggregates contact counts from homologous
chromosomes into a single Hi-C matrix (Figure 1). The challenge of inferring diploid structures
from Hi-C data lies in disambiguating the contact counts from the two homolog chromosomes.
We call these aggregated counts “ambiguous,” and denote by CA the corresponding contact
count matrix. If the parental genomes are known a priori, then a small proportion of reads
can be mapped to each haplotype: contact counts from the two homolog chromosomes
can be disambiguated based on heterozygous positions, yielding a single-allele Hi-C count
matrix [30, 11]. We refer to these counts as “unambiguous” and denote the corresponding
matrix by CU . On the other hand, if only one mate can be mapped uniquely to one of the
homologous chromsosome, then the contact count is only partially disambiguated between
the two homologs. We refer to these as “partially ambiguous” contact counts, and we denote
the corresponding matrix by CP .

We model chromosomes as m evenly-spaced beads, and we denote by X = (x1, · · · , xm) ∈
R3×m the coordinate matrix of the structure. The variable m denotes the total number of
beads in the genome, and x` ∈ R3 corresponds to the 3D coordinate of the `-th bead. In
the case of a haploid structure, the number of beads corresponds to the number of rows and
columns in the contact count matrix C: n = m.

2.1 Inferring haploid structures with a Poisson model
Before we turn to inferring diploid structures, let us first review the approach proposed
by PASTIS [38] to infer haploid 3D structures from a bulk Hi-C contact map C. PASTIS
models the interaction frequency between genomic loci i and j as a random independent
Poisson variable, where the intensity of the Poisson distribution is a decreasing function f of
the Euclidean distance between the two beads (dij). Leveraging relationships found from
studying biophysical properties of DNA as a polymer, PASTIS sets this function as follows:
f(dij) ∼ dαij , α < 0. The α parameter can be set using prior knowledge (e.g., α = −3),
or inferred jointly with the 3D structure. Inference is thus performed by maximizing the
likelihood of the following Poisson model:

cij ∼ Poisson
(
bibjβd

α
ij

)
, (1)

where β scales for the total number of contacts in the matrix (“coverage”), and bi and bj are
locus-specific biases that are estimated using a standard procedure [18].
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Figure 1 Inferring 3D structure using ambiguous diploid data. Each observed count
(left) corresponds to a sum of four pairs of genomic loci (right). The Poisson model must be adjusted
to account for this ambiguity.

Our strategy to infer diploid structures builds upon this approach. Note that inferring a
diploid structure from “unambiguous” contact counts CU is similar to inferring a haploid
structure from a classic Hi-C experiment, with the only difference concerning the biases,
which are computed using all contact counts available per locus.

2.2 Modeling contact counts of diploid structures with a Poisson model
We propose to extend PASTIS to diploid genomes by leveraging the properties of each type
of Hi-C contact map: ambiguous, partially ambiguous, and unambiguous. Let us first take a
closer look at the common scenario, where the data is fully ambiguous.

For a given ambiguous contact count matrix CA, each observed contact count cAij between
a given pair of loci (i, j) corresponds to the sum of four different unambiguous contact counts
(Figure 1):

cAij =
∑

`:Φ(`)=i

∑
p:Φ(p)=j

cU`p , (2)

where Φ : [1, n]→ [1,m] is the mapping that associates bead ` with locus i. Leveraging the
property that the sum of i Poisson variables of intensities λi is a Poisson variable of intensity∑
i λi, we model the interaction count as

cAij ∼ Poisson

bibjβA ∑
`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

 , (3)

wherem is the number of loci, n is the number of beads, d`,p is the Euclidean distance between
beads ` and p, and βA is a scaling factor determined by the coverage of the ambiguous
contact count matrix.

Similarly, for a given partially ambiguous contact count matrix CP , each observed contact
count cPij between a given pair of loci corresponds to the sum of two unambiguous contact
counts, and is modeled by the interaction frequency of two pairs of loci.

cPij ∼ Poisson

bibjβP ∑
`:Φ(`)=i

dα`j

 (4)

βP is a scaling factor determined by coverage of the partially ambiguous contact count matrix.
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We can thus cast the 3D structure inference as maximizing the log-likelihood

max
X

L(X) = LU (X) + LP (X) + LN (X)

=
∑

1≤i<j≤m
cU
ij log(bibjβUdαij)− bibjβUdαij+

∑
1≤i≤n

∑
1≤j≤n,i 6=j

cP
ij log

(
bibjβ

P ∑
`:Φ(`)=i

dα`j

)
− bibjβP ∑

`:Φ(`)=i
dα`j+

∑
1≤i<j≤n

cA
ij log

(
bibjβ

A ∑
`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

)
− bibjβA ∑

`:Φ(`)=i

∑
p:Φ(p)=j

dα`p

(5)

Note that this approach holds for polyploid genomes in addition to diploid genomes.

2.3 Incorporating prior knowledge
Because the resulting optimization is challenging, we add two constraints that reflect our
prior knowledge about chromatin 3D structure: two neighboring beads should not be too
far apart from one another, and homologs of most organisms occupy distinct territories
[33, 32, 4, 28].

The first constraint maintains bead chain connectivity by minimizing the variance in the
distance between neighboring beads:

h1(X) = (m− 1)
∑m−1
`=1 (d`,`+1)2(∑m−1
`=1 d`,`+1

)2 − 1 (6)

where ` and ` + 1 are on the same chromosome. This type of constraint has been used
previously in Simba3D [31].

The second constraint aims to disentangle the structures of the two homologs, and
operates on the distance between homolog centers of mass:

h2(X) =
∑
c

max

0,

rc −
∥∥∥∥∥∥ 1
card(cA)

∑
j∈cA

X` −
1

card(cB)
∑
p∈cB

Xp

∥∥∥∥∥∥
2

 , (7)

where c denotes the chromosome, cA and cB denote the set of beads associated to the two
homologs of chromosome c, and rc is a predefined scalar that increases relative to the space
between the two homologs of chromosome c. We note that such a penalty may be interpreted
as a log-prior in a Bayesian setting, where the distance between homolog centers of mass of
chromosome c is a priori normally distributed with mean rc.

When unambiguous data is available, the values of rc may be estimated via the distances
between homolog centers of mass in an extremely coarse-grained structure inferred from
unambiguous data alone. Alternatively, when unambiguous data is not available, rc may be
estimated as the mean distance between chromosome centers of mass in a coarse-grained
structure inferred from ambiguous data, since this distance is expected to be similar to that
between homologs.

We penalize the likelihood in Equation 5 and solve the following optimization problem
via L-BFGS-B, a widely used quasi-Newton method[6]:

max
X

L(X) + λ1h1(X) + λ2h2(X) , (8)

where λ1 and λ2 are penalization parameters, the values of which were chosen via a grid
search. A version of PASTIS that implements the diploid inference approach is available at
https://github.com/hiclib/pastis.
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2.4 Data
2.4.1 Simulated Hi-C data
To validate our approach, we generated 10 simulated genomes with coverage, number of
beads, and ratios of disambiguated contact counts corresponding to those of Hi-C data
from the mouse Patski cell line (described in Section 2.4.2) at 500 kb resolution. We also
generated additional sets of 10 simulated genomes with the same number of beads, varying
the proportion of ambiguous, unambiguous, and partially ambiguous contact counts.

To simulate “true” structures, we applied a random walk algorithm. This algorithm
places beads successively along each chromosome, constraining each bead to lie within a
given distance of the previous bead, provided the new bead does not overlap with any of
the previously placed beads and that the entire homolog fits within a sphere of a predefined
radius. We then derive unambiguous counts using the following model:

cij = Poisson
(
βdαij

)
, (9)

where α = −3, corresponding to a previously used theoretical exponent for the contact-to-
distance transfer function [38]. To convert unambiguous counts to ambiguous or partially
ambiguous counts, we summed contacts from the appropriate pairs of loci. In all experiments,
we simulated a 343-bead chromosome with 9.3× 106 reads, which corresponds to the number
of beads and reads in the real data we examined. All simulated Hi-C data used for this project
is available at available at https://noble.gs.washington.edu/proj/diploid-pastis/.

2.4.2 Real Hi-C data
We applied our method to publicly available in situ DNAse Hi-C of Patski fibroblast mouse
kidney cells [11]. This line was derived from F1 female embryos, obtained by mating a
BL6 female with a Spretus male. The BL6 female had an Hprt mutation, so hypoxanthine-
aminopterin-thymidine medium was used to select for cells with X chromosome inactivation
on the maternal allele. All real Hi-C data used for this project is available at available at
https://noble.gs.washington.edu/proj/diploid-pastis/.

2.5 Structure similarity measures
We use the following quantitative measures of similarity between 3D structures to determine
the quality of structures inferred from simulated data and assess the stability of chromatin
structures across biological replicates.

Root mean square deviation (RMSD) is a common way of comparing two three dimensional
structures described by their coordinates X, X′ ∈ R3×m. RMSD is defined as

RMSD = min
X∗

√∑m
i=1(Xi −X∗i )2

m
, (10)

where X∗ is obtained by translating, rotating, and rescaling X′ (X∗ = sRX′ − t where
R ∈ R3×3 is a rotation matrix, t ∈ R3 is a translation vector, and s is a scaling factor).
RMSD values are computed independently on each homolog of each chromosome and summed.

Distance error [38] assesses the similarity between two distance matrices. This measure
assigns more weight to long distances than RMSD. It is given by

distError = min
X∗

√∑
i∈γ(di(X)− di(X∗))2

m
, (11)

https://noble.gs.washington.edu/proj/diploid-pastis/
https://noble.gs.washington.edu/proj/diploid-pastis/
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where γ is a set of distances of interest (e.g., intra-chromosomal distances). The structure
X∗ is obtained by rescaling X′ (X∗ = sX′ where s is a scaling factor). To distinguish
discrepancies in intra-chromosomal structure from those affecting the relative orientation of
each pair of homologs or the relative orientation of different chromosome pairs, we compute
distance error in two ways. Intra-chromosomal distance error is computed separately for each
homolog of each chromosome, and γ encompasses distances between all beads of the given
homolog. Inter-homolog distance error is computed separately for chromosome pair, and γ
encompasses distances connecting all beads of two different homologs of a given chromosome.
For both measures, values are summed for all chromosomes.

3 Results

3.1 Constraints improve ambiguous inference
First, we assessed the accuracy of our method on simulated datasets (Section 2.4.1) using
ambiguous data alone, with and without our proposed constraints. Because of the lack of
disambiguated contact counts, we expected this inference task to be difficult. Our results
demonstrated that the two sets of constraints – bead connectivity and homolog separation –
are necessary for successful inference. In the absence of the constraints, ambiguous inference
performed poorly (Figure 2). Specifically, inferred homolog structures overlapped one
another, and adjacent beads sometimes had large gaps between one another. The homolog
separation constraint (Equation 7) and the bead connectivity constraint (Equation 6) were
specifically designed to address these problems. Therefore, we repeated the inference with
each constraint individually and the two constraints in combination. In this experiment,
we compared results generated with and without each constraint at the optimal λ values
(λ1 = 108 and λ2 = 1010, respectively). The results showed that RMSD and distance error
are lowest when both constraints were incorporated (Figure 2), and error scores obtained
from structures inferred with both constraints were significantly lower than those obtained
from structures inferred without constraints (pairwise t-test, Bonferroni corrected p-value
<0.05, Supplementary Table 1). 3D structures produced with the constraints had fewer
large gaps between neighboring beads and exhibited distinct territories for the two homologs.
With both constraints, optimization on a heterogeneous CPU cluster running at 1.90-2.4
GHz took an average of two hours to converge (averaged over 50 jobs).

As an additional control for the previous experiment, we sought to confirm that the
Poisson model for ambiguous diploid contact counts improved inference above what could be
attained by the constraints alone. Accordingly, we compared results generated with simulated
ambiguous data to “null” structures, which were inferred with the same initialization and
constraints but without the Poisson model. Both measures of intra-homolog similarity showed
a clear improvement when the Poisson model was incorporated in inference (Figure 2). On
the other hand, the inter-homolog distance error did not improve with the addition of the
Poisson model, suggesting that the constraints are the primary influence in orienting the
homologs relative to one another.

3.2 Best results obtained by incorporation of disambiguated data
We expected that more accurate structure inference could be achieved using data where one
or more ends of each contact count was disambiguated, relative to fully ambiguous data.
We also expected that unambiguous data, in which both ends of each contact count are
disambiguated, would yield better models than partially ambiguous data, in which only

WABI 2019
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A

B Inferred

Simulated No constraints
Homolog
separating
constraint

Bead
connectivity
constraint

Both constraints

Figure 2 Constraints improve ambiguous inference. The simulated data consists of a single
diploid chromosome with 9.3× 106 reads and 343 beads, the size of which corresponds to mouse
chromosome X at 500 kb resolution. (A) The quality of the inferred structure, as measured by
three different error scores (y-axis), improves upon application of the bead connectivity constraint
(λ1 = 108) and the homolog separating constraint (λ2 = 1010). Best results are seen when both
constraints are applied simultaneously. Each point corresponds to a single inferred structure, and
colors indicate the simulated true structure from which counts were derived. “Null” indicates
inference performed without the Poisson model. Corresponding p-values are in Supplementary
Table 1. (B) A simulated chromosome is shown alongside inferred versions of the same chromosomes
using various strategies. Each panel also lists the RMSD and distance error associated with the
given structure, relative to the true structure.

one end of each contact count is disambiguated. To test these hypotheses, we simulated
partially ambiguous data and unambiguous data. Across all similarity measures, inference
with unambiguous data performed best, and inference with ambiguous data performed worst,
as expected (Figure 3). Partially ambiguous contacts seem especially beneficial in inference
of intra-homolog structure, since intra-homolog RMSD and distance error of structures
inferred with partially ambiguous counts was significantly lower than intra-homolog RMSD
and distance error of structures inferred with ambiguous counts (pairwise t-test, Bonferroni
corrected p-value <0.05, Supplementary Table 2).

3.3 Inference successfully identifies the superdomain structure of the
inactive X chromosome

Deng et al. [11] previously showed that inactive X chromosome adopts a bipartite structure
with two large superdomains, whereas the active homolog does not. We sought to validate
our approach by inferring the mouse X chromosome structure and examining the degree
to which each homolog exhibits a bipartite structure. Bipartite structure was assessed
via the “bipartite index,” which refers to the ratio of the frequency of counts within each
superdomain to those between superdomains [11]. To determine the bipartite index of an
inferred 3D structure, we induced counts by applying the biophysical model used during
inference (Equation 9) to the distances between beads.

We inferred a 3D structure for the mouse X chromosome at 500 kb resolution and computed
the bipartite index at each bin along the chromosome. The boundary between superdomains
of the inactive X chromosome has been shown to center at position 72.8–72.9 Mb (mm9,
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Figure 3 Inference with ambiguous and disambiguated data. The simulated data consists
of a single chromosome with 9.36 reads and 343 beads, the size of which corresponds to mouse
chromosome X at 500 kb resolution. The quality of the inferred structure, as measured by three
different error scores (y-axis), improves when one or both ends of a contact are disambiguated, and
best results are seen in the latter case. “A” indicates ambiguous data, “U” indicates unambiguous data,
and “P” indicates partially ambiguous data. Each point corresponds to a single inferred structure,
and colors indicate the simulated true structure from which counts were derived. Corresponding
p-values are in Supplementary Table 2.

corresponding to bead 146 in our structure) [11]. In our analysis, the bipartite index of the
inferred inactive homolog exhibited a prominent peak around position 75 Mb (corresponding
to bead 150), whereas the active homolog only had a relatively small peak at this position
(Figure 4). This observation suggests that the inference method has successfully recovered
this known feature of the mouse inactive X chromosome.

4 Discussion

Three-dimensional structural inference of diploid genomes is a challenging problem because
most Hi-C data is inherently ambiguous and does not discriminate between contact counts
from the two homologs of a given chromosome. Even in the rare cases when parental genotype
information is available, only a minority of reads can be disambiguated. As a consequence,
many inference methods have modeled a single structure per diploid chromosome [38, 23, 41].
Such an approach assumes that the two homologous copies of a given chromosome have
the same 3D structure and prevents structural inference of more than one chromosome at a
time. Because of these limitations, the degree of structural similarity between homologous
autosomes is not currently well understood.

In this work, we show how to carry out true diploid structural inference by modifying
the objective function of PASTIS, a previously published haploid inference method [38].
PASTIS models each contact count via a Poisson distribution of a biophysical model between
pairwise distances connecting the corresponding beads. In this work, we model each diploid
contact count as the sum of biophysical models between all possible distances between
the corresponding bead on each homolog. We combine this modified Poisson model with
two constraints that limit the scope of possible solutions to more realistic structures. One
constraint enforces even spacing of beads along the chain of the chromosome, and the other
serves to spatially separate homologs. Using simulations, we show that the most accurate
structures are obtained by inferring with the Poisson model in conjunction with both
constraints. We note that the homologs of our simulated structures occupy distinct territories.
While this is the case for many organisms, there are some exceptions [26, 33, 32, 4, 28];
therefore, the weight assigned to the homolog-separating constraint should be tuned for each
organism based on prior knowledge. These analyses were performed at the relatively coarse
resolution of 500 kb, and the relationship between resolution, coverage, computational cost,
and accuracy of this method remains unexplored.

WABI 2019
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Figure 4 Bipartite structure of the mouse inactive X chromosome. The bipartite index
(y-axis) at each genomic distance bin (x-axis) for the active (orange) and inactive (blue) homologs of
the mouse X chromosome. The black line corresponds to the known boundary between superdomains
of the inactive homolog at bin 146.

A limitation to this method involves the distribution of contact count data, which may
be better fit by a negative binomial model than a Poisson model [9]. Unfortunately, our
method of diploid inference relies on a specific property of Poisson models, namely, that the
sum of multiple Poisson variables is also a Poisson variable. Another caveat involves the
biophysical model used during inference (Equation 9), which may not accurately capture the
relationship between contact counts and pairwise distances in all situations. For example,
this relationship may vary depending on the organism, resolution, genomic distance range,
and cell cycle status [42, 1, 2, 22, 14]. We also note that in the completely ambiguous case,
it is possible that the inferred homologs represent different subpopulations within the sample
rather than separating the two haplotypes.

We envision several ways in which diploid PASTIS could be further improved. First,
diploid PASTIS could allowing for joint estimation of the α parameter of the biophysical
model alongside the 3D structure, as is possible for haploid PASTIS. Second, results could
potentially be improved by incorporating a multiscale optimization strategy, in which a high-
resolution structures is inferred in a stepwise fashion through multiple rounds of inference with
gradually increasing resolution. Similarly, inference of the whole genome may be improved
by a stepwise approach where each chromosome is first inferred individually before being
placed in the context of the whole genome.
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A Supplement

Table 1 Constraints improve ambiguous inference. Each entry is a Bonferroni adjusted
p-value for a t-test applied to the specified pair of methods. Values <0.05 are in boldface.

RMSD
per homolog

Distance error
per homolog

Distance error,
inter-homolog

No constraints Bead chain connectivity 0.0458 0.0104 0.275
No constraints Homolog separating 1.3 0.222 4.14
No constraints Both constraints 0.00309 0.00667 0.0179
No constraints Both constraints + Null 0.0000404 0.00000773 0.0000883
Bead chain connectivity Homolog separating 0.00731 0.00588 1.62
Bead chain connectivity Both constraints 4.89 8.74 0.159
Bead chain connectivity Both constraints + Null 0.000018 0.00000054 0.000263
Homolog separating Both constraints 0.0018 0.00713 0.183
Homolog separating Both constraints + Null 0.0000397 0.152 0.103
Both constraints Both constraints + Null 0.0000179 0.00000387 0.981

Table 2 Inference with ambiguous and disambiguated data. Each entry is a Bonferroni
adjusted p-value for a t-test applied to the specified pair of methods. Values <0.05 are in boldface.

RMSD
per homolog

Distance error
per homolog

Distance error,
inter-homolog

Ambiguous Partially ambiguous 0.000231 0.0000669 0.654
Ambiguous Unambiguous 3.36E-09 2.88E-08 0.00000369
Partially ambiguous Unambiguous 0.00000462 0.00000345 0.00000342
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Abstract
Inference of phylogenetic networks – the evolutionary histories of species involving speciation as
well as reticulation events – has proved to be an extremely challenging problem even for smaller
datasets easily tackled by supertree inference methods. An effective way to boost the scalability
of distance-based supertree methods originates from the Pareto (for clusters) property, which is
a highly desirable property for phylogenetic consensus methods. In particular, one can employ
strict consensus merger algorithms to boost the scalability and accuracy of supertree methods
satisfying Pareto; cf. SuperFine. In this work, we establish a Pareto-like property for phylogenetic
networks. Then we consider the recently introduced RF-Net method that heuristically solves the
so-called RF-Network problem and which was demonstrated to be an efficient and effective tool
for the inference of hybridization and reassortment networks. As our main result, we provide a
constructive proof (entailing an explicit refinement algorithm) that the Pareto property applies to
the RF-Network problem when the solution space is restricted to the popular class of tree-child
networks. This result implies that strict consensus merger strategies, similar to SuperFine, can be
directly applied to boost both accuracy and scalability of RF-Net significantly. Finally, we further
investigate the optimum solutions to the RF-Network problem; in particular, we describe structural
properties of all optimum (tree-child) RF-networks in relation to strict consensus clusters of the
input trees.
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1 Introduction

Inferring evolutionary histories of species is a crucial area of study in the biological sciences [10].
The inference of such histories as phylogenetic trees, while still an immensely challenging
problem, is gradually becoming tractable on the scale of thousand(s) of species genomes [26, 4].

On the other hand, today, it is well known that evolutionary histories of many species
involve complex evolutionary events such as hybridization, reassortment, recombination,
and horizontal gene transfer [14]. In this case, evolutionary histories are modeled using
phylogenetic networks that contain reticulation vertices in addition to classical speciation
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vertices. Unfortunately, whereas phylogenetic networks potentially represent significantly
more powerful tools than phylogenetic trees, the reticulate evolutionary model is of greater
complexity than the standard speciation model. In this regard, the current state-of-the-art
tools for the estimation of phylogenetic networks cannot yet compete with the inference
methods for trees in terms of accuracy and scalability.

Recently, a novel method for the inference of hybridization and reassortment networks
has been introduced, called RF-Net [17]. RF-Net was shown to outperform its closest
counterparts in terms of scalability and be able to estimate networks with more than 150
taxa credibly. However, there are still significant limitations, particularly in terms of the
maximum tractable number of reticulation vertices.

RF-Net follows the extended hybridization framework established in [17]. More precisely,
the classical hybridization framework, formulated in the influential work of Baroni et al. [2],
seeks a network that would display each of the input phylogenetic trees exactly. The extended
framework then additionally accounts for errors that are typically present in input trees for
supertree/super-network studies [3, 25]. That is, it defines a cost of embedding an input
tree into a candidate network that measures how close that input tree is to be displayed
in the network. More formally, the embedding cost is defined as the minimum distance
between the input tree and each tree displayed in the candidate network (Figure 1 illustrates
the concept of displayed trees). Whereas, generally, any established distance measurement
for phylogenetic trees can be used to define the embedding cost, RF-Net uses the popular
Robinson-Foulds (RF) metric [24]. A related concept was also explored by Yu et al. [29],
where the parsimonious ILS principle is combined with the hybridization framework.

Given a collection of input trees, RF-Net attempts to solve the problem of finding a
phylogenetic network with at most r reticulation vertices that minimizes the overall embedding
cost of the input trees, i.e., the overall sum of the individual embedding costs, as well as
the number of reticulations. We refer to this problem as the RF-network problem. The
RF-network problem is NP-hard [17], and it is similar to the standard supertree (median
tree) problem formulations that seek supertrees minimizing the overall distance towards the
input trees. Such distance-based supertree methods are widely used for a task of large-scale
species tree reconstruction [3]. For example, ASTRAL, a popular supertree software package,
seeks a tree minimizing the quartet distance towards the input trees [19]. Further, RF-based
supertree methods, e.g. [1, 27], as well as gene tree parsimony (GTP) supertree methods,
e.g., [9, 12], have been successfully applied by the phylogenetic community (cf. [11, 22]).

One of the most important properties for the distance-based supertree methods is the
so-called Pareto for clusters 1 property [23]. Pareto for clusters is a highly desired property,
both from theoretical as well as application perspectives [6, 20]. This property was introduced
in the context of consensus methods that seek to “summarize” a collection of input trees over
the same species set. A consensus method is Pareto if every cluster that appears in all input
trees (a strict consensus cluster) also appears in the consensus of these trees obtained by
that method. This notion was then naturally adopted for distance-based supertree methods
when restricted to the consensus setting (i.e., input trees have the same leaf-sets) [15]. Given
that there could be multiple optimum solutions to a distance-based supertree problem, a
respective distance measurement is said to (i) satisfy Pareto if each optimum solution contains
all the strict consensus clusters from the input trees and (ii) satisfy weak Pareto if at least
one optimum solution has that property [21]. If a distance measurement satisfies (weak)
Pareto then the respective supertree problem, in a consensus setting, can be solved using a

1 This Pareto property introduced by Neumann [23] in the context of phylogenetic consensus methods is
not to be confused with the Pareto efficiency/optimality term originating from the field of economics [18].



A. Markin and O. Eulenstein 12:3

parameterized approach, where, first, a strict consensus tree of the input trees is constructed,
and then each polytomy in the strict consensus tree is resolved using the original supertree
method. In case the input trees are relatively similar, this approach yields a much more
efficient and accurate supertree method [21].

Typically, however, the input trees can be unrooted and can have incomplete sets of
taxa. In this case, the scalability boost can be achieved using the strict consensus merger
(SCM) methods [13, 26]. Such strategy was first formulated and evaluated by Swenson
et al. [26]; their method, SuperFine, was shown to improve the scalability and accuracy of
supertree methods. Generally, any distance-based supertree method with the respective
distance measurement satisfying at least weak Pareto can largely benefit from using SCM
algorithms. For example, recently, the NP-hard gene duplication supertree problem (GD) [16]
was efficiently and effectively approached [20] by combining the greedy SCM method [13] with
the exact dynamic programming GD solution [8] and the popular GD heuristic, DupTree [28].

Our contribution. In this work, we establish a Pareto-like property in the context of
phylogenetic networks and prove that the Robinson-Foulds embedding cost satisfies it. This
result immediately implies that SCM methods can be used to improve the scalability and
accuracy of the RF-Net method significantly. We demonstrate this result for the commonly
used (restricted) class of networks called tree-child networks [7].

More precisely, we define the notion of C-separated networks for some cluster C. A
network is C-separated if one can remove a single edge (u, v) from a network and obtain two
disconnected subnetworks/subgraphs, such that the subnetwork rooted at v has the leaf-set
C. For example, the network N from Figure 1 is {b, c}-separated, but not {e, b, c}-separated.
Intuitively, this notion implies that the evolutionary history of the species in C (up to their
common ancestor) is not inter-related with lineages of any other species in the network.

Founded on this notion, our main result is as follows: when the solution space is
constrained to the class of tree-child networks, there always exists an optimum RF-network
that is C-separated for every strict consensus cluster C. Adopting the above-discussed
terminology for distance-based supertree methods, this result implies that the RF embedding
cost satisfies weak Pareto for tree-child networks. It is important to note that, since our
proof is by construction, it explicitly provides an algorithm that can bring a non-C-separated
network to the C-separated form with the same or an improved overall embedding cost.
To achieve our result, we introduce three edit operations on networks and prove that they
preserve specific non-trivial properties. Then we use these operations to design the said
algorithm and complete the proof.

Further, we describe conditions for the existence of non-C-separated optimum RF-
networks. We prove that such networks can appear only due to uncertainty in the ordering of
some reticulation events that is not resolved by the input trees. That way, when uncertainty
is not present, the RF embedding cost satisfies (strong) Pareto for tree-child networks,
rather than weak Pareto. In fact, we prove that even if for some collection of input trees a
non-C-separated optimum RF-network N exists, it must be equivalent to another RF-network
N ′ up to a reordering of reticulation events (this notion is formally defined in Section 3.2),
such that N ′ is both optimum and C-separated.

2 Preliminaries

A (phylogenetic) network is a directed acyclic graph (DAG) with a designated root and with
all other vertices either of in-degree one and out-degree two (tree vertices), in-degree two
and out-degree one (reticulation vertices), or in-degree one and out-degree zero (leaves). All
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Figure 1 An example of tree T displayed in network N with one reticulation vertex, r. T is
displayed in N by removing the reticulation edge (p2, r) and obtaining a subdivision N(T ).

leaves are bijectively labeled by a label-set X and are identified with the elements of X. For
convenience, networks are planted, i.e., the root has in-degree zero and out-degree one. For
a network N the root and leaves are denoted by ρ(N) and L(N) respectively. For every
vertex v we denote the set of children, parent(s), and sibling(s) by Ch(v), Pa(v), and Sb(v)
respectively. Note that if v is the child of a reticulation w then, we define Sb(v) to be the
two siblings of w.

We distinguish reticulation edges – edges entering a recitulation vertex – and tree edges –
edges entering a tree vertex. A tree-path is a directed path that consists of tree edges. We say
that vertex v has a tree-path to vertex w if either v = w or there is a tree-path from v to w.

A vertex v is a descendant of w if there is a directed path from w to v (we consider each
vertex to be a descendant of itself); w is also called an ancestor of v. Alternatively, we say
that v is below w or w is above v. A (hardwired) cluster of vertex v, denoted by Cv, is the
set of all leaves that are descendants of v. Generally, we call any set of leaves a cluster.

A (phylogenetic) tree is a network with no reticulation vertices. A least common ancestor
(LCA) of two vertices v, w in a tree, denoted by lca(v, w), is the lowest vertex x such that v
and w are descendants of x. Two clusters (leaf-sets) C1 and C2 are called compatible if there
exists a tree that contains both of them. Equivalently, the clusters are compatible if either
C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅.

Displayed trees. A tree T is displayed in a network N (with the same leaf set), if one
can remove exactly one reticulation edge from each reticulation vertex, then remove all
potentially appearing non-labeled vertices with out-degree zero, and obtain a subdivision of
T – denoted N(T ). See an example in Figure 1. We say that an edge of a network is used to
display tree T if there is a way to obtain such subdivision of T without removing this edge.
Note that in general there could be several ways to display tree T .

Tree-child networks. A network is called tree-child if each vertex has at least one outgoing
tree edge. It is easy to see that each vertex in a tree-child network must have a tree-path
going to some leaf. This is a crucial property that we will employ in this work.

For the convenience of further discussion, we define a surjective mapping from the vertices
of a tree-child network N , denoted here VN , to the vertices of a tree T displayed in N . Let us
fix a way to display T in N . It is not difficult to observe that for a tree-child network removing
reticulation edges in order to display a tree will not result in out-degree 0 vertices. That
is, the fixed subdivision N(T ) of T contains all vertices of N . Since N(T ) is a subdivision
of T , each vertex w from VN that has two children in N(T ) must have a unique equivalent
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in T . We then map each such w to the corresponding equivalent vertex in T . Further, we
map leaves of N to the leaves of T with the same label. Finally, for each v in VN that has
exactly one child in N(T ), let w denote the highest descendant of v in N(T ) that was already
mapped (i.e., w is either a leaf or has two children); we then map v to the same vertex in T
that w is mapped to. For example, in Figure 1 vertices a and p2 from N are both mapped
to leaf a of T .

We then say that a vertex v ∈ N corresponds to vertex v′ ∈ T if v is mapped to v′.

Embedding cost. We define the cost of embedding a tree T in a network N on the same
leaf set using the standard Robinson-Foulds (RF) distance [24]. The cost should be zero,
when the tree is displayed in the network and positive otherwise. Then the cost is defined as
follows: let PN be a set of all trees displayed in N , then

δ(T,N) := min
S∈PN

RF (T, S),

where RF (T, S) is the Robinson-Foulds (cluster) distance defined as the size of the symmetric
difference between the cluster representations of two trees.

A tree S, displayed in N , that has the minimum RF distance to T is called an embedding
of T (in N). Note that in general T can have multiple embeddings.

3 Consensus clusters in networks

We now establish a definition central to this work.

I Definition 1 (C-separated networks). Given a cluster C, network N is called C-separated
if it contains an edge (u, v) such that removing this edge disconnects the network into two
networks (components) N1 and N2 with

L(N1) = C; L(N2) = L(N) \ C;
and no edges going across the components in the underlying undirected graph.

For example, network N from Figure 1 is {b, c}-separated.
Let T be a set of trees over the same leaf set. A cluster C is said to be a consensus

cluster (of T ) if for each T ∈ T there is a vertex v such that Cv = C.
Given a network N over the leaf set as T , we define the distance between T and N

as follows:

d(T , N) := we ·
∑
T∈T

δ(T,N) + wr ·R(N),

where R(N) is the number of reticulation vertices in N and we, wr > 0 are integer coefficients
that weigh the overall embedding cost and the number of reticulations respectively. Note
that, for convenience, we define the distance slightly differently from the original definition
in [17], where a limit on the number of reticulations was given instead of a weight; however,
it does not affect the results stated in this work.

3.1 Consensus clusters in embeddings
We now formulate our core result. To prove it we introduce our main machinery that is also
used later to demonstrate stronger results.

I Theorem 2. Let N be a tree-child network with the minimum d(T , N) distance; then for
each consensus cluster C of T and each Ti ∈ T , every embedding of Ti in N has cluster C.

The remainder of the section is dedicated to the proof of the theorem.
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Proof strategy. Assume, for the purpose of contradiction, that an embedding of some Ti,
Si ∈ PN , does not contain a consensus cluster C. Observe that this implies that N is not
C-separated, since each tree displayed in a C-separated network must have cluster C.

We are going to transform N into a C-separated network with a smaller distance to T .
In order to do that, we define three transformations on networks that preserve displayed
clusters that are compatible with C.

Formally, the transformations should satisfy the property defined in Definition 3.

I Definition 3 (C-compatible transformation). A network transformation operation that can
transform N into a network N ′ is said to be C-compatible if for each tree T displayed in
N there exists a tree T ′ displayed in N ′, such that T ′ contains all clusters of T that are
compatible with C.

Let VC be the set of vertices in N that have a tree-path to some leaf in C. For convenience
we classify the tree vertices in VC as follows.

I Definition 4 (VC vertices classification). A tree vertex v ∈ VC is exactly of one of the
following types:

Type 1: if v is a leaf; or if children of v both belong to VC and both children are tree
vertices.
Type 2: if both children of v belong to VC but one of the children is a reticulation vertex.
Type 3: If only one child of v, u1, belongs to VC , while the other, u2, does not. Note that
in this case u1 has to be a tree vertex, while u2 could be a tree vertex or a reticulation vertex.

We now define our first network rearrangement operation and prove that it is C-compatible.

I Definition 5 (Network transformation T1). If N contains an edge (w, z) such that w, z ∈ VC ,
w, z are tree vertices, w is of Type 2, and z is of Type 3 then transformation T1 proceeds
as follows:
(i) Let c denote the sibling of z and u denote the child of z such that u 6∈ VC ;
(ii) Remove edges (w, c) and (z, u) and add edges (w, u) and (z, c).

That is, the transformation swaps specific children of z and w. Note that z becomes a Type 2
vertex and w – Type 3; that way T1 “moves” a Type 2 vertex down and a Type 3 vertex up.
See the illustration in Figure 2a.

We now prove that this transformation could not increase the embedding distance of an
input tree with cluster C to the network.

I Lemma 6. T1 is C-compatible.

Proof. Assume that T1 was performed as depicted in Figure 2a. Note that, by definition, z
and c belong to VC and therefore have tree-paths to some leaves a and b in C respectively
(as shown in the figure as well). On the other hand, u 6∈ VC and therefore u has a tree-path
to some d 6∈ C (it could be that u = d and/or c = b).

Consider some T displayed in N . We need to show that exists T ′ displayed in N ′ that
contains all clusters of T compatible with C. First of all, observe that if T can be displayed
in N by removing either (or both) of the edges (w, c) and (z, u) then T is also displayed in
N ′ and the statement is trivially true.

Otherwise, let x denote lcaT (a, d) (as shown in Figure 2b). Since each edge (w, z), (z, u),
and (w, c) are used for displaying T (as well as all edges on the tree-paths shown in Figure 2a,
since they are tree edges and cannot be removed) then vertex z in N should correspond to x
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(a) T1 transformation.
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a d b
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(b) Displayed tree transformation.

Figure 2 (a): A network N transformed into network N ′ via transformation T1 as per Definition 5;
waved lines indicate tree-paths to leaves. (b): A respective transformation of a tree T displayed in
N (assuming that both edges (z, u) and (w, c) are used to display T ) to a tree T ′ displayed in N ′.

y

x

w
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N
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Figure 3 An illustration of transformation T2. Network N is transformed into N ′. Potentially
empty tree-paths are shown via waved lines.

in T . Further, vertex c should correspond to the sibling of x, v3. Therefore, v3 should have
leaf b below it. It is then not difficult to see that a tree T ′ obtained by swapping subtrees
rooted at v3 and v2 is displayed in N ′ (see Figure 2b).

Finally, observe that T differs from T ′ only by one cluster; namely, Cx, which is not
present in T ′. However, Cx is not compatible with C, since (i) Cx contains a ∈ C and d 6∈ C
and (ii) C 6⊂ Cx because b 6∈ Cx. J

We now define two more C-compatible rearrangement operations.

I Definition 7 (Network transformations T2 and T3). Let x be a tree vertex in VC of Type 2
or Type 1 such that there is no tree vertex above x of Type 2 or 1 with a path to x. Further,
let y be the highest vertex of Type 1 with a tree-path from x (note that y could be equal to x);
we then require that there is no vertex of Type 3 on the path from x to y. The transformations
are defined as follows:
T2. Given edge (v, w), such that v ∈ VC , w 6∈ VC , and v is not an ancestor of x:
(i) remove edge (v, w) and contract v;
(ii) subdivide (Pa(x), x) with a new vertex z and add edge (z, w).

T3. Same as T2 with the difference that v 6∈ VC , while w ∈ VC , and w is not an ancestor of
x (note that v could be an ancestor of x).

I Remark 8. Note that T1, T2, and T3 could be seen as specifically constrained versions of
the subnet prune and regraft operation (SNPR) defined and studied by Bordewich et al. [5].
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Figure 4 Three possible scenarios – (a), (b), and (c) – for a tree T displayed in N . Tree T ′

displayed in a transformed network N ′ (as shown in Figure 3) can be obtained in all three cases by
regrafting the subtree rooted at w′ just above vertex x′.

I Lemma 9. T2 and T3 are C-compatible.

Proof. The proofs for T2 and T3 are similar; therefore, we provide a proof for T2 only. Let
N be transformed to N ′ as depicted in Figure 3.

Consider some T displayed in N . We need to show that exists T ′ displayed in N ′ that
contains all clusters of T compatible with C. Similarly to the proof of Lemma 6, observe
that if (v, w) is a a reticulation edge and there exists a way to display T in N without using
this edge, then T is displayed in N ′ as well and the statement holds. We now fix a way to
display T in N . Let x′ then denote the vertex in T such that x (from N) corresponds to
x′. Further, let v′ = lcaT (b, d) be the vertex such that v corresponds to v′ and let w′ be the
child of v′ such that w corresponds to w′. Observe that a tree T ′ displayed in N ′ is obtained
from T by (i) removing edge (v′, w′) and suppressing vertex v′ and (ii) subdividing edge
(Pa(x′), x′) with a new vertex z′ and adding an edge (z′, v′). That is, subtree rooted at w′ is
regrafted above x′.

We now distinguish three cases for our proof depending on the location of x′ relative to v′
in T . Let p denote lcaT (v′, x′). Then the three cases are as follows (see also the illustration
of these cases in Figure 4):
(a) x′ is a child of p (see Figure 4(a)). Then T ′ does not have only those clusters of T

that correspond to the intermediate vertices on the path from p to w′. However, each
such cluster could not be compatible with C, since it contains d 6∈ C and b ∈ C, but
does not contain a ∈ C (that is, it is neither a subset nor a superset of C, nor it is
disjoint from C).

(b) There is at least one vertex on the path from p to x′ (see Figure 4(b)). Let q′ and s′
denote the parent and sibling of x′ respectively (as depicted on the figure). We argue
that there must exist leaf e 6∈ C below s′.
Consider a fixed subdivision N(T ) and let t be the lowest ancestor of x in N(T ) with
two children (that is, t corresponds to t′). It is not difficult to observe that there could
be at most one reticulation edge on the path from t to x in N(T ) and that edge has to
originate from t (due to the tree-child property). Recall now that there is no vertex of
Type 1 or 2 above x.
If there is a reticulation edge on the path from t to x, let s denote the child of t that is a
tree vertex. Note that s could not belong to VC , since in that case t would be a vertex of
Type 2 (note that the other child of t, that is a reticulation, must have a tree-path to x
and therefore a tree-path to a ∈ C – that is, it belongs to VC). Hence, there exists e 6∈ C
with a tree-path from s. Given that s corresponds to s′ in T , leaf e must be present
below s′ as well.
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Further, if there is no reticulation edge on the path from t to x, then s, defined as the
child of t that is not on this path, is not in VC as well. This is the case, since otherwise t
would be a vertex of Type 1 or 2. Therefore, leaf e exists in that case as well.
We use these observations to finish the proof for (b). Note that tree T ′ does not have
the clusters of T that correspond to the intermediate vertices on the paths from p to w′
and from p to x′. However, using the argument similar to (a), it is not difficult to see
that none of these clusters is compatible with C.

(c) p = x′ (see Figure 4(c)). Let t′ be the child of x′ that is not an ancestor of v′. To prove
that the lemma holds in that case as well, we are going to show that there must exist
leaf f ∈ C below t′. Note that f could be equal to a.
Consider a fixed subdivision N(T ) and let u be the vertex in N(T ) that corresponds to
x′ and has two children. Observe that by our constraints u could be any vertex on the
path from x to y (including x and y). Therefore, by the constraints in the definition of
T2, u must be of Type 2 or 1 and hence both its children must be in VC . Clearly, one of
the children of u corresponds to t′ and therefore such leaf f must exist.
Similarly to (a), tree T ′ does not contain only those clusters of T that correspond to the
intermediate vertices on the path from x′ to w′. It is then not difficult to see that these
clusters are not compatible with C (via the same argument as in (a)).

These cases cover all possible scenarios, since by constraints given in Definition 7 v′
cannot be an ancestor of x′. Note that for transformation T3 such a case (i.e., v′ is an
ancestor of x′) is possible; however, using the same type of arguments as above, it is not
difficult to check that for this case C-compatibility is preserved as well. J

I Lemma 10. A not C-separated network N can be transformed into a C-separated network
N ′ only using operations T1, T2, and T3.

Proof. Consider the set of connected components (in the undirected sense) induced by the
vertices in VC . Let A ∈ C be such component; that is, all vertices in A are in VC and every
edge incident to A connects to a vertex that is not in VC . We are going to potentially exclude
some “redundant” vertices from A, while keeping it connected. Let v be a maximal vertex in
A, i.e., its parent(s) is(are) not in A. If v has exactly one child that is in A, then exclude v
from set A. Keep iterating this procedure until all maximal vertices in A are either leaves or
have both children in A.

Now, let C′ be the set of components obtained from C by performing the described above
pruning procedure on each component. Note that after the pruning all maximal vertices in
C′ components are tree-vertices of Type 1 or 2.

Next, we are going to use transformations T1, T2, and T3 on N in order to aggregate all
components in C′ together and separate them from the rest of the network.

For each A ∈ C′ let I(A) be the set of vertices in A that are incident to an edge outside
of A. Note that I(A) includes all maximal vertices in A. Further, define I(C′) := ∪A∈C′I(A).
Since N is a DAG, there a vertex x in I(C′), such that no other vertex in this set is an
ancestor of x. Clearly, x must be a maximal vertex of some component in C′.

Assume that x is a vertex of Type 2 (if x is of Type 1, then this step is not needed). Let
y be the highest vertex of Type 1 with a tree path from x. Consider now all vertices on
the tree path from x to y (excluding y); let us denote these vertices as (v1 = x, v2, . . . , vk).
Note that each vi is either of Type 2 or 3. Transformation T1 then allows us to rearrange
the types of these vertices in the way that there will be an index 1 ≤ j ≤ k such that for all
i ≥ j, vi is a Type 2 vertex and for all i < j, vi is a Type 3 vertex. That way we modified
the component Cx ∈ C′ that contains x. Since v1, . . . , vj−1 (if j > 1) vertices have only one
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child in VC by the definition of Type 3 vertices, then applying the pruning procedure again
will exclude v1, . . . , vj−1 from Cx. Therefore, we re-define x := vj . Observe that x is still a
vertex with the property that no other vertex in I(C′) is an ancestor of x. Further, there is
no vertex of Type 3 between x and y.

Consider now all edges of type (v, w), such that v is in some component A ∈ C′ and
w 6∈ VC . We perform transformation T2 (in any order) by reconnecting each such w above
x. Further, consider all maximal vertices in C′ except for x, we use T3 to reconnect those
vertices above x (note that after each such operation T3 we need to re-assign x = Pa(x)).
It is not difficult to see that as the result of this procedure all vertices in VC now lie in the
same connected component. Finally, consider all reticulation vertices v in that component,
such that one of the edges (w, v) is outside of the component. We perform T3 to relocate
the source of such reticulation edges above x. J

The proof of Theorem 2 then follows from the above results. That is, Lemma 10 allows us
to obtain a C-separated network N ′ with the property that for each Sj displayed in N exists
S′j displayed in N ′, such that S′j has all the clusters of Sj compatible with C (guaranteed by
Lemmas 6 and 9). Note now that all clusters in input trees Tj are compatible with C; hence,
RF (Tj , S

′
j) ≤ RF (Tj , Sj). Moreover, we assumed in the beginning that Si does not contain

C, while the respective tree S′i displayed in N ′ must contain it. Therefore:

d(T , N ′) < d(T , N).

3.2 Consensus clusters in RF-networks
Theorem 2 says that for a tree-child network N with minimum d(T , N) distance (for
convenience, we refer to such networks as minimum RF-networks), each embedding of the
input trees must contain all the consensus clusters. While this does not directly imply that
each minimum RF-network is C-separated for each consensus cluster, it is not difficult to
observe that at least one minimum RF-network has this property.

I Theorem 11. For a collection of trees T there exists a minimum RF-network N such that
N is C-separated for each consensus cluster C of T .

Proof. Take any minimum RF-network N . If N is not C-separated for some consensus
cluster C, the transformations T1-T3 defined in the previous section can be used to bring
N to the C-separated form (using the procedure from the proof of Lemma 10). As was
demonstrated, T1-T3 do not increase the embedding distance for any T ∈ T ; thus the
resulting network N ′ is also a minimum RF-network.

Further, it is not difficult to observe that if N is C1-separated and the procedure from
Lemma 10 is used to make it C2-separated – where C1 and C2 are two distinct compatible
clusters – the resulting network will remain C1-separated. Hence, the theorem holds. J

While this theorem has important implications for practitioners on its own, we now show
a much stronger result claiming that all minimum RF-networks are “almost” C-separated
for each consensus cluster C. More precisely, we show that a minimum RF-network is not
C-separated only if there is uncertainty induced by the set of input trees.

I Definition 12. We say that two networks N1 and N2 are equivalent up to an ordering
of reticulation events, if there is a tree-path (u1, . . . , uk) in N1 such that each ui has one
reticulation child and N2 can be obtained from N1 by re-ordering the vertices on that path along
with their outgoing reticulation edges. That is, N2 can be obtained from N1 by transformations
similar to T1.
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I Theorem 13. Let N be a tree-child network that displays a set of trees Q with the minimal
number of reticulations (i.e., if at least one reticulation edge is removed from N , it will not
display at least one of the trees from Q). Then for a consensus cluster C of Q either N is
C-separated or N is equivalent to a C-separated network N ′ up to an ordering of reticulation
events, such that N ′ displays all trees from Q as well.

The proof is omitted for brevity.
Using Theorem 2 we obtain the following corollary.

I Corollary 14. Given an input tree-set T , consider a minimum RF-network N for T that
is not C-separated for some consensus cluster C. Let Q be the set of all embeddings for all
trees T ∈ T . Then there exists a C-separated minimum RF-network N ′ that displays each
tree in Q and N ′ is equivalent to N up to an ordering of reticulation events.

This corollary implies that a minimum RF-network is not C-separated only if there is
uncertainty in the ordering of some reticulation events that is not resolved by the embeddings
of the input trees.

4 Conclusion

We make the first step towards boosting the scalability of methods for the inference of
hybridization and reassortment networks. We establish a Pareto-like property for phylogenetic
networks and prove that the recently introduced RF embedding cost satisfies it for tree-child
networks. This result allows one to use strict consensus merger strategies to significantly
magnify the scalability of the RF-Net method, particularly, when input trees are relatively
similar. Our results arise from studying the structure of optimum tree-child RF-Networks in
relation to the strict consensus clusters from the input trees. We anticipate that future work
would shed light on whether the Pareto properties that we discovered in this work could be
generalized to other classes of networks, e.g., reticulation-visible networks.
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Abstract
We present the first known model of genome rearrangement with an arbitrary real-valued weight
function on the rearrangements. It is based on the dominant model for the mathematical and
algorithmic study of genome rearrangement, Double Cut and Join (DCJ). Our objective function
is the sum or product of the weights of the DCJs in an evolutionary scenario, and the function
can be minimized or maximized. If the likelihood of observing an independent DCJ was estimated
based on biological conditions, for example, then this objective function could be the likelihood
of observing the independent DCJs together in a scenario. We present an O(n4)-time dynamic
programming algorithm solving the Minimum Cost Parsimonious Scenario (MCPS) problem
for co-tailed genomes with n genes (or syntenic blocks). Combining this with our previous work on
MCPS yields a polynomial-time algorithm for general genomes. The key theoretical contribution is
a novel link between the parsimonious DCJ (or 2-break) scenarios and quadrangulations of a regular
polygon. To demonstrate that our algorithm is fast enough to treat biological data, we run it on
syntenic blocks constructed for Human paired with Chimpanzee, Gibbon, Mouse, and Chicken. We
argue that the Human and Gibbon pair is a particularly interesting model for the study of weighted
genome rearrangements.
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1 Introduction

Since its introduction in 2005, Double Cut and Join (DCJ) has become the foundational
model for mathematical and algorithmic study of genome rearrangement. Its power to
simulate a diverse combination of chromosomal events along with its relatively simple
mathematical structure has facilitated a diverse expansion and use of DCJ. Grounded on
primary work that outlines how to compute DCJ scenarios between pairs of genomes [42, 9],
many active research topics have blossomed including the sampling of scenarios [30], whole
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genome duplication [41, 4], orthology assignment and evolution under gene duplication and
indels [33, 44], family-free genomic distances [29], cancer genomics [43], ancestral genome
reconstruction [3, 2], and phylogenetic inference [28, 3].

Yet to further the utility of DCJ, there is a potential for the addition of biological
constraints to the model. This article, when combined with our previous work [35], represents
the first known algorithm – for any known model of genome rearrangement – where an
arbitrary real-valued weight function on rearrangements can be given as part of the input. The
objective function can be the sum or product of the weights of the DCJs in an evolutionary
scenario, and the function can be minimized or maximized. Say, for example, that one
was to weight a DCJ based on the likelihood of observing it given particular biological
conditions. Then our objective function could compute the maximum likelihood scenario
over all minimum-length scenarios.

Our dynamic programming algorithm is possible thanks to the existence of equivalence
classes on weighted parsimonious scenarios.

1.1 Background
Most research on weighted genome rearrangement has only considered constraints on the gene
sequences, or the types of rearrangements. Length-weighted reversals and centered reversals
are such examples [7]. Other examples weight the types of rearrangements relative to each
other, possible types being inversion, transposition, inverse transposition, insertion/deletion
(indel), and tandem duplication random loss [13, 17, 25]. The preservation of common intervals
or groups of co-localized genes can also be enforced. Hartman, Middendorf, and Bernt present
a summary of this work in [24]. The same authors have combined these approaches by
studying type-weighted rearrangement scenarios preserving common intervals [23].

Over the last few years research has emerged that incorporates external biological
information for weighting genome rearrangements. This includes methods that consider the
sizes of intergenic regions [12, 20, 14], or that minimize the number of DCJs cutting regions
that are distant in physical space [39, 36]. In [32], we computed scenarios that maximize the
Hi-C contacts between breakpoints of rearrangements using a greedy algorithm for weighted
pairs of gene adjacencies. It was left an open question as to whether an exact polynomial-time
algorithm to do this exists. This article answers a similar question, by describing an exact
polynomial-time algorithm for weighted pairs of gene extremities (rather than adjacencies).

We base our article on the model called Double Cut and Join (DCJ) [42, 9]. Each
chromosome is represented by an ordering of directed genes (or syntenic blocks), and each
gene is represented by two extremities. Extremities that are adjacent in this ordering are
paired, and transformations of these pairs occur by swapping extremities of two pairs. DCJ
can naturally be interpreted as a graph edit model with the use of the breakpoint graph, where
there is an edge between gene extremities a and b for each adjacent pair. A DCJ operation
replaces an edge pair

{
{a, b}, {c, d}

}
of the graph by

{
{a, c}, {b, d}

}
or

{
{a, d}, {b, c}

}
.

This edge edit operation on a graph is called a 2-break. 2-breaks – also known as edge
swaps, switches, rewirings, or flips [21] – have been studied in the restricted setting of genome
rearrangement [5, 9] and sorting strings by mathematical transpositions [1, 18], but also in
more general settings of generating random networks [21] and network design [11, 19].

1.2 The Problem
The foundational problem is that of finding a minimum length (or parsimonious) 2-break
scenario transforming an arbitrary multi-graph into another one having the same degree
sequence [11, 9, 30]. For an arbitrary real valued cost function ω defined on the set of
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2-breaks, we treat the problem of finding a parsimonious 2-break scenario minimizing the
sum of the ω-costs of its 2-breaks, the ω-Minimum Cost Parsimonious Scenario problem
(see Section 5 for a more precise definition of our cost function).

In this article we present an O(n4)-time algorithm solving ω-MCPS for the perfect
matchings on n vertices. These graphs represent co-tailed pairs of genomes, which are the
pairs of genomes that share the same telomeric adjacencies [31].

Consider the ω-MCPS problem for general genomes.

I Problem 1 (ω-Minimum Cost Parsimonious Scenario or ω-MCPS).

INPUT : A pair of genomes (A,B), and a real valued cost function ω defined
for the set of DCJ rearrangements on the gene extremities of A and B.

OUTPUT : A minimum length DCJ scenario transforming A into B
that minimizes the sum of the ω-costs of its operations.

Our previous work guarantees that our solution for ω-MCPS on co-tailed genomes can be
extended to ω-MCPS on general genomes, with an overhead that is linear in the number of
linear chromosomes [35]. Note that ω-MCPS asks for a parsimonious scenario minimizing
the sum of costs. Our algorithm from Section 5 can be easily modified to find a parsimonious
scenario minimizing the product of costs, or maximizing the sum or the product of costs.
For the sake of simplicity we only treat the case of minimizing the sum of costs.

Experiments presented in Section 6 show that our algorithm is efficient enough for species
as distant as Human and Chicken. We construct breakpoint graphs between Human and
four other species including Chimpanzee, Gibbon, Mouse, and Chicken, and demonstrate
that our algorithm can be used in practice despite its elevated time complexity.

Designing an informative cost function remains a challenging open problem. In Section 7
we provide a short overview of the recent results linking evolution by genome rearrangement
to various chromatin features. We also propose the use of sure 2-breaks as a testing ground for
potential cost functions. These are the rearrangements that are present in every parsimonious
scenario transforming one genome into another. We observe that such rearrangements
comprise at least 7% of the parsimonious scenarios for the studied species.

2 Genomes, Breakpoint Graphs and DCJ Scenarios

A genome consists of chromosomes that are linear or circular orders of genes separated by
potential breakpoint regions. In Figure 1 the tail of an arrow represents the tail extremity, and
the head of an arrow represents the head extremity of a gene. A set of adjacencies between
the gene extremities can uniquely represent a genome. An adjacency is either internal: an
unordered pair of the extremities that are adjacent on a chromosome, or external: a single
extremity adjacent to one of the two ends of a linear chromosome. We will suppose that
two genomes are partitioned into n genes or syntenic blocks each occurring exactly once in
each genome. We use the breakpoint graph to represent a pair of genomes, and our goal is to
transform one genome into another using a sequence of DCJ operations.

I Definition 1 (co-tailed genomes). Two genomes are co-tailed if their sets of external
adjacencies are equal.

I Definition 2 (breakpoint graph [5]). G(A,B) for genomes A and B is an 2-edge-colored
Eulerian undirected multi-graph. Its vertices are the 2n gene extremities and an additional
vertex ◦. For every internal adjacency {a, b} ∈ A (respectively {a, b} ∈ B) there is a
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Figure 1 Three genomes A,B and C are depicted together with the breakpoint graphsG(A,B) and
G(C,B). A and B consists of a single linear chromosome, while C consists of a linear and a circular
chromosome. The three genomes contain the five genes depicted as dashed arrows. The adjacencies
of A are

{
{1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}{5h}

}
. A DCJ {2h, 3t}, {5h} → {5h, 3t}, {2h}

transforms A into C. The corresponding graph transformation G(A,B) → G(C,B) is a 2-break
transforming one simple alternating cycle into two.

black (respectively gray) edge {a, b} in G(A,B) and for every external adjacency {a} ∈ A
(respectively {a} ∈ B) there is a black (respectively gray) edge {a, ◦} in G(A,B). There
is also a number of black and gray loops {◦, ◦} ensuring that the black and gray degrees
of ◦ are equal.

I Definition 3 (double cut and join [42]). A DCJ cuts one or two adjacencies of a genome
and joins the resulting ends of the chromosomes back in one of the four following ways:
{a, b}, {c, d} → {a, c}, {b, d}; {a, b}, {c} → {a, c}, {b}; {a, b} → {a}, {b}; and {a}, {b} →
{a, b}.

3 Parsimonious 2-break Scenarios for 2-edge-colored Graphs

The problem of transforming a genome A into B using a sequence of DCJ operations can be
reduced to the problem of transforming the breakpoint graph G(A,B) into G(B,B) using
2-breaks on its black edges (see Figure 1) [35].

I Definition 4 (2-break). A 2-break
{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
is a graph transfor-

mation replacing edges {u, v} and {q, s}, with edges {u, q} and {v, s}. The vertices and the
edges of this 2-break are respectively

{
u, v, q, s

}
and

{
{u, v}, {q, s}, {u, q}, {v, s}

}
.

The problem of transforming a breakpoint graph using 2-breaks can be formulated in
a more general setting of transforming an arbitrary multi-graph H1 into another H2. A
2-break preserves the degrees of the vertices, thus H1 can only be transformed into a graph
H2 having the same degree sequence as H1. Given H1 and H2 with equal degree sequences,
one could combine them into an 2-edge-colored multi-graph using a bijection between the
equal degree vertices, coloring the edges of H1 in black and the edges of H2 in gray. Such
an Eulerian 2-edge-colored graph admits a decomposition into edge-disjoint alternating
cycles. An alternating cycle is simple, if it cannot be further decomposed into edge-disjoint
alternating cycles. A simple alternating cycle is a circle, if the black and gray degrees of its
vertices are equal to 1. The size of a simple cycle is its number of vertices. The breakpoint
graph G(A,B) in Figure 1 has two simple cycles, but only one of them is a circle.

I Definition 5 (2-break scenario and terminal graph). A 2-break scenario for an 2-edge-colored
multi-graph G is a sequence of 2-breaks transforming the black edges of G into its gray edges.
We call an 2-edge-colored graph with equal multisets of black and gray edges a terminal graph.

See Figure 2 (a) for an example of a 2-break scenario and a terminal graph. The problem
of finding a minimum length (or parsimonious) 2-break scenario is closely related to the
problem of finding a Maximum Alternating Edge-disjoint Cycle Decomposition
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(MAECD) of a graph [9, 11, 30, 15]. The key observation is that a 2-break in a parsimonious
scenario increases the size of a MAECD of a graph by 1. Theorem 6 leads to a couple of
easy corollaries that we will use in our proofs.

I Theorem 6 (Bienstock and Günlük in [11]). The minimum length of a 2-break scenario for
an Eulerian 2-edge-colored multi-graph is equal to the number of its vertices divided by two
minus the size of its MAECD.

I Corollary 7. The first 2-break τ in a parsimonious scenario ρ for a circle transforms it
into a union of two vertex-disjoint circles. The rest of ρ does not contain τ .

I Corollary 8. A parsimonious scenario for a graph having two connected components can
be partitioned into two sub-sequences that are parsimonious scenarios for these components.
If parsimonious scenarios ρ1 and ρ2 for these components are given, then their shuffle, a
sequence that can be partitioned into two sub-sequences equal to ρ1 and ρ2, is a parsimonious
scenario for the graph.

4 Equivalence Classes of the Parsimonious Scenarios for a Circle

In Section 5 we concern ourselves with the cost of a scenario, that is, the sum of the costs of
its constituent 2-breaks. This way two scenarios consisting of the same 2-breaks, but possibly
in a different order, have the same cost. This motivates the following definition.

I Definition 9 (equivalent scenarios). 2-break scenarios are equivalent if they consist of the
same 2-breaks.

A Scenario graph of a parsimonious scenario ρ for a circle is introduced in Section 4.1, as
a graph whose edges are exactly the edges of the 2-breaks in ρ. Two parsimonious scenarios
for a circle are then proved to be equivalent if and only if their scenario graphs are equal in
Section 4.4. In Section 4.1 we show that the scenario graph of a parsimonious scenario is
planar and provide an embedding of this graph that is a partition of a regular even polygon
into quadrilaterals, also known as a “quadrangulation” or a “complete quadrillage”. In
Section 4.4 we show that for any quadrangulation of a circle there exists an equal scenario
graph, thus establishing a bijection between the quadrangulations and the equivalence classes
of the parsimonious scenarios for a circle. A bijection between the 2-breaks in a scenario and
the faces of its scenario graph is established in Section 4.2. This link enables us to partition
a parsimonious scenario for a circle into the subsequences that are parsimonious scenarios
for its sub-circles in Section 4.3, and ultimately allows us to efficiently search the space of all
the parsimonious scenarios in Section 5.

I Definition 10 (sub-circle). Take an odd length path in a circle. If the edges incident to
its endpoints are black (respectively gray), then add a gray (respectively black) edge incident
to the endpoints of this path to obtain a circle. We say that the added edge delimits the
sub-circle. See Figure 2 (b) for an example of sub-circles.

4.1 A Scenario Graph is a Quadrangulation of a Circle
We show that a scenario graph for a parsimonious scenario of a circle is planar, and provide
an embedding of this graph that is a partition of that circle into quadrilaterals (i.e. cycles of
length four).
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Figure 2 An example of a parsimonious scenario for a circle, its sub-circles and the scenario
graph. a) A circular straight-line embedding ΣC of a circle C and a parsimonious 2-break scenario ρ
of length 4 transforming this circle into a terminal graph. b) The first 2-break of ρ transforms C
into a union of two vertex-disjoint circles C1 and C2, these are the sub-circles of C delimited by the
edges {1, 8} and {2, 7} respectively. c) The edge {4, 7} delimits the sub-circles C3 and C4 of C2. C4

is also a sub-circle of C, but C3 is not. d) A circular straight-line drawing ΣS(C,ρ) of the scenario
graph S(C, ρ). e) We draw an embedding of the trajectory graph [34] T of ρ on top of the scenario
graph. Operation nodes of T (in white) correspond to the faces of S(C, ρ), and adjacency nodes of
T (in gray) correspond to the edges of S(C, ρ). The edges incident to the black (respectively gray)
edges of the circle are directed outwards (respectively inwards). The rest of the edges are directed in
such a way as to guarantee that the in and out degrees of the rest of the vertices of T are equal. f)
An example of a scenario graph with a face that is not incident to any of the edges of the circle.

I Definition 11 (scenario graph). For a circle C and its parsimonious 2-break scenario ρ,
define an undirected simple graph S(C, ρ) called a scenario graph. The vertices of S(C, ρ)
are the vertices of C. If C has more than two vertices, then the edges of S(C, ρ) are the edges
of the 2-breaks in ρ. Otherwise, S(C, ρ) contains a single edge incident to its two vertices.

See Figure 2 (d) for an example of a circular straight-line drawing of a scenario graph.

I Definition 12 (circular straight-line drawing of a scenario graph). A circular straight-line
drawing of a graph is a drawing on a plane with the vertices of the graph arranged on a
circle and the edges drawn as straight lines. If the edges in the drawing do not cross, then
the drawing is an embedding. Fix a circular straight-line embedding ΣC of a circle C.
The sub-circles of C inherit their circular straight-line embeddings from ΣC . The scenario
graph S(C, ρ) for a parsimonious scenario ρ for C inherits a circular straight-line drawing
ΣS(C,ρ) from ΣC .

I Theorem 13. For every circle C and its parsimonious scenario ρ, the scenario graph S(C, ρ)
is planar, ΣS(C,ρ) is its embedding and all the internal faces of ΣS(C,ρ) are quadrilaterals.

Proof. C has an even number of vertices by construction. If C has two vertices, then its
scenario graph has a single edge and no internal faces. Suppose that the statement is true for
every circle having at most 2k − 2 ≥ 2 vertices and take a circle C with 2k vertices together
with its parsimonious scenario ρ.

Due to Corollary 7, the first 2-break τ of ρ transforms C into a union of two vertex
disjoint circles. Denote these circles by C1 and C2 (see Figure 2 (b)). Due to Corollary 8,
the rest of ρ can be partitioned into ρ1 and ρ2, that are scenarios for C1 and C2 respectively.
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If τ =
{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
, then the edges of ΣS(C,ρ) can be obtained by

adding the edges {u, v} and {q, s} to the union of the edges of S(C1, ρ1) and S(C2, ρ2) (see
Figure 2 (d). ΣS(C1,ρ1) and ΣS(C2,ρ2) satisfy the inductive hypothesis, so their edges do not
cross. {u, v} and {q, s} do not cross the other edges and together with {u, q} and {v, s}
bound the only face of ΣS(C,ρ) not belonging to ΣS(C1,ρ1) or ΣS(C2,ρ2). J

I Definition 14 (Dual graph). The dual graph of an embedding of a planar graph G is a
graph that has a vertex for each face of G. The dual graph has an edge whenever two faces
of G are separated from each other by an edge.

The dual graph of an embedding of a scenario graph, up to some minor modifications,
is a trajectory graph introduced by Shao, Lin, and Moret (see Figure 2 (e) for an example).
In [34] these authors show that the trajectory graph of a parsimonious scenario for a circle
is a tree, which could be used to prove Theorem 13. By fixing an embedding of a scenario
graph, we are not only able to describe the equivalence classes of the parsimonious scenarios
for a circle, but also to search them efficiently.

4.2 A Bijection Between the 2-breaks in a Scenario and the Faces of a
Scenario Graph

I Lemma 15 (Proven in Appendix A.1). For an embedding of a connected graph G = (V,E)
with |V | edges incident to the outer face and all the inner faces being quadrilaterals, the
number of internal faces |Fint| is |V |2 − 1.

I Proposition 16. For a circle C and a parsimonious scenario ρ for C, there exists a
bijection between the 2-breaks in ρ and the internal faces of ΣS(C,ρ) that associates to every
2-break in ρ the face bounded by its edges.

Proof. Take a circle C = (V,E) and its parsimonious scenario ρ. There are |V |2 − 1 2-breaks
in ρ due to Theorem 6 and |V |2 − 1 internal faces in ΣS(C,ρ) due to Lemma 15. Take a 2-break
τ in ρ. By construction, the edges of τ form a cycle of length 4 in S(C, ρ). ΣS(C,ρ) is an
embedding of S(C, ρ) and in the part of the plane bounded by this cycle there are no vertices.
This means that the edges of τ bound a face in ΣS(C,ρ). All the 2-breaks in ρ are unique
due to Corollary 7, thus we obtain an injection between the 2-breaks in ρ and the faces in
ΣS(C,ρ). As the sizes of these two sets are equal, the function is bijection. J

I Corollary 17 (Proven in Appendix A.2). Consider a circle C, a parsimonious scenario
ρ for C, and an internal face f of ΣS(C,ρ) bounded by the edges {u, v}, {v, s}, {s, q} and
{q, u}, where {u, v} is a black edge of C. Then ρ contains a 2-break

{
{u, v}, {q, s}

}
→{

{u, q}, {v, s}
}
.

4.3 Partitioning Scenario into Scenarios for Sub-circles
In this section we demonstrate how a parsimonious scenario for a circle can be partitioned
into scenarios for its sub-circles. Theorem 19 is at the heart of the dynamic programming
algorithm for MCPS presented in Section 5.

I Lemma 18 (Proven in Appendix A.3). For every circle C, a parsimonious scenario ρ for
C, and an edge e of ΣS(C,ρ), ρ can be partitioned into two (possibly empty) parsimonious
scenarios, one for each sub-circle delimited by e.
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Figure 3 An illustration of how to find a parsimonious scenario whose scenario graph is equal to
a given qadrangulation of a circle. On the left, the inner edges of a quadrangulation are depicted on
top of a circle. To the right, a parsimonious scenario realizing this quadrangulation is given.

I Theorem 19. For every circle C having at least four vertices, a parsimonious scenario
ρ for C, and an internal face f of ΣS(C,ρ), ρ can be partitioned into four (possibly empty)
parsimonious scenarios, one for each sub-circle delimited by the edges bounding f , plus the
2-break whose edges bound f .

Proof. Proposition 16 provides a 2-break τ in ρ whose edges bound f . An edge bounding f
delimits two sub-circles of C, denote the one containing only two vertices of τ to be external
(the other one contains all four vertices of τ). Repeat Lemma 18 for the four edges bounding
f to obtain parsimonious scenarios for the four external sub-circles. See Figure 2 (f) for an
example, where all four external sub-circles are of size larger than 2. By construction, these
scenarios do not intersect and together with τ partition ρ. J

4.4 A Bijection Between the Equivalence Classes of Scenarios and
Quadrangulations

The results in this subsection are presented for the sake of completeness. They establish
bijections between the equivalence classes of the parsimonious scenarios for a circle, their
scenario graphs and the quadrangulations of that circle, however they are not explicitly used
in the later sections.

I Theorem 20 (Proven in Appendix A.4). For every circle C and its parsimonious scenarios
ρ and µ, their scenario graphs are equal if and only if these scenarios are equivalent.

I Definition 21 (quadrangulation of a circle). Take a circular straight-line embedding of a
circle C and forget the colors of its edges. If C is has two vertices then keep a single edge
joining them to obtain an embedding ΣS. Otherwise add straight-line edges to obtain an
embedding ΣS with all the internal faces being quadrilaterals.

I Proposition 22 (Proven in Appendix A.5). For every circle C and its quadrangulation ΣS
there exists a parsimonious scenario ρ such that ΣS(C,ρ) = ΣS.

Quadrangulations of an even regular polygon, also known as complete quadrillages,
correspond to rooted ternary trees just as triangulations of a polygon correspond to rooted
binary trees [6]. This means that for a circle with 2n + 2 vertices there are 1

2n+1
(3n
n

)
≈

1
n3/2 ( 27

4 )n equivalence classes. For comparison, the number of the parsimonious scenarios for
such a circle is (n+ 1)(n−1) [31].

5 Minimum Cost Parsimonious Scenario for a Circle

Consider a circle C, the 2-breaks that act on the vertices of C, and a cost function ω mapping
these 2-breaks to real numbers. In other words, every 2-break τ =

{
{u, v}, {q, s}

}
→{

{u, q}, {v, s}
}
, with u, v, q, s being vertices of C, gets assigned a ω-cost ω(τ). The ω-cost
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ω(ρ) of a scenario ρ is the sum of the costs of its constituent 2-breaks. The ω-cost ω(C) of a
circle C is the minimum cost of a parsimonious scenario for C. Without loss of generality we
suppose the vertices of C are named {1, . . . , |V |} while respecting their clockwise order on
the circle, and that {1, 2} is a black edge as in Figure 2. For the vertices i, j ∈ V with i+ j

being odd, define C[i, j] to be the sub-circle of C containing the path in C going clockwise
from i to j. We denote its ω-cost by ω[i, j].

A quadrilateral is valid for a circle if it appears in some quadrangulation of that circle.
Take vertices 1 ≤ i < r < s < j ≤ |V |. They are the vertices of a valid quadrilateral for C if
and only if i+ r, r + s, s+ j, i+ j are all odd (see Figure 2). Due to Theorem 19, such a
quadrilateral partitions a parsimonious scenario for C[i, j] into parsimonious scenarios for
C[i, r], C[r, s], C[s, j], along with the 2-break acting on the edges bounding the quadrilateral.
In Lemma 23 we show how ω[i, j] can be found by iterating through the valid quadrilaterals
for C[i, j] containing the edge {i, j}. In Theorem 24 we conclude that ω(C) can be computed
by iterating once through all the valid quadrilaterals of C.

I Lemma 23 (Proven in Appendix A.6). For a sub-circle C[i, j] of a circle C with i < j, its
cost ω[i, j] is 0 if it has two vertices, otherwise

ω[i, j] = minr,s
(
ω[i, r] + ω[r, s] + ω[s, j] + ω(τ)

)
for vertices i < r < s < j of a valid quadrilateral for C[i, j], where τ =

{
{i, r}, {s, j}

}
→{

{i, j}, {r, s}
}
if i is odd, and τ =

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
if i is even.

I Theorem 24. If the ω-cost of a 2-break can be computed in constant time, then the ω-cost
of a circle can be computed in O(|V |4) time using dynamic programming.

Proof. Take a circle C. The ω-costs of its size 2 sub-circles can be initialized in O(|V |) time.
Suppose the ω-costs of its sub-circles of size at most 2k − 2 > 0 to be precomputed. We
will show that the ω-costs of its sub-circles of size 2k can be computed in O(|V |k2) time.
There are |V | − 2k + 1 sub-circles of C of size 2k. Due to Lemma 23, the ω-cost of such a
sub-circle is equal to the minimum of the set of size Θ(k2). Every element of this set can be
computed in constant time, as the ω-costs of the smaller sub-circles are precomputed and
the ω-cost of a 2-break can be found in constant time. This means that the time complexity
of computing the ω-costs for all the sub-circles of C of size 2k is Θ((|V | − k)k2). This leads
to an O(|V |4)-time dynamic programming algorithm for computing ω(C). J

In [35] we demonstrated how the ω-cost of a breakpoint graph can be found using an
algorithm finding the ω-cost of a circle. This leads directly to Theorem 25.

I Theorem 25. Take two genomes having m linear chromosomes and sharing n syntenic
blocks. If the ω-cost of a 2-break can be computed in constant time, then the ω-cost of their
breakpoint graph can be computed in O(mn4) time.

6 Experiments

We use OrthoCluster [45] to construct syntenic blocks between Human and four other species
including Chimpanzee, Gibbon, Mouse, and Chicken. See Appendix B for details regarding
this process. Several runs of OrthoCluster are performed for the species while setting the
input parameter of the minimum number of genes in a syntenic block to be ` ∈ {1, 2, 4, 8}.
Details concerning these runs are summarized in Table 1. Ideally we would like to use
the blocks with ` = 1, however the blocks containing a small number of genes could be
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less reliable due to annotation and assembly errors. For every set of syntenic blocks we
constructed a breakpoint graph, computed the size of its largest simple cycle, that we call
the circumference, and the length of a parsimonious scenario. Choosing an informative cost
function is out of the scope of this work, however, we test the running time of our algorithm
with a cost function ωp that is equal to 1 for every 2-break (the full dynamic program ran
despite all parsimonious scenarios having the same cost). If a breakpoint graph G has a circle
C of size four, then any parsimonious scenario for G must contain a 2-break transforming C
into a terminal graph. We call such 2-breaks sure and report the ratio of the number of sure
2-breaks to the length of a parsimonious scenario in Table 1.

6.1 The Elevated Time Complexity of Computing MCPS is not
Prohibitive and Sure 2-breaks are Abundant

While the breakpoint graphs obtained with Chimpanzee have low circumference and could
still be analyzed by hand, this is impossible for Gibbon and even more so for Mouse and
Chicken. Computing the ωp-cost took seconds for Chimpanzee and Gibbon, less than 3
minutes for Mouse, and less than 10 minutes for Chicken (see Table 1).

The parsimonious scenarios in all cases include a significant share of sure 2-breaks. We
can test a given cost function on these 2-breaks, knowing that they must appear in any
parsimonious scenario. This approach has been used before, for example, when ape/human
deletions were recently studied [26, 22], however we are not aware of such a study for
inversions or DCJs.

7 Biological Constraints

Recent studies revealed the role played by the structure of topologically associating domains
(TADs), active chromatin, and 3D co-localization of the breakpoint regions in evolution by
genome rearrangements. DNA breaks have been shown to occur in active chromatin regions
coming into 3D contact in the nucleus [40, 10, 38]. Gibbon rearrangements were shown to
occur at TAD boundaries, with most TADs maintained as intact modules during and after
rearrangement [27]. A genome-wide depletion of deletions in active chromatin, and at TAD
boundaries was observed across primate evolution [22]. Deletions causing TAD fusion were
shown to be rare and under negative selection [26].

Recently published high resolution maps of the breakpoint regions, Hi-C, and ChIP-seq
data for the highly rearranged Gibbon genome [27] combined with all the biological data
available for Human genome, make these two species a very interesting target for the study
of weighted genome rearrangements. This is especially so, since their parsimonious DCJ
scenario contains > 24% of sure 2-breaks. These can be studied in detail to better understand
the mechanisms behind the individual rearrangements. This dataset complements the set of
inversions detected in human individuals [37, 16].

The algorithm presented in this article could be used to find parsimonious scenarios
maximizing the number of DNA breaks at active chromatin or TAD boundaries. Breakpoint
co-locality is another parameter that has been maximized in a scenario [39, 36]. The
ω-cost could consider information on chromatin state, TAD boundaries and co-locality
simultaneously, meaning that all the features could be used at the same time.

MCPS could also be used with the DCJ scenarios preserving common intervals [8]. In
our framework, we could assign costs to the DCJs according to how well they preserve the
common intervals between the genomes.
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Table 1 This table summarizes our analysis of the breakpoint graphs between Human and the
four other species. ` is the minimum number of genes in a syntenic block. Blocks is the number of
syntenic blocks. The Coverage is the proportion of the Human assembly covered by a syntenic block.
Scenario length is the length of a parsimonious scenario. Circumference is the size of the largest
simple cycle in a breakpoint graph. Sure 2-breaks is the proportion of a parsimonious scenarios that
is composed of sure 2-breaks. Time is real time required to run our algorithm for ωp-MCPS on
Intel® Xeon® Processor E5-2650 v3 (25M Cache, 2.30 GHz).

` Blocks Coverage Scenario length Circumference Sure 2-breaks Time
Chimpanzee

1 202 90% 116 16 33% <2s
2 100 90% 47 10 51% <2s
4 68 90% 26 6 73% <2s
8 50 89% 15 6 66% <2s

Gibbon
1 285 87% 195 80 24% <7s
2 202 86% 130 56 28% <3s
4 171 86% 105 60 32% <3s
8 139 83% 82 36 37% <3s

Mouse
1 659 83% 523 116 17% <3m
2 442 82% 366 94 15% <1m
4 335 80% 287 94 11% <1m
8 257 76% 224 72 9% <20s

Chicken
1 1697 75% 1429 210 12% <10m
2 978 73% 851 98 10% <2m
4 628 69% 558 82 7% <2m
8 341 60% 305 60 8% <15s

8 Conclusion and Future Work

Our recently introduced framework [35] deals with the ϕ-MCPS problem, which allows for
costs on gene extremities and their adjacencies, extends results for co-tailed genomes to more
general genome pairs. The ω-MCPS problem is a particular case of the ϕ-MCPS problem, as
ω-costs depend only on gene extremities. Previous work provided polynomial-time algorithms
for some particular ϕ-costs [39, 36, 14]. Finding a general polynomial-time algorithm for the
ϕ-MCPS problem, however, remains an open problem.

Our characterization of parsimonious scenarios into equivalence classes could prove useful
for tasks such as sampling weighted parsimonious scenarios. The problem of counting the
number of the parsimonious scenarios within an equivalence class remains open, as does the
problem of counting and sampling the ω-MCPS scenarios.

Our algorithm for ω-MCPS was shown to be efficient enough for species as distant as
Human and Chicken, and we briefly discussed possibly informative biological constraints and
cost functions. Mathematical modeling of these constraints and a choice of a particular cost
function, however, are left for future work.
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A Proofs

A.1 Lemma 15
I Lemma. For an embedding of a connected graph G = (V,E) with |V | edges incident to
the outer face and all the inner faces being quadrilaterals, the number of internal faces |Fint|
is |V |2 − 1.

Proof. Every internal face of G is bounded by four edges, G has |V | edges incident to the
outer face, and every edge of G is separating two faces. By counting edges we obtain the
equality 4|Fint| + |V | = 2|E|. Euler’s formula for planar graphs is |V | − |E| + |F | = 2,
thus |E| = |V | + |F | − 2 = |V | + |Fint| − 1. Combining these two equalities we obtain
4|Fint|+ |V | = 2|V |+ 2|Fint| − 2 and finally |Fint| = |V |

2 − 1. J

A.2 Corollary 17
I Corollary. Consider a circle C, a parsimonious scenario ρ for C, and an internal face f
of ΣS(C,ρ) bounded by the edges {u, v}, {v, s}, {s, q} and {q, u}, where {u, v} is a black edge
of C. Then ρ contains a 2-break

{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
.

Proof. If {u, v} is among the edges of at least two different 2-breaks in ρ, then {u, v} is
incident to at least two different internal faces of ΣS(C,ρ) due to Proposition 16. However
{u, v} is a black edge of C, thus it is incident to a single internal face of ΣS(C,ρ), and that
face is f . This means that {u, v} is among the edges of a single 2-break τ in ρ.

Due to Proposition 16, the edges of τ are exactly the edges of f . This means that τ
is either

{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
, or

{
{u, q}, {v, s}

}
→

{
{u, v}, {q, s}

}
. {u, v} is

not present in the terminal graph obtained from C after ρ is performed. This means that ρ
includes a 2-break replacing {u, v}. Combining these two observations we conclude that τ is{
{u, v}, {q, s}

}
→

{
{u, q}, {v, s}

}
. J

A.3 Lemma 18
I Lemma. For every circle C, a parsimonious scenario ρ for C, and an edge e of ΣS(C,ρ), ρ
can be partitioned into two (possibly empty) parsimonious scenarios, one for each sub-circle
delimited by e.

Proof. If C has two vertices, then the sub-circles in question are two copies of C, and
empty scenarios satisfy the statement. Suppose that it is true for any circle having at most
2k − 2 ≥ 2 vertices and take a circle with 2k vertices together with its parsimonious scenario
ρ and an edge e of ΣS(C,ρ).

Denote the two sub-circles delimited by e by C3 and C4. Take the first 2-break τ of ρ and
suppose that its vertices do not belong to the same sub-circle. In this case at least one of its
edges is incident to the vertices that do not belong to the same sub-circle. This edge crosses
e, which contradicts the planarity of ΣS(C,ρ). This means that the vertices of τ belong to
the same sub-circle. Without loss of generality we can suppose that it is C3. τ transforms C
into a union of two vertex-disjoint circles. Denote the one containing the endpoints of e by
C2 and the other one by C1. Due to Corollary 7, the rest of ρ can be partitioned into two
sub-sequences ρ1 and ρ2, that are respectively scenarios for C1 and C2.

The inductive hypothesis holds for the triplet C2, ρ2 and e, providing us with a partition
of ρ2 into two parsimonious scenarios for the sub-circles of C2 delimited by e. One of these
sub-circles is C4. Denote the other by C5 and denote the parsimonious scenarios obtained
for them by ρ4 and ρ5 respectively.
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By removing from ρ the 2-breaks in ρ4 and a 2-break τ , we obtain a sequence of 2-breaks
ρ′, that is a shuffle of the parsimonious scenarios ρ1 for C1 and ρ5 for C5. Due to Corollary 8,
ρ′ is a parsimonious scenario for the union of C1 and C5, which is the graph obtained from
C3 after τ is performed. Finally, by adding τ at the beginning of ρ′ we obtain a parsimonious
scenario for C3, which together with ρ4 satisfies the statement. J

A.4 Theorem 20

We first prove the following lemma.

I Lemma. For every circle C, a parsimonious scenario ρ for C, and a 2-break in ρ replacing
two black edges of C, the sequence of 2-breaks with this 2-break performed first and followed
by the rest of ρ is also a parsimonious scenario for C.

Proof. Take a circle C, its parsimonious scenario ρ and a 2-break τ in ρ replacing two black
edges. Due to Proposition 16, there exists a face in ΣS(C,ρ) bounded by the edges of τ . Using
Theorem 19 we obtain a partition of ρ into four scenarios for the sub-circles of C delimited by
the edges of τ and τ itself, however two of these scenarios are for the circles with 2 vertices,
thus of length 0. Denote the other two by ρ1 and ρ2. This means that ρ without τ is a shuffle
of two parsimonious scenarios for the vertex-disjoint circles. Using Corollary 8 we obtain
that ρ without τ is a parsimonious scenario for the union of these circles, that is obtained
from C after τ is performed. This means that moving τ to the beginning of ρ we obtain a
parsimonious scenario for C. J

I Theorem. For every circle C and its parsimonious scenarios ρ and µ, their scenario
graphs are equal if and only if these scenarios are equivalent.

Proof. If a circle C has two vertices, then its parsimonious scenarios are empty and the
statement is true. Suppose that the statement is true for every circle with at most 2k− 2 ≥ 2
vertices. Take a circle C with 2k vertices and two parsimonious scenarios ρ and µ for C.

First suppose that ρ and µ contain exactly the same 2-breaks but possibly in different
order. By construction, the edges of ΣS(C,ρ) are the edges of the 2-breaks in ρ, and these are
exactly the same as the edges of the 2-breaks in µ, meaning that ΣS(C,ρ) = ΣS(C,µ).

Now suppose that ΣS(C,ρ) = ΣS(C,µ). Take τ , the first 2-break of ρ. By construction, it
replaces two black edges of C and its edges bound a face in ΣS(C,ρ) due to Proposition 16.
ΣS(C,ρ) = ΣS(C,µ), thus the latter contains the same face that we denote by f . Due to
Corollary 17, µ contains a 2-break replacing the black edges bounding f , this means that
µ contains τ . Using the lemma proven above with a 2-break τ we get that the sequence of
2-breaks obtained by moving µ to the beginning of µ is a parsimonious scenario for C that
we denote by µ′. Using the first part of this proof we obtain that ΣS(C,µ′) is equal to ΣS(C,µ)
and thus ΣS(C,ρ).

Due to Corollary 7, τ transforms C into two vertex-disjoint circles C1 and C2. Denote the
subgraph of ΣS(C,ρ) induced by the vertices of C1 (respectively C2) by ΣS1 (respectively ΣS2).
Due to Corollary 8, the rest of ρ (respectively µ′) can be partitioned into two sub-sequences
ρ1, ρ2 (respectively µ′1, µ′2) that are scenarios for C1 and C2. By construction, ΣS(C,ρ1) = ΣS1

and ΣS(C,ρ2) = ΣS2 (respectively ΣS(C,µ′
1) = ΣS1 and ΣS(C,µ′

2) = ΣS2). Using the inductive
hypothesis we obtain that ρ1 and µ′1 contain exactly the same 2-breaks and so does ρ2 and
µ′2, which means that ρ and µ′ contain exactly the same 2-breaks. J

WABI 2019



13:16 Rearrangement Scenarios with a General Weight Function

A.5 Proposition 22
I Proposition. For every circle C and its quadrangulation ΣS there exists a parsimonious
scenario ρ such that ΣS(C,ρ) = ΣS.

Proof. If a circle has 2 vertices, then an empty scenario satisfies the statement. Suppose
that the statement is true for every circle having at most 2k − 2 ≥ 2 vertices and take a
circle C with 2k vertices together with its quadrangulation ΣS (see Figure 3 for an example).

Due to Lemma 15, ΣS has k − 1 internal face and k outer edges that are black in C. An
outer edge of C belongs to at most one internal face of ΣS , thus we obtain that ΣS has an
internal face f bounded by the edges among which there are at least two black edges of C.

Perform a 2-break on these black edges of C transforming it into a vertex-disjoint union
of two sub-circles C1 and C2. The subgraphs of ΣS induced by the vertices of C1 and C2 are
quadrangulations of C1 and C2 that we denote by ΣS1 and ΣS2 . They satisfy the inductive
hypothesis and provide us with parsimonious scenarios ρ1 and ρ2 for circles C1 and C2.
Combining them with the initial 2-break we obtain a parsimonious scenario ρ for C with
ΣS(C,ρ) = ΣS . J

A.6 Lemma 23
I Lemma. For a sub-circle C[i, j] of a circle C with i < j, its cost ω[i, j] is 0 if it has two
vertices, otherwise

ω[i, j] = minr,s
(
ω[i, r] + ω[r, s] + ω[s, j] + ω(τ)

)
for vertices i < r < s < j of a valid quadrilateral for C[i, j], where τ =

{
{i, r}, {s, j}

}
→{

{i, j}, {r, s}
}
if i is odd, and τ =

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
if i is even.

Proof. If j = i+ 1, then C[i, j] has two vertices, its parsimonious scenario is of length 0, and
thus of cost 0. We start by showing a lower bound on ω[i, j]. Take a scenario ρo of minimum
cost among the parsimonious scenarios for C[i, j], and a face f in ΣS(C[i,j],ρo) incident to
the edge {i, j}. Denote its other two vertices by r and s with r < s. By construction
i + r, r + s and s + j are all odd. Due to Theorem 19, ρo can be partitioned into four
parsimonious scenarios ρ1, ρ2, ρ3 and ρ4 for the sub-circles of C[i, j] delimited by the edges
bounding f plus a 2-break τ whose edges bound f . The sub-circles of C[i, j] in question
are respectively C[i, r], C[r, s], C[s, j] and a circle of size 2 containing the edge {i, j}. If i is
even, then {i, i+ 1} is gray and {i, j} is black by construction. Using Corollary 17 we obtain
that τ is

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
. Similarly τ is

{
{i, r}, {s, j}

}
→

{
{i, j}, {r, s}

}
if

i is odd. This establishes that ω(C) = ω(ρo) = ω(ρ1) + ω(ρ2) + ω(ρ3) + ω(ρ4) + ω(τ) ≥
ω[i, r] + ω[r, s] + ω[s, j] + 0 + ω(τ).

Now we show the upper bound on ω(C). Take i < r < s < j with odd i+ r, r + s, s+ j,
and minimum cost parsimonious scenarios ρ1, ρ2 and ρ3 for the sub-circles C[i, r], C[r, s] and
C[s, j]. If i is even, then {i, i + 1} is gray, thus {i, j} is black in C[i, j], and {r, s} is gray
in C[r, s]. This means that we can perform ρ2 on C[i, j], and then follow it by the 2-break
τ equal to

{
{i, j}, {r, s}

}
→

{
{i, r}, {j, s}

}
, followed by ρ1 and ρ3. This is a parsimonious

scenario for C[i, j] that we denote ρ, and ω[i, j] ≤ ω(ρ) = ω(ρ2) + ω(τ) + ω(ρ1) + ω(ρ3) =
ω[r, s] + ω(τ) + ω[i, r] + ω[s, j]. If i is odd, then similarly we obtain that {i, r} and {s, j}
are both black in C[i, r] and C[s, j] respectively, and that ρ1 followed by ρ3, a 2-break τ
equal to

{
{i, r}, {s, j}

}
→

{
{i, j}, {r, s}

}
and ρ2 is a parsimonious scenario for C[i, j] that

we denote by ρ. This leads to the inequality ω[i, j] ≤ ω(ρ) = ω(ρ1) + ω(ρ3) + ω(τ) + ω(ρ2) =
ω[i, r] + ω[s, j] + ω(τ) + ω[r, s]. J
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B Methods

B.1 Downloading and Preprocessing Orthologs
Protein coding Human (GRCh38.p12), Chimpanzee (Pan_tro_3.0), Gibbon (Nleu_3.0),
Mouse (GRCm38.p6) and Chicken (GRCg6a) genes were downloaded from Ensemble Release
96 using Biomart. Orthologous groups of protein coding genes between Human and the
rest of the species were downloaded from the same database. Ensemble provides orthologous
pairs with a confidence score that is either low or high. Low confidence pairs were filtered
out together with the orthologous pairs containing genes in unlocalized or unplaced scaffolds.
At this point we were left with 17319 orthologous pairs for Chimpanzee, 14923 for Gibbon,
16848 for Mouse, and 13024 for Chicken.

B.2 OrthoCluster: Identifying syntenic blocks
For the construction of syntenic blocks we chose to use OrthoCluster [45] due to its ease of use,
speed, and allowance for different parametric constraints. OrthoCluster takes the orthologous
groups as input and identifies the syntenic blocks. It handles many-to-many orthologs and
overlapping genes, thus no further filtering of the previously prepared orthologs was required.
OrthoCluster deals with various types of mismatches, however in this study we required the
genes in the syntenic blocks to share exactly the same order and strandedness, and contain no
mismatches. We processed these blocks by deleting the ones that were included in some other
blocks, and by merging those blocks that were consecutive in both genomes and either 1) had
the same order and strandedness, or 2) opposite order and strandedness in both genomes.
Table 1 contains the coverage of the blocks before merging, and the number of the blocks
after merging. The final blocks might have some overlaps due to the overlapping genes.

B.3 OrthoCluster Identifies Blocks of High Coverage Without
Performing a Whole Genome Alignment

Golden path length of the Human assembly GRCh38.p12 is around 3.1Gbp. For a set of
syntenic blocks, we divide the number of the nucleotides from Human included in at least
one of the blocks by this number to obtain the coverage of the blocks. The number of the
blocks and their coverage computed using OrthoCluster are comparable to those of the blocks
available on Ensemble Release 96 Compara database. These were computed using whole
genome alignments and their number of blocks and coverage are respectively 192 and 92%
for Chimpanzee, 277 and 90% for Gibbon, 363 and 88% for Mouse, 398 and 68% for Chicken.
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Motivation: Simultaneous alignment and folding (SA&F) of RNAs is the indispensable gold
standard for inferring the structure of non-coding RNAs and their general analysis. The original
algorithm, proposed by Sankoff, solves the theoretical problem exactly with a complexity of O(n6) in
the full energy model. Over the last two decades, several variants and improvements of the Sankoff
algorithm have been proposed to reduce its extreme complexity by proposing simplified energy
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of PMcomp, namely moving from the full energy model to a simpler base pair-based model, with
the accuracy of the loop-based full energy model. Instead of estimating pseudo-energies from
unconditional base pair probabilities, our model calculates energies from conditional base pair
probabilities that allow to accurately capture structure probabilities, which obey a conditional
dependency. Supporting modifications with surgical precision, this model gives rise to the fast
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and folding of RNAs inspired by Markov chains). Pankov benefits from the speed-up of excluding
unreliable base-pairing without compromising the loop-based free energy model of the Sankoff’s
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1 Introduction

In all forms of life, RNAs play essential roles that go beyond coding as messenger RNAs for
the synthesis of proteins. Non-coding RNAs (ncRNAs) directly regulate cellular mechanisms,
where some are known to be conserved for billions of years [2]. ncRNAs often have only weak
sequence conservation, since their (conserved) structure crucially determines their function.
Therefore, inferring the conserved secondary structure of homologs – most often, based on
RNA alignments, is central for the discovery and annotation of functional RNAs.

RNA structural alignment algorithms can be classified depending on whether they fold
and align simultaneously or in turn [19]. The gold standard for computing reliable alignments
(and common structures) of RNAs is still the simultaneous algorithm proposed by Sankoff
in 1985 [18]. By simultaneously aligning and folding the RNAs, it resolves the vicious
cycle that reliable RNA alignments must consider RNA structures (especially for RNAs of
medium to low sequence identity [6]), while computational structure prediction is typically
unreliable without comparative information. For a pair of RNA sequences, the algorithm
finds the optimal alignment and two compatible secondary structures that minimize the
total of sequence-alignment distance score and the free energies of the predicted structures.
With a run-time complexity of O(n6) and O(n4) for memory, the method requires extreme
computational resources, such that its application is largely restricted to small instances
and data sets. Efficient alignment algorithms are needed for the multiple alignments of
the clusters that can be obtained from large scale clustering of data from high-throughput
sequencing experiments [16].

Thus, several approaches have adapted Sankoff’s original algorithm to reduce its computa-
tional costs. Two main lines of the variants can be distinguished. Methods like Dynalign [13]
and FoldAlign [9] reduce the computational complexity by heuristic restrictions, e.g. intro-
ducing banding strategies or limiting the maximum size of the comparable sub-structures.
Since such methods need to perform expensive energy computations in the nearest neighbor
model [14], their applications are still limited without considering heuristic restrictions that
in turn could compromise their accuracy.

A highly viable alternative was proposed with the PMcomp algorithm [10], which replaces
the nearest neighbor energy model with a still accurate probabilistic model. This model allows
to drastically simplify the algorithms, which strongly reduces the computational overhead
and supports further algorithmic optimizations in PMcomp’s successors. For reducing the
overhead, PMcomp-type algorithms evaluate structures based on base pair probabilities,
which are precomputed by McCaskill’s algorithm [15] instead of calculating nearest neighbor
energy terms. Moreover, PMcomp-type algorithms such as LocARNA and similar approaches
with a probabilistic energy model [22, 20, 8, 11] further speed up by reducing the search
space. To this end, LocARNA considers only base-pairs that pass a defined probability
threshold. This sparsification improves over PMcomp’s complexity of O(n6) time and O(n4)
space, each, by a quadratic factor (resulting in the O(n4) time and O(n2) space requirements
of LocARNA).

With the algorithm SPARSE [21], we introduced a second level of sparsification using loop-
closing aware recursions to filter based on the joint probability of base-pairs and associated
loop-closing base-pairs. This sparsification reduces the time complexity of the alignment
algorithm to O(n2), starting from the precomputed probabilities. The joint probabilities
were computed based on our extension of the McCaskill’s algorithm [17].

We emphasize that all these methods, starting with the original Sankoff algorithm,
consider only non-crossing structures, even if crossing base pairs occur relatively frequently
in physical structures [3]. This is generally justified, since most secondary structures are
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dominated by non-crossing base pairs; in turn, the limitation to non-crossing structures allows
dynamic programming techniques, which are far more efficient and flexible than comparable
techniques that consider (even limited forms of) base pair crossings.

In this work, we utilize the joint probabilities in a novel way – not only for strong
sparsification as in SPARSE but as well to evaluate RNA structure more accurately in a
PMcomp-type algorithm. We start with showing that joint (or equivalently, conditional)
probabilities allow to precisely capture structure probabilities in the nearest neighbor energy
model. This corresponds to the exact capture of the nearest neighbor energies themselves.
Remarkably, while previous work discussed only the stacking base-pair helices [1], we cope
with all loop types. Based on the exact model, we suggest careful simplifications, that
allow incorporation of the model into alignment and folding (in the variant of the SPARSE
algorithm). Based on the novel precise probabilistic model, we propose the novel algorithm
Pankov with O(n2) time complexity. As fundamental novelty over its predecessors, it applies
an accurate full-loop energy model for evaluating the structures.

Performing an established benchmark, we show that Pankov is in practice faster than
LocARNA and significantly improves structure prediction over both SPARSE and LocARNA.
Compared to SPARSE, it even improves the sequence alignment quality.

2 Methods

2.1 Preliminaries
Basic notations

An RNA sequence A is a string over the alphabet {A, C, G, U}. A base pair a of A is a pair
(aL, aR) (1 ≤ aL < aR ≤ |A|) such that the respective sequence positions are complementary,
i.e. AU, GC or GU. A non-crossing RNA structure S of A, in the following called structure, is
a set of base pairs, where each two different base pairs (i, j) and (i′, j′) of S do not cross,
i.e. i < i′ < j < j′, and do not share any end, i.e. i, j, i′, and j′ are pairwise different.
To treat the external bases pairs of an RNA structure, we introduce a pseudo-base-pair
a0 := (0, |A|+ 1), which formally encloses all base pairs of A.

Tree structure

A nested RNA secondary structure S can be represented as a rooted structure tree, exemplified
in Figure 1(A,B), where base-pairs are encoded as nodes and the enclosing base-pairs are
the parents of the directly enclosed base-pairs. The chi(a ∈ S) function provides the set of
children base pairs that are directly enclosed by a given base pair a. Thus, the cardinality
of chi(a) is zero for hairpin loops (a3, a5, a6 in Fig. 1), at least two for multi-loops (a4) and
one otherwise (a1, a2), which represents stackings, bulges or interior loops. Furthermore,
the pseudo base pair a0 recursively encloses all base pairs of any structure that can be
formed by A.

Energy and probability of an RNA structure

The energy of a structure S can be estimated using the nearest neighbor energy model, which
is based on a loop-decomposition of the structure, where a loop is defined as the substructure
defined by a base pair a and its enclosed base pairs chi(a). The energy model provides
contributions Eloop(a, chi(a)) for such loops, which are summed up, i.e.

E(S) =
∑
a∈S

Eloop(a, chi(a)). (1)
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(A)

a4

a5 a6

a1
a2

a3

a0

(B)

a0

a1 a4

a3

a2 a5 a6

(C)

PPMcomp(S) = P(a1) ·P(a2) ·P(a3) ·P(a4) ·P(a5) ·P(a6)
PPankov(S) = P(a3‖a2) ·P(a2‖a1) ·P(a1‖a0) · [P(a5‖a4) ·P(a6‖a4)] ·P(a4‖a0)

Figure 1 (A, B) Illustrations of an exemplary structure S and the respective structure tree.
PMcomp energy model is composed of the probabilities of base-pairs, shown with plain black arcs and
nodes. Pankov energy model additionally incorporates in-loop probabilities of paired base-pairs that
are illustrated with blue arrows. (C) Top: PMcomp structure model assume independence between
the base-pair probabilities by multiplying the probabilities. Bottom: Pankov uses a loop-aware
scheme to compute the probability of the structure that is efficiently calculated from pre-computed
loop-conditional probabilities P (a‖a′) based on the parent-child relation of the base-pairs.

By assuming a Boltzmann distribution of the structures based on the principles of statistical
mechanics, there is a bijection between energies and probabilities of structures. Thus, the
probability P (S) of the structure S is related to its energy E(S) by

P (S) = exp (−E(S)/RT )/Z = 1
Z

∏
a

exp(−Eloop(a, chi(a))/RT ), (2)

based on its loops’ Boltzmann weights and the partition function Z =
∑
S exp (−E(S)/RT ),

which is efficiently computed by McCaskill’s algorithm [15].
If inverted, this allows transforming structure probabilities back to energies:

E(S) = −RT · log(P (S)) + Eens, (3)

where Eens = −RT · log(Z) denotes the ensemble energy. This notation can be further used
to derive the common definition of the probability of a base pair a P (a) as

P (a) =
∑
S3a

P (S), (4)

which can be efficiently computed by McCaskill’s algorithm.

2.2 PMcomp assumes independence of base-pair probabilities
PMcomp alignment and folding score

The alignment and folding score of PMcomp [10], which is assigned to an alignment A and
RNA structures SA and SB , can be formulated as

alignment-scorePMcomp(SA, SB ,A) =
∑
a∈SA

ΨA
a +

∑
b∈SB

ΨB
b +

∑
(iA,iB)∈A

σ(iA, iB) +Nindelγ.

The first two terms define the structural component of the score that is discussed in the
next section. The last two terms define the sequence component of the score. σ is the base
similarity for two matched sequence positions iA and iB from sequence A and B, resp., and
γ is the gap penalty. Nindel is the number of insertions and deletions in A.
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PMcomp structure scoring model

Here, we focus on the structure component of PMcomp’s alignment and folding score, since
we want to investigate how well the probabilistic model reflects the thermodynamic energy
model. The score of a structure S of sequence A normalizes and sums up the log-scores of
its base pair probabilities, i.e.

scorePMcomp(S) =
∑
a∈S

ΨA
a =

∑
a∈S

log (P (a)/Pmin) = log(
∏
a∈S

P (a))− |S \ {a0}| · log (Pmin) .

(5)

Here, base pair probabilities P (a) are normalized via Pmin, the minimal probability of a
significant base-pair, such that less probable base-pairs are unfavored. The logarithm transfers
the probabilistic model back to the energy space similar to Eq. 3.

Putting the normalization term aside, the PMcomp’s structure score contains a notion of
structure probability (see first log term on the right of Eq 5), which we denote with

PPMcomp(S) =
∏
a∈S

P (a). (6)

Noticeably, base pairing events are assumed to be independent, which is in violation with the
underlying Nearest-Neighbor energy model, as we will show next. Thus, PMcomp’s structure
score does not relate well with the energy of the respective structure.

2.3 Exact computation of structure probabilities based on conditional
loop probabilities

Here we prove that the equilibrium probability of a structure within the ensemble of possible
structures can be expressed exactly based on conditional loop probabilities. This provides
the theoretical foundation for discussing the Pankov energy model in the subsequent section.

I Theorem 1. Let P (S) be the probability of structure S and have P (loop(a, chi(a)) | a) as
the conditional probability of the loop in S closed by base-pair a, the following equation holds:

P (S) =
∏
a

P (loop(a, chi(a)) | a) (7)

Proof. The free energy of the secondary structure S is composed of its loop energies Eloop
in the nearest-neighbor thermodynamic model (Eq. 1), which implies that its probability
can be computed from the respective Boltzmann weights of loops (Eq. 2). Decomposing the
right term of Eq. 7 by the partition function Za inside the base-pairs a, i.e.

Za =
∑

Sa closed by a
exp(−E(Sa)/RT ), (8)
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we get:

∏
a

P (loop(a, chi(a))|a) =
∏
a

(∏
a′∈chi(a) Za′

)
· exp(−Eloop(a, chi(a))/RT )

Za

=
∏
a

∏
a′∈chi(a) Za′∏
a Za

·
∏
a

exp(−Eloop(a, chi(a))/RT )

=∗

∏
a′ 6=a0

Za′∏
a Za

·
∏
a

exp(−Eloop(a, chi(a))/RT )

=∗∗
1
Z

∏
a

exp(−Eloop(a, chi(a))/RT ) =(Eq.2) P (S). (9)

(=∗): Every arc but a0 occurs exactly once as a child in the numerator product.
(=∗∗): a0 encloses all possible structures, thus Za0 = Z. J

Eventually, this work extends and generalizes the approach for canonical helices (only
stackings) from [1] to arbitrary secondary structures.

2.4 Pankov structure scoring model
Here, we want to score structures for simultaneous alignment and folding based on the
derived Eq. 7, i.e. based on pre-computed conditional loop probabilities, to better reflect
the structures’ energy within the overall alignment score. Due to the exponential number
of possible multi-loop branchings, a polynomial pre-computation and storing of respective
multi-loop probabilities P (loop(a, chi(a)) is not feasible. Thus, we propose an approximation
of such terms based on pair-in-loop probabilities introduced next.

Approximate loop probabilities using pair-in-loop probabilities
To handle arbitrary multi-loops (closed by a) with any number and composition of children
base pairs chi(a), we restrict computation and storage to all parent-child pairs a×a′ ∈ chi(a),
i.e. we define the pair-in-loop probability P (a′‖a), in the following abbreviated as in-loop
probabilities, as

P (a′‖a) = P (a′ ∈ chi(a) | a) = P (a, a′ ∈ chi(a))
P (a) =

∑
S⊃{a,a′}∧a′∈chi(a) P (S)

P (a) , (10)

where we calculate the joint probabilities of the form P (a, a′ ∈ chi(a)) by an extension of
McCaskill’s algorithm introduced in [17], which can be performed in O(n3) time. To this end,
the pair-in-loop information is stored in additional matrices during the partition function
computation without increasing the computational complexity. The probability of a base-pair
being external, i.e. being enclosed by the pseudo-arc a0, is also computed and stored. Within
the following, we discuss how to approximate loop probabilities from in-loop probabilities.

Pair-in-loop approximation of non-branching-loop probabilities. When using pair-in-loop
probabilities to approximate non-branching loop probabilities, i.e. loops with exactly one
child base pair, the latter is overestimated since Eq. 10 does not distinguish the loop context
of the pair. Therefore, also multi-loops contribute to in-loop probabilities such that it follows

P (a′‖a) ≥ P (loop(a, {a′} = chi(a)) | a). (11)
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Scoring based on least stable multi-loop branch. An alternative approximation would be
to assign the least probable branch to the whole multi-loop. This can be intuited in the
energy space as that least stable branching of the multi-loop dominants formation of the
multi-loop.

PML-min(loop(a, chi(a)) | a) = min
a′∈chi(a)

P (a′‖a). (12)

Due to the same reasons as for non-branching loops, the following relation holds, i.e.

PML-min(loop(a, chi(a)) | a) ≥ P (loop(a, chi(a)) | a). (13)

Assuming multi-loop-branch independence. As a straightforward approach we assume an
independence between the multi-loop branches that are conditioned to be closed under the
same base-pair, i.e.

PML-prod(loop(a, chi(a)) | a) =
∏

a′∈chi(a)

P (a′‖a). (14)

Weighted overall structure scores
For scoring the structure in the implementation of the Pankov alignment algorithm, we assign
the ultimate scoring scorePankov based on the product of multi-loop contributions following
Eq. 14, that we designate as the Pankov’s probability of structure.

PPankov(S) =
∏
a∈S

∏
a′∈chi(a)

P (a′‖a) (15)

Similar to PMcomp, the probabilities are incorporated on the logarithmic scale via the
Φ(a′, a) function, which also includes a normalization via the bonus term β. The latter term
subsequently balances structure and sequence contributions within the alignment scoring.

Φ(a′, a) = log(P (a′‖a)) + β, (16)

scorePankov(S) =
∑
a∈S

∑
a′∈chi(a)

Φ(a′, a)

= log(PPankov(S)) + |S \ {a0}| · β (17)

2.5 Pankov alignment approach
The Pankov algorithm keeps track of closing-loop base-pairs in an efficient manner during
dynamic programming computation of the score matrices. The matrices are defined similar
to the dynamic programming recursions of the SPARSE algorithm [21], which achieve
a quadratic time complexity for the alignment by exploiting the sparsity of the in-loop
probabilities. Thus, Pankov uses the following matrices:

D(a, b) for the scores of matching the two base pairs a = (aL, aR) and b = (bL, bR) and
aligning the two enclosed subsequences;
Mab(i, k) for storing the maximum score of all possible alignments and foldings of the
subsequences A[aL + 1..i] and B[bL + 1..k] that are under the loops enclosed by a and b;
and
IA and IB for supporting variability in the helix size via deletion and insertion of base-pairs
under the loops closed by a and b respectively.
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The matrix entries can be calcluted recursively:

D(a, b) = max


Mab(aR − 1, bR − 1)
IabA (aR − 1)
IabB (bR − 1)

Mab(i, k) = max



Mab(i− 1, k − 1) + σ(i, k)
Mab(i, k − 1) + γ

Mab(i− 1, k) + γ

max
P (a1)≥θ,P (b1)≥θ

aR
1 =i,bR

1 =k
P (a1,a)≥θ′P (b1,b)≥θ′


Mab(aL1 − 1, bL1 − 1)
+ D(a1, b1) + σ(aL, bL) + σ(aR, bR)
+Φ(a, a1) + Φ(b, b1)



IabA (i) = max

I
ab
A (i− 1) + γ

max
P (a1)≥θ,P (a1,a)≥θ′,aR

1 =i
(aL1 − aL + 1) · γ +D(a1, b) + Φ(a, a1)

IabB (k) = max

I
ab
B (k − 1) + γ

max
P (b1)≥θ,P (b1,b)≥θ′,bR

1 =k
(bL1 − bL + 1) · γ +D(a, b1) + Φ(b, b1)

Here θ is the minimum base-pair probability threshold and θ′ is the corresponding
threshold for the joint in-loop probabilities. Following PMcomp’s energy model, SPARSE
calculates Φ(a, a1) as Ψa1 (independent of the enclosing base pair a) – in Pankov we make
use of the full flexibility.

The asymptotic time complexity of the Pankov alignment algorithm is O(n2). Similar to
SPARSE, the base pairing and joint in-loop probabilities need to be computed only once
for each sequence. This is important for computing multiple alignments, using a pairwise
aligner like Pankov in a progressive scheme (e.g. via mlocarna tool from the LocARNA
software package). The Pankov implementation of the recursions keeps track of both ends
of the base-pairs, while in SPARSE the tracking is relaxed and M matrices with common
left-ends are combined for further speed-up, although the complexity is not affected. So in
practice, compared to SPARSE, Pankov’s run-time is slightly increased.

3 Results and Discussion

3.1 Evaluation of the probabilistic energy models
The evaluation procedure

We evaluated the agreement between the reference and the probabilistic free energy models.
Having the Turner [14] nearest-neighbor full energy model as the reference, we compared the
performance of PMcomp’s base-pair independence model and Pankov’s loop-based conditional
probability model. The Sankoff-like algorithms maximize (or minimize) the sum of structure
and sequence alignment scores over the space of possible formations of alignments and
structure. Hence, a higher correlation between the calculated energies of a model with the
reference free energy values indicates better modeling of the structure score, that is expected
to perform better for the task of RNA simultaneous alignment and folding.

We developed an evaluation procedure to measure the level of agreement between the
probabilistic models and the reference energy model with correlation coefficients. The
procedure performs these steps for an input RNA sequence: (i) suboptimal secondary
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structures are generated using RNAsubopt method [24], for the range of the minimum free
energy structure up to 5kcal/mol (-e=5 -s) and 500 suboptimals. (ii) for each suboptimal
structure, the probability or free energy is calculated according to the described energy
models and structure scores (iii) Over the set of suboptimal structures, the Spearman’s
rank correlation coefficient between the reference RNAsubopt’s free energies and the free
energies/scores of the models are computed.

The five approximation variants of the probabilistic models are evaluated which compute
the probability or score of a structure. More precisely, these variants are computed accord-
ing to the equations PPMcomp(Eq. 6), scorePMcomp(Eq. 5), PPankov using PML-min(Eq. 12),
PPankov using PML-prod (Eq. 14) and scorePankov using PML-prod and β terms (Eq. 17). The
structure probabilities are transferred to the energy dimension according to Eq. 3. For
consistency in the representation, the scores were also scaled with a similar scheme. As
a monotonic function, the energy scale transformation does not affect the absolute rank
correlations in neither of the cases.

The minimal significance probability Pmin in Eq. 5 was set to 1/(2 · sequence-length),
this is used for the PMcomp score scheme of LocARNA. The bonus balance term β from
Eq. 17 was set to 1.5, a bonus of zero makes the rank correlation of scorePankov same
as the rank correlations of PPankov using PML-prod. However, a non-zero value is needed
to balance the total alignment score by appropriately shifting the energy. The base-pair
and conditional in-loop probabilities were computed using the extended implementation of
McCaskill’s algorithm (see methods). The run-time complexity for calculating these values
for a structure, using the precomputed matrices, are linear to the number of base-pairs in
structure (O(|S|)) as well as the length of the sequence.

Figure 2 The distribution of rank correlation for evaluating the energy models over around 500
RNA sequences from RNAstrand database. Spearman’s rank correlations are computed for each
sequence, between the reference and the models’ approximations of the suboptimal energies.

Evaluation of real ncRNAs

The described evaluation procedure was repeated for the set of RNA sequences obtained from
the RNAstrand database (sequence length [30-200] nucleotides, entries without ambiguous or
spurious characters). Figure 2 shows the distribution of the rank correlation evaluation of
the sequences.

To inspect the model agreements in details, we visualized the output on a sample
tRNA transcript of RNAstrand (ID: SPR_00633) in Figure 3. An evaluation for the top
500 suboptimal structures of lowest free energies is shown. As can be seen in Figure 3,
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Figure 3 Evaluation of the agreement between the structure probabilistic and scoring models
with the reference energies for a tRNA transcript. Each dot corresponds to a suboptimal structure
of the tRNA. The structures are sorted according to reference free energy in the x-axis, computed by
Vienna package RNAsubopt tool. The probabilities and scores are scaled to the energy dimension
(Eq. 3). Annotated correlations of each panel are the Spearman’s correlation coefficients between
the x and y axes. Each correlation corresponds to an individual entry within the corresponding
distributions that are shown as violin plots in Figure 2.

the Pankov’s in-loop-probability-based models (bottom row of Figure 3) perform best in
preserving the reference free energy ranks. It is also notable that the energy scaled values
are precisely scaling back to the range of reference free energies.

The scatter plot for Pankov energy (ML-min) in Figure 3 confirms the relation for the
probability of multiloops that was presented in the methods section (Eq. 13), PPankov with
a ML-min approximation is bounded by the exact probability of the structure such that the
approximated energies are always less than or equal to the reference energies.

3.2 Alignment performance evaluation
We evaluated our implementation of Pankov alignment algorithm on the pairwise alignment
benchmark set, Bralibase 2.1 [23]. For the evaluated methods, the sparsification probability
thresholds were set similar. Namely, LocARNA, SPARSE and Pankov with the minimum
base-pair probability θ to 0.001 (option -p). For SPARSE and Pankov the in-loop probability
threshold θ′ was set to 0.0001 (option –prob-basepair-in-loop). The sequence-structure
balance term β of Pankov’s score (Eq. 17) was set to 1.5, the chosen among the values 1, 1.5,
2 and 2.5 posing a fair balance for the average of sequence and structure scores. The Matthews
Correlation Coefficient (MCC) performance was stable for β of 1.5 and larger values.

Figure 4(A,B) show the performance comparison in term of sequence alignment quality
sum-of-pairs-score (SPS) and structure prediction quality by Matthews Correlation Coefficient
(MCC)[7]. To mediate the Bralibase curve “dent” effect [12], the visualization was done for
sequence pairs of sequence identity (SI) between 30 to 80% to avoid a curve dent around SI-80
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Figure 4 Comparison of the alignment performance on the Bralibase 2.1 pairwise benchmark
set K2. (A) The sequence-level quality is measured as sum-of-pairs-score (SPS) by comparing the
alignment edges of the reference and predicted alignments. (B) The structure prediction quality is
measured as Matthews Correlation Coefficient (MCC) by comparing the base-pairs of the reference
structure with the predicted structures. The solid lines depict all families and the dashed lines depict
the subset without tRNA and the two rRNA families.

that seems to be mainly caused by enforcing a continuous curve over a quasi-heterogeneous
distribution. Entries with a higher SI are not of particular interest, as they mostly perform
fine also using the structure-unaware alignment algorithms. Furthermore, the dashed curves
in Figure 4 correspond to the subset of the benchmark by excluding the three ribosomal
and tRNAs families. These families are shown to be moderately overrepresented in the
Braliabase and could overweight in the overall performance, especially on lower sequence
identity range [12].

In the aspect of execution time, Pankov is overall faster than LocARNA and slower than
SPARSE since Pankov implements the exact loop-closing track of the alignment recursions
(see methods). Our implementation of Pankov had an average run time of 1.8 seconds
on Bralibase K2 instances, when running on a AMD Opteron 2.1 GHz processor; this
compares to respective average run times of 3.9 and 0.7 seconds of LocARNA and SPARSE.
As can be seen in Figure 4, Pankov considerably improves structure prediction over both
SPARSE and LocARNA. Compared to its predecessor SPARSE, it even improves the sequence
alignment quality.

4 Conclusion

Sankoff’s algorithm is the reference standard for simultaneous alignment and folding (SA&F)
of RNAs. While the theoretical work integrates the full loop-based nearest-neighbor energy
model, the derived algorithms mostly implement a simplified or limited structure energy
models or restrict on the alignment and structure formation possibilities, to reduce the high
computational complexity. PMcomp proposed a probabilistic light-weight energy model.
This empowers the PMcomp-like methods to strongly reduce the computational overhead of
the exact thermodynamic folding details and allows further algorithmic optimizations and
sparsification based on the equilibrium probability of the base-pairs.

WABI 2019
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Here we showed that PMcomp’s energy model assumes a level of independence between
the base-pairing events, which violates the underlying nearest neighbor energy model. To
solve this issue, we demonstrated an exact way to compute the probability of an RNA
secondary structure from the decomposed loop-probabilities. To circumvent the computational
complexity of multi-loop cases, we introduced an energy model to accurately approximate
this loop decomposition in an efficient way using the precomputed in-loop probabilities. Our
proposed energy model takes care of the nearest-neighbor thermodynamic rule. It was further
empirically validated that the novel model has a much closer agreement with the full-loop
energy model, based on the dataset of real non-coding RNAs. Using this energy model, we
proposed the Pankov algorithm for pairwise simultaneous alignment and folding of RNAs.
Benchmark results show that the implementation of Pankov outperforms its predecessors on
predicting the secondary structure from the pairs of homologous RNAs.

The concept of conditional and joint in-loop probabilities has some parallels to the
production rules of Stochastic Context-Free Grammars (SCFG) that can encode base-pair
relations differently [5], they have also been used to solve the SA&F problem [4]. The
overhead of treating various nucleotides separately during the alignment procedure is similar
to the invocation of the full loop-based energy model, which restrains the implementation
towards using simplified grammars that may not benefit from the power of thermodynamic
rules. In our proposed model, the probabilistic terms are obtained from the thermodynamic
partition function, so the probabilistic transition rules are straightforward and do not need
to deal with individual types and combinations of nucleotides separately.

Pankov, to the best of authors’ knowledge, is the first SA&F method that dissociates the
loop computation details from the alignment and prediction step to efficiently solve the target
problem without substantially compromising the power of underlying thermodynamic rules.
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Abstract
Motivation: Most modern seed-and-extend NGS read mappers employ a seeding scheme that
requires extracting t non-overlapping seeds in each read in order to find all valid mappings under an
edit distance threshold of t. As t grows (such as in long reads with high error rate), this seeding
scheme forces mappers to use more and shorter seeds, which increases the seed hits (seed frequencies)
and therefore reduces the efficiency of mappers.
Results: We propose a novel seeding framework, context-aware seeds (CAS). CAS guarantees
finding all valid mapping but uses fewer (and longer) seeds, which reduces seed frequencies and
increases efficiency of mappers. CAS achieves this improvement by attaching a confidence radius to
each seed in the reference. We prove that all valid mappings can be found if the sum of confidence
radii of seeds are greater than t. CAS generalizes the existing pigeonhole-principle-based seeding
scheme in which this confidence radius is implicitly always 1. Moreover, we design an efficient
algorithm that constructs the confidence radius database in linear time. We experiment CAS with
E. coli genome and show that CAS reduces seed frequencies by up to 20.3% when compared with
the state-of-the-art pigeonhole-principle-based seeding algorithm, the Optimal Seed Solver.
Availability: https://github.com/Kingsford-Group/CAS_code
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1 Introduction

Read mapping is used ubiquitously in bioinformatics. Commonly, it is defined as follows:

I Problem 1 (Read Mapping). Given read R and reference T (usually with |T | � |R|), an
edit distance measurement D(·, ·), and an error tolerance threshold t, we say a substring of T
at location [l1, l2], i.e., T [l1, l2], is a valid mapping of R if we have D(R, T [l1, l2]) < t.
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To efficiently map reads, modern mappers usually employ the seed-and-extend mapping
strategy [8, 9, 1, 14]: a mapper extracts a substring of R as a seed, s; iterates through all
seed locations of s in T ; at each seed location, performs sequence alignment of R against the
surrounding text in T ; reports alignments that have edit distances below t as valid mappings.

For mappers that use non-overlapping seeds, the number of seeds to extract from a read
R is governed by the pigeonhole principle: to find all valid mappings of R, the mapper must
divide R into at least t non-overlapping seeds. Otherwise, the mapper will not be able to
consistently find all valid mappings of R in T . As t grows, the length of seeds is reduced.
Using short seeds significantly increases the workload of a mapper [6, 11]. Shorter seeds
appear more frequently in T , hence increasing the number of alignments while mapping a
read. To improve the performance of mappers, it is desirable to use fewer non-overlapping
seeds under a fixed t, which lets a mapper not only use fewer seeds, but also use longer seeds.

In this paper, we focus on improving seed-and-extend mappers that use non-overlapping
seeds. We propose a novel seeding scheme, called context-aware seeds (CAS). CAS enables a
mapper to use fewer than t seeds without missing any valid mappings. CAS attaches each
seed s with a confidence radius score, cs, with cs ≥ 1. Let S be a set of non-overlapping
seeds from R. CAS ensures that as long as

∑
s∈S cs ≥ t, then S is sufficient to find all valid

mappings of R under an error tolerance threshold of t. When S includes any seed s with
cs > 1, then |S| < t and all valid mappings are secured with fewer-than-t seeds (|S| denotes
the number of seeds in S). In the worst case where cs = 1 for all s ∈ S, CAS degenerates
into the case governed by pigeonhole principle with |S| = t.

Figure 1 compares CAS and the pigeonhole-principle-based seeds. Assume that we have
verified that the two CAS seeds AACC and TTGG have confidence radii of cs = 2. Therefore
CAS can be guaranteed to find all valid mappings with just these two seeds, as

∑
s cs = 4 ≥ t.

Using the pigeonhole principle, however, a mapper needs to select t = 4 non-overlapping
seeds. It forces the mapper to pick short and repetitive seeds, making the mapper perform
more local alignments.

Figure 1 Illustration of CAS. The upper part shows a read and a reference. Suppose that t = 4,
i.e., we want to find all alignments of the read in the reference with fewer than 4 edits. There is only
one such locally optimal alignment (marked as red). The middle part shows the seed extraction
result with the pigeonhole principle, which splits the read into t = 4 seeds. This gives many seed
locations and thus many alignments. With CAS (in the lower part), we can split the read into 2
long seeds while still guarantee to find all valid mappings. The two long seeds together have a total
seed frequency of 2, drastically reducing the number of alignments.

We establish the theoretical foundation of CAS and demonstrate that with CAS future
mappers can map reads more efficiently using fewer, longer and less frequent seeds without
losing valid mappings. We also propose a suffix-trie-based CAS database construction
algorithm that builds a CAS database from T in linear time, based on which we design
a greedy CAS seeding algorithm that extracts CAS from reads. We test the greedy CAS
seeding algorithm against a state-of-the-art pigeonhole-principle-based seeding algorithm,
Optimal Seed Solver (OSS), on an E. coli dataset.
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2 Context-Aware Seeds

CAS reduces seed usage in read mapping by introducing a novel metric for seeds in T , the
confidence radius. A seed s in T has a confidence radius cs if cs is a smallest value (a lower
bound), such that all substrings in T whose edit distance is smaller than cs must occur in T
within a small window where s occurs. The window equals to extending s by cs − 1 letter(s)
at both ends. For example, under t = 2, seed AACC in T from Figure 1 has a confidence
radius of 2. Any substring in T whose edit distance to AACC equals 1 (e.g., AAC, ACC, GAACC,
AACCG) locates within the 1-letter extended window of AACC (GAACCG). The confidence radius
of each possible seed in T can be computed by profiling T . CAS guarantees that all valid
mappings of a read R can be located, as long as the seeds s extracted from R collectively
have a confidence radius of

∑
s cs > t. Below, we give the formal definition of CAS and prove

the correctness of CAS.
Let s be a string in T and [l1, l2] be a pair of locations. We say string T [l1, l2] is in the

vicinity of s under an integer c, if ∃[ls1, ls2], where l1−c < ls1 < ls2 < l2 +c and T [ls1, ls2] = s.
Furthermore, let seed s be a substring of R at [lr1, lr2] (s = R[lr1, lr2]) and let T [l1, l2] be a
valid mapping of R. We say T [l1, l2] is in the vicinity of s with regard to R under c, if string
T [l1 + lr1, l1 + lrr2] is in the vicinity of s under c. If a valid mapping T [l1, l2] is in the vicinity
of s with respect to R under t, then T [l1, l2] can be discovered by locally aligning R against
the surrounding text in T at each seed location of s.

The pigeonhole principle states that by dividing R into a set of t non-overlapping seeds,
denoted by S, then ∀[l1, l2] where T [l1, l2] is a valid mapping of R, there must be s ∈ S
where T [l1, l2] is in the vicinity of s with regard to R.

CAS seeks to retain the seed vicinity guarantee of the pigeonhole principle, where all valid
mappings of a read R are in the vicinity of its seeds with regard to R under t, with fewer
than t seeds. Given two substrings s and s′ of T and a edit-distance threshold t, we say s′

is a neighbor of s if D(s, s′) < t. Assume that s′ is a neighbor of s under t, CAS defines s′

as a trivial neighbor of s, if and only if ∀[l1, l2] where T [l1, l2] = s′, T [l1, l2] is in the vicinity
of s under D(s, s′). Otherwise CAS defines s′ as a nontrivial neighbor of s. Finally, CAS
defines the confidence radius cs of s as the minimum of 1) t and 2) the minimum edit-distance
between s and all nontrivial neighbors of s. Since a seed is trivial to itself and is at least
1-edit-distance away from any other string, we have t ≥ cs ≥ 1 for any seed s.

We now give the central theorem of CAS, the theoretical foundation that enables seed-
and-extend mappers to find all valid mappings using fewer than t seeds.

I Theorem 1. Let S be a set of non-overlapping seeds of a read R, if
∑

s∈S cs ≥ t, then
∀[l1, l2] where D(R, T [l1, l2]) < t, ∃s ∈ S where T [l1, l2] is in the vicinity of s with regard to
R under t.

Proof. Assume that T [l1′, l2
′] is a valid mapping of R, where D(R, T [l1′, l2

′]) < t. Further
assume that T [l1′, l2

′] is not in the vicinity, with regard to R under t, of any s ∈ S. In the
minimum-edit-distance alignment between R and T [l1′, l2

′], assume that the non-overlapping
seeds s1, s2, . . . , sn of R are aligned to the non-overlapping segments sT 1, sT 2, . . . , sT n

of T [l1′, l2
′], with n = |S|. Since T [l1′, l2

′] is not in the vicinity, with regard to R under
t, of any s ∈ S; and also because csi ≤ t for all i; there does not exist i where sT i is in
the vicinity of si, under csi. Therefore, sT i is a nontrivial neighbor of si for all i ∈ [1, n].
Because csi is the minimum edit-distance between si and any of its nontrivial neighbors,
we have D(R, T [l1′, l2

′]) ≥
∑

i D(si, sT i) ≥
∑

s cs ≥ t. D(R, T [l1′, l2
′]) ≥ t contradicts the

assumption that T [l1′, l2
′] is a valid mapping of R. Therefore such T [l1′, l2

′] does not exist. J
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3 Construction of Confidence Radius Database

The confidence radius cs of each seed s is stored in a table, called the confidence radius
database. The confidence radius database only needs to be constructed once offline for a
reference T .

Computing cs of seed s involves finding the minimum edit distance to its nontrivial
neighbors. Below we propose an algorithm that constructs the confidence radius database in
O(|Σ|2 ·M) time, where Σ is the alphabet set of T and M is the total number of neighbors
of all strings in T (up to length P and under the edit distance threshold t).

The confidence radius database is constructed in two steps: first, we construct a neighbor
database, which stores all neighbors of all seeds (up to length P ) under the edit distance
threshold t; then, we find the confidence radius of each from its neighbors. We prove that
both steps can be done in O(|Σ|2 ·M) time.

3.1 Construction of the Neighbor Database
To find all neighbors of all substrings in T (up to a maximum length P ), we first build
a P -level suffix trie of T , then find all neighbors of each seed in Trie by systematically
traversing the suffix trie in a top-down manner. Formally, let Trie = (V,E) be a suffix trie
of T of a maximum depth of P + t. Let r ∈ V be the root of Trie. Each node represents a
substring in T , i.e., the string obtained by concatenating the letters on edges along the path
from r to v. We denote the edit distance between these two substrings corresponding to u
and v as D(u, v). We aim to solve the following problem:

I Problem 2. Given a suffix trie Trie = (V,E) and an integer t, to compute all pairs of
nodes u, v ∈ V such that D(u, v) ≤ t.

For any v ∈ V , p(u) denotes the parent node of v in Trie. σ(p(v), v) denotes the letter
on the edge between v and p(v), i.e., (p(v), v) ∈ E. We have the following lemmas.

I Lemma 2. Let u, v ∈ V . Then D(u, v) ≤ t only if D(p(u), p(v)) ≤ t.

Proof. Proved in Landau and Vishkin [7] by enumerating and validating all possible scenarios.
J

I Lemma 3. Let u, v ∈ V . We have

D(u, v) = min


D(p(u), p(v)) + δuv

D(p(u), v) + 1
D(u, p(v)) + 1

where δuv = 1 if σ(p(u), u) 6= σ(p(v), v) and δuv = 0 if σ(p(u), u) = σ(p(v), v).

Proof. This follows the dynamic programming algorithm for the edit distance problem. J

Lemma 2 shows that nodes are neighbors only if their parents are neighbors. Hence the
neighbors of a child node must be the children of the neighbors of its parent node. Lemma 3
further shows that the edit distance between two children nodes can be computed in constant
time, given the edit distances between one child and the parent node of the other child, as
well as the edit distance between the two parent nodes.

We construct the neighbor database by traversing Trie as follows: First, assign each node
in V an integral rank from {1, 2, · · · , |V |} following a top-down, left-to-right order. The root
r of Trie has rank of 1, and then the children of children of r have ranks of 2, 3, · · · , from the
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leftmost child to the rightmost child, and so on. Nodes that are deeper in Trie rank higher.
Among nodes of the same depth, children of a higher ranking parent node rank higher. A
breadth-first-search traversal of Trie ranks all nodes.

For any v ∈ V , we define Xv := {u ∈ V | D(u, v) ≤ t} as the set of neighbors of v,
including v itself, and define Yv := {D(u, v) | u ∈ Xv} as the accompanying edit-distance
set of Xv. For every neighbor node u in Xv, Yv provides the edit distance between u and v.
We compute Xv and Yv for each node v ∈ V from low ranking nodes to high ranking nodes.
Both Xv and Yv are implemented as arrays.

The algorithm for constructing the neighbor database is summarized in Algorithm 1. We
iterate through all nodes by rank from low to high. For each node v ∈ V , we iterate through
all children of v. For each children node v′ of v, we compute Xv′ and Yv′ of v′ based on
the previously computed Xv and Yv of v. Figure 2 illustrates the process of validating a
candidate neighbor u′ of another node v′, based on the information of its parent node v and
the neighbor u of v, where u is also the parent of u′ (lines 4–17 in Algorithm 1). We prove
that this algorithm maintains the following three invariants:

v

v′

u

u′

Xv,Yv

Xv′ ,Yv′

k

kv′

kv

Figure 2 Illustration of processing a single node v (i.e., lines 4–17 of Algorithm 1).

Algorithm 1 Linear Time Algorithm for Problem 2.
Input: Suffix trie Trie = (V,E) and the edit-distance threshold t
Output: Xv and Yv for each v ∈ V
0. Initialize Xr and Yr for root r ∈ V .
1. FOR each node v ∈ V in ascending order:
2. Initialize pointer kv = 0 for arrays Xv and Yv.
3. Initialize arrays Xv′ and Yv′ for each child v′ of v as empty arrays.
4. Initialize pointer kv′ = −1 for arrays Xv′ and Yv′ for each child v′ of v.
5. FOR k = 0→ |Xv|:
6. LET u := Xv[k].
7. FOR each child u′ of u:
8. FOR each child v′ of v:
9. LET δ = 1 if σ(u, u′) 6= σ(v, v′) and δ = 0 if σ(u, u′) = σ(v, v′). Compute

D1 = Yv[k] + δ, i.e., D1 = D(v, u) + δ.
10. Increase kv until Xv[kv] ≥ u′. IF we have Xv[kv] = u′, i.e., u′ ∈ Xv, THEN

compute D2 = Yv[kv] + 1, i.e., D2 = D(v, u′) + 1; otherwise set D2 =∞.
11. Increase kv′ until Xv′ [kv′ ] ≥ u. IF we have Xv′ [kv′ ] = u, i.e., u ∈ Xv′ , THEN

compute D3 = Yv′ [kv′ ] + 1, i.e., D3 = D(v′, u) + 1; otherwise set D3 =∞.
12. Compute D(v′, u′) = min{D1, D2, D3}. IF D(v′, u′) < t, THEN add u′ to the

end of Xv′ and add D(u′, v′) to the end of Yv′ .
13. END FOR
14. END FOR
15. END FOR
16. END FOR
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1. For any node v ∈ V , array Xv is always sorted according to their ranks, i.e., nodes that
are added to Xv are always in ascending order w.r.t. their ranks.

2. Right before processing node v (i.e., before line 4 of Algorithm 1), Xv and Yv are already
computed and sorted w.r.t. their ranks.

3. Right after processing node v (i.e., after line 17 of Algorithm 1), Xv′ and Yv′ are computed
and sorted w.r.t. their ranks for each child v′ of v.

The initialization step Algorithm 1 (line 2) computes Xr and Yr for root node r. Its
neighbors include all nodes whose depth in Trie is no greater than t. The edit distance
between r to a neighbor node u is simply the depth of u minus 1 (we assume that root r is at
depth 1). Root r is also in Xr with D(r, r) = 0. Clearly, the first and the second invariant
hold for root r.

In the main loop (lines 3–18), for a node v ∈ V , Algorithm 1 iterates through all of its
children. For a child v′ of v, lines 4–17 compute Xv′ and Yv′ of v′. Line 4–6 initialize the
pointers that will be used to fetch the edit distances D(v, u′) and D(v′, u), which are stored
in Yv and the partially computed Yv′ , respectively. Because u ranks higher than u′, by the
time of computing D(v′, u′), D(v′, u) is already computed and stored in Xv′ . D(v′, u′) is
then computed according to Lemma 3. Specifically, pointer k tracks the position of u in
array Xv (i.e., the index of u in array Xv); pointer kv tracks the position of u′ in array Xv;
and pointer kv′ tracks the position of u in array Xv′ . Line 11 computes D1 := D(v, u) + δ, in
which D(v, u) is fetched from Yv indexed by k. Line 12 computes D2 := D(v, u′)+1, in which
D(v, u′) is fetched from Yv indexed by kv. Line 13 computes D3 := D(v′, u) + 1, in which
D(v′, u) is fetched from Yv′ indexed by kv′ . Line 14 computes D(v′, u′) := min{D1, D2, D3};
adds u′ to Xv′ and adds D(v′, u′) to Yv′ if D(v′, u′) < t.

Algorithm 1 maintains the first invariant. For each child v′ of v, assuming Xv is sorted,
then neighbors are also added to Xv′ in a sorted manner, as Algorithm 1 iterates through
neighbors ordered by Xv. Since Xr is sorted for root r, given the inductive nature of
Algorithm 1, we conclude that Xv must be sorted for any v ∈ Trie.

Algorithm 1 maintains the third invariant. According to Lemma 2, a node u′ ∈ Xv′

requires u ∈ Xv for their parents u and v. Any node ū′ whose parent ū 6∈ Xv results in
ū′ 6∈ Xv′ . Algorithm 1 iterates through all u in Xv. Therefore, after line 17, all neighbors of
child v′ must have been found, assuming the second invariant holds. The second invariant
holds because all neighbors of r are correctly defined during initialization. As the algorithm
propagates, because of the inductive nature of Algorithm 1, the second invariant holds.

LetM denote the member size of set {(u, v) | D(u, v) ≤ t}. The complexity of Algorithm 1
is O(|Σ|2 ·M).

I Theorem 4. Algorithm 1 computes Xv and Yv for each v ∈ V in O(|Σ|2 ·M) time.

Proof. For each v ∈ V , lines 4–17 compute Xv′ and Yv′ for each child v′ of v in O(|Xv| ·
|Σ|2 +

∑
v′:p(v′)=v |Xv′ |) time. Since pointers of kv and kv′ can only move forward, lines

12–13 cost |Xv|+
∑

v′:p(v′)=v |Xv′ | operations. Operations in lines 11–14 cost constant time.
Hence, lines 7–17 cost O(|Xv| · |Σ|2) operations, as the number of children of each node is
bounded by |Σ|. The overall run time of Algorithm 1 is thus bounded by

∑
v∈V O(|Xv| ·

|Σ|2 +
∑

v′:p(v′)=v |Xv′ |) = O(|Σ|2 ·M). J

With |Σ| being a small constant (for example Σ = {A,C,G, T} for DNA analysis),
Algorithm 1 finds all M neighbor pairs in Trie in O(M) time.
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3.2 Computing the Confidence Radius Among Nontrivial Neighbors

The neighbor database stores both the trivial and nontrivial neighbors of each seed. However,
CAS only requires the minimum edit distance to the nontrivial neighbors of each seed. In
order to derive the confidence radius of each seed, we propose an augmentation to Algorithm 1,
such that it computes the minimum edit distance to nontrivial neighbors while constructing
the neighbor database. We prove that the augmentation does not increase the time complexity
of Algorithm 1.

Within the neighbor array Xv of a node v, let the sub-array X0
v store all trivial neighbors

and X1
v store all nontrivial neighbors, where Xv = X0

v ∪X1
v . By definition, the confidence

radius of v is computed as cv := minu∈X1
v
D(u, v). To compute cv, instead of finding

all nontrivial neighbors, X1
v , we compute a subset X2

v ⊂ X1
v , where minu∈X2

v
D(u, v) =

minu∈X1
v
D(u, v).

Let u be a neighbor of v; we say u is an immediate neighbor of v if u is a substring, or a
superstring, or an overlapping string of v; otherwise we say u is a non-immediate neighbor
of v (see Figure 3 for examples). Immediate neighbors are not necessarily trivial neighbors.
If u is a trivial neighbor of v, by definition, then u must be an immediate neighbor of v.
However, the opposite is not necessarily true, i.e., u could be a substring of v (an immediate
neighbor) yet u is nontrivial to v. Substring u may appear at more locations in T than v
does. It is easier to determine whether u is an immediate neighbor to v than whether u is a
trivial neighbor to v.

GATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGC

ATCACCAAGACGTGTCACGAGTCATACGCC

AGATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGCCA

AGATCACCAAGACGTGTCACGAGTCATACGC

ATCACCAAGACGTGTCACGAGTCATACGCCA

Immediate Substrings

Immediate Superstrings

Immediate Overlapping Strings

Seed

Figure 3 Examples of trivial neighbors of a seed, including substrings, superstrings, and overlap-
ping strings of this seed.

Let X2
v be the set of non-immediate neighbors of a node v. The minimum edit distance

from v to nontrivial neighbors of v equals to the minimum edit distance between v to
neighbors in X2

v . We prove this in Theorem 7. To prove Theorem 7, we first prepare the
following two lemmas.

I Lemma 5. If u is a superstring of v, then u is a trivial neighbor of v.

Proof. Since u is a superstring of v, for any location [l1, l2] of u, ∃[l1, l2] where T [l1, l2] = v

and l1 −D(u, v) ≤ l1 < l2 ≤ l2 +D(u, v). By definition, u is a trivial neighbor of v. J

I Lemma 6. If u is a substring or an overlapping string of v and u is a nontrivial neighbor
of v, then ∃w ∈ Trie, where w is neither an immediate neighbor nor a trivial neighbor of v,
with |w| = |v| and D(v, w) ≤ D(v, u).
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..ACCCAGATCACCAAGACGTGTCACGA..

CCCAGATCACCAAGACGTGTCACG

GCCCAGATCACCAAGACGTGTCACGA

||||||||||||||||||||||||||

||||||||||||||||||||||||

ACCCAGATCACCAAGACGTGTCACGA

||||||||||||||||||||||||||

u

v

u at T[l1,l2]

w

| Mismatch | Insertion

ACCCAGATCACCAAGACGTGTCACG

CCCAGATCACCAAGACGTGTCACGA

GCCCAGATCACCAAGACGTGTCACG

||||||||||||||||||||||||||

|||||||||||||||||||||||||

u

v

w

| Deletion | Insertion

..ACCCAGATCACCAAGACGTGTCACGA..u at T[l1,l2]
||||||||||||||||||||||||

Figure 4 Illustration of Lemma 6. The figure to the left shows an example where u is a substring
of v, while the figure to the right shows an example where u is an overlapping string of v. Notice
that in both figures, w is always optimally aligned to v.

Proof. Since u is a nontrivial neighbor of v, ∃[l1, l2], where T [l1, l2] = u but T [l1, l2] is not in
the D(v, u)-edit vicinity of v. We extract a substring w within T [l1 −D(u, v), l2 +D(u, v)],
where w locally and optimally aligns to v in T [l1 −D(u, v), l2 +D(u, v)], with |w| = |v|, as
shown in Figure 4. Then w must be a nontrivial neighbor of v since T [l1, l2] is not in the
D(u, v)-edit vicinity of v. Because w is optimally aligned to v within [l1−D(u, v), l2+D(u, v)],
we have D(w, v) ≤ D(u, v). J

By combining Lemmas 5 and 6 we prove the following theorem.

I Theorem 7. cv = minu∈X2
v
D(u, v), where X2

v is the set of non-immediate neighbors of v.

Proof. Lemmas 5 and 6 state that for any nontrivial immediate neighbor u of seed v,
there must exist a nontrivial and non-immediate neighbor w of v where D(w, v) ≤ D(u, v).
Therefore, by definition, we have cv = minu∈X2

v
D(u, v). J

We find the immediate neighbors, X3
v , of each node v ∈ Trie, by checking if a neighbor

u ∈ Xv is a immediate substring, superstring or overlapping string of v. We associate with
each node v a new vector Zv := {F (v, u) | u ∈ Xv}, where F (v, u) stores the information of
whether u ∈ X3

v . With X2
v = Xv \X3

v , the updated workflow is illustrated in Figure 5.
Computation of F (v, u) can be piggybacked on top of computing D(v, u) in Algorithm 1.

Given u and v, F (v, u) stores whether v and u possess any of the below immediate conditions:
(1) v is a prefix of u. (2) v is a suffix of u. (3) u is a prefix of v. (4) u is a suffix of v. (5) v
is neither a prefix nor a suffix but a substring of u. (6) u is neither a prefix nor a suffix but
a substring of v. (7) A prefix of v is a suffix of u. (8) A suffix of v is a prefix of u.

From above immediate conditions, we deduce the immediate relationship between v and u.
With conditions 1–6, we can infer the superstring-substring relationship. With Condition 7–8,
we can infer the overlapping relationship. If v and u qualifies none of the above immediate
conditions, then they must be non-immediate neighbors.

For simplicity, we initialize each node as satisfying immediate conditions 1, 2, 3 and 4 to
itself. We initialize the root node r as a prefix to any of its neighbors; and any neighbors of
r as a suffix to r. Finally, r is not an overlapping string or a substring of any neighbor.

v

v′

u

u′

Xv,Yv,Zv

Xv′ ,Yv′ ,Zv′

k

kv′

kv

Figure 5 Illustration of adding Zv := {F (u, v) | u ∈ Xv} to each node.
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F (u, v) can be computed in constant time if F (p(v), p(u)), F (p(v), u) and F (v, p(u)) are
known. For example, in Figure 5, F (v′, u′) satisfies condition 1, only if (a) v′ = u′ or (b)
F (v′, u) satisfies condition 1. F (v′, u′) satisfies condition 2, only if (a) u′ = v′ or (b) F (v, u)
satisfies condition 2 and σ(u, u′) = σ(v, v′). Conditions 3 and 4 are mirror cases of conditions
1 and 2, respectively with v and u, v′ and u′ trading places. F (v′, u′) satisfies condition 5,
only if (a) F (v′, u) satisfies condition 5 or (b) F (v′, u) satisfies condition 2, while v′ 6= u′ and
v is not root. Condition 6 is a mirror case of condition 5. F (v′, u′) satisfies condition 7 only
if (a) F (v, u′) satisfies condition 7 or (b) F (v, u′) satisfies condition 2, while v 6= u′ and v is
not root. Condition 8 is a mirror case of condition 7.

The computation of F (·, ·) is piggybacked on top of the computation of D(·, ·), as both
methods use dynamic programming. Both methods require piror knowledge between the
child-parent and parent-parent node pairs; and from prior results, both methods compute
the new result of the child-child node pair in constant time. As a result, piggybacking the
computation of immediateness does not increase the complexity of Algorithm 1.

Finally, the confidence radius of node v equals minD(v, u) where u ∈ X2
v , where F (v, u)

does not satisfy any of the immediate conditions. The confidence radius of a node can
be found by simply scanning its neighbor array, which finishes in linear time. The overall
complexity of constructing the confidence radius database is still O(|Σ|2 ·M).

The confidence radius database is stored in a |T |-by-P table, where P is user-provided.
The [x, y] entry of the table stores the cs of seed T [x, x+ y]. In practice, |T | � P and when
needed, we can condense the confidence radius database into bit-vectors to reduce the table
size. If necessary, when |T | is large, we can sub-sample seeds only at fixed-length intervals to
further reduce the storage footprint.

4 A Seeding Scheme with Context-Aware Seeds

While the major goal of this paper is to establish the theoretical framework of CAS, to test
the effectiveness of CAS, we propose a greedy seed selection method, referred to as greedy
CAS seeding. Greedy CAS seeding selects consecutive Maximum Exact Matching substrings
(MEMs, which are seeds that cannot be further extended without bumping into errors) from
a read as seeds. At the end of each MEM, greedy CAS seeding heuristically skips the next
two base pairs, in an effort to skip potential errors. Greedy CAS seeding sorts seeds by their
frequency from low to high, into Sraw. Then selects the minimum number of seeds S from
Sraw in sequential order such that

∑
s∈S cs ≥ t. In the rare cases where there is insufficient

number of CAS seeds such that @S with
∑

s∈S cs ≥ t, greedy CAS seeding reverts back to
using the pigeonhole principle, by dividing the read into t non-overlapping seeds.

AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCC

Frequency: 2
Confidence: 3

First MEM

Read

Frequency: 1
Confidence: 2

Second MEM

Hypothetical errors—Skip!

AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCCRead

Frequency: 6 Frequency: 5 Frequency: 3 Frequency: 4

Context-Aware Seeds

OSS with Ordinary Seeds

Figure 6 An example of drawing context-aware seeds from a read.

WABI 2019



15:10 Context-Aware Seeds

Figure 6 compares the seed extraction results of greedy CAS seeding against the state-
of-the-art, pigeonhole-principle-based seeding method, the Optimal Seed Solver (OSS) [15].
OSS has been previously shown that it generates the least frequent seeds, when compared
to other pigeonhole-principle-based seeding methods, such as flexible-placement k-mers or
spaced seeds. Figure 6 demonstrates both seeding methods in action under t = 4. Greedy
CAS seeding is shown in the upper half while OSS is shown in the lower half. Compared to
OSS, which uses a total of t = 4 seeds, greedy CAS seeding uses only two seeds. As a result,
greedy CAS seeding can afford longer and less frequent seeds.

Greedy CAS seeding has a maximum complexity of O(|R| + |S| log(|S|)) (|R| denotes
the length of R while |S| denotes the cardinality of set S). We use Burrows-Wheeler
Transformation (BWT) array to index seeds. With BWT array, it takes O(|s|) operations
to access the seed database for seed s and locate all seed locations of s. Given that∑

s∈S |s| ≤ |R|, and |S| ≤ t � |R|, we conclude that the maximum complexity of greedy
CAS seeding is O(|R|+ t log(t)).

5 Experiments

We benchmark greedy CAS seeding against OSS on the E. coli genome. We benchmark both
seeding schemes on a 22-million, 100-bp E. coli read set from EMBL-EBI, ERX008638-1.
We build a confidence radius database for E. coli genome with a maximum edit distance
threshold t = 5 and a max seed length P = 60. We measure the effectiveness of both
approaches by comparing the average total seed frequency of selected seeds under different
edit distance thresholds t = {1, 2, 3, 4, 5}. The average total frequency is the sum of seed
frequencies extracted from each read, averaged over all reads in the read set.

1 2 3 4 5
Error tolerance threshold, t
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Total Seed Frequency Comparison Between CAS and OSS
CAS
OSS

Figure 7 Comparison between CAS and OSS in terms of total seed frequency, with various edit
distance thresholds t.

Figure 7 shows the average total seed frequency comparison between the two approaches.
OSS has slightly smaller total seed frequency (averaged over all reads) under t = 1, but it
quickly increases, exceeding CAS at t > 1. OSS out performs CAS under t = 1 because
greedy CAS seeding extracts seeds sequentially; while OSS scans through all possible MEM
placements in a read and picks the least frequent placement. When t gets larger, OSS is
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Figure 8 Comparison between CAS and OSS in terms of average number of seeds used, with
various edit distance thresholds t.

pressured to use more seeds, which leads to using shorter and more frequent seeds. To the
contrary, greedy CAS seeding often uses fewer than t seeds, as shown in Figure 8, which let it
use longer and less frequent seeds. At t = 4, greedy CAS seeding out performs OSS by 20.3%.

CAS is expected to perform better on larger genomes. The E. coli genome is a small
genome, which has only around 4.6 million base pairs. In comparison, the human genome
has more than 3 billion base pairs. For small genomes, seeds becomes less frequent by nature.
Therefore short seeds becomes acceptable as they are not as frequent as they are in larger
genomes. We therefore expect CAS to perform better in larger genomes. However, due
to practical (not theoretical) limitations in scaling up the construction of the confidence
radius database on larger genomes (further elaborated in the Discussion section), we only
demonstrate CAS on the E. coli genome.

While the focus of this paper is to establish the theoretical foundation of CAS, instead of
providing a complete read mapping solution, it is worth mentioning that greedy CAS seeding
(only the seeding mechanism) is more practical than OSS. OSS requires scanning through
all substrings of R, which has a total size of O(|R|2), for seed frequencies. Combined with
BWT, it takes at least O(|R|2) operations to collect all seed frequencies with OSS. Greedy
CAS seeding, to the contrary, finishes in O(|R|+ t log(t)) time with t� |R|.

6 Discussion

Although Algorithm 1 finishes in O(|Σ|2 ·M) time, in practice, M could be on the scale of
trillions or more, for large and complex genomes. This is because for large genomes, the
suffix trie is close to full in the first ten to twenty levels, where almost every permutation of
letters exists. Nodes in these levels have large numbers of neighbors: the number of neighbors
of a node v, equals to the number of unique strings formed by editing the string of v with
up to t edits. After each edit, the resulting string is guaranteed to appear in Trie. This is
further amplified by the exponentially-growing number of nodes in each level. In human
genomes, there are more than one billion unique 15-base-pair suffixes. This means that for
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human genomes, under t = 4, there could be more than 1 trillion total neighbors just for
15-base-pair suffixes. Maintaining metadata at such scale vastly exceeds the capacity of our
currently available computational power. From our experiment, it takes around 300 CPU
hours to compute the confidence radius database for the E. coli genome under t = 5 and
P = 60 on a multi-cpu, mechanical hard drive system. However, it is worth noting that
as a theoretical study, the database construction program is not fully optimized for speed
and is currently I/O-bound due to frequently reading and writing neighbor information into
neighbor arrays of nodes in Trie.

While there are many nodes (long suffixes) with fewer neighbors, given that Algorithm 1
traverses Trie in a top-down manner, it is unavoidable to track the massive number of
neighbors for short suffixes. This is an interesting algorithmic problem for future work.

CAS may be applied to situations other than NGS read mapping. For example, the idea
of context-aware seeds may improve long-read mapping. Long reads suffer from high error
rates [13, 3, 4]. Finding error-free seeds for long reads is very challenging [5]. CAS can serve
as a metric measuring the likelihood of seeds having errors: if there exists a seed, s, with
high confidence radius, it is highly likely that s is free of errors. The likelihood of obtaining
a reference-matching seed through many accidental errors is small.

Finally, CAS can be applied to develop probes for DNA and RNA identification. When
designing probe sequences, it is important to make certain that the target sequence is unique
in the genome [12, 2, 10]. It prevents probes from accidentally annealing to a similar sequences.
CAS checks the existence of similar sequences by consulting the confidence radius database.

7 Conclusion

In this work, we proposed a new seeding framework, context-aware seeds (CAS). CAS extends
the pigeonhole principle and guarantees finding all valid mappings with fewer seeds. CAS
associates each seed s with a confidence radius cs, defined as a lower bound of edit distances
towards nontrivial neighbors of s. We proved that the CAS can find all valid mappings of
any read R, as long as its seeds s satisfy

∑
cs ≥ t.

We proposed a linear-time algorithm for constructing the confidence radius database.
It computes the confidence radii of seeds by traversing the suffix trie of a reference. We
experimented CAS on E. coli genome and compared it against the state-of-the-art pigeonhole-
principle-based seeding scheme, OSS, and showed that CAS outperforms OSS by reducing
the sum of seed frequencies by up to 20.3%.

This paper focuses on the theoretical aspects of CAS, especially how it extends the
pigeonhole principle into using fewer seeds. Composing a practical solution of Algorithm 1
on larger genomes is an interesting-yet-separate problem for future work.

Financial disclosure. C.K. is co-founder of Ocean Genomics, Inc.
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Abstract
Given a fixed alignment scoring scheme, the bounded length (respectively, bounded total length)
Smith–Waterman alignment problem on a pair of strings of lengths m, n, asks for the maximum
alignment score across all substring pairs, such that the first substring’s length (respectively, the sum
of the two substrings’ lengths) is above the given threshold w. The latter problem was introduced
by Arslan and Eğecioğlu under the name “local alignment with length threshold”. They proposed a
dynamic programming algorithm solving the problem in time O(mn2), and also an approximation
algorithm running in time O(rmn), where r is a parameter controlling the accuracy of approximation.
We show that both these problems can be solved exactly in time O(mn), assuming a rational scoring
scheme; furthermore, this solution can be used to obtain an exact algorithm for the normalised
bounded total length Smith–Waterman alignment problem, running in time O(mn log n). Our
algorithms rely on the techniques of fast window-substring alignment and implicit unit-Monge matrix
searching, developed previously by the author and others.
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1 The framework

In this section, we introduce briefly the framework developed by the author in [23, 22, 21, 24].
Definitions and results of this section have either appeared in these publications, or are their
straightforward generalisations.

1.1 Preliminaries
For matrix and vector indices, we will use either integers, or half-integers (sometimes called
odd half-integers):

{. . . ,−2,−1, 0, 1, 2, . . .}
{
. . . ,− 5

2 ,−
3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 , . . .

}
For ease of reading, half-integer variables will be indicated by hats (e.g. ı̂, ̂). Ordinary
variable names (e.g. i, j, with possible subscripts or superscripts), will normally denote integer
variables, but can sometimes denote a variable that may be either integer, or half-integer.

It will be convenient to denote

i− = i− 1
2 i+ = i+ 1

2

for any integer or half-integer i. The set of all half-integers can now be written as{
. . . , (−3)+, (−2)+, (−1)+, 0+, 1+, 2+, . . .

}
We denote integer and half-integer intervals by

[i : j] = {i, i+ 1, . . . , j − 1, j} 〈i : j〉 =
{
i+, i+ 3

2 , . . . , j −
3
2 , j
−}
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16:2 Bounded-Length Smith–Waterman Alignment

In both cases, the interval is defined by a pair of integer endpoints. We will use round
parentheses (i : j) to indicate that in the given context, either square [i : j] or angle 〈i : j〉
brackets may be used.

For finite intervals [i : j] and 〈i : j〉, we call the difference j − i interval length. Note that
for a given length n, an integer interval consists of n+ 1 elements, and a half-integer interval
of n elements.

We use the following notation for the Cartesian product of two integer or two half-
integer intervals:

(i : i′ | j : j′) = (i : i′)× (j : j′)

We will denote singleton Cartesian products by (i, j) = (i | j).
We indicate the index range of a matrix by juxtaposition, e.g. matrix A(i : i′ | j : j′) over

an integer or half-integer index range. The same notation will be used for selecting subvectors
and submatrices: for example, given matrix A(0 : n | 0 : n), we denote by A(i : i′ | j : j′) the
submatrix defined by the given sub-intervals. When any of the indices i, i′, j, j′ coincide
with the range boundary, they can be omitted, e.g. A(i :|: j′) = A(i : n | 0 : j′), and
A(:| j : j′) = A(0 : n | j : j′). In particular, we write A(i, j) for a single matrix element,
A(i |:) for a row, and A(:| j) for a column. We will denote by

∑
A the sum of all elements

in matrix A.
By default, vectors and matrices will be indexed by integers based at 0, or by half-integers

based at 0+ = 1
2 . Where necessary, all our definitions and statements can easily be generalised

to indexing over arbitrary integer or half-integer intervals.
Given a string, we distinguish between its contiguous substrings, and not necessarily

contiguous subsequences. Special cases of a substring are a prefix and a suffix of a string.
Unless indicated otherwise, an algorithm’s input is a string a of length m, and a string b of
length n; we assume m ≤ n. Normally, we will say that two characters α, β match, if α = β,
and mismatch otherwise. In addition to this, we introduce the wildcard character ‘?’, which
matches itself and all other characters.

I Definition 1. Let D〈0 : n1 | 0 : n2〉 be a matrix. Its dominance-sum matrix (also called
distribution matrix) D↗[0 : n1 | 0 : n2] is defined by

D↗[i, j] =
∑
D〈i :|: j〉

for all i ∈ [0 : n1], j ∈ [0 : n2].

I Definition 2. Let A[0 : n1 | 0 : n2] be a matrix. Its cross-difference matrix A�〈0 : n1 | 0 :
n2〉 (also called density matrix) is defined by

A�〈̂ı, ̂〉 = A[̂ı+, ̂−]−A[̂ı−, ̂−]−A[̂ı+, ̂+] +A[̂ı−, ̂+]

for all ı̂ ∈ 〈0 : n1〉, ̂ ∈ 〈0 : n2〉.

I Definition 3. Matrix A is a Monge matrix, if its cross-difference matrix A� is nonnegative.
Matrix A is an anti-Monge matrix, if its negative −A is Monge.

The structure of Monge matrices has been described by Burdyuk and Trofimov [6] and
Bein and Pathak [4] (see also [8, 7]), and can be used to represent a Monge matrix implicitly
by its cross-difference matrix and a pair of vectors.
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I Theorem 4 (Monge matrix canonical decomposition). Let A[0 : n1 | 0 : n2] be a Monge
matrix. Let D = A�, b = A[n1 |:], c = A[:| 0]. We have

A[i, j] = D↗[i, j] + b[j] + c[i]− b[0] (1)

for all i, j ∈ [0 : n1 | 0 : n2].

I Definition 5. A permutation matrix is a zero-one matrix containing exactly one nonzero
in every row and every column.

I Definition 6. Matrix A is called unit-Monge, if its cross-difference matrix A� is a
permutation matrix. Matrix A is called unit-anti-Monge, if its negative −A is unit-Monge.

An efficient row minima searching algorithm on a canonically represented unit-Monge
matrix was given by Gawrychowski [10].

I Theorem 7. Let A be a unit-Monge matrix, canonically represented by the permutation
matrix P = A� with n nonzeros, and by implicit vectors b, c, where each vector element can be
queried in time O(1). Given P , b, c, a data structure can be computed in time O(n log logn)
in the pointer machine model, and in time O(n) in the unit-cost RAM model, such that the
index of the leftmost minimum element in a row of A can be queried in time O(1).

1.2 LCS and semi-local LCS
I Definition 8. Let a, b be strings. The longest common subsequence (LCS) score lcs(a, b)
is the length of the longest string that is a subsequence of both a and b. Given strings a, b,
the LCS problem asks for the LCS score lcs(a, b).

The classical dynamic programming algorithm for the LCS problem [17, 25] runs in time
O(mn). The best known algorithms speed it up by a (model-dependent) polylogarithmic factor
[16, 9, 5]. Similar speedups are possible for the algorithms presented in this paper; however,
we will consider them outside the paper’s scope, and will not discuss them any further.

Although global comparison (full string against full string) and fully-local comparison
(all substrings against all substrings) are the two most common approaches to comparing
strings, another important type of string comparison lies “in between”.

I Definition 9. Given strings a, b, the semi-local LCS problem asks for the LCS scores
as follows:

the whole a against every substring of b ( string-substring LCS);
every prefix of a against every suffix of b (prefix-suffix LCS);
every suffix of a against every prefix of b ( suffix-prefix LCS);
every substring of a against the whole b ( substring-string LCS).

Note that this definition is symmetric with respect to exchanging the two strings. In many
ways, our approach consists in exploiting to the full this and other symmetries of the LCS
problem, such as the symmetry between the left and the right within each of the strings.

Some alternative terms for semi-local comparison, used especially in biological texts, are
“end-free alignment” [14], [13, Subsection 11.6.4] or “semi-global alignment” [14], [15, Problem
6.24]. The string-substring (and its symmetric substring-string) component of semi-local
string comparison is also called “fitting alignment” [15, Problem 6.23]. String-substring LCS
is an important problem in its own right, closely related to approximate pattern matching,
where a short fixed pattern string is compared to various substrings of a long text string.

Let bpad〈−m : m+ n〉 = ?mb?m.

WABI 2019



16:4 Bounded-Length Smith–Waterman Alignment

I Definition 10. The semi-local LCS matrix is defined as Ha,b[i, j] = lcs(a, bpad〈i, j〉),
where i ∈ [−m : n], j ∈ [0 : m + n]. The string-substring LCS matrix is defined as
Hs.sub
a,b [i, j] = Ha,b[i, j] = lcs(a, b〈i : j〉), where i, j ∈ [0 : n].

In [23], we show that matrix Ha,b is unit-anti-Monge. By Theorem 4, it can be represented
implicitly in compact form by a permutation matrix Pa,b, that we call here semi-local LCS
kernel, from which every element of Ha,b (and therefore also of its submatrix Hs.sub

a,b ) can be
queried efficiently. In [23], we also give an algorithm computing this implicit representation
in time O(mn).

1.3 Alignment
The concept of LCS score is generalised by that of alignment score (see e.g. [14]). An alignment
of strings a, b is obtained by putting a subsequence of a into one-to-one correspondence
with a subsequence of b, respecting the index order. In contrast with an LCS, the two
subsequences need not be identical. A pair of corresponding characters, one from a and the
other from b, are said to be aligned. A character in one string that is not aligned against a
character of the other string is said to be aligned against a gap in that string. An aligned
character-character or character-gap pair is given a real-valued score:

a pair of matching characters scores w+ ≥ 0;
a pair of mismatching characters scores w0 < w+;
a gap-character or character-gap pair scores w− ≤ 1

2w0; normally, also w− ≤ 0.
Negative scores are also called penalties. Any particular triple of character alignment scores
(w+, w0, w−) will be called a scoring scheme. A scoring scheme will be called rational, if all
its components are rational numbers.

The intuition behind the score inequalities is as follows: aligning a matching pair of
characters is always better than aligning a mismatching pair of characters, while the latter is
at least as good as aligning each of the two characters against a gap.

I Definition 11. Let a, b be strings. Assuming a fixed scoring scheme, the alignment score
align(a, b) is the maximum total score across all possible alignments of a, b. Given strings a,
b, the alignment problem asks for their alignment score.

In notation related to alignment under a general scoring scheme, we will use script typeface
(e.g. H), in order to distinguish it from the LCS scoring scheme, for which we keep using
sans-serif typeface (e.g. H).

I Definition 12. The semi-local alignment problem and its component subproblems ( string-
substring alignment problem, etc.) are defined analogously to Definition 9, replacing the LCS
score by the alignment score. The semi-local alignment matrix Ha,b and the string-substring
alignment matrix Hs.sub

a,b are defined analogously to Definition 10.

The semi-local alignment problem can be reduced to the semi-local LCS problem by a
couple of simple techniques, regularisation and blow-up, described (using slightly different
terminology) in [22].

I Definition 13. A scoring scheme (1, w0, 0), where 0 ≤ w0 < 1, will be called regular.

An arbitrary (finite) scoring scheme can be reduced to a regular one as follows (a similar
method is used by Rice et al. [18]; see also [12, 15]). Let us consider first the global alignment
of strings a, b, with an arbitrary scoring scheme (w+, w0, w−). This scheme can be replaced
by a scheme (w+ +2x,w0 +2x,w−+x) for any real x. Indeed, such a transformation increases
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the score of every global alignment by (m+ n)x; therefore, the relative scores of different
global alignments do not change. The desired regular scoring scheme can be obtained by
taking x = −w−, and then dividing each of the resulting scores by w+ − 2w− > 0:

(w+, w0, w−) 7→
(
1, w∗0 = w0−2w−

w+−2w−
, 0
)

(2)

The resulting regular string alignment score h∗ and the original alignment score h are related
to each other by the following identities, defining regularisation and its reverse:

h∗ = h−(m+n)w−
w+−2w−

h = h∗ · (w+ − 2w−) + (m+ n) · w− (3)

I Definition 14. A bistochastic matrix is a matrix of nonnegative real elements, in which
the sum of elements is exactly one in every row and every column.

I Definition 15. A Monge matrix A is called regular, if its cross-difference matrix A� is
bistochastic. An anti-Monge matrix A is called regular, if its negative −A is regular.

I Theorem 16 (Alignment matrix canonical decomposition). Let a, b be strings. Assuming a
fixed scoring scheme, the semi-local alignment matrix Ha,b is anti-Monge. Furthermore, for
a regular scoring scheme, Ha,b is regular anti-Monge:

Ha,b[i, j] = j − i− S↗a,b[i, j]

for all i ∈ [−m : n], j ∈ [0 : m+ n], where Sa,b = −H�
a,b is a bistochastic matrix.

Proof. The anti-Monge property of Ha,b is a straightforward generalisation of a similar
property for semi-local LCS matrices.

Assume a regular scoring scheme (1, w0, 0). First, let us also assume it to be rational:
w0 = µ

ν . Then, the semi-local alignment problem on strings a, b can be reduced to the
semi-local LCS problem by the following blow-up technique. We transform input strings a, b
of lengths m, n into blown-up strings a, b of lengths m = νm, n = νn. The transformation
replaces every character γ by a substring $µγν−µ of length ν (here, $ is a special guard
character, not present in the original strings). We have

Ha,b[i, j] = 1
ν · Ha,b[νi, νj] (4)

for all i ∈ [−m : n], j ∈ [0 : m+ n], where the alignment matrix Ha,b is defined by the given
scoring scheme on the original strings a, b, and the LCS matrix Ha,b by the LCS scoring
scheme on the blown-up strings a, b.

Every element of Sa,b can now be obtained as a scaled sum of a ν × ν block of Pa,b:

Sa,b〈̂ı, ̂〉 = 1
ν

∑
Pa,b〈νı̂− : νı̂+ | ν̂− : ν̂+〉 (5)

for all ı̂ ∈ 〈−m : n〉, ̂ ∈ 〈0 : m+ n〉. By construction, matrix Sa,b is bistochastic.
A general regular scoring scheme can be approximated by a rational regular scheme to

arbitrary precision. The property of matrix Sa,b to be bistochastic is preserved in the limit,
therefore the theorem statement follows by compactness. J

I Definition 17. Assuming a regular scoring scheme, the semi-local alignment kernel for
strings a, b is the bistochastic matrix Sa,b〈−m : n | 0 : m+ n〉, determined by Theorem 16.
The string-substring alignment kernel is the submatrix Ss.sub

a,b = Sa,b〈0 : n | 0 : n〉

WABI 2019



16:6 Bounded-Length Smith–Waterman Alignment

The alignment matrixHa,b can be represented implicitly by (the nonzeros of) the alignment
kernel Sa,b. However, in contrast with the LCS kernel, the alignment kernel may not be a
permutation matrix. Sparsity of the alignment kernel is partially preserved for a rational
scoring scheme.

I Definition 18. Let ν > 0 be a natural number. A bistochastic matrix will be called ν-
bistochastic, if every its element is a multiple of 1/ν. A regular Monge matrix A will be
called ν-regular, if A� is ν-bistochastic. A regular anti-Monge matrix will be called ν-regular,
if −A is ν-regular.

A permutation matrix is 1-bistochastic, and a unit-Monge matrix is 1-regular Monge. Note
that in a ν-bistochastic matrix, there can be at most ν nonzeros in every row and every column.

I Theorem 19. Let a, b be strings. Assuming a regular rational scoring scheme with
denominator ν, the alignment kernel Sa,b is ν-bistochastic, and the alignment matrix Ha,b is
ν-regular anti-Monge.

Proof. Every element of Sa,b is the sum of a ν × ν block of the blown-up matrix 1
νPa,b by

(5), and is therefore a multiple of 1/ν. J

Theorem 19 implies that for ν = O(1), the alignment kernel Sa,b has O(m+ n) nonzeros.
The described reduction also preserves the O(mn) running time for computing the alignment
kernel given a pair of strings, same as for the LCS kernel.

1.4 Window-substring alignment
Given a string and a fixed integer w ≥ 0, we call any substring of length w a w-window.

I Definition 20. Given strings a, b, and a window length w, the window-substring alignment
problem asks for the alignment score of every w-window in string a against every substring
in string b.

In [23], we gave an efficient algorithm for the window-substring alignment problem.

I Theorem 21. The window-substring alignment problem can be solved implicitly in time
O(mn), providing the window-substring alignment kernel Ss.sub

a〈k:l〉,b for every k, l ∈ [0 : m],
l − k = w.

Proof. See [23]. Briefly, we compute a string-substring alignment kernel for a binary tree
of specially defined canonical substrings of a against whole b. We then assemble these
kernels into window-substring alignment kernels by a special procedure of implicit matrix
multiplication, fully described in [24]. J

Definition 20 can be extended to other types of length-constrained comparison. In particular,
we can consider a related symmetric problem, where the total length of strings a, b is fixed.

I Definition 22. Given strings a, b, and a length parameter w, the fixed total length
alignment problem asks for the alignment score of every substring in string a against every
substring in string b, such that the sum of the two substrings’ lengths is w.

The fixed total length alignment problem can be solved by a technique similar to to the
algorithm of Theorem 21. Observe that a window-substring alignment kernel corresponds to
a horizontal rectangular strip of width w in the alignment grid, defined by the window in
string a and the whole string b. To obtain an algorithm for the fixed total length alignment
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Figure 1 Window-substring alignment.

Figure 2 Fixed total length alignment.

problem with a rational scoring scheme, we replace these with an alternative type of kernel,
corresponding to an anti-diagonal strip of rectilinear width w. Otherwise, the algorithm’s
structure is identical to the one of Theorem 21, and the running time remains O(mn).

I Example 23. Figure 1 shows the computation of window-substring alignment by the
algorithm of Theorem 21 on string a of length m = 16 with window size w = 7, against
string b of arbitrary length n. The canonical substrings of a of lengths 1, 2, 4, 8, 16 are shown
in black, and 7-windows in blue. For each 7-window, the figure shows its decomposition into
canonical substrings. For one of the 7-windows, highlighted in thick red, the corresponding
area is outlined in the alignment dag.

Figure 2 shows the computation of fixed total length alignment on string a of length
m = 16 with length parameter w = 7, against string b of arbitrary length n. Conventions are
the same as in Figure 1.

1.5 Approximate pattern matching
Approximate pattern matching is a natural generalisation of classical (exact) pattern matching,
allowing for some character differences between the pattern and a matching substring of the
text. Given a pattern string p of length m and a text string t of length n ≥ m, approximate
pattern matching asks for all the substrings of the text that are close to the pattern, i.e. those
that have sufficiently high alignment score (or, equivalently, sufficiently low edit distance)
against the pattern. Such substrings of the text will be called matching substrings.

I Definition 24. Given a pattern p and a text t, and assuming a fixed scoring scheme, the
complete approximate matching problem is defined as follows. For every prefix t〈0 : j〉, the
problem asks for the maximum alignment score of p against all possible choices of a suffix

WABI 2019
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t〈i : j〉 from this prefix:

h[j] = max
i∈[0:j]

align
(
p, t〈i : j〉

)
where j ∈ [0 : n].

The complete approximate matching problem corresponds to searching for column maxima
in the string-substring alignment matrix Hs.sub

p,t .
The complete approximate pattern matching problem can be solved by a classical dynamic

programming algorithm due to Sellers [19] (see also [14]), running in time O(mn).
Assuming a rational scoring scheme with constant denominator, an algorithm for complete

approximate matching can also be obtained using alignment kernels.

I Theorem 25. Let A[0 : n1 | 0 : n2] be a ν-regular Monge matrix, where ν = O(1),
canonically represented by the ν-bistochastic matrix S = A� with n ≤ ν ·min(n1, n2) nonzeros,
and implicit vectors b = A[n1 |:], c = A[:| 0], where random access to an element can be
performed in time O(1). Given S, b, c, the index of the leftmost minimum element in every
row of A can be obtained in time O(n log logn) in the pointer machine model, and in time
O(n) in the unit-cost RAM model.

Proof. Straightforward generalisation of Theorem 7. J

I Theorem 26. Assuming a rational scoring scheme with denominator ν = O(1), the
complete approximate matching problem can be solved in time O(mn).

Proof. The algorithm runs in two phases.
Phase 1. We first regularise the scoring scheme by Equation (3). The alignment kernel S∗p,t
for the regular scheme is then obtained in time O(mn).
Phase 2. Since complete approximate matching compares alignment scores across different
string-substring pairs, we now reverse score regularisation via Equation (3). We then obtain
column maxima of the (suitably scaled) string-substring submatrix Hs.sub

p,t by Theorem 25.
The total running time is dominated by Phase 1, and is therefore as claimed. J

2 Classical Smith–Waterman alignment

A classical method for variable-length local string comparison was given by Smith and
Waterman [20]. Given a scoring scheme and a pair of input strings a, b, this method allows
one to obtain a pair of substrings with the highest alignment score across all substring pairs
in a, b. More generally, for each pair of prefixes of strings a, b, the method obtains their
highest-scoring pair of suffixes.

I Definition 27. Given a scoring scheme, the Smith–Waterman (SW) alignment problem
on strings a, b is defined as follows. For every prefix a〈0 : l〉 and every prefix b〈0 : j〉, the
problem asks for the maximum alignment score over all possible choices of a suffix a〈k : l〉
and a suffix b〈i : j〉 of the respective prefixes:

h[l, j] = max
k∈[0:l],i∈[0:j]

align
(
a〈k : l〉, b〈i : j〉

)
where l ∈ [0 : m], j ∈ [0 : n].

An efficient dynamic programming algorithm for SW-alignment was given by Smith and
Waterman [20] and by Gotoh [11].
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I Algorithm 28 (SW-alignment).
Parameters: scoring scheme (w+, w0, w−).
Input: strings a, b of length m, n, respectively.
Output: SW-alignment scores for a against b.
Description. We initialise

h[0, j]← 0 h[l, 0]← 0

for all l ∈ [0 : m], j ∈ [0 : n]. We then iterate through all indices l ∈ [1 : m] and j ∈ [1 : n].
In each iteration, we assign

h[l, j]← max


h[l − 1, j − 1] +

{
w+ if a〈l−〉 matches b〈j−〉
w0 otherwise

h[l − 1, j] + w−; h[l, j − 1] + w−; 0

I Theorem 29. The SW-alignment problem can be solved in time O(mn).

Proof. In Algorithm 28, each iteration runs in constant time. The overall running time is
mn ·O(1) = O(mn). J

3 Bounded-length Smith–Waterman alignment

A commonly observed drawback in biological applications of SW-alignment is that it seeks to
maximise the scores of substring pairs regardless of their lengths. However, if the substrings
are too short, then their alignment may be less significant biologically than a slightly lower-
scoring alignment of much longer substrings. To address this issue, various alternative
definitions of local string comparison have been proposed, taking substring lengths into
account; see [2] for a survey. Algorithms for such length-sensitive alignment problems are
typically more computationally expensive than Algorithm 28 (SW-alignment); for this reason,
approximation versions of such problems have also been considered [2].

The most straightforward approach to defining length-sensitive local alignment is to
require that the aligned substrings satisfy a specific lower bound on their lengths, thus
filtering out substrings that are too short.

I Definition 30. Given strings a, b, an length threshold w ≥ 0, and assuming a fixed scoring
scheme, the bounded length (respectively, the bounded total length) SW-alignment problem
is defined as follows. For every prefix a〈0 : l〉 and every prefix b〈0 : j〉, the problem asks for
the maximum alignment score over all possible choices of a suffix a〈k : l〉 and a suffix b〈i : j〉
of the respective prefixes, such that l − k ≥ w (respectively, l − k + j − i ≥ w):

hlen≥w[l, j] = max
k∈[0:l],i∈[0:j]

l−k≥w

align
(
a〈k : l〉, b〈i : j〉

)
htlen≥w[l, j] = max

k∈[0:l],i∈[0:j]
l−k+j−i≥w

align
(
a〈k : l〉, b〈i : j〉

)
where l ∈ [0 : m], j ∈ [0 : n].

The bounded total length SW-alignment problem was introduced by Arslan and Eğecioğlu
[1] (see also [2]) under the name local alignment with length threshold (LAt). They proposed
a dynamic programming algorithm solving the problem in time O(mn2). They also gave an
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approximation algorithm running in time O(rmn), and returning a pair of substrings of total
length at least

(
1− 1

r

)
w, scoring no less than the exact solution to the original problem.

We now show that, assuming a rational scoring scheme, the bounded (total) length
SW-alignment problem can be solved exactly by an efficient algorithm. In fact, our exact
algorithm is asymptotically faster not only than the exact algorithm of [1], but also than their
approximation algorithm. We first describe an algorithm for the bounded length alignment
problem, and then adjust it to the bounded total length alignment problem.
I Algorithm 31 (Bounded-length SW-alignment).
Parameters: a rational scoring scheme (w+, w0, w−), where w− < 0.
Input: strings a, b of length m, n, respectively; length threshold w ≥ 0.
Output: Bounded length SW-alignment scores for a against b.
Description. The algorithm runs in three phases:
1. solving the window-substring alignment problem for every w-window in a against every

substring in b;
2. solving the complete approximate matching problem for every w-window in a against

b: for every w-window a〈k : l〉 in a and every prefix b〈0 : j〉 of b, we find the maximum
alignment score of a〈k : l〉 against all possible choices of a suffix b〈i : j〉 from this prefix;

3. extending the complete approximate matching scores to optimal bounded-length SW-
alignment scores by a dynamic programming procedure that generalises Algorithm 28
(SW-alignment).
We now describe each of these phases in more detail.

Phase 1. By Theorem 21, we obtain the window-substring alignment kernel Ss.sub
a〈k:l〉,b for every

k, l, l − k = w.
Phase 2. We now consider the window-substring alignment matrices Hs.sub

a〈k:l〉,b for every k, l,
l − k = w. Every such matrix is represented implicitly by the window-substring alignment
kernel Ss.sub

a〈k:l〉,b, obtained in the first phase. By Theorem 26, for every w-window a〈k : l〉 in
a and every prefix b〈0 : j〉 of b, we find a suffix b〈i : j〉 of that prefix, that has the highest
alignment score against a〈k : l〉:

hlen=w[l, j] = max
i∈[0:j]

Hs.sub
a〈k:l〉,b[i, j]

Phase 3. We initialise

hlen≥w[w, j]← hlen=w[w, j] hlen≥w[l, 0]← 0

for all l ∈ [w : m], j ∈ [0 : n]. We then iterate through all indices l ∈ [w + 1 : m] and
j ∈ [1 : n]. In each iteration, we assign

hlen≥w[l, j]← max


hlen≥w[l − 1, j − 1] +

{
w+ if a〈l−〉 matches b〈j−〉
w0 otherwise

hlen≥w[l − 1, j] + w−; hlen≥w[l, j − 1] + w−; hlen=w[l, j]

I Theorem 32. The bounded length SW-alignment problem can be solved in time O(mn).
Proof. In Algorithm 31, the running time of each of the three phases, and therefore the
overall running time, is O(mn). J

The bounded total length alignment problem can be solved by an algorithm structured
similarly to Algorithm 31. In this algorithm Phase 1, instead of the window-substring
alignment problem, solves the fixed total length alignment problem. Phase 2 obtains column
maxima in the resulting implicit alignment matrices. Phase 3 remains unchanged. The
algorithm’s running time remains O(mn).
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4 Normalised bounded-length Smith–Waterman alignment

Arslan et al. [3] introduced another, more sophisticated approach to length-sensitive local
alignment, by incorporating the substrings’ lengths into the scoring function.

I Definition 33. Let a, b be strings. Assuming a fixed scoring scheme, the strings’ normalised
alignment score is defined as their alignment score divided by their total length:

nalign(a, b) = align(a, b)
m+ n

Analogously to Definition 30, the normalised bounded total length SW-alignment problem
was introduced by Arslan and Eğecioğlu [1] (see also [2]) under the name normalised local
alignment with length threshold (NLAt). They gave an approximation algorithm running in
time O(rmn logn), assuming a rational scoring scheme, and returning a pair of substrings of
total length at least

(
1− 1

r

)
w, scoring no less than the exact solution to the original prob-

lem. The algorithm uses the authors’ approximation algorithm for ordinary (unnormalised)
bounded total length SW-alignment as a subroutine; the only dependence on parameter r is
within that subroutine. By replacing this subroutine with Algorithm 31, we obtain an exact
algorithm for normalised bounded total length SW-alignment running in time O(mn logn),
assuming a rational scoring scheme.

5 Conclusion and open problems

We have described an efficient algorithm for bounded-length alignment and bounded total
length alignment; our algorithm can also be used as a subroutine for efficient normalised
bounded total length alignment. The algorithm relies on a rather complex framework of
semi-local string comparison, window-substring alignment and implicit matrix searching,
developed previously by the author and others. It remains a challenge to simplify and
streamline our algorithm to a point where it can be easily and efficiently implemented.

The algorithm relies on the scoring scheme to be rational, with the least common
denominator of the character alignment scores considered to be a constant factor in the
running time. It remains an open question whether the algorithm can be generalised to an
arbitrary real-weighted scoring scheme.
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Abstract
Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs
enable incorporation of full genomic diversity within a population. However, transitioning from a
simple string-based reference to graphs requires addressing many computational challenges, one of
which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing
is a commonly used sequencing platform in genomics, where the paired-end distance constraints
allow disambiguation of repeats. Many recent works have explored provably good index-based and
alignment-based strategies for mapping individual reads to graphs. However, validating distance
constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on
heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm
to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-
matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping
algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated
using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn
graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary
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1 Introduction

Owing to continuous technological and algorithmic advancements in genomics during the
past four decades, whole-genome sequencing has now become ubiquitous, leading to an
explosive growth in genome databases. Despite this progress, the current human genome
reference (GRCh38) is primarily derived from a single individual [14, 38]. Many recent studies
have demonstrated improved variant analysis using a graph-based reference while accounting
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for population diversity. Accounting for this diversity is especially critical in polymorphic
regions of genomes [10, 17]. Realizing this paradigm shift from a simple linear reference to a
graph-based reference, however, requires addressing several open computational challenges [5],
one of which concerns designing robust algorithms for mapping reads to graph-based references.
Accuracy of read mapping is critical for downstream biological analyses.

Designing provably good algorithms for approximate sequence matching to graphs, using
both index-based and alignment-based approaches, remains an active research area. A
few recent works have investigated extending Burrows-Wheeler-Transform-based indexing
to sequence DAGs [41] and de-Bruijn graphs [2, 29, 40]. Similarly, there exist studies
that have explored extension of the classic sequence-to-sequence alignment routines to
graphs [19, 20, 30, 36]. In our recent work [19], we presented new complexity results and
algorithms for the alignment problem using general sequence-labeled graphs. The results
show that a sequence (of length m) can be aligned to a labeled directed graph G(V,E) in
O(|V | + m|E|) time, using commonly used scoring functions, while allowing edits in the
query but not graph labels. However, a general string to graph pattern matching formulation
is only good for mapping single-end reads or single-molecule sequencing reads, and does not
account for pairing information.

Paired-end sequencing provides information about the relative orientation and genomic
distance between the two reads in a pair. When reads originate from repetitive regions, this
information is valuable for pruning large number of false candidates [4]. Popular short read
mapping tools for linear references, e.g., BWA-mem [24] and Bowtie2 [22], therefore, enforce
these constraints in a read pair to guide the selection of the true mapping locus. Using a
linear reference, calculating gap between two mapping locations is just a simple subtraction
operation. However, it still remains unclear how to efficiently validate the constraints using
large non-linear graph-based references and read sets.

Several sequence to graph aligners have been developed in recent years to map reads
to variation graphs [11, 12, 18, 21, 28, 35, 37], de-Bruijn graphs [16, 25, 26] and splicing
graphs [1, 8]. Readers are referred to review articles, e.g., [5, 34] for an expanded list of
the tools. Among these tools, Graph-Aligner [35], vg [12], deBGA [26], HISAT2 [21] and
HLA-PRG [11] support paired-end read mapping. However, all of these use heuristics to
measure the observed insert size between the two reads in a pair, mainly due to lack of
associated provably-good graph-based algorithms. A popular heuristic adopted by the tools
is to do the computation while assuming a linear ordering of vertices (e.g., topological order).
However, it can produce misleading results in complex variation-rich graph regions.

In this work, we provide the first mathematical formulation of the problem of validating
paired-end distance constraints in sequence graphs, and propose an exact algorithm to solve
it that is also practical. The proposed algorithm exploits sparsity in sequence graphs to
build an index, which can be queried quickly using a simple lookup during the read mapping
process. On the performance side, we provide formal arguments to shed light on why our
indexing procedure is efficient with regards to the computation time and storage requirements.
We show the practical significance of our algorithm using LRC_KIR and MHC variation
graphs derived from the human genome, as well as pan-genomic de Bruijn graphs of Bacillus
anthracis strains.
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2 Problem Formulation

I Definition 1. Sequence Graph: A sequence graph G(V,E) is a directed graph with vertices
V and edges E, where each vertex v ∈ V is labeled with a character from alphabet Σ.

Sequence graph is typically defined as a directed graph with either string or character
labeled vertices because converting one form into the other is straightforward. In addition,
commonly used graph formats, such as de-Bruijn graphs, bi-directional de-Bruijn graphs,
overlap graphs or variation graphs can be converted into sequence graphs with at most a
constant factor increase in vertex or edge set sizes. While single-end read alignments can be
judged by their alignment scores alone, a valid paired-end read alignment over a sequence
graph should satisfy the expected paired-end distance constraints and orientation. As insert
size can vary within a range, let d1 and d2 denote the minimum and maximum allowed values
of the inner distance between the reads within a pair (see Figure 1).

Paired-end read

inner distance

distance constraint

Sequence graph

C A

T
G

T

A A

C T
G

T
C

A

Figure 1 Visualizing distance constraints while mapping paired-end reads to sequence graphs.

I Definition 2. Paired-end Validation Problem: Suppose two reads r1, r2 in a pair are
independently mapped to a sequence graph G(V,E) using their positive and negative strands
respectively. Let v1 be the vertex where a path to which r1 (+ve strand) is mapped ends, and
v2 be the vertex where a path to which r2 (-ve strand) is mapped starts; then we refer to this
pair of paths as a valid paired-end read mapping if and only if there exists a path from v1 to
v2 of length d ∈ [d1, d2].

The above problem definition is based on the assumption that a fragment, from which a
read pair is sequenced, can align to any (cyclic or acyclic) path in the input sequence graph.
In this work, we focus on designing an efficient algorithm that can quickly answer the above
path queries for any two given vertices in the graph. Typically, there are multiple mapping
candidates to evaluate for each read pair, especially if a read is sequenced from repetitive
regions of a genome. In addition, a typical read set in a genomic study may contain millions
or billions of reads. Therefore, validating the distance queries quickly using an appropriate
indexing scheme is desirable.

3 Related Problems in Graph Theory

Computing all-pairs shortest paths in G(V,E) may help to identify true-positives or true-
negatives, but only for those vertex pairs whose shortest distance ≥ d1. No conclusion can be
drawn when the shortest distance between two vertices is < d1, as a valid path need not be
the shortest path. In addition, computing all-pairs shortest paths is expensive, and may not
provide the desired scalability [7]. If d1 = d2, the formulated problem becomes a special case
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of the exact-path length problem [33], with all edge weights set to 1. The exact-path length
problem determines if a path of a specified distance exists between two vertices in a weighted
graph. An extension of this problem, referred to as the gap-filling problem [39], has been
explored in the context of genome assembly using paired-end or mate pair read sets. Although
the exact-path length problem has been shown to be NP-complete [33], we will demonstrate
a simple and practical polynomial-time algorithm for our problem with unweighted edges.
Finally, if d1 = 0 and d2 = |V |, then our problem is equivalent to determining transitive
closure of a graph [32]. In our case, however, we expect d2 � |V |.

Our approach is based on an indexing strategy where we pre-compute a boolean index
matrix, which has a 1 for each vertex pair that satisfies the distance constraints (Section 4).
Computing the index requires polynomial operations, and paired-end distance queries can be
computed quickly using index lookups during the read mapping process. Before describing
the algorithm, we first discuss a trivial pseudo-polynomial time algorithm to solve the
paired-end distance validation problem. It is based on a well-known algorithm used to solve
the intractable subset-sum problem.

A Pseudo-polynomial Time Algorithm

The problem of validating distance constraints between two vertices can be solved using
dynamic programming. Assume s ∈ V is the source vertex from where we need to query
paths of length d ∈ [d1, d2]. For a vertex v ∈ V , let a(v, l) be a boolean value which is true if
and only if there is a path of length l from source s to v. Then, the following recurrence
solves the problem:

a(v, 0) = 1 if v = s and 0 otherwise,

a(v, l) =
∨

(u,v)∈E

a(u, l − 1)

Solving the above recurrence requires filling a |V | × d2 table in column-wise order. The
distance constraint from the source vertex s to t ∈ V is satisfied if and only if a(t, l) = 1
for any l ∈ [d1, d2]. Note that it is sufficient to store two columns in memory to fill the
table, and an additional column to track the final result. The algorithm is summarized as a
lemma below.

I Lemma 3. There exists an O(d2|E|) time and O(|V |) space algorithm that decides existence
of a path of length d ∈ [d1, d2] from one vertex to another in G(V,E).

The time complexity of the above algorithm is significantly high, as it requires O(d2|E|)
time to validate distance constraints from a fixed source vertex. With some optimizations
however, the above algorithm can be accelerated. As observed by Salmela et al. [39] in
the context of gap-filling problem, we expect d2 � |V |, therefore, it should be possible
to compute a sub-graph containing vertices within ≤ d2/2 distance from v1 or v2, before
solving the recurrence. While this strategy was shown to be effective for gap-filling between
assembled contigs, the count of vertex pairs to evaluate during read mapping process is
expected to be significantly higher for large read sets. Reference genomes (e.g., GRCh38 for
human genome) or graphs are static, or evolve slowly, in genomic analyses. As such, it is
desirable to use an index-based strategy, where we pay a one-time cost to build an index,
and validate the paired-end distance constraints quickly.
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4 An Index-based Polynomial-time Algorithm

In the following, we describe our index construction and querying algorithm. Given a sequence
graph in the form of a boolean adjacency matrix, the index construction procedure uses
boolean matrix additions and multiplications. As we will note later, the worst-case time of
building our index is polynomial in the input size, but still computationally prohibitive to
handle real data instances. Subsequently, we will show how to exploit sparsity in graphs
to accelerate the computation. The construction algorithm relies on the following boolean
matrix operations.

I Definition 4. Boolean matrix operations: Let A and B be two boolean n×n matrices. The
standard boolean matrix operations are evaluated in the following way:

Addition C = A ∨B Cij = Aij ∨Bij

Multiplication C = A ·B Cij =
n∨

k=1
Aik ∧Bkj

Power C = Ak C = A ·A · . . . A︸ ︷︷ ︸
k times

The boolean matrix addition and multiplication can also be performed using the standard
matrix addition and multiplication, respectively. This is done by adjusting the non-zero
values in output matrix to 1. Next, we define index matrix T , built using the adjacency
matrix of the input graph and the distance parameters d1 and d2. Lemma 6 and 7 include
its correctness proof and worst-case construction time complexity.

I Definition 5. Let Adj be the |V |× |V |-sized boolean adjacency matrix associated with graph
G(V,E). Define index matrix T = Adjd1 · (Adj ∨ I)d2−d1 , where I is an identity matrix.

I Lemma 6. T [i, j] = 1 if and only if there exists a path of length d ∈ [d1, d2] from vertex
vi to vertex vj.

Proof. Note that Adjk[i, j] = 1 if and only if there is a path of length k from vertex vi to vj .
To validate the paired-end distance constraints, we require Adjd1 ∨Adjd1+1 ∨ . . . ∨Adjd2 .

d2∨
i=d1

Adji = Adjd1 · (
d2−d1∨

i=0
Adji)

= Adjd1 · (Adj ∨ I)d2−d1 J

I Lemma 7. If multiplying two square matrices of dimension |V |×|V | requires O(|V |ω) time,
ω ∈ R, then computing the index matrix requires O(|V |ω · log(d2)) time and O(|V |2) space.

Proof. Matrix addition uses O(|V |2) operations. Computing Ak requires O(|V |ω log k)
operations. Therefore, computing the index matrix requires O(|V |2 + |V |ω(1 + log d1 +
log(d2−d1))) operations. As ω ≥ 2 and d2 ≥ d1, this simplifies to O(|V |ω · log(d2)) time. J

The current best algorithm to compute general matrix multiplication requires O(|V |2.37)
time [23]. Using the general matrix storage format, querying for the distance constraints
between a vertex pair requires a simple O(1) lookup. However, general matrix multiplication
solvers require at least quadratic time and space (in terms of |V |), which does not scale to
real graph instances. We next propose an alternate approach to build the index matrix that
exploits sparsity in sequence graphs.
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4.1 Exploiting Sparsity in Sequence Graphs
Typically, sequence graphs representing variation or assembly graphs have large diameter
and high sparsity, with edge to vertex ratio close to 1 [31]. As d2 � |V | in practice, we also
expect our final index matrix to be sparse. As a result, we propose using SpGEMM (sparse
matrix-matrix multiplication) operations to build the index. Below, we briefly recall the
algorithm and matrix storage format used for SpGEMM. Subsequently, we shed light on the
construction time and size of the index using this approach. We borrow standard notations
typically used to discuss SpGEMM algorithms. Let nnz(A) denote number of non-zero values
in matrix A. During boolean matrix multiplication A ·B, let bitops(AB) indicate the count
of non-zero bitwise-AND operations (i.e., 1 ∧ 1), assuming Definition 4.

4.1.1 Working with Sparse Matrices
Storage. During SpGEMM, the input and output matrices are stored in a sparse format,
such that the space is primarily used for non-zeros. Compressed Sparse Row (CSR) is a
classic data structure for this purpose [3]. In CSR format, a boolean matrix An×n can be
represented by using two arrays: the first array ptr of size n+ 1 contains row pointers, and
the second array cols of size O(nnz(A)) contains column indices of each non-zero entry in A,
starting from the first row to the last. The row pointers are essentially offsets within the
second array, such that the range

[
cols[ptr[i]], cols[ptr[i+ 1]]

)
lists column indices in row i.

By default, CSR format does not require the indices of a row to be sorted. However, the
sorted order will be useful in our index storage to enable fast querying. Therefore, we use
“sorted-CSR” format in our application.

I Remark 8. Storing a matrix An×n in sorted-CSR format requires Θ(n+ nnz(A)) space.

I Remark 9. Given a sequence graph G(V,E) as an array of edge tuples, transforming its
adjacency information into sorted-CSR format takes Θ(|V |+ |E|) time using count sort [15].

Multiplication (SpGEMM). SpGEMM algorithms limit their operation count to just non-
zero multiplications and additions required to compute the product, as the remaining entries
are guaranteed to be 0. Most of the sequential and high-performance parallel algorithms
for SpGEMM, including in MATLAB [13], are based on Gustavson’s algorithm [15]. The
algorithm can take input matrices A and B in sorted-CSR format and produce the output
matrix C = A · B in the same format. In this algorithm, a row of matrix C, i.e., C[i, :] is
computed as a linear combination of the rows κ of B for which A[i, κ] 6= 0. The complexity
result from Gustavson’s work is listed as the following lemma.

I Lemma 10. The time complexity to multiply two sparse matrices An×n and Bn×n using
Gustavson’s algorithm is Θ(n+ nnz(A) + bitops(AB)).

4.1.2 Indexing Time and Storage Complexity
Computing the index (Definition 5) requires several SpGEMM operations. As such, it is hard
to derive a tight bound on the complexity, as runtime and index size depend on non-zero
structure of the input sequence graph. However, it is important to get an insight into how the
different parameters, e.g., |V |, d1, d2 may affect them. To address this, we derive a practically
useful lower-bound on the complexity.

Consider the chain graph G′(V ′, E′) associated with a longest path in G(V,E), V ′ ⊂
V,E′ ⊂ E. We claim that the time needed to index G(V,E) is either the same or worse than
indexing its chain G′(V ′, E′) (Lemma 11). Subsequently, we compute the time complexity



C. Jain, H. Zhang, A. Dilthey, and S. Aluru 17:7

for indexing the chain using our SpGEMM-based algorithm. The rationale for analyzing the
chain graph is (a) non-zero structure of a chain is simple and well-defined for computing
time complexity, and (b) sequence graphs are expected to have “near-linear” topology in
practice, therefore the derived lower-bounds will be a useful indication of the true costs.

I Lemma 11. The time requirement for indexing a graph G(V,E) using SpGEMM is either
the same or higher than indexing the chain graph G′(V ′, E′) associated with its longest path.

Proof. Note that G′ is a sub-graph of G, which will also reflect in their adjacency matrices.
The above lemma is based on the following simple observation. Suppose A,B,A′, B′, δ1, δ2
are boolean square matrices, such that, A = A′∨δ1 and B = B′∨δ2. Then, using Gustavson’s
algorithm, multiplying A and B requires at least as much time as required for multiplying A′
and B′. In addition, the product (A ·B) is of the form (A′ ·B′) ∨ δ3, where δ3 is a boolean
matrix. For each SpGEMM executed while computing the index, we can use this argument
to support the claim. J

I Lemma 12. Computing the index for G(V,E) using SpGEMM requires Ω(|V ′|((d2−d1)2 +
log d1)) time.

Proof. Let Adj′ be the adjacency matrix associated with G′(V ′, E′). To prove the above
claim, it is useful to visualize the structure of Adj′ (Figure 2). Define a constant k � |V ′|.
For simplicity, assume d1 and d2−d1 are powers of 2. Throughout the index computation, the
time required by Gustavson’s SpGEMM algorithm is dictated by bitops. Following Lemma 10,
multiplying Adj′k to Adj′k requires Θ(|V ′|) time. In addition, multiplying (Adj′ ∨ I)k with
(Adj′ ∨ I)k requires Θ(|V ′|(k2)) time. Therefore, we need Θ(|V ′|(1 + 1 + . . .+ 1︸ ︷︷ ︸

log d1 times

)) time to

compute Adj′d1 , and Θ(|V ′|(1 + 22 + 42 + . . .+ (d2 − d1)2)) time to compute (Adj′ ∨ I)d2−d1 .
The final multiplication between Adj′d1 and (Adj′ ∨ I)d2−d1 uses Θ(|V ′|(d2 − d1)) time. All
these operations add up to Θ(|V ′|((d2 − d1)2 + log d1)) time. This argument, and Lemma 11
suffice to support the claim. J

I Remark 13. The index size is dictated by count of non-zeros in the final output matrix.
Using similar arguments as above, it can be shown that the index storage for graph G(V,E)
requires Ω(|V ′|(d2 − d1 + 1)) space.

4.1.3 Querying the Index
Querying for a value in a sorted-CSR formatted index is trivial. The lookup procedure for
T [i, j] requires a binary search among the non-zeros of row i. Let maxRownnz(T ) be the
maximum row size, i.e., maximum number of non-zero entries in a row of index matrix T .
After computing the index, deciding the existence of a path of length d ∈ [d1, d2] between
two vertices in G(V,E) requires O(logmaxRownnz(T )) time.

5 Results

We implemented our algorithm, referred to here as PairG, in C++. The source code is
available at https://github.com/ParBLiSS/PairG. We conducted our evaluation using an
Intel Xeon CPU E5-2680 v4, equipped with 28 physical cores and 256 GB main memory. In
our implementation, we utilize KokkosKernels [9], an open-source parallel library for basic
linear algebra (BLAS) routines. This library does not provide explicit support for boolean
matrix operations, so we used integer matrix operations instead, while rounding the non-zero
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Figure 2 Visualizing non-zero structure of adjacency matrix of a chain graph. We also show how
the structure changes after exponentiation. This is useful to count bitops during SpGEMM.

output values to one. We leveraged multi-threading support in KokkosKernels, and allowed
it to use 28 threads during execution. Our benchmark data sets, summarized below, consist
of cyclic and acyclic graphs built using publicly available real data. We tested indexing and
querying performance using PairG for various values of distance constraints. These choices
were motivated by the typical insert sizes used for Illumina paired-end sequencing. We
demonstrate that PairG can index graphs with more than a million vertices in a reasonable
time. Once the index is built, it can answer a million distance constraint queries in a fraction
of a second.

5.1 Datasets
We generated seven sequence graphs, four acyclic (G1-G4) and three cyclic (G5-G7) (see
Table 1). The first four sequence graphs are variation graphs built using human genome
segments (GRCh37) and variant files from the 1000 Genomes Project (Phase 3) [6]. We
used vg [12] for building these graphs. The human genomic regions considered in our
evaluation are mitochondrial DNA (mtDNA), BRCA1 gene, the killer cell immunoglobulin-
like receptors (LRC_KIR), and the major histocompatibility complex (MHC). The sizes of
these regions range from 16.6 kilobases (mtDNA) to 5.0 megabases (MHC) in the human
genome. De Bruijn Graph (DBG) is another popular format to represent “pan-genome” of
a species. DBG is also a good candidate structure to test our algorithm on more complex
graphs. We built DBGs with k-mer length 25 using whole-genome sequences of one (G5),
five (G6), and twenty (G7) B. anthracis strains, using SplitMEM [27]. Strain ids and size of
these genomes are listed in the Appendix.

We tested PairG using three different ranges of distance constraints, associated with three
insert-size configurations. Assuming a typical sequencing scenario of insert-size configuration
as 300 bp and read length 100 bp, the inner distance between paired-end reads should equal
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Table 1 Directed sequence graphs used for evaluation. In these graphs, each vertex is labeled
with a DNA nucleotide. Four acyclic graphs are derived from segments of human genome and variant
files from the 1000 Genomes Project (Phase 3). Three cyclic graphs are de Bruijn graphs built using
whole-genome sequences of Bacillus anthracis strains, with k-mer length 25.

Id Graph # vertices # edges Type
G1 mitochondrial-DNA 21,038 26,842

acyclicG2 BRCA1 83,268 85,422
G3 LRC_KIR 1,108,769 1,154,046
G4 MHC 5,138,913 5,318,639

G5 B. anthracis (1 strain) 5,174,432 5,175,000
cyclicG6 B. anthracis (5 strains) 10,360,296 10,363,334

G7 B. anthracis (20 strains) 11,237,067 11,253,437

100 bp (i.e., insert size minus twice the read length). To allow for sufficient variability, we
tested PairG using d1 = 0, d2 = 250. Similarly, for insert-size configurations of 500 bp and
700 bp, we tested PairG using inner distance limits (d1 = 150, d2 = 450) and (d1 = 350, d2 =
650), respectively. There may be insert size configurations where allowing read overlaps may
also be necessary; this can be handled trivially by computing a second matrix with desirable
limit on the overlap length.

5.2 Index construction
We report wall-clock time, memory-usage, and index size (nnz) using various graphs and
distance constraints in Table 2. We note large variation in performance for various graph
sizes and complexity. Time, memory, and index size increase almost linearly with increasing
graph size. This is also expected based on our theoretical analysis (Section 4.1.2). The
specified range of distance constraints [d1, d2] can also affect performance. The index size for
graphs G1-G5 remains almost uniform for the three different constraints. This should be
because the first five graphs have linear chain-like topology, where the performance should
be dictated by the gap (d2 − d1) according to our analysis. The graphs G1-G4 were built
by augmenting the variations (substitutions, indels) on the reference sequence, and the fifth
graph uses a single strain. On the other hand, index size varies with distance constraints for
the last two graphs, especially G7. We expect G7 to have significantly more branching due
to complex structural variations and repeats. Another important contributing factor is that
DBGs collapse repetitive k-mers into a single vertex, causing large deviation from the linear
topology. As a result, it takes time ranging from 1.3 hours to 17 hours for graph G7.

For larger graphs, we expect the index size (nnz) to increase with graph size. In sorted-
CSR storage format, we use 4 bytes for each non-zero, which can become prohibitively
large at the scale of complete human genome. However, we expect substantial room for
compressing the final index, and plan to explore it in the future. Memory-usage of a matrix
operation (addition or multiplication) is dictated by the size of the associated input and
output matrices. As a result, memory required for the index construction appears to increase
proportionally with the index size (Table 2).

5.3 Querying Performance
While indexing is a one-time routine for a sequence graph, we would need to query the index
numerous times during the mapping process. Querying for a vertex pair requires a simple
and fast lookup in the index (Section 4.1.3). As read mapping locations are expected to
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Table 2 Performance measured in terms of wall-clock time and memory-usage for building index
matrix using all input graphs and different distance constraints. nnz represents number of non-zero
elements in the index matrix, to indicate its size. Our implementation uses 4 bytes to store each
non-zero of a matrix in memory.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time Mem nnz Time Mem nnz Time Mem nnz
G1 0.2s 0.1G 6.8M 0.4s 0.2G 7.8M 0.4s 0.2G 7.6M
G2 0.4s 0.3G 21M 0.9s 0.5G 26M 0.9s 0.5G 26M
G3 5.6s 3.8G 0.3B 12s 6.2G 0.3B 12s 6.2G 0.3B
G4 25s 17G 1.3B 53s 28G 1.6B 53s 28G 1.6B

G5 25s 17G 1.3B 54s 28G 1.6B 54s 28G 1.7B
G6 52s 35G 2.8B 2m 60G 3.6B 2m 60G 4.2B
G7 1.3h 56G 4.6B 7.2h 118G 8.9B 17.2h 129G 14B

Table 3 Time to execute a million queries using all the graphs and distance constraints. Each
query is a random pair of vertices in the graph.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time (sec)
G1 0.1 0.1 0.1
G2 0.2 0.2 0.2
G3 0.4 0.4 0.5
G4 0.5 0.5 0.5
G5 0.4 0.5 0.5
G6 0.4 0.5 0.5
G7 0.5 0.5 0.6

be uniformly distributed over the graph, we tested the querying performance by generating
a million random vertex pairs (u, v), u, v ∈ [1, |V |]. For all the seven graphs, querying a
million vertex pairs finished in less than a second (Table 3). Even though the majority of
randomly generated queries result in a “no” answer, this aspect has insignificant effect on the
query performance. Our results implicate that distance constraints can be validated exactly
without additional overhead on the mapping time, which is similar to the case of mapping
reads to a reference sequence.

We also compared our index-based algorithm using a breadth first search (BFS)-based
heuristic. Using this heuristic, we answer a query of a pair of vertices (u, v) as true if and
only if v is reachable within d2 distance from u. Accordingly, BFS initiated from vertex u is
terminated if we find vertex v, or after we have explored all vertices up to depth d2. This
heuristic does not require a pre-computed index. However, we find that querying time using
our index-based algorithm is faster by two to three orders of magnitude. For the randomly
generated query set, fraction of results that agree between the two approaches varied from
98% to 100%. The above heuristic yields incorrect result for a vertex pair (u, v) when all the
possible paths that connect u to v have length < d1.
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6 Conclusions and Future Work

In this work, we formulated the Paired-end Validation Problem, required for paired-end read
mapping on sequence graphs. We proposed the first provably good and practically useful
exact algorithm for solving this problem. The proposed algorithm builds on top of existing
SpGEMM algorithms, to exploit the sparsity and large diameter characteristics of sequence
graphs. Our experiments indicate that index construction time is affected by the size and
topology of the sequence graph, as well as the desired distance constraints. The querying
time is less than a second for answering a million distance queries using all test cases.

There are two immediate avenues for future work. First, we expect huge room for
lossless compression in the final index matrix. By computing an appropriate vertex ordering,
we can potentially benefit from differential coding of column indices. Thus, alternative
formats than sorted-CSR might be more efficient for index storage. We anticipate that
good compression ratio can be achieved without affecting querying performance. Second,
we plan to integrate this work with an exact sequence to graph aligner as a paired-end read
mapping tool, and evaluate the advantages of a provably-good approach relative to existing
heuristics-based methods.
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A Appendix: Data Availability

Table 4 List of 20 Bacillus anthracis strains used to build the sequence graphs G5-G7. We used
the first strain in G5, the first five strains in G6, and all the 20 strains in G7.

Strain id Assembly id Size (Mbp)
Ames GCA_000007845.1 5.23
delta Sterne GCA_000742695.1 5.23
Cvac02 GCA_000747335.1 5.23
Parent1 GCA_001683095.1 5.23
PR09-1 GCA_001683255.1 5.23
Sterne GCA_000008165.1 5.23
CNEVA-9066 GCA_000167235.1 5.49
A1055 GCA_000167255.1 5.37
A0174 GCA_000182055.1 5.29
Sen2Col2 GCA_000359425.1 5.17
SVA11 GCA_000583105.1 5.49
95014 GCA_000585275.1 5.34
Smith 1013 GCA_000742315.1 5.29
2000031021 GCA_000742655.1 5.33
PAK-1 GCA_000832425.1 5.40
Pasteur GCA_000832585.1 5.23
PR06 GCA_001683195.1 5.23
55-VNIIVViM GCA_001835485.1 5.35
Sterne 34F2 GCA_002005265.1 5.39
UT308 GCA_003345105.1 5.37
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Abstract
Transcriptomic structural variants (TSVs) – large-scale transcriptome sequence change due to struc-
tural variation – are common, especially in cancer. Detecting TSVs is a challenging computational
problem. Sample heterogeneity (including differences between alleles in diploid organisms) is a critical
confounding factor when identifying TSVs. To improve TSV detection in heterogeneous RNA-seq
samples, we introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks
k genome rearrangements to maximize the number of reads that are concordant with at least one
rearrangement. This directly models the situation of a heterogeneous or diploid sample. We prove
that MCAP is NP-hard and provide a 1

4 -approximation algorithm for k = 1 and a 3
4 -approximation

algorithm for the diploid case (k = 2) assuming an oracle for k = 1. Combining these, we obtain a
3

16 -approximation algorithm for MCAP when k = 2 (without an oracle). We also present an integer
linear programming formulation for general k. We characterize the graph structures that require
k > 1 to satisfy all edges and show such structures are prevalent in cancer samples. We evaluate our
algorithms on 381 TCGA samples and 2 cancer cell lines and show improved performance compared
to the state-of-the-art TSV-calling tool, SQUID.
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1 Introduction

Transcriptomic structural variations (TSVs) are transcriptome sequence alterations due to
genomic structural variants (SVs). TSVs may cause the joining of parts from different genes,
which are fusion-gene events. Fusion genes are known for their association with various types
of cancer. For example, the joint protein products of BCR-ABL1 genes are prevalently found
in leukemia [4]. In addition to fusion genes, the joining of intergenic and genic regions, called
non-fusion-gene events, are also related to cancer [22].

TSV events are best studied with RNA-seq data. Although SVs are more often studied
with whole genome sequencing (WGS) [2, 12, 18, 9, 5, 20], the models built on WGS data lack
the flexibility to describe alternative splicing and differences in expression levels of transcripts
affected by TSVs. In addition, RNA-seq data is far more common [14] than WGS data, for
example, in The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov).

Many methods have been proposed that identify fusion genes with RNA-seq data. Gener-
ally, these tools identify candidates of TSV events through investigation into read alignments
that are discordant with the reference genome (e.g. [10, 15, 3, 16, 21, 11]). A read alignment
is concordant with a reference sequence if the alignment to the sequence agrees with the
read library preparation. For example in paired-end Illumina sequencing, the orientation
of the forward read should be 5′-to-3′ and the reverse for the mate read. Otherwise the
alignment is discordant with the reference. A series of filtering or scoring functions are
applied on each TSV candidate to eliminate the errors in alignment or data preparation. The
performance of filters often relies heavily on a large set of method parameters and requires
prior annotation [13]. Furthermore, most of the fusion-gene detection methods limit the
scope to the joining of protein-coding regions and ignore the joining of intergenic regions
that could also affect the transcriptome. An approach that correctly models both fusion-gene
and non-fusion-gene events without a large number of ad hoc assumptions is desired.

An intuitive TSV model is the one that describes directly the rearrangement of the
genome. For example, when an inversion happens, two double-strand breaks (DSB) are
introduced to the genome and the segment between the DSBs is flipped. After a series of
TSVs are applied to a genome, a rearranged genome is produced. In order to identify the
TSVs, we can attempt to infer the rearranged genome from the original genome and keep
track of the arrangements of genome segments. Since a model of the complete genome is
produced, both fusion-gene and non-fusion-gene events can be detected. A recently published
TSV detection tool, SQUID [14], models TSV events in this way by determining a single
rearrangement of a reference genome that can explain the maximum number of observed
sequencing reads. SQUID finds one arrangement of genome segments such that a maximum
number of reads are able to be sequenced from it. Novel transcriptomic adjacencies appearing
in the arrangement are predicted as TSVs while the ones not appearing are regarded as
sequencing or alignment errors.

Despite the generally good performance of SQUID, it relies on the assumption that
the sample is homogeneous, i.e. the original genome contains only one allele that can be
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represented by a single rearranged string. This assumption is unrealistic in diploid (or high
ploidy) organisms. When TSV events occur within the same regions on different alleles,
read alignments may suggest multiple conflicting ways of placing a segment. Under the
homogeneous assumption, conflicting TSV candidates are regarded as errors. Therefore, this
assumption leads to discarding the conflicting TSV candidates that would be compatible
on separate alleles and therefore limits the discovery of true TSVs. Conflicting SV candid-
ates are addressed in a few SV detection tools such as VariationHunter-CR [9]. However,
VariationHunter-CR assumes a diploid genome, and its model is built for WGS data that
lacks ability to handle RNA-seq data.

We present an improved model of TSV events in heterogeneous contexts. We address
the limitation of the homogeneous assumption by extending the assumption to k alleles. We
introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks,
assuming the number of alleles k is known, an optimal set of k arrangements of segments from
GSG such that the number of concordant sequencing reads with any of the rearrangement
sequences is maximized. Each arrangement is a permutation and reorientation of all segments
from the reference genome, representing the altered sequence of one allele. The originally
discordant edges that are concordant in any of the k arrangements are predicted as TSVs,
and those edges are regarded as errors otherwise. We show that MCAP is NP-hard. To
address NP-hardness, we propose a 1

4 -approximation algorithm for the k = 1 case and a
3
4 -approximation solution to the k = 2 case using an oracle for k = 1. Combining these,
we obtain a 3

16 -approximation algorithm for MCAP when k = 2 (without an oracle). We
also present an integer linear programming (ILP) formulation that gives an optimal solution
for general k.

We characterize the patterns of reads that result in conflicting TSV candidates under a
single-allele assumption. We show that these patterns are prevalent in both cancer cell lines
and TCGA samples, thereby further motivating the importance of SV detection approaches
that directly model heterogeneity.

We apply our algorithms to 381 TCGA samples from 4 cancer types and show that
many more TSVs can be identified under a diploid assumption compared to a haploid
assumption. We also evaluate an exact ILP formulation under a diploid assumption (D-
SQUID) on previously annotated cancer cell lines HCC1395 and HCC1954, identifying several
previously known and novel TSVs. We also show that, in most of the TCGA samples, the
performance of the approximation algorithm is very close to optimal and the worst case of
3

16 -approximation is rare.

2 The Genome Segment Graph (GSG)

A Genome Segment Graph, similar to a splice graph [8], encodes relationships between
genomic segments and a set of reads. A segmentation S of the genome is a partition of the
genome into disjoint intervals according to concordant and discordant paired-end alignments
with respect to the reference genome. The genome partitioning, edge construction and edge
filtering is done in the same way as in [14].

I Definition 1 (Genome Segment Graph). A genome segment graph is a weighted, undirected
graph G = (V,E,w) derived from a segmentation S of the genome and a collection of reads.
The vertex set, V = {sh ∈ S}

⋃
{st ∈ S}, includes a vertex for both endpoints, head (h) and

tail (t), for each segment s ∈ S. The head of a segment is the end that is closer to the 5′ end
of the genome. The tail is the end that is close to the 3′ end. Pairs of reads that span more
than one segment are represented by edges. There are four types of connections: head-head,
head-tail, tail-head and tail-tail. Each edge e = (ui, vj) ∈ E, where i, j ∈ {h, t}, is undirected
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and connects endpoints of two segments. The weight (we ∈ w) is the number of sequencing
reads that support edge e.

We also define the weight of a subset E′ ⊆ E of edges w(E′) =
∑

e∈E′ we. (More details
on the GSG provided in Ma et al. [14].)

I Definition 2 (Permutation, Orientation function and Arrangement). A permutation is a
function where π(u) = i, where i is the index of segment u ∈ S in an ordering of a set S
of segments. We also define orientation function f(u) = 1 if segment u should remain the
original orientation, or 0 if it should be inverted. An arrangement is a pair of permutation
and orientation functions (π, f).

If π(u) < π(v), we say that segment u is closer to the 5′ end of the rearranged genome than
segment v. Each arrangement is a concatenation of segments from different chromosomes,
which retrieves the sequences affected by inter- and intra-chromosomal TSV events. The
arrangement of genome segments imitates the movements of genomic sequences by SVs. One
crucial difference between arrangement in GSG and sequence movements by SVs is that an
arrangement in GSG only captures the movement that are relevant to transcriptome sequence
alterations. Such alterations can either fuse two transcript sequences or incorporate previously
non-transcribing sequences into transcripts as long as they are present in RNA-seq reads.

I Definition 3 (Concordant and Discordant edges). Let e be an edge connecting segment u on
end a and segment v on end b (a, b ∈ {h, t}). Given arrangement (π, f), suppose π(u) < π(v),
edge e is concordant with respect to the arrangement if f(u) = 1a=t and f(v) = 1b=h. Denote
the concordance as e ∼ (π, f). Otherwise, e is discordant and denote as e 6∼ (π, f).

Since edges are constructed based on segment connections indicated by read alignments,
the concordance and discordance of edges are extensions from read alignments. A discordant
edge represents a set of discordant read alignments. Examples of discordant edges with tail-
tail and head-head connections are shown in Figure 1a. Concordant edges, when connecting
nodes that belong to the same chromosome, represent concordant alignments that are either
continuous alignments or split-alignments due to alternative splicing. Due to alternative
splicing, a node can be incident to multiple concordant edges given an arrangement. Edges
that initially spanned two chromosomes but become concordant in an arrangement represent
inter-chromosomal translocation events.

Segments connected by discordant edges can be arranged so that some of the discordant
edges become concordant. See Figure 1b,c for examples of arrangements that make tail-tail
and head-head connections concordant.

I Definition 4 (Conflicts among a Set of Edges). Given GSG G = (V,E,w) and a subset
of edges E′, the edges in set E′ are in conflict with each other if there is no single ar-
rangement (π, f) such that e ∼ (π, f) (∀e ∈ E′). Otherwise, edges in set E′ are compatible
with each other.

I Definition 5 (Transcriptomic Structural Variant (TSV)). A TSV is a new adjacency in
transcript sequences that cannot be explained by alternative splicing.

In GSG, the adjacency in transcript sequences is represented by edges. New adjacencies
that cannot be explained by alternative splicing belong to the set of edges that are either
discordant with respect to the reference arrangement or connecting segments belonging to
different chromosomes.
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3 The Multiple Compatible Arrangements Problem (MCAP)

3.1 Problem Statement
Given an input GSG G = (V,E,w) and a positive integer k, the Multiple Compatible
Arrangements Problem seeks a set of k arrangements A = {(πi, fi)}k

i=1 that are able to
generate the maximum number of sequencing reads:

max
A

∑
e∈E

w(e) · 1 [e ∼ A] , (1)

where 1 [e ∼ A] is 1 if edge e is concordant in at least one (πi, fi) ∈ A, and 0 otherwise.
This objective function aims to find an optimal set of k arrangements of segments where

the sum of concordant edge weights is maximized in the rearranged alleles, where k is the
number of alleles and assumed to be known for sure. The objective seeks to maximize the
agreement between rearranged allelic sequences and observed RNA-seq data. Assuming that
the majority of RNA-seq reads are sequenced, the concordant edges with respect to the
optimal set of arrangements represent the most confident transcriptomic adjacencies. In
heterogeneous samples where k 6= 1, MCAP separates the conflicting edges onto k alleles as
shown in an example in Figure 1.

When k = 1, the problem reduces to finding a single rearranged genome to maximize the
number of concordant reads, which is the problem that SQUID [14] solves. We refer to the
special case when k = 1 as Single Compatible Arrangement Problem (SCAP).

Predicted TSVs are the concordant edges with respect to any of the arrangements in
a solution to MCAP that were either discordant with respect to or spanning multiple
chromosomes in the reference genome.

Figure 1 MCAP resolves conflicts. The darker ends of the segments represent head with respect
to the original genome. The lighter ends represent tail with respect to the original genome. “H”
stands for head and “T” stands for tail. (a) Two conflicting edges connecting two segments u and
v. If the sample is known to be homogeneous (k = 1), then the conflict is due to errors. If k = 2,
MCAP seeks to separate two edges into two compatible arrangements as in (b) and (c). (b) In the
first arrangement, segment v is flipped, which makes the blue edge concordant. (c) In the second
arrangement, u is flipped to make the red edge concordant.

3.2 NP-hardness of SCAP and MCAP
I Theorem 6. SCAP is NP-hard.

Proof Sketch. We prove the NP-hardness of SCAP by reducing from MAX-2-SAT. While
2-SAT can be solved in polynomial time, MAX-2-SAT, which asks for the maximum number
of clauses that can be satisfied, is NP-hard. For boolean variables and clauses in any MAX-2-
SAT instance, we create gadget segments in the GSG so that the satisfaction of each clause
is determined by the edge concordance and the boolean assignment is determined by segment
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inversion. The gadgets force the optimal sum of concordant edge weights to directly represent
the number of satisfied clauses. Correspondingly, the optimal orientations of segments
represent the assignment of boolean variables. See Appendix A for a complet eproof. J

I Corollary 7. MCAP is NP-hard.

Proof. SCAP is a special case of MCAP with k = 1, so the NP-hardness of MCAP is
immediate. J

4 A 1
4-approximation Algorithm for SCAP

We provide a greedy algorithm for SCAP that achieves at least 1
4 approximation ratio and

takes O(|V ||E|) time. The main idea of the greedy algorithm is to place each segment into
the current order one by one by choosing the current “best” position. The current “best”
position is determined by the concordant edge weights between the segment to be placed
and the segments already in the current order.

Algorithm 1 Greedy algorithm for SCAP.

Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from 4 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning

of order in reverse strand), (si in the end of order in forward strand), (si in the
end of order in reverse strand)] ;

6 for j in 1 : 4 do
7 weights[j] =

w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
8 end

// update the current order and orientation
9 opt = argmax1≤i≤4,i∈Nweights[i] ;

10 order = update segment order as given by options[opt] ;
11 orientation = update segment orientation as given by options[opt] ;
12 end

I Theorem 8. Algorithm 1 approximates SCAP with at least 1
4 approximation ratio.

Proof. Denote E′ ⊂ E as the concordant edges in the arrangement of Algorithm 1. Let
OPT be the optimal value of SCAP. We are to prove w(E′) ≥ 1

4w(E) ≥ 1
4OPT .

For iteration i in the for loop, the edges Ei = {e ∈ E : e connects si with sj , i < j}
are considered when comparing the options. Each of the four options makes a subset of
Ei concordant. These subsets are non-overlapping and their union is Ei. Specifically, the
concordant edge subset is {e = (si

h, s
j
t )} for the first option, {e = (si

h, s
j
h)} for the second,

{e = (si
t, s

j
h)} for the third, and {e = (si

t, s
j
t )} for the last.
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By the selecting the option with the largest sum of concordant edge weights, the concordant
edges E′i in iteration i satisfies w(E′i) ≥ 1

4w(Ei). Therefore, the overall concordant edge
weights of all iterations in the for loop satisfy∑

i

w(E′i) ≥
1
4
∑

i

w(Ei) = 1
4w
(⋃

i

Ei

)
.

Each edge e ∈ E must appear in one and only one of Ei, and thus
⋃

i Ei = E. This implies∑
i w(E′i) ≥ 1

4w(E) ≥ 1
4OPT . J

Algorithm 1 can be further improved in practice by considering more order and orientation
options when inserting a segment into current order. In the pseudo-code 1, only two possible
insertion places are considered: the beginning and the end of the current order. However,
a new segment can be inserted in between any pair of adjacent segments in the current
order. We provide an extended greedy algorithm to take into account the extra possible
inserting positions (Algorithm 2). Algorithm 2 has a time complexity of O(|V |2|E|), but it
may achieve a higher total concordant edge weight in practice.

Algorithm 2 Extended greedy algorithm for SCAP.

Data: Segment set S, genome segment graph G = (V,E,w)
Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];
2 orientation = [];
3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from i+ 1 possible order and orientation options
5 options = [(si in the beginning of order in forward strand), (si in the beginning

of order in reverse strand)] ;
6 for j in 1 : i− 1 do
7 Append [(si right after order[j] in forward strand), (si right after order[j] in

reverse strand)] to list of options ;
8 end
9 for j in 1 : 2i do

10 weights[j] =
w({e ∈ E : e connects si with sk and concordant in options[j], k < i});

11 end
// update the current order and orientation

12 opt = argmax1≤j≤i,j∈Nweights[j] ;
13 order = update segment order as given by options[opt] ;
14 orientation = update segment orientation as given by options[opt] ;
15 end

5 A 3
4-approximation of MCAP with k = 2 Using a SCAP Oracle

If an optimal SCAP solution can be computed, one way to approximate the MCAP’s optimal
solution is to solve a series of SCAP instances iteratively to obtain multiple arrangements.
Here, we prove the iterative SCAP solution has an approximation ratio of 3

4 for the special
case of MCAP with k = 2.
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Algorithm 3 3
4 -approximation for MCAP with k = 2.

Data: A genome segment graph G = (V,E,w)
Result: a set of two arrangements, sum of weights of edges that are concordant in

either arrangement

1 a1 = optimal SCAP arrangement on G;
2 E′ = {e ∈ E : e is discordant in a1};
3 G′ = (V,E′, w);
4 a2 = optimal SCAP arrangement on G′;
5 Ẽ = {e ∈ E : e ∼ A,A = {a1, a2}};
6 W =

∑
e∈Ẽ w(e);

7 return ({a1, a2}, W );

I Theorem 9. Algorithm 3 is a 3
4 -approximation of MCAP with k = 2. Denote the optimal

objective sum of edge weights in MCAP with k = 2 as OPT , and the sum of edge weights in
iterative SCAP as W , then

W ≥ 3
4OPT

Proof. Denote MCAP with k = 2 as 2-MCAP. Let Ed
1 and Ed

2 be concordant edges in the
optimal two arrangements of 2-MCAP. It is always possible to make the concordant edges of
the arrangements disjoint by removing the intersection from one of the concordant edge set,
that is Ed

1 ∩ Ed
2 = ∅. Let Ed = Ed

1 ∪ Ed
2 . The optimal value is w(Ed).

Denote the optimal set of concordant edges in the first round of Algorithm 3 as Es
1 . The

optimal value of SCAP is w(Es
1). Es

1 can have overlap with the two concordant edge sets of
the 2-MCAP optimal solution. Let the intersections be I1 = Ed

1 ∩Es
1 and I2 = Ed

2 ∩Es
1 . Let

the unique concordant edges be D1 = Ed
1 − Es

1 , D2 = Ed
2 − Es

1 and S = Es
1 − Ed

1 − Ed
2 .

After separating the concordant edges in 2-MCAP into the intersections and unique sets,
the optimal value of 2-MCAP can be written as w(Ed) = w(I1) + w(I2) + w(D1) + w(D2),
where the four subsets are disjoint. Therefore the smallest weight among the four subsets
must be no greater than 1

4w(Ed). We prove the approximation ratio under the following two
cases and discuss the weight of the second round of SCAP separately:

Case (1): the weight of either D1 or D2 is smaller than 1
4 w(Ed). Because the two ar-

rangements in 2-MCAP are interchangeable, we only prove for the case where w(D1) ≤
1
4w(Ed). A valid arrangement of the second round of SCAP is the second arrangement in
2-MCAP, though it may not be optimal. The maximum concordant edge weights added
by the second round of SCAP must be no smaller than w(D2). Combining the optimal
values of two rounds of SCAP, the concordant edge weight is

W ≥ w(Es
1)+w(D2) = w(S)+w(I1)+w(I2)+w(D2) ≥ w(Ed)−w(D1) ≥ 3

4w(Ed). (2)

Case (2): both w(D1) ≥ 1
4 w(Ed) and w(D2) ≥ 1

4 w(Ed). The subset with smallest sum
of edge weights is now either I1 or I2. Without loss of generality, we assume I1 has
the smallest sum of edge weights and w(I1) ≤ 1

4w(Ed). Because the first round SCAP
is optimal for the SCAP problem, its objective value should be no smaller than the
concordant edge weights of either arrangement in 2-MCAP. Thus

w(Es
1) ≥ w(Ed

2 ) = w(D2) + w(I2). (3)
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A valid arrangement for the second round of SCAP can be either of the arrangements
in 2-MCAP optimal solution. Picking the first arrangement of 2-MCAP as the possible
(but not necessarily optimal) arrangement for the second round of SCAP, the concordant
edge weights added by the second round of SCAP must be no smaller than w(D1).
Therefore, the total sum of concordant edge weights of the optimal solutions of both
rounds of SCAP is

W ≥ w(Es
1) + w(D1) ≥ w(D2) + w(I2) + w(D1) = w(Ed)− w(I1) ≥ 3

4w(Ed). (4)

J

I Corollary 10. An approximation algorithm for MCAP with k = 2 can be created by using
Algorithm 1 as the oracle for SCAP in Algorithm 3. This approximation algorithm runs in
O(|V ||E|) time and achieves at least 3

16 approximation ratio.

The proof of the corollary is similar to the proof of iterative SCAP approximation ratio.
By adding a multiplier of 1

4 to the right of inequalities (3) and (4), the 3
16 approximation

ratio can be derived accordingly.

6 Integer Linear Programming Formulation for MCAP

MCAP, for general k, can be formulated as an integer linear programming (ILP) to obtain
an optimal solution. We rewrite the ith permutation (πi), orientation (fi) and decision
(1[e ∼ (πi, fi)]) functions with three boolean variables yi

e, zi
e and xi

e. For i ∈ {1, 2..., k} and
e ∈ E, we have:

xi
e = 1 if edge e ∼ (πi, fi) and 0 otherwise.
yi

u = 1 if fi(u) = 1 for segment u and 0 if fi(u) = 0.
zi

uv = 1 if πi(u) < πi(v), or segment u is in front of v in arrangement i and 0 otherwise.

In order to account for the edges that are concordant in more than one arrangement in
the summation in Equation 1, we define qe such that qe = 1 if edge e is concordant in one of
the k arrangements and 0 otherwise. The constraints for qe are as follows:

qe ≤
k∑
i

xi
e (5)

qe ≤ 1 (6)

The objective function becomes

max
xi

e,yi
u,zi

uv

∑
e∈E

w(e) · qe (7)

We then add ordering and orientation constraints. If an edge is a tail-head connection,
i.e. concordant to the reference genome, xi

e = 1 if and only if zi
uv = yi

u = yi
v. If an edge

is a tail-tail connection, xi
e = 1 if and only if zi

uv = 1 − yi
v = yi

u. If an edge is a head-tail
connection, xi

e = 1 if and only if zi
uv = 1− yi

u = 1− yi
v. If an edge is a head-head connection,

xi
e = 1 if and only if zi

uv = 1− yi
u = yi

v. The constraints for a tail-head connection are listed
below in Equation 8, which enforce the assignment of boolean variables yi

e, zi
e and xi

e:

xi
e ≤ yi

u − yi
v + 1,

xi
e ≤ yi

v − yi
u + 1,

xi
e ≤ yi

u − zi
uv + 1,

xi
e ≤ zi

uv − yi
u + 1,

(8)
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The constraints of other types of connections are similar and detailed in Ma et al. [14].
Additionally, constraints are added so that all segments are put into a total order within
each allele. For two segments u, v, segment u will be either precede or follow segment v, i.e.
zi

uv + zi
vu = 1. For three segments u, v, w, if u precedes v and v precedes w, then u has to

precede w: 1 ≤ zi
uv + zi

vw + zi
wu ≤ 2.

The total number of constraints as a function of k is 4k|E|+k
(|V |

3
)
+2|E| = O(k(|E|+V 3)).

When k increases, the number of constraints grows linearly. When k = 1, the ILP formulation
reduces to the same formulation as SQUID.

7 Characterizing the Conflict Structures That Imply Heterogeneity

In this section, we ignore edge weights and characterize the graph structures where homogen-
eous assumption cannot explain all edges. We add a set of segment edges, Ê, to the GSG.
Each ê ∈ Ê connects the two endpoints of each segment, i.e. ê = {sh, st} for s ∈ S. The
representation of GSG becomes G = (E, Ê, V ).

I Definition 11 (Conflict Structures and Compatible Structures). A conflict structure, CS =
(E′, Ê′, V ′), is a subgraph of a GSG where there exists a set of edges E′ that cannot be made
concordant using any single arrangement. A compatible structure is a subgraph of a GSG
where there exists a single arrangement such that all edges can be made concordant in it.

I Definition 12 (Simple cycle in GSG). A simple cycle, C = (E′, Ê′, {v0, . . . , vn−1}), is a
subgraph of a GSG, such that E′ ⊆ E, Ê′ ⊆ Ê and vi ∈ V , with (vi, vi+1 mod n) ∈ E′ ∪ Ê′
and where vi 6= vj when i 6= j except vn−1 = v0.

I Definition 13 (Degree and special degree of a vertex in subgraphs of GSG). Given a subgraph
of GSG, G′ = (E′, Ê′, V ′), degE′(v) refers to the degree of vertex v ∈ V ′ that counts only
the edges e ∈ E′ that connect to v. deg(v) refers to the number of edges e ∈ E′ ∪ Ê′ that
connect to v.

I Theorem 14. Any acyclic subgraph of GSG is a compatible structure.

I Theorem 15. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there
are exactly two vertices, vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj belongs
to different segments.

The details of the proofs of the above two theorems are in Appendix B.

I Corollary 16. A necessary condition for a subgraph (E′, Ê′, V ′) to be a conflict structure
is that it contains cycles. A sufficient condition for a subgraph (E′, Ê′, V ′) to be a conflict
structure is that it contains a simple cycle which is not a compatible structure.

The corollary is a direct derivation of Theorem 14 and Theorem 15 when considering
general graph structures.

In practice, we determine if a discordant edge, e = (u, v), is involved in a conflict
structure by enumerating all simple paths using a modified depth-first search implemented
in Networkx [7, 19] between u and v omitting edge e. We add e to each path and form
a simple cycle. If the simple cycle satisfies Corollary 16, we stop path enumeration and
label the e as discordant edge involved in conflict structure. If the running time of path
enumeration exceeds 0.5 seconds, we shuffle the order of DFS and repeat enumeration. If
path enumeration for e exceeds 1000 reruns, we label e as undecided.
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8 Experimental Results

To produce an efficient, practical algorithm for TSV detection in diploid organisms, we use the
following approach, which we denote as D-SQUID: Run the ILP (Section 6) under the diploid
assumption by setting k = 2 on every connected component of GSG separately. If the ILP
finishes or the running time of the ILP exceeds one hour, output the current arrangements.

8.1 D-SQUID Identifies More TSVs in TCGA Samples than SQUID

We calculate the fraction of discordant edges involved in conflict structures (Figure 2a) in
381 TCGA samples from four types of cancers: bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), lung adenocarcinoma (LUAD) and prostate adenocarcinoma
(PRAD). Among all samples, we found less than 0.5% undecided edges out of all discordant
edges. The distribution of fraction of discordant edges within conflict structures are different
among cancer types. The more discordant edges are involved in conflict structures, the more
heterogeneous the sample is. Among four cancer types, PRAD samples exhibit the highest
extent of heterogeneity and BRCA samples exhibit the lowest. On average, more than 90%
of discordant edges are within conflict structures in all samples across four cancer types.
This suggests that TCGA samples are usually heterogeneous and may be partially explained
by the fact that TCGA samples are usually a mixture of tumor cells and normal cells [1].

We compare the number of TSVs found by D-SQUID and SQUID (Figure 2b). In all of
our results, all of the TSVs found by SQUID belong to a subset of TSVs found by D-SQUID.
D-SQUID identifies many more TSVs than SQUID on all four types of cancers.

A discordant edge is termed resolved if it is made concordant in one of the arrangements.
Among all discordant edges in all samples, D-SQUID is able to resolve most of them
(Figure 2c), while SQUID is only able to resolve fewer than 50% of them. The results
demonstrate that D-SQUID is more capable of resolving conflict structures in heterogeneous
contexts, such as cancer samples, than SQUID.
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Figure 2 (a) The distribution of fractions of discordant edges that are involved in each identified
conflict structure (CS) in four cancer subtypes. Minima, maxima and means of the distributions are
marked by horizontal bars. (b) Number of TSVs identified by SQUID versus D-SQUID. (c) Histogram
of fractions of resolved discordant edges by SQUID and D-SQUID.
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8.2 D-SQUID Identifies More True TSV Events Than SQUID in
Cancer Cell Lines

We compare the ability of D-SQUID and SQUID to detect fusion-gene and non-fusion-gene
events on previously studied breast cancer cell lines HCC1395 and HCC1954 [6]. The
annotation of true SVs is taken from Ma et al. [14]. In both cell lines, D-SQUID discovers
more TSVs than SQUID. In HCC1954, D-SQUID identifies the same number of known TSVs
including fusions of gene (G) regions and intergenic (IG) regions compared with SQUID.
In HCC1395, D-SQUID identifies 2 more true TSV events that are fusions of genic regions.
We tally the fraction of discordant edges in conflict structures (Figure 3c) and find similar
fractions between HCC1395 and HCC1954, which indicates that the extent of heterogeneity
in two samples are similar. Compared to Figure 2a, the fraction in HCC samples is much
lower than that in TCGA samples. This matches the fact that two HCC samples contain the
same cell type and are both cell line samples, which are known to be less heterogeneous than
TCGA samples.
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Figure 3 Performance of D-SQUID and SQUID on breast cancer cell lines with experimentally
verified SV. (a) Total TSVs found. In both cell line samples, D-SQUID discovered more TSVs than
SQUID. (b) Number of known fusion-gene and non-fusion-gene events recovered by D-SQUID and
SQUID. G denotes TSVs that affect gene regions. IG denotes TSVs that affect intergenic regions.
(c) Fraction of discordant edges in conflict structures.

8.3 Evaluation of approximation algorithms
We evaluate the approximation algorithms for diploid MCAP (k = 2) using two different
subroutines described in Section 4. In this subsection, A1 refers to using Algorithm 1 with
worst case runtime O(|V ||E|) as a subroutine and A2 refers to using Algorithm 2 with worst
case runtime O(|V |2|E|) as a subroutine. Both A1 and A2 solve SCAP by greedily inserting
segments into the best position in the current ordering. While A1 only looks at the beginning
and ending of the ordering, A2 looks at all the positions.

In order to compare the performance of approximations to the exact algorithm using
ILP, we run D-SQUID, A1 and A2 on TCGA samples in Section 8.1. The algorithms are
evaluated on runtime and total weight of concordant edges in the rearranged genomes. “Fold
difference” on the axes of Figure 4 refers to the ratio of the axis values of D-SQUID over
that of A1 or A2. Both A1 and A2 output results in a much shorter period of time than
D-SQUID. A2 achieves better approximation than A1, demonstrated by closer-to-one ratio
of total concordant edge weight, at a cost of longer run time.
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The run time of D-SQUID ILP exceeds one hour on 4.5% of all connected components in
all TCGA samples. D-SQUID outputs sub-optimal arrangements in such cases. As a result,
approximation algorithms, especially A2, appear to resolve more high-weight discordant
edges than D-SQUID in some of the samples in Figure 4, which is demonstrated by data
points that fall below 1 on the y axes. A1 resolves more high-weight edges in 10 samples and
A2 resolves more high-weight edges in 54 samples than D-SQUID.
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Figure 4 Fold differences (ILP/approx) in run time and total weights of concordant edges resolved
by D-SQUID, A1 and A2 on TCGA samples. Horizontal and vertical red lines mark 1.0 on both
axes. (a) shows fold differences between D-SQUID and A1. (b) shows fold differences betweeen
D-SQUID and A2.

9 Conclusion and Discussion

We present approaches to identify TSVs in heterogeneous samples via the Multiple Com-
patible Arrangement Problem (MCAP). We characterize sample heterogeneity in terms
of the fraction of discordant edges involved in conflict structures. In the majority of TCGA
samples, the fractions of discordant edges in conflict structures are high compared to HCC
samples, which indicates that TCGA samples are more heterogeneous than HCC samples.
This matches the fact that bulk tumor samples often contain more heterogeneous genomes
than cancer cell lines, which suggests that fraction of conflicting discordant edges is a valid
measure of sample heterogeneity.

MCAP addresses this heterogeneity. In 381 TCGA samples, D-SQUID is able to resolve
more conflicting discordant edges than SQUID. In HCC cell lines, D-SQUID achieves
better performance than SQUID. Since D-SQUID solves MCAP by separating conflicting
TSVs onto two alleles, D-SQUID’s power to find TSVs generally increases as the extent of
heterogeneity increases.

We show that obtaining exact solutions to MCAP is NP-hard. We derive an integer linear
programming (ILP) formulation to solve MCAP exactly. We provide a 3

16 -approximation
algorithm for MCAP when the number of arrangements is two (k = 2), which runs in time
O(|V ||E|). It approximates the exact solutions well in heterogeneous TCGA samples.

Several open problems remain. MCAP relies on the number of arrangements (k) to make
predictions. It is not trivial to determine the optimal k for any sample. In addition, although
MCAP is solved by separating TSVs onto different alleles, there are typically many equivalent
phasings. Developing techniques for handling these alternative phasings is an interesting
direction for future work. Analyzing the effect of TSVs, especially non-fusion-gene ones, on
cellular functions and diseases is another direction of futher work.
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A Proof of NP-hardness

I Theorem 1. SCAP is NP-hard.

Proof. To prove the NP-hardness, we reduce from MAX-2-SAT problem. It is necessary and
sufficient to show that for any MAX-2-SAT problem, a genome segment graph (GSG) can be
constructed in polynomial time, and the SCAP objective directly tells the objective of the
MAX-2-SAT problem. For any MAX-2-SAT instance, we are going to construct a GSG such
that the satisfiability of a clause is indicated by the concordance of an edge.

Given a MAX-2-SAT problem with n booleans {x1, x2, · · · , xn} and m clauses
{c1, c2, · · · , cm}, the key gadget is the segments for boolean variables and clauses and the
edges between them (Figure 5A). For each boolean variable xi, a segment Xi is constructed
and termed as a boolean segment. For each clause ci, a segment Ci is constructed and termed
as a clause segment. To ensure that the correspondence between the edge concordance and
the clause satisfiability as well as the correspondence between the orientation of boolean
segments and the assignment of boolean variables, we add edges between clause segments
and boolean segments in the following way. For clause ci that involves boolean xi1 , an edge
is added between the head of Xi1 and the head of Ci if clause ci contains the negation of xi1 ,
otherwise the edge is between the tail of Xi1 and the head of Ci. When the literal is xi1 ,
setting the orientation of segment Xi1 to be 1 indicates assigning True to variable xi1 and
leads to the concordance of the edge; when the literal is x̄i1 , setting the orientation of segment
Xi1 to be 0 indicates assigning False to variable xi1 and leads to the edge concordance.
The edge between clause ci and the other involved boolean variable xi2 is added in the
same principle. We call the edge between boolean segments and the clause segments as
Type 1 edge. Type 1 edges have weight of 1.

Two extra edges between the two boolean segments involved in each clause are added.
This is the Type 2 edge with weight of 1. For each clause ci that involves boolean xi1 and
xi2 , two edges are added between Xi1 and Xi2 as in Table 1. When both literals in ci are
True, there are two concordant Type 1 edges; when only one literal in ci is True, one and
only one of the two Type 2 edges is guaranteed to be concordant, to compensate for the
decrease of concordant Type 1 edges.

An extra n+m+ 1 segments are added that we term blocking segments and denote as
{B1, B2, · · · , Bn+m+1}. Suppose w1 and w2 are large positive weights, and w2 � w1 � 1.
Type 3 edges with edge weight w2 are constructed between each adjacent pair of blocking
segments, specifically between the tail of Bi and the head of Bi+1 (∀i ∈ [1, n+m]). Type 3
edges are used to enforce the order and orientation among blocking segments. Type 4 edges
with weight w1 are constructed between blocking segments and the other types of segments.
Specifically, when i ≤ n, an edge is added between the tail of segment Bi and both the head
and the tail of Xi, as well as between the tail and the head of Xi and both the head of Bi+1.
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Similarly when n < i ≤ n+m, two edges are added between the tail of Bi and Ci−n, and
two other edges are added between the head and tail of Ci−n and Bi+1. Type 4 edges are
used to enforce the relative order between blocking segments and the boolean and clause
segments. But the orientation of the boolean and clause segments can be changed freely.

Table 1 Construction of Type 4 edges based on the clause.

clause ci edge 1 edge 2

xi1 ∨ xi2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

x̄i1 ∨ xi2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

xi1 ∨ x̄i2 tail of Xi1 to head of Xi2 head of Xi1 to tail of Xi2

x̄i1 ∨ x̄i2 head of Xi1 to head of Xi2 tail of Xi1 to tail of Xi2

We first prove that the order of the blocking segments in the optimal arrangement is
B1 < B2 < · · · < Bn+m+1 and the orientations of them are all in forward strand, where
< denotes the ordering between segments. Under the arrangement that uses the forward
strand of all {Bi} and have an order of B1 < B2 < · · · < Bn+m+1, the sum of concordant
edge weights is at least (n+m)w2. If the optimal arrangement contains any violations of
the adjacencies between Bi and Bi+1, there will at least one Type 3 edge that does not
connect blocking segments in a tail-to-head manner and become a discordant edge in the
arrangement. Therefore, the optimal arrangement can at most have an objective value of
(n+m− 1)w2 + 4(n+m)w1 + 4m. Since w2 � w1 � 1, the objective value is smaller than
(n+m)w2, and the arrangement is not optimal, which contradicts the assumption. Therefore
assuming the whole chain of segments is not reverse complemented, the orientations of
blocking segments are all in forward strand, and order is B1 < B2 < · · · < Bn+m+1 in the
optimal arrangement.

We then prove that the Type 2 edges restrict the order of all segments but not the
orientation of boolean and clause segments. The order between blocking segments and
boolean segments must be Bi < Xi < Bi+1, the order between blocking and clause segments
must be Bi < Ci−n < Bi+1, and all boolean segments must be before clause segments. When
the order is Bi < Xi < Bi+1 among the three segments, and the orientations of Bi and
Bi+1 are both in forward strand, the concordant edge weights of Type two edge sum to 2w1
no matter whether Xi is in forward strand or inverted. The same weight can be achieved
for order Bi < Ci−n < Bi+1. The arrangement with order B1 < X1 < B2 < · · · < Bn <

Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1 and with all blocking segments in their
forward strand will achieve a sum of concordant edge weight (n+m)w2 + 2(n+m)w1 at
least. This concordant weight is summed over Type 3 and Type 4 edges. However, if the
optimal arrangement violates any Bi < Xi < Bi+1 or Bi < Ci−n < Bi+1 order, the violated
triplet can achieve at most w1 of concordant edge weights, and thus the maximum sum of
concordant edge weights is (n + m)w2 + 2(n + m − 1)w1 + w1 + 4m. Since w1 � 1, the
“optimal” arrangement objective is smaller than (n+m)w2 + 2(n+m)w1, which contradicts
the optimality. Therefore, the order of all segments in the optimal arrangement must be

B1 < X1 < B2 < · · · < Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1.

Third, we prove that under the above segment order there are always two concordant
edges of weight 1 when clause segment Ci has any concordant Type 1 edge. Suppose there is
a clause ci involving boolean variables xi1 and xi2 , segment Ci has one Type 1 edge between
Xi1 and one Type 1 edge between Xi2 . When both Type 1 edges are concordant, both
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(A)

B1 X1 B2 X2 B3 X3 B4 C1 B5 C2 B6

(B)

−X1 X3 C2

(C)

X1 X3 C2

(D)

−X1 −X3 C2

(E)

X1 −X3 C2

Figure 5 (A) Constructed GSG for boolean expression (x1 ∨ x2) ∧ (x̄1 ∨ x3). There is a segment
for each boolean variable xi (blue) and clause ci (white), and 6 blocking segments (green) to separate
between boolean segments and clause segments. Type 1 edges, black edges, are connecting between
boolean segments and clause segments. Type 2 edges, blue edges, are connecting between a pair
of boolean segments that appear in the same clause. Type 3 edges, green edges in the figure, are
chaining the blocking segments. Type 4 edges, orange edges, are connecting between blocking and
boolean / clause segments. (B-E) The subgraph corresponding clause x̄1 ∨ x3. −X1 and −X3 means
the segment is inverted. Solid lines indicate the concordant edges in the arrangement, and dotted
lines indicate the discordant edges. (B) The clause is satisfied with both literals satisfied. (C) The
clause is satisfied with x3 satisfied. (D) The clause is satisfied with x̄1 satisfied. (E) The clause is
not satisfied.

Type 2 edges between Xi1 and Xi2 are discordant (Figure 5B. When only one of the Type 1
edges is concordant, there is also one Type 2 edge between Xi1 and Xi2 that is concordant
(Figure 5C,D). When neither of the Type 1 edges is concordant, both of the two Type 2 edges
between Xi1 and Xi2 are discordant (Figure 5E). In this case, there is zero concordant edges
of weight 1 incident to Ci. Any arrangement solution of objective value W that satisfies
the above segment order has W − (n + m)w2 − 2(n + m)w1 concordant edges of weight
1. Therefore, the arrangement solution will have 1

2 (W − (n+m)w2 − 2(n+m)w1) clause
segments with non-zero concordant Type 1 edges.

When multiple clauses involve the same pair of segment, multi-edges between Xi1 and
Xi2 are constructed to make sure that two edges of weight 1 are contributed by any clause
segment when it has non-zero concordant Type 1 edges.
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Suppose the optimal number of satisfied clauses of the MAX-2-SAT instance is OPTm and
the optimal sum of concordant edge weights of the constructed SCAP instance is OPTs, the
following inequality holds: 1

2 (OPTs− (n+m)w2− 2(n+m)w1) ≥ OPTm. Given the optimal
solution of the MAX-2-SAT instance, a SCAP solution can be constructed by reversing
segment Xi if xi is assigned to False while keeping the order of B1 < X1 < B2 < · · · <
Bn < Xn < Bn+1 < C1 < Bn+2 < · · · < Cm < Bn+m+1. By the construction of the Type 1
edges, a clause segment will have at least one concordant Type 1 edge if and only if it
corresponds to a satisfied clause in the MAX-2-SAT solution. Denoting the objective value
of the constructed solution of arrangement problem as W and applying the third proof, we
have the following equality OPTm = 1

2 (W − (n+m)w2 − 2(n+m)w1). Since the optimal
objective value of the arrangement problem is as least W ,

OPTm = 1
2(W − (n+m)w2 − 2(n+m)w1) ≤ 1

2(OPTs − (n+m)w2 − 2(n+m)w1). (9)

Meanwhile 1
2 (OPTs − (n+m)w2 − 2(n+m)w1) ≤ OPTs. Given the optimal solution of

arrangement problem, there are 1
2 (OPTs − (n+m)w2 − 2(n+m)w1) clause segments with

non-zero concordant Type 1 edges. Construct a MAX-2-SAT solution by assigning False
to boolean variables if the corresponding boolean segment is reversed otherwise assigning
True. The concordance of Type 1 edges guarantees that the corresponding literals in
the MAX-2-SAT clauses are True. Thus the constructed MAX-2-SAT solution will have
1
2 (OPTr − (n+m)w2 − 2(n+m)w1) satisfied clauses, which is smaller than or equal to the
optimal number of satisfied clauses. Therefore

1
2(OPTs − (n+m)w2 − 2(n+m)w1) ≤ OPTm. (10)

Combining inequality (9) and inequality (10), the maximum number of satisfied clauses
in MAX-2-SAT instance can be directly calculated from the optimal concordant edge weights
in the arrangement problem, that is, OPTm = 1

2 (OPTs − (n+m)w2 − 2(n+m)w1). J

B Proof of Characterization of Conflict Structures

I Theorem 4. Any acyclic subgraph of GSG is a compatible structure.

Proof. We show that any acyclic subgraph with N edges (|E′|+|Ê′| = N), G′N = (E′, Ê′, V ′),
of GSG is a compatible structure by induction.
When |E′|+ |Ê′| = 1, G′1 is a compatible structure because no other edge in G′ is in conflict
with the only edge e ∈ E′.
Assume the theorem hold for any acyclic subgraph that contains n edges. Let G′n+1 =
(E′, Ê, V ′) be an acyclic subgraph with n+ 1 edges. Since G′n+1 is acyclic, there must be
a leaf edge that is incident to a leaf node. Denote the leaf node as vb and the leaf edge
e = (ua, vb) ∈ E′ ∪ Ê′ (a, b ∈ {h, t}). By removing edge e and leaf node vb, the subgraph
G′n = (E′ − {e}, Ê′ − {e}, V ′ − {vb}) is also acyclic and contains n edges. According to the
assumption, G′n is a compatible structure and there is an arrangement of the segments in
which all edges in E′ ∪ ê′ − {e} is concordant. Because no other edge in E′ ∪ Ê′ except
e connects to vb, it is always possible to place segment v back to the arrangement such
that e is concordant. Specifically, one of the four placing options will satisfy edge e: the
beginning of the arrangement with orientation 1, the beginning with orientation 0, the end
with orientation 1 and the end with orientation 0. Therefore, G′n+1 is a compatible structure.
By induction, acyclic subgraph G′N of GSG with any |E′| is a compatible structure. J
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I Theorem 5. A simple cycle C = (E′, Ê′, V ′) is a compatible structure if and only if there
are exactly two vertices, vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj belongs
to different segments.

Proof. We prove sufficiency and necessity separately in Lemma 6 and Lemma 7. J

I Lemma 6. If C is a compatible structure, there are exactly two vertices, vi, vj that belong
to different segments, such that degE′(vi) = degE′(vj) = 2

Proof. We discuss compatiblity in two cases:
Case (1): All edges are concordant in C. Sort the vertices by genomic locations in ascend-

ing order and label the first vertex v1 and the last vn, assuming |V ′| = n. Similarly,
sort the set of segments S′ in C by the values of their permutation function π and label
the first segment s1 and the last sm, assuming |S′| = m. Since concordant connections
can only be tail-head connections (e.g. Figure 1 b,c), v1 = s1

t and vn = sm
h . Since C

is a simple cycle, all vertices v ∈ V ′ have deg(v) = 2. Because v1 and vn are the first
and last vertices in this arrangement, the edges incident to v1 or vn must be in E′. It
follows that the two edges incident to v1 connects to s2

h and sm
h . Similarly, edges incident

to vn connects to s1
t and sn−1

t . Therefore, we have degE′(v1) = degE′(vn) = 2. Any
other vertex vi (1 < i < n) is connected by one e ∈ E′ and one ê ∈ Ê′ and thus has
degE′(vi) = 1.

Case (2): Some edges are discordant in C. If discordant edges exist in cycle C, according
to the definition of compatible structure, segments in C can be arranged such that all
edges are concordant. This reduces to case (1). J

I Lemma 7. If there are exactly two vertices in V ′ that belong to different segments, vi and
vj, such that degE′(vi) = degE′(vj) = 2, then C is a compatible structure.

Proof. Let vi and vj be the one of the end points of segments si and sj(i 6= j) , respectively.
We can arrange si and sj such that π(si) = mins∈S′ π(s), π(sj) = maxs∈S′ π(s) and that
vi = si

t, vj = sj
h. Rename vi to v1 and vj to vn. Since C is a simple cycle, we can find

two simple paths, P1 and P2, between v1 and vn and there is no edge between P1 and P2.
Let P ′1 and P ′2 denote P1 and P2 that exclude v1 and vn and the edges incident to v1 and
vn. Since P ′1 and P ′2 as acyclic subgraphs of GSG, according to Theorem 14, P ′1 and P ′2 are
compatible structures and therefore segments in P ′1 and P ′2 can be arranged so that all edges
are concordant. Denote the first and last vertices in the arranged P ′1 as v2 and v3, and the
first and last vertices in the arranged P ′2 as v4 and v5. Because all the edges are concordant
in P ′1, v2 and v3 are the head and tail of the first and last segments in P ′1. Because only v1
and vn have degE′ = 2 in C, v2 must be connected to v1 or vn and v3 must be connected to
vn or v1. A similar argument applies to v4 and v5. To ensure concordance of edges connected
to v1 and vn, if vn is connected to v2 and v1 is connected to v3, we flip all the segments in P ′1.
The similar operation is applied to v4, v5 and P ′2. Now we have a compatible structure. J
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Abstract
As sequence databases grow, characterizing diversity across extremely large collections of genomes
requires the development of efficient methods that avoid costly all-vs-all comparisons [17]. In addition
to exponential increases in the amount of natural genomes being sequenced, improved techniques for
the creation of human engineered sequences is ushering in a new wave of synthetic genome sequence
databases that grow alongside naturally occurring genome databases. In this paper, we analyze
the full diversity of available sequenced natural and synthetic plasmid genome sequences. This
diversity can be represented by a data structure that captures all presently available nucleotide
sequences, known as a pan-genome. In our case, we construct a single linear pan-genome nucleotide
sequence that captures this diversity. To process such a large number of sequences, we introduce
the plaster algorithmic pipeline. Using plaster we are able to construct the full synthetic plasmid
pan-genome from 51,047 synthetic plasmid sequences as well as a natural pan-genome from 6,642
natural plasmid sequences. We demonstrate the efficacy of plaster by comparing its speed against
another pan-genome construction method as well as demonstrating that nearly all plasmids align well
to their corresponding pan-genome. Finally, we explore the use of pan-genome sequence alignment to
distinguish between naturally occurring and synthetic plasmids. We believe this approach will lead to
new techniques for rapid characterization of engineered plasmids. Applications for this work include
detection of genome editing, tracking an unknown plasmid back to its lab of origin, and identifying
naturally occurring sequences that may be of use to the synthetic biology community. The source
code for fully reconstructing the natural and synthetic plasmid pan-genomes as well for plaster are
publicly available and can be downloaded at https://gitlab.com/qiwangrice/plaster.git.
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1 Introduction

Thanks to the advancement of sequencing and genome-editing technologies, over the past
decade genome engineering has become more affordable and accessible. Plasmids are com-
monly found as double-stranded DNA, which can replicate independently from chromosomal
DNA [12]. They are ubiquitous in bacteria and provide benefits such as enhanced host range
[4], antibiotic resistance [18], and even forced cooperation [20]. As plasmids are easy to
engineer and can confer functions in a broad range of species, they are widely used in biology
labs for understanding and modifying genetic elements. To date, more than 65 thousand
engineered plasmids have been deposited in the Addgene repository [13]. With the benefits
of genetic engineering microbial sequences also come risks [3], some with significant dual use
of research concerns [22]. In response, methods have been designed both to detect signatures
of engineering [1] and also trace back synthetic plasmids to a lab of origin using deep learning
methods [19]. Although deep learning shows potential to characterize engineered plasmids
and identify the lab-of-origin, there is a need for explainable, white-box approaches that
can provide a full list of sequence features specific to a biological function or lab. We thus
propose a novel method that enables the detection of a plasmid’s lab-of-origin with precise
characterization the diversity within and among all engineered plasmid sequences.

Traditionally, a single genome is chosen as a reference to describe genome diversity within
a group. Unfortunately, a single genome usually fails to reveal the full picture of similarities
and discrepancies among all individuals. The “pan-genome” concept was introduced to
reflect the diversity of all strains within a specific clade [31, 27]. This concept is similar
to the problem of finding a smaller set of founder sequences, which can map to a given
sequence in the group, called the founder sequence reconstruction problem [30]. The pan-
genome is designed to describe both the core genome shared by all the individuals and the
accesory genome contained by only some strains [27]. This concept can be applied to different
domains. In metagenomic studies, a pan-genome can highlight essential genetic elements
responsible for adaptations to the environment and the co-evolution interactions among the
microorganisms [17]. In terms of building a phylogenetic tree, pan-genomes can detect weak
evolutionary signals, which may be omitted by multiple sequence alignment. It also opens up
the possibilities for discovering the origin of unknown organisms [33], pathogen transmission
history [6], or the inference of cancer cell evolution [10].

In microbes, the pan-genome is commonly defined as the union set of genes that exist
in all the genomes in a selected clade [27]. Many bioinformatic tools have been developed
to build gene-based pan-genomes, such as PanOCT [8], PGAP [35], and Roary [24]. Given
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their gene-centric construction of the pan-genome, they are vulnerable to missing genes [34]
and do not include intergenic regions, which can have substantial impact on phenotypes [28].
To address these limitations, methods such as Piggy [29] build pan-genomes from intergenic
regions. In this paper we move away from a gene and intergenic centric approach; the term
pan-genome refers to the sum of all core and accessory DNA sequence fragments which are
longer than a minimal sequence fragment length l (plaster default l = 50bp).

In order to efficiently analyze vast numbers of DNA sequences, there is a need to create a
pan-genome sequence that encodes all existing variations in the minimal possible size [21].
To solve this problem efficiently via pan-genomics we introduce plaster, a new pan-genome
construction algorithm inspired by fast DNA clustering techniques [5]. plaster’s speed
exceeds the fastest existing tool seq-seq-pan and can be easily scaled to handle large data
sizes. Seq-seq-pan [14] is a recently introduced method for efficient pan-genome construction
that was shown to be an order of magnitude faster than the fastest available methods for pan
genome construction [7]. In brief, it relies on progressiveMauve to catalog all of the differences
(including insertions, deletions, substitutions, inversions, and rearrangements) within a set of
genomes through multiple sequence alignment. Then, it applies majority vote to decide on
consensus sequences from a set of segments of aligned sequences and merges those sequences
with delimiter sequences. Our approach plaster employs a similar approach, but instead we
calculate pairwise alignments with NUCmer and identify unaligned regions using dnadiff. We
then append all unaligned regions along with delimiter sequences to the end of the reference
sequence Fig. 1. We introduce the algorithm of plaster in detail and compare its performance
with seq-seq-pan. In addition, we describe differences and similarities between the synthetic
and natural plasmid pan-genome sequences based on pairwise alignment results.

2 Methods

2.1 plaster Workflow
The goal of our algorithm is to construct a pan-genome P from a set S = [s0, s1, ..., sn] of
n genome sequences. Throughout this paper, we focus on plasmid sequences, though any
arbitrary sequences can be used to construct the pan-genome P . A high level overview of our
algorithmic pipeline is outlined in Fig. 1. Though not necessary to run the plaster software,
in all analyses in this paper we first sort S so that |s0| ≥ |s1| ≥ ... ≥ |sn| where |s| denotes
the length of a sequence s. This initialization offers optimal performance of the method and
we recommend it to be used as a standard practice for users of plaster.

As shown in Fig. 1, the pipeline for our full plaster algorithm can be broken up into
a series of discrete tasks. After ordering the sequences by length, the pan-genome P , also
referred to as the reference sequence, is initialized as the longest sequence s0 in S. We
then proceed to build the full pan-genome by looping through all the remaining sequences,
[s1, s2, ..., sn], and performing the steps detailed in Fig. 1. We refer to each of these sequences
as a query sequence which we compare to the current pan-genome reference sequence.

For each query sequence, plaster begins by identifying the regions that do not align
between the query and current reference sequence. For this, NUCmer and dnadiff [25]
(from the MUMmer package [16], default dnadiff parameters were used). Pairwise genome
alignment is performed by NUCmer; following alignment, dnadiff provides detailed analysis
of all differences between the two sequences. Once the differences between the query and
reference sequences have been calculated, we add unaligned query sequence regions to the pan-
genome reference. The .report file output by dnadiff contains the total alignment percentage

WABI 2019
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Figure 1 plaster Pipeline: To build a pan-genome sequence, first we order all of the input
sequences by length. We next select the longest plasmid as an initial reference sequence and
the second longest plasmid as the first query sequence. We perform pairwise local alignment to
identify DNA sequences that are not contained in the current pan-genome. We then extract the
novel sub-sequences from the query sequence and update the pan-genome with these sequences.
We continue the pan-genome construction process by selecting the next longest sequence in the
remaining data set as the next query sequence. We iterate over all input sequences until the entire
set has been processed.

between the reference and query sequence. If the alignment percentage is zero, that is, the
query sequence is totally unaligned to the reference, we add the entire query to the plasmid
pan-genome by appending a delimiter sequence and the entire query sequence to the end.

Following this procedure, there are five different types of structural variants we capture:
gaps, duplications, breaks, relocations, and inversions. Each of these represents a different
type of sequence variant. For the purpose of capturing the minimal pan-genome, we only care
about variations where there are nucleotides in the query sequence that are not described in
the current reference. This includes: i) gaps, which identifies indels between two consistently
ordered and oriented alignments, and ii) breaks, which refers to a fragment of query sequence
not aligned to the reference sequence. Inversions, relocations, and duplications are sequence
variants of interest, but do not require an update to the linear pan-genome. By default, if the
length of a gap or break area is longer than l (default is 50bp), the corresponding unaligned
query sequence area will be appended to the end of the reference sequence after an additional
delimiter sequence. This process of finding and appending all differences between a query
sequence and the current pan-genome reference sequence continues until every sequence in S

has been iterated over. The final output of plaster is the resulting reference sequence which
represents a linear pan-genome P for the genomes of S.

3 Results

Having developed a novel algorithm for efficiently constructing pan-genomes that can handle
very large numbers of sequences, we set out to categorize the differences between all known
naturally occurring and synthetic plasmids. To justify the efficacy and utility of our newly
developed plaster algorithm, we perform experiments on the running time of our method.
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The run-time for plaster also includes the time for sorting the input sequences based on
length. We build the full pan-genomes of all natural and synthetic plasmids and we take
a first look at a novel approach for categorizing plasmids as natural or synthetic based on
percent alignment against these two pan-genomes. All the experiments in this paper are
written in python and run on a server running Ubuntu 18.04 LTS with two Intel Xeon Gold
6138 2.0 GhZ processors at 1 terabyte of RAM.

3.1 Evaluation of sensitivity
A total of 43 M. tuberculosis genomes were used to build a pan-genome sequence in [14].
However, only 41 genomes were still available in [23]. We used these 41 M. tuberculosis
genomes to build a pan-genome sequence using both seq-seq-pan and plaster. Seq-seq-pan
requires 34 min to construct the pan-genome sequence. On the other hand, it only takes
plaster around 4.2 min. The total length of the pan-genome sequence built by plaster

is 385,335 bp shorter than the one from seq-seq-pan. However, the pan-genome sequence
generated by plaster can align a total of 8,828 bp more (or 99.994% average alignment
percentage compared to 99.989% for seq-seq-pan) when performing pairwise alignment of all
41 M. tuberculosis sequences as query sequences against the pan-genome built from these same
41 genomes as the reference sequence. This shows that plaster is an order of magnitude faster
than seq-seq-pan while simultaneously producing a more compacted pan-genome sequence
and capturing more detailed variations within it.

3.2 Evaluation of speed
Given the rapid increase in the number of natural and engineered plasmids, there is a need to
develop a platform which can build pan-genomes for large data sets within a reasonable time
and be able to update the pan-genome information quickly for newly sequenced genomes.
To evaluate the pan-genome construction speed of plaster, we first performed experiments
on subsets of synthetic plasmid sequences and compared the performance of plaster against
the state of the art seq-seq-pan pan-genome construction method. We randomly selected
subsets of 10, 100, and 1000 synthetic plasmids from the full set of all synthetic plasmids.
Then, we recorded the wall clock time for building a pan-genome from these sequences from
start to finish.

As seen in Table 2, the performance of plaster for building a pan-genome sequence
ranges from 10 to 100 times faster than seq-seq-pan. plaster processes plasmids at a rate
of 0.25 seconds/plasmid for 10 plasmids, 0.3 seconds/plasmid for 100 plasmids, and 0.337
seconds/plasmid for 1000 plasmids. For seq-seq-pan, the rate is 2.56 seconds/ plasmid, 4.7
seconds/plasmid, and 35.3 seconds/plasmid for 10, 100, and 1000 plasmids respectively. From
these results we can see that seq-seq-pan will not scale to building pan-genome sequences
for all known synthetic or natural plasmids. On the other hand, plaster is able to build a
pan-genome for 51,047 complete engineered plasmid sequences in 8.9 hours.

Table 1 Run-time, sensitivity, and pan-genome length for 41 M. tuberculosis genomes.

Seq-seq-pan plaster

Run-time (s) 2058.64 252.215
Pan-genome length (bp) 4,874,793 4,489,458

Total Aligned Length (bp) 180,681,735 180,690,563
Average Alignment Percentage (%) 99.989±0.00298 99.994±0.00514
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Table 2 Run-time for building a pan-genome sequence and updating a pan-genome sequence
with one additional new sequence. We compare the speed of plaster to seq-seq-pan when building
pan-genome sequences using 10, 100, and 1000 random plasmids. We repeated the 10 and 100
sequence runs 20 times and report their average and standard deviation.

No. of plasmids Elapsed wall clock time (s) Elapsed wall clock time (s)
Pan-genome Construction Pan-genome Update

seq-seq-pan plaster seq-seq-pan plaster

10 25.265±0.736 1.90±0.0717 3.5±0.163 0.22±0.029
100 495.5±40.926 22.189±0.401 7.84±1.89 0.239±0.0243
1000 35295.3 337.2 86.679 0.886

In addition to the times for full pan-genome construction in Table 2, we compared the
timings for the pan-genome update speed. This update speed is the speed at which we can
add a single new sequence to an already fully constructed pan-genome. For this experiment,
we randomly selected one plasmid from our synthetic plasmid data set and added it to the
pan-genome sequences created in the previous experiment for 10, 100 and 1000 plasmids
using either seq-seq-pan or plaster.

As demonstrated by the results of Table 2, the update speed of seq-seq-pan grows
intractably for larger pan-genomes when compared to plaster. plaster is about 15 times
faster for the 10 plasmid pan-genome sequence, 30 times faster for the 100 plasmid pan-
genome sequence, and 100 times faster for the 1000 plasmid pan-genome sequence. Given the
speed of single sequence updates and the rapid growth of sequence databases, we envision that
plaster could be used as an online algorithm which updates a pan-genome sequence every
time new sequences are added to the database. A final timing experiment was performed
showing the update speed for plaster for all of a set of 51,047 synthetic plasmid sequences.
Fig. 2 shows these update times. The curvature of Fig. 2 suggests that we have created a
closed pan-genome, where update times gradually converge to a nearly constant time as the
pan-genome grows large.

3.3 Full Natural and Synthetic Plasmid Pan-Genomes
We built a full synthetic plasmid pan-genome and full natural plasmid pan-genome using
plaster based on 51,047 synthetic plasmid sequences, 73,727 partial synthetic plasmid se-
quences, and 6,642 natural plasmids. All the synthetic plasmids came from the Addgene
engineered plasmid database from January 2019 [13]. A JavaScript Object Notation (JSON)
file containing these DNA sequences was obtained directly from Addgene. These sequences
were grouped into four categories which were full plasmid sequences submitted by Addgene,
partial sequences (segments of the plasmid) submitted by Addgene, full plasmid sequences
submitted by a depositing lab, and partial sequences submitted by a depositing lab. There
were a total of 51,047 plasmids with complete sequences, in which 23,875 were submit-
ted by Addgene, and 73,727 partial sequences. The average size of a complete synthetic
plasmid is 7,159 bp.

To construct the full synthetic plasmid pan-genome, we first ordered all the plasmids
with full sequences based on their lengths. Then, we used those ordered plasmids as input to
plaster to build a full pan-genome sequence. It took about 8.9 hours to build the pan-genome
sequence and the final resulting linear pan-genome consisted of 8,307,070 bp. The total
number of nucleotides of all the synthetic plasmids with complete sequences was 365,468,935
bp. After building the pan-genome sequence with only full plasmid sequences, we generated
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a second pan-genome sequence using both full and partial sequences. We ranked the partial
sequences based on their lengths and input those sequences into the plaster pipeline as query
sequences. Given the online nature of plaster, we were able to use the already constructed
pan-genome for the full synthetic plasmids as the initial reference sequence, iterating over all
the partial sequences as new query sequences. plaster spent less than 35 hours to construct
the final pan-genome for both full and partial sequences. The total number of nucleotides
of this synthetic plasmid pan-genome sequence using both full and partial sequences is
18,163,933. The total number of nucleotides of all the sequences used to construct the
pan-genome was 442,923,876. For natural plasmids, we obtained the DNA sequences from
the latest database of plasmid sequences [2]. All of these natural plasmids are complete
sequences that were curated from the entire NCBI database [23]. There are a total of
6,642 plasmids in this database with an average size of 128,953 bp. The total number of
nucleotides of all natural plasmids was nearly one billion base pairs (856,388,404 bp total
length). It took plaster around 50.2 hr (wall clock time) to build the full natural plasmid
pan-genome sequence based on these sequences. The total number of nucleotides in the
resulting pan-genome sequence was 205,605,679 bp. The size of the pan-genome sequence is
around 24% of the total size of the natural plasmids.

3.4 Pan-genome Sequence Evaluation and Natural Versus Synthetic
Differentiation

An exciting new area of research in bioinformatics is in characterizing engineered DNA and
in differentiating engineered versus naturally occurring nucleotide sequences. To assess our
synthetic and natural pan-genomes, we realigned all natural and synthetic plasmids against
these two pan-genomes and report on the percent alignment for each of these plasmids. We
also highlight how this technique unveils a novel approach for differentiating synthetic and
natural plasmid sequences, given that each is expected to align well to its corresponding
pan-genome but not align well to the other pan-genome. Aligning a given query sequence to
both pan-genomes can therefore be used as an initial test for evidence of genomes having
been subjected to genome-editing.

Figure 2 Cumulative run time per individual plasmid used when building the synthetic plasmid
pan-genome sequence. x-axis is the cumulative number of plasmids. y-axis is the cumulative log
scale time. As more plasmids are added to the pan-genome, the run time for each individual plasmid
increases. The run-time growth rate decreases after a few thousand plasmids are appended as the
sequence shifts from a more open pan-genome to a more closed pan-genome.

WABI 2019
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To assess the representation of each of the plasmids within the newly constructed
pan-genome sequences, we did pairwise alignment using MUMmer. We used the plasmid
pan-genome sequences as the reference and all the plasmids from the two sets of plasmids as
query sequences. The percentage of a query sequence aligned to the pan-genome sequence
is a good estimator for evaluating how well the query sequence was included as part of
the corresponding pan-genome sequence. Figure 3a shows that, for most of the synthetic
plasmids, more than 75% of the DNA sequence aligns to the synthetic plasmid pan-genome
sequence. On the other hand, when natural plasmids are aligned to this same synthetic
plasmid pan-genome in Fig. 3b, most of the natural plasmids have below 5% of their DNA
aligning well. In Fig. 3c and Fig. 3d, we perform this same experiment but we align synthetic
and natural plasmids against the natural plasmid pan-genome. Again, most of the natural
plasmids are well aligned to the corresponding natural pan-genome sequence with more than
75% of the DNA aligning to the pan-genome in Fig. 3c. On the other hand, smaller portions
of synthetic plasmids align well to the natural plasmid pan-genome sequence in Fig. 3d. The
alignment percentages for synthetic plasmids range mainly from 25% to 75%

To evaluate the utility of natural and synthetic plasmid pan-genomes for differentiating
natural and synthetic plasmids, we randomly selected 1000 synthetic plasmids (submitted to
Addgene from January 2019 to June 2019) and 1000 natural plasmids from [9]. None of these
plasmids were used in the pan-genome construction steps. As such, we used these 2000 total
plasmids as a validation test data set. Our classification was performed as follows: Given an
unclassified plasmid p, if its pairwise alignment percentage of p compared to the synthetic
pan-genome SPG is above the threshold t AND its pairwise alignment percentage against
the natural pan-genome NPG is below the threshold t, we classified p as a synthetic plasmid
(and vice versa). Note: if p has alignment percentage above or below the threshold t for
both synthetic and natural plasmid pan-genomes, we leave the sequence unclassified. Table 3
indicates that by mapping to the SPG and NPG, an unknown plasmid can be differentiated
between being a synthetic or natural plasmid with high specificity. For synthetic plasmid
classification, a high threshold yields high sensitivity. On the other hand, natural plasmid
categorization has a high sensitivity with a low threshold.

To investigate the impact of the order of input sequences on building the pan-genome, we
created a synthetic pan-genome using full synthetic plasmids with the input order starting
from the shortest to the longest sequence. All the other parameters remained the same.
The total number of nucleotides of the full synthetic plasmid pan-genome with this reverse
input order is 6,585,872 bp. This is 1,721,198 bp shorter than the pan-genome built starting
from the longest to the shortest sequence. The average pairwise alignment percentage of a
plasmid against the initial pan-genome and the pan-genome with reversed input order are
91.52±11.63 % and 89.12±13.656 % respectively. Pairwise alignment results indicate that
the alignments against the pan-genome with reversed input order are slightly worse than
that against the initial synthetic plasmid pan-genome, but most of the synthetic plasmids
still have more than 75% alignment against the full synthetic pan-genome.

In addition, we analyzed the number of synthetic plasmids that aligned to each nucleotide
of the two pan-genome sequences. When aligning the plasmids against the synthetic pan-
genome, most of the plasmids were mapped at the beginning of the synthetic plasmid
pan-genome sequence (results not shown). In other words, the start of the synthetic plasmid
pan-genome captures most of the nucleotide sequences shared by synthetic plasmids. The
fragment with the highest number of aligned plasmids, which started at position 6077 in the
synthetic plasmid pan-genome sequence, is annotated by prokka [26] as gene bla with protein
product of “Beta-lactamase TEM precursor”. The results of aligning synthetic plasmids
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Table 3 Differentiation of natural and synthetic plasmids through pan-genome alignment. We
classify 2000 new plasmids as either synthetic or natural plasmids based on alignment percentage
against synthetic and natural plasmid pan-genomes. We calculated the sensitivity, specificity and
F-score for each result.

Threshold (t) Synthetic Plasmids Natural Plasmids
(Alignment %) Sensitivity Specificity F-score Sensitivity Specificity F-score
40 0.579 0.998 0.73 0.767 1 0.868
60 0.775 0.999 0.87 0.683 0.999 0.811
80 0.821 0.999 0.90 0.536 0.998 0.697
85 0.773 0.999 0.872 0.502 0.995 0.667

and natural plasmids against the natural pan-genome are shown in Fig. 4. Specifically, the
natural plasmid pan-genome sequence also includes some synthetic plasmid fragments (see
Fig. 4a). Among the fragments with more than 10,000 plasmids mapped to them, two were
assigned functions by prokka, with the rest having no results. Of these two fragments, one
started at position 95,790,389 and was annotated as lacZ Beta-galactosidase enzyme; the
other started at position 160,749,886 and was annotated as gene bla (Beta-lactamase). Both
lacZ and bla were involved in one of the first minimal fully synthetic plasmids [15, 32], and
known to be ubiquitous to the synthetic plasmidome.

4 Discussion and Conclusions

In this paper, we introduced a novel pipeline for building pan-genomes, called plaster, which
takes advantage of closed nature of pan-genomes when possible and displays an order of
magnitude improvements to the pan-genome construction speed when compared with the
fastest existing method in seq-seq-pan. For instance, given a new sequence, it can rapidly
update the pan-genome sequence within 0.01s for an already existing pan-genome built from
1000 plasmids. Using plaster, to the best of our knowledge we constructed the first ever pan-
genomes for natural and synthetic plasmids. These pan-genomes reflect the core sequences as
well as the sequence diversity that exists among sequenced natural and engineered plasmids.

Alongside these newly created pan-genomes, we presented a novel technique that serves
as a first step in inferring whether a plasmid is natural or synthetic. The previous work of
[19] used machine learning to attempt to infer labs of origin for synthetic DNA. One common

(a) SPG vs. SPP. (b) NPG vs. SPP. (c) NPG vs. NPP. (d) SPG vs NPP.

Figure 3 Alignment percentages for naturally occurring plasmids vs synthetic plasmids com-
parisons. (a) SPG=Synthetic plasmid genomes, (b) SPP=Synthetic plasmid pan-genome, (c)
NPG=Natural plasmid genomes, NPP=Natural plasmid pan-genome, (d) SPG=Synthetic plas-
mid genome.
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(a) NPG vs. NPP. (b) SPG vs. NPP.

Figure 4 Natural plasmid genome alignment (a) , and synthetic plasmid genome alignment (b),
with respect to the Natural plasmid pan-genome. x-axis represents the position in the pan-genome (1
to 205 Mbp), y-axis represents the number of plasmids that align to a given position in the natural
plasmid pan-genome.

disadvantage of machine learning approaches, in particular neural networks, suffer from poor
explainability due to their black box nature [11]. Our approach presented here performs
rapid pairwise sequence alignment of the query sequence against the natural and synthetic
plasmid pan-genome and, as such, provides a white-box approached that allows the user to
directly query the regions that are shared between natural and synthetic plasmids, specific to
a give lab-of-origin, as well as what regions can be used to differentiate plasmids that have
undergone human engineering [1]. Given a synthetic plasmid, our pipeline could be used to
recover the full set of structural variations to fully categorize why it was determined to be
synthetic as well as what engineering it has undergone.

There are several areas for future research left open by this work. As mentioned, alignment
against pan-genomes can yield a full set of differences between a suspected synthetic plasmid
and all natural and synthetic nucleotides contained in the pan-genomes. To investigate new
ways to infer a possible lab of origin, the synthetic pan-genome could include labels for all
of its contained variation and the lab(s) where that variation has been seen before. If a
machine learning approach is ultimately preferred and is the most accurate for determining an
origin lab or discriminating natural versus synthetic, the set of all mutations and structural
variations for a given plasmid will still be crucial to have in the set of features for the final
inferrence procedure. Functional annotations could also be added to determine what a
particular lab was trying to achieve with the particular structural variations and mutations
that they introduced into a plasmid. Investigations into fundamental improvements to the
plaster method also remain as future work. For instance, an arbitrary choice was made to
use variations greater than 50 bp when adding new nucleotides to the pan-genome. There will
be pros and cons for varying this value to higher and lower values. This minimum alignment
length could also be tuned depending on the final purpose of constructing the pan-genome,
for instance for determining a lab of origin for synthetic plasmids. Tweaks to this value,
as well as other algorithmic improvements, should push these alignments towards all being
100 percent alignment as well as aiding in the following step of differentiating natural and
synthetic plasmids.
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Abstract
Given trees T and To on the same taxon set, the transfer index φ(b, To) is the number of taxa that
need to be ignored so that the bipartition induced by branch b in T is equal to some bipartition
in To. Recently, Lemoine et al. [13] used the transfer index to design a novel bootstrap analysis
technique that improves on Felsenstein’s bootstrap on large, noisy data sets. In this work, we propose
an algorithm that computes the transfer index for all branches b ∈ T in O(n log3 n) time, which
improves upon the current O(n2)-time algorithm by Lin, Rajan and Moret [14]. Our implementation
is able to process pairs of trees with hundreds of thousands of taxa in minutes and considerably
speeds up the method of Lemoine et al. on large data sets. We believe our algorithm can be useful
for comparing large phylogenies, especially when some taxa are misplaced (e.g. due to horizontal
gene transfer, recombination, or reconstruction errors).
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1 Introduction

The need to compare phylogenetic trees arises in many contexts in computational biology.
In bootstrap analysis [11], trees inferred from bootstrapped data sets are compared to the
tree inferred from the original data set (known as the reference tree) in order to evaluate
the statistical support for every branch in the inferred topology. Distance measures between
phylogenies, such as the Robinson-Foulds distance [9] or quartet distance [6], are also
frequently used to evaluate the accuracy of inference methods by comparing the trees they
produce with the “ground truth” trees that were used to simulate the data set. Finally,
distance measures between phylogenetic trees allow researchers to cluster trees inferred from
different genes to reveal groups of genes with similar patterns of evolution due to horizontal
gene transfer, duplication, loss, or recombination [12].
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The most popular approach to comparing phylogenies compares the sets of splits (bi-
partitions) induced by the two trees. In the bootstrap setting, each branch in the reference
tree is assigned a bootstrap score which is the fraction of bootstrap trees that contain a
branch inducing the same split as the branch in the reference tree. Higher scores imply
more confidence in the inferred branches. This is known as Felsenstein’s bootstrap (FBP).
When the goal is to compare the global similarity of a pair of trees, a related approach is to
compute the number of splits that are found in one of the trees but not both. This is known
as the Robinson-Foulds(RF) distance and is widely used for comparing phylogenies. The RF
distance can be computed in O(n) time thanks to an algorithm by Day [9].

Both FBP and the RF distance are widely used due to their low computational cost and
ease of interpretation. However, these approaches become inadequate when dealing with
large, noisy data sets where large splits are unlikely to be recovered exactly. For example,
if the data set contains a small number of recombinant sequences, the location of those
sequences may vary between the bootstrap trees and the reference tree. Even a small number
of such sequences can impact many splits in the tree, leading to low bootstrap values across
the tree, despite the fact that the location of most sequences is strongly supported by the
data. This problem is exacerbated in large trees, where the risk of including a rogue taxon is
elevated. To illustrate this problem, Lemoine et al. [13] showed that trees built on a random
sampling of HIV strains have generally higher bootstrap values than a tree built on the full
set of strains.

Recently, Lemoine et al. [13] addressed this shortcoming of FBP by introducing a new
bootstrap procedure based on finding similar, rather than identical splits in the bootstrap
trees. For each split b in the reference tree and each bootstrap tree To, their method computes
the transfer index φ(b, To) between the split and the bootstrap tree, which is the minimum
number of taxa that need to be removed from the taxon set for b to equal some split bo in To.
The bootstrap support value assigned to b is then 1.0 minus its transfer index normalized
by the size (minus 1.0) of the smaller of the bipartition sets induced by b, averaged over all
bootstrap trees (see Davila Felipe et al. [8] for the statistical justification of this formula).
Lemoine et al. show that this approach is considerably more robust to the presence of
unstable taxa. The transfer index is computed using a quadratic-time algorithm due to
Lin, Rajan and Moret [14], which is efficient for moderate-sized data sets, but becomes less
practical for trees containing thousands or tens of thousands of taxa. In contrast, modern
tree-building methods can reconstruct trees with hundreds of thousands of taxa [16, 4], which
creates a need for scalable post-processing and analysis tools.

In this work, we present a fast exact algorithm for computing the transfer index for all
edges in the reference tree with respect to a bootstrap tree. Our algorithm runs in O(n log3 n)
time where n is the number of taxa in the data set, which is considerably faster than the
O(n2) required by Lin, Rajan and Moret [14]. Our prototype Python implementation [1]
is able to process pairs of trees with tens of thousands of taxa in a matter of seconds on
a standard laptop computer. Our C implementation for balanced trees [2] enables us to
carry out the analyses of Lemoine et al. at least an order of magnitude faster, and makes it
possible to compute the transfer index on data sets with tens or hundreds of thousands of
sequences. Computations that took nearly nine hours now take about ten minutes. Pairwise
comparisons of trees with hundreds of thousands of taxa can be completed within minutes.

2 Preliminaries

We consider binary trees with n leaves uniquely labeled from a set L of size n. Take a tree
T . A branch b ∈ E(T ) can be described by the bipartition {A,B} that it induces on L when
removed from the tree (A ∪B = L). For L′ ⊆ L, define b|L′ = {A ∩ L′, B ∩ L′}.
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Consider two leaf-labeled binary trees T and To with branches b ∈ E(T ) and bo ∈
E(To). The transfer distance δ(b, bo) is the number of leaves that must be ignored so that b
and bo are equal

δ(b, bo) = n−max
({
|L′|

∣∣ b|L′ = bo|L′
})

The transfer index for b with respect to To is the minimum transfer distance over all possible
bo ∈ E(To):

φ(b, To) = min
({
δ(b, bo)

∣∣ bo ∈ To

})
This work is about computing φ(b, To) for all b ∈ E(T ). We first describe an algorithm

for a special case of the problem, corresponding to situations where To is a balanced tree.
We then present a modification of the algorithm that enables us to process general trees
efficiently. Finally, we evaluate the performance of our algorithm on simulated and empirical
data sets and discuss directions for future research.

3 An algorithm for balanced trees

In this section, we describe an efficient algorithm to compute φ(b, To) for all b ∈ E(T ) when
To is a balanced tree. For the purposes of this manuscript, we say that a tree To is balanced
if there exists a node r ∈ V (To) (which we call the root) such that the path from r to any
leaf of To contains at most C logn edges for some constant C. Under this assumption, our
algorithm can compute φ(b, To) for all branches b ∈ E(T ) in O(n log3 n) time. Balanced trees
are common in phylogenetics, as both the Kingman coalescent (standard population genetics
model) and Yule (standard speciation model) trees are expected to be balanced [18].

For convenience, we will work with transfer distances between rooted subtrees. For a node
u ∈ V (T ), let L(u) be the set of leaves descendant from u. The rooted transfer distance is

δr(v, u) = |L(v) ∪ L(u)| − |L(v) ∩ L(u)|

for v ∈ V (To) and u ∈ V (T ). The (unrooted) transfer distance between the corresponding
splits bv and bu is then

δ(bv, bu) = min({δr(v, u), n− δr(v, u)}). (1)

Let T be a rooted binary tree. For any node u in V (T ), let ch(u) and cl(u) be the children
of u such that |L(ch(u))| ≥ |L(cl(u))|. We call ch(u) and cl(u) the heavy and light child of u,
respectively. We refer to the edge (u, ch(u)) as the heavy edge. If both children of u have an
equal number of leaf descendants, we pick the heavy child arbitrarily.

The main idea of the algorithm is to exploit the structure of both T and To when
computing the transfer index for subsequent splits. Suppose that T contains two vertices
u, u′ such that L(u′) = L(u) ∪ {x} for some leaf x. Unsurprisingly, we can show that the
transfer distance values δr(v, u) and δr(v, u′) differ by at most 1.

I Lemma 1. Let u and u′ be nodes in V (T ) such that L(u′) = L(u) ∪ {x} for some leaf x.
Let P = v1, . . . , vk be the path from x to r in To, where v1 = x and vk = r. Then, for any
1 ≤ i ≤ k

δr(vi, u
′) = δr(vi, u)− 1,

and for any v /∈ P

δr(v, u′) = δr(v, u) + 1.

WABI 2019
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T

Figure 1 The difference between the rooted transfer distance to u and u′, for all nodes in To.
The rooted transfer distance decreases for all nodes on the path from x to the root and increases for
all other nodes.

Proof. Any node v on the path between r and x in To has x as its descendant, so δr(v, u′) =
δr(v, u)− 1 as x does not have to be removed from L(v) to obtain L(u′), but it has to be
removed to obtain L(u). The opposite holds for nodes outside the path from r to x, so the
distance increases by one – see Figure 1. J

The above lemma suggests a strategy for efficiently computing δr(v, u′) from δr(v, u). For
each node v ∈ V (To), we will maintain a variable D[v] which, when combined with a global
counter, maintains the invariant δr(v, u) = D[v] + counter. Algorithm AddLeaf updates
D when moving from u to u′. The global counter is incremented, effectively increasing the
transfer distance for all nodes. To compensate for this, each D along the path from x to the
root is decreased by 2, thus maintaining the invariant.

Algorithm 1 AddLeaf(x).

global counter
v ← x {Note: x ∈ V (To).}
while v 6= r do
D[v]← D[v]− 2
v ← v.parent

end while
counter ← counter + 1

Algorithm 2 RemoveLeaf(x).

global counter
v ← x {Note: x ∈ V (To).}
while v 6= r do
D[v]← D[v] + 2
v ← v.parent

end while
counter ← counter − 1

Finding the node v that minimizes δr(v, u) can be achieved by using a dynamic data
structure similar to a heap [7]. The total running time of AddLeaf is O(log2 n) for balanced
trees as the main loop is executed O(logn) times and each update of the structure takes
O(logn) time.

When L(u′) differs from L(u) by more than one leaf, we update D by calling AddLeaf
for all leaves in L(u′)− L(u).

We now present the complete algorithm as Algorithm 3. First, we initialize the D values
by computing the rooted transfer distance from the empty subtree to every subtree in To.
The rooted distance from the empty subtree equals the number of leaves in L(v). Then, we
choose a leaf x in T and traverse its ancestors, calling AddLeaf on leaves descended from
nodes off the path from x to r. To ensure that AddLeaf is called a limited number of times



J. Truszkowski, O. Gascuel, and K.M. Swenson 20:5

on a leaf, we terminate the traversal when the current node is the light child of its parent. In
that case, we undo the leaf additions using the routine RemoveLeaf and restart the process
from a new leaf.

Algorithm 3 ComputeTransferIndices(To, T ).

Set D[v]← |L(v)|,∀v ∈ V (To)
counter ← 0
for all x ∈ L(T ) do
curNode← x

AddLeaf(x)
while curNode 6= r do

if curNode is the heavy child of its parent then
for all y ∈ L(sibling(curNode)) do
AddLeaf(y)

end for
φ(bparent(curNode), To)← minv∈V (To)({D[v] + counter, n−D[v]− counter})
curNode← parent(curNode)

else
for all y ∈ L(curNode) do
RemoveLeaf(y)

end for
break

end if
end while

end for

We can prove the following property.

I Lemma 2. The number of calls made to AddLeaf during the execution of
ComputeTransferIndices is at most n log2 n.

Proof. Let x be a leaf in T . The number of times AddLeaf is called with x given as the
argument is at most the number of nodes v on the path from x to the root such that
|L(v)| ≤ 1

2 |L(parent(v))|. There can be at most log2 n such nodes since |L(r)| = n and
|L(x)| = 1. We obtain the result by summing over all leaves in T . J

Since the running time of AddLeaf is O(log2 n), it follows that the total running time of the
algorithm is O(n log3 n).

4 General Trees

4.1 The data structure
The performance of Algorithm 3 crucially depends on the height of the phylogeny. When
To is a caterpillar tree and T is balanced, the running time of the algorithm can be as
bad as O(n2 log2 n). In order to derive a fast algorithm for general trees, we need a data
structure that would allow us to efficiently navigate splits in the tree, regardless of the
topology. Our approach is based on heavy path decompositions, originally introduced by
Sleator and Tarjan [17].

Recall that a heavy child is a node that has at least as many descendant leaves as its
sibling, and that a heavy edge is an edge that connects a heavy child to its parent. A heavy
path is a sequence of nodes v1, . . . , vk such that (vi, vi+1) is a heavy edge for all 1 ≤ i ≤ k− 1

WABI 2019
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Figure 2 A phylogeny with heavy paths marked in thick lines.

(see Figure 2). A heavy path is called maximal if vk is a leaf and v1 is either the root or the
light child of its parent. We let P(T ) denote the set of maximal heavy paths in T .

I Lemma 3. Let x be any leaf in To. The path from x to the root of To intersects at most
dlogne+ 1 distinct maximal heavy paths.

Proof. Let (u, v) be an edge on the path from x to the root such that u and v belong to
different maximal heavy paths. Without loss of generality, we can assume that u is the
parent of v. Then |L(u)| ≥ 2|L(v)| since otherwise (u, v) would be a heavy edge. Since
L(x) = 1 and L(root(To)) = n, it follows that there are at most dlogne such edges, which
gives the result. J

We will think of T as a collection of maximal heavy paths. For each maximal heavy
path p = v1, . . . , vk, we recursively define a path search tree S(p) as follows. The root of
S(p) is associated with p. The children of a node associated with a path p′ = vp′1, . . . , vp′k′

are associated with subpaths vp′1, . . . , vp′bk′/2c and vp′bk′/2+1c, . . . , vp′k′ ; we refer to them
as intervals and write [a, b] to denote both the node associated with the path a, . . . , b and
the path itself. If p′ has only one element, it is a leaf in S(p). We also write first(p) := v1,
last(p) := vk and path(x) for the unique maximal heavy path that contains x.

For each interval [a, b] we maintain variable D[a, b] and maintain the invariant

δr(v, u) =
∑

{[a,b]∈S(p)|v∈[a,b]}

D[a, b] + counter (2)

for all v ∈ V (To), where u is the node in T under consideration. Moreover, we maintain
variables minval[a, b] and maxval[a, b] with the invariant

minval[a, b] = min
v∈[a,b]

∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}

D[y, z] (3)

maxval[a, b] = max
v∈[a,b]

∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}

D[y, z] (4)

Informally, minval[a, b] is the minimum value of the rooted transfer distance between any
node in [a, b] and the current split in T , up to a constant. That is, the node v that minimizes∑
{[y,z]∈S(p)|v∈[y,z]⊆[a,b]}D[y, z] also minimizes δr(v, u). In particular, if [a, b] is the root node

of its path search tree, we have

min
v∈[a,b]

δr(v, u) = minval[a, b] + counter (5)
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Analogously, for maxval[a, b] we have

max
v∈[a,b]

δr(v, u) = maxval[a, b] + counter (6)

While we are not aware of this particular data structure having been defined previously,
we note that somewhat similar search tree structures on phylogenies have been developed
before for large-scale phylogenetic tree reconstruction [5] and computing the quartet distance
between trees [3]. Heavy path decompositions have also been introduced in database literature
for computing edit distances on trees [15].

4.2 The algorithm
Algorithm 7 follows the same strategy as the algorithm for balanced trees, with a few
modifications designed to accommodate potentially long paths between the root and leaves
in To. First, we initialize the path search trees by setting D[x, x] = |L(x)| for every node
x ∈ V (To) and D[a, b] = 0 for every interval with a 6= b. We also set minval[a, b] = |L(b)|,
maxval[a, b] = |L(a)|, and counter = 0. It can be easily verified that the invariants given by
Equations 2, 3, and 4 are satisfied.

The algorithm then repeatedly calls functions AddLeafGeneral and RemoveLeafGeneral
to move between splits of T , updating the transfer distances to splits in To. We use path
search trees together with the function UpdatePath to efficiently update the minimum
transfer distance values within each heavy path, making use of Equations 5 and 6. Given
a node x, the algorithm traverses the intervals in the path search tree of the heavy path
containing x while updating D, minval, and maxval values to reflect the fact that the
distance has changed by the same amount for x and every node above it (see Figure 3).

Algorithm 4 UpdatePath(x,d).

D[x, x]← D[x, x] + d

minval[x, x]← minval[x, x] + d

maxval[x, x]← maxval[x, x] + d

[a, b]← [x, x]
while [a, b] is not root interval do

[ap, bp]← parent_interval([a, b])
if bp = b then

[as, bs]← sibling_interval([a, b])
D[as, bs]← D[as, bs] + d

minval[as, bs]← minval[as, bs] + d

maxval[as, bs]← maxval[as, bs] + d

end if
minval[ap, bp]← min{minval[as, bs],minval[a, b]}+D[ap, bp]
maxval[ap, bp]← max{maxval[as, bs],maxval[a, b]}+D[ap, bp]
[a, b]← [ap, bp]

end while

I Lemma 4. Each call to UpdatePath changes the value of
∑
{[a,b]∈S(p)|v∈[a,b]}D[a, b] by d

for all vertices v ancestral to x (including x) in the path p. Moreover, each call preserves
invariants 3 and 4.

WABI 2019
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Figure 3 Updating the D values associated with the heavy path v1, . . . , v16 during the call to
UpdatePath(v11,−2). Intervals whose D values have been updated are coloured in red.

Proof. Let y be a node in p that is above x. Let [am, bm] be the minimal interval in S(p)
that contains both x and y and let [al, bl] and [ar, br] be the left and right child of [am, bm]
in S(p), respectively. By the choice of [am, bm], x and y cannot both belong to the same
child of [am, bm]. Since y is above x in To, it follows that y ∈ [al, bl] and x ∈ [ar, br]. We
have bm = br by the definition of the path search tree, so D[al, bl] will be increased by d at
the iteration of the while loop when [a, b] = [ar, br] and minval[al, bl] and maxval[al, bl] will
be increased by the same amount, preserving invariants 3, 4. On the other hand, it can be
easily verified that all the other variables D[a, b] such that y ∈ [a, b] will remain unchanged,
since [al, bl] is the only interval containing y that is the left child of its parent and has a right
child that contains x. J

Algorithm 5 AddLeafGeneral(x).

global counter
UpdatePath(x,−2)
while first(path(x)) 6= root(To) do
x← parent(first(path(x)))
UpdatePath(x,−2)

end while
counter ← counter + 1

Algorithm 6 RemoveLeafGeneral(x).

global counter
UpdatePath(x, 2)
while first(path(x)) 6= root(To) do
x← parent(first(path(x)))
UpdatePath(x, 2)

end while
counter ← counter − 1

I Lemma 5. After each call to AddLeafGeneral or RemoveLeafGeneral, Equation 2 is
satisfied.
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Proof. Equation 2 holds for the initial values ofD[a, b] and counter. The calls to UpdatePath
from within AddLeafGeneral decreases the sum

∑
{[a,b]∈S(p)|v∈[a,b]}D[a, b] by exactly 2 for

each node v on the path from x to the root of To. The variable counter increases by 1, which
means that the sum∑
{[a,b]∈S(p)|v∈[a,b]}

D[a, b] + counter

is decreased by 1 for each node on the path from x to the root and increased by 1 for all
other nodes. This, together with Lemma 1 gives the result for AddLeafGeneral. The case
of RemoveLeafGeneral is proved by analogous reasoning. J

I Theorem 6. Algorithm 7 computes the transfer index for all splits in T .

Proof. Lemma 5 and Equation 5 ensure that at each iteration of the while loop, the value
minval[first(p), last(p)] + counter is equal to the minimum value of the rooted transfer
distance among the nodes in p. Using Equation 1 and taking the minimum over all the paths
yields the result. J

Algorithm 7 ComputeTransferIndicesGeneral(To, T ).

Initialize D[., .],minval[., .],maxval[., .].
counter ← 0
for all x ∈ L(T ) do
curNode← x

AddLeafGeneral(x)
while curNode 6= r do

if curNode is the heavy child of its parent then
for all y ∈ L(sibling(curNode)) do
AddLeafGeneral(y)

end for
min1← minp∈P(To) minval[first(p), last(p)] + counter

min2← minp∈P(To)(n−maxval[first(p), last(p)])− counter
φ(bparent(curNode), To)← min {min1,min2}
curNode← parent(curNode)

else
for all y ∈ L(curNode) do
RemoveLeafGeneral(y)

end for
break

end if
end while

end for

4.3 Running time analysis
The running time of Algorithm 7 is O(n log3 n). Each call to UpdatePath takes at most
O(logn) time. During the execution of AddLeafGeneral and RemoveLeafGeneral,
UpdatePath is called at most O(logn) times by Lemma 3, which gives a bound of O(log2 n)
for each call to any of these functions. Finally, by Lemma 2, AddLeafGeneral is executed
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at most O(n logn) times, which means that the overall running time is O(n log3 n). Finding
φ(bcurNode, To) can be solved efficiently using a heap at a cost of O(logn) for each call to
UpdatePath, which increases the total running time only by a constant factor.

5 Implementations

We have two implementations currently available. A proof-of-concept implementation of
Algorithm 7 was written in Python, making use of the Dendropy package [19]. This
implementation is available at [1]. A definitive C implementation is a work in progress;
Algorithm 3 has been integrated into the current Booster code base [2].

To obtain speedups for trees with a high degree of similarity, our Python implementation
first traverses both trees and identifies, in linear time, maximal identical subtrees that occur
in both trees. These trees are then replaced with single nodes whose weight equals the
number of leaves in the collapsed subtree. After this pre-processing step, every AddLeaf and
RemoveLeaf operation changes all the relevant counters by the weight of the node, rather
than by 1. Every edge within the collapsed subtrees has transfer index equal to 0. This
procedure can result in substantial speedups for highly similar trees (see next section).

6 Experiments

We evaluated the performance of our algorithm on several simulated and empirical data sets.
In all simulation experiments, we simulated pairs of trees by sampling the first tree topology
uniformly at random and applying random edit operations to obtain the second tree. Each
edit operation chose two random nodes such that neither node is ancestral to the other (with
respect to some arbitrary rooting of the tree) and swapped the subtrees rooted at the chosen
nodes. By increasing the number of applications of the edit operation, we decreased the
similarity of the trees.

In the first experiment, we generated pairs of trees with sizes varying between 100 and
100000 taxa. Each pair of trees was generated using the number of edit operations equal to
0.2 times the number of taxa. Experiments were performed on a Linux laptop with 8 GB
of RAM and an Intel i5 2.3 GHz processor using one thread for each run. The results are
given in Figure 4(left). The running time of our Python program is close to linear in the
number of taxa; even for 100000 taxa, it takes less than 100 seconds to compute the transfer
indices. Our C implementation of Algorithm 3 is faster for smaller trees with up to 20000
taxa, but becomes considerably slower for very large trees. This is not surprising as trees
sampled from the uniform distribution are likely to be unbalanced, as the mean diameter of
a tree is O(

√
n) [10]. Booster is the slowest of the three algorithms and runs out of memory

for trees with more than 20000 taxa.
In the second experiment, we investigated the impact of tree dissimilarity on the running

time. Experiments were performed on an Intel Xeon 2.1 GHz processor with 32 GB of RAM
using a single thread. We generated pairs of trees with 10000 taxa each while varying the
number of edit operations from 0 to 10000. As we can see in Figure 4(right), tree dissimilarity
has little, if any, effect on the running time of the algorithm when the preprocessing procedure
is not applied. In contrast, collapsing identical subtrees can lead to 2- to 3-fold speedups for
highly similar tree pairs.

In the final experiment, we repeated the analysis from Lemoine et al. on several HIV and
mammalian data sets. Each data set contained 1000 bootstrap replicates and the number of
taxa varied between 571 and 9147. The results are given in Table 1. On the largest data
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Figure 4 Left: The running times for our two implementations and the code by Lemoine et al. as
a function of the number of taxa. Right: Running times for a pair of 10000-taxon trees as a function
of the similarity of the trees.

set, our Python program completed the analysis in less than 2 hours and our C program
completed the analysis in less than 12 minutes, compared to almost 9 hours for Booster,
which is written in C. Smaller data sets were processed in a matter of minutes by Booster and
our Python implementation, while our C implementation was at least an order of magnitude
faster than Booster in all cases.

Table 1 Running times for four data sets from Lemoine et al.. Our C implementation presents
substantial advantages.

Data set taxa #bootstraps booster-C [13] Alg. 7-Python Alg. 3-C
HIV/Full 9147 1000 8h51m 1h47m 12m

HIV/Medium_Sample1 571 1000 1m 3m23s 6s
HIV/Medium_Sample2 571 1000 1m 3m32s 6s

Mammals/raxml 1449 1000 10m32s 10m36s 30s

7 Conclusion

We have presented an algorithm for rapidly computing, for every split in tree T , the minimum
transfer distance to the closest split in another tree To. The running time of the algorithm
is O(n log3 n), which is close to linear in the size of input trees. We expect to be able to
remove a logarithmic factor with improved bookkeeping to maintain the minimum value
of the transfer distance. Without this improvement, our prototype implementation scales
almost linearly in practice, enabling us to compare pairs of trees with hundreds of thousands
of taxa in a matter of minutes. This is comparable to several widely-used implementations
of the RF distance, which makes our tool an interesting alternative to the RF distance for
comparing large, noisy trees.
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The most direct practical implication of this work is scaling up the TBE bootstrap
analysis by Lemoine et al. Our method gives at least an order of magnitude speedup on all
of the data sets they analyzed, and will enable the analysis of bootstrap data sets for trees
of tens to hundreds of thousands of taxa within hours of CPU time.

On small and moderate-size data sets, our Python implementation is slower than the
Booster software of Lemoine et al., which is likely due to their optimized implementation.
Our C implementation for balanced trees always significantly out-performs Booster, however,
and we are in the process of expanding it to the complete Algorithm 7.

There are several possible directions for future research. It would be interesting to see if
the techniques developed here could be used to design novel methods for finding consensus
trees. Another natural direction is to investigate whether global distance measures between
trees, rather than splits, could be designed based on the transfer index.
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Abstract
Phylogenetic networks extend the phylogenetic tree structure and allow for modeling vertical and
horizontal evolution in a single framework. Statistical inference of phylogenetic networks is prohibitive
and currently limited to small networks. An approach that could significantly improve phylogenetic
network space exploration is based on first inferring an evolutionary tree of the species under
consideration, and then augmenting the tree into a network by adding a set of “horizontal” edges to
better fit the data.

In this paper, we study the performance of such an approach on networks generated under a
birth-hybridization model and explore its feasibility as an alternative to approaches that search the
phylogenetic network space directly (without relying on a fixed underlying tree). We find that the
concatenation method does poorly at obtaining a “backbone” tree that could be augmented into the
correct network, whereas the popular species tree inference method ASTRAL does significantly better
at such a task. We then evaluated the tree-to-network augmentation phase under the minimizing
deep coalescence and pseudo-likelihood criteria. We find that even though this is a much faster
approach than the direct search of the network space, the accuracy is much poorer, even when the
backbone tree is a good starting tree.

Our results show that tree-based inference of phylogenetic networks could yield very poor
results. As exploration of the network space directly in search of maximum likelihood estimates
or a representative sample of the posterior is very expensive, significant improvements to the
computational complexity of phylogenetic network inference are imperative if analyses of large data
sets are to be performed. We show that a recently developed divide-and-conquer approach significantly
outperforms tree-based inference in terms of accuracy, albeit still at a higher computational cost.
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1 Introduction

As evidence of reticulation (hybridization, horizontal gene transfer, etc.) in the evolutionary
histories of diverse sets of species across the Tree (or, more appropriately in our context,
Network) of Life continues to grow, increasingly sophisticated methods for phylogenetic
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network inference are being developed to incorporate processes such as incomplete lineage
sorting (ILS), gene duplication and loss, and gene flow [20, 21, 15, 16, 24, 28, 27]. These
methods, which are mostly statistical in nature, are computationally prohibitive due, in part,
to the complex space of phylogenetic networks that is explored. This, in turn, has limited the
applicability of such methods to data sets with small numbers of taxa, loci, and reticulation
events. To ameliorate this computational challenge, a divide-and-conquer approach was
recently introduced [26], where this accurate, yet computationally expensive, method could
be used to infer small networks that are then merged to produce a phylogenetic network
on the full data set. The accuracy of the method notwithstanding, the inference of small
networks remained a computational bottleneck.

An alternative approach that could be considered would first infer an underlying “species
tree”, and then augment this tree into a network by adding reticulations to it to fit the data
under some criterion that incorporates reticulation. The benefit of such an approach is that it
would utilize one of a wide array of species tree inference methods that are both accurate and
efficient, thus drastically reducing the space of phylogenetic networks to explore by limiting
them to those “based” on inferred trees. Indeed, the question of whether a species tree
can be accurately inferred in the presence of reticulation has been partially explored from
theoretical [12] as well as empirical [4] angles. An extensive simulation study on small data
sets demonstrated the problems with inferring “the” species tree in the presence of high rates
of gene flow [13]. However, a more general question to ask is whether tree inference methods
can infer a tree, not necessarily the species tree (if one insists on using this designation), that
can be augmented into the correct network. Along the same lines, the class of tree-based
networks was introduced [6] and the set of trees that characterize a phylogenetic network in
the presence of ILS was revisited [29].

In this paper, we study the performance of tree-based inference of phylogenetic networks
by exploring two popular methods for inferring a start tree and two network criteria that
scale to evaluating large networks. We consider synthetic networks that are generated under a
birth-hybridization model and data simulated under the multispecies network coalescent [19].
We find that the concatenation method does poorly at inferring a backbone tree of the
network, whereas the commonly used method ASTRAL [23] performs significantly better at
this task. However, even when a correct network-backbone tree is used, augmenting such a
tree into the correct network is a challenging task and results in poor accuracy under both
the pseudo-likelihood and minimizing deep coalescences criteria of [21, 22]. It is worth noting
that the size of phylogenetic networks we consider in our study makes use of the likelihood
criterion of [20] infeasible. We demonstrate that the divide-and-conquer approach of [26]
yields more accurate results, yet is orders of magnitude slower than tree-based inference. We
demonstrate that combining the strengths of the two – the speed of tree-based inference
and the accuracy of the divide-and-conquer approach – could provide a promising approach
to large-scale network inference. Finally, our implementations of tree-based phylogenetic
network inference are implemented in PhyloNet [14, 17].

2 Background

A phylogenetic network Ψ on a set X of taxa is a rooted, directed, acyclic graph (DAG)
whose leaves are bijectively labeled by X . For Ψ = (V (Ψ), E(Ψ)), the set V (Ψ) of nodes
contains a root node with in-degree 0 and out-degree 2, tree nodes with in-degree 1 and
out-degree 2, reticulation nodes with in-degree 2 and out-degree 1, and leaf nodes with
in-degree 1 and out-degree 0. If v is a reticulation node, then the two edges incident into it
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are reticulation edges, and all edges incident into tree nodes are tree edges. In a statistical
setting, reticulation edges are associated with inheritance probabilities, and all edges have
lengths, so that the phylogenetic network defines a distribution over gene trees under the
multispecies network coalescent [20].

A phylogenetic tree T can be viewed as a phylogenetic network with no reticulation
nodes. There is a natural relationship between a phylogenetic network and the set of
trees it displays.

I Definition 1. A tree T on set X of taxa is displayed by a phylogenetic network Ψ (also on
set X of taxa) if T can be obtained from Ψ by removing a set of reticulation edges followed by
forced contraction of every node v of in- and out-degree 1, where the edges (u, v) and (v, w)
are replaced by a single edge (u, w) and v is deleted.

We denote by T (Ψ) the set of all trees displayed by Ψ.
Several methods for inference of phylogenetic networks in the presence of incomplete

lineage sorting have been devised. These include parsimony methods [18], maximum likelihood
methods [19, 20], maximum pseudo-likelihood methods [21, 27], and Bayesian methods [15,
16, 24, 28]. These methods have poor scalability in terms of time and memory requirements
and are applicable to very small data sets. The pseudo-likelihood methods were devised to
ameliorate the problem of computing the full likelihood of phylogenetic networks, but these
suffer from the large network space they need to explore.

One potential approach to tackling the computational requirements of phylogenetic
network inference is based on first inferring a “species tree” and then adding a set of
reticulation edges to it, in the hope of obtaining the true network. Indeed, as discussed
above, the plausibility of this approach has been addressed, albeit in a limited fashion
[4, 12, 6, 29, 13]. If this approach works in practice, it would tremendously reduce the
phylogenetic network space to search and, consequently, scale phylogenetic network inference
to much larger data sets. The goal of this work is to systematically study this approach on
phylogenetic networks generated under a birth-hybridization model to assess its potential.
Next, we describe our implementation of this approach.

3 Methods

Consider a data set S = (S1, S2, . . . , Sm) and G = (g1, g2, . . . , gm), where Si is the alignment
of a set of orthologous sequences of locus i in the genomes of a set X of taxa, and gi is a
rooted gene tree for locus i inferred from Si. Throughout this work we assume that loci are
independent and each locus is recombination-free.

Generally, a backbone-based approach to inferring a phylogenetic network Ψ on set X of
taxa follows two steps.
Step 1. Build a start tree T , either using the sequences S directly or using the estimated

gene trees G.
Step 2. Augment the start tree T into a network Ψ by adding a set Er of reticulation edges

to it to optimize some criterion given either S or G.
A desired property of the start tree T in Step 1 is that it is a backbone of the network, that
is, it is displayed by the true network so that the latter is obtainable by the backbone-based
approach. This property is illustrated in Figure 1.

3.1 Step 1: Building a start tree
As we only consider reticulation and incomplete lineage sorting (ILS) in this paper (that is,
we do not consider gene duplication and loss, for example), we considered two methods that
are heavily used to infer a species tree when incongruence is suspected to be due to ILS. The
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(a) (b) (c)

Figure 1 From a backbone tree to a phylogenetic network. (a) Phylogenetic network Ψ.
(b) A backbone tree that is displayed by Ψ and, thus, can be augmented into the true network. (c)
A tree that cannot be augmented to produce Ψ and therefore is not a backbone of the network.

first method infers a tree on the concatenation of the sequence data S. For this purpose, we
used IQ-TREE [9] to infer a tree from the concatenated sequences. The second method infers
a species tree from individual gene trees in G. For this purpose, we used ASTRAL-III [23].
Both of these methods have been shown to have good efficiency and accuracy in practice.

3.2 Step 2: Augmenting the start tree into a network

Let Ψ be a phylogenetic network (including the case where Ψ is a tree). Adding a reticulation
edge to Ψ is done by selecting two edges (u, v) and (x, y) in Ψ, replacing them by (u, m),
(m, v), (x, m′), and (m′, y), and adding an edge (m, m′). This operation results in creating a
new reticulation node, m′, in the phylogenetic network Ψ and results in a network with one
more reticulation node than those in Ψ. The reticulation edge can be added to initial edges
or added edges. Hence, obtained networks are not limited to tree-based networks.

Consider an optimality criterion Φ that is defined on a given network Ψ and input data
I (I could be sequences or trees, and the criterion has to be appropriate for the type of data
used). Given a maximum number of reticulation nodes to consider MAX, one implementation
of tree-based inference of networks follows the steps of Algorithm StepwiseAugment, given
a start tree T .

Algorithm 1 StepwiseAugment.

1 Ψ0 = T ;
2 for j = 0 to (MAX − 1) do
3 Ψj+1 ← Ψj ;
4 foreach Ψ′ obtained by adding a reticulation edge to Ψj do
5 if Φ(Ψ′, I) is better than Φ(Ψj+1, I) then
6 Ψj+1 ← Ψ′;
7 end
8 end
9 end

10 return ΨMAX ;

In other words, we exhaustively evaluate the optimal networks with j + 1 reticulations
that can be obtained by adding a single reticulation to the optimal network found with j

reticulations. It is important to highlight here that this implementation is not the most
exhaustive way to augment a tree into a network with a given number of reticulations.
The most exhaustive way of augmenting a tree on n leaves into a phylogenetic network
with k reticulations considers

∏k−1
i=0

(2n−2+3i
2

)
networks, which is O(n2k) when k � n. Our

implementation reduces this number to
∑k−1

i=0
(2n−2+3i

2
)

= O(kn2).
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Another approach to augment a start tree into a network is to heuristically search for
reticulation edges to add in a local search fashion. We implemented LocalSearchAugment
which starts with a tree T and then randomly chooses one of a set of operations to apply
in order to augment the current network into a new candidate network. If the resulting
network has a better optimality score, it is adopted as the new current network and the
search continues; otherwise, the move is rejected (or rejected with a probability) and a new
candidate network is considered. The set of moves we considered consist of: (i) adding a
new reticulation edge; (ii) removing one of the reticulation edges that have been added;
(iii) relocating the head of an added reticulation edge; (iv) relocating the tail of an added
reticulation edge; (v) reversing the direction of an added reticulation edge; (vi) replacing
an added reticulation edge with a new one; and, (vii) modifying an edge parameter like
the inheritance probability and branch length in the network (if criterion Φ requires such
parameters). We define a probability distribution on this set of moves, and in each iteration of
the local search, a move is selected randomly based on this distribution. The heuristic search
applies random restarts to ameliorate the local optima issue, where each search stops when
the number of consecutively rejected moves (they would be rejected because the proposed
solution candidates do not improve the optimality criterion) reaches a pre-set threshold. It
is important to emphasize that LocalSearchAugment never removes any of the edges that
exist in the start tree T .

For Φ, we considered two criteria in this study: the pseudo-likelihood criterion of [21]
and the minimizing deep coalescence (MDC) criterion of [18]. Both of these criteria use gene
trees as input data. The likelihood criterion of [20] is infeasible to compute on the data sets
we consider in this study.

3.3 Evaluating the inferred trees and networks
While several dissimilarity measures exist for comparing networks and, by extension, trees
and networks, e.g., [2, 3, 8], these measures are very sensitive to the misplacement of
reticulation nodes, even in cases when networks agree on much of their structure. Therefore,
in this paper, we used two measures of dissimilarity for tree-to-network and network-to-
network comparisons.

Letting RF be the Robinson-Foulds distance [11] (the size of the symmetric difference
between the two trees, divided by 2), the dissimilarity between a tree T and a network Ψ is:

D(T, Ψ) = min
T ′∈T (Ψ)

RF(T, T ′). (1)

For network-to-network comparison, we can extend the notion of displaying to networks:
We say phylogenetic network Ψ′ is displayed by phylogenetic network Ψ if Ψ′ can be obtained
by removing a set of reticulation nodes and applying forced contraction to Ψ (but unlike
in the case of trees, some reticulation nodes remain in the network). We denote by N (Ψ)
the set of all networks displayed by Ψ (obviously, T (Ψ) ⊆ N (Ψ)). We denote by r(Ψ)
the number of reticulations and t = 2|X | − 1 the number of nodes for any displayed tree
of Ψ. Let Ψt and Ψi be true and inferred networks, respectively, and Ψ′t ∈ N (Ψt) and
Ψ′i ∈ N (Ψi) be the two displayed networks that have the smallest distance d(Ψ′t, Ψ′i),
as computed by [8], over all displayed networks of the two networks Ψt and Ψi, and
D(Ψt, Ψi) = minΨ′

t∈N (Ψt),Ψ′
i
∈N (Ψi) d(Ψ′t, Ψ′i). If more than one pair of displayed networks

have the smallest distance, a pair with the largest number of reticulation nodes is selected.
We now define:

True positives: TP (Ψt, Ψi) = 2 · r(Ψ′t) + t− d(Ψ′t, Ψ′i).
True positives rate: TPR(Ψt, Ψi) = TP (Ψt, Ψi)/(t + 2 · r(Ψt)).
False positives: FP (Ψt, Ψi) = 2(r(Ψi)− r(Ψ′i)) + d(Ψ′t, Ψ′i).
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False positives rate: FPR(Ψt, Ψi) = FP (Ψt, Ψi)/(t + 2 · r(Ψi)).
False negatives rate: FNR(Ψt, Ψi) = 1− TPR(Ψt, Ψi).

For example, if the networks of Figure 1(a) and Figure 1(c) are the true network Ψt

and inferred network Ψi, respectively, then Ψ′t and Ψ′i are the networks of Figure 1(b) and
Figure 1(c), respectively. In this case, we have d(Ψ′t, Ψ′i) = 3, r(Ψ′t) = 0, TP = 4, FP = 3,
TPR = 4/9, and FPR = 3/7.

4 Results and Discussion

To assess the performance of tree-based inference of phylogenetic networks, we tested both
methods described above on simulated data. Furthermore, we analyzed a biological data set
and contrasted the results to those obtained by other methods.

For the simulated data, we used the same 24 networks used in [26], as those were generated
under a birth-hybridization model and varied in their complexity. For each integer in [0, 5],
four networks in the data set have that number of reticulation nodes. Two of the 24 networks
are not tree-based [25].

As in [26], these networks were divided into 3 groups of hardness (in terms of inference):
8 “easy” (E), 8 “medium” (M), and 8 “hard” (H). Each network has 16 taxa and 1 outgroup.
For each network, we generated 100 gene trees with two individuals per species using the
program ms [7], and then generated sequences of length 1000 using Seq-gen [10] under the
GTR model. We set the population mutation rate at 0.02, base frequencies of A, C, G
and T at [0.2112, 0.2888, 0.2896, 0.2104], respectively, and the transition probabilities at
[0.2173, 0.9798, 0.2575, 0.1038, 1, 0.2070]. We then ran the aforementioned methods on the
data. In terms of the complexity of the data sets, the number of distinct gene trees (out of
100) in the 24 data sets varied between 69 and 100. That is, the rate of ILS is quite high.

4.1 Accuracy of the start tree

4.1.1 Performance of the concatenation method

By concatenating the sequence data of all loci, we obtained for each network 34 sequences
of length 100000 each (since we have two individuals per species). We then inferred a tree
on the concatenated sequences of each of the 24 data sets using IQ-TREE [9]. As there
are 34 taxa in the resulting trees but there are only 17 species, we first identified the data
sets where the two individuals from each of the 17 species form a monophyletic group. We
found that for 21 data sets, the resulting tree group the two individuals from each species
monophyletically, whereas in the three remaining data sets, the individuals of some species
were not monophyletic. For the 21 data sets, we “collapsed” the two individuals in the
inferred tree into a single leaf with the respective taxon name so as to compare the accuracy
of the inferred “species tree” to the true phylogenetic network.

Of the 21 data sets, we found that 12 of them resulted in species trees that are displayed
by, or are backbone trees of, their corresponding true network. The remaining nine trees had
an average distance, based on Eq. (1), of 3.33.

These results illustrate that in the presence of ILS and hybridization, concatenation has
a poor performance; only in half of the 24 data sets did the method infer a tree that could
be augmented into the true network.
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4.1.2 Performance of ASTRAL
We then turned to assessing the accuracy of species trees inferred by ASTRAL-III [23]. We
inferred a gene tree on the sequence alignment of each locus using IQ-TREE [9] and used
these inferred gene trees as the input set G of gene trees to ASTRAL-III.

ASTRAL-III had a much better performance than species tree inference on the concat-
enated sequences. In fact, ASTRAL-III inferred a backbone tree that could be augmented
into the respective true network in 87.5% of the data sets. More specifically, 21 out of 24
species trees inferred by ASTRAL-III are backbone trees of the true networks. For the 3
data sets where the inferred tree could not serve as a backbone of the true network, the
average distance between the trees and the true networks, as computed by Eq. (1), was 2.67.

This shows that the start tree built from inferred gene trees using ASTRAL-III is much
better than concatenation using IQ-TREE. This is because the rate of ILS is high, and
ASTRAL-III considers the gene tree topology conflicts.

To explore whether the performance of ASTRAL-III would improve with more loci, we
increased the number of gene trees simulated on each network to 1,000 and used the true
gene trees as input to ASTRAL-III. Now, ASTRAL-III inferred a tree that is the backbone
of its respective true network for 22 of the 24 data sets.

4.2 Accuracy of the inferred networks
Given the accuracy of the species trees produced by ASTRAL-III, we used it as the start tree
for network inference. Since the input gene trees and output species trees of ASTRAL-III are
all unrooted, we rerooted all the trees at the designated outgroup and deleted it. Then we used
the rooted gene trees and rooted species trees as input to both network inference procedures.
We evaluated the performance of the network inference on NOTS (Night Owls Time-Sharing
Service), which is a batch scheduled High-Throughput Computing (HTC) cluster.

4.2.1 Performance of StepwiseAugment
We ran StepwiseAugment on the start trees obtained by ASTRAL-III on all 24 data
sets, under the MDC criterion, while specifying to the inference method the true number
of reticulations. While knowing the true number of reticulations is not doable in practice,
we made this decision for two reasons. First, we wanted to test how the approach works
under the ideal situation (of knowing the true number of reticulations). Second, determining
the number of reticulations is not doable in a systematic way with the MDC criterion. The
correctness achieved by StepwiseAugment in this case is 41.7%, reflecting that in only 10
out of the 24 cases did the method infer the correct networks. For the 3 data sets where the
start trees are not backbone trees of the networks, obviously, the method could not infer
the correct network. For the 17 data sets with at least one reticulation and correct start
trees, the method was able to find the correct reticulation in only 8 of them. These results
show that StepwiseAugment coupled with the MDC criterion is not a viable approach for
inferring phylogenetic networks.

4.2.2 Performance of LocalSearchAugment
We then set out to study the performance of LocalSearchAugment when using the
ASTRAL-III species tree as the start tree and under both the pseudo-likelihood and MDC
criteria. One might ask: If the “quasi brute-force” procedure StepwiseAugment did not
perform well, could a local search heuristic perform better? The answer in our case is positive.
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The reason for this is because when searching for an optimal network with k + 1 reticulations,
StepwiseAugment is already “stuck” with the k reticulations it had identified already, and
this might not necessarily result in an optimal solution. A truly brute-force approach for
considering all networks with MAX reticulations on a start tree T would first identify the
set of all possible reticulations that could be added to T (including “dependent” reticulations,
where a reticulation edge is added between two reticulation edges or between one tree and
one reticulation edge), and then consider every subset of them. Such an approach is not only
computationally infeasible for the size of the data sets we consider, but is also very hard to
implement because of the dependent reticulations.

Since inference under neither MDC nor pseudo-likelihood is equipped with a systematic
way to determine the number of reticulations (i.e., a stopping rule), we ran LocalSearchAug-
ment under both criteria in two different ways. In one way, we set the number of reticulations
for each data set to be the true number for that data set. In the figures below, we label results
based on this setting as MPL (for maximum pseudo-likelihood) and MDC (for minimizing
deep coalescences). In the other way, we set the maximum number of reticulations at 5,
which is the largest number of reticulations in all 24 data sets. In the figures below, we
label results based on this setting as MPL’ (for maximum pseudo-likelihood) and MDC’ (for
minimizing deep coalescences). The local heuristic search on each data set was repeated 20
times with random restarts to obtain the network estimates.

We also ran MPL on 1,000 gene trees to explore its convergence when the amount of
data is larger. In the figures below, results of this run are labeled MPL1000. Finally, we
compared these methods to two methods that can scale to larger data sets: The maximum
pseudo-likelihood method of [21], where the network space is searched directly without a
fixed start tree (the maximum number of reticulations is set at the true value), and the newly
developed divide-and-conquer method of [26] when the full set of trinets is considered in the
divide step (this method does not require a pre-set number of reticulations). The results of
these runs are labeled MPLo and D&C, respectively, in the figures below. For these two
methods, the input gene trees is the set of gene trees inferred by IQ-TREE.

The results of all these runs are summarized in Figure 2.
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Figure 2 Accuracy of inferred networks. (a) Blue corresponds to the number of inferred
networks that are topologically identical to the true networks. Yellow corresponds to the number of
inferred networks that share backbone networks of true networks. Gray corresponds to all other
cases. (b) Yellow corresponds to MPL. Green corresponds to MDC. Purple corresponds to D&C.
Triangles correspond to easy (E), crosses correspond to medium (M) and squares correspond to
Hard (H). The z-axis has no meaning but is used for ease of visualization.
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As Figure 2(a) shows, when the true number of reticulations is assumed, both MPL and
MDC perform relatively similarly, with MDC outperforming MPL by one of the easy data
sets and MPL outperforming MDC by two of the medium data sets. Neither of the two
methods obtains the correct network on any of the 8 hard data sets. When the true number
of reticulations is not assumed, MPL’ and MDC’s do not infer the correct network on any of
the 24 data sets. For all these four methods, when the correct network is not inferred, the
distance between the inferred network and true network is D(Ψt, Ψi) = 0. That is, while
the methods do not infer the correct network, the inferred networks share an underlying
structure with the true ones.

Increasing the number of gene trees in the input to 1,000 results in a slight improvement
to MPL, where the true network is inferred on two more data sets. Furthermore, searching
the network space directly under the MPL criterion performs almost similarly to a tree-based
approach, with the only difference being that the method (MPLo) now infers two more
networks correctly and infers a wrong network in the case of the 8 easy networks. It is
important, though, to emphasize again that for MPL, MDC, MPL1000, and MPLo, the
true number of reticulations is assumed. As the results show, D&C has the best accuracy
where not only does it always either infer the correct network or a network that shares an
underlying structure with the true one, but it also does so without a priori knowledge of the
true or maximum number of reticulations.

To better understand the behavior of these methods, we inspected the FPR and FNR
of the methods. As Figure 2(b) shows, on average, the FPR and FNR of MPL are 15.2%
and 11.1% higher than those of D&C, respectively, and those of MDC are 52.1% and 28.2%
higher than those of D&C respectively.

We show the running times of tree-based network inference under both MPL and MDC
in Figure 3. The figure shows that almost all data sets are analyzed within 16 hours by
MPL when the true number of reticulations is assumed, but that time increases to about 40
hours for some data sets when the search is allowed to explore networks up to 5 reticulations.
Inference based on the MDC criterion, on the other hand, takes much longer in some cases,
and as the figure shows, the number of reticulations itself is not the only determinant of
the running time. The placement of the reticulations in the network is a major factor
of the complexity, a result similar to that shown in the case of computing the likelihood
of networks [29, 5].

On average, when compared with 1636.8 CPU hours spent by D&C, the tree-augmentation
methods only spend 7.0, 16.4, 17.0, 26.4 and 3.8 hours for MPL, MDC, MPL’, MDC’ and
MPL1000, respectively. The computational bottleneck of D&C comes from the substantial
time that it takes MCMC-SEQ [16] to infer each of the 680 3-taxon subnetworks (though
this can be easily parallelizable, as the inferences of subnetworks are done independently).

4.3 Towards combining the strengths of tree-based and D&C
inference

As shown above, tree-based inference is much faster than inference by D&C, whereas the
latter produces more accurate results. As we mentioned, the majority of the running time of
D&C comes from the costly step of inferring the 3-taxon subnetworks using the expensive
Bayesian approach of [16]. The question that we set out to explore here is: Can the
running time of D&C be improved by utilizing tree-based inference of the trinets? We
limit our attention in this study to one part of this question, namely, how does tree-based
inference perform in terms of inferring the 3-taxon subnetwork topologies (when using a
priori knowledge of the true number of reticulation)? To explore this question, we considered
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Figure 3 Running times of tree-based network inference based on the MPL and MDC
criteria. Each subfigure shows the running times on 24 networks for the respective method. Each
bar represents the CPU hours taken to infer this network. The x-axis is the number of reticulations,
where each number of reticulations has 4 networks with that number.
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Figure 4 The accuracy and running time of tree-based inference of 3-taxon subnet-
works. (a) Accuracy of the inferred subnetworks. Each bar represents the number of subnetworks
in each network that are identical (blue), inside (orange), others (grey) to the true subnetworks.
(b) Running time for inferring subnetworks. Each bar represents the CPU hours spent to infer all
subnetworks for each network. The bars are arranged in a way that they correspond in a 1-1 manner
to Figure 3 in [26].

each 3-taxon subset of the 17 taxa in each data set and inferred a network on it (with the true
number of reticulation) using tree-based inference (minimizing deep coalescence) starting
from all three possible topologies. Figure 4 shows the accuracy and running times of this
approach. As the figure shows, on average, the running time of 3-taxon subnetwork inference
is reduced from 1636.8 to 1.4 CPU hours with a loss of only about 7% in accuracy when
considering identical subnetworks and about 1% when considering backbone networks. This
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is a massive improvement in the running times with hardly any sacrifice in the topological
accuracy. However, there are two caveats here. First, the true number of reticulations is
assumed in this case (whereas that number is not assumed in [26]). Second, the merger
step of the D&C method of [26] assumes knowledge of the divergence times of the nodes
in the 3-taxon subnetworks. A promising direction that emerges from these results is that
combining tree-based inference with the Bayesian method of [16] could potentially provide
an accurate and fast approach to inferring the subnetworks and, consequently, improving the
running of D&C without sacrificing its accuracy.

4.4 Analysis of empirical data set
We reanalyzed an empirical data set of rainbow skinks [1]. Selecting 11 taxa and 22 individuals,
we inferred 100 gene trees from aligned sequences of 100 loci using IQ-TREE. We inferred a
start species tree from gene trees using ASTRAL-III, which is shown in Figure 5(a). We then
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Figure 5 The inferred species tree and network of the empirical data set. (a) The
ASTRAL species tree from IQTREE gene trees. (b) The inferred network with 1 reticulation using
maximum pseudo-likelihood relying on the backbone tree.

rooted the gene trees and start species trees at the Lampropholis guichenoti as an outgroup,
and deleted it. We then ran LocalSearchAugment under the pseudo-likelihood criterion
on the data and set the maximum number of reticulations at 1, in order to compare with the
results reported in [26]. The method took 6 minutes to obtain the network shown in Figure
5(b), while D&C took 3670 CPU-hours. While the start species tree agrees with the inferred
species tree reported in Figure 2 in [1], the tree-based network is different from the network
inferred by D&C and reported in Figure 5 in [26], once again, demonstrating the efficiency
of tree-based inference, but its limitations in terms of accuracy when run on large data sets.

5 Conclusions and future work

In this paper, we set out to study the performance of tree-based inference of phylogenetic
networks, as this approach would be promising for large-scale phylogenetic network inference
provided it has good accuracy. While we find the method to be much faster than a recently
introduced divide-and-conquer approach, its accuracy is inferior to the latter. However, the
approach is accurate for inference of small-scale networks, which could prove to be valuable
for speeding up the divide-and-conquer approach while maintaining its accuracy. For example,
the topologies of the subnetworks could be inferred using tree-based inference, and then the
Bayesian method of [16] is run to only estimate the divergence times, rather than estimating
the topologies as well. We identify this as an important direction for future research.
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Another important open question whose answer would have practical implications on
searching the network space: is an optimal phylogenetic network with k + 1 reticulations
(under some optimality criterion) obtainable by adding a reticulation event to an optimal
network with k reticulations? While the answer to this question could be negative for all
optimality criteria (likelihood, pseudo-likelihood, MDC, etc.), the answer could be positive
for certain classes of phylogenetic networks.
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Abstract
Single-cell sequencing provides a powerful approach for elucidating intratumor heterogeneity by
resolving cell-to-cell variability. However, it also poses additional challenges including elevated error
rates, allelic dropout and non-uniform coverage. A recently introduced single-cell-specific mutation
detection algorithm leverages the evolutionary relationship between cells for denoising the data.
However, due to its probabilistic nature, this method does not scale well with the number of cells.
Here, we develop a novel combinatorial approach for utilizing the genealogical relationship of cells
in detecting mutations from noisy single-cell sequencing data. Our method, called scVILP, jointly
detects mutations in individual cells and reconstructs a perfect phylogeny among these cells. We
employ a novel Integer Linear Program algorithm for deterministically and efficiently solving the
joint inference problem. We show that scVILP achieves similar or better accuracy but significantly
better runtime over existing methods on simulated data. We also applied scVILP to an empirical
human cancer dataset from a high grade serous ovarian cancer patient.
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1 Introduction

Recently developed single-cell sequencing technologies provide unprecedented resolution in
studying genetic variability within a complex tissue [27, 19]. By enabling the sequencing of
the genomes of individual cells, these approaches help in delineating the genomic landscape
of rare cell populations and provide insights into the somatic evolutionary process. While
having single-cell resolution can have major impact on our understanding in neurobiology,
immunobiology and other domains [27], it is particularly useful for investigating intratumor
heterogeneity and clonal evolution in cancer [20, 29]. Interplay of mutation and selection
gives rise to intratumor heterogeneity [21, 18], which contributes to tumor progression and
metastasis [25] and can cause tumor relapse via drug resistance [10, 2]. To-date, tumors
were mostly analyzed by sequencing bulk samples that consist of admixture of DNA from
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thousands to millions of cells [9, 22]. Such datasets provide aggregate variant allele frequency
(VAF) profiles of somatic mutations, which are subjected to further deconvolution into tumor
subpopulations [6]. However, VAFs are noisy, provide limited resolution in identifying rare
subpopulations [19] and their deconvolution into clones depends on strong assumptions and
therefore may not hold in practice [1].

By enabling the direct measurement of cellular genotypes, single-cell sequencing (SCS)
data resolves intratumor heterogeneity to a single-cell level [8, 14]. However, the preparation
of SCS data calls for whole genome amplification (WGA) process that can amplify the limited
DNA material of a single cell to meet the amount of DNA needed for sequencing [29]. This
extensive genome amplification elevates the noise level in SCS data and creates a unique error
profile different from bulk sequencing [29]. Technical errors in SCS data include nonuniform
coverage, allelic dropout (ADO), false-positive (FP) and false-negative (FN) errors [19, 29].
ADO, i.e., preferential nonamplification of one allele in a heterozygous mutation can result
in the loss of the mutated allele removing all evidences of the mutation. On the other hand,
random errors introduced during the early stages of amplification can appear as false positive
artifacts due to uneven allelic amplifications. The nonuniform coverage in SCS further results
in missing data at the sites with insufficient coverage.

Since traditional next-generation sequencing (NGS) variant callers such as GATK [5] do
not account for SCS specific errors, variant callers such as Monovar [31] and SCcaller [7] have
been specifically designed to deal with the technical errors in SCS. Monovar pools sequencing
data across cells to address the problem of low coverage and probabilistically accounts for
ADO and FP errors. SCcaller independently detects variants in each cell and accounts for
local allelic amplification biases. In another direction, tumor phylogeny inference methods
[12, 30, 28] that account for the errors have been developed for studying tumor heterogeneity.
A new variant caller SCIΦ [23] combines single-cell variant calling with the reconstruction
of the tumor phylogeny. It leverages the fact that somatic cells are related by a phylogeny
and employs a Markov Chain Monte Carlo algorithm for calling mutations in each single
cell. However, being a probabilistic method, SCIΦ does not scale well with the size of the
data and takes a long time to converge on a solution. At the same time, depending on the
starting point, it might converge to different solutions.

Here, we present a novel combinatorial formulation for jointly identifying mutations in
single cell data by employing the underlying phylogeny. Our approach, scVILP (single-cell
Variant calling via Integer Linear Program) assumes that the somatic cells evolve along
a phylogenetic tree and mutations are acquired along the branches following the infinite
sites model as have been used in previous bulk and single-cell studies [6, 12, 23]. We aim to
identify the set of single-nucleotide variants in the single cells and genotype them in such a
way so that it maximizes the probability of the observed read counts and also the cells are
placed at the leaves of a perfect phylogeny that satisfies the infinite sites assumption (ISA).
Our solution is deterministic and we solve this problem using a novel Integer Linear Program
(ILP) that achieves similar accuracy as SCIΦ but performs significantly better than SCIΦ
in terms of runtime. For whole-exome sequencing (WES) data consisting of large numbers
of somatic mutation loci, running ILP-solvers can result in high memory consumption. To
address this, we introduce a divide-and-conquer version of scVILP where the data matrix is
partitioned by columns, scVILP is run on the subsets, and then the results are merged via
another ILP formulation to resolve any violations of the ISA assumption in the full dataset.
The supertree-based approach achieves similar accuracy as SCIΦ but is much faster.



M. Edrisi, H. Zafar, and L. Nakhleh 22:3

2 Method

In this section, we formulate the joint inference of mutations in single cells and the cellular
phylogeny as a combinatorial optimization problem. Following [23], we start by first identify-
ing potential mutation loci and then solve the joint inference problem using a novel Integer
Linear Program (ILP).

2.1 Input Data
The input data for scVILP corresponds to a read count matrix for n cells in the dataset. Let
us assume that we identify m loci as putative mutated loci. For the joint inference, our input
is an n×m matrix, Xn×m = (Xij), where Xij = (rij , vij) denotes the reference and variant
read counts for cell i and locus j. rij + vij is the coverage at this locus.

2.2 Model for Amplification Error
WGA process introduces false positive and false negative errors in single-cell data. We assume
that α and β respectively denote false positive and false negative error rates of single-cell
data. We introduce a binary variable Yij that denotes the true genotype of mutation j in
cell i. Yij = 1 and Yij = 0 respectively denote the presence and absence of the mutation.
We introduce another variable Dij that denotes the amplified genotype (after introduction
of WGA errors) of mutation j in cell i. Following previous WGA error models [12, 30], we
introduce the following likelihood scheme:

P (Dij |Yij) =


α, for Dij = 1, Yij = 0
1− α, for Dij = 0, Yij = 0
β, for Dij = 0, Yij = 1
1− β, for Dij = 1, Yij = 1

(1)

The above likelihood scheme (Eq. (1)) can also be rewritten as:

P (Dij = 0|Yij) = (1− α)(1−Yij)βYij

P (Dij = 1|Yij) = α(1−Yij)(1− β)Yij
(2)

2.3 Read Count Model
The read counts (rij , vij) at locus j of cell i is modeled using a Beta-Binomial distribution
as commonly used for bulk sequencing data [9] given by:

P (rij , vij |Dij) =
(
rij + vij
vij

)
(µDij )vij (1− µDij )rij (3)

where, µDij
denotes the parameter of the Binomial distribution and it represents the probab-

ility of drawing a variant read. This parameter depends on the amplified genotype and is a
Beta distributed variable. When Dij = 0, µDij

= µ0 denotes the probability of observing
a variant read due to sequencing error, for Dij = 1, µDij

= µ1 denotes the probability of
observing a variant read. Given the amplified genotype Dij , the probability of observing
read count (rij , vij) is given by

P (rij , vij |Dij = 0) =
(
rij + vij
vij

)
(µ0)vij (1− µ0)rij

P (rij , vij |Dij = 1) =
(
rij + vij
vij

)
(µ1)vij (1− µ1)rij

(4)
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The joint probability of read counts and amplified genotype given the true genotype can be
computed by multiplying the probabilities in Eq. (2) and Eq. (4) as given by

P (rij , vij , Dij = 0|Yij) =
(
rij + vij
vij

)
(µ0)vij (1− µ0)rij × α(1−Yij)(1− β)Yij

P (rij , vij , Dij = 1|Yij) =
(
rij + vij
vij

)
(µ1)vij (1− µ1)rij × (1− α)(1−Yij)βYij

(5)

2.4 Likelihood Function

The likelihood function of the true genotypes for the cells for an n×m read count matrix is
given by

L(Y ) =
n∏
i=1

m∏
j=1

P (rij , vij |Yij) (6)

For computing P (rij , vij |Yij), we treat the amplified genotype Dij as a nuisance parameter
and marginalize it out as given below:

P (rij , vij |Yij) =
∑

Dij∈{0,1}

P (rij , vij , Dij |Yij)

=
(
rij + vij
vij

)
(µ0)vij (1− µ0)rij × α(1−Yij)(1− β)Yij

+
(
rij + vij
vij

)
(µ1)vij (1− µ1)rij × (1− α)(1−Yij)βYij

(7)

If we denote the Binomial distributions as below:

Binij(µ0) =
(
rij + vij
vij

)
µ
vij

0 (1− µ0)rij

Binij(µ1) =
(
rij + vij
vij

)
µ
vij

1 (1− µ1)rij

(8)

then P (rij , vij |Yij) can be rewritten as:

P (rij , vij |Yij) =
[

Binij(µ0)α+ Binij(µ1)(1−α)
](1−Yij )[

Binij(µ0)(1− β) + Binij(µ1)β
]Yij

(9)

Here our goal is to find a matrix Y such that the likelihood function defined in Eq. (6) is
maximized. Taking the logarithm of the likelihood function in Eq. (6) and negating it, we
obtain the negative log-likelihood function:

NLL = −
n∑
i=1

m∑
j=1

[
(1− Yij) log

[
Binij(µ0)α+ Binij(µ1)(1− α)

]

+ Yij log
[

Binij(µ0)(1 − β) + Binij(µ1)β
]]

(10)

Since this function is linear with respect to the variables Yij , we can solve this by providing
it as the objective function to an ILP solver.
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2.5 ILP Constraints Pertaining to Perfect Phylogeny
We represent the tumor phylogeny as a perfect phylogeny (PP), leaves of which represent the
sampled n cells. A perfect phylogeny satisfies the “infinite sites assumption” (ISA), which
states that each genomic locus in the dataset mutates at most once during the evolutionary
history [15]. We aim to find a genotype matrix Y that provides a perfect phylogeny. In order
for a binary matrix to be a PP, the three-gametes rule has to hold, i.e., for any given pair of
columns (mutations) there must be no three rows (cells) with configuration (1, 0), (0, 1) and
(1, 1). 0 and 1 represent the ancestral (unmutated) and mutated state respectively.

In order to enforce that matrix Y satisfies the perfect phylogeny criterion, we follow the ILP
formulation introduced by Gusfield et al. [11]. which introduces variables B(p, q, a, b) ∈ {0, 1}
for each pair of mutation loci p and q and for each (a, b) ∈ {(0, 1), (1, 0), (1, 1)}. For each
cell i, the following constraints are introduced on the variables B(p, q, a, b), Yip, and Yiq,
i ∈ {1, . . . , n} and p, q ∈ {1, . . . ,m}:

B(p, q, 0, 1) ≥ Yiq − Yip (11)
B(p, q, 1, 0) ≥ Yip − Yiq (12)
B(p, q, 1, 1) ≥ Yip + Yiq − 1 (13)

To enforce a perfect phylogeny, the following constraint must hold for all pairs of p and q:

2 ≥ B(p, q, 1, 0) +B(p, q, 0, 1) +B(p, q, 1, 1) (14)

To maximize the likelihood, we need to minimize the negative log-likelihood function defined
in Eq. (10), subject to the constraints in Eqns. (11), (12), (13), and (14).

Our ILP formulation can be routinely solved through commercial tools such as CPLEX or
Gurobi. In our analysis, we have used Gurobi that concurrently runs multiple deterministic
solvers (e.g., dual simplex, primal simplex, etc.) on multiple threads and returns the one
that finishes first. As a result, for the same input data and parameter values, Gurobi returns
a deterministic solution. It is important to highlight, though, that there could be multiple
optimal solutions.

2.6 Handling Missing Data
For the loci for which the read count values are missing, we do not consider the related Yij
variables in the objective function. The values of Yij for such missing entries are imputed
according to the other values and subject to the Perfect Phylogeny constraints.

2.7 Perfect-Phylogeny Supertree
Running ILP-solvers is expensive in terms of memory consumption, specially when the
number of mutation loci is high. To overcome this limitation, we use a divide-and-conquer
approach consisting of the following steps:
1. Partition the columns of Xn×m, into k subsets of mutation loci, {C1, · · · , Ck}, where

each Cj is a set of columns in Xn×m. We define the submatrices {X(1), · · · , X(k)} as
follows:

X(i) = X[1,··· ,n;c(i)
1 ,··· ,c(i)

s ] c
(i)
j ∈ Ci and s = |Ci| (15)

2. For each submatrix, X(i), optimize the objective function in Eq. 10 (subject to the
constraints in Eqns 11, 12, 13, and 14) independently. This step results in genotyped
submatrices, {G(1), · · · , G(k)}.
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3. Concatenate the genotyped submatrices into Gn×m as follows:

Gn×m =
(
G(1) G(2) · · · G(k) )

4. If Gn×m does not admit a Perfect Phylogeny, find the minimum number of changes to
apply on the entries of Gn×m such that the modified matrix satisfies the Perfect Phylogeny
model. We name this final step as Perfect Phylogeny Correction Problem (PPC),
which is described in the following section.

2.8 The Perfect Phylogeny Correction Problem
We define the Perfect Phylogeny Correction Problem as inferring matrix G from
matrix G, which does not satisfy perfect phylogeny such that G admits a perfect phylogeny.
PPC consists of two steps:
1. Find the minimum number of characters (mutation loci) which must be removed in

order to make the matrix, G admit a perfect phylogeny. This problem is known as
Character-Removal Problem (CRP) [11].

2. Among the entries of the selected loci in the previous step, minimize the number of
changes to apply such that final matrix G is perfect phylogeny. We name this problem as
Entry-Change Problem (ECP).

2.8.1 The Character-Removal Problem
Given a genotyped matrix G, which does not admit a PP, we aim to find the smallest
set of mutation loci to remove such that the final result admits a perfect phylogeny. The
three-gametes rule is violated by the pairs of columns (loci) whose corresponding rows (cells)
contain all three configurations (0, 1), (1, 0), and (1, 1). As Gusfield et al. [11] showed, there
is an efficient ILP formulation for solving this problem.
Let δ(i) be a binary variable used to indicate whether or not loci i will be removed. Then
for each pair of mutation loci (p, q), p, q ∈ {1, · · · ,m} which violate three-gametes rule, we
add the inequality δ(p) + δ(q) ≥ 1. Finally, we minimize the objective function

∑m
i=1 δ(i).

An example of CRP is shown in Table 1.

Table 1 Character-Removal algorithm selects two loci, 2 and 4 to remove from G.

locus1 locus2 locus3 locus4 locus5
cell1 1 1 1 0 0
cell2 1 1 1 0 0
cell3 0 0 0 1 0
cell4 1 0 0 0 1
cell5 0 1 0 1 1

2.8.2 The Entry-Change Problem
We define the Entry-Change Problem as inferring a matrix G from G by changing the
entries of G such that G is a PP. Here, the character-removal problem plays an important
role by returning the set of loci to be removed from G in order to admit a PP. As a result,
instead of the whole matrix G, ECP can be applied to this set of loci. This in turn reduces
the search space for solving ECP. Let R = {r1, · · · , rl} denote this set of mutations.
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The ILP for ECP introduces variables Change(i, j) ∈ {0, 1} for each cell i ∈ {1, · · · , n}
and j ∈ R indicating whether or not the entry G(i, j) will be changed. We also use the
variables B(p, q, a, b) ∈ {0, 1} described in section 2.5 with the same defintion. The program
next creates inequalities that force the binary variable B(p, q, a, b) to 1 if changing (or not
changing) either or both entries G(i, p) and G(i, q) produces the combination (a, b). To
explain the formulation in detail, consider the pair of columns shown in Table 2.

Table 2 Five rows and two columns in the input G of ECP.

locus1 locus2
cell1 1 1
cell2 1 1
cell3 0 0
cell4 1 0
cell5 0 1

The first row creates the combination (1,1) between locus 1 and 2 if the entry G(1, 2)
does not change. This condition can be formulated as the following inequality:

B(1, 2, 1, 1) ≥ 1− Change(1, 2) (16)

And changing the entry G(1, 2) creates the combination (1, 0):

B(1, 2, 1, 0) ≥ Change(1, 2) (17)

The constraints are built similarly, according to the other rows and columns. The constraint
on variables B(p, q, a, b) which guarantees PP is the same as the inequality 14. The objective
function is to Minimize

∑n
i=1
∑l
j=1 Change(i, j) where n is the number of cells and l is the

number of problematic loci.
While [3] presented an ILP solution for finding a minimum flip supertree admitting a

PP, our combination of character removal and entry change problem does not guarantee
a minimum flip supertree. Here our goal is to find a Perfect phylogeny supertree and our
two-step approach guarantees to achieve that and at the same time restricting ECP to the
sites selected by character removal results in reduction of runtime.

3 Results

3.1 Benchmarking on Simulated Data
To benchmark the performance of our approach and compare it with that of SCIΦ we first
ran both of the methods on simulated datasets for which the ground truth is known. For
generating simulated datasets, we used the single-cell read count simulator module introduced
in [23]. The simulator first generates a model tumor tree, which starts from a progenitor
cell without any mutation. Cells evolve along the branches of the tree and the mutations
are acquired along these branches. The leaves of the tree represent the single cells. For
simulating allelic dropout, mutations present in the cells at the leaves of the phylogeny are
dropped out randomly with probability β (β2 of the mutations become wild type and β

2
become homozygous). This simulator mimics the noisy MDA process [4] and accounts for
the sequencing error whose corresponding probability values were set to 5× 10−7 and 10−3

respectively. The MDA process was repeated 50 times as suggested by the authors of SCIΦ
[23]. The mean and variance associated with the coverage distribution were set to 25 and 50
respectively. Finally, we also introduced 10% missing data.

WABI 2019



22:8 scVILP

Number of Cells Number of Cells Number of Cells

Pr
ec

isi
on

Re
ca

ll

F1
 S

co
re

a b c

Figure 1 Performance of scVILP and SCIΦ on simulated data with different number of cells.
The number of mutations is 100. Performance measured as (a) precision, (b) recall, and (c) F1 score.

We investigated how each method performs on datasets carrying different number of cells.
The number of cells in the datasets, n, was varied as n = 50, and n = 100. The number of
sites, m, was set at m = 100. We generated 5 datasets for each value of n. The rate of allelic
dropout was chosen from the values {0.05, 0.1, 0.15, 0.2, 0.25}. SCIΦ was run according to
the authors’ recommendation with an additional filter of requiring at least two cells to show
variant read count of at least three. Our method scVILP was run with allelic dropout values
given as input parameters to the program. In order to emulate the real settings where we do
not know the exact values of the allelic dropouts, we added noise to their true values in the
same way described in [16]. To add noise to the dropout values used as input to scVILP, a
random value was sampled from a normal distribution with mean 1 and standards deviation
0.1 from the interval (0.5, 2) and multiplied with the dropout values. The parameter µ0 was
empirically determined (by varying between 10−8 − 10−3) and set to 10−5. The value of
the parameter µ1 was set to 0.5 assuming heterozygous somatic mutation. The results are
shown in Fig. 1. Performance of each method was measured in terms of precision and recall.
Precision is defined as TP

TP+FP , whereas recall is defined as TP
TP+FN (TP: true positive, FP:

false positive and FN: false negative). For each setting, scVILP achieved similar or better
precision than SCIΦ. On the other hand, SCIΦ achieved a little better recall than scVILP
for n = 100, but scVILP’s recall was comparable to that of SCIΦ for n = 50. Overall, both
methods achieved similar precision and recall. This can be observed when comparing the F1
measure, which is the harmonic mean of precision and recall. However, scVILP’s median F1
score was marginally better than that of SCIΦ for each setting. These experiments show
that both of these methods achieve similar accuracy in detecting the mutations. Since both
of these methods utilize the underlying phylogenetic tree (assuming infinite sites assumption)
in inferring the variants, both of them can identify mutations in a particular cell even if there
is very little or missing variant support at a specific locus.

However, the major difference between these two methods lie in the use of the inference
algorithm. While SCIΦ uses a Markov Chain Monte Carlo algorithm for sampling from the
posterior distribution, scVILP solves the problem deterministically using ILP. Consequently,
scVILP is much faster in finding the solution as can be seen in the runtime comparison (Fig.
2). For n = 50, scVILP was on average ∼ 38 times faster than SCIΦ, while for n = 100, it
was on average ∼ 31 times faster than SCIΦ.

Allelic dropout is a major source of error in single-cell data [19]. We further assessed
scVILP’s performance under different values of allelic dropout rate. We generated 5 datasets
for each value of allelic dropout in {0.2, 0.3}. For these datasets, we used n = 50 and m = 100.
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Figure 2 Runtime comparison for scVILP and SCIΦ on simulated data with different number of
cells. The number of mutations is 100.
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Figure 3 Performance of scVILP and SCIΦ on simulated data with different allelic dropout rates.
The number of mutations is 100 and number of cells is 50. Performance measured as (a) precision,
(b) recall, and (c) F1 score.

Both scVILP and SCIΦ were compared on these datasets in terms of precision and recall
(Fig. 3). The F1 score for each method decreased with an increase in the allelic dropout
rate. For each setting of allelic dropout rate, scVILP had slightly higher precision than that
of SCIΦ. Recalls for both methods were comparable; however, scVILP had slightly better
recall for the datasets with higher allelic dropout rate. This experiment demonstrates that
scVILP performs robustly for varying allelic dropout rate.

Due to the high memory consumption of ILP-solvers, straightforward application of
scVILP might run into memory issues for very large number of mutations that can occur in
single-cell WES datasets. For addressing such cases, we developed the Perfect Phylogeny
supertree algorithm that should run without any memory issue, reducing the running time
while maintaining tolerable tradeoff in accuracy. To analyze its performance, we generated
three datasets containing 100 cells and 1000 mutation loci with allelic dropout chosen from
{0, 0.15, 0.25}. We compared scVILP against SCIΦ on these datasets (Fig. 4). While scVILP
and SCIΦ had similar F1 score for these datasets, scVILP had significantly shorter runtime
compared to SCIΦ. For these datasets, direct ILP formulation of scVILP failed to run on a
machine with 32GB RAM, but the Perfect Phylogeny supertree algorithm, by dividing the
original matrix into 5 submatrices, ran successfully with 11GB peak memory usage. Since
SCS technologies are generating SNV data on hundreds of cells, but not yet on thousands
of cells, we did not investigate the performance of scVILP and SCIΦ by simulating larger
number of cells.
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a b

Figure 4 Performance of scVILP’s Perfect Phylogeny supertree algorithm compared to SCIΦ on
simulated data with large number of mutations. The number of mutations is 1000 and the number
of cells is 100. (a) comparison of F1 score, (b) runtime comparison.

3.2 Application of scVILP on Real Data
Finally, we applied scVILP on a human cancer dataset. This dataset consists of 370 single
cells and 43 mutation loci from a high-grade serous ovarian cancer patient described in [17].
For comparison, we also ran SCIΦ on this dataset and the mutation calls for both methods are
shown in Fig. 5. Mutation calls for both these methods were mostly similar. The underlying
phylogenetic trees inferred by these methods were also similar (Robinson-Foulds distance
0.123, computed by PAUP[24]) indicating that multiple perfect phylogenies fit the data. We
further analyzed the mutation calls that were different between the methods. A large number
of mutations that were genotyped as 1 by SCIΦ and 0 by scVILP had high reference read
count and low variant read count indicating scVILP’s genotyping might have been more
accurate for these sites. Both methods were run on a PC with 8GB RAM and 2 GHz Intel
Core i5 processor. scVILP significantly outperformed SCIΦ in terms of runtime. The runtime
for scVILP was around 30 minutes compared to the nearly 12 hours runtime of SCIΦ.

4 Conclusions

Here, we introduced scVILP, a novel combinatorial approach for jointly inferring the mutations
in single cells and a perfect phylogeny that connects the cells. Using a novel Integer
Linear Program, our method infers the mutations in individual cells assuming they evolve
along a perfect phylogeny. scVILP probabilistically models the observed read counts but
combinatorially solves the joint inference problem.

We compared scVILP to SCIΦ [23] on both simulated and real datasets. For the simulated
data, both methods performed similarly in terms of precision and recall (as shown by their
F1 scores). However, scVILP significantly outperformed SCIΦ in terms of runtime. Similarly
for real human cancer dataset, scVILP achieved a solution much faster compared to SCIΦ.
For the real dataset, SCIΦ produced different solutions in different runs because of its
probabilistic nature. For the real dataset, even though mutation calls from scVILP and SCIΦ
were similar, we also observed certain differences indicating that our deterministic algorithm
and SCIΦ’s probabilistic inference do not necessarily arrive at a unique solution in spite of
the use of underlying perfect phylogenetic tree. This also indicates that potentially, multiple
perfect phylogenies can fit the data well necessitating the development of methods that also
assess uncertainty in the inferences.
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Figure 5 Summary of the mutation calls from SCIΦ and scVILP on a dataset consisting of 370
cells from a patient with high-grade serous ovarian cancer [17]. Deep blue and white entries in the
heatmaps represent mutations states 1 and 0, respectively. (a) Mutation calls of SCIΦ. (b) Mutation
calls of scVILP.

Our method could potentially be improved by including violations of the perfect phylogeny.
Tumor phylogeny studies [30, 13, 26] show possible violations of ISA in single-cell sequencing
datasets. More comprehensive evaluation of these violations could be performed by analyzing
the read counts in conjunction with tumor phylogeny inference. Another improvement would
be the inclusion of copy number data.

As single-cell sequencing becomes more high-throughput producing thousands of cells,
scVILP will be very helpful for identifying the mutations from such larger datasets. scVILP
is very fast and accurate in detecting the mutations as well as the phylogeny underlying
the cells. Addressing both these problems in a single combinatorial framework will be very
helpful for quick analysis of large datasets for understanding tumor heterogeneity.
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Abstract
Topological data analysis (TDA) is a mathematically well-founded set of methods to derive robust
information about the structure and topology of data. It has been applied successfully in several
biological contexts. Derived primarily from algebraic topology, TDA rigorously identifies persistent
features in complex data, making it well-suited to better understand the key features of three-
dimensional chromosome structure. Chromosome structure has a significant influence in many diverse
genomic processes and has recently been shown to relate to cellular differentiation. While there exist
many methods to study specific substructures of chromosomes, we are still missing a global view of
all geometric features of chromosomes. By applying TDA to the study of chromosome structure
through differentiation across three cell lines, we provide insight into principles of chromosome
folding and looping. We identify persistent connected components and one-dimensional topological
features of chromosomes and characterize them across cell types and stages of differentiation.
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1 Introduction

The three-dimensional shape of chromosomes has significant influence in many critical cellular
processes, including gene expression and regulation [7, 14, 27], replication timing [25, 2],
and overall nuclear organization [10]. The wide range of processes related to chromosome
structure suggests that understanding this component is crucial to a broader explanation of
many genomic mechanisms, yet it remains a challenge to study this complex system.

In particular, the process of differentiation, by which a cell changes to a new cell type, is
critical to all multi-cellular life, but the mechanisms behind this process remain an active
field of research with recent work suggesting a role for chromosome structure in this process.
Structural changes have been observed in chromosomes through lineage specification, both
across several stages of human cardiogenesis [16] as well as across human embryonic stem
cells (ESCs) and four human ES-cell-derived lineages [12]. Fields et al. (2017) [16] identified
both global and local structural dynamics, observing transitions from repressive to active
compartments around cardiac-specific genes as they are upregulated through differentiation.
Dixon et al. (2015) [12] also noted structural dynamics across hierarchical scales during
development, with some corresponding gene expression changes.

Chromosome structure can be measured by a number of variants of the chromosome
conformation capture protocol [11], including Hi-C [21] which permits genome-wide measure-
ments of the chromosomal architectures of a population of cells. Hi-C quantifies physical
proximity by counting cross-linkage frequencies between genomic segments. Because of the
dependence on cross-linking, which is likely to induce both false positive and false negative
contacts, the heterogeneity within cell populations, and the large scale and complexity of the
system, Hi-C can be very challenging to analyze. Many methods have focused on identifying
local structures [17], however it has proven challenging to study large-scale structures across
the entire genome.

A class of techniques called “Topological Data Analysis” (TDA) has gained prominence
recently as a generalized, mathematically grounded set of methods for identifying and
analyzing the topological and geometric structures underlying data. Emerging from work
in applied topology and computational geometry, TDA aims to infer information about the
robust structures of complex data sets [9]. These methods have already been applied to various
biological contexts [3], including in studies of gene expression at the single cell level [28],
viral reassortment [8], horizontal evolution [4], cancer genomics [24, 1], and other complex
diseases [20, 18]. Similar methods have also been used in tools to enable large-scale biological
database searching [32]. The two main methods of TDA are Mapper, a dimensionality
reduction framework and visualization method, and persistent homology, an algorithm for
extracting geometric and topological structures which describe the underlying data.

Given its rigorous mathematical foundation and ability to identify important topological
structures, TDA is very well-suited to the analysis of Hi-C data. Emmett et al. (2015) [15]
first applied these methods to human Hi-C data, though computational limitations at the
time restricted this analysis to only one chromosome at 1Mb resolution. More recently, the
Mapper method of TDA was used to analyze the similarities between single-cell Hi-C maps [6].
Carriere and Rabadan (2018) [6] first computed pairwise distances between all single-cell Hi-C
contact matrices, and applied TDA to the distance matrix between single cells rather than
applying TDA directly to the Hi-C data, analyzing the results with Mapper. In this paper, we
use persistent homology to identify geometric structures in human chromosomes directly from
Hi-C data, and study how they change throughout lineage specification and differentiation.
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This work presents the first use of TDA to study the chromosome structures of all 22 human
autosomal chromosomes, providing insight into the structural changes involved in cellular
differentiation. We identify hundreds of thousands of zero- and one-dimensional features of
chromosome structure across 14 cell types, and describe the patterns underlying geometric
structures of Hi-C data. We characterize the one-dimensional hole structures identified by
TDA, noting that many of the patterns we observe can be explained by the linearity of the
chromosome. Additionally, we compare the topologies of 14 cell types representing various
stages of differentiation and various cell lines, and note that the topological similarity is
largely dictated by cell line rather than differentiation stage.

2 Methods

2.1 Overview of TDA
TDA is based on the premise that data points are sampled from an unknown continuous
geometric structure that can be described by topological properties preserved under con-
tinuous deformations of the space. These properties can include the number and size of
connected components, loops or holes the structure contains. TDA approximates a continuous
geometry by building a simplicial complex, or a network of edges and triangles, from the
nodes of the given data points. Due to the computational complexity of TDA and the
challenges of interpreting larger-dimensional features, we focus only on 0- and 1-dimensional
features here, which requires generating simplices with maximum dimension 2, i.e., nodes,
edges, and triangles.

A Vietoris-Rips (VR) complex is then generated, which is a set of simplices produced by
adding edges between all nodes with distance less than a given α, and a triangle between all
sets of three nodes for which each pair is no more than α apart. Together these components
describe a structure built from the data, from which the topological features of the underlying
space can be described and quantified through a process called persistent homology.

I Definition (Vietoris-Rips complex). Given a set of points X in a metric space (M,d) and a
real number α ≥ 0, The Vietoris-Rips complex is the set of simplices {[x0, ..., xk]} such that
d(xi, xj) ≤ α for all (i, j), with k less than or equal to a given maximum dimension [9].

The analysis of simplicial complexes and their topological properties is based in homology
theory, which defines the topological properties of any given dimension of a space. These
properties can be represented by homology groups H0(X), H1(X), H2(X), ...,Hn(X). A
homology group Hk represents k-dimensional “holes”. For example, H0 represents the
connected components of the VR complex, H1 represents one-dimensional loops, and H2
represents two-dimensional voids [30].

Given a set of data points X, we build VR complexes for different values of parameter α.
The basis of persistent homology is the idea that features that persist in the VR complexes
across values of α are the key topological features of the space generated by the data.
Conversely, features that only appear for few values of α are often filtered out or ignored as
methodological artifacts. A feature from persistent homology is therefore described by an
interval [b, d], where b represents the birth time of the feature, or the smallest value of α at
which the feature is found, and d, called death time, the smallest value of α at which the
feature no longer exists. These features are visualized in two ways: persistence diagrams and
barcode plots. Persistence diagrams are sets of (b, d) points in the Euclidean half-plane above
the diagonal (see Figure 1(a) for an example). Barcode plots display the same information,
but with each homology group shown as an interval [b, d]. These barcode lines are plotted at
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different heights, often ordered by death time d for visualization purposes, but the y values
are arbitrary (see Figure 1(b) for an example). For more technical details on TDA and
persistent homology, see for example Carlsson (2014) [5] or Wasserman (2018) [31].

2.2 Applying TDA to Hi-C
The methods of TDA use a distance matrix that describes the distances between all data
points. Although Hi-C data is interpreted as describing the 3D distances between chromosomal
segments, the values of a Hi-C matrix are contact counts rather than distance values, where
a high contact count implies a low distance. We use the following transformation to convert
a normalized Hi-C matrix M to a distance matrix K:

Ki,j = 1−
{

1 i = j
1
m log(Mi,j + 1) i 6= j

where m = 1.01 maxi,j≤D(log(Mi,j) + 1), and D is the number of rows in the contact matrix.
A pseudo-count of 1 is added to all off-diagonal values in the Hi-C matrix to avoid taking a
logarithm of zero, and the factor of 1.01 is included to ensure that all distances where i 6= j

are nonzero. Three other distance transformations were tested on a subset of our data, and
the patterns observed were qualitatively similar across all four.

Note that this transformation does not return a metric, as Hi-C values themselves do
not satisfy the triangle inequality. A short study of the practical effect of violating the
metric assumption in TDA can be found in the appendix, which suggests that at least in
simple cases, persistent homologies are somewhat robust to distances that do not satisfy the
triangle inequality.

We use GUDHI [22], a Python library for TDA, to compute persistent homology from
these distance matrices at 100kb resolution.

2.3 Loop trace-back algorithm
The H1 structures identified by TDA represent “loops” in the input data, or one-dimensional
holes in the simplicial complex. We will use the term loop interchangeably with H1 structure
but it is important to note that these are not loops in the traditional sense of chromatin
loops. The loops identified by TDA may be surrounded by non-consecutive genomic segments,
unlike the continuous loops generally studied in chromatin.

TDA does not identify the data points involved in each Hk, as each element corresponds
to a homology class rather than an individual structure. Each H1 class represents the set of
loops around a one-dimensional topological hole, not a specific loop structure in the data. In
order to locate a representative loop for each homology class, we first define an “optimal
loop” as the loop in the homology class with the shortest total distance. In the Hi-C case,
loop edges are connections between two chromosome bins i and j, and their edge weights are
given by Ki,j in the distance matrix. We therefore look for the loop that minimizes the sum
of edge weights over all loops in the homology class.

In order to identify the optimal loop of each homology class H1 we use the following
loop trace-back algorithm, based on identifying a shortest path through the distance matrix
K, similar to the method used by Emmett et al. (2015) [15]. One major difference in our
algorithm is that we do not perturb the Hi-C matrices, ensuring that we preserve all spatial
relationships among genomic loci. We additionally provide a proof of the correctness of our
loop trace-back algorithm (see Appendix, section A1). The formal loop trace-back algorithm
is described as follows:
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Step 1: For each H1 persistent structure, identify the unique edge which forms at the
birth time and generates the persistent homology. We will refer to the two nodes of this
edge as V1 and V2.
Step 2: Construct a weighted graph G from the distance matrix, where nodes are
chromosome bins and edges are weighted by the distance Ki,j , including only edges where
Ki,j is less than the distance between V1 and V2.
Step 3: Find the shortest (lowest weight) path from V1 to V2 on the graph using Dijkstra’s
algorithm, and return this path plus the edge between V1 and V2.

This algorithm is based on one key assumption: there is only one edge with weight equal
to the birth time of each H1 persistent structure. In the Hi-C case, this is not a strong
assumption as only about 2% of the persistent structures were formed at values with more
than one edge. In all of these cases, there was only one other edge with the same value. The
TDA software used here reports which edge formed each persistent structure, so we take that
edge as our starting point for the algorithm in these ambiguous cases. We still guarantee
that the loop returned will be a member of the correct homology class, however there exist
edge cases in which this loop may not represent the minimum weight path. For applications
that violate this assumption more frequently, this algorithm may be unsuitable.

2.4 Null models
In order to understand the TDA loop structures, three separate null models of distance
matrices representing various properties of the Hi-C data were generated and analyzed with
TDA. The three null models are defined as follows:

Random permutation: all Hi-C distance values are permuted randomly, preserving only
the symmetry of the distance matrix and the values themselves.
Edge permutation: the distance values along each row of the distance matrix were
permuted randomly, preserving both the degree of and set of distances for each node but
randomly changing their assignments. The corresponding columns were permuted in the
same way to preserve symmetry.
Linear dependence: a new distance matrix is created, in which each diagonal beyond
the main diagonal preserves the same mean and standard deviation of the original data,
with Gaussian noise added. The dominant pattern of the Hi-C distance matrices is a
decrease in distance as the difference between the row index and column index increases.
This model represents this same pattern, but does not include any additional structural
features of chromosomes.

The properties of barcode plots and persistence diagrams of these null models were compared
with those of true Hi-C data.

2.5 Bottleneck distance to compare persistence diagrams
In order to derive stability results for TDA, Carlsson (2014) [5] proposed a metric called
the bottleneck distance that quantifies the difference between two persistence diagrams. The
bottleneck distance is based on a perfect bipartite matching g between two persistence
diagrams dgm1 and dgm2, where points in either persistence diagram can also be matched
to any point along the diagonal. The formula for computing the bottleneck distance dB is:

dB(dgm1,dgm2) = inf
matching g

[
max

(x,y)∈g
||x− y||∞

]
.
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Table 1 All Hi-C samples used for this study.

Sample name Description SRA Accessions Study
RUES2 ESC embryonic stem cell SRX3375347, SRX3375348 [16]
RUES2 MES mesoderm SRX3375349, SRX3375350 [16]
RUES2 CP cardiac progenitor SRX3375351, SRX3375352 [16]
RUES2 CM cardiac myocyte SRX3375353, SRX3375354 [16]
RUES2 FetalHeart fetal heart tissue SRX3375355, SRX3375356 [16]
WTC11 PSC pluripotent stem cell SRX4958481, SRX4958482 [16]
WTC11 MES mesoderm SRX4958483, SRX4958484 [16]
WTC11 CP cardiac progenitor SRX4958485, SRX4958486 [16]
WTC11 CM cardiac myocyte SRX4958487, SRX4958488 [16]
H1 ESC embryonic stem cell SRX378271, SRX378272 [12]
H1 ME mesendoderm SRX378273, SRX378274 [12]
H1 MS mesenchymal stem cell SRX378275, SRX378276 [12]
H1 NP neural progenitor SRX378277, SRX378278 [12]
H1 TB trophoblast-like cells SRX378279, SRX378280 [12]

The bottleneck distance quantifies the similarity between two persistence diagrams by the
maximum distance between two points in the best matching.

3 Results

3.1 Data

We analyzed Hi-C samples from 14 conditions, representing several differentiation lineages
from two different studies [16, 12]. Two of these lineages represent paths through human
cardiogenesis, starting with stem cells and continuing through the mesoderm (MES), cardiac
progenitor (CP), and cardiac myocyte (CM) stages. One line, from RUES2 cells, begins with
embryonic stem cells (ESC), and also includes a fetal heart tissue sample. The study authors
also collected data from WTC11 cells, beginning with a human induced pluripotent stem cell
(PSC), then collecting data at the same stages as the RUES2 cells: MES, CP and CM [16].
The third Hi-C data set represents still another differentiation starting point, using H1 ESC
cells to generate four human ES-cell-derived lineages: mesendoderm (ME), mesenchymal
stem (MS) cells, neural progenitor (NP) cells, and trophoblast-like (TB) cells [12]. All data
is described in Table 1, including accession codes. Samples from all 14 conditions included
two replicates each. All of the Hi-C data was processed from raw reads to normalized contact
matrices at 100kb using the HiC-Pro pipeline [29] and iterative correction and eigenvector
decomposition (ICE) normalization [19]. In order to maximize coverage, we combined all of
the reads from replicates to produce one Hi-C matrix per sample.

We generated ten of each of the null models for every RUES2 cell type and each chromo-
some from 13 to 22. The null models on longer chromosomes proved not to be computationally
feasible, but the patterns across the chromosomes that we were able to model were remarkably
consistent (see Figure 7), suggesting that the additional data from all three null models on
chromosomes 1 through 12 would follow similar patterns.
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Barcode plot Persistence diagrama b c

Figure 1 Representative example of a barcode plot (a) and persistence diagram (b) from Hi-C
data. These figures were created from chromosome 5 of WTC11 cardiac progenitor cells, and
summarize the output from the persistent homology computation. Each point or bar represents one
structure, defined by the radius at which the structure can first be seen (birth radius), and the last
radius before the structure no longer exists (death radius). These figures are two ways to represent
the same persistent homology information. (c) Distributions of birth, death, and lifespan values of
all 14 cell types on all 22 chromosomes.

3.2 Persistent homology in Hi-C data
We visualize the persisent homology groups in the two ways described previously, persistence
diagrams and barcode plots. We focus here on H0 and H1 structures and observe a very
distinctive pattern in both structure classes across chromosomes and cell types in all of our
Hi-C data (Figure 1c). The majority of H0 structures disappear at a radius of somewhere
between α = 0.1 and α = 0.2, suggesting that many new edges are formed near these values,
and relatively few H0 structures persist after this. TDA therefore quickly recovers the linear
structure of the chromosome. The H1 structures tend to have short lifespans (they are
close to the diagonal in the persistence diagrams), and most are born at α ∼ 0.6 − 0.8,
though there are consistently a few loops born earlier. A representative barcode plot and
persistence diagram can be seen in Figure 1. Birth and death values to plot all barcode plots
and persistence diagrams on all cell types and all chromosomes studied here is available at
https://github.com/Kingsford-Group/hictda.

3.3 Characterization of loops
Using the loop trace-back algorithm described in Methods, we locate the representative
genomic bins for each H1 homology class identified and characterize their distributions
across cell type, chromosomes, and differentiation stages. Recall that TDA “loops” are not
traditional chromosome loops in the sense that they may be made up of non-consecutive
genomic segments; across all of our data only 1868 of the 850188 total loops found are made
up of consecutive genomic segments with mean length of only ∼625kb. Given that most
of the loops are not made of consecutive genomic segments, we will refer to their size as
the number of bins involved in the loop rather than the genomic distance between the first
and last bin. These loop structures are generally very small (mean ∼446.5kb, or 4.47 bins),
but this mean is largely dominated by very short-lived loops; 98.98% of all H1 structures
identified by TDA have a lifespan (difference between birth and death radius) of less than
0.1, which can be seen in both the barcode plot, where the majority of blue lines are very
short, and the persistence diagram, where most blue dots are very close to the diagonal
(Figure 1). We therefore look at these loop size distributions as a function of their lifespan
(Figure 2a), noting that while the average loop is quite short, there are many much longer
loops (the longest loop involves 2492 bins, equivalent to 24.92Mb) and the distributions
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a b c

Figure 2 Distributions of genomic loop sizes across loop lifespans, cell types, and chromosomes.
For all three figures, the log-scaled y-axis represents the total number of genomic bins returned
by the loop traceback method. (a) Loop distributions separated by their lifespans in the VR
complex. Larger lifespans indicate loops that are present for a large range of α values. (b) Loop
size distributions by cell type, excluding all loops with lifespans less than 0.1, which are likely to
be artifacts. (c) Loop size distributions by chromosome, again excluding all loops with lifespans
less than 0.1.

vary significantly between lifespan ranges. Removing the loops with lifespan less than 0.1
which are likely artifacts, the distributions of loop size do not vary much between cell types
(Figure 2b), though there is some variation between chromosomes (Figure 2c). We did not
observe any consistent trends in loop characteristics through differentiation across the three
cell lines (Figure 6).

3.4 Loop patterns are largely dictated by the linearity of chromosomes

In order to further understand the H1 structures, the patterns observed in real Hi-C data
were compared to our null models. As a representative example, barcode plots of all loop
structures of chromosome 14 in RUES2 MES cells can be seen in Figure 3a, along with the
null models from this data.

One of the most striking patterns in comparing these null models to the true data is that
the loops in Hi-C tend to be born at a much higher value of α, and survive only a short
time, as noted previously. The model that most closely resembles this pattern is the linear
dependence model, but the distribution of birth times shows that the linear dependence model
has a long tail towards the earlier birth times which is absent in real Hi-C data (Figure 3b).
The short life span, which will generally correspond to smaller loops, is also much more
consistent with the linear dependence model, although somewhat more pronounced in Hi-C
(Figure 3c). The fact that the linear dependence null model shows these same patterns as
Hi-C data suggests that the linear property (nodes that are close together in index, or linear
distance, are also close in 3D space) is sufficient to explain the short loops and birth times
concentrated at high values of α. Long loops appear to be created when nodes with a large
difference in their indices (large linear distance) are close together, as demonstrated by the
loops with very long life spans in the two permutation models. This appears to be very rare in
Hi-C data; the majority of loop interactions we observe are relatively short-lived and involve
few genomic bins, consistent with findings from more traditional chromosome loop structures
which have been shown to be almost exclusively between loci less than 2Mb apart [26].

The greatest difference between the linear dependence model and Hi-C data can be seen
in the number of loops identified (Figure 3d). Although the linear dependence model is again
the most similar to real data in this regard, it typically still contains over twice the number
of loops as the corresponding Hi-C matrix. This observation could be explained by the
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RUES2 MES, chr 14 Linear dependence

Edge permutation Random permutation

a b

c d (α)

(α)

Figure 3 Loop analysis through multiple null models. (a) Barcode plots (showing only loop
structures) from chromosome 14 of RUES2 MES cells, along with the corresponding barcode plots
from the three null models. (b) Normalized histogram of the birth times of all loops in RUES2
data from true Hi-C and each null model. (c) Normalized histogram of loop life spans (length
of a barcode line) shows that the loops from real Hi-C data are very small, similar to the linear
dependence model. (d) Normalized histogram of the ratios of numbers of loops in each null model
to the number of loops in the corresponding Hi-C matrix.

existence of topologically associating domains (TADs) or compartments in real chromosomes,
which are absent from the linear dependence model but a defining characteristic of Hi-C.
These structures serve to isolate chromosome segments from each other, which likely prevents
the formation of loops between them. If loops can largely only be formed within a TAD or
compartment, this would significantly restrict the total number of feasible loops which could
explain the pattern we observe in the persistence diagrams of Hi-C data.

3.5 Comparing topologies across differentiation

Although there are some evident changes in topological structures measured by TDA through
differentiation, the larger differences exist between the three main cell lines (RUES2, WTC11,
and H1, see Figure 4). Interestingly, there does not seem to be any more similarity, measured
by bottleneck distance averaged over all chromosomes, between cells at the same stages of
differentiation across the three cell lines than cells at different stages of differentiation. For
example, the distance value between the two cardiac progenitor samples from RUES2 and
WTC11 appears no lower than the value between RUES2 CP and WTC11 CM cells, and
H1 ESC and RUES2 ESC seem no more similar to each other than H1 ESC and RUES2
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Figure 4 Comparison of all 14 samples studied. This heatmap represents the bottleneck distances
between each pair of samples in our data, averaged over all 22 chromosomes. With the exceptions of
the high distances between the two later stages and two earlier stages of WTC11 differentiation, the
pattern of low distance within one cell line dominates these comparisons. This pattern can be seen
by the lighter blocks along the diagonal with limits corresponding to the changes in cell line.

MES or RUES2 ESC and H1 ME cells. Global topological features identified by TDA at the
genome-wide scale therefore seem to be determined more by cell line than differentiation
stage, suggesting that the structural changes involved in differentiation may be more localized
or on a smaller scale than we have studied here.

4 Discussion

One of the major challenges in the application of TDA to Hi-C data is the computational
complexity of the methods combined with the scale of Hi-C. For a more in-depth discussion
of TDA complexity, see for example [23]. Due to computational limitations, the structures
studied here are fairly large-scale; the Hi-C data analyzed is at a relatively low 100kb
resolution, and our study only includes 14 samples. By studying smaller sections of the
genome, perhaps near a gene of interest or within a particular structure of interest, higher
resolution Hi-C or 5C could be used with TDA to identify small-scale topological structures.
We were also only able to study intra-chromosomal matrices, but the topology of inter-
chromosomal interactions would likely yield interesting insights as well though it would
further increase the computational complexity of the problem. Another consequence of
the computational complexity of TDA is our focus on only 0- and 1- dimensional features.
Emmett et al. (2015) [15] speculate that the 2-dimensional voids may represent interesting
biological features such as transcription factories. Future improvements in the data structures
and algorithms underlying TDA would significantly improve our ability to study more aspects
of the topology of the full genome.

The nature of Hi-C, as an experiment based on cross-linking over a full population, does
not permit a transformation from the Hi-C counts to a true distance metric. While this did
not seem to affect the results in two toy examples tested (see Section S2), the complexity of
Hi-C may result in more unpredictable outcomes from violating the triangle inequality on
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a much larger scale. One possibility to improve this concern is to use any of the methods
that estimate a 3D structure from Hi-C, or select only the Hi-C values that satisfy a metric
definition [13], and infer distances which would be geometrically consistent. However, this
induces another source of error, and it is unclear whether the results would be more reliable.

We have presented the first application of TDA to study the topology of all 22 human
autosomal chromosomes. By studying clusters and loops of 14 samples from various cell lines
and stages of differentiation, we identify generative principles of chromosome structure. We
describe the characteristics of loop structures in chromosomes, the majority of which are very
short genomically but with a small number of extremely large outliers suggesting the presence
of very long-distance chromosome interactions. Our models suggest that the linearity of the
chromosome is sufficient to explain the short lifespan of its loops, but additional structural
features specific to Hi-C likely lead to the relatively small number of loops and their late
birth times. We also show that topological structure seems to be largely determined by cell
line rather than stage of differentiation. TDA shows promise for further analysis of Hi-C
data, especially as computational limitations are overcome permitting analysis of higher
dimensional features at higher resolution.

Financial disclosure. C.K. is a co-founder of Ocean Genomics, Inc.
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A Proof of correctness of the loop trace-back algorithm

In this section, we will prove that the loop found by shortest path based algorithm is in fact
the optimal loop of a particular persistent structure.

As described in Methods, the persistent homology algorithm involves building a series of
VR complexes by varying the parameter α, creating different homology classes that appear
and disappear at different values of α. For a given parameter α0, we construct a weighted
graph (G(α0), V, E) where vertices are all points in the given data set, and an edge, with
weight equal to the distance between the vertices, exists if the weight is not larger than α0.
From the perspective of algebraic topology, the graph G(α0) can be regarded as a simplicial
complex, therefore, definitions such as homology group H1 can be used on G(α0) as well.
We will also need to define the group of 1-boundaries of a simplicial complex G, B1(G).
Conceptually B1(G) is the set of all “trivial” cycles in G; the cycles composed of boundaries
of triangles.

The following describes useful notations for the proof.

I Definition (Cycle weight). Given a weighted graph (G,V,E), ∀e ∈ E, denote w(e) as the
weight of e, then the weight of a cycle l in the graph is defined as: w(l) = Σe∈lw(e).

I Definition (Cycle birth time). Given a weighted graph (G,V,E), the birth time of a cycle
in the graph is defined as: T (l) = maxe∈l w(e).

We will refer to an element of a homology group H1(G) as a homology class, which is an
equivalence class over cycles. We define the birth time of a homology class as follows.

I Definition (Homology class birth time). Given a homology group H1(G), the birth time of
a homology class h ∈ H1(G) is defined as: T (h) = minl∈h T (l), where l ∈ h are cycles.

We denote [l] = {l + s | s ∈ B1(G)} as the corresponding homology class of the cycle
l. The sum of two cycles used here is similar to the sum of a vector space over field
Z2, specifically, given two cycles l1 = {e11, ..., e1m} and l2 = {e21, ..., e2n}, their sum is
l1 + l2 = {e′1, ..., e′j}, e′i ∈ (({e11, ..., e1m}

⋃
{e21, ..., e2n}) − ({e11, ..., e1m}

⋂
{e21, ..., e2n})).

Given a homology class h ∈ H1(G), then ∀l ∈ h, h = [l]. For the purposes of our algorithm,
we assume that at each time α0 at which the dimension of H1 increases through the filtration,
there is one unique edge e with w(e) = α0. Under this assumption, we look for the optimal
cycle L satisfying the following:

L = argmin w(l) = Σei∈lw(ei)
s.t.
l 6∈ B1(G(α0))
T ([l]) = α0
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Intuitively, L is the smallest (in terms of total weight) non-trivial cycle among all the
cycles in homology classes born at α0.

We will denote the unique edge with weight α0 as [a, b], and let pshort be the shortest
path through G(α0)\[a, b] from a to b. This leads to the main result.

I Theorem 1. If there is only one edge with weight α0 for α0 at which the dimension of
H1(G) increases by 1, then the pshort + [a, b] is the optimal cycle L.

The proof of the theorem can be divided into two parts: first we will show that any cycle
satisfying two conditions above should contain the edge [a, b], and second we will show that
the cycle pshort + [a, b] satisfies these two conditions. Since pshort + [a, b] is the shortest cycle
among all the cycles having the edge [a, b], we can easily get theorem 1.

We have the following three lemmas:

I Lemma 1. If all the edges have unique weights, for any α0 when the dimension of H1(G(α0))
increases by one, any cycle l on G(α0) satisfying the two conditions l 6∈ B1(G(α0)) and
T ([l]) = α0 contains the edge [a, b], where w([a, b]) = α0.

Proof. Assume for contradiction that there exists a cycle l = {e1, e2, ..., ep} on G(α0),
l 6∈ B1(G(α0)) and T ([l]) = α0, which does not include the edge [a, b]. We assume there is
only one edge with weight α0, so w(ei) < α0 for all ei ∈ {e1, ..., ep}. Then α0 = T ([l]) ≤
T (l) = maxe∈{e1,...,ep} w(e) < α0, which contradicts the first statement. J

I Lemma 2. If all the edges have unique weights, for any α0 when the dimension of
H1(G(α0)) increases by one, any cycle l which belongs to a homology class h satisfying the
conditions h ∈ H1(G(α0)) and T (h) = α0 contains the edge [a, b] with w([a, b]) = α0.

Proof. Assume for contradiction that there exists a cycle l ∈ h, l = {e1, e2, ..., ep}, that does
not include [a, b], and h ∈ H1(α0) and T (h) = α0. There is only one edge with the weight α0,
so w(ei) < α0∀ei ∈ {e1, ..., ep}. Then α0 = T (h) ≤ T (l) = maxe∈{e1,...,ep} w(e) < α0, which
is a clear contradiction. J

I Lemma 3. If all the edges have the unique weights, for any α0 when the dimension
number of H1(G(α0)) increases by one, any cycle l on G(α0) which contains the edge [a, b],
w([a, b]) = α0, does not belong to B1(G(α0)).

Proof. Assume ∃l = {e1, e2, ..., ep} + [a, b], ei ∈ E, such that l ∈ B1(G(α0)). Since the
dimension increases by one at α0, ∃h ∈ H1(G(α0)) such that T (h) = α0. Choose one
cycle l′ ∈ h, from Lemma 2, we know that l′ contains the edge [a, b], then we can write
l′ as l′ = {e′1, e′2, ..., e′q} + [a, b]. Since l ∈ B1(G(α0)), l + l′ = {e1, e2, ..., ep} + [a, b] +
{e′1, e′2, ..., e′q} + [a, b] ⊆ {e1, e2, ..., ep, e

′
1, e
′
2, ..., e

′
q} still belongs to the homology class h.

Then α0 = T (h) ≤ T (l + l′) ≤ maxe∈{e1,e2,...,ep,e
′
1,e

′
2,...,e

′
q}
w(e) < α0, which is again a

clear contradiction. J

Lemma 3 tells us that pshort+ [a, b] 6∈ B1(G(α0)), and also any cycle l = pshort+ [a, b] + s,
s ∈ B1(G(α0)) contains the edge [a, b], therefore T (pshort + [a, b] + s) ≥ α0, ∀s ∈ B1(G(α0)),
then α0 ≥ T ([pshort + [a, b]]) = mins∈B1(G(α0)) T (pshort + [a, b] + s) ≥ α0 which indicates
that T ([pshort + [a, b]]) = α0.

Now we have proved that the cycle pshort+[a, b] satisfies two conditions, and from Lemma
1 we have also proved that any cycle satisfying these two conditions must contain [a, b],
therefore pshort + [a, b] is definitely the one with the smallest weight. We have finished the
proof of theorem 1.
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Figure 5 Study of robustness to violating the triangle inequality. In both figures, the “metric”
values came from perturbing the original data and generating a distance matrix satisfying the triangle
inequality, and the “nonmetric” points are the result of perturbing the distance matrix to violate the
triangle inequality. The x-axis is the Frobenius norm between the perturbed distance matrix and the
original, and the y-axis represents the bottleneck distance between the resulting persistent homology
computations. (a) Underlying geometry: one two-dimensional circle. (b) Underlying geometry: Two
adjacent two-dimensional circles.

B Study of robustness to triangle inequality failure

Much of the theory of TDA is built on the assumption that the distances being analyzed
satisfy the definition of a metric. Unfortunately Hi-C data is not a direct measurement of
distance, and does not satisfy the triangle inequality. The transformation used here to convert
Hi-C values to a “distance” similarly does not satisfy the triangle inequality and is therefore
not a metric. In order to determine whether the violation of the metric assumption strongly
influences the results of TDA, we ran a small study on two toy examples. One example
is a simple two-dimensional circle, and the other is two adjacent two-dimensional circles.
First, we sampled n points (40 points for the first example and 80 for the other) from each
underlying geometry, and generated a distance matrix from these points. We then performed
two perturbations of the sampled data: (1) preserving symmetry and non-negativity, we
applied Gaussian noise of increasing variance to the distance matrix itself, creating a matrix
which violates the triangle inequality, and (2) we applied Gaussian noise of increasing variance
to the sampled points, and computed a distance matrix from the perturbed points, thereby
preserving the triangle inequality. We ran 20 perturbations for each variance (0.5, 1, 1.5,
2, and 2.5), and then ran TDA on all matrices from the two perturbations as well as the
original sampled data, and computed the bottleneck distance between each perturbation and
the original data. We note that the bottleneck distances for perturbations that violate the
metric definition do not differ clearly from those that obey it, suggesting that in these toy
examples, the violations of the triangle inequality did not meaningfully influence the output
of the persistent homology computations (Figure 5).
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a b c

Figure 6 Distributions of genomic loop sizes across loop lifespans, separated by differentiation
stage. The log-scaled y-axis again represents the total number of genomic bins returned by the loop
traceback method. (a) RUES2 cell line (b) WTC11, and (c) H1. Note that because the H1 data is
not a linear trajectory through the differentiation process like the RUES2 and WTC11 data, this is
represented by a different color scheme.

Figure 7 Persistence diagrams for all null models. Ten null models were generated for each of
the RUES2 cell types on each chromosome from 13-22. All computed models for each cell type are
plotted on top of each other here to demonstrate that each null model shows a very characteristic
shape, which is very consistent across all models. Lighter-colored areas represent regions of variance
between chromosomes or models.
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Abstract
Despite the recent developments of long-read sequencing technologies, it is still difficult to produce
complete assemblies of eukaryotic genomes in an automated fashion. Genome assembly software
typically output assembled fragments (contigs) along with assembly graphs, that encode all possible
layouts of these contigs. Graph representation of the assembled genome can be useful for gene
discovery, haplotyping, structural variations analysis and other applications. To facilitate the
development of new graph-based approaches, it is important to develop algorithms for comparison
and evaluation of assembly graphs produced by different software. In this work, we introduce
synteny paths: maximal paths of homologous sequence between the compared assembly graphs. We
describe Asgan – an algorithm for efficient synteny paths decomposition, and use it to evaluate
assembly graphs of various bacterial assemblies produced by different approaches. We then apply
Asgan to discover structural variations between the assemblies of 15 Drosophila genomes, and
show that synteny paths are robust to contig fragmentation. The Asgan tool is freely available at:
https://github.com/epolevikov/Asgan.
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1 Introduction

Genome assembly is the problem of reconstructing a DNA sequence from sequencing reads -
short, overlapping substrings of the original DNA. This reconstruction is challenging because
of the presence of genomic repeats - multiple copies (precise or imprecise) of the same sequence
within the genome. Since the read length is limited, even simple bacterial assemblies from
short Illumina reads may contain hundreds of unresolved repeats, which results in fragmented
assemblies [22]. The increased read length of the Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT) sequencers significantly improved the contiguity of many de
novo assemblies [27]. However, other genomes are still incomplete due to very long unresolved
repeats, such as segmental duplications in human genomes [34].
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To reduce the assembly fragmentation and optimally resolve repeats, genome assemblers
construct various assembly graphs from input reads. One popular representation is the
overlap graph [23], where each input read corresponds to a node, and directed edges represent
overlaps between the corresponding reads. A limitation of this approach is that it does not
reveal precise boundaries of genomic repeats as they might be hidden inside the nodes [10].
Alternatively, de Bruijn graphs [26] proved to be a useful framework that represents read
information in a compact form and reveals repeat boundaries [25]. A recently introduced
Flye algorithm [12] utilizes repeat graphs, which are similar to de Bruijn graphs, but are
built using approximate, rather than exact sequence matches.

A typical genome assembly workflow includes building and simplifying an assembly graph,
afterwards contigs are generated as unambiguous paths in this graph [32, 4]. Many studies
focus only on the resulting contig fragments for downstream analysis, however it was shown
that incorporating the adjacency information from assembly graphs can be useful for gene
discovery [33], structural variation analysis [9], hybrid assembly [2, 35], haplotyping [30],
segmental duplication analysis [12] and other applications.

To facilitate the development of new assembly graph-based approaches, it is important
to develop algorithms for comparison and evaluation of various assembly graphs produced
by different approaches. Recently, a GTED distance metric [5] has been introduced as an
attempt to generalize the string edit distance [14] to sequence graphs. While theoretically
sound, this approach has only been applied to small viral genomes due to the computational
constraints. Additionally, Earth mover’s distance (EMD) was proposed as a probabilistic
distance measure between de Bruijn graphs of metagenomic assemblies [18]. The authors have
shown that incorporating the connectivity information from de Bruijn graphs improves the
accuracy of metagenomic sample classification, comparing to the read mapping approaches.
However, the described algorithm works only with de Bruijn graphs built with small values
of k (less than 10), which makes it unsuitable to analyse the structure of the assembly
graphs produced by the most genome assemblers. Finally, various visualization tools, such as
Bandage [36] or AGB [19] allow for visual inspection of assembly graphs, but do not support
automatic graphs comparison.

In this work, we propose a new method for assembly graphs analysis and comparison,
which could be used for benchmarking various assembly algorithms, and for improving
comparative genomics capabilities of fragmented assemblies. We introduce synteny paths -
maximal paths of homologous sequence between the compared assembly graphs, which are
inspired by synteny blocks that are commonly used for structural comparison of complete
genomes [24, 8]. We formulate the minimum synteny paths decomposition problem, prove
that its exact solution is NP-hard and provide an efficient heuristic algorithm. Then, we
illustrate the application of synteny paths for evaluating assembly graphs of various bacterial
genomes produced by different assemblers. Finally, we apply synteny paths to compare 15
Drosophila assemblies and show that our approach is robust to contig fragmentation, and
reveals structural divergences between the compared genomes.

2 Background

De Bruijn graphs. Given a set of reads R and a parameter k, de Bruijn graph DBG(R, k)
is constructed by first representing each read of length L as a set of L− k + 1 overlapping
k-mers (substrings of length k). Each unique k-mer k1 from the constructed set is translated
into a node vk1 in the de Bruijn graph. Two nodes vk1 and vk2 are connected by a directed
edge, if the corresponding k-mers k1 and k2 are adjacent in at least one of the input reads
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(Figure 1a-d). Note that it also means: (i) k1 and k2 overlap by k − 1 nucleotides and (ii)
edge (vk1 , vk2) spells a (k + 1)-mer, constructed from two overlapping k-mers. Since each
read could also be represented as a sequence of consecutive (k + 1)-mers: (k1, k2, . . . , kn),
the corresponding edges in DBG form a path. Similarly, because every read is a substring
of the original genome G, there is a path in DBG, that spells G (assuming no sequencing
errors and uniform read coverage).

(f) Annotated de Bruijn
graph

(e) Condensed de Bruijn
graph

(a) Genome with one repeat

(b) Reads

(c) Reads split into k-mers

(d) de Bruijn graph

Figure 1 De Bruijn graph construction and annotation. (a) Genome with one repeat of multiplicity
two (shown in red). (b) Reads sampled from the genome. (c) Each read of length L represented as
sequences of L− k + 1 k-mers. (d) De Bruijn graph is built by gluing k-mers that spell the same
sequence. The repeat copies are collapsed into a path, with first and last nodes of this path revealing
the repeat boundaries. (e) Condensed de Bruijn graph is constructed by collapsing non-branching
paths into single edges. (f) Annotated de Bruijn graph, with unique edges shown in green and a
repetitive edge shown in black.

For simplicity, we assume that the genome consists of one circular chromosome, thus every
node in DBG has at least one incoming and outgoing edge. Because some k-mers appear
multiple times in the genome, the corresponding DBG nodes might have multiple incoming or
outgoing edges. We call a node non-branching, if it has one incoming and one outgoing edge
(and branching otherwise). A maximal non-branching path is a path in which two terminal
nodes are branching, and all intermediate nodes are non-branching. Many assemblers simplify
the described de Bruijn graph by collapsing every maximal non-branching path into a single
edge, labelled with a sequence spelled by the original path. This transformation results in a
condensed de Bruijn graph (Figure 1e). Further in text, we assume that de Bruijn graphs
are condensed, meaning that edge sequences might be longer than k.

Double-stranded de Bruijn graphs. De novo assembly algorithms assume that reads might
originate from either forward or reverse DNA strand, therefore it is convenient to represent
both strands of the assembled genome in a double-stranded de Bruijn graph. For any edge
e that spells sequence S in such graph, there exists a single complementary edge e′ that
spells S′ (reverse-complement of S). Further, a double-stranded DBG is symmetric with
respect to the complement operation: for any path P = (e1, e2, e3, ..., el−1, el) of size l

that spells sequence S, there exists a complementary path P ′ = (e′l, e′l−1, ..., e′3, e′2, e′1) of
size l that spells S′.
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3 Methods

Annotated de Bruijn graph (ADBG). If all k-mers in a genome G were unique, DBG(G)
would consist of a single non-branching cyclic path, however repetitive k-mers complicate
the graph structure. If a k-mer originates from a genomic repeat (of length ≥ k), all copies
of this k-mer in the genome will be collapsed into a single node on DBG. Similarly, multiple
consecutive repetitive k-mers from the genome will be collapsed into a non-branching path
in the graph (or a single edge in case of the condensed DBG).

We define annotated de Bruijn graph (ADBG) as a de Bruijn graph with each edge labeled
as either unique or repetitive. If the complete genome sequence G is available, one can
classify each edge of ADBG(G) as either unique or repetitive by checking how many times
the corresponding sequence appears in G. If the genome sequence is unknown (as in de novo
assembly), edges could be classified based on read coverage, edge length distribution and
other criteria (we provide an implementation below).

Analyzing different ADBGs derived from the same genome. First, we consider a case
when two ADBGs AG1 and AG2 are constructed from the same genome G, but with different
values of k (k1 < k2). Assuming uniform read coverage and no sequencing errors, both AG1
and AG2 contain a path that spells G. However, AG1 might have more repetitive edges than
AG2 corresponding to repeats varying in length from k1 to k2. To reveal similarities between
two graphs, we focus on their unique edges, because mapping of repetitive edges could be
ambiguous. For each unique edge e1 in AG1, there is a unique edge e2 in AG2 that has a
substring that is identical to the string spelled by e1. We call this pair of edges e1, e2 syntenic.
In the case of condensed DBG, a unique edge e2 from AG2 might correspond to multiple
unique edges {e1

1, e1
2, ..., e1

k} from AG1 due to higher fragmentation level. In this case, we
split e2 into a path of syntenic edges (e2

1, e2
2, ..., e2

k) that spells the original sequence of e2.
This defines unique syntenic edge pairs between AG1 and AG2. (Figure 2a-b).

Synteny paths. We say that two unique edges u and v are compatible in an ADBG AG if
either (i) u and v are adjacent or (ii) AG contains a path between u and v such that all
intermediate edges in this path are repetitive. Intuitively, we allow arbitrary insertions of
repetitive sequences between the compatible unique edges, but prohibit unique sequence to be
rearranged. Given two ADBGs AG1 and AG2 with two pairs of syntenic edges U = {u1, u2}
and V = {v1, v2}, we call pairs U and V colinear if u1 and v1 are compatible in AG1, and
u2 and v2 are compatible in AG2. Synteny path is defined as a sequence of syntenic edge
pairs P = (E1, E2, ..., Ek), in which every two consecutive pairs (Ei−1, Ei) are colinear
(Figure 2c). A single syntenic edge pair is also considered a trivial synteny path.

Minimum synteny paths (MSP) decomposition. Each synteny path reveals local similar-
ities between edges of ADBGs. To compare two graphs globally, we formulate the following
decomposition problem. Given two ADBGs AG1 and AG2 with unique edges decomposed
into the set of syntenic edge pairs E = {(u1, u2), (v1, v2), (w1, w2), ...}, find the minimum
number of synteny paths that cover all edge pairs from E. Intuitively, we want to find a
minimal set of sequences that traverse all unique edges in AG1 and AG2 in the same order,
while allowing arbitrary repeat insertions.

If AG1 and AG2 are built from the same unichromosomal genome G, they share a synteny
path that spells G (with repeats removed) and solves MSP. However, because multiple MSP
solutions may exist, a single path that solves MSP might not correspond to the original
genome. Because each syntenic edge pair is considered a trivial synteny path, the maximum
number of synteny paths in MSP equals to the number of syntenic edge pairs.
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Figure 2 An example of synteny paths decomposition. (a) A genome with two repeats of lengths
|R1| > |R2| shown in black. Unique sequences between repeats is shown in color. Each repeat is
represented in two exact copies. (b) Two ADBGs built with different values of k. The left graph is
built with |R2| < k < |R1|, so that only R1 is collapsed in the graph. The graph on the right is built
for k < |R2| < |R1|, thus both R1 and R2 are collapsed in the graph. Colors denote edge pairs that
spell the same genome subsequences (syntenic egdes). (c) Syntenic edges are joined into a single
synteny path (shown in orange). The path traverses unique edges in the same order (a, b, c, d, e) and
reveals the similarity between two graphs.

In case of double-stranded ADBG, we require the resulting set of synteny paths to
be symmetric with respect to the complement operation: for any path P from the MSP
solution, P ′ also belongs to the solution. Further in text we assume the symmetric version of
the MSP decomposition.

MSP decomposition is NP-hard. Following we prove that the MSP decomposition is NP-
hard by reducing the Hamiltonian path problem in directed graphs to the MSP decomposition.
Let G be an arbitrary directed graph. We construct a new ADBG H from G, by translating
nodes from G into a unique edges in H, and edges from G into repetitive edges in H. For
each node u from G, we create two nodes in H: ut and uh (tail and head nodes, respectively),
which are connected with a unique (directed) edge (ut, uh). Next, for each edge (u, v) from
G, we connect the nodes uh and vt of H with a repetitive edge (uh, vt). Note that unique
edges in H always start at tail nodes and end at head nodes, while repetitive edges start
at head nodes and end at tail nodes (Figure 3a-b). Afterwards, we build a complementary
graph Hrev as a copy of H with all edges reversed. Each unique edge (ut

i, uh
i ) from H and

its complement (uh
i , ut

i) from Hrev are labelled as +i and −i, respectively. The described
transformation could be performed in O(|V |+ |E|) time. For simplicity, we first prove that
single-stranded MSP version is NP-hard using H, and then extend it to the double-stranded
case with Hds = H ∪ Hrev (Figure 3c). We also assume that indegree and outdegree of
nodes in H is unlimited – below we show how to extend our proof to ADBGs over the DNA
alphabet, in which indegree and outdegree of each node is at most four.

I Lemma 1. If there is a Hamiltonian path in the initial graph G, it corresponds to a path
in H that covers all unique edges.
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H
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Figure 3 Reducing the Hamiltonian path problem to the MSP problem. (a-b) Each node in the
initial graph G is translated to a unique edge (shown in pink) in the new graph H, while the edges
of G are translated into repetitive edges (shown in black) in H. (c) A complementary graph Hrev is
constructed by inverting the directions of all edges in H. A union of two graphs Hds = H ∪Hrev is
then used to solve the double-stranded MSP decomposition.

Proof. Let pG = (u1, u2, ..., un) be a Hamiltonian path in G. By construction, it corresponds
to the following path in H: pH = (ut

1, uh
1 , ut

2, uh
2 , ..., ut

n, uh
n). Since each node ui of G is

covered by pG, each unique edge (ut
i, uh

i ) of H is covered by pH . J

I Lemma 2. If there is a path in H that covers all unique edges, it corresponds to a
Hamiltonian path in G.

Proof. Let pH = (ut
1, uh

1 , ut
2, uh

2 , ..., ut
n, uh

n) be a path of length n in H that covers all
unique edges (ut

i, uh
i ). By construction, consecutive pairs of nodes (uh

i , ut
i+1) correspond to

repetitive edges in H. Thus, pH is an alternating sequence of unique and repetitive edges
in H, and is translated to the following node path of length n in G: pG = (u1, u2, ..., un),
which traverses all nodes in G. J

I Theorem 3. Minimum synteny paths decomposition is NP-hard.

Proof. Note that Lemmas 1-2 were formulated for paths in a single graph H. The lemmas
could be trivially extended to pairwise synteny paths by duplicating H into Hcopy and
defining the duplicated unique edges as syntenic. Likewise, we can trivially extend the
single-stranded version of the MSP decomposition to the double-stranded case by considering
Hds = H ∪Hrev, since H and Hrev are symmetric and independent.

Finally, to overcome the maximum node degree limit in ADBGs constructed over the
DNA alphabet, we apply the following transformation to H. Each node with indegree or
outdegree more than four is split into multiple nodes, and the original edges are distributed
among the new nodes so as to satisfy the degree limit. The new nodes are also connected via
additional repetitive edges in both directions. This forms supernodes, which are equivalent
to the original nodes in H with respect to the connectivity of the unique edges.

The extended versions of Lemmas 1-2 prove the theorem. J

A heuristic algorithm for the MSP decomposition. Since the exact solution for the MSP
decomposition is NP-hard, we propose an efficient heuristic algorithm. Given two double-
stranded ADBGs AG1 and AG2 with unique edges decomposed into 2n syntenic pairs
{±1, ±2, ..., ±n} (complementary edges have opposite sign), we construct a breakpoint
graph [24, 3] as described below.

For each syntenic pair +i, we create two nodes in the breakpoint graph: it and ih. A
complementary syntenic pair −i corresponds to the same pair of nodes, but in reversed
order: ih and it. Then, for each pair of colinear syntenic edges (u, v), we put an undirected
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edge between uh and vt (denoted as adjacency edge). Note that the complementary colinear
syntenic pair (−v, −u) will correspond to the same connection on the breakpoint graph, hence
providing a convenient way to represent two strands of a de Bruijn graph [16] (Figure 4a-b).

AG1

+1 +1

+4 +5

-5

-4

-5

+4+5

-4

-1 -1+2

+2

-2
-2

-3

+3
-3

+3

AG2

4t 5t 1t 2t 3t

4h 5h 1h 2h 3h

4t 5t 1t 2t 3t

4h 5h 1h 2h 3h

(a) Annotated de Bruijn graphs (double-stranded)

Breakpoint graph Synteny paths(b) (c)

Figure 4 A heuristic algorithm for minimum synteny paths problem. (a) Two double-stranded
ADBGs AG1 and AG2 with edges decomposed into synteny pairs. Repetitive edges shown in black,
and unique edges are colored into green and red, highlighting two synteny paths in the graphs.
Dashed edges represent complementary edges. (b) Breakpoint graph constructed from AG1 and
AG2. The nodes correspond to the ends of synteny blocks (head or tail) and edges represent the
corresponding colinear blocks. Solid edges show the selected maximum matching (dashed edge was
not selected). (c) Synteny paths are revealed by removing edges that are not part of the matching,
and adding trivial edges (shown in black).

The resulting breakpoint graph encodes all possible colinear syntenic pairs, therefore a
matching on this graph defines a set of synteny paths. To minimize the number of synteny
paths, we find a maximum matching on the breakpoint graph using the Blossom algorithm [7]
(Figure 4b). Given the maximum matching, we reconstruct synteny paths from the breakpoint
graph by adding edges that connect nodes {ih, it}, i = 1, ..., n (trivial edges). The resulting
set of paths on the breakpoint graph defines a set of synteny paths between AG1 and AG2
(Figure 4c). Note that because the complementary colinear connections are represented
by the same adjacency edges in the breakpoint graph, the constructed MSP solution will
automatically be symmetric.

In some cases, the reconstructed matching might not yield to the optimal MSP solution.
Consider an initial breakpoint graph with only trivial edges present. When a new adjacency
edge is added into the graph it either (i) connects two paths into one (reducing the number
of synteny paths by one), or (ii) transforms an existing path into a cycle (the number of
paths is not reduced). After the initial maximal matching is reconstructed, we modify it
using the following heuristic to minimize the number of edges of the second type and improve
the MSP solution. The algorithm finds pairs of cycles in the graph that could be merged by
exchanging two adjacency edges with two another adjacency edges (similarly to the 2-break
operation [3]). Such pairs of cycles are then merged in a greedy manner. In practice, the
described heuristic was not triggered for the most of the real datasets we describe below.
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Analyzing ADBGs of two closely related genomes. For the sake of simplicity, we previously
were assuming that de Bruijn graphs are built from the same genome using different values
of k. Here we extend the proposed algorithm to the comparison of two closely related
genomes. This comparison is more challenging as the genomes might contain small mutations
or structural variations. Comparative genomics studies typically decompose genomes into
sets of coarse synteny blocks to mask small-scale sequence polymorphisms [24, 8]. We apply
a similar principle to decompose the assembly graph edges into syntenic segments.

Given two ADBGs AG1 and AG2, we perform local pairwise alignment of all unique
edges from AG1 to all unique edges of AG2 using minimap2 [15]. We discard alignments that
are shorter than 50 Kbp to focus on large-scale structure. Afterwards, colinear alignments
(that appear in the same order and orientation in both genomes) are chained into synteny
blocks [11]. Similarly to the described above, if an edge contains multiple synteny blocks, we
split this edge into a path of new edges, each corresponding to a single synteny block. Since
each unique edge now contains one synteny block, this defines the syntenic edge pairs. It is
possible that some unique edges might not be aligned because the corresponding sequence is
missing in the other genome. Such edges are flagged as inserted, and are logically equivalent
to repetitive edges in the MSP decomposition. To be robust to possible chimeric connections
in the graphs, we also require nucleotide distance between the chained alignments as well as
the distance between the colinear synteny blocks to be less than 1 Mb.

Annotated repeat graphs. Recently, it has been shown how to apply repeat graphs for
long-read assembly [12]. Similarly to de Bruijn graphs, repeat graphs reveal the repeat
structure of the genome, which makes them suitable for the synteny paths analysis. Instead of
relying on exact k-mer matches, repeat graphs are built from local sequence alignments and
thus are more robust to high error rate of long reads. By design, repeat graphs can hide small
sequence polymorphisms, and are well suited for the analysis of large structural variations.

The described algorithms have been implemented into a tool named Asgan (Assembly
Graphs Analyzer). Asgan takes two annotated de Bruijn or repeat graphs as input (in
the GFA format), and outputs synteny paths visualized using Graphviz along with various
statistics. The Flye assembler [12] produces annotated repeat graphs as a part of its output.
For assemblers based on the overlap graph approach, such as Canu [13], we construct
repeat graphs by running the Flye graph construction algorithm on the assembled contigs
(that contain flanking repeat sequences). The implementation is freely available at: https:
//github.com/epolevikov/Asgan.

4 Results

Comparing Flye and Canu assembly graphs using bacterial datasets from the NCTC
collection. First, we illustrate the application of synteny paths for comparison of graphs
produced by different assembly methods. We focus on the assembly graphs reconstructed
from long-read sequencing data because they are typically less tangled and easier to visualize,
comparing to short Illumina assemblies. We used two assemblers, Canu [13] and Flye [12]
for the comparison, because they represent two different approaches for repeat resolution.
We did not attempt to evaluate the GTED and EMD implementations since they were not
designed for overlap / repeat graphs input (as discussed above).

We used Flye and Canu to assemble 21 bacterial genomes from the National Collection
of Type Cultures (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/).
When running Flye, we turned off the Trestle module (that resolves extra unbridged repeats)
to make Flye graphs potentially more tangled. Each dataset contains P5C3 PacBio reads

https://github.com/epolevikov/Asgan
https://github.com/epolevikov/Asgan
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
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Table 1 Comparison of the assembly graphs produced by Flye and Canu using 21 bacterial genomes
from the NCTC collection. Edges shorter than 50 Kb were ignored. Only one orientation (forward or
reverse) of each edge and connected components was counted. Fourteen concordant datasets (where
each connected component is covered by a single synteny path) are marked with the * symbol.

Flye Canu Flye & Canu

ID Unique edges Connected
components Unique edges Connected

components
Unique
edges

Connected
components

4450 7 1 8 6 12 8
6134 1 1 2 2 3 2
8333 8 1 3 1 8 2
8781 10 1 4 1 11 2
9657 6 2 6 6 9 7
11692 6 1 4 3 6 3
11962 4 1 3 1 5 2
5052* 7 2 5 2 7 2
7921* 3 1 1 1 4 1
9002* 1 1 1 1 2 1
9006* 7 1 2 1 7 1
9007* 2 1 2 1 2 1
9012* 4 1 2 1 4 1
9016* 4 1 1 1 4 1
9024* 4 2 4 2 4 2
9103* 3 3 3 3 3 3
9964* 4 1 1 1 4 1
10864* 6 1 1 1 7 1
11022* 4 1 1 1 4 1
12158* 3 2 2 2 3 2
12993* 2 2 2 2 2 2

with coverage varying from 70× to 271×. For each assembly, the number of unique edges
(longer than 50 Kb) ranged from 1 to 11 for Flye, and 1 to 8 for Canu. Since the assembly
graphs were double-stranded, we only counted one orientation (forward or reverse) of each
edge. Similarly, we counted only one orientation of each connected component, which might
represent a bacterial chromosome, a plasmid, or a mixture of them.

The results are shown in the Table 1. We call two assembly graphs concordant, if each
connected component in both graphs is covered by a single synteny path. Fourteen out of
21 datasets were concordant, which is expected for assemblies generated from the same set
of reads. In 8 out of 14 concordant datasets, Flye had more unique edges than Canu. This
suggests that in these 8 datasets Canu resolved more repeats than Flye (as expected due to
not using Trestle). Figure 5 shows examples of concordant and discordant assembly graphs.

In five out of seven datasets that were not concordant, Canu graphs, but not Flye graphs
contained “dead end” edges (disconnected from the rest of the graph from either beginning or
end). These missing connections might have contributed to the increased number of synteny
paths. In two remaining cases, both assemblers produced tangled graphs with complex
unresolved repeats.

Asgan took less than a minute of wall clock time and less than 100 Mb of RAM to process
each bacterial dataset. The running time was dominated by the minimap2 alignments (using
three threads).
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Figure 5 (Top left) Comparison of bacterial assembly graphs produced by Flye and Canu for the
NCTC9016 dataset. Synteny paths are shown in green. Complement paths are dashed. In the Canu
graph, two strands of one connected component are separated, while in the Flye graph both strands
are merged into one component through the unresolved repeats. Although the assembly produced
by Flye is more fragmented, a single synteny path (−2,−1,−4, +3) reveals the structural similarity.
(Top right) Synteny paths decomposition for the NCTC9024 dataset. Both assemblies resulted into
tangled repeat graphs with different number of unresolved repeats. Two synteny paths cover each
connected component in full: (+1, +3,−2) and (+4). (Bottom) Two synteny paths (green and blue)
in the NCTC11962 dataset reveal structural inconsistencies between the Flye and Canu graphs.

Comparing assembly graphs of 15 Drosophila genomes. Synteny paths decomposition
could also be applied to structurally compare assemblies of different genomes. We used Flye
to assemble 15 different Drosophila species from ONT data [20]. Read coverage was varying
from 23x to 44x, read length N50 was varying from 7 Kb to 28 Kb. Flye produced contiguous
assemblies with N50 over 1Mb for 14 out of 15 datasets (Table 2).

First, we applied synteny paths to compare each assembly against the high-quality
Drosophila melanogaster reference genome. Table 2 shows various assembly statistics, as
well as the number of synteny blocks and synteny paths for each genome. The most
distant species exhibit more than 10% nucleotide divergence, and pairwise alignments were
problematic to compute. Instead, we estimated the evolutionary divergence of each genome
from D. melanogaster as the number of matched 15-mers within the synteny blocks (reported
by minimap2). K-mer survival rate could be estimated from point mutation rate d as:
(1− d)k. For example, 0.87 k-mer match rate of the D. melanogaster assembly corresponds
to approximately 1% base difference, which is typical for the current ONT assemblies [12].
Synteny block coverage (total length of all synteny blocks divided by the assembly size) was
varying from 94% for the D. melanogaster assembly to low 2% for the D. virilis assembly,
which highlights the challenge of recovering synteny blocks between diverged genomes.

As expected, we observed an increase in the number of synteny blocks, as the distance
between an assembly and the reference increases, excluding the three most distant genome
which had reduced the number of blocks due to the difficulties in alignment (Table 2). On
average, the number of synteny paths was 18% smaller than the number of synteny blocks
within each genome (varying from 0% to 56%). Under the assumption that the breakpoint
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reuse rate is low, the length of large synteny blocks should be exponentially distributed [24].
Thus, N50 contiguity metric could be used as a complement to the number of synteny blocks
or paths (defined as the largest possible number L, such that all blocks/paths of length L or
longer cover at least 50% of total blocks/paths length). Table 2 shows that synteny paths
N50 correlates with the evolutionary distance between the compared genomes and also robust
to the decreased synteny blocks coverage.

Table 2 Drosophila assembly graphs statistics and comparison against the D. melanogaster
reference. Genomes are sorted according to the k-mer identity, computed as the number of matching
15-mers against the D. melanogaster reference. Synteny blocks coverage was calculated as the total
length of the blocks divided by the total assembly length. Only the sequences that are contained in
a component with at least one synteny block were considered.

Genome Asm.
size, Mb

Asm.
N50,
Mb

Blocks,
No.

Paths,
No.

Blocks
N50,
Mb

Paths
N50,
Mb

Blocks
cov.

K-mer
identity

D. melanogaster 137.0 11.7 78 39 11.7 14.8 94% 0.87
D. mauritiana 128.1 13.9 32 16 13.5 20.8 88% 0.50
D. simulans 124.8 21.3 16 13 20.9 20.9 90% 0.48
D. sechellia 139.6 20.0 30 27 12.1 12.1 81% 0.47
D. yakuba 146.1 16.5 77 72 2.4 2.4 77% 0.30
D. erecta 131.8 12.4 46 39 4.3 4.8 86% 0.30

D. eugracilis 159.5 2.1 159 103 1.3 2.0 69% 0.19
D. biarmipes 168.8 4.9 194 181 0.8 0.9 64% 0.15
D. ananassae 176.8 3.1 286 281 0.4 0.42 40% 0.09
D. bipectinata 179.2 0.8 317 266 0.28 0.39 35% 0.09

D. pseudoobscura 151.8 2.7 238 230 0.24 0.28 28% 0.07
D. persimilis 156.4 2.3 237 229 0.26 0.28 26% 0.07
D. willistoni 187.1 2.9 27 26 0.16 0.18 2% 0.06

D. mojavensis 162.5 7.6 19 19 0.08 0.08 1% 0.06
D. virilis 161.7 10.8 82 36 0.08 0.08 2% 0.06

To further illustrate that synteny paths reveal structural variations and are robust to contig
fragmentation, we computed synteny paths between all pairs of assemblies. On average, the
number of synteny paths in each dataset was 20.4% smaller than the number of synteny blocks.
We defined the similarity between two assemblies as S = 1−N50syn/N50max, where N50syn

corresponds to the synteny paths N50, and N50max is the maximum synteny paths N50 among
all assembly pairs. Given the similarity matrix, we used Neighbor-Joining algorithm [31]
to infer the phylogenetic tree of all assemblies (Figure 6). The reconstructed tree was
structurally consistent with the tree reconstructed based on genomic mutation distances [6].

The running time of Asgan was less than six minutes of wall clock time for each pair of
Drosophila assemblies. The typical RAM usage was varying from 2 Gb to 6 Gb.

5 Discussion

In this work, we presented Asgan – an algorithm for comparison and evaluation of assembly
graphs produced by various assembly approaches. We introduced the concept of synteny
paths, which are similar to the synteny blocks abstraction, but take advantage of assembly
graph structure. The result of the minimum synteny paths decomposition problem returns
the minimal set of synteny paths that traverse all unique edges in two graphs in the same
order. We proved that the exact solution of the MSP decomposition is NP-hard and provided
a heuristic algorithm that scales to eukaryotic assembly graphs.
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Figure 6 (Left) Heatmap showing synteny paths N50 between all pairs of assemblies. (Right).
Phylogenetic tree reconstructed based on normalized synteny paths N50 using the Neighbor-
Joining method.

We used synteny paths to compare the assembly graphs produced by Canu and Flye
from the 21 bacterial datasets. In 14 out of 21 cases, each graph component was covered
by a single synteny path, suggesting that both assemblers produced valid assembly graphs
with no missing connections. In the remaining seven cases, some graph components were
covered by multiple synteny paths, which is not expected for a unichromosomal genome.
This reveals possible missing or erroneous connections in the assembly graphs, where the
problematic regions are highlighted by synteny path breakpoints. Note that this type of
assembly error could not be captured by the alignment of contigs to a reference genome.
Thus, the proposed analysis could be useful for validation and debugging of assembly graphs
produced by different approaches.

Synteny analysis is a powerful technique for comparative genomics, and a number of tools
for synteny blocks decomposition has been developed [29, 28, 21, 8]. However, most of these
tools were designed for comparing complete genomes, and it was recently shown [17] that
their performance deteriorates when analysing fragmented assemblies. In contrast, synteny
paths are taking advantage of the assembly graph structure, and are more robust to the contig
fragmentation. We have demonstrated this by analysing the assemblies of 15 Drosophila
species. As expected, the structure of the reconstructed synteny paths was correlated with
mutation distances between the genomes. Using the synteny paths length distribution as a
similarity measure, we reconstructed the phylogenetic tree of the analysed species, which
was in agreement with the accepted Drosohila taxonomy.

It should be possible to extend the synteny paths approach to the comparison of multiple
assembly graphs, which could be useful for assembly reconciliation [37, 1]. Intuitively, if one
can prove that given assembly graphs share only one optimal MSP solution, this solution
will likely correspond to the correct genomic path. However, it is currently unknown how to
enumerate all optimal / suboptimal MSP solutions efficiently.
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