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Abstract
Semi-online models where decisions may be revoked in a limited way have been studied extensively
in the last years.

This is motivated by the fact that the pure online model is often too restrictive to model
real-world applications, where some changes might be allowed. A well-studied measure of the amount
of decisions that can be revoked is the migration factor β: When an object o of size s(o) arrives, the
decisions for objects of total size at most β · s(o) may be revoked. Usually β should be a constant.
This means that a small object only leads to small changes. This measure has been successfully
investigated for different, classical problems such as bin packing or makespan minimization. The
dual of makespan minimization – the Santa Claus or machine covering problem – has also been
studied, whereas the dual of bin packing – the bin covering problem – has not been looked at from
such a perspective.

In this work, we extensively study the bin covering problem with migration in different scenarios.
We develop algorithms both for the static case – where only insertions are allowed – and for the
dynamic case, where items may also depart. We also develop lower bounds for these scenarios
both for amortized migration and for worst-case migration showing that our algorithms have nearly
optimal migration factor and asymptotic competitive ratio (up to an arbitrary small ε). We therefore
resolve the competitiveness of the bin covering problem with migration.
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18:2 Online Bin Covering with Limited Migration

1 Introduction

Online algorithms aim to maintain a competitive solution without knowing future parts
of the input. The competitive ratio of such an algorithm (for a maximization problem) is
thus defined as the worst-case ratio between the value of an optimal solution produced by
an offline algorithm knowing the complete input and the value of the solution produced
by the online algorithm. Furthermore, once a decision is made by these algorithms, this
decision is fixed and irreversible. While a surprisingly large number of problems do have
such algorithms, the complete irreversibility requirement is often too strict, leading to high
competitive ratios. Furthermore, if the departure of objects from the instance is also allowed,
irreversible online algorithms are rarely able to be competitive at all. From a practical point
of view, this is quite alarming, as the departure of objects is part of many applications. We
call such a problem dynamic and the version with only insertions static.

A number of different scenarios to loosen the strict requirement of irreversibility – called
semi-online scenarios – have been developed over time in order to find algorithms that achieve
good competitive ratios for some of the scenarios with bounded reversibility. In the last few
years, the concept of the migration factor has been studied intensively [3, 10, 11, 12, 13, 16,
19, 21, 22]. Roughly speaking, a migration factor of β allows to reverse a total size of β · s(o)
decisions, where s(o) denotes the size of the newly arrived object o. For a packing problem,
this means that the algorithm is allowed to repack objects with a total size of β · s(o). This
notion of reversibility is very natural, as it guarantees that a small object can only lead to
small changes in the solution structure. Furthermore, algorithms with bounded migration
factor often show a very clear-cut tradeoff between their migration and the competitive ratio:
Many algorithms in this setting have a bounded migration factor which can be defined as a
function f(ε) (growing with 1

ε ) and a small competitive ratio g(ε) (growing with ε), where the
functions f and g can be defined for all ε > 0 [3, 10, 13, 16, 19, 21, 22]. Such algorithms are
called robust, as the amount of reversibility allowed only depends on the solution guarantee
that one wants to achieve. Such robust algorithms thus serve as evidence for the possibility
for sensitivity analysis in approximated settings.

Many different problems have been studied in online and semi-online scenarios, but two
problems that have been considered in nearly every scenario are classical scheduling problems:
The bin packing problem and the makespan minimization problem. Both of these problems
have been studied intensively in the migration model [3, 10, 12, 13, 19, 21, 22]. Both of
these problems also have corresponding dual maximization variants. The dual version of the
makespan minimization problem, often called the Santa Claus or machine covering problem,
has also been studied with migration [16, 22]. In contrast, the dual version of bin packing,
called bin covering has not yet been studied in this model. The aim of this paper is to remedy
this situation by taking a look at this classical scheduling problem in the migration model.

Formal Problem Statement. In the bin covering problem, a set of items Γ with sizes
s : Γ → (0, 1] is used to cover as many unit sized bins as possible, that is, Γ has to be
partitioned maximizing the number of partitions with summed up item size of at least one.
An instance of the problem will usually be denoted as I and is given as a sequence of entries
(i, s(i)) where i is the identifier of the item and s(i) is the size of the item. A solution to such
an instance I with items Γ is a partition P : Γ → N and a set B = P−1(k) with B 6= ∅ is
called a bin and we say that the items in B are packed into the k-th bin. A bin B is covered
if s(B) :=

∑
i∈B s(i) ≥ 1, where s(B) is called the load of B, and the goal is to maximize the

number of such covered bins. The optimal (maximum) number of covered bins of instance I
is denoted as opt(I).
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We also use the following notation throughout our work: The smallest size of an item in
bin B is defined as smin(B) := mini∈B{s(i)} and the largest size is defined as smax(B) :=
maxi∈B{s(i)}. If B is a set of bins, we also define its total size s(B) :=

∑
B∈B s(B), its

minimal size smin(B) := minB∈B smin(B), and its maximal size smax(B) := maxB∈B smax(B).
Furthermore, we define smin(∅) = +∞ and smax(∅) = 0.

We consider variants of static and dynamic online bin covering in which algorithms
are allowed to reassign a bounded amount of previously assigned items. In particular, an
algorithm has a migration factor of β, if the total size of items that it reassigns upon arrival
or departure of an item of size s is bounded by βs. Moreover, it has an amortized migration
factor of β, if at any time the total size of items that have been reassigned by the algorithm in
total is bounded by βS, where S is the total size of all items that arrived before. Intuitively,
an item of size s creates a migration potential of size βs upon arrival, and this potential may
be used by an algorithm to reassign items right away (non-amortized) or anytime from then
on (amortized). Note that if an algorithm has a non-amortized migration factor of β, it also
has an amortized migration factor of at most β. Thus, we study four variants in this work.

Offline bin covering is NP-hard and therefore there is little hope for a polynomial time
algorithm solving the problem to optimality, and in the online setting there is no algorithm
that can maintain an optimal solution regardless of its running time. We prove that this non-
existence of algorithms that maintain an optimal solution holds also for (static or dynamic)
algorithms with bounded amortized migration factor (and thus also for algorithms with
bounded non-amortized migration factor).

Hence, algorithms satisfying some performance guarantee are studied. In particular an
offline algorithm alg for a maximization problem has an asymptotic performance guarantee
of α ≥ 1, if opt(I) ≤ α · alg(I) + c, where opt(I) and alg(I) are the objective values of
an optimal solution or the one produced by alg respectively for some instance I, and c is an
input independent constant. If c = 0 holds, α is called absolute rather than asymptotic. An
online algorithm has a (asymptotic or absolute) competitive ratio of α, if after each arrival or
departure an (asymptotic or absolute) performance guarantee of α for the instance of the
present items holds. Note that we use the convention of competitive ratios larger than 1 for
maximization problems. For minimization problems similar definitions are used but they
use the required inequality alg(I) ≤ α · opt(I) + c. As we study asymptotic competitive
ratios in this paper, we will sometimes omit the word asymptotic (and we always use the
word absolute for absolute competitive ratios).

Our Results. We present competitive algorithms using both amortized migration and
non-amortized migration and develop nearly matching lower bounds (up to an arbitrarily
small additive term of ε). These bounds show the optimality of all of our algorithms for
both the static and the dynamic version of the bin covering problem. The main technical
contribution of our work is an algorithm with competitive ratio 3/2 + ε and non-amortized
migration of O(1/ε5 · log2(1/ε)) for the dynamic bin covering problem where items arrive
and depart. A major obstacle in the design of competitive algorithms for dynamic problems
is the impossibility of moving large items on the arrival or departure of small items. We
overcome this obstacle by developing a delicate technique to combine the packing of large
and small items. The main results of this work are summarized in the following table. Note
that the lower bound of 1 in the third row indicates that there is no online algorithm that
maintains an optimal solution with amortized migration factor O(1). All of our algorithms
run in polynomial time. Curiously, we achieve a polynomial migration factor, while most
known migration factors are exponential (e. g. for the makespan minimization problem [21])
with the exception of bin packing [3, 18].

ESA 2019



18:4 Online Bin Covering with Limited Migration

Amortization Departures Lower Bound Competitive Ratio Migration

é é 3/2 3/2 + ε O(1/ε)
é Ë 3/2 3/2 + ε O(1/ε5 · log2(1/ε))
Ë é 1 1 + ε O(1/ε)
Ë Ë 3/2 3/2 + ε O(1/ε5 · log2(1/ε))

Due to space constraints, we focus on the non-amortized case with only insertions
(described in the first row) and prove most of the corresponding results here. The remaining
results are shortly described and a full presentation of them is given in the appendix.

Related Results
Bin Covering. The offline bin covering problem was first studied by Assmann et al. [1]. It
was shown that a simple greedy strategy achieves approximation ratio 2. For the online
version of the bin covering problem, Csirik and Totik showed in [6] that this simple greedy
algorithm also works in the online setting and that the competitive ratio of 2 reached by
this algorithm is the best possible. Csirik, Johnson, and Kenyon presented an asymptotic
polynomial time approximation scheme (APTAS) with approximation ratio 1 + ε in [5]. This
was improved to an asymptotic fully polynomial time approximation scheme (AFPTAS)
by Jansen and Solis-Oba in [20]. Many different variants of this problem have also been
investigated: If a certain number of classes needs to be part of each bin [9, 15]; if items are
drawn probabilistically [14, 15]; if bins have different sizes [7, 23]; if the competitiveness
is not measured with regard to an optimal offline algorithm [4, 8]. More variants are e. g.
discussed in [17] and lower bounds for several variants are studied in [2].

Makespan Minimization and Santa Claus. The migration factor model was introduced by
Sanders, Sivadasan, and Skutella in [21]. The paper investigated several algorithms for the
makespan minimization problem and also presents an approximation scheme with absolute
competitive ratio 1 + ε and non-amortized migration factor 2O(1/ε log2(1/ε)). Skutella and
Verschae [22] studied a dynamic setting with amortized migration, where jobs may also
depart from the instance. They achieved the same absolute competitive ratio, but their
algorithm needs an amortized migration of 2O(1/ε log2(1/ε)). Their algorithm also works for
the Santa Claus (or machine covering) problem, for which they show that even in the static
setting no algorithm has absolute competitive ratio 1 + ε and a bounded migration factor.
If one aims for a polynomial migration factor for the Santa Claus problem, Gálvez, Soto,
and Verschae presented an online variant of the LPT (longest processing time) algorithm
achieving an absolute competitive ratio of 4/3 + ε with non-amortized migration factor
O(1/ε3 log(1/ε)) [16]. For the makespan minimization problem with preemption, Epstein
and Levin showed in [12] that an optimal algorithm with a non-amortized migration factor
of 1− 1/m is achievable and best possible.

Bin Packing. Epstein and Levin presented an approximation scheme with the same ratio
1 + ε and the same non-amortized migration factor 2O(1/ε log2(1/ε)) as in the makespan
minimization for the bin packing problem in [10]. This result was improved by Jansen and
Klein in [18], who drastically reduced the migration factor to O(1/ε4). Berndt, Jansen,
and Klein used a similar approach to also handle the dynamic bin packing problem, where
items may also depart over time [3]. They also showed that a non-amortized migration
factor of Ω(1/ε) is needed for this. A generalized model, where an item i has arbitrary
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movement costs ci – not necessarily linked to the size of an item – was studied by Feldkord
et al. [13]. They showed that for α ≈ 1.387 and every ε > 0, a competitive ratio of α+ ε is
achievable with migration O(1/ε2), but no algorithm with migration o(n) and ratio α− ε
exists. Strengthening the lower bound of [3], they also showed an amortized migration factor
of Ω(1/ε) is needed for the standard model, where movement costs ci equal items sizes si,
if one wants to achieve competitive ratio 1 + ε. A generalization of bin packing – packing
d-dimensional cubic items into unit size cubes – was studied by Epstein and Levin [11].

2 Non-amortized Migration in the Static Case

We begin our study by analyzing the static case with non-amortized migration. We will first
present a lower bound showing that no algorithm with constant non-amortized migration
factor can have a competitive ratio below 3/2. Then, we present an algorithm that achieves
for all ε > 0 a competitive ratio of 3/2 + ε with non-amortized migration factor O(1/ε).

We start with a simple lower bound on the asymptotic competitive ratio of all algorithms
with constant non-amortized migration factor. This lower bound can also be proved for
a different definition of the asymptotic competitive ratio α, where we require opt(I) ≤
α · alg(I) + o(opt(I)).

I Proposition 1. There is no algorithm for static online bin covering with a constant
non-amortized migration factor and an asymptotic competitive ratio smaller than 3/2.

Proof sketch. Fix a migration factor β and an integer N . First, insert 6N items of size
1− ε and then 6N items of size ε, where ε = min{(2β + 2)−1}. J

We will now give our algorithm alg for this scenario. In addition to the instance I,
a parameter ε > 0 is also given that regulates the asymptotic competitive ratio and the
used migration. The assumption ε ≤ 0.5 is justified as for ε ≥ 0.5, the result follows by the
online algorithm with an asymptotic competitive ratio of 2 presented in [6], or by using the
algorithm below with ε = 1

2 .

I Theorem 2. For each ε ∈ (0, 0.5], there is an algorithm alg for static online bin covering
with polynomial running time, an asymptotic competitive ratio of 1.5 + ε with additive
constant 3, and a non-amortized migration factor of O(1/ε).

The algorithm distinguishes between big, medium and small items. For each item, it calls
a corresponding insertion procedure based on this classification into three classes. An item
i is called big if s(i) ∈ (0.5, 1], medium if s(i) ∈ (ε, 0.5], and small otherwise. For a bin B,
let small(B) be the set of small items of B. We define medium(B) and big(B) accordingly
and also extend these notions to sets of bins B. Furthermore, we call a covered bin barely
covered, if removing the biggest item of the smallest class of items, i. e. big, medium or small,
contained in the bin, results in the bin not being covered anymore. For instance, consider a
bin containing four items with sizes 0.65, 0.3, ε and 0.25ε, for ε ≥ 0.04. This bin contains
items of all three classes if ε < 0.3. In this case, the biggest item of the smallest class has
size ε, and if ε = 0.1, the bin is indeed barely covered. However, if ε = 0.22, the bin is not
barely covered. If ε = 0.3, the bin only has items of two classes, and it is not barely covered,
since removing one item of size 0.3 results in a total size above 1. Note that showing that
removing an arbitrary item of the smallest class of items for a given covered bin results in an
uncovered bin is sufficient for showing that it is barely covered.

Let B be a barely covered bin. If B contains at most one big item, its load is bounded
from above by 1.5, and if B additionally contains no medium item the bound is reduced to
1 + ε. This holds due to the following. Since the big item has size below 1, the bin contains at
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18:6 Online Bin Covering with Limited Migration

least one medium or small item. If the bin has no small items, removing the largest medium
item reduces the load to below 1, and together with the medium item the load is below 1.5.
If it has a small item, a similar calculation shows that the load is below 1 + ε.

The last two types of bins are benign in the sense that they allow analysis using arguments
that are based on sizes. This is not the case for bins containing two big items. Such bins
could have a size arbitrarily close to 2 (even if they have no other items). Bins of this type
are needed for instances with many big items (for an example we refer to the construction
of the lower bound in Proposition 1). However, they cause problems not only because they
are wastefully packed, but also because they exclusively contain big items that should only
be moved if suitably large items arrive in order to bound migration. The basic idea of the
algorithm is to balance the number of bins containing two big items and the number of bins
containing one big item and no medium items. The two numbers will be roughly the same,
which is obtained using migration on arrivals of big and medium items. As described in the
previous paragraph, the guarantees of these bins that are based on loads cancel each other
out in the sense that an average load not exceeding 1.5 + ε/2 can be achieved. In order to
keep the number of bins with two big items in check, our algorithm will only produce very
few bin types and we will maintain several invariants. This structured approach allows us
also to bound the migration needed. We elaborate on the details of the algorithm.

Bin Types and Invariants

We distinguish different types of bins packed by the algorithm.
The bins are partitioned into bins containing two big items (and no other items) BB;

barely covered bins containing one big item and some medium items BM; barely covered
bins containing one big item and some small items BSC; bins that are not covered (partially
covered) and contain one big item and no medium items (but it could contain small items)
BSP; and bins that are at most barely covered (they are barely-covered, or not covered) and
exclusively contain small or medium items S or M respectively. Furthermore, let MC ⊆ M and
SC ⊆ S be the corresponding subsets of barely covered bins (while M \MC and S \ SC are
sets of bins that are not covered). We denote the (disjoint) union of BSC and BSP as BS. The
set of bins packed by the algorithm (covered or not covered) is denoted as Bins. All bins
covered by the algorithm are in fact barely covered, and no bin (covered or not) contains
items of all three classes. Among bins that are not covered, there are no bins containing a
big item and a non-empty set of medium items.

We will now introduce the invariants needed. The first invariant of the algorithm ensures
that this bin structure is maintained and the second invariant was already indicated above
(A ∪̇ B denotes the disjoint union of A and B):
I1 The solution has the proposed bin type structure, i. e. Bins = BB ∪̇ BM ∪̇ BS ∪̇ M ∪̇ S and

BS = BSC ∪̇ BSP.
I2 The sets BB and BS are balanced in size, i. e.

∣∣|BB| − |BS|
∣∣ ≤ 1.

Therefore we have alg(I) = |BB|+ |BM|+ |BSC|+ |MC|+ |SC|. Furthermore, we have several
invariants concerning the distribution of items to different bin types. The intuition behind
these invariants is always the same: We have to ensure that no other algorithm is able to use
the small and medium items to cover too many bins.
I3 The big items contained in BM are at least as big as the ones in BSC which in turn are at least

as big as the ones in BSP, and the smallest big items are placed in BB, i. e. s(i) ≥ s(i′) for
each (i) i ∈ big(BM) and i′ ∈ big(BS∪BB); each (ii) i ∈ big(BM∪BSC) and i′ ∈ big(BSP∪BB);
each (iii) i ∈ big(BM ∪ BS) and i′ ∈ big(BB). Informally, BB ≤ BSP ≤ BSC ≤ BM.
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I4 The items in M cannot be used to cover a bin together with a big item from BS or BB, i. e.
BS ∪ BB 6= ∅ =⇒ s(M) < 1− smax(BS ∪ BB).

I5 If a bin containing only small items exists, all bins in BS are covered, i. e. |S| > 0 =⇒
|BSP| = 0.

Lastly, there are some bin types with bins that are not covered, and we have to make sure
that they are not wastefully packed:
I6 If there are small items in BSP, they are all included in the bin containing the biggest

item in BSP.
I7 Both S and M each contain at most one bin that is not covered.
This concludes the definition of all invariants. It is easy to see that the invariants all hold in
the beginning when no item has arrived yet. Next, we describe the insertion procedures and
argue that the invariants are maintained.

Insertion Procedures

We start with the definition of two simple auxiliary procedures used in the following:
GreedyPush(i,B) is given an item i and a set of bins B. If all the bins contained in B are
covered, it creates a new bin containing item i, and otherwise it inserts i into the most
loaded bin that is not covered.
GreedyPull(B,B) is given bin B and a set of bins B. It successively removes a largest
non-big item from a least loaded bin from {B′ ∈ B | small(B′) ∪medium(B′) 6= ∅} and
inserts it into B. This is repeated until B is covered or B does not contain non-big items.

Consider one application of GreedyPull such that B already has a big item. The total size
of moved items is smaller than 1. Both procedures are used to insert and repack non-big
items. Note that calling GreedyPush for a small item and bin set BSP or S, or a medium item
and bin set M, the last two invariants I6 and I7 are maintained. For BSP, the most loaded bin
always contains the largest big item, and if there is at least one small item, such a bin is
unique. It could happen that as a result of inserting a small item into this bin of BSP the bin
is covered and moves to BSC.

For each insertion procedure, we will argue that the invariants are maintained and focus
on the critical ones, that is, in each context the invariants, that are not discussed explicitly,
trivially hold. For example, we do not discuss I1 in the following, because it will always be
easy to see that it is maintained.

Insertion of Small Items. If the arriving item i∗ is small, we call GreedyPush(i∗, BSP), if
BSP 6= ∅, and GreedyPush(i∗, S) otherwise. Insertion into a bin of BSP (the most loaded one)
may lead to a covered bin, in which case the bin becomes a bin of BSC (but remains in BS).
It is easy to verify, that all invariants, and I5, I6 and I7 in particular, are maintained by this.
As mentioned above, I3 holds, as the most loaded bin in BSP always contains the largest big
item. Furthermore, there is no migration in this case. The insertion of a medium or big item,
however, is more complicated.

Insertion of Big Items. In the case that a big item i∗ arrives, we have to be careful where
we place it exactly, because, on the one hand, the distributions of big and medium items,
that is, invariants I3 and I4, have to be maintained, and, on the other hand, we have to
balance out BS and BB (I2). We consider placing the item in BM, BS or BB in this order, i. e.
we first try to insert i∗ into BM, then into BS and finally into BB. Figure 1 illustrates this.
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Insertion into BM. We insert i∗ into BM, if either s(i∗) + s(M) ≥ 1 or s(i∗) > smin(big(BM)).
Note that the first condition implies s(i∗) ≥ smax(big(BB ∪ BS)), because of I4, and therefore
the insertion of i∗ into BM maintains I3 in both situations. The second condition implies
BM 6= ∅, because we set smin(∅) = +∞. In either of these cases, we create a new bin B∗ = {i∗}
and call GreedyPull(B∗, M), thereby ensuring that I4 is maintained if the new bin is covered.
If the first condition did hold, B∗ is covered afterwards and we do nothing else. Otherwise,
there is a bin B ∈ BM containing a big item i with s(i) = smin(big(BM)) < s(i∗), and we have
M = ∅. We remove i from B, yielding M = {B}, and call GreedyPull(B∗, M) a second time.
Afterwards, B∗ is covered, because s(i∗) > s(i). Furthermore, s(i) + s(M) < 1, because B was
barely covered before and the biggest medium item was removed from B due to the second
call of GreedyPull. This ensures I4, since by I3, item i is no smaller than any big item packed
in BS or BB. The item i is reinserted using a recursive call to the procedure of inserting a big
item. However, item i will not be considered for insertion into BM, because neither the first
nor second condition holds for this item, and the other insertion options have no recursive
calls for insertion into BM. It is easy to verify that the distribution of medium items in M (I7)
is maintained.

Insertion into BS. This step is possible only for item i∗ that satisfies s(i∗) + s(M) < 1 and
s(i∗) ≤ smin(big(BM)). Thus, BM will have the largest big items as required in Invariant I3
after the insertion is performed. In this case there is no recursive call for inserting a big item.

We insert i∗ into BS, if either s(i∗) > smin(big(BS)) or the following two conditions hold:
s(i∗) ≥ smax(big(BB)) and |BS| ≤ |BB|. Note that s(i∗) ≥ smax(big(BB)) trivially holds, if
BB = ∅. Inserting i∗ into BS under these conditions already ensures the correct distribution
of big items (I3) with respect to BS and BB, but we still have to be careful concerning the
distribution within the two subsets of BS. The procedure is divided into three simple steps.
As a first step, we create a new bin B∗ = {i∗} and call GreedyPull(B∗, S). No matter whether
B∗ is now covered or not, Invariant I5 is satisfied as either B∗ is covered and therefore
BSP = ∅ both before and after the call, or B∗ is not covered but now S = ∅ (it is possible
that both will hold). Note that all properties of the invariants are satisfied, if B∗ is already
covered. In particular, Invariant I3 holds within BS because BSP = ∅. In the remainder of the
second step of the insertion into BS algorithm we deal with the case that B∗ is not covered.

Let XB denote the set of bins B ∈ BS that include small items as well as a big item i with
s(i) < s(i∗). Recall that any bin of BSC has at least one small item, while at most one bin of
BSP has small items.

First, assume that XB = ∅ but B∗ is not covered. There are two cases. In the first case,
at least one item of S was moved. In this case before we started dealing with i∗, the set BSP
was empty, and now B∗ is the unique bin of BSP, and its big item is not larger than those of
BSC (if the last set is not empty) so the invariants I3 and I6 are maintained. In the second
case, S was empty, and B∗ is now a bin of BSP with only a big item. Since XB = ∅, adding
B∗ to BSP maintains the invariants I3 and I6. Thus, it is left to deal with the case XB 6= ∅.
In the remainder of the second step of the insertion into BS algorithm we deal with the case
that XB is not empty.

As B∗ is not yet covered, we now have S = ∅, and this might have been the case before
the call of GreedyPull, in particular if we had BSP 6= ∅. Due to the existence of a big item
that is smaller than i∗ in BS (such items exist in all bins of XB), we have to be careful in
order to maintain the correct distribution of big and small items inside of BS (I3 and I6).

In the second step, we construct a set of bins B̃ ⊆ BS from which small items are removed
in order to cover B∗. If BSP∩ XB 6= ∅, this set has exactly one bin (containing small items) by
Invariant I6. If such a bin exists, we denote it by B1. If BSC ∩ XB 6= ∅, the set BSC includes
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a bin that contains a big item i′ with smin(big(BSC)) = s(i′) < s(i∗) and we denote one
such bin (with a big item of minimum size in BSC) by B2. As XB 6= ∅, at least one of the
bins B1 or B2 must exist, but it can also be the case that both exist. Let B̃ be the set of
cardinality 1 or 2, which contains these bins. The next operation of the second step is to
call GreedyPull(B∗, B̃). It is easy to see that no matter whether B∗ is covered or not after
this operation, the invariants I3 and I6 hold. Specifically, if B2 does not exist, B∗ is not
necessarily covered, but I3 and I6 hold as all big items of BSC are not smaller than i∗ (as
every such bin has at least one small item). If B2 exists, then B∗ keeps receiving items
coming first from B1 and then possibly also from B2, until it is covered. As the total size of
small items of B2 is sufficient for covering B∗ since the big item of B2 is smaller than i∗, B∗
will be covered, so all big items of BSP are not larger than i∗.

Lastly, we describe the third step, which is performed for all cases above, after i∗ has
been inserted. The insertion of i∗ might have violated I2, that is, we now have |BS| = |BB|+ 2.
In this case, we perform the last step, namely, we select two bins B3, B4 ∈ BS with minimal
big items, merge the big items into a BB bin and remove and reinsert all small items from B3
and B4, using insertion of small items. This yields, |BS| = |BB| − 1 and I2 holds.

Insertion into BB. If i∗ was not inserted in any of the last steps, it is inserted into BB. In
this case, we know from the conditions above that s(i∗) ≤ smin(big(BS∪BM)), and additionally
that s(i∗) ≥ smax(big(BB)) implies |BS| = |BB|+ 1. We consider two cases.

If |BS| = |BB|+ 1 (and hence BS 6= ∅), we select a bin B ∈ BS with a big item of minimal
size. We insert i∗ into B to obtain a BB bin and remove and reinsert all small items from B.
This yields |BS| = |BB| − 1 and I2 holds.

If |BS| < |BB| + 1, we have s(i∗) < smax(big(BB)) (and hence BB 6= ∅). In this case, we
select a bin B ∈ BB with a big item i of maximal size, insert i∗ into B, and remove and
reinsert i. Because of its size and invariant I4, the item i will be inserted into BS. Note that
in both cases invariant I3 is maintained.

Insert into BM:

i∗

B∗ M

i

B

i∗

B∗ B
insert(i)

Insert into BS:

i∗

B∗ S

i

B2

i∗

B∗

i

B2

Figure 1 Insertion of a big item i∗. Big items are drawn in dark gray, medium items in light
gray, and small items in white.
Insert into BM: open a new bin B∗ for i∗; pull M into B∗; pull from bin B ∈ BM containing the smallest
big item i; remove and reinsert i.
Insert into BS: open a new bin B∗ for i∗; pull S into B∗; pull from bin B ∈ BS containing the smallest
big item i.

I Lemma 3. The overall size of items migrated due to the insertion of a big item i∗ is upper
bounded by 11.

Proof sketch. First, note that an insertion into BS can not trigger the reinsertion of a big
item. The insertion into BB can only trigger the reinsertion of a single big item into BS and
the insertion into BM can only trigger the reinsertion into BB or BS. Hence, each insertion of
a big item can trigger at most two other insertions in total and thus only move a total size
of 2 this way. The direct reassignments are bounded by 5. J
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Insertion of Medium Items. If a medium item i∗ arrives, GreedyPush(i∗, M) is called. Af-
terwards, the invariant I4 may be infringed and if this happens, we have BS ∪ BB 6= ∅ and
s(M) ≥ 1− smax(BS ∪ BB), and we continue as follows. We will now describe how to pack a
barely covered bin using the items from M and a largest big item from BS∪ BB to maintain I4.

If BS = ∅, I2 implies that BB contains a single bin B including two items i and i′ with
smax(BS ∪ BB) = s(i) ≥ s(i′). We remove i′ from B, and call GreedyPull(B, M) to create a BM
bin. Afterwards, s(M) and smax(BS ∪ BB) are at most as big as they were before i∗ arrived as
the first item we pulled from M is at least as big as i∗, and therefore I4 holds. Furthermore
BS = BB = ∅ and I2 still holds. Lastly, we reinsert the big item i′.

If, on the other hand, BS 6= ∅, the corresponding big item i with smax(BS ∪ BB) = s(i) is
contained in a bin B ∈ BS, because of I3. In this case, we remove the small items from B and
call GreedyPull(B, M). Afterwards I4 holds, but I2 may be infringed due to the removal of a
bin from BS, i. e. |BB| = |BS|+ 2. In this case, we remove the two biggest items i1 and i2 from
the bins B1, B2 ∈ BB and if B1 6= B2 merge the two bins. This yields |BB| = |BS|+ 1 and I2
holds. Afterwards, we reinsert the two items i1 and i2, which both will be inserted in BS due
to their sizes. No matter whether we had to rebalance |BB| and |BS| or not, we reinsert the
removed small items from B as a last step. Figure 2 contains an illustration of this process.

i∗

M

i

j0
j1
j2
j3

B

i1

i′1

B1

i2

i′2

B2

i

i∗

B M

i′1

i′2

insert(i1, i2, j0, . . . , j3)

Figure 2 Insertion of a medium item i∗. Big items are drawn in dark gray, medium items in light
gray, and small items in white.

I Lemma 4. The overall size of items migrated due to the insertion of a medium item i∗ is
upper bounded by 27.

Analysis. The migration bound stated in Theorem 2 or more precisely 27
ε is already implied

by Lemma 3 and Lemma 4, as a medium item has size above ε. It is easy to see that:

I Remark 5. The presented algorithm for static bin covering has polynomial running time.

Hence, the only thing left to show is the stated asymptotic competitive ratio:

I Lemma 6. The presented algorithm has an asymptotic competitive ratio of 1.5 + ε with
additive constant 3.

Proof. First, we consider the case BSP = ∅. In this case, the claim holds because the bins on
average have not too much excess size. More precisely, we obviously have opt(I) ≤ s(I),
and invariants I1 and I7 imply s(I) < 2|BB|+ (1 + ε)|BS|+ 1.5|BM|+ 1.5|MC|+ (1 + ε)|SC|+ 2.
Furthermore, we have 0.5|BB| ≤ 0.5(|BS|+1), due to Invariant I2, and |BS| = |BSC|, as BSP = ∅
holds in the case we are currently considering. Hence opt(I) < (1.5 + ε)(|BB|+ |BSC|+ |BM|+
|MC|+ |SC|) + 2.5 < (1.5 + ε) alg(I) + 3.

A similar argument holds, if BSP 6= ∅ but BB = ∅. In this case, we have |BSP| = |BS| = 1,
because of invariant I2; and S = ∅, because of Invariant I5. Hence opt(I) ≤ s(I) <

1.5|BM|+ 1.5|MC|+ 2 = 1.5 alg(I) + 2.
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Next, we consider the case BSP 6= ∅ and BB 6= ∅. Here, we have MC = ∅, because of
Invariant I4, and S = ∅, because of Invariant I5. Note that every bin of BSC ∪ BM has at
least one item that is not big, since big items have sizes below 1, and these bins are covered.
Let ξ = smax(BSP) be the size of a big item from BSP with maximal size. Then all items in
BB∪BSP have size at most ξ (I3) and ξ > 0.5. We construct a modified instance I∗ as follows:
1. The size of each big item with size below ξ is increased to ξ.
2. Every big item of size larger than ξ is split into a big item of size ξ and a medium or

small item, such that the total size of these two items is equal to the size of the original
item. Let X be the set of items with sizes of ξ, which we will call ξ-items in the instance
after these transformations (X includes also items whose sizes were ξ in I).

3. For each bin from BSC ∪ BM, select the largest item of I that is not big and call it special.
By increasing item sizes if necessary, change the sizes of all special items to 0.5. Let Y
be the set of special items (whose sizes are now all equal to 0.5). Let Z be the set of the
remaining items not belonging to X or Y (in the instance I∗ after the transformations,
so there may be items that did not exist in I resulting from splitting a big item).

The set of items in I∗ is just X ∪ Y ∪ Z. For instance I∗, any bin of BB contains only
two items of X. Any bin of BSP has an item of X, and one of these bins may also have small
items of Z, but it is not covered. Any bin of BSC∪ BM has one item of X, one item of Y , and
possibly items of Z. There may be one uncovered bin of M, containing items of Z.

Note that opt(I) ≤ opt(I∗), since any packing for I can be used as a packing for I∗ with at
least the same number of covered bins. Next, we investigate the relationship between opt(I∗)
and the packing of the algorithm for the original instance I. For some optimal solution for I∗
without overpacked bins (more than barely covered), let k2, k1 and k0 be the number of covered
bins with 2, 1 and 0 items from X ∪ Y , respectively. Then we have opt(I∗) = k2 + k1 + k0
and due to counting 2k2 + k1 = |X ∪ Y | = (2|BB|+ |BS|+ |BM|) + (|BM|+ |BSC|). Since each
item in X ∪ Y is upper bounded by ξ, we have: (1− ξ)k1 + k0 ≤ s(Z).

The total size of items (of Z only) packed into the bin of M is below 1− ξ since BSP has
a big item of size ξ in I and by Invariant I4, since every item of BS ∪ BB is smaller than
1− s(M). For BSP only one bin may contain items of Z by Invariant I6, and this bin has an
item of size ξ in I (and it is not covered), so it also has items of Z of total size below 1− ξ.
Consider a bin of BSC ∪ BM. The total size of items excluding the special item is the same for
I and I∗. Since such a bin is barely covered and for I it has items of one class except for the
big item (small or medium), removing the special item results in a load below 1. The total
size of items of I∗ in such a bin excluding the ξ-item and the special item is below 1− ξ.

Therefore, we find that s(Z) ≤ (1− ξ)(|BM|+ |BSC|+ 2). Hence:

2 opt(I) ≤ 2(k2 + k1 + k0) ≤ (2k2 + k1) + (k1 + (1− ξ)−1k0)
≤ (2|BB|+ |BS|+ |BM|+ |BM|+ |BSC|) + (|BM|+ |BSC|+ 2)
≤︸︷︷︸

Invariant I2

3|BB|+ 3|BM|+ 2|BSC|+ 3 ≤ 3 alg(I) + 3. J

Extending Our Results

Non-amortized Migration in the Dynamic Case. We are able to extend the result of the
static case and show that we can also handle the case of departing items.

I Theorem 7. For each ε < 1 with 1/ε ∈ Z, there is an algorithm alg for dynamic online
bin covering with polynomial running time, an asymptotic competitive ratio of 1.5 + ε with
additive constant O(log 1/ε), and a non-amortized migration factor of O((1/ε)5 log2(1/ε)).
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This is the most elaborate result of the paper and its proof can be found in the long
version of the paper (see appendix). In the following, we briefly discuss this the result and
give some intuition for the developed techniques.

The main challenge in the dynamic case arises from small items: Let N be some positive
integer. Consider the case that N2 items of size 1/N arrived and were placed into N bins,
covering each of them perfectly. Next, one item from each bin leaves yielding a solution
without any covered bin while the optimum is still N − 1. Hence, a migration strategy for
the small items is needed. Now, coming up with such a strategy to deal with the present
example is rather simple, since all the items are of the same size, but in principle small items
may differ in size by arbitrary factors. Still, the case with only small items can be dealt with
adapting a technique for online bin packing with migration [3]. The basic idea is to sort
the items non-increasingly and maintain a packing that corresponds to a partition of this
sequence into barely covered bins. If an item arrives, it is inserted into the correct bin and
excess items are pushed to the right, that is, to the neighboring bin containing the next items
in the ordering, and this process is repeated until the packing is restored. Correspondingly,
if an item departs, items are pulled in from the next bin to the right. In this process the
arrival or departure of a small item can only cause movements of items at most as big as the
original one. While this is useful, it does not suffice to bound migration: Too many bins have
to be repacked. In order to deal with this, the bins are partitioned into chains of appropriate
constant length with a buffer bin at the end, which is used to interrupt the migration process.
This technique can be applied for the bins S containing only small items, but for bins BS
containing big items as well problems arise. The main reason for this is that in order to
adapt our analysis, we need to cover the bins in BS containing larger big items with higher
priority and furthermore guarantee that there are no (or only few) bins contained in S if
there are bins containing big items that are not covered, i.e., BSP 6= ∅. It is not hard to see
that spreading one sequence of chains out over the bins of BS and S will not suffice.

To overcome these problems, we develop a novel technique: We partition the bins of
BS into few, that is, O(log 1/ε) many, groups. Each of the groups is in turn partitioned
into parallel chains of length O(1/ε). The groups are defined such that they comply with a
non-increasing ordering of both the big and the small items: the first group contains the
largest big and small items, the next group the remaining largest, and so on. A similar
ordering holds for each single parallel chain, but no such structure is maintained in between
the parallel chains of the same group. Now, whenever a buffer bin of a parallel chain becomes
overfilled, items are pushed directly into the next group. However, to maintain the described
structure, these have to be the smallest items of the group, and to guarantee this we introduce
some additional structure for the buffer bins in each group. While there may be a chain
reaction caused by such a push or pull, the migration can still be bounded, because there
are only few groups. We are able to guarantee that there is at most one group G containing
uncovered bins and that that all bins of BS are barely covered, if S 6= ∅. These are the
essential properties we need in order to adapt our approach to the dynamic case.

Amortized Migration. First of all, we can strengthen the lower bound of Theorem 1 if items
can depart and show that the same bound also holds for amortized migration in this case.

I Proposition 8. There is no algorithm for dynamic online bin covering with a constant
amortized migration factor β and an asymptotic competitive ratio smaller than 3/2.

If items never depart, we can use the amortization by repacking the completely instance
every once in a while with the help of an AFPTAS of Jansen and Solis-Oba [20]. We can also
show that we need to be contended with a non-optimal solution by making use of a highly
non-trivial construction.
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I Theorem 9. For every ε > 0, there is an algorithm for static bin covering with polynomial
running time, asymptotic competitive ratio 1 + ε, and amortized migration factor O(1/ε).
Additionally, there is no (possibly exponential time) algorithm for static online bin covering
that maintains an optimal solution with constant amortized migration factor β.
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