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Abstract
We present priority queues in the external memory model with block size B and main memory
size M that support on N elements, operation Update (a combination of operations Insert and
DecreaseKey) in O

(
1
B

logM
B

N
B

)
amortized I/Os and operations ExtractMin and Delete in

O
(
dMε

B
logM

B

N
B
e logM

B

N
B

)
amortized I/Os, for any real ε ∈ (0, 1), using O

(
N
B

logM
B

N
B

)
blocks.

Previous I/O-efficient priority queues either support these operations in O
(

1
B

log2
N
B

)
amortized

I/Os [Kumar and Schwabe, SPDP ’96] or support only operations Insert, Delete and Ex-
tractMin in optimal O

(
1
B

logM
B

N
B

)
amortized I/Os, however without supporting DecreaseKey

[Fadel et al., TCS ’99].
We also present buffered repository trees that support on a multi-set of N elements, op-

eration Insert in O
(

1
B

logM
B

N
B

)
I/Os and operation Extract on K extracted elements in

O
(

Mε logM
B

N
B

+ K/B
)
amortized I/Os, using O

(
N
B

)
blocks. Previous results achieve O

(
1
B

log2
N
B

)
I/Os and O

(
log2

N
B

+ K
B

)
I/Os, respectively [Buchsbaum et al., SODA ’00].

Our results imply improved O
(

E
B

logM
B

E
B

)
I/Os for single-source shortest paths, depth-first

search and breadth-first search algorithms on massive directed dense graphs (V, E) with E =
Ω
(
V 1+ε

)
, ε > 0 and V = Ω (M), which is equal to the I/O-optimal bound for sorting E values in

external memory.
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1 Introduction

Priority queues are fundamental data structures with numerous applications across computer
science, most prominently in the design of efficient graph algorithms. They support the
following operations on a set of N stored elements of the type (key, priority), where “key”
serves as an identifier and “priority” is a value from a total order:

Insert(element e): Insert element e to the priority queue.

Delete(key k): Remove all elements with key k from the priority queue.

element e = ExtractMin(): Remove and return the element e in the priority queue
with the smallest priority.

DecreaseKey(element (k, p)): Given that an element with key k and priority p′ is
stored in the priority queue, if priority p < p′, replace the element’s priority p′ with p.

Operation Update(element (k, p)) is a combination of operations Insert and DecreaseKey,
such that if the priority queue does not contain any element with key k, Insert((k, p)) is
executed, otherwise DecreaseKey((k, p)) is executed.

We study the problem of designing priority queues that support all these operations in
external memory. In the external memory model (also known as the I/O model) [1] the
amount of input data is assumed to be much larger than the main memory size M . Thus,
the data is stored in an external memory device (i.e. disk) that is divided into consecutive
blocks of size B elements. Time complexity is measured in terms of I/O operations (or I/Os),
namely block transfers from external to main memory and vice versa, while computation
in main memory is considered to be free. Space complexity is measured in the number of
blocks occupied by the input data in external memory. Algorithms and data structures in
this model are considered cache-aware, since they are paremeterized in terms of M and B.
In contrast, cache-oblivious algorithms and data structures [11] are oblivious to both these
values, which allows them to be efficient along all levels of a memory hierarchy. I/O-optimally
scanning and sorting x consecutive elements in an array are commonly denoted to take
Scan (x) = O

(
x
B

)
I/Os and Sort (x) = O

(
x
B logM

B

x
B

)
I/Os, respectively [1, 11].

Priority queues are a basic component in several fundamental graph algorithms, including:

The single-source shortest paths (SSSP) algorithm on directed graphs with positively
weighted edges, which computes the minimum edge-weight paths from a given source
node to all other nodes in the graph.

The depth-first search (DFS) and breadth-first search (BFS) algorithms on directed
unweighted graphs, which number all nodes of the graph according to a depth-first or a
breadth-first exploration traversal starting from a given source node, respectively.

Another necessary component for these algorithms are I/O-efficient buffered repository trees
(BRTs) [6, 2, 7]. They are used by external memory graph algorithms in order to confirm
that a given node has already been visited by the algorithm. This avoids expensive random-
access I/Os incurred by internal memory methods. In particular, BRTs support the following
operations on a stored multi-set of N (key, value) elements, where “key” serves as an identifier
and “value” is from a total order:

Insert(element e): Insert element e to the BRT.

element ei = Extract(key k): Remove and return all K elements ei (for i ∈ [1,K]) in
the BRT with key k.
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Table 1 Asymptotic amortized I/O-bounds of cache-aware and cache-oblivious priority queue
operations (respectively, above and below the horizontal line) on N elements and real ε ∈ (0, 1).
∗Expected I/Os.
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e logM
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logM
B

N 1
B

logM
B

N 1
B

logM
B

N −
[5, 7] 1

B
log2 N 1

B
log2 N 1

B
log2 N 1

B
log2 N

1.1 Previous work
Designing efficient external memory priority queues able to support operation DecreaseKey
(or at least operation Update) has been a long-standing open problem [14, 10, 16, 9, 7, 13].
I/O-efficient adaptations of the standard heap data structure [10] or other sorting-based
approaches [16], despite achieving optimal base-(M/B) logarithmic amortized I/O-complexity,
fail to support operation DecreaseKey. (Nevertheless, we use these priority queues as
subroutines in our structure.) Adaptations of the tournament tree data structure support all
operations, albeit in not so efficient base-2 logarithmic amortized I/Os [14, 7]. Indeed, in the
recent work of Eenberg, Larsen and Yu [9] it is shown that for a sequence of N operations,
any external-memory priority queue supporting DecreaseKey must spend max{Insert,
Delete, ExtractMin, DecreaseKey} = Ω

( 1
B loglogN B

)
amortized I/Os. Randomized

priority queues with matching complexity were recently presented by Jiang and Larsen [13].
The BRTs introduced by Buchsbaum et al. [6, Lemma 2.1] and their cache-oblivious

counterparts [2] support Insert in O
( 1
B log2 N

)
amortized I/Os and Extract on K

extracted elements in O (log2 N +K/B) amortized I/Os on a multi-set of N stored elements.

1.2 Our contributions
We present I/O-efficient priority queues that support on N stored elements, operation
Update in optimal O

(
1
B logM

B

N
B

)
amortized I/Os and operations ExtractMin and

Delete in O
(
dM

ε

B logM
B

N
B e logM

B

N
B

)
, for any real ε ∈ (0, 1). Our priority queues are the

first to support operation Update (and thus DecreaseKey) in a cache-aware setting in
optimal I/Os, while also I/O-optimally supporting operation Insert. These bounds improve
upon previous priority queues supporting DecreaseKey [14], albeit at the expense of
suboptimal I/O-efficiency for ExtractMin and Delete (respecting the lower bound of
[9] for M = Ω (B log2 N)). See Table 1 for a comparison with previous cache-aware and
cache-oblivious I/O-efficient priority queues.

We also present I/O-efficient BRTs that support on a multi-set of N elements, operation
Insert in O

(
1
B logM

B

N
B

)
amortized I/Os and operation Extract onK extracted elements in

O
(
Mε logM

B

N
B +K/B

)
amortized I/Os. Previous cache-aware bounds were O

( 1
B log2

N
B

)
and O

(
log2

N
B + K

B

)
, respectively [6]. Combined with our priority queues, for external

memory SSSP, DFS and BFS algorithms on graphs with V nodes and E directed edges,
we achieve O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os. This compares to previous

ESA 2019



60:4 I/O-Efficient Decrease-Key and Graph Algorithms Applications

O
((
V + E

B

)
log2 E

)
I/Os for directed SSSP [14, 15, 7] and O

((
V + E

B

)
log2

V
B + E

B logM
B

E
B

)
I/Os for directed DFS and BFS [6, 2]. Our bounds are I/O-optimal for dense graphs with
E = Ω

(
V 1+ε) and V = Ω (M).

1.3 Our approach

The main component of our priority queues is the x-treap, a recursive structure inspired by
similar cache-oblivious x-box [4] and cache-aware hashing data structures [12] that solve
the dynamic dictionary problem in external memory (respectively, under predecessor and
membership queries on a dynamic set of keys). To solve the priority queue problem, we
adapt this recursive scheme to also handle priorities, inspired by the cache-oblivious priority
queues of Brodal et al. [5] that support Update, yet in suboptimal I/Os. Here we discuss
informally these ideas, the rationale for combining them, and a back-of-the-envelope intuitive,
but incomplete analysis. It is hoped that this will provide the intuition to more easily follow
the full details in the sequel.

The idea behind the cache-oblivious priority queues of Brodal et al. [5] is simple. The
structure has a logarithmic number of levels, where level i has two arrays, or buffers, of size
roughly 2i. These buffers are called the front and rear buffers. They contain key-priority
pairs or a key-delete message (described later). The idea is that the front buffers are sorted,
with everything in the i-th front buffer having smaller priorities than everything in the
(i+ 1)-th front buffer. The items in the rear buffers do not have this rigorous ordering, but
instead must be larger than the items in the rear buffer at the smaller levels. When an
Update operation occurs, the key-priority pair gets placed in the first rear buffer; when a
ExtractMin operation occurs, the key-priority pair with the smallest priority is removed
from the first front buffer. Every time a level-i buffer gets too full or empty relative to its
target size of 2i, this is fixed by moving things up or down as needed, and moving things
from the rear to front buffer if that respects the ordering of items in the front buffer. This
resolution of problems is done efficiently using a scan of the affected and neighbouring levels.
Thus, looking in a simplified manner at the lifetime of an Updated item, it will be inserted
in the smallest rear buffer, be pushed down to larger rear buffers as they overflow, be moved
from a rear buffer to a front buffer once it has gone down to a level where its priority is
compatible with those in the corresponding front buffer, then moves up from the front buffer
to smaller front buffers as they underflow, and is finally removed from the smallest front
buffer during an ExtractMin. Thus, during its lifetime, it could be moved from one level
to another a total of O

(
log2

N
B

)
times at an I/O-cost of O

( 1
B

)
per level, for a total cost of

O
( 1
B log2

N
B

)
I/Os. One detail is that when an item moves from a rear to a front buffer, we

want to make sure that no items in larger levels with the same key and larger priority are
ever removed. This is done through special delete messages, which stay in the rear buffers
and percolate down, removing any key-priority pairs with the given key that they encounter
in their buffer or the corresponding front buffer.

The problem with this approach is that the base-2 logarithm seems unavoidable, with
the simple idea of a geometrically increasing buffer size. So here instead we use the more
complicated recursion introduced with the cache-oblivious x-box [4] structure and also used
in the cache-aware hashing data structures [12]. In its simplest form, used for a dictionary,
an x-box has three buffers: top, middle and bottom (respectively of approximate size x, x1.5

and x2), as well as
√
x recursive upper-level

√
x-boxes (ordered logically between the top and

middle buffers) and x recursive lower-level
√
x-boxes (ordered logically between the middle

and bottom buffers). Data in each buffer is sorted, and all keys in a given recursive buffer are
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smaller than all keys in subsequent recursive buffers in the same level (upper or lower). There
is no enforced order among keys in different buffers or in a recursive upper- or lower-level√
x-box. The key feature of this construction is that the top/middle/bottom buffers have

the same size as the neighbouring recursive buffers: the top buffer has size x, the top buffers
of the upper-level recursive

√
x-boxes have total size x; the middle buffer, sum of the bottom

buffers of the upper-level, and sum of the top buffers of the lower-level recursive structures
all have size x1.5; the sum of the bottom buffers of the lower-level recursive structures and
the bottom buffer both have size x2. Therefore, when for example a top buffer overflows, it
can be fixed by moving excess items to the top buffers of the top recursive substructures.
In a simplified view with only insertions, as buffers overflow, an item over its lifetime will
percolate from the top buffer to the upper-level substructures, to the middle buffer, to the
lower-level substructures, and to the bottom buffer, with each overflow handled only using
scans. Assuming a base case of sizeM , there will be O (logM N) times that an item will move
from one buffer to another and an equal number of times that an item will pass through a
base case. One major advantage of this recursive approach, is that an item will pass through
a small base case not just once at the structure’s top, as before, but many times.

We combine these ideas to form the x-treap, described at a high level as follows: Every-
where an x-box has a buffer, we replace it with front and rear buffers storing key-priority
pairs. The order used by x-box is imposed on the keys, not the priorities. The order imposed
on priorities in the Brodal et al. structure are carried over and imposed on the priorities in
different levels of the x-treap; this is aided by the fact that the buffers in the x-treap form a
DAG, thus the buffers where items with a given key can appear, form a natural total order.
Hence, this forms a treap-like arrangement where we use the keys for order in one dimension
and priorities for order in the other. We use a separate trivial base case structure which is
invoked at a size smaller than the memory size; it stores items in no particular order and
thus supports fast insertion of items when a neighbouring buffer adds them (O

( 1
B

)
), but

slow (O (M ε) amortized) removal of items with small priorities to fix the underflow of a front
buffer above. Thus, again considering the typical hypothetical lifetime of an item, it will be
inserted at the top in the rear buffer, percolate down O

(
logM

B

N
B

)
levels and base cases at a

cost of O
( 1
B

)
amortized each, move over to a front buffer, then percolate up O

(
logM

B

N
B

)
levels at a cost of O

(
Mε

B

)
amortized each. Thus, the total amortized cost for an item that is

eventually removed by an ExtractMin is O
(
Mε

B logM
B

N
B

)
.

However, we want the amortized cost for an item that is inserted via Update to be much
faster than this, i.e. O

(
1
B logM

B

N
B

)
. This requires additional observations and tricks. The

first is that, unlike Brodal et al., we do not use delete-type messages that percolate down to
eliminate items with larger than minimum priority in order to prevent their removal from
ExtractMin. Instead, we adopt a much simpler approach, and use a hash table to keep
track of all keys that have been removed by an ExtractMin, and when an ExtractMin
returns a key that has been seen before, it is discarded and ExtractMin is repeated.
The second trick is to simply ensure that each buffer has as most one item with each key
(and removes key-priority pairs other than the one with the minimum priority among those
with the same key in the buffer). This has the effect that if there are a total of u updates
performed on a key before it is removed by an ExtractMin, the total cost will involve up to
O
(
u logM

B

N
B

)
percolations down at a cost of O

( 1
B

)
, but only O

(
log2

M
B

N
B

)
percolations up

at a cost of O
(
Mε

B

)
amortized each. After the ExtractMin, some items may still remain in

the structure and will be discarded when removed by ExtractMin however, due to the no-
duplicates-per-level property there will only be O

(
logM

B
N
)
such items (called ghosts) which

ESA 2019



60:6 I/O-Efficient Decrease-Key and Graph Algorithms Applications

will incur a cost of at most O
(
dM

ε

B logM
B

N
B e
)
amortized each, where the ceiling accounts

for accessing the hash table. Thus the total amortized cost for the lifetime of the u Updates
and one ExtractMin involving a single key is O

(
u
B logM

B

N
B + dM

ε

B logM
B

N
B e logM

B

N
B

)
.

This cost can be apportioned in the amortized sense by having the ExtractMin cost
O
(
dM

ε

B logM
B

N
B e logM

B

N
B

)
amortized and the updates cost O

(
1
B logM

B

N
B

)
amortized each,

assuming that the treap finishes in an empty state and no item can be Updated after it has
been ExtractMin’d.

The details that implement these rough ideas consume the rest of the paper. One
complication that eludes the above discussion is that items don’t just percolate down and
then up; they could move up and down repeatedly and this can be handled through an
appropriate potential function. The various layers of complexity needed for the x-treap
recursion combined with the front/rear buffer idea, various types of over/underflows of buffers,
a special base case, having the middle and bottom buffers be of size x1+α

2 and x1+α for a
suitable parameter α rather than x1.5 and x2 as described above, and a duplicate-catching
hash table, result in a complex structure with an involved potential analysis, but that follows
naturally from the above high-level description.

2 x-Treap

Given real parameter α ∈ (0, 1] and key range [kmin, kmax) ⊆ R, an x-treap D stores a set
of at most 2 (D.x)1+α elements (∗, k, p) associated with a key k ∈ [D.kmin, D.kmax) and a
priority p from a totally ordered set. D represents a set D.rep of pairs (key, priority), such
that a particular key k contained in D is represented to have the smallest priority p of any
element with key k stored in D, unless an element with key k and a smaller priority has been
removed from the structure. In particular, we call the key and priority represented, when
the pair (key, priority) ∈ D.rep. A representative element contains a represented key and its
represented priority. More formally, we define:

D.rep :=
⋃

{k|(k,p)∈D}

{(
k,min

p
(k, p) ∈ D

)}
The proposed representation scheme works under the assumption that a key that is not
represented by the structure anymore, cannot become represented again. In other words, a
key returned by operation ExtractMin cannot be Inserted to the structure again.

The following interface operations are supported (See full version for their correctness):
Batched-Insert(D, e1, e2, . . . , eb): For constant c ∈

(
0, 1

3
]
, insert b ≤ c ·D.x elements

e1, e2, . . . , eb to D, given they are key-sorted with keys ei.k ∈ [D.kmin, D.kmax) , i ∈ [1, b].
Batched-Insert adds the pairs (ei.k, ei.p) to D.rep with key ei.k that is not contained
in D already. Batched-Insert decreases the priority of a represented key ei.k to ei.p, if
its represented priority is larger than ei.p before the operation. More formally, let Xnew

contain the inserted pairs (ei.k, ei.p) with ei.k /∈ D.rep. Let Xold contain the pairs in
D.rep with an inserted key, but with larger priority than the inserted one, and let Xdec

contain these inserted pairs. After Batched-Insert, a new x-treap D′ is created where
D′.rep = D.rep ∪Xnew ∪Xdec\Xold.
Batched-ExtractMin(D): For constant c ∈

(
0, 1

4
]
, remove and return the at most

c ·D.x elements (k, p) with the smallest priorities in D.
Batched-ExtractMin removes the pairs Xmin from D.rep with the at most c ·D.x
smallest priorities. Let Xkey contain the pairs in D with keys in Xmin. After Batched-
ExtractMin, a new x-treap D′ is created where D′.rep = D.rep\Xmin\Xkey.
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Figure 1 Overview of an x-treap D on “key” × “partial order” space. Black/white dots represent
elements in the front/rear buffers, respectively. All buffers are resolved. Buffer sizes and maximum
number of subtreaps in a level are shown on the right-hand side.

I Theorem 1. An x-treap D supports Batched-ExtractMin in O
(
M

α
1+α 1+α

B logM D.x
)

amortized I/Os per element and Batched-Insert in O
( 1+α
B logM D.x

)
amortized I/Os per

element, using O
(

(D.x)1+α

B logM D.x
)
blocks, for any real α ∈ (0, 1].

The structure is recursive. The base case is described separately in Subsection 2.3. The
base case structure is used when D.x ≤ c′M

1
1+α (for an appropriately chosen constant c′ > 0).

Thus assuming D.x > c′M
1

1+α , we define an x-treap to contain three buffers (which are arrays
that store elements) and many

√
x-treaps (called subtreaps). Specifically, the top, middle and

bottom buffers have sizes D.x, (D.x)1+α
2 and (D.x)1+α, respectively. Each buffer is divided

in the middle into a front and a rear buffer. The subtreaps are divided into the upper and
the lower level that contain at most 1

4 (D.x)
1
2 and 1

4 (D.x)
1+α

2 subtreaps, respectively. Let
|b| denote the size of a buffer b. We define the capacity of an x-treap D to be the maximum
number of elements it can contain, which is D.x+ 5

4 (D.x)1+α
2 + 5

4 (D.x)1+α
< 2 (D.x)1+α.

We define a partial order (�) using the terminology “above/below” among the buffers of
an x-treap and all of the buffers in recursive subtreaps or base case structures. In this order
we have top buffer � upper level recursive subtreaps � middle buffer � lower level recursive
subtreaps � bottom buffer.

Along with all buffers of D, we also store several additional pieces of bookkeeping
information: a counter with the total number of elements stored in D and an index indicating
which subtreap is stored in which space in memory.

2.1 Invariants
An x-treap D maintains the following invariants with respect to every one of its top/middle/
bottom buffers b. The invariants hold after the execution of each interface operation, but
may be violated during the execution. They allow changes to D that do not change D.rep.

1. The front and rear buffers of b store elements sorted by key and left-justified.
2. The front buffer’s elements’ priorities are smaller than the rear buffer’s elements’ priorities.

ESA 2019
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3. The front buffer’s elements’ priorities are smaller than all elements’ priorities in buffers
below b in D.

4. For a top or middle buffer b with key range [b.kmin, b.kmax), the r upper or lower subtreaps
Di, i ∈ {1, r}, respectively, have distinct key ranges [Di.kmin, Di.kmax), such that b.kmin =
D1.kmin < D1.kmax = D2.kmin < . . . < Dr.kmax = b.kmax.

5. If the middle or bottom buffer b is not empty, then at least one upper or lower subtreap
is not empty, respectively.

2.2 Auxiliary operations
The operations Batched-Insert and Batched-ExtractMin make use of the following
auxiliary operations (See full version for their implementation and correctness):

Operation Resolve(D, b). We say that a buffer b is resolved, when the front and rear
buffers contain elements with pairs (key,priority) (k, p), such that k is a represented key,
and when the front buffer contains those elements with smallest priorities in the buffer.
To resolve b, operation Resolve assigns to the elements with represented keys, the key’s
minimum priority stored in b. Also, it removes any elements with non-represented keys
from b. Resolve restores Invariant 2 in b, when it is temporarily violated by other
(interface or auxiliary) operations that call it.
Operation Initialize(D, e1, e2, . . . , eb) distributes to a new x-treap D, 1

4 (D.x) ≤ b ≤
1
2 (D.x)1+α elements ei, i ∈ [1, b] from a temporary array (divided in the middle into a
front and a rear array, respecting Invariants 1 and 2).
Operation Flush-Up(D) ensures that the front top buffer of D contains at least 1

4D.x

elements (unless all buffers of D contains less elements altogether, in which case Flush-
Up moves them all to the top front buffer of D). By Invariants 2 and 3, these are the
elements in D with smallest priority.
Operation Flush-Down(D) is called by Batched-Insert on an x-treapD whose bottom
buffer contains between 1

2 (D.x)1+α and (D.x)1+α elements. It moves to a new temporary
array, at least 1

6 (D.x)1+α and at most 2
3 (D.x)1+α elements from the bottom buffer of D.

It ensures that the largest priority elements are removed from D.
Operation Split(D) is called by Batched-Insert on an x-treap D that contains between
1
2 (D.x)1+α and (D.x)1+α elements. It moves to a new temporary (front and rear) array,
the at most 1

3 (D.x)1+α elements with largest keys in D.

2.3 Base case
The x-treap is a recursive structure. When the x-treap stores few enough elements so that it
can be stored in internal memory, we use simple arrays to support the interface operations
and operation Flush-Up.

I Lemma 2. An O
(
M

1
1+α

)
-treap fits in internal memory and supports operation Batched-

Insert in O (1/B) amortized I/Os per element and operations Batched-ExtractMin and
Flush-Up in Scan

(
M

α
1+α

)
amortized I/Os per element.

Proof. For a universal positive constant c0 and a constant parameter c′ < c
1
α+1
0 , we allocate

an array of size
(
c′
(
M

1
1+α

)) α
1+α ≤ c0M and divide it in the middle into a front and

a rear buffer that store elements and maintain only Invariants 1 and 2. To implement
Batched-Insert on at most c′

2 M
1

1+α elements, we simply add them to the rear buffer and
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update the counter. This costs O
(
M

1
1+α

B / 1
2M

1
1+α

)
= O

( 1
B

)
I/Os amortized per added

element, since we only scan the part of the rear buffer where the elements are being added
to. To implement Batched-ExtractMin on at most c′

2 M
1

1+α extracted elements, we
Resolve the array (as implemented for Theorem 1), remove and return all elements in the
front buffer, and update the counter. By Lemma 5 (proven later in Subsection 2.5) this
costs O

(
M
B /

1
2M

1
1+α

)
= O

(
M

α
1+α

B

)
I/Os amortized per extracted element. Flush-Up is

implemented like Batched-ExtractMin with the difference that the returned elements
are not removed from the array. J

2.4 Interface operations
(See full version for the correctness of the interface operations.)

2.4.1 Inserting elements to an x-treap
Interface operation Batched-Insert on an x-treap D is implemented by means of the
recursive subroutine Batched-Insert

(
D, e1, . . . , ec·|b|, b

)
that also takes as argument a top

or middle buffer b of D and inserts c · |b| elements e1, . . . , ec·|b| (contained in a temporary
array) inside and below b in D, for constant c ∈

(
0, 1

3
]
. For a bottom buffer b, a non-recursive

subroutine Batched-Insert(D, b) simply executes Step 1 below and discards the temporary
array. Batched-Insert

(
D, e1, . . . , ec·|b|, b

)
is implemented as following:

1. If D.x > c′M
1

1+α + c|b|:
1.1. 2-way merge into the temporary array, the elements in the temporary array and

in the rear buffer of b (by simultaneous scans in increasing key-order). Resolve b

considering the temporary array as the rear buffer of b.
1.2. Implicitly partition the front buffer of b and the temporary array by the key ranges

of the subtreaps immediately below b. Consider the subtreaps in increasing key-order
by reading the index of D. For every key range (associated with subtreap D′) that
contains at least 1

3 (D.x)
1
2 elements in either the front buffer of b or the temporary

array: While the key range in the front buffer of b and in the temporary array
contains at most 2

3 (D.x)
1
2 elements, do:

1.2.1. Find the
(

2
3 (D.x)

1
2
)
-th smallest priority within the key range in the front

buffer of b and in the temporary array (by an external memory order-statistics
algorithm [3]) and move the elements in the key range with larger priority to
a new auxiliary array (by simultaneous scans in increasing key-order).

1.2.2. If the counter of D′ plus the auxiliary array’s size does not exceed the capacity
of D′: Batched-Insert the elements in the auxiliary array to the top buffer
of D′. Discard the auxiliary array.

1.2.3. Else, if there are fewer than the maximum allowed number of subtreaps in the
level immediately below b: Split D′. Let k be the smallest key in the array
returned by Split (determined by a constant number of random accesses to
the leftmost elements in the returned front/rear array). Move the elements
in the auxiliary array with key smaller than k to a new temporary array (by
a scan), Batched-Insert these elements to D′ and discard this temporary
array. 2-way merge the remaining elements in the auxiliary array into the
returned rear array and discard the auxiliary array. Initialize a new subtreap
with the elements in the returned array. Discard the returned array.
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1.2.4. Else, Flush-Down all subtreaps immediately below b, which writes them to
many returned arrays. 2-way merge into a new temporary array, all elements
in b and in all returned arrays (by simultaneous scans in increasing key-
order). (When the scan on a subtreap’s temporary array is over, determine
the subtreap with the key-next elements in the level by reading the index
of D.) Batched-Insert the elements in the new temporary array to the
buffer b′ immediately below b. Discard the new temporary array and all
returned arrays.

1.3. Discard the temporary array and update the counter of D.
1.4. Else if D.x ≤ c′M

1
1+α + c|b|: Batched-Insert the elements to the base case

structure.

2.4.2 Extracting minimum-priority elements from an x-treap
Interface operation Batched-ExtractMin on an x-treap D is implemented as following:
1. If D.x > c′M

1
1+α :

1.1 If the front top buffer contains less than 1
4D.x elements: Flush-Up the top buffer.

1.2 Remove and return all the elements (ei.k, ei.p) from the front top buffer.
1.3 Update the counter of D.

2. Else if D.x ≤ c′M
1

1+α : Batched-ExtractMin the base case structure.

2.5 Analysis
(See full version for the proofs of Lemmata 3, 4, 5, 6 and 7, respectively.)

I Lemma 3. An x-treap D has O
(

logM
B
D.x

)
levels and occupies O

(
(D.x)1+α logM

B
D.x

)
blocks of space.

I Lemma 4. By the tall-cache assumption, scanning the buffers of an x-treap D and randomly
accessing O

(
(D.x)

1+α
2
)
subtreaps takes Scan

(
(D.x)1+α

)
I/Os, for any real α ∈ (0, 1].

A buffer bi at level i ≤ h = O
(

logM
B
D.x

)
with current number of elements in the front

and rear buffers bf , br, respectively, has potential Φ(bi) = Φf (bi) + Φr(bi), such that (for
constants ε := α

1+α and c0 ≥ 1):

Φf (bi) =


0, if 1

4 |bi| ≤ bf ≤
1
3 |bi|,

c0
BM

ε ·
(
|bi|
4 − bf

)
· (h− i) , if bf < 1

4 |bi|,
c0
B ·
(
bf − |bi|3

)
· (h− i) , if bf > 1

3 |bi|,

Φr(bi) =
{

2 c0
B ·
(
br − |bi|2

)
· (h− i) , if br > 0.

In general, a particular element will be added to a rear buffer and will be moved down the
levels of the structure over rear buffers by operation Flush-Down. A Resolve operation
will move the element from the rear to the front buffer, if it is a representative element.
From this point, it will be moved up the levels over front buffers by operation Flush-Up. If
it is not representative, it will either get discarded by Resolve(when there is an element
with the same key and with smaller priority in the same buffer) or it will keep going down
the structure. Since Resolve leaves only one element per key at the level it operates,
O
(

logM
B
D.x

)
elements with the same key (i.e. at most one per level) will remain in the

structure after the extraction of the representative element for this key.
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TheMε-factor accounts for the extra cost of Flush-Up and Batched-ExtractMin, the
(h− i)-factor allows for moving elements up or down a level by Flush-Up and Flush-Down
and the 2-factor accounts for moving elements from the rear to the front buffer.

I Lemma 5. Resolve on a buffer bi takes Scan (|bi|) +O (1) amortized I/Os.

I Lemma 6. Batched-Insert on an x-treap D takes O
(

1+α
B logM

B
D.x

)
amortized I/Os

per element, for any real α ∈ (0, 1].

I Lemma 7. Batched-ExtractMin on an x-treap D takes O
(
M

α
1+α 1+α

B logM
B
D.x

)
amortized I/Os per element, for any real α ∈ (0, 1].

3 Priority queues

Priority queues support operations Update and ExtractMin that are defined similarly to
Batched-Insert and Batched-ExtractMin, respectively, but on a single element.

To support these operations, we compose a priority queue out of its batched counterpart
in Theorem 1. The data structure on N elements consists of 1 + log1+α log2 N x-treaps of
doubly increasing size with parameter α being set the same in all of them. Specifically, for
i ∈ {0, log1+α log2 N}, the i-th x-treap Di has Di.x = 2(1+α)i . We store all keys returned by
ExtractMin in a hash table X [12, 8].

For i ∈ {0, log1+α log2 N − 1}, we define the top buffer of Di to be “below” the bottom
buffer of Di−1 and the bottom buffer of Di to be “above” the top buffer of Di+1. We define
the set of represented pairs (key, priority) rep =

⋃log1+α log2 N

i=0 Di.rep\{(k, p)|k ∈ X} and
call represented the keys and priorities in rep. We maintain the invariant that the maximum
represented priority in Di.rep is smaller than the smallest represented priority below it.

To implement Update on a pair (key,priority) ∈ rep, we Batched-Insert the corres-
ponding element to D0. D0 handles single-element batches, since for i = 0 ⇒ x = Θ (1).
When Di reaches capacity (i.e. contains (Di.x)1+α elements), we call Flush-Down on it,
Batched-Insert the elements in the returned temporary array to Di+1 and discard the
array. This process terminates at the first x-treap that can accomodate these elements
without reaching capacity.

To implement ExtractMin, we call Batched-ExtractMin to the first x-treap Di with
a positive counter, add the extracted elements to the (empty) bottom front buffer of Di−1
and repeat this process on Di−1, until D0 returns at least one element. If the returned key
does not belong to X, we insert it. Else, we discard the element and repeat ExtractMin.

To implement Delete of a key, we add the key to X.
(See full version for the proof of Theorem 8.)

I Theorem 8. There exist priority queues on N elements that support operation Update
in O

(
1
B logM

B

N
B

)
amortized I/Os per element, operations ExtractMin and Delete in

amortized O
(
dM

α
1+α

B logM
B

N
B e logM

B

N
B

)
I/Os per element, using O

(
N
B logM

B

N
B

)
blocks, for

any real α ∈ (0, 1].

4 Buffered repository trees

A buffered repository tree (BRT) [6, 2, 7] stores a multi-set of at most N elements, each
associated with a key in the range [1 . . . kmax]. It supports the operations Insert and
Extract that, respectively, insert a new element to the structure and remove and report all
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elements in the structure with a given key. To implement a BRT, we make use of the x-box
[4]. Given positive real α ≤ 1 and key range [kmin, kmax) ⊆ <, an x-box D stores a set of at
most 1

2 (D.x)1+α elements associated with a key k ∈ [D.kmin, D.kmax). An x-box supports
the following operations:

Batched-Insert(D, e1, e2, . . . , eb): For constant c ∈
(
0, 1

2
]
, insert b ≤ c ·D.x elements

e1, e2, . . . , eb to D, given they are key-sorted with keys ei.k ∈ [D.kmin, D.kmax) , i ∈ [1, b].
Search(D,κ): Return pointers to all elements in D with key κ, given they exist in D
and κ ∈ [D.kmin, D.kmax).

To implement operation Extract(D,κ) that extracts all elements with key κ from an
x-box D, we Search(D,κ) and remove from D all returned pointed elements.

The BRT on N elements consists of 1 + log1+α log2 N x-boxes of doubly increasing size
with parameter α being set the same in all of them. We obtain the stated bounds by
modifying the proof of the x-box [4, Theorem 5.1] to account for Lemmata 9 and 10.

I Lemma 9. For D.x = Ω
(
M

1
1+α

)
, an x-box supports operation Batched-Insert in

amortized O
(

1+α
B logM

B

D.x
B

)
I/Os and operation Extract on K extracted elements in

amortized O
(

(1 + α) logM
B

D.x
B + K

B

)
I/Os, using O

(
(D.x)1+α

B

)
blocks of space.

Proof. Regarding Batched-Insert on a cache-aware x-box, we obtain O
(

1+α
B logM

B

D.x
B

)
amortized I/Os by modifying the proof of Batched-Insert [4, Theorem 4.1] according the
proof of Lemma 6. Specifically, every element is charged O (1/B) amortized I/Os, instead of
O
(

1/B
1

1+α

)
, and the recursion stops when D.x = O

(
M

1
1+α

)
, instead of D.x = O

(
B

1
1+α

)
.

Regarding Searching for the first occurrence of a key in a cache-aware x-box, we obtain
O
(

logM
B

D.x
B

)
amortized I/Os by modifying the proof of Search [4, Lemma 4.1], such that

the recursion stops when D.x = O
(
M

1
1+α

)
, instead of D.x = O

(
B

1
1+α

)
. To Extract all

K occurrences of the searched key, we access them by scanning the x-box and by following
fractional cascading pointers, which incurs an extra O (K/B) I/Os. J

I Lemma 10. An O
(
M

1
1+α

)
-box fits in internal memory and supports operations Batched-

Insert in O (1/B) amortized I/Os per element and operation Extract on K extracted
elements in Scan

(
M

α
1+α

)
amortized I/Os per element.

Proof. We allocate an array of size O (M) and implement Batched-Insert by simply
appending the inserted element to the array and Extract by scanning the array and
removing and returning all occurrences of the searched key. J

I Theorem 11. There exist buffered priority trees on a multi-set of N elements and of K
extracted elements that support operations Insert and Extract in amortized O

(
1
B logM

B

N
B

)
and O

(
M

α
1+α

B logM
B

N
B + K

B

)
I/Os per element, using O

(
N
B

)
blocks, for any real α ∈ (0, 1].

5 Graph algorithms

I Theorem 12. Single source shortest paths on a directed graph with V nodes and E edges can
be computed in O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os, for any real α ∈ (0, 1].
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Proof. The algorithm of Vitter [15] (described in detail in [7, Lemma 4.1] for the cache-
oblivious model) makes use of a priority queue that supports the Update operation and
of a BRT on O (E) elements. Specifically, it makes V calls to ExtractMin and E calls to
Update on the priority queue and V calls to Extract and E calls to Insert on the BRT.
Hence, we obtain the stated bounds, by using Theorems 8 and 11. J

I Theorem 13. Depth-first search and breadth-first search numbers can be assigned to a
directed graph with V nodes and E edges in O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os, for any real α ∈ (0, 1].

Proof. The algorithm of Buchsbaum et al. [6] makes use of a priority queue and of a BRT
on O (E) elements. Specifically, it makes 2V calls to ExtractMin and E calls to Insert on
the priority queue and 2V calls to Extract and E calls to Insert on the BRT [6, Theorem
3.1]. Hence, we obtain the stated bounds, by using Theorems 8 and 11. J
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