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Abstract
We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted
directed graphs. Most importantly, we give a new deterministic incremental algorithm for the
problem that handles updates in Õ(mn4/3 logW/ε) total time (where the edge weights are from
[1,W ]) and explicitly maintains a (1 + ε)-approximate distance matrix. For a fixed ε > 0, this is the
first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose
update time is o(n2) regardless of the number of edges. Furthermore, we also show how to improve
the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et
al. STOC’02, Bernstein STOC’13] from Monte Carlo randomized to Las Vegas randomized without
increasing the running time bounds (with respect to the Õ(·) notation).

Our results are obtained by giving new algorithms for the problem of dynamically maintaining
hubs, that is a set of Õ(n/d) vertices which hit a shortest path between each pair of vertices, provided
it has hop-length Ω(d). We give new subquadratic deterministic and Las Vegas algorithms for
maintenance of hubs under either edge insertions or deletions.
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1 Introduction

The sampling scheme of Ullman and Yannakakis [27] is a fundamental tool in designing
dynamic algorithms for maintaining shortest path distances. Roughly speaking, the main
idea is that if each vertex of the graph is sampled independently with probability Ω(d lnn

n ),
then with high probability1 the set of the sampled vertices has the following property. If
the shortest path between some vertices u and v contains more than d edges, then this
shortest path contains a sampled vertex2. We call each set having this property a set of
hubs3 of that graph.

1 We say that a probabilistic statement holds with high (low) probability. abbreviated w.h.p., if it holds
with probability at least 1−n−β (at most n−β , resp.), where β is a constant that can be fixed arbitrarily.

2 For simplicity, in the introduction we assume that the shortest paths are unique.
3 Zwick [29] uses the name bridging set for an analogous concept. Some works also use the term hitting

set, but hitting set is a more general notion, which in our paper is used in multiple different contexts.
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The fact that one can easily obtain a set of hubs by random sampling is particularly
useful for dynamic graph algorithms, since, by tuning constants in the sampling probability,
one can assure that the set of hubs remains valid at each step (with high probability), while
the graph is undergoing edge insertions and deletions, assuming the total number of updates
is polynomial. This property has been successfully exploited to give a number of dynamic
graph algorithms, e.g. [2, 4, 5, 9, 12, 11, 13, 20, 21, 22]. At the same time, the sampling
approach also suffers from two drawbacks. First, it yields Monte Carlo algorithms, which
with some nonzero probability can return incorrect answers. Second, it relies on the oblivious
adversary assumption, that is, it requires that the updates to the graph are independent of
the randomness used for sampling hubs. This becomes a substantial issue for problems where
the answer to a query is not unique, e.g., for maintaining (1 + ε)-approximate distances or
maintaining the shortest paths themselves (i.e. not just their lengths). In a typical case,
the choice of the specific answer to a query depends on the randomness used for vertex
sampling, which in turn means that in each answer to a query the data structure is revealing
its randomness. Hence, if the following updates to the data structure depend on the specific
values returned by the previous queries, the oblivious adversary assumption is not met.

In this paper we attempt to address both these issues. We study the dynamic maintenance
of reliable hubs, that is we show how to maintain hubs using an algorithm that does not err,
even with small probability. In addition, in the incremental setting we give an algorithm
that maintains hubs deterministically. While the algorithms are relatively straightforward
for unweighted graphs, making them also work in the weighted setting is a major challenge,
which we manage to overcome. We then show how to take advantage of our results on reliable
hubs to obtain improved algorithms for the problem of maintaining all-pairs shortest paths in
directed graphs. In particular, we give a faster deterministic incremental algorithm and show
how to improve the state-of-the-art decremental algorithms from Monte Carlo to Las Vegas.

1.1 Our Contribution

We study the problem of maintaining reliable hub sets in the partially dynamic setting.
For the description, let us first assume the case when the graph is unweighted. Our first
observation is that one can deterministically maintain the set of hubs Hd under edge insertions
in Õ(nmd) total time. To that end, we observe that after an edge uw is inserted, we may
ensure the set of hubs Hd is valid by extending it with both u and w. This increases the size of
Hd, and hence we have to periodically discard all the hubs and recompute them from scratch.

The deterministic computation of hubs has been studied before. For unweighted digraphs,
King [19] showed how to compute a hub set Hd of size Õ

(
n
d

)
in Õ(n2) time. The algorithm,

given shortest path trees up to depth d from all vertices v ∈ V , computes a blocker-set [19]
of these trees. (A blocker-set S of a rooted tree is a set such that, for each path from the
root to a leaf of length d, that path contains a vertex of S distinct from the root.) Hence, if
we work on unweighted graphs, in order to keep the set Hd valid and relatively small, we
can maintain shortest path trees up to depth d from all vertices using the Even-Shiloach
algorithm [10] in O(nmd) total time, and recompute Hd using King’s algorithm every Õ(nd )
insertions. The total time needed for maintaining the hubs is therefore Õ(nmd).

Furthermore, we also show how to maintain reliable hubs in a decremental setting.
Suppose our goal is to compute a set of hubs that is guaranteed to be valid, which clearly
is not the case for the sampled hubs of [27]. We show that if shortest path trees up to
depth d are maintained using dynamic tree data structures [24, 25], one can recompute a
certainly-valid set Hd in Õ

(
n2

d

)
time using a Las Vegas algorithm. To this end observe
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that one can deterministically verify if a set B ⊆ V is a blocker-set of n shortest path trees
up to depth d in Õ(n · |B|) time. Therefore, a hub set Hd can be found by combining the
approaches of [27] and [19]: we may sample candidate hub sets of size Õ(nd ) until a blocker-set
of the trees is found. The number of trials is clearly constant with high probability.

We further extend this idea and show that the information whether B is a blocker-set of
a collection of n shortest path trees up to depth d can be maintained subject to the changes
to these trees with only polylogarithmic overhead. Consequently, we can detect when the
sampled hub set Hd (for any d) ceases to be a valid hub set in Õ(nmd) total time. The
algorithm may make one-sided error (i.e., say that Hd is no longer a valid hub set when it
is actually still good), but the probability of an error is low if we assume that the update
sequence does not depend on our random bits. Subsequently we show how to extend this idea
to improve the total update time to Õ(nm). Assume we are given a valid d-hub set Hd. We
prove that in order to verify whether H6d is a valid 6d-hub set, it suffices to check whether it
hits sufficiently long paths between the elements of Hd. We use this observation to maintain
a family of reliable hub sets H1, H6, . . . ,H6i , . . . ,H6k (where 6k ≤ n) under edge deletions
(or under edge insertions) in Õ(nm) total time. Using that, we immediately improve the
state-of-the-art decremental APSP algorithms of Baswana et al. [4] (for the exact unweighted
case) and Bernstein [5] (for the (1 + ε)-approximate case) from Monte Carlo to Las Vegas
(but still assuming an oblivious adversary) by only adding a polylogarithmic factor to the
total update time bound.

Generalization to weighted digraphs. Adapting the reliable hub sets maintenance (for
both described approaches: the incremental one and sample/verify) to weighted digraphs
turns out to be far from trivial. This is much different from the sampling approach of Ullman
and Yannakakis [27], which works regardless of whether the input graph is weighted or not.
The primary difficulty is maintaining all shortest paths consisting of up to d edges. While in
the unweighted case the length of a path is equal to the number of edges on this path, this is
no longer true in the weighted case.

To bypass this problem we first relax our definition of hubs. For each u, v ∈ V we require
that some (1+ ε)-approximate shortest u→ v path contains a hub on each subpath consisting
of at least d+ 1 edges. Next, we show that running King’s blocker-set algorithm on a set of
(1 + ε)-approximate shortest path trees up to depth4 d from all vertices of the graph yields a
hub set that hits paths approximating the true shortest paths within a factor of (1+ ε)Θ(logn).
Note that a collection of such trees can be maintained in Õ(nmd logW/ε) total time subject
to edge insertions, using Bernstein’s h-SSSP algorithm [5] with h = d.

The Θ(logn) exponent in the approximation ratio comes from the following difference
between the weighted and unweighted case. In a (1 + ε)-approximate shortest path tree up to
depth d, the length of a u→ v path is no more than (1 + ε)-times the length of the shortest
u → v path in G that uses at most d edges. However, the u → v path in the tree might
consist of any number of edges, in particular very few. Pessimistically, all these trees have
depth o(d) and their blocker-set is empty, as there is no path of hop-length Ω(d) that we need
to hit. Note that this is an inherent problem, as the fact that we can find a small blocker-set
in the unweighted case relies on the property that we want it to hit paths of Ω(d) edges.

4 In such a tree (see Definition 23), which is a subgraph of G, for all v ∈ V , the path from the source s to
v has length not exceeding (1 + ε) times the length of a shortest out of s→ v paths in G that use no
more than d edges; however the tree path itself can have arbitrary number of edges.
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Luckily, a deeper analysis shows that our algorithm can still approximate the length of a
s→ v path. Roughly speaking, we split the s→ v path P into two subpaths of d/2 edges. If
each of these two subpaths are approximated in the h-SSSP data structures by paths of less
than d/4 edges, we replace the P by the concatenation of the two approximate paths from
the h-SSSP data structures. This way, we get a path that can be longer by a factor of (1 + ε),
but whose hop-length is twice smaller. By repeating this process O(logn) times we obtain a
path of constant hop-length whose length is at most (1+ ε)Θ(logn) larger than the length of P .
The overall approximation ratio is reduced to (1 + ε) by scaling ε by a factor of Θ(logn).

Deterministic incremental all-pairs shortest paths. We now show how to apply our results
on reliable hubs to obtain an improved algorithm for incremental all-pairs shortest paths
problem in weighted digraphs. We give a deterministic incremental algorithm maintaining
all-pairs (1 + ε)-approximate distance estimates in Õ(mn4/3 logW/ε) total time.

Let us now give a brief overview of our algorithm in the unweighted case. First, we
maintain the set of hubs Hd under edge insertions as described above in Õ(nmd) total time.
Second, since the set Hd changes and each vertex of the graph may eventually end up in Hd,
we cannot afford maintaining shortest path trees from all the hubs (which is done in most
algorithms that use hubs). Instead, we use the folklore Õ(n3/ε) total time incremental (1+ ε)-
approximate APSP algorithm [5, 19] to compute distances between the hubs. Specifically, we
run it on a graph whose vertex set is Hd and whose edges represent shortest paths between
hubs of hop-lengths at most d. These shortest paths are taken from the shortest path trees
up to depth d from all v ∈ V that are required for the hub set maintenance. We reinitialize
the algorithm each time the set Hd is recomputed. This allows us to maintain approximate
pairwise distances between the hubs at all times in Õ

(
m(n/d)2

/ε
)
total time.

Finally, we show how to run a dynamic algorithm on top of a changing set of hubs by
adapting the shortcut edges technique of Bernstein [5]. Roughly speaking, the final estimates
are maintained using (1 + ε)-approximate shortest path trees [5] up to depth O(d) from all
vertices v on graph G augmented with shortcuts from v to Hd and from Hd to v. This poses
some technical difficulties as the set of shortcuts is undergoing both insertions (when a hub
is added) and deletions (when the entire set of hubs is recomputed from scratch). However,
one can note that in the incremental setting the shortcuts that no longer approximate the
distances between their endpoints do not break the approximation guarantee of our algorithm.
Eventually, we use shortcuts between all pairs of vertices of G but only some of them are
guaranteed (and sufficient) to be up to date at any time. The total time cost of maintaining
this component is Õ(nmd/ε). Setting d = Õ(n1/3) gives the best update time.

It is natural to wonder if this approach could be made to work in the decremental setting.
There are two major obstacles. First, it is unclear whether one can deterministically maintain
a valid set of hubs under deletions so that only O(1) vertices (in amortized sense) are added
to the hub set after each edge deletion. Note that in extreme cases, after a single edge
deletion the set of hubs may have to be extended with polynomially many new vertices.
Second, all algorithms using the above approach of introducing shortcuts from and to hubs
also maintain a decremental shortest path data structure on a graph consisting of the edges
of the original graph and shortcut edges representing distances between the hubs. If hubs
were to be added, the graph maintained by the data structure would undergo both insertions
(of shortcuts) and deletions (of edges of the original graph) which would make this a much
harder, fully dynamic problem. Some earlier works dealt with a similar issue by ignoring
some “inconvenient” edge insertions [14] or showing that the insertions are well-behaved [6].
However, these approaches crucially depended on the graph being undirected.
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1.2 Related Work
The dynamic graph problems on digraphs are considerably harder than their counterparts
on undirected graphs. An extreme example is the dynamic reachability problem, that is,
transitive closure on directed graphs, and connectivity on undirected graphs. While there
exist algorithms for undirected graphs with polylogarithmic query and update times [17, 28,
26, 16, 18], in the case of directed graphs the best known algorithm with polylogarithmic query
time has an update time of O(n2) [23, 7, 20]. In addition, a combinatorial algorithm with an
update time of O(n2−ε) is ruled out under Boolean matrix multiplication conjecture [1].

In 2003, in a breakthrough result Demetrescu and Italiano gave a fully dynamic, exact
and deterministic algorithm for APSP in weighted directed graphs [8]. The algorithm handles
updates in Õ(n2) amortized time and maintains the distance matrix explicitly. The bound
of O(n2) is a natural barrier as a single edge insertion or deletion may change up to Ω(n2)
entries in the distance matrix. For dynamic APSP in digraphs there exists faster algorithms
with polylogarithmic query time, all of which work in incremental or decremental setting:

Ausiello et al. [3] gave a deterministic incremental algorithm for exact distances in
unweighted digraphs that handles updates in Õ(n3) total time.
Baswana et al. [4] solved the same problem in the decremental setting with a Monte
Carlo algorithm with Õ(n3) total update time.
Bernstein [5] gave a Monte Carlo algorithm for (1 + ε)-approximate distances in weighted
graphs (with weights in [1,W ]) with Õ(nm logW/ε) total update time. The algorithm
works both in the incremental and decremental setting.
Finally, deterministic partially-dynamic (both incremental and decremental) algorithms
for APSP in directed graphs with Õ(n3 logW/ε) total update time can be obtained by
combining the results of [19] and [5].

The algorithms of Baswana et al. [4] and Bernstein [5] both use sampled hubs and thus
require the oblivious adversary assumption. We highlight that in the class of deterministic
algorithms, the best known results have total update time Õ(n3) [3, 5], even if we only
consider sparse unweighted graphs in incremental or decremental setting and allow (1 + ε)
approximation. In the incremental setting, for not very dense graphs, when m = O(n5/3−ε),
our algorithm improves this bound to Õ(mn4/3).

Organization of the paper. In Section 2 we fix notation, review some of the existing tools
that we use and give a formal definition of hubs. Section 3 describes the hub set maintenance
for incremental unweighted digraphs and our (1 + ε)-approximate incremental algorithm for
sparse graphs. In Section 4 we show a faster Las Vegas algorithm for computing reliable
hubs and further extend it to maintain reliable hub sets in the partially dynamic setting.
There we also sketch how to use it in order to to improve the state-of-the-art decremental
APSP algorithms from Monte Carlo to Las Vegas randomized. Finally, in Section 5 we sketch
how to adapt the hub set maintenance algorithms of Sections 3 and 4, so that they work on
weighted graphs. Due to limited space, many proofs and details can only be found in the full
version of this paper.

2 Preliminaries

In this paper we deal with directed graphs. We write uv ∈ E(G) when referring to edges of G
and use wG(uv) to denote the weight of uv. If G is unweighted, then wG(e) = 1 for each e ∈ E.
For weighted graphs, wG(e) can be any real number from the interval [1,W ]. For simplicity, in
this paper we assume that W is an input parameter given beforehand. If uv /∈ E, we assume

ESA 2019



65:6 Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

wG(uv) =∞. We define the union G∪H to be the graph (V (G)∪V (H), E(G)∪E(H)) with
weights wG∪H(uv) = min(wG(uv), wH(uv)) for each uv ∈ E(G ∪H). For an edge e = uv,
we write G+ e to denote (V (G) ∪ {u, v}, E(G) ∪ {e}). The reverse graph GR is defined as
(V (G), {xy : yx ∈ E(G)}) and wGR(xy) = wG(yx).

A sequence of edges P = e1 . . . ek, where k ≥ 1 and ei = uivi ∈ E(G), is called a u→ v

path in G if u = u1, vk = v and vi−1 = ui for each i = 2, . . . , k. We sometimes view a path
P in G as a subgraph of G with vertices {u1, . . . , uk, v} and edges {e1, . . . , ek} and write
P ⊆ G. The hop-length |P | is defined as |P | = k. The length of the path `(P ) is defined as
`(P ) =

∑k
i=1 wG(ei). If G is unweighted, then we clearly have |P | = `(P ). For convenience,

we sometimes consider a single edge uv a path of hop-length 1. It is also useful to define a
length-0 u→ u path to be the graph ({u}, ∅). If P1 is a u→ v path and P2 is a v → w path,
we denote by P1 · P2 (or simply P1P2) a path P1 ∪ P2 obtained by concatenating P1 with P2.

A digraph T is called an out-tree over V rooted in r if v ∈ V (T ) ⊆ V , |E(T )| = |V (T )|−1
and for all v ∈ V (T ) there is a unique path T [v] from r to v. The depth depT (v) of a vertex
v ∈ V (T ) is defined as |T [v]|. The depth of T is defined as maxv∈V (T ){depT (v)}. Each
non-root vertex of an out-tree has exactly one incoming edge. For v ∈ V (T ) \ {r} we call the
other endpoint of the incoming edge of v the parent v and write parT (v) when referring to it.

The distance δG(u, v) between the vertices u, v ∈ V (G) is the length of the shortest u→ v

path in G, or ∞, if no u→ v path exists in G. We define δkG(u, v) to be the length of the
shortest path from u to v among paths of at most k edges. Formally, δkG(u, v) = min{`(P ) :
u→ v = P ⊆ G and |P | ≤ k}. We sometimes omit the subscript G and write w(uv), δ(u, v),
δk(u, v) etc. instead of wG(u, v), δG(u, v), δkG(u, v), etc., respectively.

We say that a graph G is incremental, if it only undergoes edge insertions and edge
weight decreases. Similarly, we say that G is decremental if it undergoes only edge deletions
and edge weight increases. We say that G is partially dynamic if it is either incremental or
decremental. For a dynamic graph G we denote by n the maximum value of |V | and by m
the maximum value of |E| throughout the whole sequence of updates.

We denote by ∆ the total number of updates a dynamic graph G is subject to. If G is
unweighted, then clearly ∆ ≤ m and in fact we assume ∆ = m, which allows us to simplify
the analyses. For weighted digraphs, on the other hand, since the total number of weight
increases/decreases that an edge is subject to is unlimited, ∆ may be much larger than m.
As a result, it has to be taken into account when analyzing the efficiency of our algorithms.

We call a partially-dynamic (1 + ε)-approximate APSP problem on weighted graphs
restricted if the edge weights of G are of the form (1 + ε)i for i ∈ [0, dlog1+εW e] ∩ N at all
times and additionally each update is required to actually change the edge set or change the
weight of some existing edge. Consequently, observe that in the restricted problem we have
∆ ≤ m · (dlog1+εW e+ 2). In the following we concentrate on the restricted problem. This is
without much loss of generality – we provide a reduction in the full version of the paper.

Partially-dynamic single-source shortest path trees.

I Definition 1. Let G = (V,E) be an unweighted digraph and let s ∈ V . Let d > 0 be an
integer. We call an out-tree T ⊆ G rooted in s a shortest path tree from s up to depth d if:
(a) for any v ∈ V , v ∈ V (T ) iff δG(s, v) ≤ d, and (b) for any v ∈ V (T ), δT (s, v) = δG(s, v).

I Theorem 2 (Even-Shiloach tree [10, 15]). Let G = (V,E) be an unweighted graph subject
to partially dynamic edge updates. Let s ∈ V and let d ≥ 1 be an integer. Then, a shortest
path tree from s up to depth d can be explicitly maintained5 in O(md) total time.

5 By this we mean that the algorithm outputs all changes to the edge set of the maintained tree.
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I Theorem 3 (h-SSSP [5]). Let G = (V,E) be a weighted digraph. Let s ∈ V and let
h ≥ 1 be an integer. There exists a partially dynamic algorithm explicitly maintaining
(1 + ε)-approximate distance estimates δ′(s, v) satisfying δG(s, v) ≤ δ′(s, v) ≤ (1 + ε)δhG(s, v)
for all v ∈ V . The total update time of the algorithm O(mh logn log(nW )/ε+ ∆).

Hubs and how to compute them.

I Definition 4. Let G = (V,E) be a directed graph. Let B ⊆ V and let d > 0 be an integer.
We say that a path P in G is (B, d)-covered if it can be expressed as P = P1 . . . Pk, where
Pi = ui → vi, |Pi| ≤ d for each i = 1, . . . , k, and ui ∈ B for each i = 2, . . . , k.

We now define a blocker set, slightly modifying a definition by King [19].

I Definition 5. Let V be a vertex set and let d be a positive integer. Let B ⊆ V and let T
be a rooted tree over V of depth no more than d. We call B a (T, d)-blocker set if for each
v ∈ V (T ) such that depT (v) = d, either v or one of its ancestors in T belongs to B.

Let T be a collection of rooted trees over V of depth no more than d. We call B a
(T , d)-blocker set if B is a (T, d)-blocker set for each T ∈ T .

I Lemma 6. Let V be a vertex set of size n. Let d be a positive integer. Let T be a collection
of rooted trees over V of depth at most d. Then, a (T , d)-blocker set of size O

(
n
d logn

)
can

be computed deterministically in O(n · (|T |+ n) logn) time.

I Definition 7. Let G = (V,E) be a directed graph and let d > 0 be an integer. A set
Hd ⊆ V is called a d-hub set of G if for every u, v ∈ V such that δG(u, v) <∞, there exists
some shortest u→ v path that is (Hd, d)-covered.

I Lemma 8. Let G = (V,E) be a directed unweighted graph and let d > 0 be an integer.
Suppose we are given a collection T = {Tv : v ∈ V } of shortest path trees up to depth d from
all vertices of G. Let B be a (T , d)-blocker set. Then B is a 2d-hub set of G.

Deterministic incremental algorithm for dense graphs.

I Theorem 9 ([19]+[5]). There exist an incremental algorithm maintaining all-pairs (1 + ε)-
approximate distance estimates of a digraph in Õ(n3 log(W )/ε) +O(∆) total time.

As mentioned before, the above theorem basically follows by combining the partially dynamic
transitive closure algorithm of King [19] with Bernstein’s h-SSSP algorithm (Theorem 3)
for h = 2.

3 Deterministic Incremental Algorithm for Sparse Graphs

In this section we present our deterministic incremental algorithm with Õ(mn4/3/ε) total
update time. We first observe that whenever an edge xy is added, the set of hubs may be
“fixed” by extending it with both x and y.

I Lemma 10. Let G = (V,E) be a directed unweighted graph. Let Hd be a d-hub set of G.
Let x, y ∈ V be such that xy /∈ E. Then H ′d = Hd ∪ {x, y} is a d-hub set of G′ = G+ xy.

Let d > 1 be an even integer and let ε1, 0 < ε1 < ε be a real number, both to be set later.
Our data structure consists of several components. Each subsequent component builds upon
the previously defined components only.

ESA 2019
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Exact shortest paths between nearby vertices. The data structure maintains two collec-
tions T from = {T from

v : v ∈ V } and T to = {T to
v : v ∈ V } of shortest path trees up to depth d

2
in G and GR, resp. By Theorem 2, each tree of T from ∪ T to can be maintained under edge
insertions in O(md) total time. The total time spent in this component is hence O(nmd).

The hubs. A d-hub set Hd of both G and GR such that |Hd| = O
(
n
d logn

)
is maintained

at all times, as follows. Initially, Hd is computed in O(n2 logn) time using Lemma 6 and the
trees of T from ∪T to (see Lemma 8). Next, the data structure operates in phases. Each phase
spans f = Θ(nd logn) consecutive edge insertions. When an edge xy is inserted, its endpoints
are inserted into Hd. By Lemma 10, this guarantees that Hd remains a d-hub set of both G
and GR after the edge insertion. Once f edges are inserted in the current phase, the phase
ends and the hub set Hd is recomputed from scratch, again using Lemma 6. Observe that
the size of |Hd| may at most triple within each phase.

The total time spent on maintaining the set Hd is clearly O
(
m
f · n

2 logn
)

= O(nmd).

Approximate shortest paths between the hubs. In each phase, we maintain a weighted
graph A = (Hd, EA), where EA = {uv : u, v ∈ Hd, δGR(u, v) ≤ d} and wA(uv) = δT to

u
(u, v) =

δGR(u, v) ≤ d. Observe that during each phase, the graph A is in fact incremental. We
can thus maintain (1 + ε1)-approximate distance estimates δ′A(u, v) for all u, v ∈ Hd in
Õ(|Hd|3/ε1) = Õ

((
n
d

)3
/ε1

)
total time per phase, using a data structure DA of Theorem 9.6

Summing over all phases, the total time spent on maintaining the (1 + ε′)-approximate
distances estimates of the graph A is Õ

(
m
(
n
d

)2
/ε1

)
.

I Lemma 11. For any u, v ∈ Hd, δGR(u, v) = δA(u, v).

By the above lemma, for each u, v ∈ Hd we actually have δ′A(u, v) ≤ (1 + ε1)δGR(u, v).

Shortcuts to hubs. For each u ∈ V , let Su be a graph on V with exactly n edges
{uv : v ∈ V } satisfying wSu

(u, v) ≥ δGR(u, v) for all v ∈ V , and additionally wSu
(u, v) ≤

(1 + ε1)δGR(u, v) if u, v both currently belong to Hd. The edges between vertices of Hd are
the only ones that our algorithm needs to compute approximate distances. For other edges
we only need to make sure they will not cause the algorithm to underestimate the distances.

Observe that the graphs Su can be maintained using the previously defined components
as follows. First, they are initialized so that their edges are all infinite-weight. Whenever the
data structure DA changes (or initializes) some of its estimates δ′A(u, v) ≤ (1 + ε1)δGR(u, v),
we perform wSu(u, v) := min(wSu(u, v), δ′A(u, v)). This guarantees that the invariants posed
on Su are always satisfied and Su is incremental. The total number of updates to all graphs
Su is equal to the number of estimate updates made by DA and thus can be neglected.

For u ∈ V , we set up a h-SSSP data structure Du of Theorem 3 for the graph GR ∪ Su
with source vertex u and h = d+1. Hence, Du maintains distance estimates δ′(u, v) such that
δ′(u, v) ≤ (1 + ε′)δd+1

GR∪Su
(u, v). As the graph GR ∪ Su is incremental and has O(m) edges,

the total time that Du needs to operate is Õ(md/ε1) +O(∆u), where ∆u is the total number
of updates to GR ∪ Su. Summing the update times for all data structures Du, we obtain

6 Technically speaking, the total update time of the data structure of Theorem 9 is Õ(n3/ε′) + O(∆).
However, all updates to DA arise when some previous component updates its explicitly maintained
estimates, so the ∆ term is asymptotically no more than the total update time of the previously defined
components and can be charged to those. In the following, we omit ∆ terms like this without warnings.
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Õ(nmd/ε1) +O(
∑
v∈V ∆u) total time. Note that

∑
u∈V ∆u equals nm plus the number of

updates to the graphs Su, which can be charged to the operating cost of data structure DA,
as argued before. We conclude that the total update time of all Du is Õ(nmd/ε1).

Observe that a shortest u→ v path in GR, where u ∈ Hd and v ∈ V is approximated by
a path in GR ∪Su consisting of at most d+ 1 edges. The first edge belongs to Su and “jumps”
to some hub. The latter (at most d) edges belong to GR. This is formalized as follows.

I Lemma 12. Let u ∈ Hd and v ∈ V . Then δd+1
GR∪Su

(u, v) ≤ (1 + ε1)δGR(u, v).

By the above lemma, we conclude that for u ∈ Hd, v ∈ V , the estimate δ′(u, v) produced by
the data structure Dv satisfies δ′(u, v) ≤ (1 + ε1)δd+1

GR∪Su
(u, v) ≤ (1 + ε1)2δGR(u, v).

All-pairs approximate shortest paths. We maintain another set of shortcut graphs Ru, for
u ∈ V . Again Ru has exactly n edges {uv : v ∈ V } whose weights satisfy wRu

(uv) ≥ δG(u, v)
for all v and wRu

(uv) ≤ (1 + ε1)2δG(u, v) if v ∈ Hd. Each graph Ru is maintained using the
previously defined data structures Dv. Initially all weights of Ru are infinite. Whenever
some Dv changes the estimate δ′(v, u), we set wRu

(uv) := min(wRu
(uv), δ′(v, u)). Since for

v ∈ Hd we have δ′(v, u) ≤ (1 + ε1)2δGR(v, u), equivalently, δ′(v, u) ≤ (1 + ε1)2δG(u, v) and
we obtain wRu

(uv) ≤ (1 + ε1)2δG(u, v). Therefore, the graphs Ru are all incremental and the
total number of changes they are subject to is no more than the total number of estimate
changes made by the data structures Dv, v ∈ V . Thus, we may neglect the cost of actually
performing these changes.

Finally, for each u ∈ V we set up a h-SSSP data structure D′u of Theorem 3 on graph
G∪Ru with source u and h = d+ 1, maintaining (1 + ε1)-approximate estimates of the values
δd+1
G∪Ru

(u, ·). Similarly as was the case for the data structures Du of the previous component,
as the graphs G ∪ Ru are incremental, the total operating time of the h-SSSP instances
running on the graphs G ∪Ru is Õ(nmd/ε1).

I Lemma 13. Let u, v ∈ V . Then δd+1
G∪Ru

(u, v) ≤ (1 + ε1)2δG(u, v).

By the above lemma, the the distance estimates δ′′(u, v) maintained by the data structure
D′u, approximate the corresponding distances δG(u, v) within a factor of (1 + ε1)3.

I Theorem 14. Let G be a directed unweighted graph. There exists a deterministic incre-
mental algorithm maintaining (1 + ε)-approximate distance estimates between all pairs of
vertices of G in Õ(mn4/3/ε) total time.

4 Partially-Dynamic Verification of a Sampled Hub Set

In this section we show how to maintain the information whether a sampled set remains a
hub set of an unweighted digraph G subject to partially dynamic updates. For simplicity,
assume that G is decremental (the incremental case, being somewhat easier, can be handled
similarly). We start by showing how a reliable hub set can be found if we are given shortest
path trees up to depth d from all vertices of G, stored in dynamic tree data structures.

I Lemma 15 ([27, 29]). Let V be a vertex set of size n and let d > 0 be an integer. Let T
be a collection of rooted trees of depth no more than d, whose vertex sets are subsets of V .

Let c > 1 be some constant. Let B be a random subset of V of size min
(
dcnd lnne, n

)
.

Then, B is a (T , d)-blocker set with probability at least max(0, 1− |T |/nc−1).

The following data structure is an easy application of the data structure of Tarjan [25].
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I Lemma 16. Let V be some set of n vertices. Let F be a forest of (initially single-vertex)
rooted out-trees over V such that the vertex sets of the individual trees of F form a partition
of V . For v ∈ V , let Tv ∈ F denote the unique tree of F containing v.

There exists a data structure for dynamically maintaining F (initially consisting of n
1-vertex trees) and supporting the following operations in O(logn) time each:
1. parent(v): if v is not the root of Tv, return its parent. Otherwise return nil.
2. link(u, v): assuming Tu 6= Tv and that u is the root of Tu, make u a child of v in Tv.
3. cut(v): assuming v is not the root of Tv, split Tv into two trees by removing the edge

between v and its parent.
4. depth(v): return the depth of the tree Tv.

I Lemma 17. Let V be a vertex set, n = |V |, and let d > 0 be integral. Let T be a collection
of rooted trees over V of depth no more than d, where |T | = O(polyn). Suppose each T ∈ T
is given as a separate data structure of Lemma 16 and for each T ∈ T , root(T ) is known.

Then, there exists a Las Vegas randomized algorithm computing a (T , d)-blocker set B of
size O

(
n
d logn

)
in O(|T | · nd · log2 n) time with high probability.

Proof. Let |T | = O(nα) for some α > 0. The algorithm is to simply repeatedly pick random
subsets B of V of size min(d(α+ 2)nd lnne, n) until B succeeds in being a (T , d)-blocker set.
By Lemma 15, for a random B, the probability that this is not the case is at most 1

n . Hence,
the probability that we fail finding a (T , d)-blocker set after k = O(1) trials is at most 1/nk.

We thus only need to show how to verify whether a set B is actually a (T , d)-blocker set
in O(|T | · |B| logn) time. Recall that for a single T ∈ T , if the depth of T is no more than d,
then B is a (T, d)-blocker set if the tree T ′ obtained from T by removing all subtrees rooted
in vertices of B, has depth less than d. Consequently, to verify whether B is a (T, d)-blocker
set, we take advantage of the fact that T is stored in a data structure of Lemma 16.

We first check whether r = root(T ) ∈ B. If this is the case, B is a (T, d)-blocker set
in a trivial way. Otherwise, for each b ∈ B, we store pb = parent(b) and perform cut(b).
Afterwards, one can see that B is a (T, d)-blocker set if and only if depth(r) < d. Finally,
we revert all the performed cut operations by running link(b, pb) for all b ∈ B.

Clearly, the time needed to verify whether B is a (T, d)-blocker set for any T ∈ T , is
O(|B| logn). Hence, one can check whether B is a (T , d)-blocker set in O(|T | · |B| logn)
time. J

Now we move on to the problem of detecting when a sampled set ceases to be a valid
hub set of G. In fact, our algorithm will solve a bit more general problem (which is anyway
needed for applications, as we will see later), as follows.

Let |V | = n = a0 > a1 > . . . > aq = 1 be some sequence of integers such that
ai | ai−1. For each i = 0, . . . , q, let Ai be a random ai-subset (a subset of size ai) of V . By
Lemmas 8 and 15, each Ai is in fact an Θ((n/ai) lnn)-hub set of G with high probability.

We would like to detect when some Ai ceases to be an Θ((n/ai) lnn)-hub set of G
while G undergoes edge deletions. Using this terminology, both state-of-the-art Monte-
Carlo randomized algorithms for decremental exact shortest paths [4] and partially-dynamic
(1 + ε)-approximate shortest paths [5] (for unweighted digraphs) use randomness only for
constructing hub sets A0, . . . , Aq (they use ai = 2q−i, but in fact any ai = cq−i, where c is
a positive integer, would be sufficient for these algorithms to work), valid simultaneously
for all versions of the input graph with high probability (the sets Ai satisfy this, as we
will later show).

Without loss of generality, we can assume that given the sets A0, . . . , Aq, the algorithms of
[4, 5] proceed deterministically. Suppose we develop an efficient partially dynamic algorithm
A verifying whether each Ai remains a Θ((n/ai) lnn)-hub set of G (i.e., A is supposed to
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detect that some Ai ceases to be a Θ((n/ai) lnn)-hub set immediately after this happens)
and producing false negatives with low probability (the algorithm is guaranteed to be correct
if it says that all Ai have the desired property but might be wrong saying that some Ai is no
longer a hub set). Then, we could use A to convert the algorithms of [4, 5] into Las Vegas
algorithms by drawing new sets A0, . . . , Aq and restarting the respective algorithms whenever
A detects (possibly incorrectly) that any of these sets ceases to be a hub set. As this does not
happen w.h.p., with high probability the overall asymptotic running time remains unchanged.
The remainder of this section is devoted to describing such an algorithm A.

I Lemma 18. Let d > 0 be an integer. Let F be a forest of out-trees of depth no more than
d over V . Denote by Tv the unique tree of F containing v ∈ V . Let B ⊆ V be fixed.

There exists a data structure with update time O(logn), maintaining the information
whether B is a (F, d)-blocker set, subject to updates to F of the following types:

cut the subtree rooted in v out of Tv where v ∈ V and v is not the root of Tv,
make the tree Tr a child of v ∈ Tv where r ∈ V is the root of Tr and v /∈ Tr,

The following lemma says that in order to test whether a given set of vertices is a 6d-hub set
it suffices to test the hub set property for paths starting in vertices of a d-hub set.

I Lemma 19. Let G = (V,E) be a directed unweighted graph. Let Hd be a d-hub set of G.
Suppose we are given two collections T from = {T from

v : v ∈ Hd}, T to = {T to
v : v ∈ Hd} of

shortest path trees up to depth d from all vertices of Hd in G and GR, respectively.
Let B be a (T from ∪ T to, d)-blocker set. Then B is a 6d-hub set of G.

Observe that by Lemma 15, there exists an integral constant z > 0, such that for any
fixed collection of trees T of depth no more than z · nai

dlnne, where |T | = O(n3), Ai is a(
T , z · nai

dlnne
)
-blocker set with high probability. For i = 0, . . . , q, set di = z · n

ai+1
dlnne

where aq+1 = 1. Suppose G undergoes partially dynamic updates. For each i = 1, . . . , q,
and v ∈ V let T from

i,v (T to
i,v) denote the shortest path tree that the algorithm of Theorem 2

would maintain for d = di−1 and source v in G (in GR, respectively). Note that how the
trees T from

i,v and T to
i,v evolve depends only on the sequence of updates to G (which, by the

oblivious adversary assumption, does not depend on sets A0, . . . , Aq in any way) and the
details of the deterministic algorithm of Theorem 2. Since only O(mn) = O(n3) different
trees appear in {T from

i,v : v ∈ V } ∪ {T to
i,v : v ∈ V } throughout all updates, Ai remains a

({T from
i,v : v ∈ V }∪{T to

i,v : v ∈ V }, di−1)-blocker set throughout the whole sequence of updates
with high probability, by Lemma 15.

Let T from
i = {T from

i,v : v ∈ Ai−1} and T to
i = {T to

i,v : v ∈ Ai−1}, i.e., T from
i (T to

i ) contains
only trees with roots from a subset Ai−1 ⊆ V . However Ai being a blocker set of such a
collection of trees will turn out sufficient for our needs. Clearly, since we have T from

i ∪ T to
i ⊆

{T from
i,v : v ∈ V }∪{T to

i,v : v ∈ V }, by the above claim, Ai in fact remains a (T from
i ∪T to

i , di−1)-
blocker set throughout the whole sequence of updates with high probability.

Now, let q = dlog6 ne and for i = 1, . . . , q set ai = 6q−i. To verify whether each Ai
remains a di-hub set subject to partially dynamic updates to G, we proceed as follows. We
deterministically maintain the trees

⋃q
i=1(T from

i ∪ T to
i ) subject to partially dynamic updates

to G using Theorem 2. The total number of changes these trees are subject to throughout
the whole sequence of updates is O(

∑q
i=1 ai−1 ·m · di−1) = O

(∑q
i=1 ai−1 ·m · nai

lnn
)

=

O
(
nm logn ·

∑q
i=1

ai−1
ai

)
= Õ(nm).

We additionally store each tree T from
i,v (and T to

i,v), for v ∈ Ai−1, in a data structure of
Lemma 18 with B = Ai. Whenever the data structure of Theorem 2 updates some tree, the
update is repeated in the corresponding data structure of Lemma 18. Consequently, the total
time needed to maintain these additional data structures is Õ

(
nm ·

∑q
i=1

ai−1
ai

)
= Õ(nm).
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After each update we can detect whether each Ai is still a (T from
i ∪ T to

i , di−1)-blocker set
in O(

∑q
i |Ai−1| logn) = Õ(n) time by querying the relevant data structures of Lemma 187

storing T from
i ∪ T to

i . By Lemma 19, a simple inductive argument shows that if this is the
case, each Ai is a di-hub set of both G and GR. Hence, verifying all A1, . . . , Aq while G
evolves takes Õ(mn) total time. The algorithm terminates when it turns out that some Ai
is no longer a (T from

i ∪ T to
i , di−1)-blocker set. However, recall that this happens only with

low probability, regardless of whether Ai actually ceases to be a di hub set or not. We have
proved the following.

I Theorem 20. Let G be an unweighted digraph. Let q = dlog6 ne. For i = 0, . . . , q, let
Ai be a random 6q−i-subset of V . One can maintain the information whether each Ai is a
Θ(6i lnn)-hub set of G, subject edge deletions issued to G, in Õ(nm) total time.

The algorithm might produce false negatives with low probability.

By plugging in the hubs of Theorem 20 into the algorithms of [4, 5], we obtain the following.

I Corollary 21. Let G be an unweighted digraph. There exists a Las Vegas randomized
decremental algorithm maintaining exact distance between all pairs of vertices of G with
Õ(n3) total update time w.h.p. It assumes an adversary oblivious to the random bits used.

I Corollary 22. Let G be an unweighted digraph. There exists a Las Vegas randomized
decremental algorithm maintaining (1 + ε)-approximate distance estimates between all pairs
of vertices of G in Õ(nm/ε) total time w.h.p. The algorithm assumes an oblivious adversary.

5 Approximate Shortest Paths for Weighted Graphs

In this section we give key definitions used to generalize the reliable hub maintenance
algorithms to weighted graphs, at the cost of (1 + ε)-approximation. Then, we state the main
theorem (Theorem 26) relating blocker sets in (1 + ε)-approximate shortest path trees to the
approximate hub sets. Finally, we explain briefly how to incorporate these tools into our
improved dynamic APSP algorithms in order to generalize then to weighted graphs.

I Definition 23. Let G = (V,E) be a weighted digraph and let s ∈ V be a source vertex. Let
d be a positive integer. An out-tree T ⊆ G is called a (1 + ε)-approximate shortest path tree
from s up to depth d, if T is rooted at s and for any v ∈ V such that δdG(s, v) <∞, we have
v ∈ V (T ) and δT (s, v) ≤ (1 + ε)δdG(s, v).

I Definition 24. Let G = (V,E) be directed and let d > 0 be an integer. A set Hε
d ⊆ V is

called an (1 + ε)-approximate d-hub set of G if for every u, v ∈ V such that δG(u, v) <∞,
there exists a path P = u→ v in G such that `(P ) ≤ (1 + ε)δG(u, v) and P is (Hε

d, d)-covered.

We also extend the definition of a (T, d)-blocker set to trees of depth more than d.

I Definition 25. Let V be a vertex set and let d > 0 be an integer. Let T be a rooted tree
over V . Define T d to be the set of all maximal subtrees of T of depth no more than d, rooted
in non-leaf vertices x ∈ V (T ) satisfying d | depT (x).

7 The Even-Shiloach algorithm (Theorem 2), apart from maintaining distance labels for all v ∈ V , moves
around entire subtrees of the maintained tree T . Hence, in order to ensure that some set B remains a
blocker-set of T , it is not sufficient to simply check whether B ∩ V (T [v]) whenever the Even-Shiloach
algorithm changes the distance label of v to d (and, consequently, use a data structure much simpler
than that given in Lemma 18).
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Then, B is a (T, d)-blocker set if and only if it is a (T d, d)-blocker set (in terms of
Definition 5). Let T be a collection of rooted trees over V . We call B a (T , d)-blocker set if
and only if B is a (T, d)-blocker for each T ∈ T .

I Theorem 26. Let G = (V,E) be a directed graph and let d < n be an even integer. Let
T from = {T from

v : v ∈ V } (T to = {T to
v : v ∈ V }) be a collection of (1 + ε)-approximate

shortest path trees up to depth-3d from all vertices in G (in GR, resp.).
Let B ⊆ V be a (T from ∪ T to, d2 )-blocker set. Then B is a (1 + ε)p-approximate 2dp-hub

set of G, where p = dlog2 ne+ 1.

Recall that our reliable hubs maintenance algorithms for unweighted graphs essentially
maintained some shortest path trees up to depth d and either computed their blocker sets
using King’s algorithm, or dynamically verified whether the sampled hub sets remain blocker
sets of the shortest path trees.

We first replace all shortest path trees up to depth d with (1 + ε)-approximate shortest
path trees up to depth d. We use the following extension of Bernstein’s h-SSSP algorithm.

I Lemma 27. The h-SSSP algorithm of Theorem 3 can be extended so that it maintains a
(1 + ε)-approximate shortest path tree up to depth h from s within the same time bound.

By Theorem 26, by finding blocker sets of approximate shortest path trees (as in Definition 25),
we can compute/verify (1 + ε′)Θ(logn)-approximate Θ(d logn)-hub sets as before.

Given appropriate hub sets, all that both our deterministic incremental (1+ε)-approximate
APSP algorithm, and Bernstein’s randomized (1 + ε)-approximate partially dynamic APSP
algorithm do, is essentially set up and maintain a “circuit” (i.e., a collection of data structures
whose outputs constitute the inputs of other structures) of h-SSSP data structures from the
hubs with different parameters h and appropriately set ε′. In order to make these algorithms
work with our reliable approximate hub sets, we basically need to play with the parameters:
increase all h’s by a polylogarithmic factor, and decrease ε′ by a polylogarithmic factor.
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