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—— Abstract

Consider collections A and B of red and blue sets, respectively. Bichromatic Closest Pair is the
problem of finding a pair from A x B that has similarity higher than a given threshold according
to some similarity measure. Our focus here is the classic Jaccard similarity |a N b|/|a U b| for
(a,b) e AxB.

We consider the approximate version of the problem where we are given thresholds j; > j2 and
wish to return a pair from A x B that has Jaccard similarity higher than j» if there exists a pair in
A x B with Jaccard similarity at least ji. The classic locality sensitive hashing (LSH) algorithm
of Indyk and Motwani (STOC ’98), instantiated with the MinHash LSH function of Broder et al.,
solves this problem in O(n?~?) time if j; > j21_‘s. In particular, for § = Q(1), the approximation
ratio ji/jo = 1/43 increases polynomially in 1/5z.

In this paper we give a corresponding hardness result. Assuming the Orthogonal Vectors
Conjecture (OVC), we show that there cannot be a general solution that solves the Bichromatic
Closest Pair problem in O(n279(1>) time for j1/j2 = l/jgm. Specifically, assuming OVC, we prove
that for any § > 0 there exists an € > 0 such that Bichromatic Closest Pair with Jaccard similarity
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requires time Q(n?~%) for any choice of thresholds j2 < j1 < 1 — 4, that satisfy 71 < j3
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1 Introduction

Twitter is a well-known social network, in which a user can connect to other users by following
them [5]. Users can read and write messages called tweets of up to 280 characters. An
important service that Twitter provides is helping users discover other users that they might
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like to follow, by making suggestions. This service is called the You might also want to
follow-service and is better known as the WTF (Who To Follow) recommender system [6].
In order to suggest connections that the user might like, they should be similar to the user’s
existing connections. As an example, if a user is already connected to Cristiano Ronaldo,
Twitter might suggest Lionel Messi as a new connection, since the connection to Ronaldo
hints that the user likes famous soccer players. Hence, we need a way to decide if a connection
is similar to an existing connection. We might for instance suggest a new connection if the
tweets are similar to the tweets of an existing connection or if the connection has a lot of the
same followers as an existing connection.

The main challenge is to find similar connections when the number of user accounts
increases drastically and the task is particularly difficult when the similarity does not need
to be significant, i.e., when we look for connections that have only little in common with
existing ones, while they may still be of interest to the particular user [5]. This leads us to
the notion of similarity search, which concerns the general problem of searching for similar
objects in a collections of objects. Often we consider these objects as sets representing some
concept or entity. An object could for example be a document that is represented by a set of
words. Hence, we talk about set similarity search.

There are several versions of the problem addressing different situations. In this paper
we consider a batched version of set similarity search, namely the Bichromatic Closest Pair
which can be informally described as follows:

Suppose we are given collections A and B, each of n sets from a universe of size O(logn).
We refer to the sets in A as red and the sets in B as blue. Bichromatic Closest Pair is the
problem of finding the pair consisting of a red and a blue set that is closest with respect
to some distance or similarity measure. We will concern ourselves with Jaccard similarity,
which is defined for a pair of sets (a,b) € A x B as

_lanb| lanb|

J(a,b) = = .
(a,b) laUb|  |a|+ [b| — |anb]

(1)

In particular, we consider the following decision version of Bichromatic Closest Pair with
Jaccard similarity: decide whether there exists a pair (a,b) € A x B such that J(a,b) > j;
or if all pairs (a,b) € A x B, has J(a,b) < j, for given thresholds j; and js.

It is well-known that we can solve Bichromatic Closest Pair with Jaccard similarity for
thresholds satisfying j; > j2~° in time O(n?7%) (see Section 1.1). In particular, for § = Q(1),
the approximation ratio j;/j» = 1/ increases polynomially in 1/jo. In this paper, we will

present a corresponding hardness result. The hardness is conditioned on one of the most
well-known and widely believed hypotheses, namely the Orthogonal Vectors Conjecture [11].

» Conjecture 1 (Orthogonal Vectors Conjecture (OVC)). For every § > 0 there exists ¢ = ¢(9)
such that given two collections A,B C {0,1}™ of cardinality n, where m = clogn, deciding
if there is a pair (a,b) € A x B such that a-b = 0 requires time Q(n>~°).

Assuming OVC, we show that there cannot be a general solution that solves the Bichro-
matic Closest Pair problem with Jaccard similarity in O(n2=%M) time for j1 /j, = 1/55.
More specifically, we show

» Theorem 2. Assuming the Orthogonal Vectors Conjecture (OVC), the following holds: for
any 6 > 0, there exists an € > 0 such that for any given jo < j1 <1 — 19 satisfying j1 < j2175,
solving Bichromatic Closest Pair with Jaccard similarity for n red and n blue sets for sets
from a universe of size ln(n)/jQO(logl/jl) for thresholds j; and ja requires time Q(n?~%).

The dependence of € on 4 is unspecified because the function ¢(§) in OVC is not specified,
see discussion in Appendix B in the full version on ArXiv [8, App. BJ.
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1.1 Techniques and Related Work

Similarity search can be performed in several ways — a popular technique is Locality Sensitive
Hashing (LSH) [7] which attempts to collect similar items in buckets in order to reduce the
number of sets needed to check similarity against. We can for example use Broder’s MinHash
[1] with locality sensitive hashing to solve Bichromatic Closest Pair with Jaccard similarity in
time O(n?~¢) when j; > ja~¢ for any . This is done by ensuring that the collision probability
for pairs with similarity js is 1/n and the collision probability for pairs with similarity j;
is 1/n'~¢. Hashing n'~¢ times means that we find a pair with similarity j; if one exists.
The ChosenPath method presented in [4] also uses the LSH framework to solve Bichromatic
Closest Pair with Braun-Blanquet similarity in time O(n?~¢) for thresholds j; > ji~¢

The proof of Theorem 2 will be based on a result by Rubinstein [9]: Assuming the
Orthogonal Vectors Conjecture, a (1 + ¢)-approximation to Bichromatic Closest Pair with
Hamming, Edit or Euclidean distance requires time Q(n?~%). The required approximation
factor 1 4+ ¢ depends on §, and tends to 1 as § tends to zero. We translate this into an
equivalent conditional lower bound for Jaccard similarity for certain constants j; and js.

In order to handle smaller subconstant values of j; and jo we use a technique that we
call squaring, which allows us to increase the gap in similarities between pairs with high
Jaccard similarity and pairs with low Jaccard similarity by computing the cartesian product
of a binary vector with itself. A similar technique is used in [10] by Valiant. His technique is
called tensoring and is used to amplify the gap between small and large inner products of
vectors. We also see a similar technique in the LSH framework with MinHash, where we use
concatenation of hash values (which are sampled set elements) to amplify the difference in
collision probability, and hence in the Jaccard similarity.

Combining two simple reductions with the above squaring we show that for any §, we can
always find e such that Bichromatic Closest Pair with Jaccard similarity cannot be solved in
time O(n?~?) for any pair ji,j2 < 1 —§ when j; < j;7°. Contrast this with the above LSH
upper bound of O (n2_5) for j; > jzlf‘;. We also know that there are parts of the parameter
space where j; = j2176 that can be solved in O (n2_‘5_9(1))
While LSH with MinHash is not the fastest possible algorithm in terms of the exponent
achieved, it has been unclear how far from optimal it might be.

time, see the discussion in [4].

Other related work

Very recently, Chen and Williams [3] showed that assuming the OVC we cannot additively
approximate our Bichromatic Closest Pair problem with Jaccard similarity. It might be
possible to use Chen and Williams as a base for showing our main theorem, but this would
require reductions quite different from the ones presented in this paper.

An earlier of result of Chen [2] shows that it is not possible (under OVC) to compute a
(d/log n)o(l)-approximation to Maximum Inner Product (Max-IP) with two sets of n vectors
from {0, 1}¢ in time O(n?~¢M),

2 Preliminaries

2.1 Notation

We will occasionally consider a set, x, from a finite universe U = {u1, ..., ujy|} as a vector
v of dimension |U| such that v; = [u; € z], in Iverson notation. We call this vector
the characteristic vector for x. Hence, we refer to the set of indexes and the universe
interchangeably. We denote the Hamming weight of a binary vector v by |v|. In the following,
we will not only index vectors with integers, but also with vectors of integers. Hence, we will
consider vectors of dimension d? with entries v;;, for i = (i1, ...,iq) and j = (j1, ..., ja)-
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2.2 Bichromatic Closest Pair

Recall Jaccard similarity as is defined in (1). We define Bichromatic Closest Pair with
Jaccard similarity for thresholds t; and t5 as follows: Let U be a universe of size O(logn).
Given collections A and B, each of n sets from U, and thresholds t5 < t7 < 1, we will consider
the problem of finding a pair of sets (a,b) € A x B with J(a,b) > ¢ if there exists a pair
(a*,b*) € A x B with J(a*,b*) > t;. If all pairs have J(a,b) < t2, we must not return
any pair of sets.

2.3 Useful instances of Bichromatic Closest Pair

The following lemma corresponds to Theorem 4.1 in [9] and will form the basis of our results.
It includes the important properties of the instances constructed in the proof the theorem,
which we will use actively to prove our own Theorem 2.

» Lemma 3. Assume OVC. Given § > 0, there exist ¢ > 0 and values hy,ho where
he = (14 &)hy such that Bichromatic Closest Pair with Hamming distance for thresholds hy
and hy requires time A(n?=°) for instances with n red and n blue sets from a universe of size
O(logn). There are instances that require this time with the following properties, where we
let T =0 (%) and m = O(logn):

All red sets have size T'm and all blue sets have size m.

The thresholds hy and hy are m(T — 1) and mT, respectively.

All sets in the instance come from a universe of size 2T'm.

In particular, the lemma states that we cannot compute a (1 + €)-approximation to
Bichromatic Closest Pair with Hamming distance in truly subquadratic time. We will extend
this result in a few steps, using the properties of the hard instances, to achieve Theorem 2.

2.4 Hardness of Bichromatic Closest Pair with Jaccard similarity

In order to prove Theorem 2, we need the following lemma, which extends Lemma 3 in the
natural way to Jaccard similarity.

» Lemma 4. Assuming OVC, we have the following: For any § > 0 there exist ji, jo with
Jj1 =2+ jo such that Bichromatic Closest Pair with Jaccard similarity with thresholds j1 and

Jo requires time Q(n?=%).

Proof. We use instances as described in Lemma 3. First, note that

_Janb| azboduinb: _|a] + [b| — dp(a,b)

J(a,b) = = =
(a,b) |aUDb| la| + |b| — M |a| + |b| + dm(a,b)

which implies that letting

. Tm+m-m(T-1) 1 q . Tm4+m-—Tm 1
= = — an =
N Tmtm+m(T—1) T /2

T Tm+m+Tm 2T+1

we cannot solve Bichromatic Closest Pair with Jaccard similarity in time O(n?7%). Since
T=0 (%), as mentioned in Lemma 3, we get a lower bound for the approximation factor:

1

= 2T+ 1 1

I = + =2+ = =2+Q(&).
I T T

In particular, we achieve hardness of a 2-approximation. <
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3 Overview of reductions used

We prove Theorem 2 by combining several reductions into one. So let (A, B) be any instance
of Bichromatic Closest Pair with Jaccard similarity as described in Lemma 3. We give a

brief introduction to each of these reductions — note that all reductions are self-reductions.

We give the details of the proof and the use of each reduction in Section 5. Further details
can be found in Appendix B in the full version on ArXiv [8, App. B].

Adding common elements to sets: Adding common elements to all sets in collections
A and B increases the Jaccard similarity between any pair of red and blue sets.
Adding different elements to sets: Adding elements to all sets in A decreases the
Jaccard similarity between any pair of red and blue sets.

Squaring: Consider all sets by their characteristic vector. We define squaring as follows:
given vector a = (a1, ..., aq) the squared vector has entries

a;J =a; - aj for Z,j S {1, ad}

The resulting vector a’, which is the characteristic vector for a x a, has dimension d? as
described in Section 2.1. Vector a’ can equivalently be considered as a set from a universe
of size d2. We will use this reduction iteratively to reduce the Jaccard similarity between
any pair of vectors in the instance of Bichromatic Closest Pair.

Sampling: We will use sampling to reduce the size of the universe after each step
of squaring. Hence, we consider squaring and sampling as a single reduction which
first squares the vectors and then samples from the resulting vectors. We will use the
squaring-and-sampling reduction iteratively.

4  The squaring-and-sampling reduction — details

In the proof of Theorem 2 we will take any instance of Bichromatic Closest Pair with Jaccard
similarity with the properties described in Lemma 3 and use the squaring reduction described
in Section 3 to decrease the Jaccard similarity of every pair of sets in the instance. We will

argue that a solution for the new instance also provides a solution for the original instance.

When squaring all sets, the Jaccard similarity between any pair of sets will decrease, so we
need to capture this change in the thresholds, such that a solution for the new instance
implies a solution for the initial instance. When squaring the sets in A and B, the size of the
sets will be squared and it is easy to see that so will the size of the intersection. Hence, the
Jaccard similarity of a pair (a, b) after squaring ¢ times, (a;,b;) is

lanbl*
2 + b2 —|lanb

J (ai, b;) = o7 (2)

|a

In order to keep down the size of the universe, we need to sample after each step of squaring.

This might incur a small error in the Jaccard similarity. The next few sections will bound
this error. From this point, we will denote the squaring-and-sampling reduction by f. Hence,
applying the reduction f to a set, v, i times will yield a set f(v,1i).

4.1 Subsampling

We bound the error incurred in each of [aNb|, |a| and |b| and combine these with a union
bound to get a bound on the error in the Jaccard similarity. We shall see that when sampling
sufficiently many elements from the universe the sets are taken from, we get that with
high probability a solution for the constructed instance will provide a valid solution for the
original instance.

74:5
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The following lemmas will help us show that sampling after squaring will not distort the
similarity of the resulting vectors too much.

» Lemma 5. Let 0 < m/ < m < 1 and let p be a set from a universe of size s> for an integer
s. Assume that (m’-s)* < |p| < (m-s)*. Sample s' elements from the universe uniformly
at random, z, thus generating sample set pNz. We have

(1—7)-m?-s <|pnz| < (147) -m?-s

301n(n)

—10

with probability at least 1 — 2n when sampling s’ > elements.

Proof. The result is an immediate consequence of the Chernoff bound: when we sample

s > 2321;;(,’;”) elements, we have with probability at least 1 — n~10 that

/

2 S
(I=7)(m -s)" - 2= PNzl

A similar result gives the upper bound on |p N z| for s’ > 33;,7%2"). As m’ < m, we maximize

s’ by 332121(2) and thus ensure both bounds with probability at least 1 — 2n !0 using a
union bound. <

We are generally going to use 7 as the same fixed parameter (to be determined later)
every time we invoke the sampling of Lemma 5.

Lemma 5 will be used to show that sampling after squaring will not distort the Jaccard
similarity of a pair of vectors too much, and hence we get the benefits of squaring without
the exploding vector dimensions. We start by bounding the resulting sizes for each of |a|, |b|
and |a N b| for any choice of a,b € A x B from squaring and sampling ¢ times.

» Lemma 6. Let v be a set from a universe of size d or the intersection of such two sets.
Let £(v,1) denote the resulting set after running i iterations of the squaring-and-sampling
reduction on set v fori > 1. We have

iV2
(1_’7)2 |dL1

i

s < |E(v, i) < (1+7)% vI”
7> ) = Y dgi 7

with probability at least 1 — 2in~'0 where s; > #ﬁfw,
Proof. Let v be as described. We show the lemma by induction on i. Clearly, when
squaring the vector v once, i.e., for i = 1, the resulting vector has Hamming weight |v|? and
dimension d?. Hence, by Lemma 5 we have

[v[? [v|?

(1 —7)? st < f(v, 1)) < (1 +7)? $ 81

with probability at least 1 —2n 10 for our choice of s;. Assume now that after i — 1 iterations
the following bounds hold:

i—1 i—1
> 2

g1 |v

d21171

g1 1|V

dQ'L—l

(1-7)

Sic1 < |f(V7 i— 1)| < (1 + ’}/) Si—1- (3)

Then Lemma 5 gives that after ¢ iterations of the squaring-and-sampling reduction, we have

i |V‘2i5271 S i |V 2i8271 S;
1—~)2 -1 Tl % v i) < (1 20-11°0 el Ot
( ’7) dgz 812_1 — ‘ (V, 1)‘ — ( + 7) dgm 57?_1
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30 In(n)d?’

W This partlcularly means that

with probability at least 1 — 2n =19 for s; >

d2i - S5

Now, to ensure these bounds, we assumed that |f(v,i— 1)| satisfies certain bounds (see (3)).
So in order to ensure that f(v,1i) satisfies the given bounds, we need f(v,j) to satisfy similar
bounds for every 1 < j < 4. By a union bound, we see that |f(v,j)| satisfies both upper
and lower bounds for all 1 < j < i (simultaneously) with probability at least 1 — 2in =10

30 ln(n)dzj
e I e

probability at least 1 — 2in~10. <

when sampling s; > at step j. Hence, |f(v,1)| satisfies the given bound with

The next section will use Lemma 6 to bound the Jaccard similarity after i iterations of
the squaring/sampling reduction.
4.2 Combining the bounds
For a given pair of vectors a and b, Lemma 6 gives upper and lower bounds on the Jaccard

similarity J = J(f(a, i), f(b, 1)) We claim that with probability at least 1 — 6in~1:

i1 lanb)?’
(1 _ 7)2 1 lad2i| ;

J >

2 B s ()2 s (1 )2 1 B,
(1—7)*lanb*

L+ (la]* + b)) = (1=v)*lanb

21

2i1lanb|*’

J< (I+7)* =i
) s (1= )2 s — (1 )2 B
- (1+7)*[anb*
(1= (Jal* + b[*) = (1+7)*|anbl*

This is easily seen by taking a union bound over the probabilities that each of |a|, |b| and
|a N b| violate either the upper or the lower bound. Next, we claim that these bounds imply:

. (1= anb? N (1= anb?
= T+ )7 (al + b —[anb) = (1+2) (al + ) — (1—)?anbl?

(1+9)*lanb[* _ (1+~)*[anbf

J< : S : —.
7 (=49 (Jal* + b — [anb|*)

T (1= (Ja* + b)) - (1 +y)*anb

The argument can be found in Appendix A in the full version on ArXiv [8, App. A]. In
particular, we have argued for the following lemma. We ignore the sample size for now and
discuss it in Section 4.3.

» Lemma 7. Let A and B be an instance of Bichromatic Closest Pair with Jaccard similarity.

After applying the Squaring and Sampling mapping, f, i times as previously described to
each set in A and B, we have for all n? pairs (a,b) € A x B in the instance that:

74:7
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2i

2'i
(&%) lanb
Y
<

1y 2! gi
(1+4ﬂ/> lanb| . g](f(a»i)af(bVi))* 2 L |b2 —|anb

2 1 X —Janb

|a >

|a

with probability at least 1 — 6in~8.

Hence, with high probability none of the Jaccard similarities diverge too much from (2) due
to sampling. This was exactly what we wanted, as this allows us to reduce the dimension
by sampling.

4.3 Summing up

Recall that in our setting we reduce from instances where the set sizes of all red and blue
sets are fixed. We now describe thresholds such that solving the instances constructed by
the reduction f cannot be done in truly subquadratic time.

» Lemma 8. Let A and B be two collections of n sets from a universe of dimension d, where
all sets in A have size y and all sets in B have size z. Assume that (A, B) is taken from a
family of instances of Bichromatic Closest Pair with Jaccard similarity, which require time
Q(n?79) for thresholds t, = y+§1—z1 and ty = y+§2_m2. The reduction which applies f i times
to each set ins € AUB fori > 1 constructs an instance of Bichromatic Closest Pair with

Jaccard similarity, which requires time Q(n*>=%) time for thresholds

2! i 2! i
t/:<1—7) . x% : and t’:<1+’y) : x% _
P\l ay) g2 a2 a2 2T \l-4y) 242 —ad

whose solution provides a valid solution to the original instance with high probability when
30 In(n)d>’
72(1_7)27'—%:%.7’

sampling s; > at each step 1 < j <i.

Proof. Lemma 7 ensures that with high probability a solution to the constructed instance
provides a valid solution to the original instance, since no pair of sets is likely to have Jaccard
similarities that deviate beyond the chosen thresholds.

In Lemma 7 we skipped the discussion of the sample size at each iteration — we will argue
for it now. From Lemma 6, it is easily seen that we maximize the needed sample size for all
of |a|, |b| or [aN b| for any choice of a and b in iteration i by

301In(n)d?'
¥2(1 = %) "2 minga pyeaxs {Ja N b[}*
Hence, sampling s; elements from the universe will ensure that each of the upper and lower
bounds for either |a|, [b| or |a N b| will fail with probability at most n~1°
As min(, v)eaxs {|a N b} is unknown, we instead use x3, which was the intersection size for
a pair with Jaccard similarity j,. Such a pair need not exist, but as the set sizes are fixed,
9 can be easily computed.

We have left to argue that the pairs with intersection smaller than xs also satisfy the
bounds in Lemma 7 with high probability. The main observation is that they only need to
satisfy the upper bound, as the resulting Jaccard similarities need only to stay below the
lower threshold, t, — the Jaccard similarities can become arbitrarily small without affecting
the result.

By bounding the size of each term as we did in Lemma 6 using the chosen s;, we see that

the error probabilities are still at most n=10 for each of |a|, |b| and |a N b| for any choice of
(a,b) e Ax B. <

in that iteration.
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5 Main Result

We are now ready to prove Theorem 2. We first give some intuition behind the proof and
state a few lemmas to ease the proof. For convenience we restate Theorem 2.

» Theorem 9. Assuming the Orthogonal Vectors Conjecture (OVC), the following holds: for
any 6 > 0, there exists an € > 0 such that for any given jo < j1 < 1— 19 satisfying j1 < jzl_e,
solving Bichromatic Closest Pair with Jaccard similarity for n red and n blue sets for sets

from a universe of size ln(n)/jQO(log(l/jl)) for thresholds j, and jy requires time Q(n?>~9%).

5.1 Intuition

The proof of Theorem 2 reduces instances of Bichromatic Closest Pair as described in
Section 2.3 by composing three reductions, that together construct instances of Bichromatic
Closest Pair with Jaccard similarity, which requires time Q(n?~?) for the given thresholds j;

and jo and some €. A short description of each of the reductions can be found in Section 3.

Below, we give three lemmas showing that these reductions preserve hardness.

The first lemma states that adding common elements to all sets in the instance will
preserve hardness. This reduction increases the Jaccard similarity of all pairs of red and
blue sets, and by choice of the number of added elements, we ensure that pairs of sets that
initially had Jaccard similarity higher than the lower threshold will get Jaccard similarity
greater than 1 — ¢. Hence, we get hardness for thresholds that are greater than 1 — ¢. From
this point we can decrease the thresholds using two other reductions to achieve the given
thresholds, that by assumption are less than 1 — §.

The second lemma states that the squaring-and-sampling reduction, discussed in detail in
Section 4, preserves hardness. The squaring-and-sampling reduction allows us to decrease the
thresholds, so they come close to j; and jo. Finally, the third lemma states that the reduction,
which adds elements to only red sets will still preserve hardness. This reduction ensures
that we can decrease the Jaccard similarity further. We will use it in such a way, that we
effectively multiply the upper bound by a well-chosen « that ensures that the upper threshold
is j; after this reduction. The proof ends by picking an ¢, such that js is strictly greater
than the current lower threshold, and thus preserves hardness for the thresholds j; and js.

5.2 Supporting Lemmas

In the following, assume that A and B are collections of n red and n blue sets from a
universe U, respectively.

» Lemma 9. Let 0 < 6 < 1 be given and let (A, B) be any instance of Bichromatic Closest Pair
with Jaccard similarity as described in Lemma 3. Define { := maxqeaug{|q|} - (1/6 — 1) and
x = {T1,...,xe} such that xN(AUB) = 0, and further define the mapping g : AUB — A'UB’
by g(v) = vUx where A’ = AUx and equivalently B' = BUx. The reduction that applies g
to every element of A and B generates an instance (A', B') of Bichromatic Closest Pair with
Jaccard similarity that requires time Q(n?=°) for some thresholds t),ty, > 1 — 6.

Proof. First, note that if v € A, then g(v) € A’ and similarly if v € B then g(v) € B’. We
recall that instances of Bichromatic Closest Pair as described in Lemma 3 are constructed
such that all red sets have the same size and all blue sets have the same size. We also have
maxqeaupi|al} = |al, for any a € A, since the sets in A were larger than the sets in B. It is
easy to see that hardness is preserved under the reduction.
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We finally argue that the resulting thresholds are larger than 1 — 4: Let (a,b) be any
pair from A x B which has Jaccard similarity at least ¢; and let a’ = g(a) and b’ = g(b).
We argue that any such pair satisfies [aNb| > %: Note that with these particular instances
of Bichromatic Closest Pair and from the proof of Lemma 4, we have
_|lanb| lanb| S ty 1/T

J(a,b)

= = ty =
laUb|  Tm+m—|anbl ~ > 2 2
Since |b| = m > |a N b|, this implies

m m |anb|

2 2T 2T

lanb| > = Janb|>m/2 = |bl/2.

We will consider the Jaccard similarity of a’ and b’:

lanb|+ |al(1/5 —1)
(lal+[al(1/6 = 1)) + (b[ + |a|(1/6 — 1)) — (lanb| + |a[(1/6 — 1))
_ lanb|+ |al(1/d —1)
la]/6 +|b] —|Janb|

J(@',b') =

By assumption |a N'b| > %‘, so:

anbl+fal(/s—1) _ bl/2+al1/6-1)
/s + b~ Janbl = a5+ b2~

b|
2

[b _ [blo

=4
2 2

+lal(1/6 —1) = [a|(1/6 = 1) +

which is always satisfied. Hence, J(a’,b’) > 1 — § for any choice of § > 0, and so, we
construct an instance where every pair with Jaccard similarity higher than ¢o will have
Jaccard similarity higher than 1 — §. Thus, there are thresholds that are greater than 1 — ¢,
that make the constructed instance hard. |

» Lemma 10. Let 0 < § < 1 be given and consider any instance of Bichromatic Closest
Pair with Jaccard similarity, (A, B), from a family of instances which require time Q(n>~°)
for thresholds t1 and ty. Using the reduction f defined in Section 4 on each v € AU B for
i iterations where © > 1, we construct a valid instance of Bichromatic Closest Pair with
Jaccard similarity with high probability, which requires time Q(n?~?) for thresholds that are
decreasing functions of i.

Proof. The lemma follows immediately from Lemma 8. <

» Lemma 11. Let 0 < § < 1 be given and consider any instance of Bichromatic Closest
Pair with Jaccard similarity, (A, B), from a family of instances which require time Q(n>=°)
for thresholds t1 and ta. Define £ := maxqec aup{ldl} - (1/a —1) and y := {y1,...,ye} such
that y N (AU B) = 0. Define mapping h : A — A" where A’ = AUY by h(a) =aUy. The
reduction that applies h to every element of A generates an instance (A', B) of Bichromatic
Closest Pair with Jaccard similarity that requires time Q(n%=°) for some thresholds t},t}.

Proof. Clearly, hardness is preserved under the reduction that simply adds new elements to
all red sets. In particular this reduction decreases the thresholds by decreasing the similarity
between red and blue pairs. <
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5.3 Proof outline for Theorem 2

Proof. For simplicity and readability we leave out most of the calculations — details can be
found in Appendix B in the full version on ArXiv [8, App. B].

Let § > 0 be given and let ji, j2 be given such that jo < j; < 1 —§. Take any instance
of Bichromatic Closest Pair with Jaccard similarity satisfying the properties described in
Lemma 3. Recall from this lemma that T'= O (%)

Apply the reductions from first Lemma 9 to achieve an instance, which requires time
Q(n?79) for thresholds greater than 1 —§. We wish to reduce to an instance that is hard for
smaller thresholds j; and jo. The reduction from Lemma 10 is used to decrease the thresholds,
where we pick the largest i, such that the resulting upper threshold ¢; is no smaller than
j1, i.e., t1 > j1. This reduction decreases the thresholds until the upper threshold is only
slightly greater than j;. Now, let o = % and apply the reduction from Lemma 11 to ensure
that the resulting upper threshold is now equal to j;. This eventually gives an instance of
Bichromatic Closest Pair with Jaccard similarity, which cannot be solved in time O(n?~°%)
for thresholds

tl—a(1+4’y T+1 0

y <1+7)2" (3 +1-9)°
L=dy) L (8 41-6)" — (L +1-0)

2 = 21

where we observe that by construction t{ = « - t; = j;. We refer to Appendix B in the full
version on ArXiv for the calculations [8, App. B]. So we have constructed an instance which
is hard for thresholds j; and t5.

T—dy
implies hardness for t; = j; and at5. We show that there is an ¢ that only depends on &
such that at} < jo. Then the hardness for t{ = j; and at} implies hardness for the given j;
and js.

Note that we have chosen a > t1, since otherwise ¢ could not be maximal. So we have:

2 i
Set t5 = ( — ) (or+1— 5)2 . Then t}, < at} and so the hardness for ¢] = j; and t}

log (#7)
log (tl : (11_*—41)2 NE A 5)2i>
2 - log ((M)Q (8)T+1— 5)2>
 2i.log ((12:477) (/T +1-9) (fj;) (11— 5)) '

We need to show that this expression is bounded by 1 — ¢ for some ¢ that depends on §, but
not on j; and jo. Observe that the factors 2¢ cancel out and we may pick v small enough
that it can essentially be ignored. We show in Appendix B in the full version on ArXiv [8,
App. B] that we can use any v < min {27%, %}. Then for given J, there exists an & such

log(j1) _ log (at)
log (at3)  log (atd)

<

that the expression is bounded by 1 — ¢, since T can be considered a constant for a fixed §.
Recall that T was defined in Lemma 3. By the assumption j; < j5 ¢ we then have at} < jo.

Then the hardness of t| and at; where t} = j; and at} < jo, implies the desired hardness
for the given j; and js.

74:11

ESA 2019



74:12

Hardness of Bichromatic Closest Pair with Jaccard Similarity

We finally argue about the size of the universe of the instance constructed by the
compositions of reductions described. In the following, d is the size of the universe of the
initial instance of Bichromatic Closest Pair with Jaccard instance. In the proof of Lemma 8,
we argued that we could use z2, which was the size of the intersection for a pair with Jaccard
similarity js, in the sample size s;, which means that

5. 30 In(n)d? B 30 In(n)d?
TR =)Pay (=) Gallal + [b] - 2))*

21'
~ 30In(n) 0+1
(=755 \1+3r
Again, the calculations can be found in Appendix B in the full version on ArXiv [8, App. BJ.

Hence, the sets constructed by the composition of reductions come from a universe whose
size is bounded by

i

2 9t
; 1 1 1+4
U< sitsija—n =2 <2000 (9%l (%)
a ™ %5 \(F+1-90) (35 +1) 1=9)

By Assumption #7? < j; < ¢}, which implies that 2¢ = O (%) =0 <log %) for constant

¢ < 1. Hence, we conclude that the size of the universe is ln(n)/jg(log 1/31) " This finishes the
proof of Theorem 2. <

6 Final Comments

On a final note, we remark that one can obtain a result similar to Theorem 2 for Braun-
Blanquet similarity. Recall that we define Braun-Blanquet similarity for a pair of sets
(a,b) € Ax B as

lanb]

BB(a.b) = Tl bl}

€ [0,1]

In fact, the proof is slightly simpler than the one given in Section 5.3 and the calculations
are somewhat nicer. The proof ideas, i.e., the choice and order of reductions, are exactly the
same and should be easy to carry out by following the structure of the proof of Theorem 2.

The main open problem we leave is whether existing upper bounds are near-optimal
when € is an arbitrary constant between 0 and 1. Our techniques only work when ¢ is
sufficiently small.
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