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Abstract
We consider the minimization of edge-crossings in geometric drawings of graphs G = (V,E), i.e.,
in drawings where each edge is depicted as a line segment. The respective decision problem is
N P-hard [5]. Crossing-minimization, in general, is a popular theoretical research topic; see Vrt’o [26].
In contrast to theory and the topological setting, the geometric setting did not receive a lot of
attention in practice. Prior work [21] is limited to the crossing-minimization in geometric graphs
with less than 200 edges. The described heuristics base on the primitive operation of moving a
single vertex v to its crossing-minimal position, i.e., the position in R2 that minimizes the number
of crossings on edges incident to v.

In this paper, we introduce a technique to speed-up the computation by a factor of 20. This
is necessary but not sufficient to cope with graphs with a few thousand edges. In order to handle
larger graphs, we drop the condition that each vertex v has to be moved to its crossing-minimal
position and compute a position that is only optimal with respect to a small random subset of the
edges. In our theoretical contribution, we consider drawings that contain for each edge uv ∈ E and
each position p ∈ R2 for v o(|E|) crossings. In this case, we prove that with a random subset of the
edges of size Θ(k log k) the co-crossing number of a degree-k vertex v, i.e., the number of edge pairs
uv ∈ E, e ∈ E that do not cross, can be approximated by an arbitrary but fixed factor δ with high
probability. In our experimental evaluation, we show that the randomized approach reduces the
number of crossings in graphs with up to 13 000 edges considerably. The evaluation suggests that
depending on the degree-distribution different strategies result in the fewest number of crossings.
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1 Introduction

The minimization of crossings in geometric drawings of graphs is a fundamental graph
drawing problem. In general the problem is NP-hard [5, 13] and has been studied from
numerous theoretical perspectives; see Vrt’o [26]. Until recently only the topological setting,
where edges are drawn as topological curves, has been considered in practice [6,8,14]. In our
previous paper [21] we describe geometric heuristics that compute straight-line drawings of
graphs with significantly fewer crossings compared to common energy-based layouts. One
of the heuristics is the vertex-movement approach that iteratively moves a single vertex v
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to its crossing-minimal position, i.e., a position p? so that crossings of edges incident to
v are minimized. Unfortunately, the worst-case running time to compute this position is
super-quadratic in the size of the graph as the following theorem states.

I Theorem 1 (Radermacher et al. [21]). The crossing-minimal position of a degree-k vertex
v with respect to a straight-line drawing Γ of a graph G = (V,E) can be computed in
O
(
(kn+m)2 log (kn+m)

)
time, where n = |V |,m = |E|.

This is not only a theoretical upper bound on the running time but is also a limitation that
has been observed in practice. The implementation we used previously requires considerable
time to compute drawings with few crossings. For this reason we were only able evaluate our
approach on graphs with at most 200 edges. For example, on a class of graphs that have 64
vertices and 196 edges our implementation already required on average about 35 seconds to
compute a drawing with few crossings.

Energy-based methods are common and well engineered tools to draw graphs [16]. For
example, the aim of Stress Majorization (or simply Stress) is to compute a drawing such
that the Euclidean distance of each two vertices corresponds to their graph-theoretical
distance [12]. The algorithm has been engineered to handle graphs with up to 106 vertices
and 3 · 106 edges [19]. Kobourov [16] claimed that Stress tends to minimize the number of
crossings. In our previous experimental evaluation [21] we demonstrated that the statement
is not true for a varied set of graph classes.

Fabila-Monroy and López [11] introduced a randomized algorithm to compute a drawing
of Kn with a small number of crossings. Many best known upper bounds on the rectilinear
crossing number of Kn, for 44 ≤ k ≤ 99, are due to this approach [1]. The algorithm
iteratively updates a set P of n points, by replacing a random point p ∈ P by a random point
q that is close to p, if q improves the number of crossings. Since the number of crossings of
Kn is in Θ(n4), the bottleneck of their approach is the running time for counting the number
of crossings induced by P . A similar randomized approach has been used to maximize the
smallest crossing angle in a straight-line drawing [3, 10]. The approach iteratively moves
vertices to the best position within a random point set.

Contribution. The main contribution of this paper is to engineer the vertex-movement
approach for the minimization of crossings in geometric drawings described in [21] to be
applicable on graphs with a few thousands vertices and edges.
1. In Section 3 we introduce so-called bloated duals of line arrangements, a combinatorial

technique to construct a dual representation of general line arrangements. In our applica-
tion this results in an overall speed-up of about a factor of 20 in comparison to the recent
implementation. This speed-up is necessary but not sufficient to handle graphs with a
few thousands vertices and edges.

2. In Section 4 we demonstrate that taking a small random subset of the edges is sufficient
to compute drawings with few crossings. Moreover, in Section 4.1 we prove that under
certain conditions the randomized approach is an approximation of the co-crossing number
of a vertex, with high probability.

3. Based on the insights of the evaluation in Section 4.2, we introduce a weighted sampling
approach. A comparison to a restrictive approach of sampling points suggests that the
degree-distribution of the graph is a good indicator to decide which approach results in
fewer crossings.

4. Overall, our experimental evaluation shows that we are now able to handle graphs with
12 000 edges, which are 60 times more than the graphs that have been considered in the
evaluation in [21].
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Figure 1 The black, blue and red segments show the arrangement A(Γ, v) of the black drawing
Γ. The blue and red region show the complement of the visibility regions of u1 and u2, respectively,
and the edge e. The green region is crossing minimal.

2 Preliminaries

We repeat some notation from [21]. Let Γ be a straight-line drawing of a G = (V,E). Denote
by N(v) ⊆ V the set of neighbors of v and by E(v) ⊆ E the set of edges incident to v. For a
vertex v ∈ V , denote by Γ[v 7→ p] the drawing that is obtained from Γ by moving the vertex
v to the point p. We denote the number of crossings in a drawing Γ by cr(Γ), the number of
crossings on edges incident to v by cr(Γ, v), and we refer with cr(Γ, e, f) to the number of
crossings on two edges e and f in Γ, i.e., cr(Γ, e, f) ∈ {0, 1} if e 6= f . For a point u and a
segment e, denote by VR(u, e) the visibility region of u and e, i.e., the set of points p ∈ R2

such that the segment up and e do not intersect. Moreover, let BD(u, e) be the boundary of
VR(u, e). Let A(Γ, v) be the arrangement over all boundaries BD(u, e) for each neighbor
u ∈ N(v) of v and each edge e ∈ E \ E(u); see Figure 1. The arrangement has the property
that two points p and q in a common cell of A(Γ, v) induce the same number of crossings for
v, i.e., cr(Γ[v 7→ p], v) = cr(Γ[v 7→ q], v) [21]. Thus, the computation of a crossing minimal
position p? reduces to finding a crossing-minimal region f? in A(Γ, v).

For our experiments, we used two different compute servers. Both systems ran with an
openSUSE Leap 15.0 operating system. All algorithms were compiled with g++ version 7.3.1
with optimization mode -O3. System 1 was used for running time experiments, i.e., for the
experiments evaluated in Section 3.1 and in Section 4.2. System 2 is used for the experiments
evaluated in Section 4.3.
System 1 Intel Xeon(tm) E5-1630v3 processor clocked at 3.7 GHz, 128GB RAM.
System 2 Two Intel Xeon(tm) E5-2670 CPU processors clocked at 2.6 GHz, 64GB RAM.

3 Efficient Implementation of the Crossing-Minimal Position

The vertex-movement approach iteratively moves a single vertex to its crossing-minimal
position. The running time of the overall algorithm crucially depends on an efficient
computation of this operation. Therefore the aim of this section is to provide an efficient
implementation of the crossing-minimal position of a vertex. Our previous implementation [21]
heavily relies on CGAL [24], which follows an exact computations paradigm and uses exact
number types to, e.g., represent coordinates and intermediate results. This helps to ensure
correctness but considerably increases the running time of the algorithms. We introduce
an approach to compute the crossing-minimal position that drastically reduces the usage of
exact computations.

Computing a crossing-minimal position of a vertex v is equivalent to computing a crossing-
minimal region f? in the arrangement A(Γ, v). The region f? of a vertex v can be computed
by a breadth-first search in the dual graph A(Γ, v)?. Thus, the time-consuming steps to
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Figure 2 (a) Bloated dual A+ (blue) of an arrangement A (black). Inserting edges dual to a
segment s (b) and within a face (c).

compute f? are to construct the arrangement A(Γ, v) and then to build the dual A(Γ, v)?.
Instead of computing the dual A(Γ, v)? we construct a so-called bloated dual A(Γ, v)+. The
advantage of this approach is that it suffices to compute the set of intersecting segments in
A(Γ, v) to construct A(Γ, v)+ and it is not necessary to compute the arrangement A(Γ, v)
itself, i.e., the exact coordinates of each intersection.

Let S be a set of line segments and let A be the arrangement of S. A bloated dual of A
is a graph A+ that has the following properties (compare Figure 2a):
(i) each edge e incident to a face f corresponds to a vertex vf

e in A+,
(ii) if two distinct segments s, s′ ∈ S of f have a common intersection on the boundary of

f , then vf
s v

f
s′ ∈ E(A+), and

(iii) for two distinct faces f, g sharing a common segment s, there is an edge vf
s v

g
s ∈ E(A+).

Note that given a crossing-minimal face and vf
s0
, the geometric representation of f has to

be computed in order to compute a crossing-minimal position p ∈ f . Further a vertex vf
s0

belongs to a cycle vf
s0
, vf

s1
, . . . vf

sk
. Then, the geometric representation of the boundary of f

can be computed by intersecting the segments si and si+1, where we set k + 1 = 0. In the
following, we will show that it is sufficient to know the order in which the segments in S
intersect to construct the bloated dual. Thus, exact number types only have to be used to
determine the order of two segments whose intersections with a third segment s have a small
distance on s.

We construct the bloated dual of A in two steps. First, we insert all vertices vf
s , v

g
s and

the corresponding edge vf
s v

g
s . In the second step, we insert the remaining edges vf

s v
f
s′ within

a face f . For a compact description we assume that no intersection point of two segments is
an endpoint of a segment. We define the source of s and target of s to be the lexicographically
smallest and largest point on s, respectively. We direct each segment s from its source to its
target.

Let p1, p2, . . . , pl be the intersection points on a segment s in lexicographical order. These
intersection points correspond to a set of left faces fL

1 , f
L
2 , . . . , f

L
l+1 and to a set of right faces

fR
1 , f

R
2 , . . . , f

R
l+1, such that fL

i and fR
i share parts of their boundary; see Figure 2b. Thus,

we can associate a set of vertices vL
i , v

R
i , 2 ≤ i ≤ l+ 1, with s, and add the edges vL

i v
R
i to A+.

Note that only the order and not the actual coordinates of the points p1, . . . , pl has to be
known to insert the edges. Thus, given the set of segments that intersect s, an exact number
type is only necessary to determine the order of two segments si and sj whose intersection
points pi and pj on s have a small distance.

We now add the remaining edges within a face f . Let S′ = {s1, . . . , sk} ⊆ S be the set
of segments that intersect s in pi; see Figure 2c. The two segments sL, sR ∈ S′ that lie
on the boundary of fL

i and fR
i can be determined as follows. To find the segment sL, we
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Figure 3 Comparing the running time of two approaches (orange Precise, blue Bd) to compute
the crossing minimal region. Each point corresponds to a graph G. The x-axis shows the number of
edges of G. The y-axis depicts the running time in seconds to compute the crossing minimal regions
for all vertices of G.

distinguish two cases. First, assume that there exists a segment s′ ∈ S′ whose source is left
of s. Observe that if there is a segment s′′ whose target is left of s, the segment s′′ cannot
be the segment sL. Thus, we assume without loss of generality that all sources of segments
in Si

s are left of s. Then a segment s′ ∈ S′ is the segment sL if and only if the segment s′
and each segment s′′ ∈ S′ \ {s′} form a right turn. Now consider the case that there is no
segment whose source is left of s. Then a segment s′ is sL if and only if the segment s′ and
each segment s′′ ∈ S′ \ {s′} form a left turn. The segment sR can be determined analogously.

Implementation Details. We give some implementation details which allow us to efficiently
implement the construction of the bloated dual. We use the index of a vertex to decide
whether it is left or right of s, i.e., vertices with an odd index are left of s and vertices with
an even index are right of s. The fact that each vertex of A+ has degree at most 3 allows
us to represent A+ as a single array B of size 3n, where n is the number of vertices of A+.
The vertices incident to a vertex vi occupy the cells B[3i], B[3i+ 1] and B[3i+ 2]. Moreover,
each pair of segments in S can be handled independently to construct the bloated dual. This
enables a parallelization over the segments in S.

3.1 Evaluation of the Running Time
In this section, we compare the running time of the two approaches to compute the crossing-
minimal region of a vertex. We refer with Precise to the approach that uses CGAL to
compute the crossing minimal region and with Bd to the approach based on the bloated
dual. In order to compute all intersecting segments, we use a naive implementation of a
sweep-line algorithm [4]. In this approach all segments within a specific interval are pairwise
checked for an intersection. This has the advantage that the computation is independent of
the coordinates of the intersection.

The experimental setup is as follows. Given a drawing Γ of a graph G, we are interested
in the running time of moving all vertices of a graph to their crossing-minimal positions.
Therefore, we measure the running time of computing the crossing-minimal regions of all
vertices. In order to guarantee the comparability of the two approaches, we use the same
vertex order and only compute the crossing-minimal region but do not update the positions of
the vertices. We use the same set of benchmark graphs used in [21]: North1, Rome1, graphs

1 http://graphdrawing.org/data.html
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Figure 4 The x-axis shows the vertex-degree and the y-axis the number of intersecting edges in
the arrangement A(Γ, v). The y-axis is in log-scale.

that have Community structure, and Triangulations on 64 vertices with an additional 10
random edges. For each graph class, 100 graphs were selected uniformly at random. We use
the implementation of Stress [12] provided by Ogdf [7] (snapshot 2017-07-23) to compute
an initial layout of the graphs.

The plots in Figure 3 shows the results of the experiments. Each point in the plot
corresponds to the running time of computing all crossing-minimal region of a single graph.
The plot shows that the Bd implementation is considerably faster than the Precise im-
plementation. For each graph class, we achieve on average a speed-up of at least 20. The
minimum speed-up on the North graphs is 8. For each graph class, the speed-up is at least
18 for at least 75 out of 100 instances.

4 Random Sampling

The worst-case running time of computing the crossing-minimal region of a vertex v is
super-quadratic in the size of the graph, see Theorem 1. Figure 4 shows the number of
intersecting segment in the arrangement A(Γ, v) compared to the vertex-degree of v, for
vertices of three selected graphs with at most 2 133 edges, compare Table 1. For these graphs
the arrangement already contains up to 440 685 519 intersecting segments. Indeed, we were
not able to compute the number of intersections for all vertices of the graph c.metabolic,
since the algorithm ran out of memory first. Due to the high number of intersections in
graphs with a high number of edges or a large maximum vertex-degree, it is for these graphs
infeasible to compute a crossing-minimal position of a vertex. This motivates the following
question: Is a small subgraph of G sufficient to considerably reduce the number of crossings
in a given drawing?

To address this question, we follow the vertex-movement approach. Let Γ0 be a drawing
of G and let v1, v2, . . . , vn be an ordered set of the vertices V of G. For each vertex vi we
obtain a new drawing Γi from the drawing Γi−1 by moving vi to a new position p?

i . To
compute the new position we consider a primal sampling approach, i.e., a sampling of points
in the solution space R2, and a dual sampling approach, i.e., a sampling of edges that induce
constraints to the solution space.

More formally, we consider the following approach to compute a new position of a single
vertex vi. Let Si ⊂ E be a uniform random subset of the edges of G and let V (Si) ⊂ V be the
vertices that are incident to an edge in Si. The graph G|Si

= (V (Si)∪N(vi)∪{vi}, Si∪E(vi))
induces a drawing Γ|Si in Γi−1. Let Ri be the crossing-minimal region of vi with respect to
the drawing Γ|Si

. Recall that for Si = E the region Ri has the property that cr(Γ|Si
[vi 7→
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p], vi) = cr(Γ|Si [vi 7→ q], vi) for any two points p, q ∈ Ri, compare Section 2. If Si is a strict
subset of E, then Ri does not necessarily have this property anymore. For this reason, let
Pi ⊂ Ri be a set of uniform random points and let p?

i ∈ Pi∪{p′i} be the point that minimizes
cr(Γ[v 7→ p?

i ], vi), where p′i is the position of vi in Γi−1.
This remainder of this section is organized as follows. First, we analyze the dual sampling

from a theoretical perspective (Section 4.1), followed by an experimental evaluation that
compares the primal to the dual sampling (Section 4.2). Finally, based on the insights
from this evaluation, we introduce in Section 4.3 a weighted sampling approach that is less
restrictive than the dual sampling.

4.1 Approximating the Co-Crossing Number of a Vertex
In this section we study the dual sampling approach, i.e., the sampling of edges, with tools
introduced in the context of the theory of VC-dimension. A thorough introduction into the
theory of VC-dimension can be found in Matoušek’s Lectures on Discrete Geometry [18].
For a fixed vertex v, a drawing Γ is ε-well behaved if for each point p ∈ R2 and each vertex
u ∈ N(v), the edge uv crosses at most (1 − ε)|E| edges in the drawing Γ[v 7→ p]. The
co-crossing number co-cr(Γ, v) of a vertex v is the number of edge pairs e ∈ E and uv ∈ E
that do not cross. We show that given an ε-well-behaved drawing Γ of a graph G = (V,E)
and a degree-k vertex v, a random sample S ⊂ E of size Θ(k log k) enables us to compute a
position q? whose co-crossing number is a (1− δ)-approximation of the co-crossing number
of a vertex v. Note that we are not able to guarantee that a large co-crossing number of a
vertex v implies a small crossing number of v. On the other hand, the co-crossing number is
of interest for a variety of (sparse) graph. For example, drawings that contain many triangles
are ε-well-behaved, since every line intersects at most two segments of a triangle.

A set system is a tuple (X,F) with a base set X and F ⊆ 2X . In the following, we assume
X to be finite. For some parameters ε, δ ∈ (0, 1], a set S ⊆ X is a relative (ε, δ)-approximation
for the set system (X,F) if for each R ∈ F the following inequality holds.

∣∣∣∣ |S ∩R||S|
− |R|
|X|

∣∣∣∣ ≤ δmax{ |R|
|X|

, ε} (1)

The proof of the following proposition and of proofs of statements that are marked with
(?) can be found in the appendix of the full version.

I Proposition 2 (?). For ε, δ ∈ (0, 1], let S be an (ε, δ)-approximation of the set system
(X,F). If every R ∈ F has size at least ε|X| then Equation (1) can be rewritten as follows:

(1− δ) |R| ≤ |X| |S ∩R|
|S|

≤ (1 + δ) |R| .

Let F|A = {R ∩ A | R ∈ F} be the restriction of F to a set A ⊆ X. A set A ⊆ X is
shattered by F if every subset of A can be obtained by an intersection of A with a set R ∈ F ,
i.e., F|A = 2A. The VC-dimension of a set system (X,F) is the size of the largest subset
A ⊆ X such that A is shattered by F [25].

I Theorem 3 (Har-Peled and Sharir [15], Li et al. [17]). Let (X,F) be a finite set system with
VC-dimension d, and let δ, ε, γ ∈ (0, 1]. A uniform random sample S ⊆ X of size

Θ
(
d · log ε−1 + log γ−1

εδ2

)
is a relative (ε, δ)-approximation for (X,F) with probability (1− γ).

ESA 2019
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For a vertex u ∈ N(v), let Euv(Γ) = {e ∈ E | cr(Γ, e, uv) = 0} denote the set of edges
that are not crossed by the edge uv in Γ. Then we have co-cr(Γ, v) =

∑
u∈N(v)

∣∣∣Euv(Γ)
∣∣∣.

Moreover, let Euv(p) = Euv(Γ[v 7→ p]). Then the set Fuv =
⋃

p∈R2

{
Euv(p)

}
contains for

each drawing Γ[v 7→ p] the set of edges that are not crossed by the edges uv, i.e, Euv(p). In
particular (E,Fuv) is a set system and we will prove that it has bounded VC-dimension.
This allows us to approximate the number of edges that are not crossed by the edge uv. We
facilitate this to approximate the co-crossing number of a vertex for ε-well behaved drawings.

I Lemma 4. The VC-dimension of the set system (E,Fuv) is at most 8.

Proof. Recall that that vertex u has a fixed position. Let BD(u, e) be the boundary of the
visibility region of u and the edge e ∈ E. Let A denote the arrangement of all boundaries
BD(u, e), e ∈ E. Let F be the set of faces in A. Note that by Lemma 3.1 in [21] for every
two points p, q ∈ f the sets Ep and Eq of edges that have a non-empty intersection with
the edge uv when v is moved to p and q, respectively, coincide. Hence, the set Ef ⊆ E

of edges that cross the edge uv, in the drawing obtained from Γ where v is moved to an
arbitrary position in f , is well defined. Thus, the number of faces |F | is an upper bound
for
∣∣∣Fuv|A

∣∣∣ for every A ⊂ E. Note that there may be subsets of E that are represented by
more than one face. Moreover, observe that the visibility region VR(u, e) is the intersection
of three half-planes. Let l1e , l2e , l3e be the supporting lines of these half-planes and let A′ be
the arrangement of lines lie, e ∈ E. Hence, the number of faces in the arrangement A′ of 3m
lines is an upper bound for |F |, with m = |E|. The number of faces |F ′| of A′ is bounded by
f(m) := 3m(3m− 1)/2 + 1 [20]. Thus, it is not possible to shatter a set A ⊂ E if the number
of faces |F ′| is smaller than the number of subsets of A. The largest number for which the
equality 2m ≤ f(m) holds is between 8 and 9. Since 2m grows faster than f(m), the largest
set that can possibly be shattered has size at most 8. J

Due to Proposition 2 and Theorem 3 a relative (ε, δ)-approximation Su of (E,Fuv) allows
us to approximate the number of edges that are not crossed by the edge uv. In the following
we show that we can approximate the co-crossing number of a vertex v in any drawing
Γ[v 7→ p] if we are given a relative (ε, δ)-approximation Su for each vertex u that is adjacent
to v. The number |Euv(p) ∩ Su|/|Su| corresponds to the relative number of edges in Su that
are not crossed by the edge uv. Hence, the function λ(p) = |E|

∑
u∈U |Euv(p) ∩ Su|/|Su| can

be seen as an estimation of co-cr(p) = co-cr(Γ[v 7→ p], v).

I Lemma 5 (?). Let ε, δ ∈ (0, 1] be two parameters and let Γ be an ε-well behaved drawing
of G. For every u ∈ N(v), let Su be a relative (ε, δ)-approximation of the set system (E,Fuv).
Then (1− δ) co-cr(p) ≤ λ(p) ≤ (1 + δ) co-cr(p) holds for all p ∈ R2.

Assume that ε, δ, γ ∈ (0, 1) are constants. Lemma 5 shows that k independent samples Su

of constant size approximate the co-crossing number of v. By slightly increasing the number
of samples, we can use a single set S for all neighbors u. This reduces the running time from
O(k3 log k) to O(k2 log3 k).

I Lemma 6 (?). Let v be a degree-k vertex and let ε, δ, γ ∈ (0, 1] with γ ≤ 1/k. A uniformly
random sample S ⊆ E of size Θ

(
(log ε−1 + log γ−1)/(εδ2)

)
is a relative (ε, δ)-approximation

the set system (E,Fuv) with probability 1− kγ, for each uv ∈ E.

With Lemma 5 and Lemma 6 at hand, we have all the necessary tools to prove the
main theorem.
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I Theorem 7. Let ε, δ, γ ∈ (0, 1] be three constants and let G = (V,E) be a graph with a
ε-well behaved drawing Γ and let v ∈ V be a degree-k vertex. Let p? be the position that
maximizes co-cr(Γ[v 7→ p?], v). A (1− δ)-approximation of co-cr(Γ[v 7→ p?]) can be computed
in O

(
k2 log3 k

)
time with probability 1− γ.

Proof. Let γ′ = γ · k−1 and δ′ = δ/2. Let S ⊆ E be a uniformly random sample of size
Θ
(
(log ε−1 + log γ′−1)/(εδ′2)

)
. According to Lemma 6, for each uv ∈ E, the sample S is a

(ε, δ′)-approximation of the (E,Fuv) with probability 1− kγ′ = 1− γ.
According to Lemma 5 the expected number of crossing-free edges λ(p) is a (1 − δ)-

approximation of co-cr(p), i.e., (1 + δ′) co-cr(q) ≥ λ(q) ≥ (1 − δ′) co-cr(q). Let p? be the
position that maximizes co-cr(p) and let q? be the position that maximizes λ(q). Hence, we
have λ(q?) ≥ λ(p?). Observe that over δ′ > 0 the inequality (1− δ′)/(1 + δ′) ≥ 1− 2δ′ holds.
We use this to prove that co-cr(q?) ≥ (1− 2δ′) co-cr(p?).

co-cr(q?) ≥ 1
(1 + δ′)λ(q?) ≥ 1

(1 + δ′)λ(p?) ≥ 1− δ′

1 + δ′
co-cr(p?) ≥ (1− 2δ′) co-cr(p?)

Plugging in the value δ/2 for δ′ yields that co-cr(q?) is a δ-approximation of co-cr(p?).
Since the three parameters ε, δ, γ are constants, the size of the sample S is in Θ(log k).
Recall that the running time to compute the crossing-minimal position of v in a drawing
Γ is O

(
(kn+m)2 log (kn+m)

)
(Theorem 1). Thus the position q? can be computed in

O(k log k + log k)2 log(k log k + log k)) time, since m = |S| ∈ Θ(log k) and n ≤ 2m. The
following estimation concludes the proof.

O
(
k2 log2 k log(k log k)

)
= O

(
k2 log2 k log(k2)

)
= O(k2 log3 k) J

Note that the previous techniques can be used to design a δ-approximation algorithm for
the crossing number of a vertex. But this requires drawings of graphs where at least ε|E|
edges, i.e., Ω(|E|), are crossed. This restriction is not too surprising, since sampling the set
of edges can result in an arbitrarily bad approximation for a vertex whose crossing-minimal
position induces no crossings.

4.2 Experimental Evaluation
In this section we complement the theoretical analyses of the random sampling of edges
with an experimental evaluation. We first introduce our benchmark instances, followed by a
description of a preprocessing step to reduce trivial cases and a set of configurations that
we evaluate.

Benchmark Instances. We evaluate our algorithm on graphs from three different sources.
DIMACS The graphs from this classes are selected from the 10th Dimacs Implementation

Challenge - Graph Partitioning and Graph Clustering [2].
Sparse MC Inspired by the selection of benchmark graphs in [19], we selected a few arbitrary

graphs from the Suite Sparse Matrix Collection (formerly known as the Florida Sparse
Matrix Collection) [9].

k-regular For each k = 3, 6, 9 we computed 25 random k-regular graphs on 1000 vertices
following the model of Steger and Wormald [23].

Preprocessing. Some of the benchmark graphs contain multiple connected components.
Moreover, we observed that the Stress layout introduces crossings with edges that are
incident to a degree-1 vertex. In both cases, these crossings can be removed. Therefore, we
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reduce the benchmark instances so that they do not contain these trivial cases as follows.
First, we evaluate only the connected component GC of each graph G that has the highest
number of vertices. Further, we iteratively remove all vertices of degree 1 from GC .

The vertex-movement approach takes an initial drawing of a graph as input. Note that
the experimental results in [21] showed that drawings obtained with Stress have the smallest
number of crossings compared to other energy-based methods implemented in Ogdf. In
order to avoid side effects, we first computed a random drawing for each graph GC where
each coordinate is chosen uniformly at random on a grid of size m × m. Afterwards we
applied the Stress method implemented in Ogdf [7] (snapshot 2017-07-23) to this drawing.

Configurations. The previously described approach moves the vertices in a certain order.
We use the order proposed in [21], i.e, in descending order with respect to the function
cr(Γ0, vi)2, vi ∈ V , where Γ0 is the initial drawing. The computation of the new position p?

i

of a vertex vi depends on three parameters (|Si|, |Pi|,K). The parameter K is a threshold on
the degree ki of vi, since we observed in our preliminary experiments, that in case that ki is
large, 128GB of memory are not sufficient to compute the crossing-minimal region. Note that
in case that |Si| is constant the running time to compute Ri is O((ki · n′)2 logn′) = O(k2

i ),
where n′ = |V (S)| ∈ O(|S|). We handle vertices of degree larger than K, as follows. Let
N1 ∪ · · · ∪Nl be a partition of the neighborhood N(v) of v with l = |N(v)|/K. Further, let
u1, u2, . . . , uk be a random order of N(v), then Nj contains the vertices ua with j ≤ a ≤ j+K.
For each j, we compute a random sample Sj

i and a crossing-minimal position q?
j of vertex

v with neighborhood Nj with respect to Sj
i . The new position p?

i of vi is the position that
minimizes cr(Γ[vi 7→ q?

j ], vi).
We select the same parameters for each vertex and thus denote the triple by (|S|, |P |,K).

We expect that with an increasing number |S| the number of crossings decreases. The sample
size |S| = 512, was the largest number of samples such that we are able to compute a final
drawing of our benchmark instances in reasonable time. As a baseline we sample 1000 points
in the plane. Thus, we evaluate the following two configuration, S512 = (512, 1, 100) and
S0 = (0, 1000,∞). Finally, we restrict the movement of a single vertex to be within an
axis-aligned square that is twice the size of the smallest axis-aligned squares that entirely
contains Γ0.

Evaluation. Table 1 lists statistics for the Dimacs and the Sparse MC graphs. In particular
the number of crossings of the initial drawing (Stress) and the drawing obtained by the S512
and S0 configurations. Furthermore, we report the running times for the two configurations.
Since we use an external library (Ogdf) to compute the initial drawing, the reported times
do not include the time to compute the initial drawing. Note that Stress required at most
0.9min to complete on the Dimacs graph and 2.3min on the Sparse MC graphs. Since the
size of the arrangement A(Γ, v) depends on the degree of v, the overall running time varies
with the number of vertices and the average degree. Compare, e.g., c.metabolic to c.neural,
or mk9-b2 to bcsstk08. Moreover, the commanche graph shows that the running time of S0
is not necessarily smaller than the running time of S512. For each point p ∈ P the number
of crossings of edges incident to v in Γ[v 7→ p] have to be counted. Since the commanche
graph contains over 11 000 edges, the S512 configuration with |P | = 1 is faster than the S0
configuration, which has to count the number of crossings for 1 000 points.

Now consider the number of crossings in the initial drawing (Stress) and in the drawing
obtained by the S512 configuration. Since we move a vertex only if it decreases its number
of crossings, it is expected that the number of crossings decreases on all graphs. For most
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Table 1 Statistics for the Dimacs and Sparse MC graphs. n, m, and ∆ correspond the number
of vertices, edges and the mean vertex-degree, respectively.

n m ∆ crossings time [min]
Stress S512 S0 S512 S0

Dimacs
adjnoun 102 415 8.14 6 576 3 775 4 468 0.11 0.09
football 115 613 10.66 6 865 3 568 4 030 0.14 0.17
netscience 352 887 5.04 1 724 583 814 0.53 0.31
c.metabolic 445 2 017 9.07 113 117 55 714 63 028 11.29 2.29
c.neural 282 2 133 15.13 128 068 86 641 90 920 5.23 2.07
jazz 193 2 737 28.36 223 990 143 647 153 040 5.22 3.31
power 3 353 5 006 2.99 7 622 6 854 6 293 4.56 10.74
email 978 5 296 10.83 504 144 342 020 357 272 37.12 12.48
hep-th 4 786 12 766 5.33 836 809 546 780 638 069 72.86 78.24
Sparse MC
1138_bus 671 991 2.95 657 402 467 0.41 0.33
ch7-6-b1 630 1 243 3.95 64 055 24 928 26 055 6.54 0.79
mk9-b2 1 260 3 774 5.99 412 397 248 884 252 198 20.33 7.14
bcsstk08 1 055 5 927 11.24 455 069 342 996 344 644 67.30 18.70
mahindas 1 258 7 513 11.94 1 463 437 933 247 1 042 787 68.17 24.09
eris1176 892 8 405 18.85 1 682 458 1 030 881 1 087 605 77.09 27.33
commanche 7 920 11 880 3.00 6 332 6 239 6 146 6.52 56.75

graphs, the S512 configuration decreases the number of crossings by over 30%. In case of
the ch7-6-b1 and the netscience graph the number of crossings are even decreased by over
60%. Exceptions are the bcsstk08, power and commanche graphs with 24%, 10% and 1.4%
respectively. Comparing the number crossings obtained by S512 to the configuration S0, S0
results in fewer crossings only on two graphs (power, commanche).

Observe that the power, 11138_bus, ch7-6-b1 and commanche graphs all have an average
vertex-degree of roughly 3.0. The comparison of the number of crossing obtained by S512 and
S0 is not conclusive, since S0 yields fewer crossings on the power and commanche graphs and
S512 on the remaining two. In order to be able to further study the effect of the (average)
vertex degree we evaluate the number of crossings of k-regular graphs. We use the plots
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Figure 5 Number of crossings of the k-regular graphs.

ESA 2019



76:12 Geometric Crossing Minimization

in Figure 5 for the evaluation. Each point (xG, yG) corresponds to a k-regular graph G.
The color encodes the vertex-degree. Let ΓA and ΓB be two drawings of G obtained by an
algorithm A and B, respectively. The x-value xG corresponds to the number of crossings
in ΓA in thousands, i.e., cr(ΓA)/1000. The y-value yG is the quotient cr(ΓB)/ cr(ΓA). The
titles of the plots are in the form (A,B) and encode the compared algorithms. For example
in Figure 5a algorithm A is Stress and B is S0. For example, the Stress drawings of the
3-regular graphs have on average 12 487 crossings. Drawings obtained by S0 have on average
17% less crossings, i.e., 10 402. On the other hand, S512 decreases the number of crossings
on average by 20%. For k = 6, 9, S0 and S512 both reduce the number of crossings by 25%.
In particular, Figure 5c shows that for k = 6, 9 it is unclear, whether S512 or S0 computes
drawings with fewer crossings.

4.3 Weighted Sampling
For some graphs, the previous section gives first indications that sampling a set of edges
yields a small number of crossings compared to a pure sampling of points in the plane. In
particular Figure 5c indicates that the edge-sampling approach does not always have a clear
advantage over sampling points in the plane. One reason for this might be that sampling
within the set of points Pi in the region Ri is too restrictive. Observe that the region Ri

is only crossing-minimal with respect to the sample S and does not necessarily contain the
crossing-minimal position p?

i of the vertex vi with respect to all edges E. On the other hand,
sampling the set of points Pi in R2 does not use the structure of the graph at all. This
motivates the following weighted approach of sampling points in R2.

For a set S ⊂ E, let crj be the number of crossings of the vertex vi with respect to Γ|S ,
when vi is moved to a cell cj of the arrangement A(Γ|S , vi). Let M be the maximum of all
crj . We select a cell cj with the probability 2M−crj/

∑
k 2M−crk . Within a given cell, we

draw a point uniformly at random. Note that in case that there are exactly n cells such
that cell cj induces j crossings, the probability that the cell c0 is drawn converges to 1/2
for n→∞.

Benchmark Instances, Preprocessing & Methodology. We use the same benchmark set
and the same preprocessing steps as described in Section 4. In order to obtain more reliable
results, we perform 10 independent iterations for each configuration on the Dimacs and
Sparse MC graphs. Since the k-regular graphs are uniform randomly computed, they are
already representative for their class. Therefore, we perform only single runs on these graphs.

Configuration. We compare the following three configurations. R0 refers to the uniform
random sampling of points in R2 with the parameters (|S|, |P |,K) = (0, 1000,∞), R512 to
the restricted sampling in Ri with the parameters, (512, 1000, 100), andW512 to the weighted
sampling in R2 with the parameters (512, 1000, 100). The configurations are selected such
that R0 and R512 differ only in a single parameter, i.e., in the number of sampled edges. The
only difference between R512 and W512 is the sampling strategy. Note that the parameters
of R0 and S0 coincide, but not the parameters of S512 and R512.

Evaluation. Since we executed 10 independent runs of the algorithm on each graph, Table 2
lists the mean and standard deviation of the computed number of crossings for each graph.
For each graph, we marked the cell with the lowest number of crossings in green and the
largest number in blue. For each graph, we used the Mann-Witney-U test [22] to check the
null hypothesis that the crossing numbers belong to the same distribution. The test indicates
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Table 2 Mean and standard deviation (std) of the number of crossing categorized by configuration.
For each graph the configuration with the lowest and highest number of crossings in marked.

R0 R512 W512
mean std mean std mean std

Dimacs
adjnoun 4 445.0 39.55 3 655.7 62.96 3 951.2 19.53
football 3 973.6 97.93 3 350.0 83.38 3 247.0 73.84
netscience 819.0 30.73 497.1 28.78 437.8 12.87
c.metabolic 62 170.4 760.47 56 032.3 1 227.23 62 987.9 1 907.64
c.neural 89 744.3 1 239.22 86 500.8 1 364.5 99 426.1 1 258.98
jazz 152 013.8 1 930.13 147 387.1 3 134.15 213 019.4 1 696.07
power 6 301.1 33.51 4 512.8 63.09 3 912.5 30.97
email 356 583.4 3 512.0 341 503.8 3 480.74 351 168.7 2 624.18
hep-th 640 515.2 3 443.22 515 109.1 3 983.23 392 189.7 1 551.53
Sparse MC
1138_bus 474.6 13.25 342.9 12.91 247.6 9.8
ch7-6-b1 25 874.7 356.58 25 172.4 582.48 28 443.5 960.3
mk9-b2 251 360.9 1 514.05 245 447.4 2 914.18 228 794.5 2 069.96
bcsstk08 346 404.4 3 730.3 328 182.0 6 127.69 330 213.8 1 726.01
mahindas 1 036 745.7 11 494.88 936 889.0 11 207.34 1 105 850.9 10 185.51
eris1176 1 103 184.6 21 475.11 1 037 509.5 29 877.3 1 492 423.4 25 457.93
commanche 6 135.2 13.08 5 370.3 24.75 5 979.4 14.72

that we can reject the null hypothesis at a significance level of α = 0.01, for all graphs with
the exception of football, ch7-6-b1 and bcsstk08. First, observe that the R0 configuration
never computes a drawing with fewer crossings than R512. Including the football, ch7-6-b1
and the bcsstk08 graphs, 11 of the drawings with the fewest crossing were obtained from the
R512 configurations. Only 7 correspond to the W512 configuration. Table 1 shows that these
graphs have an average vertex-degree of at most 11. Moreover, the degree-distributions of
these graphs follow the power-law (compare full version). On the other hand, a few of the 8
graph where R512 outperforms W512 also have a small average vertex-degree.

We use Figure 6 to compare the effect of the vertex-degree on the number of crossings.
The plot follows the same convention as the plots in Figure 5. Observe that for each k, the
W512 configuration computes drawings with fewer crossings than R512. The improvement
decreases with an increasing k. The same observation can be made for the comparison of
W512 to R0 but not for the comparison for R512 to R0, which indicates that sampling the set
of points Pi within the region Ri is indeed too restrictive, at least on our k-regular graphs.

Overall our experimental evaluation shows that even with a naive uniform random
sampling of a set of points in the plane the number of crossings in drawings of Stress can
be reduced considerably. Using a random sample of a subset of the edges helps to compute
drawings with even less crossings. The mean-vertex degree and the degree-distributions
are good indicators for whether the restrictive or the weighted sampling of the point set Pi

results in a drawing with the smallest number of crossings.
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Figure 6 Comparison of the number of crossing of the k-regular graphs computed by W512

and R512.

5 Conclusion

In our previous work we showed that the primitive operation of moving a single vertex
to its crossing-minimal position significantly reduces the number of crossings compared to
drawings obtained by Stress. In this paper we introduced the concept of bloated dual
of line arrangements, a combinatorial technique to compute a dual representation of line
arrangements. In our applications of computing drawings with a small number of crossings,
this technique resulted in a speed-up of factor of 20. This improvement was necessary to
adapt the approach for graphs with a large number of vertices and edges. On the other
hand, since the worst-case running time is super-quadratic, this improvement is not sufficient
to cope with large graphs. In Section 4 we showed that random sampling is a promising
technique to minimize crossings in geometric drawings. In Section 4.1 we proved that a
random subset of edges of size Θ(k log k) approximates the co-crossing number of a vertex
v with a high high probability. Further, we evaluated three different strategies to sample
a set of points in the plane in order to compute a new position for the vertex vi. First,
the evaluation confirms that the number of crossings compared to Stress can be reduced
considerably. Furthermore, sampling a small subset of the edges is sufficient to reduce the
number of crossings compared to a naive sampling of points the plane. Our evaluation
suggests that weighted sampling is a promising approach to reduce the number of crossings in
graphs with a low average vertex degree. Otherwise, the evaluation indicates that restricted
sampling results in fewer crossings.

The running time of the vertex-movement approach in combination with the sampling of
the edges mostly depends on the number of vertices. Since a single movement of a vertex
is not optimal anymore, two vertices can be moved independently. Thus, future research
should be concerned with the question whether a parallelization over the vertex set is able to
further reduce the running time while preserving the small number of crossings. Moreover,
we ask whether it is sufficient to move a small subset of the vertices to considerably reduce
the number of crossings.
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