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Abstract
The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric
spaces. However, there has been only limited algorithmic development to compute or approximate
this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees.
Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric
on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight
is treated as edge length and the metric is the induced shortest path metric in the tree. Previously,
Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate
the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a
fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance
between two general metric trees within a multiplicative factor of 14.

Interestingly, the development of our algorithm is made possible by a connection between the
Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge
trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary
(it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out
that an exact or approximation algorithm for the interleaving distance leads to an approximation
algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we
re-define the interleaving distance in a way that makes it easier to develop dynamic programming
approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the
interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm
to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm
to compute the interleaving distance between merge trees is of interest itself, as it is known that it
is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an
approximation factor of O(

√
n) even for trees with unit edge length.
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1 Introduction

Given two metric spaces (X, dX) and (Y, dY ), a natural way to measure their distance is via
the Gromov-Hausdorff distance δGH(X,Y ) between them [15], which intuitively describes
how much additive distance distortion is needed to make the two metric spaces isometric.

We are interested in computing the Gromov-Hausdorff distance between metric trees.
Roughly speaking, a metric tree (X, d) is a geodesic-metric space that can be realized by
the shortest path metric on a tree. Any finite tree T = (V,E) with positive edge weights
w : E → R can be naturally viewed as a metric tree T = (|T |, d): the space is the underlying
space |T | of T , each edge e can be viewed as a segment of length w(e), and the distance d
is the induced shortest path metric. See Figure 1 (a) for an example. Metric trees occur
commonly in practical applications: e.g., a neuron cell has a tree morphology, and can be
modeled as an embedded metric tree in R3. It also represents an important family of metric
spaces that has for example attracted much attention in the literature of metric embedding
and recovery of hierarchical structures, e.g., [2, 4, 3, 10, 11, 13, 23].

Unfortunately, it is shown in [1, 22] that it is not only NP-hard to compute the Gromov-
Hausdorff distance between two trees, but also NP-hard to approximate it within a factor of
3 even for trees with unit edge length. A polynomial-time approximation algorithm is given
in [1]; however, the approximation factor is high: it is O(

√
n) even for unit-edge weight trees.

Another family of tree structures that is of practical interest is the so-called merge tree.
Intuitively, a merge tree is a rooted tree T associated with a real-valued function f : T → R
such that the function value is monotonically decreasing along any root-to-leaf path – We can
think of a merge tree to be a tree with height function associated to it where all nodes with
degree > 2 are down-forks (merging nodes); see Figure 1 (b). The merge tree is a loop-free
variant of the so-called Reeb graph, which is a simple yet meaningful topological summary
for a scalar field g : X → R defined on a domain X, and has been widely used in many
applications in graphics and visualization e.g., [7, 14, 17, 24]. Morozov et al. introduced the
interleaving distance to compare merge trees [20], based on a natural “interleaving idea” which
has recently become fundamental in comparing various topological objects. Also, several
distance measures have been proposed for the Reeb graphs [5, 6, 12]. When applying them to
merge trees, it turns out that two of these distance measures are equivalent to the interleaving
distance. However, the same reduction in [1] to show the hardness of approximating the
Gromov-Hausdorff distance can also be used to show that it is NP-hard to approximate the
interleaving distance between two merge trees within a factor 3.

New work

Although the Gromov-Hausdorff distance is a natural way to measure the degree of near-
isometry between metric spaces [15, 19], the algorithmic development for it has been very
limited so far [1, 9, 21, 22]. In [22], Schmiedl gave an FPT algorithm for approximating the
Gromov-Hausdorff distance between two finite metrics, where the approximation contains
both an additive and multiplicative terms; see more discussion in Remarks after Theorem 20.
In this paper, we present the first FPT algorithm to approximate the Gromov-Hausdorff
distance for metric trees within a constant multiplicative factor.

Interestingly, the development of our approximation algorithm is made possible via a
connection between the Gromov-Hausdorff distance between metric trees and the interleaving
distance between certain merge trees (which has already been observed previously in [1]).
This connection implies that any exact or approximation algorithm for the interleaving
distance will lead to an approximation algorithm for the Gromov-Hausdorff distance for
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metric trees of similar time complexity. Hence we can focus on developing algorithms for the
interleaving distance. The original interleaving distance definition requires considering a pair
of maps between the two input merge trees and their interaction. One of the key insights of
our work is that we can in fact develop an equivalent definition for the interleaving distance
that relies on only a single map from one tree to the other. This, together with the height
functions equipped with merge trees (which give rises to natural ordering between points in
the two trees), essentially allows us to develop a dynamic programming algorithm to check
whether the interleaving distance between two merge trees is smaller than a given threshold
or not: In particular in Section 4, we first give a simpler DP algorithm with slower time
complexity to illustrate the main idea. We then show how we can modify this DP algorithm
to improve the time complexity. Finally, we solve the optimization problem for computing
the interleaving distance2 in Section 5, which leads to a constant-factor (a multiplicative
factor of 14) approximation FPT algorithm for the Gromov-Hausdorff distance between
metric trees.

x

y

z

9

5

4

3
3

7 5

uε

u

v

root(Th)

h Th

x

Th(x)

depth(x)

ε

A
B

C

T1

A
B

C

T2

(a) (b) (c)

Figure 1 (a) A metric tree (T, dT ) with edge length marked. Tree nodes are white dots.
dT (x, z) = 3 + 5 + 2 = 10 is the length of the thickened path π(x, z). (b) A merge tree Th,
with examples of u�v, uε, Th(x) and depth(x) marked. (c) Tree alignment distance between T1

and T2 arbitrarily large, while δGH(T1, T2) is roughly bounded by the pairwise distance difference
which is small.

More on related work

There have been several tree distances proposed in the literature. Two most well-known ones
are the tree edit and tree alignment distances [8], primarily developed to compare labeled
trees. Unfortunately, both distances are MAX SNP-hard to compute for un-ordered trees
[18, 26]. For tree edit distance, it is MAX SNP-hard even for trees with bounded degree. For
the tree alignment distance, it can be computed in polynomial time for trees with bounded
degree. However the tree alignment distance requires that parent-child relation to be strictly
preserved, and thus the small local configuration change shown in Figure 1 (c) will incur a
large tree alignment distance.

We will not survey the large literature in metric embedding which typically minimizes
the metric distortion in a mulplicative manner. However, we mention the work of Hall
and Papadimitriou [16], where, given two equal-sized point sets, they propose to find the
best bijection under which the additive distortion is minimized. They show it is NP-hard
to approximate this optimal additive distortion within a factor of 3 even for points in R3.

2 We note that the final time complexity for the optimization problem presented in Theorem 19 is based
on an argument by Kyle Fox. His argument improves our previous n4 factor (as in Theorem 18) by an
almost n2 factor, by performing a double-binary search, instead of a sequence search we originally used.

ESA 2019
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In contrast, the Gromov-Hausdorff distance is also additive, but allows for many-to-many
correspondence (instead of bijection) between points from two input metric spaces. We also
note that our metric trees consist of all points in the underlying space of input trees (i.e,
including points in the interior of a tree edge). This makes the distance robust against adding
extra nodes and short “hairs” (branches). Nevertheless, we can also consider discrete metric
trees, where we only aim to align nodes of input trees (instead of all points in the underlying
space of the trees). Our algorithms hold for the discrete case as well.

2 Preliminaries

Metric space, metric trees

A metric space is a pair (X, d) where X is a set and d : X ×X → R≥0 satisfies: (i) for any
x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 holds only when x = y; (ii) d(x, y) = d(y, x), and (iii)
for any x, y, z, d(x, z) ≤ d(x, y) + d(y, z). We call d a metric on the space X. A metric space
(X, d) is a finite metric tree if it is a length metric space3 and X is homeomorphic to the
underlying space |T | of some finite tree T = (V,E).

Equivalently, suppose we are given a finite tree T = (V,E) where each edge e ∈ E has a
positive weight `(e) > 0. View the underlying space |e| of e as a segment with length `(e)
(i.e, it is isometric to [0, `(e)]), and we can thus define the distance dT (x, y) between any
two points x, y ∈ |e| as the length of the sub-segment e[x, y]. The underlying space |T | of T
is the union of all these segments (and thus includes points in the interior of each edge as
well). For any x, z ∈ |T |, there is a unique simple path π(x, z) ⊂ |T | connecting them. The
(shortest path) distance dT (x, z) equal to the length of this path, which is simply the sum of
the lengths of the restrictions of this path to edges in T . See Figure 1 (a). The space |T |
equipped with dT is a metric tree (|T |, dT ).

Given a tree T = (V,E), we use the term tree nodes to refer to points in V , and an
arbitrary x ∈ |T | potentially from the interior of some tree edge is referred to as a point. Given
T , we also use V (T ) and E(T ) to denote its node-set and edge-set, respectively. To emphasize
the combinatorial structure behind a metric tree, in the paper we will write a metric tree
(T, dT ), with the understanding that the space is in fact the underlying space |T | of T .

Note that if we restrict this metric space to only the tree nodes, we obtain a discrete
metric tree (V (T ), dT ), and the distance between two tree nodes is simply the standard
shortest path distance between them in a weighted graph (tree T in this case). Our algorithms
developed in this paper can be made to work for the discrete metric trees as well.

Gromov-Hausdorff distance

Given two metric spaces X = (X, dX) and Y = (Y, dY ), a correspondence between them is a
relation C : X × Y whose projection on X and on Y are both surjective; i.e, for any x ∈ X,
there is at least one (x, y) ∈ C, and for any y′ ∈ Y , there is at least one (x′, y′) ∈ C. If
(x, y) ∈ C, then we say y (resp. x) is a pairing partner for x (resp. y); note that x (resp. y)
could have multiple pairing partners. The cost of this correspondence is defined as:

cost(C) = max
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y′)|,

which measures the maximum metric distortion (difference in pairwise distances) under this
correspondence. The Gromov-Hausdorff distance between them is:

δGH(X ,Y) = 1
2 inf

C∈Π(X,Y )
cost(C), where Π(X,Y ) = set of correspondences between X and Y.

3 (X, d) is a length metric space if d is the same as the shortest path (i.e, intrinsic) metric it induces on X.
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Merge trees

A merge tree is a pair (T, h) where T is a rooted tree, and the continuous function h : |T | → R
is monotone in the sense the value of h is decreasing along any root-to-leaf path. See Figure 1
(b) for an example. For simplicity, we often write the merge tree as Th, and refer to h as the
height function, and h(x) the height of a point x ∈ |T |. The merge tree is an natural object:
e.g., it can be used to model a hierarchical clustering tree, where the height of a tree node
indicates the parameter when the cluster (corresponding to the subtree rooted at this node)
is formed. It also arises as a simple topological summary of a scalar function h̃ : M → R
on a domain M , which tracks the connected component information of the sub-level sets
h̃−1(−∞, a] as a ∈ R increases.

To define the interleaving distance, we modify a merge tree Th slightly by extending a
ray from root(Th) upwards with function value h goes to +∞. All merge trees from now
on refer to this modified version. Given a merge tree Th and a point x ∈ |T |, Th(x) is the
subtree of Th rooted at x, and the depth of x (or of Th(x)), denoted by depth(x), is the
largest function value difference between x and any node in its subtree; that is, the height of
the entire subtree Th(x) w.r.t. function h. Given any two points u, v ∈ |T |, we use u�v to
denote that u is an ancestor of v; u�v if u is an ancestor of v and u 6= v. Similarly, v�u
means that v is a descendant of u. Also, the degree of a node in a merge tree is defined as the
downward degree of the node. We use LCA(u, v) to represent the lowest common ancestor
of u and v in |T |. For any non-negative value ε ≥ 0, uε represents the unique ancestor of u
in T such that h(uε)− h(u) = ε. See Figure 1 (b).

Interleaving distance

We now define the interleaving distance between two merge trees T f1 and T g2 , associated with
functions f : |T f1 | → R and g : |T g2 | → R, respectively.

I Definition 1 (ε-Compatible maps [20]). A pair of continuous maps α : |T f1 | → |T
g
2 | and

β : |T g2 | → |T
f
1 | is ε-compatible w.r.t T f1 and T g2 if the following four conditions hold:

(C1). g(α(u)) = f(u) + ε and (C2). β ◦ α(u) = u2ε for any u ∈ |T f1 |;
(C3). f(β(w)) = g(w) + ε and (C4). α ◦ β(w) = w2ε for any w ∈ |T g2 |.

To provide some intuition for this definition, note that if ε = 0, then α = β−1: In this case,
the two trees T1 and T2 are not only isomorphic, but also the function values associated to
them are preserved under the isomorphism. In general for ε > 0, this quantity measures how
far a pair of maps are away from forming a function-preserving isomorphism between T f1
and T g2 . In particular, β is no longer the inverse of α. However, the two maps relate to each
other in the sense that if we send a point u ∈ |T f1 | to |T

g
2 | through α : |T f1 | → |T

g
2 |, then

bring it back via β : |T g2 | → |T
f
1 |, we come back at an ancestor of u in |T f1 | (i.e, property

(C2)). This ancestor must be at height f(u) + 2ε due to properties (C1) and (C3).

I Definition 2 (Interleaving distance [20]). The interleaving distance between two merge trees
T f1 and T g2 is defined as:

dI(T f1 , T
f
2 ) = inf{ ε | there exist a pair of ε-compatible maps w.r.t T f1 and T g2 }. (1)

Interestingly, it is shown in [1] that the Gromov-Hausdorff distance between two metric trees
is related to the interleaving distance between two specific merge trees.

ESA 2019
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B Claim 3 ([1]). Given two metric trees T1 = (T1, d1) and T2 = (T2, d2) with node sets
V1 = V (T1) and V2 = V (T2), respectively, let fu : |T1| → R (resp. gw : |T2| → R)
denote the geodesic distance function to the base point u ∈ V1 (resp. v ∈ V2) defined
by fu(x) = −d1(x, u) for any x ∈ |T1| (resp. gw(y) = −d2(y, w) for any y ∈ |T2|). Set
µ := minu∈V1,w∈V2 dI(T

fu

1 , T gw

2 ). We then have that
µ

14 ≤ δGH(T1, T2) ≤ 2µ.

Note that to compute the quantity µ, we only need to check all pairs of tree nodes of T1
and T2, instead of all pairs of points from |T1| and |T2|.

We say a quantity A is a c-approximation for a quantity B if A
c ≤ B ≤ cA; obviously,

c ≥ 1 and c = 1 means that A = B. The above claim immediately suggests the following:

I Corollary 4. If there is an algorithm to c-approximate the interleaving distance between
any two merge trees in T (n) time, where n is the total complexity of input trees, then there is
an algorithm to O(c)-approximate the Gromov-Hausdorff distance between two metric trees
in n2T (n) time.

In the remainder of this paper, we will focus on developing an algorithm to compute the
interleaving distance between two merge trees T f1 and T g2 . In particular, in Section 3 we
will first show an equivalent definition for interleaving distance, which has a nice structure
that helps us to develop a fixed-parameter tractable algorithm for the decision problem of
“Is dI(T f1 , T

g
2 ) ≥ ε?” in Section 4. We show how this ultimately leads to FPT algorithms

to compute the interleaving distance exactly and to approximate the Gromov-Hausdorff
distance in Section 5.

3 A New Definition for Interleaving Distance

Given two merge trees T f1 and T g2 and δ > 0, to answer the question “Is dI(T f1 , T
g
2 ) ≤ δ?”, a

natural idea is to scan the two trees bottom up w.r.t the “height” values (i.e, f and g), while
checking for possible ε-compatible maps between the partial forests of T f1 and T g2 already
scanned. However, the interaction between the pair maps α and β makes it complicated to
maintain potential maps. We now show that in fact, we only need to check for the existence
of a single map from T f1 to T g2 , which we will call the ε-good map. We believe that this
result is of independent interest.

I Definition 5 (ε-good map). A continuous map α : |T f1 | → |T
g
2 | is ε-good if and only if:

(P1) for any u ∈ |T f1 |, we have g(α(u)) = f(u) + ε;
(P2) if α(u1) � α(u2), then we have u2ε

1 � u2ε
2 , (note u1 � u2 may not be true); and

(P3) if w ∈ |T g2 | \ Im(α), then we have |g(wF ) − g(w)| ≤ 2ε, where Im(α) ⊆ |T g2 | is the
image of α, and wF is the lowest ancestor of w in Im(α).

A map ρ : |Th1
1 | → |T

h2
2 | between two arbitrary merge trees Th1

1 and Th2
2 is monotone if

for any u ∈ |Th1
1 |, we have that h2(ρ(u)) ≥ h1(u). In other word, ρ carries any point u from

Th1
1 to a point higher than it in Th2

2 . If ρ is continuous, then it will map an ancestor of u in
Th1

1 to an ancestor of ρ(u) in Th2
2 as stated below (but the converse is not necessarily true):

I Observation 6. Given a continuous and monotone map ρ : |Th1
1 | → |T

h2
2 | between two

merge trees Th1
1 and Th2

2 , we have that if u1 � u2 in Th1
1 , then ρ(u1) � ρ(u2) in Th2

2 .
This implies that if w = ρ(u) for u ∈ |Th1

1 |, then ρ maps the subtree Th1
1 (u) rooted at u

into the subtree Th2
2 (w) rooted at w. This also implies that if w /∈ Im(ρ), neither does any of

its descendant.
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Note that an ε-good map, or a pair of ε-compatible maps, are all monotone and continuous.
Hence the above observations are applicable to all these maps.

The main result of this section is as follows. Its proof is in [25].

I Theorem 7. Given any two merge trees T f1 and T g2 , then dI(T f1 , T
g
2 ) ≤ ε if and only if

there exists an ε-good map α : |T f1 | → |T
g
2 |.

4 Decision Problem for Interleaving Distance

u

h T h

f(u) + ε

f(u)− ε
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f gT̂ f1 T̂ g2
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Figure 2 (a) Green component within the slab is Bε(u, T f
1 ). The sum of degrees for nodes within

this ε-ball is 13. The ε-degree bound τε(T f
1 , T

g
2 ) is the largest value of this sum for any ε-ball in T f

1
or in T g

2 . (b) White dots are tree nodes of T f
1 and T g

2 . Green dots are newly augmented tree nodes
in T̂ f

1 and T̂ g
2 .

In this section, given two merge trees T f1 and T g2 as well as a positive value δ > 0, we aim to
develop a fixed-parameter tractable algorithm for the decision problem “Is dI(T f1 , T

g
2 ) ≤ δ?”.

The specific parameter our algorithm uses is the following: Given a merge tree Th and any
point u ∈ Th, let Bε(u;Th) denote the ε-ball

Bε(u;Th) = {x ∈ |T | | ∀y ∈ πT (u, x), |h(y)− h(u)| ≤ ε},

where πT (u, x) is the unique path from u to x in Th. In other words, Bε(u;Th) contains
all points reachable from u via a path whose function value is completely contained with
the range [f(u)− ε, f(u) + ε]. See Figure 2 (a) for an example: in particular, consider the
restriction of Th within the height interval [f(u) − ε, f(u) + ε]. There could be multiple
components within this slab, and Bε(u;Th) is the component containing u.

Parameter τδ: Let τε(T f1 , T
g
2 ) denote the largest sum of degrees of all tree nodes contained

in any ε-ball in T f1 or T g2 , which we also refer to as the ε-degree-bound of T f1 and T g2 . The
parameter for our algorithm for the decision problem will be τδ = τδ(T f1 , T

g
2 ).

4.1 A Slower FPT-Algorithm
Augmented trees

We now develop an algorithm for the decision problem “Is dI(T f1 , T
g
2 ) ≤ δ?” via a dynamic

programming type approach. First, we will show that, even though a δ-good map is defined
for all (infinite number of) points from T f1 and T g2 , we can check for its existence by inspecting

ESA 2019
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only a finite number of points from T f1 and T g2 . In particular, we will augment the input
merge trees T f1 and T g2 with extra tree nodes, and our algorithm later only needs to consider
the discrete nodes in these augmented trees to answer the decision problem.

The set of points from tree T f1 or T g2 at a certain height value c is called a level (at
height c), denoted by L(c). For example, in Figure 2 (a), the level L(c1) for c1 = f(u) + ε,
contains 2 points, while L(c2) with c2 = f(u)− ε contains 7 points. The function value of a
level L is called its height, denoted by height(L); so height(L(c)) = c.

I Definition 8 (Critical-heights and Super-levels). For the tree T f1 , the set of critical-heights
C1 consists of the function values of all tree nodes of T f1 ; similarly, define C2 for T g2 . That is,

C1 := {f(x) | x is a tree node of T f1 }; and C2 := {g(y) | y is a tree node of T g2 }.

The set of super-levels L1 w.r.t. δ for T f1 and the set of super-levels L2 for T g2 are:

L1 := {L(c) | c ∈ C1} ∪ {L(c− δ) | c ∈ C2} while
L2 := {L(c+ δ) | c ∈ C1} ∪ {L(c) | c ∈ C2}.

Now sort all levels in Li in increasing order of their heights, denoted by L1 = {L(1)
1 ,L(1)

2 ,

. . . ,L(1)
m } and L2 = {L(2)

1 , . . . ,L(2)
m }, respectively. The child-level of super-level L(1)

i (resp.
L(2)
i ) is L(1)

i−1 (resp. L(2)
i−1) for any i ∈ [2,m]; symmetrically, L(1)

i (resp. L(2)
i ) is the parent-level

of L(1)
i−1 (resp. L(2)

i−1). Let h1, . . . , hm be the sequence of height values for L(1)
1 ,L(1)

2 , . . . ,L(1)
m ;

that is, hi = height(L(1)
i ). Similarly, let ĥ1, ĥ2, . . . , ĥm be the corresponding sequence

for L(2)
i ’s.

Note that there is a one-to-one correspondence between super-levels in L1 and L2:
specifically, for any i ∈ [1,m], we have ĥi = hi + δ. From now on, when we refer to the i-th
super-levels of T̂ f1 and T̂ g2 , we mean super-levels L(1)

i and L(2)
i . Also observe that there is no

tree node in between any two consecutive super-levels in either T f1 or in T g2 (all tree nodes
are from some super-levels). See Figure 2 (b) for an illustration.

Next, we augment the tree T f1 (resp. T g2 ) to add points from all super-levels from L1
(resp. from L2) also as tree nodes. The resulting augmented trees are denoted by T̂ f1 and
T̂ g2 respectively; obviously, T̂ f1 (resp. T̂ g2 ) has isomorphic underlying space as T f1 (resp. T g2 ),
just with additional degree-2 tree nodes. In particular, V (T̂ f1 ) (resp. V (T̂ g2 )) is formed by all
points from all super-levels in L1 (resp. L2). See Figure 2 (b): In this figure, solid horizontal
lines indicate levels passing through critical heights, while dashed ones are induced by critical
height from the other tree. In what follows, given a super-level L, we use V (L) to denote
the set of nodes from this level. Note that V (L(1)

m ) and V (L(2)
m ) each contain only one node,

which is root(T̂ f1 ) and root(T̂ g2 ) respectively. Given a node v from L(1)
i (resp. L(2)

i ), let Ch(v)
denote its children nodes in the augmented tree. Each child node of v must be from level
L(1)
i−1 (resp. L(2)

i−1), as there are no tree-nodes between two consecutive super-levels.

I Definition 9 (Valid pair). Given a node w ∈ V (T̂ g2 ) and a collection of nodes S ⊆ V (T̂ f1 ),
we say that (S,w) form a valid pair if there exists an index j ∈ [1,m] such that (1)
S ⊆ V (L(1)

j ) and w ∈ V (L(2)
j ) (which implies that nodes in S at height hj while w has height

g(w) = ĥj); and (2) all nodes in S have the same ancestor at height hj + 2δ (which also
equals ĥj + δ). Intuitively, it indicates that S has the basic condition to be mapped to w under
some ε-good maps.

We say that S is valid if it participates some valid pair (and thus condition (2) above holds).
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A first (slower) dynamic programming algorithm

We now describe our dynamic programming algorithm. To illustrate the main idea, we
first describe a much cleaner but also slower dynamic programming algorithm DPgoodmap()
below. Later in Section 4.2 we modify this algorithm to improve its time complexity (which
requires significant additional technical details).

Our algorithm maintains a certain quantity, called feasibility F (S,w) for valid pairs
in a bottom-up manner. Recall that we have defined the depth of a node u ∈ Th in a
merge tree Th as the height of the subtree Th(u) rooted at u; or equivalently depth(u) =
maxx�u |h(u)− h(x)|.

Algorithm 1 DPgoodmap(T f
1 , T

g
2 , δ).

Base case (i = 1): For each valid-pair (S,w) from level-1, set F (S,w) = 1 (“true”) if
and only if depth(w) ≤ 2δ; otherwise, set F (S,w) = 0 (“false”).

When i > 1: Suppose we have already computed the feasibility values for all valid-pairs
from level-(i−1) or lower. Now for any valid-pair (S,w) from level-i, we set F (S,w) = 1
if and only if the following holds: Consider the set of children Ch(S) ⊆ L(1)

i−1 of nodes
in S, and w’s children Ch(w) = {w1, . . . , wk} in L(2)

i−1.
If Ch(w) is empty, then F (S,w) = 1 only if Ch(S) is also empty; otherwise F (S,w) = 0.
If Ch(w) is not empty, then we set F (S,w)=1 if there exists a partition of Ch(S) =
S1 ∪ S2 ∪ . . . ∪ Sk (where Si ∩ Sj = ∅ for i 6= j, and it is possible that Si = ∅) such
that for each j ∈ [1, k],

(F-1) if Sj 6= ∅, then F (Sj , wj) = 1; and
(F-2) if Sj = ∅, then depth(wj) ≤ 2δ−(ĥi−ĥi−1); note that this implies that ĥi−ĥi−1 ≤ 2δ

in this case.
Output: DPgoodmap(T f1 , T

g
2 , δ) returns “yes” if and only if F (root(T̂ f1 ), root(T̂ g2 )) = 1.

Recall that root(T̂ f1 ) (resp. root(T̂ g2 )) is the only node in V (L(1)
m ) (resp. V (L(2)

m )).
We will first prove the following theorem for this slower. In Section 4.2 we show that

time complexity can be reduced by almost a factor of n.

I Theorem 10.
(i) Algorithm DPgoodmap(T f1 , T

g
2 , δ) returns “yes” if and only if dI(T f1 , T

g
2 ) ≤ δ.

(ii) Algorithm DPgoodmap(T f1 , T
g
2 , δ) can be implemented to run in O(n32ττ τ+1) time,

where n is the total size of T f1 , T
g
2 , and τ = τδ(T f1 , T

g
2 ) is the δ-degree-bound w.r.t. T f1

and T g2 .

Note that if τ is constant, then the time complexity is O(n3).

In the remainder of this section, we sketch the proof of Theorem 10.

Part (i) of Theorem 10: correctness

We first show the correctness of algorithm DPgoodmap(). Give a subset of nodes S′ from
some super-level of T̂ f1 , let F1(S′) denote the forest consisting of all subtrees rooted at nodes
in S′. For a node w′ ∈ T g2 , let T2(w′) denote the subtree of T g2 rooted at w′. We will now
argue that F (S,w) = 1 if and only if there is a “partial” δ-good map from F1(S)→ T2(w).

More precisely: a continuous map α : F1(S)→ T2(w) with (S,w) being valid is a partial-
ε-goodmap, if properties (P1), (P2), and (P3) from Definition 5 hold (with T f1 replaced by
F1(S) and T g2 replaced by T2(w)). Note that in the case of (P2), the condition in (P2) only
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needs to hold for u1, u2 ∈ F1(S) (implying that α(u1), α(u2) ∈ T2(w)); that is, if α(u1)�α(u2)
for u1, u2 ∈ F1(S), then, we have u2ε

1 �u2ε
2 . Note that while u1 and u2 are from F1(S), u2ε

1
and u2ε

2 may not be in F1(S) as it is possible that f(u2ε
1 ) = f(u1) + 2ε ≥ height(S). First,

we observe the following:

B Claim 11. At the top level where L(1)
m = {u = root(T̂ f1 )} and L(2)

m = {w = root(T̂ g2 )} both
contain only one node, if there is a partial-δ-good map from F1({u})→ T2(w), then there is
a δ-good map from |T f1 | → |T

g
2 |.

The correctness of our dynamic programming algorithm (part (ii) of Theorem 10) will
follow from Claim 11 and Lemma 12 below. Lemma 12 is one of our key techincal results,
and its proof can be found in [25].

I Lemma 12. For any valid pair (S,w), F (S,w) = 1 if and only if there is a partial-δ-good
map α : F1(S)→ T2(w).

Part (ii) of Theorem 10: time complexity

We now show that Algorithm DPgoodmap() can be implemented to run in the claimed
time. Note that the augmented-tree nodes contain tree nodes of T f1 and T g2 , as well as the
intersection points between tree arcs of T f1 (resp. T g2 ) and super-levels. As there are at most
m = 2n number of super-levels in L1 and L2, it follows that the total number of tree nodes
in the augmented trees T̂ f1 and T̂ g2 is bounded by O(nm) = O(n2). In what follows, in order
to distinguish between the tree nodes for the augmented trees (T̂ f1 and T̂ g2 ) from the tree
nodes of the original trees (T f1 and T f2 ), we refer to nodes of the former as augmented-tree
nodes, while the latter simply as tree nodes. It is important to note that the δ-degree-bound
is defined with respect to the original tree nodes in T f1 and T g2 , not for the augmented trees
(the one for the augmented trees can be significantly higher).

Our DP-algorithm essentially checks for the feasibility F (S,w) of valid-pairs (S,w)S.
The following two lemmas bound the size of valid pairs, and their numbers. Their proofs
are in [25].

I Lemma 13. For any valid pair (S,w), we have |S| ≤ τ and |Ch(S)| ≤ τ , where τ =
τδ(T f1 , T

g
2 ) is the δ-degree-bound w.r.t. T f1 and T g2 .

I Lemma 14. Let τ = τδ(T f1 , T
g
2 ) be the δ-degree-bound w.r.t. T f1 and T g2 . The total number

of valid pairs that Algorithm DPgoodmap(T f1 , T
g
2 , δ) will inspect is bounded by O(n32τ ), and

they can be computed in the same time.

To obtain the final time complexity for Algorithm DPgoodmap, consider computing
F (S,w) for a fixed valid pair (S,w). This takes O(1) time in the base case (the super-level
index i = 1). Otherwise for the case i > 1, observe that k = |Ch(w)| = degree(w) ≤ τ ,
and |Ch(S)| ≤ τ by Lemma 13. Hence the number of partitioning of Ch(S) is bounded by
O(|Ch(S)|k) = O(τ τ ). For each partition, checking conditions (F-1) and (F-2) takes O(k)
time; thus the total time needed to compute F (S,w) is O(kτ τ ) = O(τ τ+1). Combining this
with Lemma 14, we have that the time complexity of Algorithm DPgoodmap() is bounded
from above by O(n32ττ τ+1), as claimed.

4.2 A Faster Algorithm
It turns out that we do not need to inspect all the O(n32τ ) number of valid pairs as claimed
in Lemma 14. We can consider only what we call sensible-pairs, which we define now.



E. Farahbakhsh Touli and Y. Wang 83:11

I Definition 15. Given a valid-pair (S,w), suppose S is from super-level L(1)
i and thus

w is from super-level L(2)
i . Then, (S,w) is a sensiblepair if either of the following two

conditions hold:
(C-1) S contains a tree node from V (T f1 ), or its children Ch(S) ⊆ L(1)

i−1 in the augmented
tree T̂ f1 contains some tree node from V (T f1 ), or the parents of nodes of S in the
augmented tree T̂ f1 (which are necessarily from super-level L(1)

i+1) contains some tree
node from V (T f1 ); or

(C-2) w is a tree node of T g2 , or Ch(w) ⊆ L(2)
i−1 contains a tree node of T g2 ; or the parent of

w from super-level L(2)
i+1 in the augmented tree T̂ g2 is a tree node of T g2 .

Algorithm DPgoodmap() can be modified to Algorithm modified-DP() so that it only
inspects sensible-pairs. The modification is non-trivial, and the reduction in the bound on
number of sensible-pairs is by relating sensible-pairs to certain appropriately defined edge-list
pairs (A ⊆ E(T f1 ), α ∈ E(T g2 )). The rather technical details can be found in [25]. We only
summarize the main theorem below.

I Theorem 16.
(i) Algorithm modified-DP(T f1 , T

g
2 , δ) returns “yes” if and only if dI(T f1 , T

g
2 ) ≤ δ.

(ii) Algorithm modified-DP(T f1 , T
g
2 , δ) can be implemented to run in O(n22ττ τ+2 logn) time,

where n is the total complexity of input trees T f1 and T g2 , and τ = τδ(T f1 , T
g
2 ) is the

δ-degree-bound w.r.t. T f1 and T g2 .

Note that if τ is constant, then the time complexity is O(n2 logn).

5 Algorithms for Interleaving and Gromov-Hausdorff Distances

5.1 FPT Algorithm to Compute Interleaving Distance
In the previous section, we show how to solve the decision problem for interleaving distance
between two merge trees T f1 and T g2 . We now show how to compute the interleaving distance
δ∗, which is the smallest δ value such that dI(T f1 , T

g
2 ) ≤ δ holds.

The main observation is that there exists a set Π of O(n2) number of candidate values
such that δ∗ is necessarily one of them. Specifically, let Π1 = {|f(u)−g(w)| | u ∈ V (T f1 ), w ∈
V (T g2 )}, Π2 = {|f(u) − f(u′)|/2 | u, u′ ∈ V (T f1 )}, and Π3 = {|g(w) − g(w′)|/2 | w,w′ ∈
V (T g2 )}. Set Π = Π1 ∪Π2 ∪Π3. The proof of the following lemma can be found in [25].

I Lemma 17. The interleaving distance δ∗ = dI(T f1 , T
g
2 ) satisfies that δ∗ ∈ Π.

Finally, compute and sort all candidate values in Π where by construction, |Π| = O(n2).
Then, starting with δ being the smallest candidate value in Π, we perform algorithm
DPgoodmap(T f1 , T

g
2 , δ) for each δ in Π in increasing order, till the first time the answer is

“yes”. The corresponding δ value at the time is dI(T f1 , T
g
2 ). Furthermore, note that for the

degree-bound parameter, τδ(T f1 , T
g
2 ) ≤ τδ′(T f1 , T

g
2 ) for δ ≤ δ′. Combining with Theorem 16,

we can easily obtain the following trivial bound:

I Theorem 18. Let δ∗ = dI(T f1 , T
g
2 ) and τ∗ = τδ∗(T f1 , T

g
2 ) be the degree-bound parameter of

T f1 and T g2 w.r.t. δ∗. Then we can compute δ∗ in O(n42τ∗(τ∗)τ∗+2 logn) time.

However, it turns out that one can remove almost an O(n2) factor by using a double-binary
search like procedure, as discovered by Kyle Fox. We include this improved result below and
his argument below for completeness. See [25] for the proof.

I Theorem 19. Let δ∗ = dI(T f1 , T
g
2 ) and τ∗ = τδ∗(T f1 , T

g
2 ) be the degree-bound parameter of

T f1 and T g2 w.r.t. δ∗. Then we can compute δ∗ in O(n222τ∗(2τ∗)2τ∗+2 log3 n) time.
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5.2 FPT-Algorithm for Gromov-Hausdorff Distance
Finally, we develop a FPT-algorithm to approximate the Gromov-Hausdorff distance between
two input trees (T1, d1) and (T2, d2). To approximate the Gromov-Hausdorff distance between
two metric trees, we need to modify our parameter slightly (as there is no function defined
on input trees any more). Specifically, now given a metric tree (T, d), a ε-geodesic ball at
u ∈ |T | is simply B̂ε(u, T ) = {x ∈ |T | | d(x, u) ≤ ε}.
Parameter τ : Given T1 = (T1, d1) and T2 = (T2, d2), define the ε-metric-degree-bound

parameter τ̂ε(T1, T2) to be the largest sum of degrees of all tree nodes within any ε-
geodesic ball in T1 (w.r.t. metric d1) or in T2 (w.r.t. d2).

We obtain our main result for approximating the Gromov-Hausdorff distance between two
metric trees within a factor of 14. We note that to obtain this result, we need to also relate
the ε-metric-degree-bound parameter for metric trees with the ε-degree-bound parameter
used for interleaving distance for the special geodesic functions we use (in fact, we will show
that τ̂δ ≤ τδ ≤ τ̂2δ). The proof of the following main theorem of this section can be found [25].

I Theorem 20. Given two metric trees T1 = (T1, d1) and T2 = (T2, d2) where the total
number of vertices of T1 and T2 is n, we can 14-approximate the Gromov-Hausdorff distance
δ̂∗ = δGH(T1, T2) in O(n4 logn+n22τ̂ τ̂ τ̂+2 log3 n) time, where τ̂ = 2τ̂28δ̂∗(T1, T2) is twice the
metric-degree-bound parameter w.r.t. 28δ̂∗.

Remarks

We remark that the time complexity of the FPT approximation algorithm of [22] contains
terms nk, where k is the parameter and could be large in general – Indeed, k is the cardinality
of an ε-net of one of the input metric spaces, and ε also appears as an additive approximation
term for algorithm. In contrast, the dependency of our algorithm on the parameter τ̂ is
roughly O(2O(τ̂)), and our algorithm has only constant multiplicative approximation factor.
On the other hand, note that the algorithm of [22] works for general finite metric spaces.
We also remark that the Gromov-Hausdorff distance between two metric spaces (X, dX)
and (Y, dY ) measures their additive distortion, and thus is not invariant under scaling. In
particular, suppose the input two metric spaces T1 = (T1, d1), T2 = (T2, d2) scale by the same
amount to a new pair of input trees T ′1 = (T ′1, d′1 = c · d1), T ′2 = (T ′2, d′2 = c · d2). Then the
new Gromove-Hausdorff distance between them δGH(T ′1 , T ′2 ) = c · δGH(T1, T2). However, note
that the metric-degree-bound parameter for the new trees satisfies τ̂cδ(T ′1 , T ′2 ) = τ̂δ(T1, T2).
Hence the time complexity of our algorithm to approximate the Gromov-Hausdorff distance
δGH(T ′1 , T ′2 ) for scaled metric-trees T ′1 and T ′2 remains the same as that for approximating
the Gromov-Hausdorff distance δGH(T1, T2).

6 Concluding Remarks

In this paper, by re-formulating the interleaving distance, we developed the first FPT
algorithm to compute the interleaving distance exactly for two merge trees, which in turn
leads to an FPT algorithm to approximate the Gromov-Hausdorff distance between two
metric trees.

We remark that the connection between the Gromov-Hausdorff distance and the inter-
leaving distance is essential, as the interleaving distance has more structure behind it, as
well as certain “order” (along the function associated to the merge tree), which helps to
develop dynamic-programming type of approach. For more general metric graphs (which
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represent much more general metric spaces than trees), it would be interesting to see whether
there is a similar relation between the Gromov-Hausdorff distance of metric graphs and the
interleaving distance between the so-called Reeb graphs (generalization of merge trees).
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