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Abstract
In this work, using methods from high dimensional expansion, we show that the property of k-
direct-sum is testable for odd values of k . Previous work of [9] could inherently deal only with the
case that k is even, using a reduction to linearity testing. Interestingly, our work is the first to
combine the topological notion of high dimensional expansion (called co-systolic expansion) with the
combinatorial/spectral notion of high dimensional expansion (called colorful expansion) to obtain
the result.

The classical k-direct-sum problem applies to the complete complex; Namely it considers a
function defined over all k-subsets of some n sized universe. Our result here applies to any collection
of k-subsets of an n-universe, assuming this collection of subsets forms a high dimensional expander.
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1 Introduction

Given a collection X of k-subsets of [n], a function F : X → {0, 1} is a k-direct-sum if there
exists a function f : [n]→ {0, 1} such that for every A in X: F (A) =

∑
a∈A f(a) (where the

sum is performed modulo 2). A (Q,E)-tester for k-direct-sums is an algorithm that queries
F on Q inputs from X, accepts k-direct-sums and rejects with probability of at least ξ, every
function whose distance from the k-direct-sums is at least Eξ (see Definition 16 for distance
and [8] for a survey on property testing). In this work we present a new novel method for
testing k-direct-sums using high dimensional expanders. Our method is the first to deal with
k-direct-sums for odd constant values of k.

The question of testing whether a function is a k-direct-sum, as well as the entire area
of testability, has strong relations to PCP constructions. For example, one can consider the
gap amplification proof of the PCP theorem [5]. This proof uses two steps: First powering
the graph which results in every node having an “opinion” about its neighbors’ color (which
increases the alphabet size) and then reducing the alphabet. A better understanding of the
direct sum problem could potentially help in replacing the direct product done in the graph
powering phase, and might even allow omitting the alphabet reduction stage which would
yield a simpler proof to the PCP theorem and, possibly, better parameters.
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50:2 Testing Odd Direct Sums Using High Dimensional Expanders

Previous Work

There were several works on k-direct-sums, but none of them could deal with the odd constant
case due to inherent limitations of their methods: The first work to link direct-sums and high
dimensional expanders was done by Kaufman and Lubotzky [9], who showed a test for the
2-direct-sum problem on any simplicial complex that is a high dimensional expander. Their
proof is tailored to the case where k = 2. Following the work of Kaufman and Lubotzky was
a work by David, Dinur, Goldenberg, Kindler, and Shinkar [4] that proposed a tester for
k-direct-sums on the for the case where the input set is

([n]
k

)
. Their tester is based on linearity

testing: It picks x, y ∈ X such that x∆y ∈ X, and tests whether f(x) + f(y) = f(x∆y) (for
more papers on linearity testing see [1, 2, 3]). But in order to get x, y, x∆y ∈ X, k must
be even. In a recent work by Dinur and Kaufman [6], it is shown that the result of David
et al. [4] can be applied to testing functions whose inputs are taken from a subset of

([n]
k

)
that forms a high dimensional expander. However the limitation above still stands.

In this paper we introduce a new method for testing k-direct-sums that can tackle the
odd case for the first time. Specifically we show:

I Theorem 1 (Main Theorem Informal, for formal see Theorem 34). If X is a collection of
subsets that forms a high dimensional expander then there is an

(
O
(
k2) , O (k2))-tester for

the k-direct-sums where k is an odd constant.

Interestingly we combine two notions of high dimensional expanders, a topological notion
and a combinatorial notion, to obtain this result. This is the first time that both notions
were used together.
In order to describe our strategy we will first have to introduce a generalization of graphs
to higher dimensions (called simplicial complexes) as well as both notions of high dimen-
sional expanders:

Simplicial Complexes

A simplicial complex can be thought of as a hypergraph with a closure property, meaning
that if F is a hyperedge in the hypergraph then so is every subset of F . We also define the
dimension of a hyperedge F to be |F | − 1, and denote the set of i-dimensional edges of a
complex X as X(i). For example: In a graph, the vertices are considered the 0-dimensional
hyperedges, and the edges are considered the 1-dimensional hyperedges. Now that we have
defined the dimension of a hyperedge, we can define the dimension of the complex as the
dimension of the maximal hyperedge. For example: A 2-dimensional simplicial complex is a
simplicial complex that contains 2-dimensional hyperedges, often called the “triangles” (note
that these hyperedges contain 3 vertices). Throughout this paper, we will use a standard
weighted counting norm denoted as ‖·‖ (which will be defined in 8). In this work we will be
interested in simplicial complexes whose maximal hyperedges are all of the same dimension
(which are called “pure simplicial complexes”).

As previously discussed, we will use two generalizations of expansion that apply to
simplicial complexes: The first will be co-systolic expanders and the second will be colorful
expanders. In order to discuss these notions of expansion, it will be useful to reexamine the
Cheeger constant in the 1-dimensional case (aka graphs):

min
S 6=∅,V

{ ∥∥E(S, S̄)
∥∥

min
{
‖S‖ ,

∥∥S̄∥∥}
}
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In any higher dimensional analogue, we would still like the essence of this constant to
hold, every set of hyperedges of some dimension i (in graphs - vertices) has a number of
out-going hyperedges of dimension i+ 1 (in graphs - edges) relative to its size. Because we
are dealing with multi-dimensional objects we would also like this bound to apply in every
dimension. The only question remaining is how to generalize the notion of an out-going edge
to higher dimensions.

Co-systolic Expanders

The first notion of expansion we will introduce is the co-systolic expansion, which is the
more topological of the two. In this form of expansion, a hyperedge of dimension i+ 1, is
said to be going out of a set E of hyperedges of dimension i, if it has an odd number of
i-dimensional sub-edges in the set E1. We denote the set of hyperedges that are going out of
a set E, according to this notion, as δE. Note that the Cheeger constant is normalized over
the distance of E from a set that has no neighbors (in the 1-dimensional case the only sets
with no neighbors are the empty set and the entire graph). Therefore we normalize our new
high-dimensional analogue accordingly and receive the following definition:

εi(X) = min
S∈{0,1}X(i)

δS 6=∅

{
‖δS‖

dist(S, {Z|δZ = 0})

}

A simplicial complex is a co-systolic expander if there exists some ε such that in every
dimension i: εi(X) ≥ ε. Note that there is another property that a simplicial complex must
fulfill in order to be a co-systolic expander. However, it is not required in the proof of this
paper and can be found in definition 20.

Colorful Expanders

The other notion of expansion we will introduce is the colorful expansion, which is the more
combinatorial of the two. In this form of expansion, a hyperedge of dimension i+ 1, is said
to be going out of a set E of hyperedges of dimension i, if it has at least one i-dimensional
sub-edge in E and at least one i-dimensional sub-edge outside of E. We denote the set
of hyperedges that are going out of a set E, according to this notion, as c(E). Using this
definition of out-going edges, we get the following generalization of the Cheeger constant (for
the i-th dimension):

σi(X) = min
S 6=0,X(i)

{
‖c(S)‖

min {‖S‖ , ‖X(i) \ S‖}

}
A simplicial complex is a σ-colorful-expander if in every dimension i: σi(X) ≥ σ.

1.1 Proof Layout
We will start by defining the property of being a k-direct-sum again, this time using the
language of simplicial complexes: Given a simplicial complex X, a function F : X(k − 1)→
{0, 1} is called a k-direct-sum if there exists a function f : X(0)→ {0, 1} such that for every
A in X(k−1): F (A) =

∑
a∈A f(a). Note that we define a k-direct-sum to be a function from

1 In the 1-dimensional case we say that an edge crosses a cut if it has exactly one vertex in the cut. Note
that if there is an odd number of vertices in an edge the odd number must be one since edges are of
cardinality 2.
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50:4 Testing Odd Direct Sums Using High Dimensional Expanders

the (k − 1)-dimensional hyperedges of the complex, and not the k-dimensional hyperedges of
the complex, because we want the k to represent the size of the set and not the dimension of
the face.
We will show that the following algorithm tests whether a given function is a k-direct-sum
for odd constant values of k:

Algorithm 1 Tassembled−k−direct−sum.

1 pick one of the following options uniformly:
2 Test whether δF is a (k + 1)-direct-sum using a known test for even sized setsa.
3 pick m ∈ X(k + 1) randomly:
4 Check whether F |m is a k-direct-sum.

a Note that k + 1 is even and, whenever the known test asks to query δF (a), the algorithm queries every
set in

(
a
k

)
and returns the sum of the results.

In order to analyze this test, it would first be useful to deconstruct F into three functions
F = D + Z +G where D is a k-direct-sum, δZ = 0, and the remainder G.

Bounding the Norm of G Using Co-Systolic expansion

First we will show that the rejection probability of step (2) bounds ‖G‖ from above. In order
to do so we must first consider the following two properties of δ:

δ is linear.
If D is a k-direct-sum (and k is odd) then δD is a (k + 1)-direct-sum (See Lemma 28).

Combining these properties with the fact that the complex is a co-systolic expander, yields
an upper bound for G. Specifically: Because δF = δD + δG, the test performed in step (2)
gives an upper bound to ‖δG‖ (since δD is a direct sum) and co-systolic expansion implies
that ‖G‖ ≤ ε ‖δG‖.

Bounding the Norm of Z Using Colorful Expansion

Secondly, we will show how to bound ‖Z‖ from above. Alas, step (3) does not bound
‖Z‖ from above unconditionally, but if we assume that G = 0, we can bound ‖Z‖ from
above using the rejection probability of step (3). We do that in two steps: The first is
noting that ‖Z‖ is bounded from above by all the (k + 1)-faces that Z “touches”, namely
{m ∈ X(k + 1)|Z|m 6= 0} due to a property of the norm (Lemma 10). We then show the
following property: Step (3) rejects every (k + 1)-dimensional face m on which Z|m /∈ {0,1}.
In expander graphs, given a set of vertices S, the set of edges that are going out of S bounds
from above the edges that connect two vertices within S. Similarly in higher dimensional
colorful expanders, the set of edges that stay within a set S is bounded from above by the
set of edges that are going out of S. We think of an edge m on which Z|m = 1 as an edge
that connects vertices within S, and an edge m on which Z|m /∈ {0,1} as an edge that
is going out of S. Thus by colorful expansion we can bound ‖{m ∈ X(k + 1)|Z|m = 1}‖
using ‖{m ∈ X(k + 1)|Z|m /∈ {0,1}}‖. We conclude that ‖Z‖ can be bounded from above
as follows:

‖Z‖ ≤‖{m ∈ X(k + 1)| Z|m 6= 0}‖ =
‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖+ ‖{m ∈ X(k + 1)| Z|m = 1}‖ ≤
‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖+ c ‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖ =
(1 + c) ‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖

which is bounded from above by the probability that step (3) rejects.
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We end the proof by showing a way to combine both bounds. Note this is not trivial since
the bound on ‖Z‖ is dependent on the fact that G = 0. However, we can mitigate for this
dependency, since G can be bounded independently of Z.

2 Preliminaries

I Notation 2. Given a set S and an integer k denote by
(
S
k

)
= {s ⊆ S| |s| = k}.

2.1 Simplicial Complexes
We are now going to provide formal definitions of simplicial complexes and a norm on them:

I Definition 3 (Simplicial complex). A simplicial complex is a pair X = (V,E) such that:
E ⊆ P (V ), and if F ∈ E then every F ′ ⊆ F is in E as well. Elements in the set E are
called the faces of X.

I Definition 4 (Dimension of a face). Let m be a face in X. Define the dimension of m to be:

dim(m) := |m| − 1

Also, define the set X(i) to be the set of all faces of dimension i (note that X(−1) = {∅}).

I Notation 5. Let X be a d-dimensional simplicial complex, given −1 ≤ i < j ≤ d, a function
F : X(i)→ {0, 1}, and m ∈ X(j). Denote by F |m the function F |m :

(
X(j)
i+1
)
→ {0, 1} such

that ∀q ∈ X(i) : F |m(q) = F (q).

I Definition 6 (Dimension of a simplicial complex). Let X = (V, F ) be a simplicial complex.
Define the dimension of X to be:

dim(X) := max
f∈F

dim(f)

I Definition 7 (Pure simplicial complex). A d-dimensional simplicial complex X is called
pure if all of its maximal faces are of dimension d.

I Definition 8 (Norm over the faces). Let X be a pure simplicial complex of dimension d.
Define the weight of the face a to be:

w(a) = |{F ∈ X(d)|a ⊆ F}|(
d+1
|a|
)
· |X(d)|

and the norm ‖.‖ = ‖.‖k : P (X(i))→ [0, 1] to be: ‖A‖ :=
∑
a∈A w(A).

We will show in Appendix A that w defines a distribution on every dimension where the
probability of a face to be chosen is equal to its norm. For the rest of the paper, when an
algorithm chooses a face (unless a distribution is explicitly specified), it chooses a face with
the distribution implied by w.

I Definition 9 (Container). Let X be a d-dimensional simplicial complex, let −1 ≤ i ≤ r ≤ d
and let A ⊆ X(i). Define Γr(A) := {a ∈ X(r)|∃b ∈ A : b ⊆ a}.

I Lemma 10. Let X be a d-dimensional simplicial complex, and let −1 ≤ i ≤ j ≤ d. Then
for any A ⊆ X(i):

‖A‖ ≤
∥∥Γj(A)

∥∥ ≤ (j + 1
i+ 1

)
‖A‖

APPROX/RANDOM 2019



50:6 Testing Odd Direct Sums Using High Dimensional Expanders

I Lemma 11. Let A ⊆ X(i): ∀j :
∥∥∥{A′ ∈ X(i+ j)

∣∣∣(A′i ) ⊆ A}∥∥∥ ≤ ‖A‖
The proofs of Lemma 10 and Lemma 11 can be found in Appendix B.

I Notation 12. Given a complex X, and a test T whose random choice is some m ∈ X,
denote the result of the test T when testing the function F and the random face chosen is m
from the complex X by TFX (m).

2.2 Co-systolic Expansion
We will now present the first notion of expansion used in this paper, namely - co-systolic
expanders. Co-systolic expansion was introduced by Evra and Kaufman in [7] and is the
more topological notion of expansion we will use in this paper. In order to define this notion
of expansion we must first define some spaces and operators over simplicial complexes:

I Definition 13 (Co-chains). Let X be a simplicial complex, define the i-co-chains of X to
be Ci(X) = {0, 1}X(i).

Note that the norm defined in Definition 8 implies a norm on the co-chains by setting the
norm of a co-chain to be the norm of set of faces on which it returns 1. Formally:

I Definition 14 (Extension of the norm to co-chains). For every C ∈ Ci (X) define:

‖C‖ := ‖{a ∈ X(i)|C(a) = 1}‖

Now that we have defined the co-chains and a norm on them, we can also define the distance
between co-chains as well as the distance of a co-chain from the k-direct-sums.

I Definition 15 (Distance between co-chains). Given C1, C2 ∈ Ck (X), the distance between
C1 and C2 is:

dist(C1, C2) = ‖C1 + C2‖

I Definition 16. We define the distance of a co-chain C ∈ Ck (X) to the k-direct-sum to be:

min
D∈{k-direct-sum}

{dist(C,D)}

I Definition 17 (Co-boundary operator). Let δi : Ci(X)→ Ci+1(X) be the following function:

δi(F )(m) =
∑

q∈( m
i−1)

F (q)

Note that F : X(i)→ {0, 1} and m ∈ X(i+ 1).

Lastly we will define two more spaces over the faces of the simplicial complex:

I Definition 18 (Co-cycles and co-boundaries). Let X be a simplicial complex, define the
following spaces:

The i-co-cycles: Zi(X) = Ker(δi) =
{
Z ∈ Ci(X)

∣∣δiZ = 0
}
.

The i-co-boundaries: Bi(X) = Im(δi−1) =
{
B ∈ Ci(X)

∣∣∃B′ ∈ Ci−1(X) : B = δi−1B
′}.

I Fact 19. For every dimension i: Bi(X) ⊆ Zi(X) ⊆ Ci(X).
A complex X is an (ε, µ)-co-systolic expander if any i-co-chain that is far from being a
co-cycle “touches” an odd number of times many (i+ 1)-co-chains. In addition to that, any
co-cycle that is not a co-boundary must be large. Formally:
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I Definition 20 (Co-systolic expander). Let X be a d-dimensional simplicial complex and let
ε, µ > 0. X is an (ε, µ)-co-systolic-expander if for every i = 0, 1, ..., d− 1:

expi(X) = min
{

‖δi(f)‖
minz∈Zi(X) {‖f + z‖}

∣∣∣∣f ∈ Ci(X) \ Zi(X)
}
≥ ε

and

systi(X) = min
{
‖z‖
∣∣z ∈ Zi(X) \Bi(X)

}
≥ µ

Note that minz∈Zi(X) {‖f + z‖} is the distance of f from being a co-cycle.

This notion of expansion implies that the simplicial complex has the topological overlapping
property (which is explained in detail in [7]). In this paper, we will use this definition of
expansion in order to estimate the non-co-cyclic part of the difference between the function
given to us and its closest k-direct-sum. We will do that by first applying the co-boundary
operator to the function given to us, and then test whether the result is a (k + 1)-direct-sum
(we will see why this suffices in section 3).

2.3 Colorful Expansion

The other form of high dimensional expansion we use is a combinatorial one. It was first
introduced by Kaufman and Mass in [10]. This notion of expansion considers every face on
which the i-co-chain is equal to 1 as if it is colored in one color, and every face on which
the i-co-chain is equal to 0 as if is it colored in a different color. Then we look at all the
(i+ 1)-faces that are not monochromatic. More formally:

I Definition 21 (Colorful Operator). Let ci : Ci(X)→ Ci+1(X) be the following function:

ci(F )(m) =
{

1 ∃a, b ∈
(
m
k−1
)

: F (a) = 1 and F (b) = 0
0 otherwise

Note that F : X(i)→ {0, 1} and m ∈ X(i+ 1).

A simplicial complex is a colorful expander if every sufficiently small i-co-chain implies a lot
of non-monochromatic (i+ 1)-faces. Formally:

I Definition 22 (Colorful Expander). Let X be a d-dimensional simplicial complex. We say
that X is a σ-colorful-expander if for any W ∈ Ci(X) (0 ≤ i < d) such that ‖W‖ ≤ 0.5:

‖ci(W )‖
‖W‖

≥ σ

This notion of expansion deals with random walks - consider the random walk that moves
between two i-faces through a common (i+ 1)-face that contains them both. In [10] it was
shown that such random walks converge rapidly to the stationary distribution. In this paper
we will use this notion of expansion in order to estimate the co-cyclic part of the difference
between the function given to us and its closest k-direct-sum (which would be impossible to
do using the other notion of expansion).

APPROX/RANDOM 2019



50:8 Testing Odd Direct Sums Using High Dimensional Expanders

3 Properties of Direct Sums

We will now present what the k-direct-sums are and show some useful properties of k-direct-
sums.

I Definition 23 (k-direct-sum). A co-chain D : X(k− 1)→ {0, 1} is called a k-direct-sum if
there is some function d : X(0)→ {0, 1} such that D(a) =

∑
v∈a d(v) (The sum is performed

modulo 2).

I Definition 24 (Origin function). Let D : X(k) → {0, 1} be a k-direct-sum. An origin
function of D is any function d : X(0)→ {0, 1} such that D(a) =

∑
v∈a d(v).

In the rest of this chapter we will explore properties of the k-direct-sums. We will start by
finding a set of functions that spans the k-direct-sums. Then we will use these functions in
order to show how direct-sums behave when applying the co-boundary operator to them.
We will start by showing that the set of k-direct-sums is linear:

I Lemma 25 (Direct sums are closed under addition). Let F and G be two k-direct-sums
whose origin functions are f and g respectively then F +G is a k-direct-sum and its origin
function is f + g.

Proof. We know that F (a) =
∑
b∈a f(b) and G(a) =

∑
b∈a g(b). It is easy to see that

F +G =
∑
b∈a f(b) +

∑
b∈a g(b) =

∑
b∈a f(b) + g(b) =

∑
b∈a (f + g)(b). Therefore F +G is

a k-direct-sum and f + g is its origin function. J

We will now wish to find a set of functions that spans the k-direct-sum so:

I Definition 26 (Spanning set of the k-direct-sums). Let u ∈ X(0). Define Hk
u : X(k − 1)→

{0, 1} to be:

Hk
u(a) =

{
1 if u ∈ a
0 otherwise

One can easily check that ∀k : Hk
u is a k-direct-sum whose origin function is:

hku(v) =
{

1 if v = u

0 otherwise

We can now prove that
{
Hk
u

}
spans the set of k-direct-sums:

I Lemma 27. The set of k-direct-sums is spanned by
{
Hk
u |u ∈ X(0)

}
Proof. Let F be a k-direct-sum. By definition there exists f : X(0) → {0, 1} such that
F (a) =

∑
b∈a f(b). Consider the support of f : sup (f) = {u ∈ X(0)|f(u) = 1}, and define

G =
∑
u∈sup (f) H

k
u . It is easy to see that F (a) =

∑
b∈a f(b) =

∑
b∈aH

k
u(b) and therefore

F ∈ span
{
Hk
u |u ∈ X(0)

}
.

Let F ∈ span
{
Hk
u

∣∣u ∈ X(0)
}

therefore there exists some set I ⊆ X(0) such that F =∑
u∈I H

k
u . We know that

{
Hk
u

}
u,k

are k-direct-sums, therefore F is a sum of k-direct-sums
and, due to Lemma 25, F is a k-direct-sum as well. J

We will now show a connection between the k-direct-sums in the odd dimensions and the
k-direct-sums in the even dimensions:

I Lemma 28. For odd values of k: δkHk
u = Hk+1

u
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Proof.

δkH
k
u(a) =

∑
b⊂a

|b|=|a|−1

Hk
u(B) = | {b|b ⊂ a, |b| = |a| − 1, u ∈ b} | =

{(
k
k−1
)

if vi ∈ a
0 otherwise

=

{
k if u ∈ a
0 otherwise

=
{

1 if u ∈ A
0 otherwise

= Hk+1
u J

I Lemma 29. For odd values of k, if F is k-direct-sum then δF is a (k + 1)-direct-sum.

Proof. F is a k-direct-sum therefore there exists some I ⊆ X(0) such that F =
∑
u∈I H

k
u .

And thus δF = δ(
∑
u∈I H

k
u) =

∑
u∈I δH

k
u =

∑
u∈I H

k+1
u ∈ span

{
Hk+1
u |u ∈ X(0)

}
and δF

is a (k + 1)-direct-sum. J

I Lemma 30. For even values of k, if F is a k-direct-sum then F ∈ Bk+1(X) ⊆ Zk−1(X).

Proof. F is a k-direct-sum therefore there exists I ⊆ X(0) such that F =
∑
u∈I H

k
u =∑

u∈I δH
k−1
u . Finally we get that F ∈ Bk−1(X) ⊆ Zk−1(X). J

Note that the previous two Lemmas imply that Lemma 29 is true for any value of k.

4 Definition of Components Appearing in the Tester

In this section, we will provide some definitions that will help us build the test for the
k-direct-sum problem.
We would first like to define a relaxed version of the k-direct-sum, namely the k-co-cycle-
indifferent-direct-sum:

I Definition 31 (Co-cycle indifferent direct sum). Define the property of being a k-co-cycle-
indifferent-direct-sum to be:

CI =
{
F = D + Z

∣∣D is a k-direct-sum and Z ∈ Zk−1(X)
}

In section 6 will show that this property is testable for odd values of k.
We would also want to define a separator which helps in separating k-direct-sums from non
k-direct-sums. Unlike tests, in which the rejection probability is linear in the distance from
the property, separators reject with (at least) constant probability when their input is not in
the property.

I Definition 32 (Direct sum separator). Let X be a simplicial complex. An algorithm T

is called an (n, k,Q, η)-direct-sum-separator if, for the complete complex on n − 1 nodes
(denoted by Xn−1), when given f ∈ Ck+1(Xn−1), the following applies:

If f is a k-direct-sum then Pr[T f = 1] = 1.
If f is not a k-direct-sum then Pr[T f = 0] ≥ η.
T queries f on at most Q faces in Xn−1(k − 1).

In appendix C we will show an explicit separator whose error probability is 0 and queries the
entire complex. We will also show how to construct a separator from a test. It is important
to note that one can reduce the query complexity of the test presented in this paper by
providing a different separator with lower query complexity (using, for example, Lemma 54).
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50:10 Testing Odd Direct Sums Using High Dimensional Expanders

5 Presenting A Test for Being a k-direct-sum

In this section, we will prove the main theorem. But first recall the definition of a (Q,E)-test
for being a k-direct-sum:

I Definition 33 ((Q,E)-test for being a k-direct-sum). A (Q,E)-test for being a k-direct-sum
is an algorithm that:

Queries F on Q inputs from X.
Accepts k-direct-sums.
Rejects with probability of at least ξ every function whose distance from the k-direct-sums
is at least Eξ.

I Theorem 34 (Main Theorem). Let X be a d-dimensional pure simplicial complex, and
0 < k ≤ d − 2 be an odd constant. Also assume there exists a (Q,E)-test for being a
(k + 1)-direct-sum on X and let F : X(k − 1) → {0, 1} be a function. Then, if X is an
(ε, µ)-co-systolic expander and a σ-colorful-expander, there exists a test T such that:

T queries F a maximum of max
{

(k + 1) ·Q,
(
k+2
k

)}
times.

F is a k-direct-sum ⇔ Pr [T accepts F ] = 1.
If Pr [T rejects F ] ≤ ξ then there exists a k-direct-sum F ′ such that

dist(F, F ′) ≤
((

1 + 1
σ

)((
k + 2
k

)
E

ε
+ 1
)

+ E

ε

)
ξ.

As a corollary we show that the k-direct-sum problem on the complete complex is testable
with O(k2)-queries for odd k.

I Corollary 35 (k-direct-sum is testable on the complete complex for odd k’s). On the complete
complex there exists a (O(k2), E)-test for being a k-direct-sum where E is constant and k is
odd.

The proof of this corollary will be presented in Appendix C. We also show that:

I Corollary 36. For any dimension d, there exists a family of bounded degree simplicial
complexes X such that the property of k-direct-sum is testable on X.

Proof. We will show that Ramanujan complexes satisfy the conditions of Theorem 34:
In [7] it was shown that for any dimension d there exists q0, such that for any prime power
q > q0, there are µ = µ(d) and ε = ε(d, q) such that if X is the the d-dimensional complex
induced by a q-thick Ramanujan complex then X is an (ε, µ)-co-systolic expander.
In addition to that in [10] it was proven that for any dimension d, there exists a constant
q′0 = q′0(d) such that, if X is a d-dimensional q′-thick Ramanujan complex for q′ > q′0,
then there are σ = σ(d, q′) such that X is a σ-colorful expander.

We end this proof by noting that it was shown in [11] that there is an explicit construction
of Ramanujan complexes (and therefore there is an explicit construction for complexes that
are both co-systolic expanders and colorful expanders). J

We will prove the main theorem using a (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum
problem called TCI and a (k + 2, k,Qsep, η)-direct-sum-separator Tsep. Specifically, we will
prove that the following is a tester for the k-direct-sum problem:

Algorithm 2 Tdirect−sum.

1 pick one of the following options uniformly:
2 Run TCI and return its result.
3 pick m ∈ X(k + 1) randomly:
4 Run Tsep on m with F |m and return its result.
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Formally we will prove that:

I Theorem 37 (k-direct-sums are testable). On any complex that is a σ-colorful-expander
and for any constant odd value of k, given:

Tsep - A (k + 2, k,Qsep, η)-direct-sum-separator for the complete complex.
TCI - A (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum.

We can construct Tdirect−sum as shown above such that Tdirect−sum is a:(
max {QCI , Qsep},

(
1 + 1

σ

)(
1
η

+
(
k + 2
k

)
ζ

)
+ ζ

)
-test

for the k-direct-sum problem.

In order to understand why the test works, consider a deconstruction of F into three parts:
F = D + Z +G. In this deconstruction we assume that:

G is minimal with regards to the k-co-cycle-indifferent-direct-sum.
Z is the minimal co-cycle with regards to the k-direct-sum problem.
D is a k-direct-sum.

In sub-section 5.1 we will show that the rejection probability of step (2) bounds from above
‖G‖. In sub-section 5.2 we will show that, when ignoring G, step (3)’s rejection probability
bounds ‖Z‖ from above. Finally in sub-section 5.3 we will show how the combination of
both steps provides a test for being a k-direct-sum. Note that unlike step (2) (in which there
is no assumption on Z), the analysis of step (3) assumes that G = 0.

5.1 Step (2) of the test estimates the Norm of G
I Lemma 38. Let TCI be a (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum then:

‖G‖ ≤ ζ · Pr [step (2) rejects]

Proof. ‖G‖ = dist(F,CI) ≤ ζ · Pr [TCI = 0] = ζ · Pr [step (2) rejects] The second inequality
holds due to the definition of TCI . J

5.2 Step (3) of the Test Estimates Norm of Z Assuming That There is
No Remainder

In step (3) we pick a (k+ 1)-dimensional face randomly and then check whether the function
is a k-direct sum on that specific face. In this section, we will show that the failure probability
of doing so bounds ‖Z‖ from above. We will do that by first observing that given m, a
(k + 1)-dimensional face, either F |m is not a k-direct-sum or Z|m ∈ {0,1}:

I Lemma 39. Let F = D + Z such that D is a k-direct-sum and Z ∈ Zk−1 (X) then for
every odd value k and m ∈ X(k + 1): If F |m is a k-direct-sum on m then: Z|m ∈ {0,1}.

Proof. F |m is a k-direct-sum and, because G = 0, so is Z|m as Z|m = F |m+D|m. Assuming
that Z|m /∈ {0,1}, let z : m→ {0, 1} be an origin function of Z and let Ai = {v ∈ m|z(v) = i}.
Pick the largest possible set (of up to k + 1 elements) of odd size out of A1 (the set is not
empty because otherwise Z|m = 0) and name it A. Add to that set k + 1− |A| items from
A0 (which cannot be empty since Z|m 6= 1) to form a (k + 1)-face which we will denote as t.
It is easy to see that δZ|m(t) =

∑
v∈t z(v) =

∑
v∈A z(v) = 1 (the last equality holds because

|A| is odd) which contradicts the fact that Z ∈ Zk−1 (X) J
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50:12 Testing Odd Direct Sums Using High Dimensional Expanders

We now observe that the set of (k + 1)-dimensional faces on which Z|m 6= 0 can be split into
two sets:

The set of all m ∈ X(k + 1) on which F |m is not a k-direct-sum.
The set of all m ∈ X(k + 1) such that Z|m = 1 (which we will denote as S).

It is easy to see that the rejection probability of step (3) bounds the first set (since step (3)
fails on every face in the set). We will spend the majority of this sub-section proving that
‖S‖ can also be bounded from above using the rejection probability of step (3). We will end
this sub-section by combining the aforementioned bounds.
Before discussing how to bound ‖S‖ from above, it will be useful to present Lemma 39 again,
this time with the new terminology described above:

I Corollary 40. Let m ∈ X(k + 1) then:

F |m is not a k-direct-sum⇔ m ∈ Γk+1(Z) \ S

Proof. m ∈ Γk+1(Z) iff Z|m 6= 0 (due to the definition of Γ) and m /∈ S iff Z|m 6= 1 (due to
the definition of S) therefore:

F |m is not a k-direct-sum⇔ Z /∈ {0,1} ⇔ m ∈ Γk+1(Z) \ S J

In order to bound ‖S‖ we will look at a different function whose norm bounds ‖S‖ from
above, specifically:

I Definition 41. Define E : X(k)→ {0, 1} to be the following function:

E(a) =
{

1 if Z|a = 1

0 otherwise

This function helps in bounding ‖S‖ from above because every face in S is comprised solely
of k-dimensional faces on which E returns 1. Combining this fact with Lemma 11 yields that
‖S‖ ≤ ‖E‖.
All we have to do now is to bound ‖E‖. This will be done by first showing that step (3) of
the test rejects every non-monochromatic (k + 1)-face (where E is considered the coloring).
We will then show that ‖E‖ < 0.5 which will allow to use the colorful expansion in order to
bound ‖E‖.

I Lemma 42 (Step (3) Fails on the Non-Monochromatic Faces). Let m ∈ Z(k + 1). If
c(E)(m) = 1 then F |m is not a k-direct-sum.

Proof. c(E)(m) = 1⇒ ∃a, b ∈
(
m
k+1
)

: E(a) = 1 and E(b) = 0. Using the definition of E we
get that:

E(b) = 0⇒ ∃c ∈
(
b
k

)
: Z(c) = 0

E(a) = 1⇒ ∀t ∈
(
a
k

)
: Z(t) = 1

Therefore Z|m /∈ {0,1} and F |m is not a k-direct-sum (Lemma 39). J

I Lemma 43. For every function of the form F = D+Z +G it holds that ‖Z‖ ≤ 0.5 (Note
that this lemma is true even if G 6= 0).

Proof. It is easy to see that the function f(v) = 1 is the origin function of 1 and therefore
1 is a k-direct-sum. Now, assuming that ‖Z‖ > 0.5 we conclude that ‖1 + Z‖ ≤ 0.5 and
(1 +D) + (1 +Z) = D+Z. Also (1 +D) is a k-direct-sum. We conclude that ‖1 + Z‖ < ‖Z‖
and F + G + (1 + Z) = 1 + D which is a k-direct-sum. This contradicts the fact that Z
is minimal. J
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I Corollary 44. ‖E‖ ≤ 0.5.

Proof. By the definition of E if E(a) = 1 then ∀a′ ∈
(
a
k

)
: Z(a′) = 1. Using Lemma 11 yields

that ‖E‖ ≤ ‖Z‖ which finishes the proof. J

We are now finally ready to bound E using the colorful expansion of X:

I Lemma 45 (Estimating E). On every σ-colorful expander X:

‖E‖ ≤ 1
σ
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

Proof. X is a colorful expander and ‖E‖ ≤ 0.5 therefore σ ≤ ‖c(E)‖
‖E‖ which in turn means that:

σ ‖E‖ ≤ ‖c(E)‖ ≤ ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

(the second inequality is due to Lemma 42) and therefore:

‖E‖ ≤ 1
σ
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖ J

I Lemma 46 (Estimating Z). Let X be a σ-colorful-expander, and let F be a function of the
form F = D + Z such that D is a k-direct-sum and Z is a co-cycle then:

‖Z‖ ≤ 1
η

(
1 + 1

σ

)
Pr [step (3) rejects]

Proof.

‖Z‖ ≤
∥∥Γk+1(Z)

∥∥ ≤ ∥∥(Γk+1(Z) \ S
)
∪ S
∥∥ =

∥∥Γk+1(Z) \ S
∥∥+ ‖S‖ ≤∥∥Γk+1(Z) \ S

∥∥+ ‖E‖ ≤
∥∥Γk+1(Z) \ S

∥∥+ 1
σ

∥∥Γk+1(Z) \ S
∥∥ =(

1 + 1
σ

)∥∥Γk+1(Z) \ S
∥∥ =(

1 + 1
σ

)
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

Note that the inequality found at the end of the first row is due to Lemma 11, the inequality
in the second row is due to Lemma 45 and the last equality is due to Corollary 40.
Note that:

Pr [step (3) rejects] =
Pr [F |m is not a k-direct-sum] · Pr [Tsep rejects| F |m is not a k-direct-sum] =
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖ · η

All the probabilities are over a choice of m ∈ X(k + 1).
We conclude by noting that this yields that:

‖Z‖ ≤ 1
η

(
1 + 1

σ

)
Pr [step (3) rejects] J
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5.3 Combining the Estimations
Now that we know how to estimate both ‖G‖ and ‖Z‖ (with the assumption that G = 0),
it is finally time to combine both estimations in order to estimate ‖Z +G‖. Note that our
estimation of ‖Z‖ is dependent on our estimation of ‖G‖. We will deal with this dependency
by bounding the interference of G using our estimation of it. We will then estimate ‖Z‖ as if
wherever G would have interfered, step (3) rejected.

I Lemma 47. Let F = D+Z+G such that D is a k-direct-sum, Z is a (k−1)-co-cycle and G
is the remainder. Then if Pr

[
TFdirect−sum rejects

]
≤ ξ then ‖Z‖ ≤

(
1 + 1

σ

) ( 1
η +

(
k+2
k

)
ζ
)
ξ.

Proof. First note that because Pr
[
TFdirect−sum rejects

]
≤ ξ we know that

Pr [step (2) rejects F ] ≤ ξ and Pr [step (3) rejects F ] ≤ ξ. Also, consider what happens
when we run the test on F ′ = D + Z. Note that on F ′ the bound found in Lemma 46 holds.
Also note the the co-cyclic part of F and F ′ is Z. Therefore if we could bound the rejection
probability of step (3) on F ′ using the rejection probability of steps (2) and (3) on F we
would have a bound for ‖Z‖. We will start by bounding the set of (k + 1)-faces on which F ′
is not a k-direct-sum:

{m ∈ X(k + 1)| F ′|m is not a k-direct-sum} ⊆
{m ∈ X(k + 1)| (F ′ +G)|m is not a k-direct-sum and G|m = 0}∪
{m ∈ X(k + 1)| G|m 6= 0} =
{m ∈ X(k + 1)| F |m is not a k-direct-sum} ∪ {m ∈ X(k + 1)| G|m 6= 0} =
{m ∈ X(k + 1)| F |m is not a k-direct-sum} ∪ Γk+1(G)

Knowing this, we get that:

Pr [step (3) rejects m when testing F ′] =
η ‖{m ∈ X(k + 1)| F ′|m is not a k-direct-sum}‖ ≤
η ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖+ η

∥∥Γk+1(G)
∥∥

Using Lemma 38, we know that ‖G‖ ≤ ζ · Pr [step (2) rejects] and therefore, using Lemma
10 we get that

∥∥Γk+1(G)
∥∥ ≤ (k+2

k

)
‖G‖ ≤

(
k+2
k

)
ζ · Pr [step (2) rejects]. Therefore:

Pr [step (3) rejects m when testing F ′] ≤
η ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖+ η

∥∥Γk+1(G)
∥∥ ≤

Pr [step (3) rejects m when testing F ] +
(
k + 2
k

)
ηζ · Pr [step (2) rejects] ≤(

1 +
(
k + 2
k

)
ηζ

)
ξ

We will now use the bound obtained in Lemma 46 on F ′ which would yield:

η
1

1 + 1
σ

‖Z‖ ≤
(

1 +
(
k + 2
k

)
ηζ

)
ξ ⇒ ‖Z‖ ≤

(
1 + 1

σ

)(
1
η

+
(
k + 2
k

)
ζ

)
ξ J

We are now finally ready to prove Theorem 37:

Proof of Theorem 37. First, consider the number of queries performed by Tdirect−sum.
If step (2) is chosen then Tdirect−sum performs QCI queries and if step (3) is chosen then
Tdirect−sum performs Qsep queries. Therefore Tdirect−sum performs, at most,
max {QCI , Qsep} queries.
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Suppose that Pr
[
TFdirect−sum rejects

]
≤ ξ then, using Lemma 38 and Lemma 47 we get that:

‖Z +G‖ ≤ ‖Z‖+ ‖G‖ ≤
(

1 + 1
σ

)(
1
η

+
(
k + 2
k

)
ζ

)
ξ + ζξ =((

1 + 1
σ

)(
1
η

+
(
k + 2
k

)
ζ

)
+ ζ

)
ξ

Now all that is left to prove is that a k-direct-sum will always pass the test. If step (2) is
chosen then, because a k-direct-sum is also a k-co-cycle-indifferent-direct-sum, the test will
always accept. Otherwise, if step (3) is chosen then, because the function is a k-direct-sum,
it will be a k-direct-sum on any sub-complex of dimension k + 1 and therefore step (3) will
always accept as well. J

We can now prove the main theorem using Theorem 37:

Proof of Theorem 34. Combining Lemma 49 and Lemma 53 we get that there exists a(
max

{
(k + 1) ·Q,

(
k+2
k

)}
,
((

1 + 1
σ

) ((
k+2
k

)
E
ε + 1

)
+ E

ε

))
-test for k-direct-sum for odd val-

ues of k. J

6 Providing a Test for Being a k-co-cycle-indifferent-direct-sum

In this section we will show how to obtain a test for being a k-co-cycle-indifferent-direct-sum
using a test for being a (k + 1)-direct-sum. We will do that by considering the expansion of
k-direct sums under co-systolic expansion.

I Lemma 48. For any function F = D+Z+G (G is minimal) on an ε-co-systolic expander:
‖G‖ ≤ 1

εdist(δF, k-direct-sum)

Proof. First note that δF = δD+δZ+δG = δD+δG. In addition, because the complex is an
ε-co-systolic expander and G is minimal: ‖G‖ ≤ 1

ε ‖δG‖. Also ‖δG‖ = dist(δF, k-direct-sum)
and therefore ‖G‖ ≤ 1

εdist(δF, k-direct-sum). J

We are now ready to provide the actual test:

I Lemma 49. Let X be an (ε, µ)-co-systolic-expander. If there is a (Q, ξ)-test for being a
(k + 1)-direct-sum (denoted by T ) on X, then there is also a ((k + 1) ·Q, ξε )-test for being a
k-co-cycle-indifferent-direct-sum on X.

Proof. Consider the following test:

Algorithm 3 TCI .

1 Return the result of T on δF (whenever T queries δF , calculate it and send the
result).

It is easy to see that:

dist(F, k-co-cycle-indifferent-direct-sum) = ‖G‖ ≤
1
ε
dist(δF, k-direct-sum) ≤ ξ

ε
Pr [TCI = 0]

Also, F is a k-co-cycle-indifferent-direct-sum ⇔ G = 0 ⇔ Pr [TCI accepts F ] = 1
For any query T makes, TCI makes

(
k+1
k

)
= (k + 1) queries and therefore TCI performs at

most (k + 1) ·Q queries. J
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A Sampling According to the Norm

In this section we will show how to pick a face with probability that equals to its norm.
Consider the following sampling algorithm:

Algorithm 4 Sample(l, r).

1 pick uniformly (using the random bits from r) m ∈ X(d).
2 while |m| > l + 1 do
3 pick uniformly (using the random bits from r) v ∈ m.
4 m← m \ {v}.
5 end
6 return m.

Note that steps 3 and 4 are equivalent to choosing a sub-face ofm of dimension dim (m)−1.
We are going to requite a way to denote a specific value of m during the run of the
sampling algorithm:

I Definition 50. Given a single run of Sample(l, r), define for every l + 1 < i < d+ 1: Mr
i

to be the value of m when |m| = i and the random bits chosen by the algorithm are r.

It is easy to see that these sets satisfy the following properties:
∀r∀i : Mr

i ⊂Mr
i+1.

∀i∀a ∈ X(i− 1) : Pr [Mr
i = a] = Pr [Sample(i− 1, r) = a].



R. Gotlib and T. Kaufman 50:17

I Lemma 51. Let X be a simplicial complex of dimension d and let −1 ≤ l ≤ d then:

∀a ∈ X(l) : Pr [Sample(l, r) = a] = w(a)

And also:

∀A ∈ P (X(i)) : ‖A‖ = Pr [Sample(i, r) ∈ A]

Where Sample is the algorithm 4.

Proof. We will prove this lemma using induction:
Base case: l = d: Notice that ∀a ∈ X(d) : w(a) = 1

(d+1
d+1)|X(d)|

.
The lemma holds because Sample(d+ 1, r) simply chooses a face of dimension d uniformly.
Assuming that ∀a ∈ X(l + 1) : Pr [Sample(l + 1, r) = a] = w(a) we will now prove that
∀a ∈ X(l) : Pr [Sample(l, r) = a] = w(a) (where Mr

i are the values defined in definition 50):

∀a ∈ X(l) : Pr [Sample(l, r) = a] =∑
b∈{b∈X(l+1)|a⊆b}

Pr
[
Sample(l, r) = a

∣∣Mr
l+1 = b

]
· Pr

[
Mr
l+1 = b

]
=

∑
b∈{b∈X(l+1)|a⊆b}

1
l + 2w(b) =

∑
b∈{b∈X(l+1)|a⊆b}

1
l + 2

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|
)
· |X(d)|

=

∑
b∈{b∈X(l+1)|a⊆b}

1
d− l

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|−1

)
· |X(d)|

=

1
(d− l)

(
d+1
|a|
)
· |X(d)|

∑
b∈{b∈X(l+1)|a⊆b}

|{q ∈ X(d)|b ⊆ q}|

= |{q ∈ X(d)|b ⊆ q}|(
d+1
|a|
)
· |X(d)|

= w(a)

The fourth equation holds because:

(l + 2)
(
d+ 1
l + 2

)
= (l + 2) (d+ 1)!

(l + 2)!(d− l − 1)! = (d+ 1)!
(l + 1)!(d− l − 1)!

= (d− l) (d+ 1)!
(l + 1)!(d− l)! = (d− l)

(
d+ 1
l + 1

)

The sixth equation holds because every maximal face that contains a is counted
(
d+1−(l+1)

1
)

=
d− l times. Finally we can see that:

Pr [Sample(i, r) ∈ A] = Pr
[∨
a∈A

Sample(i, r) = a

]
=
∑
a∈A

Pr [Sample(i, r) = a] =∑
a∈A

w({a}) = ‖A‖ J
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B Proofs of Bounds on the Norm

Proof of Lemma 10. First consider how a single face behaves under Γj :

∀a ∈ X(i) :
∥∥Γj({a})

∥∥ =
∑

b∈X(j)
a⊆b

w(b) =
∑

b∈X(j)
a⊆b

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|
)
· |X(d)|

=
∑

b∈X(j)
a⊆b

∑
q∈X(d)
b⊆q

1(
d+1
j+1
)
· |X(d)|

=
∑

q∈X(d)
a⊆q

∑
b∈X(j)
a⊆b⊆q

1(
d+1
j+1
)
· |X(d)|

=
∑

q∈X(d)
a⊆q

(
d−i
j−i
)(

d+1
j+1
)
· |X(d)|

=
(
d−i
j−i
)
· |{q ∈ X(d)|a ⊆ q}|(
d+1
j+1
)
· |X(d)|

=
(
d−i
j−i
)
·
(
d+1
i+1
)(

d+1
j+1
) w({a})

=
(
j + 1
i+ 1

)
w({a})

Note that the last equation holds because:(
d−i
j−i
)
·
(
d+1
i+1
)(

d+1
j+1
) =

(d+1)!(d−i)!
(j−i)!(d−j)!(i+1)!(d−i)!

(d+1)!
(d−j)!(j+1)!

= (j + 1)!
(j − i)!(i+ 1)! =

(
j + 1
i+ 1

)
Now one can easily check that:

∀A ⊆ X(i) :
∥∥Γj(A)

∥∥ =

∥∥∥∥∥⋃
a∈A

Γj({a})

∥∥∥∥∥ ≤∑
a∈A

∥∥Γj({a})
∥∥ =

∑
a∈A

(
j + 1
i+ 1

)
w({a})

=
(
j + 1
i+ 1

)∑
a∈A

w({a}) =
(
j + 1
i+ 1

)
‖A‖

The other direction can be achieved by looking at the algorithm presented in Lemma 51:
Consider the set of values Mr

i defined in definition 50. Note that for every co-chain A: If
Mr
i+1 ∈ A then Mr

j+1 ∈ Γj(A) (because Mr
i+1 ⊆Mr

j+1). Now we can see that:

∀A ⊆ X(i) : ‖A‖ = Pr [Sample(i, r) ∈ A] = Pr
[
Mr
i+1 ∈ A

]
≤ Pr

[
Mr
j+1 ∈ Γj(A)

]
= Pr

[
Sample(j, r) ∈ Γj(A)

]
=
∥∥Γj(A)

∥∥ J

Proof of Lemma 11. First denote U =
{
A′ ∈ X(i+ j)

∣∣∣(A′i ) ⊆ A} and let Mr
i be the values

defined in definition 50. Due to Lemma 51 we know that:

‖A‖ = Pr [Sample(i, r) ∈ A] = Pr
[
Mr
i+1 ∈ A

]
=

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j ∈ U

]
· Pr

[
Mr
i+j ∈ U

]
+

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j /∈ U

]
· Pr

[
Mr
i+j /∈ U

]
≥

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j ∈ U

]
· Pr

[
Mr
i+j ∈ U

]
=

Pr
[
Mr
i+j ∈ U

]
= Pr [Sample(i+ j, r) ∈ U ] = ‖U‖ J

C Direct Sum Separators

In this section we will provide two direct sum separators: One using reconstructing the
origin-function of F , and the other using a test for being a k-direct-sum. The first method
provided here yields a separator that separates a k-direct-sum from other functions with
probability 1. The other method, allows reducing the query complexity while increasing the
error margin.



R. Gotlib and T. Kaufman 50:19

C.1 Direct Sum Separator Using Reconstruction
In this section we will provide a simple direct sum separator that, given F , attempts to
reconstruct the origin function of F and accepts whenever it succeeds.

I Lemma 52. Let Xk+2 be a the complete simplicial complex on k+2 nodes and F : Xk+2(k−
1)→ {0, 1}. Define f to be a function that, given v ∈ Xk+2(0), picks a q ∈ Xk+2(k− 1) such
that v /∈ q and returns

∑
w∈( q

k−1) F (w ∪ {v}). We will show that: F is a k-direct-sum ⇔ f

is an origin function of F .

Proof. ⇒ F is a k-direct-sum therefore there exists an origin function to F denoted by f ′.

∀q : f(v) =
∑

w∈( q
k−1)

F (w ∪ {v}) =
∑

w∈( q
k−1)

(
f ′(v) +

∑
v′∈w

f ′(v′)
)

=

(
k

k − 1

)
f ′(v) +

∑
v′∈q

(
k − 1
k − 2

)
f ′(v′) = k · f ′(v) +

∑
v′∈q

(k − 1) · f ′(v′) = f ′(v)

And therefore f is an origin function of F .
⇐ F has an origin function and therefore it is a k-direct-sum. J

This lemma allows us to create the following
(
k + 2, k,

(
k+2
k

)
, 1
)
-separator:

I Lemma 53 (Direct Sum Separator for Odd Values of k). The following is a(
k + 2, k,

(
k+2
k

)
, 1
)
-direct-sum-separator (given a function F ∈ Ck(X) on a simplicial com-

plex X):

Algorithm 5 Tsep.

1 foreach node v ∈ X(0) do
2 Calculate f(v).
3 end
4 foreach face q ∈ X(k) do
5 Check whether F (q) =

∑
e∈q f(e), if it is not return 0.

6 end
7 Return 1

Proof. The algorithm returns 1 ⇔ F is a k-direct-sum on X due to Lemma 52.
It is easy to see that the separator queries the entire function (Therefore it uses

(
k+2
k

)
queries). J

C.2 Obtaining a Direct Sum Separator From Test
In this section we will show how to construct a separator out of a test for the k-direct-sums
over a k + 1 dimensional complex. This will help reduce query complexity.

I Lemma 54 (Separator from Test). If there is a (Q,E)-test (denoted by T ) for being a
k-direct-sum on a k + 1 dimensional complex then there is a (k + 2, k,Q, ρ)-direct-sum-
separator such that ρ = minF∈Ck−1(X)\{k-direct-sums}

{
Pr[TGX = 0]

}
where X is the complete

(k + 1)-dimensional complex.

Proof. Consider the following tester:
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Algorithm 6 T ′sep.

1 Run T on F and return its output.

It is east to see that the algorithm queries F exactly Q times.
All we have to prove is that if F is not a k-direct-sum than the algorithm returns false with
probability of at least ρ. F ∈ Ck−1(X) \ {k-direct-sums} and therefore:

Pr[TGX = 0] ≥ minG∈Ck−1(X)\{k-direct-sums}
{
Pr[TGX = 0]

}
= ρ

Note that ρ > 0 because if ρ = 0 then there would exist a function F ′ such that F ′ ∈
Ck−1(X) \ {k-direct-sums} and Pr[TF ′X = 0] = 0. Note that T is a test and therefore if
Pr[TF ′X = 0] = 0 then F ′ is a k-direct-sum which contradicts the assumption about F ′. J

Lastly, we can prove corollary 35:

Proof of Corollary 35. Combining the second test provided in [4] and Lemma 54 we get a
(k + 2, k, O(k), ρ)-separator. From the first test provided in [4] and Lemma 49 we get a
(3k + 3, E′)-test for being a k-co-cycle-indifferent-direct-sum. Combining both of these results
with Theorem 37 yields the desired result. J
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