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Abstract
Allen-Zhu, Gelashvili, Micali, and Shavit construct a sparse, sign-consistent Johnson-Lindenstrauss
distribution, and prove that this distribution yields an essentially optimal dimension for the correct
choice of sparsity. However, their analysis of the upper bound on the dimension and sparsity
requires a complicated combinatorial graph-based argument similar to Kane and Nelson’s analysis of
sparse JL. We present a simple, combinatorics-free analysis of sparse, sign-consistent JL that yields
the same dimension and sparsity upper bounds as the original analysis. Our analysis also yields
dimension/sparsity tradeoffs, which were not previously known.

As with previous proofs in this area, our analysis is based on applying Markov’s inequality to
the pth moment of an error term that can be expressed as a quadratic form of Rademacher variables.
Interestingly, we show that, unlike in previous work in the area, the traditionally used Hanson-Wright
bound is not strong enough to yield our desired result. Indeed, although the Hanson-Wright bound
is known to be optimal for gaussian degree-2 chaos, it was already shown to be suboptimal for
Rademachers. Surprisingly, we are able to show a simple moment bound for quadratic forms of
Rademachers that is sufficiently tight to achieve our desired result, which given the ubiquity of
moment and tail bounds in theoretical computer science, is likely to be of broader interest.
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1 Introduction

In many modern algorithms that process high dimensional data, it is beneficial to preprocess
the data through a dimensionality reduction scheme that preserves the geometry of the data.
Dimensionality reduction schemes have been applied in streaming algorithms [22] as well as
algorithms for numerical linear algebra [29], feature hashing [27], graph sparsification [25],
and many other areas. The geometry-preserving objective can be expressed mathematically
as follows. The goal is to construct a probability distribution A over m× n real matrices
that satisfies the following condition for any x ∈ Rn:

PA∈A[(1− ε)||x||2 ≤ ||Ax||2 ≤ (1 + ε)||x||2] > 1− δ. (1)

An upper bound on the dimension m achievable by a probability distribution A that satisfies
(1) is given in the following lemma, which is a central result in the area of dimensionality
reduction:
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I Lemma 1 (Johnson-Lindenstrauss [15]). For any positive integer n and parameters 0 < ε, δ <

1, there exists a probability distribution A over m×n real matrices with m = Θ(ε−2 log(1/δ))
that satisfies (1).

The optimality of the dimension m achieved by Lemma 1 was recently proven in [16, 14].
For many applications of dimensionality reduction schemes, it can be useful to consider

probability distributions over sparse matrices in order to speed up the projection time.
Here, sparsity refers to the constraint that there are a small number of nonzero entries in
each column. In this context, Kane and Nelson [18] constructed a sparse JL distribution,
improving the work of Achlioptas [1] and Dasgupta et al. [6], and proved the following:

I Theorem 2 (Sparse JL [18]). For any positive integer n and 0 < ε, δ < 1, there exists a
probability distribution A over m× n real matrices with m = Θ(ε−2 log(1/δ)) and sparsity
s = Θ(ε−1 log(1/δ)) that satisfies (1).

Notice that this probability distribution, even with its sparsity guarantee, achieves the same
dimension as Lemma 1. The proof of Theorem 2 presented in [18] involved complicated
combinatorics; however, Cohen, Jayram, and Nelson [4] recently constructed two simple,
combinatorics-free proofs of this result. The first approach, which is most relevant to the
approach taken in this paper, used the Hanson-Wright bound on moments of quadratic forms.
An analysis similar to the second approach can be recovered by specializing the analysis of
Cohen [3] for sparse oblivious subspace embeddings to the case of “1-dimensional subspaces.”
In fact, though this recovered analysis is more complex, it has the advantage of yielding
dimension-sparsity tradeoffs that were not produced through any of the previous approaches:
for B ≥ e, the sparsity s can be set to Θ(ε−1 logB(1/δ)) if m is set to Θ(Bε−2 log(1/δ)),
enabling a logB factor reduction in sparsity at the expense of a B factor gain in dimension.

JL with sign-consistency constraints
Neuroscience-based constraints give rise to the additional condition of sign-consistency on
the matrices in the probability distribution. Sign-consistency refers to the constraint that
the nonzero entries of each column are either all positive or all negative. The relevance
of dimensionality reduction schemes in neuroscience is described in a survey by Ganguli
and Sompolinsky [9]. In convergent pathways in the brain, information stored in a massive
number of neurons is compressed into a small number of neurons, and nonetheless the ability
to perform the relevant computations is preserved. Modeling this information compression
scheme requires a hypothesis regarding what properties of the original information must
be accurately transmitted to the receiving neurons. A plausible minimum requirement is
that convergent pathways preserve the similarity structure of neuronal representations at the
source area.1

It remains to select the appropriate mathematical measure of similarity. The candidate
similarity measure considered in [9] is vector inner product, which conveniently gives rise
to a model based on the JL distribution.2 Suppose there are n “input” neurons at a source
area and m “output” neurons at a target area. In this framework, the information at the

1 This requirement is based on the experimental evidence that semantically similar objects in higher
perceptual or association areas in the brain elicit similar neural activity patterns [19] and on the
hypothesis that the similarity structure of the neural code is the basis of our ability to categorize objects
and generalize responses to new objects [24].

2 It is not difficult to see that for vectors x and y in the `2 unit ball, a (1 + ε)-approximation of ‖x‖2,
‖y‖2, and ‖x− y‖2 implies an additive error Θ(ε) approximation of the inner product 〈x, y〉.
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input neurons is represented as a vector in Rn, the synaptic connections to output neurons
are represented as a m× n matrix (with (i, j)th entry corresponding to the strength of the
connection between input neuron j and output neuron i), and the information received by
the output neurons is represented as a vector in Rm. The similarity measure between two
vectors v, w of neural information being taken to be 〈v, w〉 motivates modeling a synaptic
connectivity matrix as a random m× n matrix drawn from a probability distribution that
satisfies (1). Certain constraints on synaptic connectivity matrices arise from the biological
limitations of neurons: the matrices must be sparse since a neuron is only connected to a
small number (e.g. a few thousand) of postsynaptic neurons and sign-consistent since a
neuron is usually purely excitatory or purely inhibitory.

This biological setting motivates the mathematical question: what is the optimal dimension
and sparsity that can be achieved by a probability distribution over sparse, sign-consistent
matrices that satisfies (1)? Allen-Zhu, Gelashvili, Micali, and Shavit [2] constructed a sparse,
sign-consistent JL distribution3 and proved the following:

I Theorem 3 (Sparse, sign-consistent JL [2]). For every ε > 0, and 0 < δ < 1/e, there exists a
probability distribution A over m×n real, sign-consistent matrices with m = Θ(ε−2 log2(1/δ))
and sparsity s = Θ(ε−1 log(1/δ)) that satisfies (1).

In [2], it was also proven that the additional log(1/δ) factor on m is essentially neces-
sary: namely, any distribution over sign-consistent matrices satisfying (1) requires m =
Ω̃(ε−2 log(1/δ) min(log(1/δ), logn)). Thus, the dimension in Theorem 3 is essentially optimal.
However, in order to achieve this upper bound on m, the proof presented in [2] involved
complicated combinatorics even more delicate than in the analysis of sparse JL in [18].

We present a simpler, combinatorics-free proof of Theorem 3. Our analysis also yields
dimension/sparsity tradeoffs, which were not previously known.4 We prove the following:

I Theorem 4. For every ε > 0, 0 < δ < 1, and e ≤ B ≤ 1
δ , there exists a probability

distribution A over m× n real, sign-consistent matrices with m = Θ(Bε−2 log2
B(1/δ)) and

sparsity s = Θ(ε−1 logB(1/δ)) that satisfies (1).

Notice Theorem 3 is recovered if B = e. For larger B values, Theorem 4 enables a logB
factor reduction in sparsity at the cost of a B/ log2 B factor gain in dimension.

To contextualize our tradeoff in Theorem 4, recall that the upper bounds on sparse (non-
sign-consistent) JL dimension-sparsity tradeoffs by Cohen [3] take a similar form, allowing a
logB factor reduction in s for a B factor gain in m. Moreover, in a recent follow-up work [13],
we show lower bounds that indicate that the standard choice of sparse JL construction requires
an exponential factor gain in dimension for a given reduction in sparsity, demonstrating that
Cohen’s dimension-sparsity tradeoffs are essentially tight.5 Due to the structural similarity
between sparse JL and sparse, sign-consistent JL, we believe this provides indication that
our tradeoffs in Theorem 4 could be tight for this construction in many regimes.6

3 Related mathematical work includes, in addition to sparse JL [18], a construction of a dense, sign-
consistent JL distribution [23, 10].

4 In Appendix A, we point out the limiting lemma in the combinatorial analysis in [2], which prevents
dimension-sparsity tradeoffs from being attainable through this approach, due to an assumption that is
implicitly used in the analysis. For sparse JL, it is similarly not known how to obtain these tradeoffs
via the combinatorial approach of [18].

5 More specifically, it follows from [3] and [13] that m is exactly min(poly(B)ε−2 log(1/δ), 2ε−2/δ) for the
standard choice of sparse JL construction (uniformly choosing s nonzero entries per column).

6 An interesting direction for future work could be to build upon the ideas in the follow-up work [13] to
show lower bounds on the dimension-sparsity tradeoffs for this sparse, sign-consistent JL construction.
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Proof Techniques

As in [2, 18, 4], our analysis is based on applying Markov’s inequality to the pth moment of
an error term. Like in the first combinatorics-free analysis of sparse JL in [4], we express
this error term as a quadratic form of Rademachers (uniform ±1 random variables), and our
analysis then boils down to analyzing the moments of this quadratic form. While the analysis
in [4] achieves the optimal dimension for sparse JL using an upper bound on the moments of
quadratic forms of subgaussians due to Hanson and Wright [11], we give a counterexample
in Section 3.2 that shows that the Hanson-Wright bound is too loose in the sign-consistent
setting to result in the optimal dimension. Since the Hanson-Wright bound is tight for
quadratic forms of gaussians, we thus require a separate treatment of quadratic forms of
Rademachers.

We construct a simple bound on moments of quadratic forms of Rademachers that, unlike
the Hanson-Wright bound, is sufficiently tight in our setting to prove Theorem 4. Our bound
borrows some of the ideas from Latała’s tight bound on the moments of quadratic forms
of Rademachers [21]. Although our bound is much weaker than the bound in [21] in the
general case, it has the advantage of providing a greater degree of simplicity by consisting
of easier-to-analyze terms; this simplicity is critical since our quadratic form coefficients
are themselves random variables. The crux is that while the bound in [21] is focused on
obtaining tight estimates for quadratic forms with scalar coefficients, our bound is much
more tractable for quadratic forms with random variable coefficients. As a result, our bound
enables a simple proof of Theorem 4, while retaining the necessary precision to recover the
optimal dimension.

We build upon these ideas in our recent follow-up work [13], where the Hanson-Wright
bound also turns out to be too loose. The work studies sparse JL performance in feature
hashing and considers the restricted set of vectors with small `∞-to-`2 norm ratio, continuing
a line of work [27, 6, 17, 5, 18, 7]. The main result is a tight tradeoff between `∞-to-`2 norm
ratio and ε, δ, s, and m, and the lower bounds on dimension-sparsity tradeoffs mentioned
before are shown as a corollary. Similar to this work, the proof boils down to a tight bound
on pth moment of an error term, and it also turns out that the Hanson-Wright bound is too
loose here. The work solves this issue by building upon ideas from this work, utilizing a
separate treatment of Rademachers that is tractable for random variable coefficients. While
the analysis in [13] does not use the exact quadratic form bound presented here, it uses
intuition and generalizations of the moment bounding techniques presented in this work.

1.1 Notation

The main building blocks for our expressions are the following two types of random variables:
Rademacher variables, which are uniform ±1 random variables, and Bernoulli random
variables, which have support {0, 1}. For any random variable X and value p ≥ 1, we use the
notation ‖X‖p to denote the p-norm (E[|X|p])1/p, where E denotes the expectation. Similarly,
for any random variable X and value p ≥ 1 and any event E, we use the notation ‖X | E‖p
to denote the conditional p-norm (E[|X|p | E])1/p, which is equivalent to the p-norm of the
random variable (X | E). We use the following notation to discuss certain asymptotics:
given two scalar quantities Q1 and Q2 that are functions of some parameters, we use the
notation Q1 ' Q2 to denote that there exist positive universal constants C1 ≤ C2 such that
C1Q2 ≤ Q1 ≤ C2Q2, and we use the notation Q1 . Q2 to denote that there exists a positive
universal constant C such that Q1 ≤ CQ2.
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1.2 A digression on Rademachers versus gaussians

The concept that drives our moment bound can be illustrated in the linear form setting.
Suppose σ1, σ2 . . . , σn are i.i.d Rademachers, x = [x1, . . . , xn] is a vector in Rn such that
|x1| ≥ |x2| ≥ . . . ≥ |xn|, and 2 ≤ p ≤ n. The Khintchine inequality, which is tight for linear
forms of gaussians, yields the `2-norm bound ‖

∑n
i=1 σixi‖p .

√
p ‖x‖2. However, this bound

cannot be a tight bound on ‖
∑n
i=1 σixi‖p for the following reason: As p→∞, the quantity√

p ‖x‖2 goes to infinity, while for any p ≥ 1, the quantity ‖
∑n
i=1 σixi‖p is bounded by ‖x‖1.

Surprisingly, a result due to Hitczenko [12] indicates that the tight bound is actually the
following combination of the `2 and `1 norm bounds:∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
p

'
p∑
i=1
|xi|+

√
p

√∑
i>p

x2
i .

In this bound, the “big” terms (i.e. terms involving x1, x2, . . . , xp) are handled with an
`1-norm bound, while the remaining terms are approximated as gaussians and bounded with
an `2-norm bound.

A similar complication arises when the Hanson-Wright bound on quadratic forms of
subgaussians is applied to Rademachers. Let σ be a d-dimensional vector of independent
Rademachers, and let A = (ak,l) be a symmetric d × d matrix with zero diagonal. The
Hanson-Wright bound [11], which is tight for gaussians, states for any p ≥ 1,

∥∥σTAσ∥∥
p
.
√
p

√√√√ d∑
k=1

d∑
l=1

a2
k,l + p

(
sup
‖y‖2=1

|yTAy|

)
.

Similar to the linear form setting, this bound can’t be a tight bound on
∥∥σTAσ∥∥

p
for the

following reason: As p → ∞, the quantity √p
√∑d

k=1
∑d
l=1 a

2
k,l goes to ∞, while for any

p ≥ 1, the quantity
∥∥σTAσ∥∥

p
is bounded by the entrywise `1-norm

∑d
k=1

∑d
l=1 |ak,l|.

Our quadratic form bound is based on a degree-2 analog of Hitczenko’s observation.
We analogously handle the “big” terms with an `1-norm bound and bound the remaining
terms by approximating some of the Rademachers by gaussians. From this, we obtain a
combination of `2 and `1 norm bounds, similar to the linear form setting. Our simple bound
has the surprising feature that it yields tighter guarantees than the Hanson-Wright bound
yields for our error term. While our bound is weaker than Latała’s tight bound [21] on
the moments of quadratic forms of Rademachers in the general case, it provides a greater
degree of simplicity: our bound avoids an operator-norm-like term in Latała’s bound that
is especially difficult to analyze when A is a random matrix, as is the case in this setting.
Moreover, our bound still retains the necessary precision to recover the optimal dimension
for sparse, sign-consistent JL.

Although our final analysis follows a style that this is perhaps less well-known within the
TCS community, in the end, it is quite simple, relying only on our quadratic form bound
coupled with a few standard tricks such as repeated use of triangle inequalities on || · ||p
norms and standard moment bounds involving the binomial distribution. For this reason,
we believe that it is likely to be of interest in other theoretical computer science settings
involving moments or tail bounds of Rademacher forms.

APPROX/RANDOM 2019
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1.3 Outline for the rest of the paper
In Section 2, we describe the construction and analysis of [2] for sparse, sign-consistent
JL. In Section 3, we present the combinatorics-free approach in [4] for sparse JL that uses
the Hanson-Wright bound, and we discuss why this approach does not yield the optimal
dimension in the sign-consistent setting. In Section 4, we derive our bound on the moments
of quadratic forms of Rademachers and use this bound to construct a combinatorics-free
proof of Theorem 4.

2 Existing Analysis for Sparse, Sign-Consistent JL

In Section 2.1, we describe how to construct the probability distribution of sparse, sign-
consistent matrices analyzed in Theorem 3. In Section 2.2, we briefly describe the combinat-
orial proof of Theorem 3 presented in [2].

2.1 Construction of Sparse, Sign-Consistent JL
The entries of a matrix A ∈ A are generated as follows.7 Let Ai,j = ηi,jσj/

√
s where {σi}i∈[n]

and {ηr,i}r∈[m],i∈[n] are defined as follows:
The families {σi}i∈[n] and {ηr,i}r∈[m],i∈[n] are independent from each other.
The variables {σi}i∈[n] are i.i.d Rademachers.
The variables {ηr,i}r∈[m],i∈[n] are identically distributed Bernoulli random variables with
expectation s/m.
The {ηr,i}r∈[m],i∈[n] are independent across columns but not independent within each
column. For every column 1 ≤ i ≤ n, it holds that

∑m
r=1 ηr,i = s. For every subset

S ⊆ [m] and every column 1 ≤ i ≤ n, it holds that E
[∏

r∈S ηr,i
]
≤
∏
r∈S E[ηr,i]. (One

common definition of {ηr,i}r∈[m],i∈[n] that satisfies these conditions is the distribution
defined by uniformly choosing exactly s of these variables per column to be a 1.)

For every x ∈ Rn such that ‖x‖2 = 1, we need to analyze an error term, which for this
construction is the following random variable:

Z := ‖Ax‖2
2 − 1 = 1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσiσjxixj .

Proving that A satisfies (1) boils down to proving that Pη,σ[|Z| > ε] < δ. The main technique
to prove this tail bound is the moment method. Bounding a large moment of Z is useful
since it follows from Markov’s inequality that

Pη,σ[|Z| > ε] = Pη,σ[|Z|p > εp] < E[|Z|p]
εp

.

The usual approach, used in the analyses in [2, 18, 4] as well as in our analysis, is to take
p = Θ(log(1/δ)) to be an even integer and analyze the p-norm ‖Z‖p of the error term.

2.2 Discussion of the combinatorial analysis of [2]
In the analysis in [2], a complicated combinatorial argument was used to prove the following
lemma, from which Theorem 3 follows:

I Lemma 5 ([2]). If s2 ≤ m and p < s, then ‖Z‖p .
p
s .

7 See the appendix of the full version of the paper for a formal construction of the probability space.
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The argument in [2] to prove Lemma 5 was based on expanding E[Zp] into a polynomial with
≈ n2p terms, establishing a correspondence between the monomials and the multigraphs, and
then doing combinatorics to analyze the resulting sum. The approach of mapping monomials
to graphs is commonly used in analyzing the eigenvalue spectrum of random matrices [28, 8]
and was also used in [18] to analyze sparse JL. The analysis in [2] borrowed some methods
from the analysis in [18]; however, the additional correlations between the Rademachers
imposed by sign-consistency forced the analysis in [2] to require more delicate manipulations
at several stages of the computation.

The expression to be analyzed was spE[Zp], which was written as:∑
i1,...,ip,j1,...,jp∈[n],i1 6=j1,...,ip 6=jp

(
p∏

u=1
xiuxju

)(
Eσ

p∏
u=1

σiuσju

)(
Eη

t∏
u=1

m∑
r=1

ηr,iuηr,ju

)
.

After layers of computation, it was shown that

spE[Zp] ≤ ep
p∑
v=2

∑
G∈Gv,p

(
(1/pp)

v∏
q=1

√
dq
dq

) ∑
r1,...,rp∈[m]

w∏
i=1

(s/m)vi

where Gv,p is a set of directed multigraphs with v labeled vertices and t labeled edges, where
dq is the total degree of vertex q ∈ [v] in a graph Gv,p, and where w and v1, . . . , vw are
defined by G and the edge colorings r1, . . . , rt. The problem then boiled down to carefully
enumerating the graphs in Gv,p in six stages and analyzing the resulting expression.

3 Discussion of Combinatorics-Free Approaches

The main ingredient of the first combinatorics-free approach for sparse JL presented in [4] is
the Hanson-Wright bound on the moments of quadratic forms of subgaussians. In Section
3.1, we discuss the approach in [4]. In Section 3.2, we discuss why this approach, if applied
to sparse, sign-consistent JL, fails to yield the optimal dimension.

3.1 Hanson-Wright approach for sparse JL in [4]
The relevant random variable for sparse JL is

Z ′ = ||Ax||2 − 1 = 1
s

m∑
r=1

∑
i6=j

ηr,iηr,jσr,iσr,jxixj

where the n independent Rademachers {σi}i∈[n] from the sign-consistent case are replaced by
the mn independent Rademachers {σr,i}i∈[n],r∈[m]. The main idea in [4] was to view Z ′ as a
quadratic form 1

sσ
TAσ. Here, σ is a mn-dimensional vector of independent Rademachers

and A = (Ak,l) is a symmetric, zero diagonal, block diagonal mn×mn matrix with m blocks
of size n×n, where the (i, j)th entry (for i 6= j) of the rth block is ηr,iηr,jxixj . The quantity∥∥σTAσ∥∥

p
was analyzed using the Hanson-Wright bound. In order to bound

∥∥σTAσ∥∥
p
, since

A is a random matrix whose entries depend on the η values, an expectation had to be taken
over η in the expression given by the Hanson-Wright bound. This resulted in the following:

∥∥σTAσ∥∥
p
.

∥∥∥∥∥∥√p
√√√√mn∑
k=1

mn∑
l=1

A2
k,l + p sup

‖y‖2=1
|yTAy|

∥∥∥∥∥∥
p

. (2)

The remainder of the analysis boiled down to bounding the RHS of (2), and it successfully
recovered Theorem 2.

APPROX/RANDOM 2019
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3.2 Failure of the Hanson-Wright approach for sparse, sign-consistent
JL

The Hanson-Wright-based approach for sparse JL in [4] cannot be applied to the sign-
consistent case to obtain a tight bound on ‖Z‖p. The loss arises from the fact that while
the Hanson-Wright bound is tight for quadratic forms of gaussians, it is not guaranteed to
be tight for quadratic forms of Rademachers. As discussed in Section 1.2, when p → ∞,
the Hanson-Wright bound goes to ∞, while ||σTAσ||p can be bounded by the entrywise `1
norm of the matrix A. Although approximating the error term Rademachers by gaussians
happened to be sufficiently tight for sparse JL, this loss results in a suboptimal dimension for
sparse, sign-consistent JL.8 We give a counterexample, i.e. a vector x, that shows that the
Hanson-Wright bound is too loose to give the optimal dimension (when {ηr,i}r∈[m],i∈[n] are
defined by uniformly choosing exactly s of the variables per column to be a 1). We present
the details in Appendix E.

4 Simple Proof of Theorem 4

The main ingredient in our proof of Theorem 4 is the following bound on ‖Z‖p:

I Lemma 6. Let B = m/s2. If p ≥ 2, then

‖Z‖p .

{
p

s logB , if B ≥ e
p
sB if B < e.

We will later show that Theorem 4 follows from Lemma 6 via Markov’s inequality.
In order to analyze ‖Z‖p, we view Z as a quadratic form 1

sσ
TAσ, where the vector σ

is an n-dimensional vector of independent Rademachers, and A = (ai,j) is a symmetric,
zero-diagonal n× n matrix where the (i, j)th entry (for i 6= j) is xixj

∑m
r=1 ηr,iηr,j . Since

Z is symmetric in x1, . . . , xn, we can assume WLOG that |x1| ≥ |x2| ≥ . . . ≥ |xn|. For
convenience, we define, like in [4],

Qi,j :=
m∑
r=1

ηr,iηr,j (3)

to be the number of collisions between the nonzero entries of the ith column and the nonzero
entries of the jth column. Now, the (i, j)th entry of A (for i 6= j) can be written as Qi,jxixj .

As discussed in Section 3.2, we cannot apply the Hanson-Wright bound to tightly analyze
‖Z‖p and thus require a separate treatment of Rademachers. We derive the following
moment bound on quadratic forms of Rademachers9 that yields tighter guarantees than the
Hanson-Wright bound yields for ‖Z‖p:

8 The difference results from the correlations between the signs resulting in more “tightly packed”
coefficients in the error term quadratic form in the sign-consistent case.

9 As mentioned before, Latała [21] provides a tight bound on the moments of σTAσ (and on the moments
of more general quadratic forms). However, his bound consists of terms that are difficult to analyze
when the quadratic form coefficients are random variables. Moreover, his proof is quite complicated,
though the bound can be used in a black box to generate a much messier solution (by unravelling some
of his proof to avoid the operator-norm-like term).
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I Lemma 7. If A = (ai,j) is a symmetric square n× n matrix with zero diagonal, {σi}i∈[n]
is a set of independent Rademachers, and q ≥ 1, then∥∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

min(q,n)∑
i=1

min(q,n)∑
j=1

|ai,j |

+√q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

.

Observe that our bound avoids the weakness of the Hanson-Wright bound in the limit
as q → ∞. As discussed in Section 1.2,

∥∥∥∑n
i=1
∑n
j=1 ai,jσiσj

∥∥∥
q
can be bounded by the

entrywise `1-norm bound
∑n
i=1
∑n
j=1 |ai,j | for any q ≥ 1. While the Hanson-Wright bound

goes to ∞ as q → ∞, the bound in Lemma 7 approaches the entrywise `1 bound in the
limit: for q > n, the second term in Lemma 7 vanishes since the summand

∑
j>q is empty.

As a result, the bound becomes the first-term, which becomes
∑n
i=1
∑n
j=1 |ai,j | as desired.

For 1 ≤ q < n, our bound becomes an interpolation of `1 and `2 norm bounds that bears
resemblance to Hitczenko’s Rademacher linear form bound in [12] discussed in Section 1.2.

Although our bound is weaker than Latała’s bound in [21] in the general case, it is much
simpler to analyze, especially when A is a random matrix. While the bound in [21] is focused
on obtaining tight estimates for quadratic forms where A is a scalar matrix, our bound is
much more tractable when A is a random matrix. The main complication in the bound in [21]
arises from the operator-norm-like term sup||y||2=1,||y||∞≤ 1√

q
|yTAy|. Due to the asymmetrical

geometry of the `2 ball truncated by `∞ planes, this term becomes especially messy in our
setting when A is a random matrix. Observe that our bound in Lemma 7 manages to avoid
this term altogether. Moreover, our `1 norm term is straightforward to calculate, and our `2
norm term can be handled cleanly through a bound (Lemma 15) from [20] on the q-norm∥∥∥∑j>q ai,jσj

∥∥∥
q
that is tractable even when the ai,j are themselves random variables.

We defer our proof of Lemma 7 to Section 4.1. We now use Lemma 7 and the triangle
inequality to obtain the following bound on ||Z||p:

||Z||p = 1
s

EηEσ

 n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjσiσj

p1/p

.
1
s

Eη


p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj |+
√
p

√√√√√√√ n∑
i=1

Eσ

∑
j>p
j 6=i

Qi,jxixjσj


p

2/p

p

1/p

≤ 1
s



∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj |

∥∥∥∥∥∥∥∥
p︸ ︷︷ ︸

(∗)

+√p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p︸ ︷︷ ︸
(∗∗)


.

We first discuss some intuition for why using this bound to analyze ‖Z‖p avoids the
loss incurred by the Hanson-Wright bound here. In the Hanson-Wright bound, all of the
Rademachers are essentially approximated by gaussians. In our bound, we make use of
Rademachers in the appropriate places to avoid loss. For 1 ≤ i ≤ p and 1 ≤ j ≤ p (the
upper left p× p minor where the |xi| and |xj | values are the largest), our approach utilizes
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an `1-norm bound rather than √p times an `2 bound, which turns out to allow us to save a
factor of √p in the resulting bound on ‖Z‖p. Now, since the original matrix is symmetric, it
only remains to consider 1 ≤ i ≤ n and p+ 1 ≤ j ≤ n. In this range, we approximate the σi
Rademachers by gaussians and use an `2-norm bound. It turns out that approximating the
σj Rademachers by gaussians as well would yield too loose of a bound for our application, so
we preserve the σj Rademachers. For the remaining Rademacher linear forms, the interaction
between the xj values (all of which are upper bounded in magnitude by 1√

p ) and the σj
Rademachers yields the desired bound.

In order to prove Lemma 6, it remains to prove Lemma 7 as well as to bound (∗) and (∗∗).
In Section 4.1, we prove Lemma 7. In Section 4.2 and Section 4.3, we bound (∗) and (∗∗).
Since the building blocks of (∗) and (∗∗) are weighted sums of the Qi,j random variables,
we first bound moments of these random variables separately. In Section 4.2, we use the
binomial-like properties of the Qi,js coupled with standard moment bounds involving the
binomial distribution to analyze the moments. In Section 4.3, we use these moment bounds
to bound (∗) and (∗∗), and then finish our proof of Lemma 6. In Section 4.4, we show how
Lemma 6 implies Theorem 4.

4.1 Proof of Lemma 7

We use the following standard lemmas in our proof of Lemma 7.
The first lemma allows us to decouple the two sets of Rademachers in our quadratic

form so that we can reduce analyzing the moments of the quadratic form to analyzing the
moments of a linear form.

I Lemma 8 (Decoupling, Theorem 6.1.1 of [26]). If A = (ai,j) is a symmetric, zero-diagonal
n× n matrix and {σi}i∈[n] ∪ {σ′i}i∈[n] are independent Rademachers, then∥∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q

.

The next lemma is due to Khintchine and gives an `2-norm bound on linear forms of
Rademachers. Since the Khintchine bound is derived from approximating σ1, . . . , σn by i.i.d
gaussians, we only use this bound outside of the upper left p× p minor of our matrix A.

I Lemma 9 (Khintchine). If σ1, σ2, . . . , σn are independent Rademachers, then for all q ≥ 1
and a ∈ Rn,∥∥∥∥∥

n∑
i=1

σiai

∥∥∥∥∥
q

.
√
q||a||2.

Now, we are ready to prove Lemma 7.

Proof of Lemma 7. By Lemma 8 and the triangle inequality, we know∥∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

∥∥∥∥∥∥
min(q,n)∑
i=1

min(q,n)∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

α

+

∥∥∥∥∥∥
n∑
i=1

∑
j>q

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

β

+

∥∥∥∥∥∥
∑
i>q

q∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

γ

.
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We first bound α. Since a Rademacher σ satisfies |σ| = 1, it follows that α can be
upper bounded by the entrywise `1-norm bound

∑min(q,n)
i=1

∑min(q,n)
j=1 |ai,j | as desired. Using

Lemma 9, we know that β can be upper bounded by:

√
q

∥∥∥∥∥∥∥∥
√√√√√ n∑

i=1

∑
j>q

ai,jσj

2
∥∥∥∥∥∥∥∥
q

= √q

√√√√√√
∥∥∥∥∥∥∥
n∑
i=1

∑
j>q

ai,jσj

2
∥∥∥∥∥∥∥
q/2

≤ √q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

.

We now bound γ. An analogous argument shows γ ≤ √q
√∑q

j=1

∥∥∥∑i>q ai,jσi

∥∥∥2

q
. Thus:

γ ≤ √q

√√√√√ q∑
j=1

∥∥∥∥∥∥
∑
i>q

ai,jσi

∥∥∥∥∥∥
2

q

≤ √q

√√√√√ n∑
j=1

∥∥∥∥∥∥
∑
i>q

ai,jσi

∥∥∥∥∥∥
2

q

= √q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

. J

4.2 Moments of Weighted Sums of Qi,j Random Variables
Recall that for 1 ≤ i 6= j ≤ n, the Qi,j random variables count the number of collisions
between the nonzero entries in the ith column and jth column. We first prove that these sets
of random variables satisfy (conditional) independence properties, when conditioned on any
choice of nonzero entries in the ith column. We also show that the moments of the random
variables obtained through this conditioning are bounded by binomial moments.

I Proposition 10. Let X be a random variable distributed as Bin(s, s/m). For any 1 ≤ i ≤ n,
given any choice of s nonzero rows r1 6= r2 6= . . . 6= rs in the ith column, the set of n−1 random
variables10 {(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)}1≤j≤n,j 6=i are independent. Moreover, for
any q ≥ 1 and any j 6= i:

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q ≤ ‖X‖q .

The independence properties use that the nonzero entries in different columns are independent.
Moreover, the binomial bound on the moments of Qi,j follows from the decomposition of
Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1 into a sum of Bernoulli random variables.

Proof of Proposition 10. Let A be a matrix drawn from A, and pick any 1 ≤ i ≤ n.
We condition on the event that the s nonzero entries in column i of A occur at rows
r1, . . . , rs. For 1 ≤ j ≤ n, j 6= i and 1 ≤ k ≤ s, let Yk,j = ηrk,j , so that (Qi,j |
ηr1,i = ηr2,i = . . . = ηrs,i) =

∑s
k=1 Yk,j . Notice that the sets {Yk,j}k∈[s] for 1 ≤ j ≤

n, j 6= i are independent from each other, which means random variables in the set
{Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1}1≤j≤n,j 6=i are independent. For 1 ≤ j ≤ n, j 6= i, and
1 ≤ k ≤ s, let Zk,j be distributed as i.i.d Bernoulli random variables with expectation
s/m. Notice that for a fixed j, each Yk,j is distributed as Zk,j and the random variables
{Yk,j}1≤k≤s are negatively correlated (and nonnegative), which means

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q =

∥∥∥∥∥
s∑

k=1
Yk,j

∥∥∥∥∥
q

≤

∥∥∥∥∥
s∑

k=1
Zk,j

∥∥∥∥∥
q

= ‖X‖q . J

10 See the appendix in the full version of the paper for a formal discussion of viewing these quantities as
random variables over a different probability space.
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Now, we need to analyze the moments of weighted sums of Qi,j random variables. Using
the independence properties and the fact that the moments of the Qi,j are upper bounded
by binomial moments as given in Proposition 10, this boils down to studying the moments
of weighted sums of binomial random variables. The main tools that we use in analyzing
these moments are bounds on moments of sums of nonnegative random variables and sums
of symmetric random variables due to Latała [20] that we state in Appendix B.11

Our first estimate is an upper bound on the moments of binomial random variables,
which also gives bounds on moments of the Qi,j by Proposition 10. We defer the proof to
Appendix D.

I Proposition 11. Suppose that X is a random variable distributed as Bin(N,α) for any
α ∈ (0, 1) and any integer N ≥ 1. If q ≥ 1 and B = q

αmax(N,q) , then

‖X‖q .

{
q

logB if B ≥ e
q
B if B < e

.

Our next estimate is essentially an upper bound on the moments of sums of binomial
random variables weighted by Rademachers. We defer the proof to Appendix C.

I Proposition 12. Suppose that q ≥ 2 is even and y = [y1, . . . , yM ] is a vector that satisfies
||y||2 ≤ 1 and ||y||∞ ≤ 1√

q . Let X be a random variable distributed as Bin(N,α) for some
α ∈ (0, 1) and some integer N ≥ 1. Suppose that Y1, . . . , YM are independent random
variables that satisfy ||Yk||l ≤ ||X||l for 1 ≤ k ≤M and for l ≥ 1. Suppose that σ1, . . . , σM
are independent Rademachers, also independent of {Yk}k∈[M ]. If B = q

αmax(N,q) , then∥∥∥∥∥
M∑
k=1

Ykykσk

∥∥∥∥∥
q

.

{ √
q

logB if B ≥ e
√
q

B if B < e
.

4.3 Bounding (∗) and (∗∗) to prove Lemma 6
We bound the quantities (∗) and (∗∗) in the following sublemmas, which assume the notation
used throughout the paper:

I Lemma 13. If m/s2 = B, then∥∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxjxi|

∥∥∥∥∥∥
p

.

{
p

logB if B ≥ e
p
B if B < e

.

I Lemma 14. If m/s2 = B, then

√
p

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑

j>p,j 6=i
Qi,jxixjσj

∥∥∥∥∥∥
2

p

.

{
p

logB if B ≥ e
p
B if B < e

.

We now use Proposition 10 as well as the moment bound on binomial random variables
from Proposition 11 to prove Lemma 13 and thus bound (∗).

11The proofs of these bounds given in [20] are not complicated; for the sake of being self-contained, we
give sketches of these proofs in the appendix of the full version of the paper.
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Proof of Lemma 13. We carefully use the triangle inequality to see12:∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxjxi|

∥∥∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j>i

Qi,j |xj ||xi|

∥∥∥∥∥∥∥∥
p

.

∥∥∥∥∥∥∥∥
p∑
i=1

x2
i

∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥∥
p

.
p∑
i=1

x2
i

∥∥∥∥∥∥∥∥
∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m) and Y ∼ Bin(sp, s/m). By Proposition 10, for any i and any r1 6=
r2 6= . . . 6= rs, the random variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and
‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p. It follows from taking pth powers of both sides that∥∥∥∥∥∥∥∥

∑
j≤p
j>i

Qi,j

 | ηr1,i = . . . = ηrs,i = 1

∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥
∑
j≤p
j>i

(Qi,j | ηr1,i = . . . = ηrs,i = 1)

∥∥∥∥∥∥∥∥
p

≤ ‖Y ‖p .

Now, Proposition 11 gives us a bound on ‖Y ‖p, and the result follows from the law of total
expectation.13 J

We now use Proposition 10 as well as the moment bound on weighted sums of binomial
random variables from Proposition 12 to prove Lemma 14 and thus bound (∗∗).

Proof of Lemma 14. Observe that

√
p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p

= √p

√√√√√√√ n∑
i=1

x2
i

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
2

p

≤ √p max
1≤i≤n

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m) and Y ∼ Bin(sp, s/m). By Proposition 10, for any i and any
r1 6= r2 6= . . . 6= rs, the random variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are inde-
pendent and ‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p ≤ ‖Y ‖p. Moreover, |xj | ≤ 1√

p for

j > p. Now, we consider
∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1

∥∥∥
p
which is equal to∥∥∥∑j>p,j 6=i(Qi,j | ηr1,i = . . . = ηrs,i = 1)(σj | ηr1,i = . . . = ηrs,i = 1)xj

∥∥∥
p
. Since each (σj |

ηr1,i = . . . = ηrs,i = 1) is distributed as a Rademacher and since the set of n − 1 ran-
dom variables {σj | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and also independent of
{Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i, we can apply Proposition 12 to this expression and thus
get a bound14 on the conditional p-norm

∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1
∥∥∥
p
. Now,

the result follows from the law of total expectation. J

We now show the bound on ||Z||p follows from the bounds on (∗) and (∗∗) in Lem-
mas 13, 14.

12Naively applying the triangle inequality yields a suboptimal bound, so we require this more careful
treatment.

13 See the appendix in the full version of the paper for a formal discussion of why a uniform bound on the
conditional p-norm implies a bound on the p-norm here.

14Approximating the σj by gaussians yields a suboptimal bound, so we require the bound given in
Proposition 12.
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Proof of Lemma 6. Applying Lemmas 13,14 after the following simplification proves the
lemma:

‖Z‖p .
1
s

∥∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxixj |

∥∥∥∥∥∥
p

+
√
p

s

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑

j>p,j 6=i
Qi,jxixjσj

∥∥∥∥∥∥
2

p

. J

4.4 Proof of Theorem 4
We show Lemma 6 implies Theorem 4, completing the proof.

Proof of Theorem 4. It suffices to show Pη,σ[|Z| > ε] < δ. By Markov’s inequality, we know

Pη,σ[|Z| > ε] = Pη,σ[|Z|p > εp] < ε−pE[|Z|p] =
(‖Z‖p

ε

)p
.

Suppose that B ≥ e. Then by Lemma 6, we know(‖Z‖p
ε

)p
≤
(

Cp

(logB)sε

)p
.

Thus, to upper bound this quantity by δ, we can set s = Θ(ε−1p/ logB) = Θ(ε−1 logB(1/δ))
and m = Θ(Bs2). We impose the additional constraint that B ≤ 1

δ to guarantee that s ≥ 1.
This proves the desired result.15 J
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A Limitations of the Combinatorial Approach

At first glance, it appears that the bound of P[|Z| > ε] ≤
(
Cts
εm

)t of [2] in the proof of the
main theorem (p. 9 of the arXiv version) implies the desired dimension-sparsity tradeoffs by
setting s = ε−1t, m = Bε−1ts

2C , and t = logB(1/δ) (this t value is equivalent to the p value
in this paper). However, this does not actually follow from the analysis in [2]: there is an
assumption made in one of the lemmas, which is not stated explicitly in the statement of the
lemma, that does not allow the parameters to be set in this way. The limiting factor is the
lemma that states that

stE[Zt] ≤ 2O(t)tt
(
s2

m

)t
.

This is Lemma 3 in the conference version of [2], and Lemma 4.3 in the arXiv version of [2].
Here, Z is defined analogously as in section 2.1 of this paper.

The proof of this lemma, given in Appendix A.3 in [2], implicitly relies on the fact
that s2

m ≥ 1, although this condition is not explicitly stated in the lemma statement. This
assumption arises from the last line of the proof, where the sum

∑t
w=1

(
s2

m

)w
is upper

bounded by t
(
s2

m

)t
. Following the end of the proof of Theorem 1 (the top of p. 9 of the

arXiv version), this yields P[|Z| > ε] ≤
(
Cts
εm

)t. Now, suppose we instead set m = Bs2 (where
B ≤ 1 as required by the assumption). Then we obtain

(
Cts
εm

)t =
(
Ct
εBs

)t. Thus, we can set
s to be Cε−1B−1 log(1/δ) and m to be C2ε−2 log2(1/δ)B−1. Since B ≤ 1, this is no better
than the original theorem statement and thus yields no dimension-sparsity tradeoff.

Now, suppose we instead let s2

m ≤ 1. Then we can modify the proof of Lemma 4.3 to
obtain the weaker upper bound of

∑t
w=1

(
s2

m

)w
by t s

2

m . Let B = m/s2 where B ≥ 1. In order
to ensure that m is polynomial in log(1/δ), we assume that B ≤ δ. In this case, mimicking
the calculation at the end of the proof of Theorem 1, we obtain P[|Z| > ε] ≤ 1

B

(
Ct
εs

)t =(
Ct

εsB1/t

)t. Thus, we can set s = C log(1/δ)ε−1e− logB/t. Observe that 0 ≤ logB ≤ t, so
1 ≥ e− logB/t ≥ e−1. Thus, s = Θ(log(1/δ)ε−1) and m = Θ(Bs2), which does not yield a
dimension-sparsity tradeoff.

Thus, it is not clear how to directly obtain the dimension-sparsity tradeoff from the
combinatorial approach of [2]. Some intuition for this limitation is that the moment bounds
on Z obtained by the combinatorial approach are not sufficiently tight for varying values of B
due to the fact that the bounding techniques are implicitly tailored to the case of B = Θ(1).
The combinatorics-free approach in this paper avoids this issue through making use of a
more structured method to bound the moments of Z.

B Latała’s Moment Bounds

The following bounds on sums of independent random variables are due to Latała [20]. These
proofs are not complicated: for sake of being self-contained, in the appendix of the full
version of the paper, we sketch proofs of these bounds. Full proofs of these lemmas can be
found in [20].

I Lemma 15 ([20]). If q ≥ 2 and X,X1, . . . , Xn are independent symmetric random variables,
then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

' inf
{
T > 0 such that

n∑
i=1

log
(
E
[(

1 + Xi

T

)q])
≤ q

}
.
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I Lemma 16 ([20]16). If 1 ≤ q ≤ n and X,X1, . . . , Xn are i.i.d nonnegative random variables,
then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

' sup
1≤t≤q

q

t

(
n

q

)1/t
‖X‖t .

C Proof of Proposition 12

The main ingredient in this proof is Lemma 15 (Latała’a bound on moments of sums of
symmetric random variables).

Proof of Proposition 12. Since the Yi are independent random variables, we can apply
Lemma 15 to obtain:∥∥∥∥∥

M∑
k=1

Ykykσk

∥∥∥∥∥
q

. inf
{
T > 0 |

M∑
k=1

log
(
E
[∣∣∣∣1 + Ykσkyk

T

∣∣∣∣q]) ≤ q
}
.

Thus, it suffices to show

T '

{ √
q

logB if B ≥ e
√
q

B if B < e

satisfies
∑M
k=1 log

(
E
[(

1 + Ykσkyk

t

)q])
≤ q. We see

M∑
k=1

log
(
E
[(

1 + Ykσkyk
T

)q])
=

M∑
k=1

log
(

1 +
q∑
l=1

(
q

l

)
(E[(Ykσk)l])ylk

T l

)

=
M∑
k=1

log

1 +
q/2∑
l=1

(
q

2l

)
‖Yk‖2l

2l y
2l
k

T 2l


≤

M∑
k=1

log

1 +
q/2∑
l=1

(qe
2l

)2l
(
‖Yk‖2l yk

T

)2l


By the bound on moments of binomial random variables in Proposition 11, we know if B ≥ e
that there exists a universal constant C such that ||Qi,j ||2l ≤ 2lC

logB . Thus, we obtain

M∑
k=1

log
(
E
[(

1 + Ykσkyk
T

)q])
≤

M∑
k=1

log

1 +
q/2∑
l=1

(qe
2l

)2l
(

2lCyk
T logB

)2l


≤
M∑
k=1

log

1 +
q/2∑
l=1

(
qeCyk
T logB

)2l
 .

16This result was actually first due to S.J. Montgomery-Smith through a private communication with
Latała. Nonetheless, it is also a corollary of a result in [20].
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Since |yk| ≤ 1√
q , if we set T = 2eC√q

logB , then we obtain

M∑
k=1

log

1 +
q/2∑
l=1

(√
qyk

2

)2l
 ≤ M∑

k=1
log

1 + (√qyk)2
q/2∑
l=1

(
1
2

)2l
 .

This can be bounded by
M∑
k=1

log
(

1 + (√qyk)2
)

=
M∑
k=1

log
(
1 + qy2

k

)
≤

n∑
i=1

qy2
k ≤ q

as desired. An analogous argument shows that if B < e, we can set T = 2eC√q
B . J

D Proof of Proposition 11

The main tool that we use in this proof is Lemma 16 (Latała’s bound on moments of sums
of i.i.d nonnegative random variables).

Proof of Proposition 11. Notice that it suffices to obtain an upper bound on ‖X‖q for all
N ≥ q. (Since ‖X‖q is an increasing function of N , an upper bound on ‖X‖q at N = q is
also an upper bound on ‖X‖q for all N < q). For the rest of the proof, we assume N ≥ q.

Notice X has the same distribution as
∑N
j=1 Zj where Z,Z1, . . . , ZN are i.i.d Bernoulli

random variables with expectation α. Since ‖Z‖t = α1/t, we know by Lemma 16,

‖X‖q ' sup
1≤t≤q

q

t

(
N

q

)1/t
α1/t

= sup
1≤t≤q

q

t

(
1
B

)1/t

At t = 1, this quantity is equal to q
B , and at t = q, this quantity is equal to

( 1
B

)1/q =
elog(1/B)/q. The only t ∈ R for which this quantity has derivative 0 is t = logB. Notice that
1 ≤ logB ≤ q if and only if e ≤ B ≤ eq. Thus

‖X‖q '

{
max( qB ,

q
logB , e

log(1/B)/q) if e ≤ B ≤ eq

max( qB , e
log(1/B)/q) if B < e or if B > eq.

.

For B ≥ e, we want to show ‖X‖q . q/ logB. Since logB > 0, we see elog(1/B)/q =
e− logB/q ≤ q/ logB and q/B ≤ q/ logB.

For B < e, we want to show ‖X‖q . q/B. Since 1
B > 1

e , we see elog(1/B)/q =
( 1
B

)1/q ≤
e
B . q

B . J

E Weakness of bound on ‖Z‖p from Equation (4)

Like in Section 4, we view the random variable Z as a quadratic form 1
sσ

TAσ, where σ an
n-dimensional vector of independent Rademachers and A is a symmetric, zero-diagonal n×n
matrix where the (i, j)th entry (for i 6= j) is xixj

∑m
r=1 ηr,iηr,j = Qi,jxixj . Applying the

Hanson-Wright bound followed by an expectation over the η values yields

∥∥σTAσ∥∥
p
.

∥∥∥∥∥∥√p
√√√√ n∑

i=1

∑
j≤n,j 6=i

Q2
i,jx

2
ix

2
j + p sup

‖y‖2=1

∣∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣∣
∥∥∥∥∥∥
p

=: Up. (4)
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We show that the vector x = [ 1√
2 ,

1√
2 , 0, . . . , 0] ∈ Rn forces Up to be too large to yield the

optimal m value, thus proving that the Hanson-Wright bound does not provide a sufficiently
tight bound on ‖Z‖p to achieve Theorem 3. The main ingredient in our proof is the following
lemma, which we prove in subsection C.1:

I Lemma 17. For every column 1 ≤ i ≤ n, suppose that the random variables {ηr,i}r∈[m],i∈[n]
have the distribution defined by uniformly choosing exactly s of the variables per column. If
x =

[
1√
2 ,

1√
2 , 0, . . . , 0

]
, p < s and B = m/s2 ≤ ep

p , then

Up '

{
p2

logBp if B ≥ e
p

p
B if B < e

p .

We can obtain bounds on s and m from Lemma 17 via Markov’s inequality. We disregard
the case where B ≥ ep

p , since this case would yield a value for m that is not polynomial
in log(1/δ). If B < e/p, then it follows that s = Θ(ε−1B−1 log(1/δ)) = Ω(ε−1 log2(1/δ))
and m = Θ(ε−2B−1 log2(1/δ)) = Ω(ε−2 log3(1/δ)). If B ≥ e/p, then it follows that s =
Θ(ε−1p2/ log(Bp)) = Ω(ε−1 log(1/δ)) and m = Θ(ε−2p4B/ log2(Bp)) = Ω(ε−2 log3(1/δ)).
These bounds on m incur an extra log(1/δ) factor, and thus the Hanson-Wright bound is too
weak for this setting. Now, it suffices to prove Lemma 17, which we do in the next section.

E.1 Proof of Lemma 17
In this section, we assume that x =

[
1√
2 ,

1√
2 , 0, . . . , 0

]
and that the random variables

{ηr,i}r∈[m],i∈[n] have the distribution defined by uniformly choosing exactly s of the variables
per column. We first show the following computation of ||Qi,j ||p.

I Proposition 18. Assume that the random variables {ηr,i}r∈[m],i∈[n] have the distribution
defined by uniformly choosing exactly s of the variables per column. Then, if p < s and
X ∼ Bin(s, s/m), we have that ||Qi,j ||p ' ||X||p.

Proof. We condition on the even that the nonzero locations in column i are at r1, r2, . . . , rs.
Notice that the random variable (Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1) is distributed as
Zr1 + Zr2 + . . .+ Zrs

where Zrk
is an indicator for the kth entry in the jth column being

nonzero. Let Z ′rk
for 1 ≤ k ≤ s be i.i.d random variables distributed as Bern(s/m). Now,

observe that

E[(Zr1 + Zr2 + . . .+ Zrs
)p] =

∑
0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
s∏
i=1

Ztiri
] =

∑
0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
∏
i|ti>0

Zri
].

Notice that E[(Z ′r1
+ Z ′r2

+ . . . + Z ′rs
)p] =

∑
0≤t1,t2,...,ts≤p,t1+t2+...+ts=p E[

∏
i|ti>0 Z

′
ri

].
Thus, it suffices to compare E[

∏
i|ti>0 Zri

] and E[
∏
i|ti>0 Z

′
ri

]. We see that E[
∏
i|ti>0 Z

′
ri

] =(
s
m

)|{i|ti>0}|. Since p < s, we see that E[
∏
i|ti>0 Zri

] =
∏|{i|ti>0}|−1
j=0

s−j
m−j . It is not difficult

to verify that this ratio is bounded by 2O(p) as desired, so

E[(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)p]
E[Xp] = E[(Zr1 + Zr2 + . . .+ Zrs

)p]
E[Xp] ≥ 2−O(p).

Now, by the law of total expectation, we know that

E[Qpi,j ]
E[Xp] ≥ 2−O(p)

as desired. J

APPROX/RANDOM 2019



61:20 Simple Analysis of Sparse, Sign-Consistent JL

We now prove the following relation between Up and ‖Q1,2‖p:

I Lemma 19. Assume the notation and restrictions above. Then Up ' p ‖Q1,2‖p.

Proof of Lemma 19. For ease of notation, we define

S1 := p sup
‖y‖2=1

∣∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣∣
S2 := √p

√√√√ n∑
i=1

n∑
j=1

Q2
i,jx

2
ix

2
j .

Our goal is to calculate Up = ‖S1 + S2‖p. We make use of the following upper and lower
bounds on ‖S1 + S2‖p:∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ ≤ ‖S1 − S2‖p ≤ ‖S1 + S2‖p ≤ ‖S1‖p + ‖S2‖p . (5)

In order to compute
∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ and ‖S1‖p + ‖S2‖p, we first compute ‖S1‖p and ‖S2‖p.
For our choice of x, notice

‖S1‖p ' p

∥∥∥∥∥ sup
‖y‖2=1

|Q1,2y1y2|

∥∥∥∥∥
p

' p ‖Q1,2‖p

‖S2‖p '
√
p
∥∥∥√Q2

1,2

∥∥∥
p

= √p ‖Q1,2‖p .

From these bounds, coupled with (5), it follows that ‖U‖p ' p ‖Q1,2‖p as desired. J

We now show Lemma 17 follows from Lemma 19 and Proposition 18.

Proof of Lemma 17. After applying Lemma 19, it suffices to calculate ‖Q1,2‖p. It follows
from Proposition 18 that ‖Q1,2‖p ' ‖X‖p where X is distributed as Bin(s, s/m). Now,
the following calculation ‖X‖p for p < s and B = m/s2 ≤ ep

p follows from the lower
and upper bounds of Lemma 16 (Latała’s bound on moments of sums of i.i.d nonnegative
random variables):

‖X‖p '

{
p

logBp if B ≥ e
p

1
B if B < e

p

.

From this, Lemma 17 follows. J
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