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Abstract
A family of problems that have been studied in the context of various streaming algorithms are
generalizations of the fact that the expected maximum distance of a 4-wise independent random
walk on a line over n steps is O(

√
n). For small values of k, there exist k-wise independent random

walks that can be stored in much less space than storing n random bits, so these properties are
often useful for lowering space bounds. In this paper, we show that for all of these examples, 4-wise
independence is required by demonstrating a pairwise independent random walk with steps uniform
in ±1 and expected maximum distance Ω(

√
n lg n) from the origin. We also show that this bound

is tight for the first and second moment, i.e. the expected maximum square distance of a 2-wise
independent random walk is always O(n lg2 n). Also, for any even k ≥ 4, we show that the kth
moment of the maximum distance of any k-wise independent random walk is O(nk/2). The previous
two results generalize to random walks tracking insertion-only streams, and provide higher moment
bounds than currently known. We also prove a generalization of Kolmogorov’s maximal inequality
by showing an asymptotically equivalent statement that requires only 4-wise independent random
variables with bounded second moments, which also generalizes a result of Błasiok.
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1 Introduction

Random walks are well-studied stochastic processes with numerous applications in physics
[14], math [17], computer science [2], economics [13], and biology [4]. A commonly studied
random walk on Z is a process that starts at 0 and at each step independently moves either
+1 or −1 with equal probability. In this paper, we do not study this random walk but instead
study k-wise independent random walks, meaning that steps are not totally independent but
that any k steps are completely independent. In many low-space randomized algorithms,
information is tracked with processes similar to random walks, but simulating a totally
random walk of n steps is known to require O(n) bits while there exist k-wise independent
families which can be simulated with O(k lgn) bits [10]. As a result, understanding properties
of k-wise independent random walks have applications to streaming algorithms, such as
heavy-hitters [8, 9], distinct elements [5], and `p tracking [6].
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63:2 Pairwise Independent Random Walks Can Be Slightly Unbounded

For any k-wise independent random walk, where k ≥ 2, it is well-known that after n steps,
the expected squared distance from the origin is exactly n, since Eh∈H(h(1)+ · · ·+h(n))2 = n

for any 2-wise independent hash family H. One can see this by expanding and applying
linearity of expectation. This property provides good bounds for the distribution of the final
position of a 2-wise independent random walk. However, we study the problem of bounding
the position throughout the random walk, by providing comparable moment bounds for
sup1≤i≤n |h(1)+ · · ·+h(i)| rather than just for |h(1)+ · · ·+h(n)| and determining an example
of a 2-wise independent random walk where the expected bounds do not hold, even though
very strong bounds for even 4-wise independent random walks can be established.

Two more general questions that have been studied in the context of certain streaming
algorithms are random walks corresponding to insertion-only streams, and random walks with
step sizes corresponding to random variables. These are useful generalizations as the first
proves useful in certain algorithms with insertion stream inputs, and the second allows for a
setup similar to Kolmogorov’s inequality [16], which we will generalize to 4-wise independent
random variables. To understand these two generalizations, consider a k-wise independent
family of random variables X1, . . . , Xn and an insertion stream p1, . . . , pm ∈ [n], where now
seeing pj means that our random walk moves by Xpj

on the jth step. The insertion stream
can be thought of as keeping track of a vector z in Rn where seeing pj increments the pjth
component of z by 1, and ~X can be thought of as a vector in Rn with ith component Xi.

Then, one goal is to bound for appropriate values of k′

Eh∈H
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣k′] ,

where z(t) is the vector z after seeing only the first t elements of the insertion stream.
Notice that bounding the k′th moment of the furthest distance from the origin in a k-wise
independent random walk is the special case of m = n, pj = j for all 1 ≤ j ≤ n, and the Xi’s
are uniform random signs.

1.1 Main Results
Intuitively, even in a pairwise independent random walk, since the positions at various times
have strong correlations with each other, the expectation of the furthest we ever get from the
origin should not be much more than the expectation of than our distance from the origin
after n steps. But surprisingly, we show in Section 2 that there is a pairwise independent
family H such that

Eh∈H
[

sup
1≤t≤n

|h1 + · · ·+ ht|
]

= Ω
(√
n lgn

)
, (1)

meaning there is a uniform pairwise independent ±1-valued random walk which is not
continuously bounded in expectation by O(

√
n). Furthermore, this bound of

√
n lgn is tight

up to the first and second moments, because in Section 3 we prove that for any pairwise
independent family H from [n] to {−1, 1} with E[hi] = 0 for all i,

Eh∈H
[

sup
1≤t≤n

(h1 + · · ·+ ht)2
]

= O
(
n lg2 n

)
. (2)

In Section 4, we uniformly bound random walks corresponding to insertion-only streams
and random walks with step sizes not necessarily uniform ±1 variables. We first generalize
Kolmogorov’s inequality [16] by proving that for any 4-wise independent random variables
X1, . . . , Xn with mean 0 and finite variance,

P
(

sup
1≤i≤n

|X1 + · · ·+Xi| ≥ λ
)
≤
∑

E[X2
i ]

λ2 (3)
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for all λ > 0. In Appendix A, we generalize Equation (2) by proving for any family X1, . . . , Xn

of pairwise independent variables such that E[Xi] = 0,E[X2
i ] ≤ 1, and for any insertion

stream p1, . . . , pm ∈ [n],

E
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣2] = O

(
||z||22 lg2 m

)
(4)

where z = z(m) is the final position of the vector. Finally, we show that for any even k ≥ 4,
any k-wise independent family X1, . . . , Xn such that E[Xi] = 0,E[Xk

i ] ≤ 1, and any insertion
stream p1, . . . , pm ∈ [n],

E
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣k] = O

(
||z||k2

)
. (5)

Equations (3), (4), and (5) are interesting together as they provide various bounds on
the supremum of generalized random walks under differing moment bounds and degrees of
independence.

Finally, we note that to prove Equation (1), we create a complicated pairwise independent
hash function, which suggests that standard pairwise independent hash functions do not have
this property. Indeed, for many such families, such as some types of codes constructed from
Hadamard matrices or random linear functions from Z/pZ → Z/pZ, we have E supi |h1 +
· · ·+ hi| = o(n lgn). (See the appendices in the arXiv version of this paper.) However, we
note that for some standard pairwise independent hash functions, it is difficult to provide
either an upper or lower bound for E supi |h1 + · · · + hi|. Therefore, even if some simpler
pairwise independent hash function satisfies Equation 1, our hash family has the advantage
that the analysis is simpler, even if the construction of the family is not.

1.2 Motivation and Relation to Previous Work
The primary motivation of this paper comes from certain theorems that provide strong
bounds for certain variants of 4-wise independent random walks, which raised the question of
whether any of these bounds can be extended to 2-wise independence. For example, Theorem
1 in [8] proves for any family H of h ∈ {−1, 1}n with 4-wise independent coordinates,
Eh∈H

(
supt〈h, z(t)〉

)
= O(||z||2). This result generalizes a result from [9] which proves the

same but only if h is uniformly chosen from {−1, 1}n. [8] provides an algorithm that
successfully finds all `2 ε-heavy hitters in an insertion-only stream in O(ε−2 log ε−1) space,
in which the above result was crucial for analysis of a subroutine which attempts to find
bit-by-bit the index of a single “super-heavy” heavy hitter if one exists. Theorem 1 in [8]
also proved valuable for an algorithm for continuous monitoring of `p norms in insertion-only
data streams [6]. Lemma 18 in [5] shows that even without bounded fourth moments, given
4-wise independent random variables X1, . . . , Xn, each with mean 0 and finite variance,

P
(

max
1≤i≤n

|X1 + · · ·+Xi| ≥ λ
)

= O

(
n ·maxi E[X2

i ]
λ2

)
.

This theorem was crucial in analyzing an algorithm tracking distinct elements that provides
a (1 + ε)-approximation with failure probability δ in O(ε−2 lg δ−1 + lgn) bits of space. Notice
that our Equation (3) is stronger than the above equation and is asymptotically equivalent
to Kolmogorov’s inequality, though under much weaker assumptions.

A natural follow-up question to the above theorems is whether 4-wise independence is
necessary, or whether lesser levels of independence such as 2-wise or 3-wise are required.
Equation (1) shows that 2-wise independence does not suffice for any of the above results,
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because the random walk on a line case is strictly weaker than all of the above results, though
the case of 3-wise independence is still unknown. As a result, we know that the tracking
sketches in [8, 6, 5] cannot be extended to 2-wise independent sketches.

However, the results given still have interesting extensions, such as to higher moments.
Equation (5) shows a stronger result than the one established in [8], since it not only bounds
the first moment of supt〈h, z(t)〉 for a 4-wise independent family of uniform ±1 variables
but also bounds the 4th moment equally (as they have mean 0 and kth moment 1). The
main methods used for proving most of our upper bounds are based on chaining methods,
specifically Dudley chaining, with slight modifications, although the bounds in Section 3 are
proved differently from standard chaining methods but are still motivated by similar ideas.
Dudley chaining was introduced in [11], and Dudley chaining and other chaining techniques,
along with applications, are summarized in [18].

k-wise independence for hash functions was first introduced in [10]. Bounding the amount
of independence required for analysis of algorithms has been studied in various contexts, often
since k-wise independent hash families can be stored in low space but may provide equally
adequate bounds as totally independent families. As further examples, the well-known AMS
sketch [1] is a streaming algorithm to estimate the `2 norm of a vector z to a factor of 1± ε
with high probability by multiplying the vector by a sketch matrix Π ∈ Rn×(1/ε2) of 4-wise
independent random signs and using ||Πz||2 as an estimate for ||z||2. It is known from [20, 22]
that the accuracy of the AMS sketch can be much worse if 3-wise independent random
signs are used instead of 4-wise independent random signs. If z is given as an insertion
stream, it is known that the AMS sketch with 8-wise independent random signs can provide
weak tracking [8], meaning that E supt

∣∣||Πz(t)||22 − ||z(t)||22
∣∣ ≤ ε||z||22. This implies that the

approximation of the `2 norm with the 8-wise independent AMS sketch is quite accurate at
all times t. While one cannot perform weak tracking with 3-wise independence of the AMS
sketch, it is unknown for 4-wise independence through 7-wise independence whether the
AMS sketch provides weak tracking. Finally, linear probing, a well-known implementation
of hash tables, was shown to take O(1) expected update time with any 5-wise independent
hash function [19] but was shown to take Θ(lgn) expected update time for certain 4-wise
independent hash functions and Θ(

√
n) expected update time for certain 2-wise independent

hash functions [20].
Bounding the maximum distance traveled of a random walk has also been studied in

probability theory independent of computer science applications, both when the steps are
totally independent or k-wise independent. For example, Kolmogorov’s inequality [16]
provides bounds for supt(X1 + · · ·+Xt) for independent random variables X1, . . . , Xt even
if only the second moments of X1, . . . , Xt are finite. [3] constructed an infinite sequence
{X1, X2, . . . } of pairwise independent random variables taking on the values ±1 such that
supt(X1 + · · · + Xt) is bounded almost surely, though the paper also proved that this
phenomenon can never occur for 4-wise independent variables taking on the values ±1.
Finally, the supremum of a random walk with i.i.d. bounded random variable steps was
studied in [12], which provided comparisons with the supremum of a Brownian motion
random walk regardless of the random variable chosen for step size.

1.3 Notation
We define [n] := {1, . . . , n}, and treat p1, . . . , pm ∈ [n] as an insertion-only stream that keeps
track of a vector z that starts at the origin and increments its pjth component by 1 after
we see pj .
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A k-wise independent family from [n] to {−1, 1} is a familyH of functions h : [n]→ {−1, 1}
such that for any k distinct indices, their values are independent Rademachers, where
Rademachers are random variables uniformly selected from {−1, 1}. A k-wise independent
random walk is a random walk where one’s position after t steps is h(1) + · · ·+ h(t), with h
chosen from H. We may also denote a k-wise independent random walk as a random walk
where the ith step is a random variable Xi, assuming X1, . . . , Xn are random variables such
that any k distinct Xi’s are totally independent.

In this paper, we think of a hash function h : [n] → {−1, 1} as a vector in Rn, where
hi = h(i), for the purpose of denoting inner products. Similarly, treat ~X as the vector
(X1, . . . , Xn).

Finally, in Section 2, we assume that n is a power of 4, in Section 3, we assume n is a
power of 2 and is at least 4, and in Section 4, we assume m is a sufficiently large power of 2.
We note that these assumptions can be removed by replacing n with the largest power of 4
less than n or the smallest power of 2 greater than n or m, respectively.

1.4 Overview of Proof Ideas
Here, we briefly outline some of the main ideas behind the proofs of Equations (1) through (5).

The main goal in Section 2 is to establish Equation (1), i.e. construct a pairwise
independent H such that E[hihj ] = 0 for all i 6= j,. In other words, we wish for the covariance
matrixM = E[hTh] to be the identity matrix In. We also want sup1≤i≤n |h1 + · · ·+ hi| to
be Ω(

√
n lgn) in expectation. The construction has two major steps.

1. Create a hash function such that E sup1≤i≤n |h1 + · · ·+ hi| = Ω(
√
n lgn) but rather than

have E[hihj ] = 0 for all i 6= j, have
∑
i 6=j |E[hihj ]| = O(n), i.e. the cross terms in total

aren’t very large in absolute value (this hash function will be H2 in our proof). To do
this, we first created H1, which certain properties, most notably that E[h1 + · · ·+hn] = 0
but E[h1 + · · · + hn/2] = Θ(

√
n lgn), and rotated the hash family by a uniform index.

The rotation allows many of the cross terms to average out, reducing the sum of their
absolute values.

2. Remove the cross terms. To do this, we make H a hash family where with some constant
probability, we choose from H2 and with some probability, we choose some set of indices
and pick a hash function such that E[hihj ] will be the opposite sign of Eh∈H2 [hihj ]
for certain indices i, j, so that overall, E[hihj ] will be 0. Certain symmetry properties
and most importantly the fact that

∑
i 6=j |Eh∈H2 [hihj ]| = O(n) will allow for us to

choose from H2 with constant probability, which means even for our final hash function,
E sup1≤i≤n |h1 + · · ·+ hi| = Ω(

√
n lgn).

The goal of Section 3 is to establish Equation (2), i.e. to show that ifM = E[hTh] = In,

which is true for any pairwise independent hash function, then sup1≤i≤n |h1 + · · ·+ hi|2 =
O(n lg2 n). To do this, we apply probabilistic method ideas. We notice that for any matrix
A, E[hTAh] = Tr(A), and thus, if we can find a matrix such that the trace of the matrix is
small, but hTAh is reasonably large in comparison to sup1≤i≤n |h1 + · · ·+hi|2, then E[hTAh]
is small but is large in comparison to E

[
sup1≤i≤n |h1 + · · ·+ hi|2

]
. If we assume that n is a

power of 2, then the matrix that corresponds to the quadratic form

hTAh =
lgn∑
r=0

(n/2r)−1∑
i=0

(hi·2r+1 + · · ·+ h(i+1)·2r )2,

i.e. hTAh = h2
1 + · · ·+ h2

n + (h1 + h2)2 + · · ·+ (hn−1 + hn)2 + · · ·+ (h1 + · · ·+ hn)2 can be
shown to satisfy Tr(A) = n lgn and for any vector x, xTAx ≥ 1

lgn · (x1 + · · ·+ xi)2 for all
1 ≤ i ≤ n, not just in expectation. These conditions will happen to be sufficient for our goals.

APPROX/RANDOM 2019
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This method, in combination with Equation (1), will also allow us to prove an interesting
matrix inequality, proven at the end of Section 3. The method above actually generalizes
to looking at kth moments of k-wise independent hash functions, as well as random walks
corresponding to tracking insertion-only streams, and will allow us to prove Equations (4)
and (5). However, these generalizations will also need the construction of ε-nets, which are
explained in Appendix A, or in [18].

We finally explain the ideas behind Equation (3), the generalization of Kolmogorov’s
inequality and Lemma 18 of [5]. We use ideas of chaining, such as in [18], and an idea of
[5] that allows us to bound the minimum of Xi+1 + · · · + Xj and Xj+1 + · · · + Xk where
i < j < k, given 4-wise independent functions X1, . . . , Xn with only bounded second moments.
We combine these with another idea, that we can consider distances between i and j for
1 ≤ i < j ≤ n as E[X2

i+1 + · · ·+X2
j ] and that for any i < j < k, either E[X2

i+1 + · · ·+X2
j ] is

very small and we can bound Xi+1 + · · ·+Xj , E[X2
j+1 + · · ·+X2

k ] is very small and we can
bound Xj+1 + · · ·+Xk, or we can bound min(|Xi+1 + · · ·+Xj |, |Xj+1 + · · ·+Xk|) with the
idea of [5]. These ideas allow for our chaining method to be quite effective, even if the Xi’s
do not have bounded 4th moments or if the Xi’s wildly differ in variance.

2 Lower Bounds for Pairwise Independence

In this section, we construct a 2-wise independent family H such that the furthest distance
traveled by the random walk is Ω(

√
n lgn) in expected value. In other words, we prove

the following:

I Theorem 1. There exists a 2-wise independent hash family H from [n]→ {−1, 1} such that

Eh∈H

 sup
1≤t≤n

∣∣∣∣∣∣
∑

1≤j≤t
hj

∣∣∣∣∣∣
 = Ω(

√
n lgn).

To actually construct this counterexample, we proceed by a series of families and tweak
each family accordingly to get to the next one, until we get the desired H.

We start by creating H1. First, split [n] into blocks of size
√
n so that {(c − 1)

√
n +

1, . . . , c
√
n} form the cth block for each 1 ≤ c ≤

√
n. Also, define ` =

√
n

2 . Now, to pick a
function h from H1, choose the value of hi for each 1 ≤ i ≤ n independently, but if i is in
the cth block for some 1 ≤ c ≤ `, make P[hi = 1] = 1

2 + 1
2(`+1−c) and if i is in the cth block

for some `+ 1 ≤ c ≤
√
n, make P[hi = 1] = 1

2 −
1

2(c−`) . This way, E[hi] = 1
`+1−c if i is in the

cth block for c ≤ ` and E[hi] = − 1
c−` if i is in the cth block for c > `.

From now on, assume that hi is periodic modulo n, i.e. hi+n = hi for all integers i. We
first prove the following about H1 :

I Lemma 2. Suppose that 1 ≤ i < j ≤ n. Suppose that i is in block c1 and j is in block c2,
where c1 and c2 are not necessarily distinct. Define r = min(c2 − c1,

√
n− (c2 − c1)). Then,

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) = O

(
lg(r + 2)
(r + 1)2

)
.
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Proof. For 1 ≤ c ≤
√
n, define fc to equal 1

`+1−c if 1 ≤ c ≤ ` and to equal − 1
c−` if

`+ 1 ≤ c ≤
√
n. In other words, fc = E[hi] if i is in the cth block. Furthermore, assume that

f is periodic modulo
√
n, i.e. fc = fc+

√
n for all integers c. Then,

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) =

√
n−1∑
d=0

Eh∈H1(hi+d√n)Eh∈H1(hj+d√n)

=

√
n−1∑
d=0

fc1+dfc2+d =

√
n∑

d=1
fdfr+d.

Now, since r ≤ `, if we assume r ≥ 1, this sum can be explicitly written as

2 ·
`−r∑
d=1

1
d(d+ r) −

r∑
d=1

1
d(r + 1− d) −

r∑
d=1

1
(n+ 1− d)(n+ 1− (r + 1− d))

≤ 2
∞∑
d=1

1
d(d+ r) −

r∑
d=1

1
d(r + 1− d)

= 2
r

∞∑
d=1

(
1
d
− 1
d+ r

)
− 1
r + 1

r∑
d=1

(
1
d

+ 1
r + 1− d

)

= 2
r

(
r∑
d=1

1
d

)
− 2
r + 1

(
r∑
d=1

1
d

)

= 2
r(r + 1)

(
r∑
d=1

1
d

)
≤ C1 lg(r + 2)

(r + 1)2

for some constant C1. If we assume r = 0, then this sum can be explicitly written as

2 ·
∑̀
d=1

1
d2 ≤ C2 = (C2) · lg(0 + 2)

(0 + 1)2

for some constant C2. Therefore, setting C3 = max(C1, C2) as our constant, we are done. J

To construct H2, first choose h ∈ H1 at random, and then choose an index d between
0 and

√
n− 1 uniformly at random. Our chosen function h′ will then be the function that

satisfies h′i = hi+d·
√
n for all i. We show the following about H2:

I Lemma 3. The following three statements are true:
a) For all i, j ∈ Z, Eh∈H2(hihj) = Eh∈H2(hi+√nhj+√n).
b) Suppose that 1 ≤ i, i′, j, j′ ≤ n, where i, i′ are in blocks c1, j, j′ are in blocks c2, and

i 6= j, i′ 6= j′. Then, Eh∈H2(hihj) = Eh∈H2(hi′hj′).
c)
∑
i6=j |Eh∈H2hihj | = O(n).

Proof. Part a) is quite straightforward, since

Eh∈H2(hihj) = 1√
n

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n)

= 1√
n

√
n−1∑
d=0

Eh∈H1(hi+(d+1)
√
nhj+(d+1)

√
n) = Eh∈H2(hi+√nhj+√n)

by periodicity of h modulo n.

APPROX/RANDOM 2019
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For part b), for all d ∈ Z, note that i + d
√
n and i′ + d

√
n are in the same blocks,

j + d
√
n and j′ + d

√
n are in the same blocks, i+ d

√
n 6= j + d

√
n and thus hi+d√n, hj+d√n

are independent, and i′ + d
√
n 6= j′ + d

√
n and thus hi′+d√n, hj′+d√n are independent.

Therefore, Eh∈H1(hi+d√nhj+d√n) = Eh∈H1(hi′+d√nhj′+d√n) for all d. Because of the way
we constructed H2, part b) is immediate from these observations.

We use Lemma 2 to prove part c). First note that for all i 6= j,

Eh∈H2(hihj) = 1√
n

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) ≤ C3 lg(r + 2)√
n · (r + 1)2 ,

where i is in block c1, j is in block c2, and r = min(|c1 − c2|,
√
n− |c1 − c2|). Now, there are

exactly n(
√
n− 1) pairs (i, j) where 1 ≤ i, j ≤ n, i 6= j, and r = 0. This is because we can

choose from
√
n blocks for the value of c1 = c2, and then choose from

√
n(
√
n− 1) possible

pairs (i, j) in each block. For a fixed 0 < r < `, there are exactly 2n3/2 pairs (i, j), since
there are 2

√
n choices for blocks c1 and c2 and

√
n choices for each of i and j after that, for

r = `, there are exactly n3/2 such pairs, since there are 2
√
n choices for blocks c1 and c2 and√

n choices for each of i and j after that, and finally we cannot have r > `. Therefore,

∑
i 6=j

max (0,Eh∈H2(hihj)) ≤ 2n3/2 ·
∑̀
r=0

C3 lg(r + 2)√
n(r + 1)2 ≤ C4n

for some constant C4, since
∑ lg(r+2)

(r+1)2 is a convergent series.
To finish, note that |x| = 2 ·max(0, x)− x, so∑
i6=j
|Eh∈H2(hihj)| ≤ 2 · C4n−

∑
i 6=j

Eh∈H2(hihj) ≤ (2C4 + 1)n,

since∑
i6=j

Eh∈H2(hihj) =
∑
i,j

Eh∈H2(hihj)−
∑
i

Eh∈H2h
2
i = Eh∈H2(h1 + · · ·+ hn)2 − n ≥ −n.

Thus, setting C5 = 2C4 + 1 gets us our desired result. J

Next, we tweak H2 to create a new family H3. First, notice that we can define gc1c2 for
1 ≤ c1, c2 ≤

√
n to equal Eh∈H2(hihj) for some i in the c1th block and j in the c2th block

such that i 6= j. This is well defined by Lemma 3 b), and as 1 ≤ c1, c2 ≤
√
n, there always

exist i 6= j with i in the c1th block and j in the c2th block, as long as n ≥ 4. Now, to create
H3, define g = 1 +

∑
c1<c2

|gc1c2 |. Then, with probability 1
g , we choose a hash function from

H2. With probability |gc1c2 |
g for each 1 ≤ c1 < c2 ≤

√
n, we choose hi = 1 for all i in the c1th

bucket, if gc1c2 ≥ 0, we make hi = −1 for all i in the c2th bucket and if gc1c2 < 0, we make
hi = 1 for all i in the c2th bucket, and if i is not in either the c1th or the c2th bucket, we let
hi be an independent Rademacher. We prove the following about H3:

I Lemma 4. If i and j are in different buckets, then Eh∈H3(hihj) = 0. If i, j are in the same
bucket but i 6= j, then there is some constant 0 ≤ C6 ≤ C5 such that Eh∈H3(hihj) = C6√

n
.

Proof. Assume WLOG that i < j. If i, j are in different buckets, then we compute
Eh∈H3(hihj) as follows. With probability 1

g , we are choosing h from H2, and if i is in
the c1th bucket and j is in the c2th bucket, then Eh∈H2(hihj) = gc1c2 . With probability
|gc1c2 |
g we have hihj = 1 with probability 1 if gc1c2 < 0 and hihj = −1 with probability 1 if
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gc1c2 ≥ 0. In all other scenarios, either hi or hj is a Rademacher completely independent of
all other elements, which means that E[hihj ] = 0. Therefore, the overall expected value of
hihj equals gc1c2 · 1

g + |gc1c2 |
g · ±1 where the ±1 is positive if and only if gc1c2 ≤ 0, so the

expected value is 0.
If i, j are in the same bucket, then we can compute Eh∈H3(hihj) as follows. With

probability 1
g , we are choosing h fromH2, and if i, j are in the cth bucket, then Eh∈H2(hihj) =

gcc. For all c′ 6= c, there is a |gcc′ |
g probability of everything in the cth block having the same

sign and everything in the c′th block having the same sign. For the other cases, i, j are
independent Rademachers. Therefore,

Eh∈H3(hihj) = gcc
g

+
∑
c′ 6=c

|gcc′ |
g

= 1
g

gcc +
∑
c′ 6=c
|gcc′ |

 .

However, note that gcc ≥ 0 since Eh∈H2(hihj) = 1√
n

∑
d Eh∈H1(hi+d√nhj+d√n) and for all d,

we have Eh∈H1(hi+d√nhj+d√n) ≥ 0 since i+ d
√
n, j + d

√
n are in the same block for all d.

Furthermore, for all indices c1, c2, gc1c2 = g(c1+1)(c2+1), where indices are taken modulo
√
n,

by Lemma 3 a). Combining these gives

Eh∈H3(hihj) = 1√
n
·

(
1
g
·

(∑
c1,c2

|gc1c2 |

))
.

However, we know that g ≥ 1 and
∑
c1,c2
|gc1c2 | ≤ C5 by the arguments of Lemma 3 c), so

the lemma follows. J

Now, we are almost done. To create H, with probability p = 1
1+C6(

√
n−1)/

√
n
≥ 1

1+C6
,

choose h from H3, and assuming we chose from H3, with probability 1
2 negate h1, . . . , hn.

With probability 1 − p, for each block of
√
n elements, choose uniformly at random a

subset of size ` from the block, and make the corresponding elements 1 and the remaining
elements −1. It is easy to see that now, Eh∈H(hi) = 0 because of the possibility of negating.
Moreover, Eh∈H(hihj) = 0 for all i 6= j. To see why, if i and j are in different blocks then
Eh∈H3(hihj) = 0 and if we do not choose h fromH3, then hi and hj are independent. If i, j are
in the same block, then if we condition on choosing from H3, E(hihj) = C6√

n
. If we condition

on not choosing from H3, the probability of i, j being the same sign is (
√
n/2)−1√
n−1 = `−1

2`−1 ,

meaning E(hihj) = − 1√
n−1 . Therefore, Eh∈H(hihj) = p · C6√

n
− (1− p) · 1√

n−1 = 0.
To finish, it suffices to show that

Eh∈H
[

sup
1≤t≤n

|h1 + · · ·+ ht|
]

= Ω(
√
n lgn).

To check this, note that with probability at least 1
1+C6

we are picking something from H3,

so we need to just verify that

Eh∈H3

[
sup

1≤t≤n
|h1 + · · ·+ ht|

]
= Ω(

√
n lgn).

But for H3, we are choosing something from H2 with probability 1
g but g ≤ 1 + C5 by the

arguments of Lemma 3 c), so it suffices to verify that

Eh∈H2

[
sup

1≤t≤n
|h1 + · · ·+ ht|

]
= Ω(

√
n lgn).

APPROX/RANDOM 2019
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But for H2, if we condition on the shifting index d, we know that

E[h1+d
√
n + h2+d

√
n + · · ·+ h(d+`)

√
n] ≥

√
n

(
1 + · · ·+ 1

`

)
≥ C7

√
n lgn

for some C7, and likewise

E[h1+(d+`)
√
n + h2+(d+`)

√
n + · · ·+ h(d+2`)

√
n] ≤

√
n

(
−1− · · · − 1

`

)
≤ −C7

√
n lgn,

which means that regardless of whether d ≤ ` or d > `,

Eh∈H2

[
max

(
|h1 + · · ·+ hd

√
n|, |h1 + · · ·+ h(d+`)

√
n|
)]
≥ C7

2
√
n lgn

by the triangle inequality. But for any h ∈ H2,

max
(
|h1 + · · ·+ hd

√
n|, |h1 + · · ·+ h(d+`)

√
n|
)
≤ sup

1≤t≤n
(h1 + · · ·+ ht),

so the result follows by taking the expected value of both sides, which proves our upper
bound is tight in the case of a random walk. Thus, we have proven Theorem 1.

3 Moment Bounds for Pairwise Independence

We show that the bound established in Section 2 and the induced bound on the second
moment are tight for the 2-wise independent random walk case by proving Equation (2)
in Section 1.1:

I Theorem 5. For all 2-wise families H from [n] to {−1, 1},

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)

= O(n lg2 n).

We provide a generalization of this theorem in Section 4, with a slightly different method.
To prove this, we first establish the following lemma:

I Lemma 6. Suppose that there exists a positive definite matrix A ∈ Rn×n such that
Tr(A) = d1 for some d1 > 0 and there exists some function f such that for all vectors x ∈ Rn
and integers 1 ≤ i ≤ n, if x1 + · · ·+ xi = 1, then xTAx ≥ 1

d2
for some d2 > 0. Then, for all

2-wise families H,

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)
≤ d1d2.

Proof. Note that Eh∈Hh2
i = 1 for all i and Eh∈H(hihj) = 0 for all i 6= j. Therefore,

Eh∈H(hTAh) =
∑

1≤i,j≤n
Eh∈H(hihjAij) =

∑
1≤i,j≤n

Aij (Eh∈H(hihj))

=
∑

1≤i≤n
Aii = Tr(A) = d1.

However, for any 1 ≤ i ≤ n, for any h ∈ H, if h1 + · · ·+ hi 6= 0, then

hTAh ≥ (h1 + · · ·+ hi)2 · 1
d2
,
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since the vector 1
h1+···+hi

· h has its first i components sum to 1, so we can let this vector
equal x to get xTAx ≥ 1

f(n) . If h1 + · · ·+ hi = 0, then the above inequality is still true as A
is positive definite.

Therefore,

hTAh ≥ 1
d2
· sup

1≤i≤n
(h1 + · · ·+ hi)2,

which means that

d1 = Eh∈H(hTAh) ≥ 1
d2
· Eh∈H

(
sup

1≤i≤n
(h1 + · · ·+ hi)2

)
,

so we are done. J

I Lemma 7. There exists a positive definite matrix A ∈ Rn×n such that Tr(A) = n lgn and
for all x ∈ Rn and 1 ≤ i ≤ n, if x1 + · · ·+ xi = 1, then xTAx ≥ 1

lgn . This clearly implies
Theorem 5.

Proof. Consider the matrix A such that for all 1 ≤ i, j ≤ n, Aij = lgn−k if k is the smallest
nonnegative integer such that b i−1

2k c = b j−1
2k c. Alternatively, we can think of A as the sum

of all matrices Bij , where Bij is a matrix such that Bijkl = 1 if i ≤ k, l ≤ j and 0 otherwise.
However, we sum this not over all 1 ≤ i, j ≤ n but for i = 2r · (s − 1) + 1, j = 2r · s for
0 ≤ r ≤ lgn− 1 and 1 ≤ s ≤ 2lgn−r. As an illustrative example, for n = 8, A equals

3 2 1 1 0 0 0 0
2 3 1 1 0 0 0 0
1 1 3 2 0 0 0 0
1 1 2 3 0 0 0 0
0 0 0 0 3 2 1 1
0 0 0 0 2 3 1 1
0 0 0 0 1 1 3 2
0 0 0 0 1 1 2 3



=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

+



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

+



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

 .

It is easy to see that Tr(A) = n lgn, since Aii = lgn for all i. For any 1 ≤ i < n, define
i0 = 0 and for any 1 ≤ r ≤ lgn, define ir = 2lgn−r · b i

2lg n−r c. Then, for any 1 ≤ i < n, one
can see that ilgn = i and for any 1 ≤ i ≤ n, A = B1i1 +B(i1+1)i2 + · · ·+B(ilgn−1+1)ilg n +C,

where C is some positive semidefinite matrix and we assume Bij is the 0 matrix if i = j + 1,
because B1i1 and B(ir−1+1)ir for all 1 ≤ r ≤ lgn are verifiable as matrices in the summation
of A. Therefore, if x1 + · · ·+ xi = 1,

xTAx ≥
r∑
i=1

xTB(ir−1+1)irx

= (x1 + · · ·+ xi1)2 + (xi1+1 + · · ·+ xi2)2 + · · ·+ (xilg n−1+1 + · · ·+ xilg n
)2

≥ 1
lgn,

since (x1+· · ·+xi1)+(xi1+1+· · ·+xi2)+· · ·+(xilg n−1+1+· · ·+xi) = 1 and by Cauchy-Schwarz.
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Finally, if i = n, then A = B1(n/2) +B(n/2+1)n +C, where C is some positive semidefinite
matrix. Therefore, if x1 + · · ·+ xn = 1,

xTAx ≥ xTB1(n/2)x+ xTB(n/2+1)nx

= (x1 + · · ·+ xn/2)2 + (xn/2+1 + · · ·+ xn)2 ≥ 1
2 ≥

1
lgn. J

As a final note, for any positive definite matrix A and vector v, the minimum value of
wTAw over all w such that wT v = 1 is known to equal (vTA−1v)−1. This can be checked
with Lagrange Multipliers, since the Lagrangian f(w, λ) of f(w) = wTAw subject to wT v = 1
equals wTAw − λ(wT v − 1), which is a convex function in w and has its derivatives vanish
on the hyperplane wT v = 1 when λ = 2(vTA−1v)−1, w = λ

2 (A−1v) (See for example [7],
Chapter 5, for more details of Lagrange Multipliers). By Lemma 6 and Theorem 1, we have
the following corollary:

I Corollary 8. For all positive definite A, if we define vi as the vector with first i components
1 and last n− i components 0,

Tr(A) · max
1≤i≤n

(viA−1vi) = Ω(n lg2 n)

and this bound is tight for the matrix of Lemma 7.

Proof. If the first part were not true, then there would be matrices An such that Tr(A) = d1,

wTAw = 1
d2

where wT vi = 0 for some i, and d1d2 = o(n lg2 n). However, this would mean
by Lemma 6 that for all pairwise independent H,

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)
≤ d1d2 = o(n lg2 n),

contradicting Theorem 1. The second part is immediate by the analysis of Lemma 7. J

4 Generalized Upper Bounds

In this section, our goal is to prove Equation (3) of Section 1.1.

4.1 Proof of Equation 3
In this subsection, we prove a generalization of Kolmogorov’s inequality [16] by proving
an identical result even if we only know that our random variables X1, . . . , Xn are 4-wise
independent.

I Theorem 9. Suppose that X1, . . . , Xn are 4-wise independent random variables satisfying
E[Xi] = 0 and V ar(Xi) <∞ for all i. Then, for all λ > 0,

P
(

sup
1≤i≤n

(X1 + · · ·+Xi) ≥ λ
)
≤
∑

E[X2
i ]

λ2 .

Proof. Assume WLOG that λ ≥ 1,
∑

E[X2
i ] = 1, and E[X2

i ] > 0 for all i, i.e. none of the
variables are almost surely 0. Also, define Si = X1 + · · ·+Xi and Ti = E[X2

1 + · · ·+X2
i ] for

0 ≤ i ≤ n. Note that T0 = 0 and Tn = 1.
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We proceed by constructing a series of nested intervals [ar,s, br,s] and our analysis will
be similar to that of Lemma 18 in [5]. We construct ar,s and br,s for 0 ≤ r ≤ d =
Θ(maxi lg

(
E[X2

i ]−1)
)
and 1 ≤ s ≤ 2r, as integers between 0 and n, inclusive. First define

a0,1 = 0 and b0,1 = n. Next, we inductively define ar,s, br,s. Define ar+1,2s−1 := ar,s and
br+1,2s := br,s. Then, if there exists any index ar,s ≤ t ≤ br,s such that

0.45 ·
∣∣Tbr,s − Tar,s

∣∣ ≤ ∣∣Tt − Tar,s

∣∣ ≤ 0.55 ·
∣∣Tbr,s − Tar,s

∣∣ ,
let ar+1,2s = br+1,2s−1 = t (if there are multiple such indices t, choose any one). Else, define
br+1,2s−1 to be the largest index t ≥ ar,s such that∣∣Tt − Tar,s

∣∣ ≤ 0.45 ·
∣∣Tbr,s − Tar,s

∣∣
and similarly define ar+1,2s to be the smallest index t ≤ br,s such that∣∣Tt − Tar,s

∣∣ ≥ 0.55 ·
∣∣Tbr,s

− Tar,s

∣∣ .
Note that in this case, ar,2s = br,2s−1 + 1.

It is clear that intervals are all nested in each other and for every r, all integers between 0
and n are in an interval [ar,s, br,s] for some s (possibly at an endpoint). Also, we always have
ar,0 ≤ br,0 ≤ ar,1 ≤ · · · ≤ br,2r , and any interval [ar,s, br,s] satisfies Tbr,s

− Tar,s
≤ 0.55r. The

previous point implies that since d = Θ(maxi(lgE[X2
i ]−1)), every integer equals ad,s = bd,s

for some s.
We now call an interval [ar,s, br,s] bad if either s is odd and br,s 6= ar,s+1 or s is even and

ar,s 6= br,s−1. Define the rank qr,s of a bad interval as the number of distinct r′ ≤ r such
that [ar,s, br,s] ⊆ [ar′,s′ , br′,s′ ] for some bad interval [ar′,s′ , br′,s′ ], which may equal [ar,s, br,s].
Define the relative rank of a bad interval with respect to some interval [a, b] as the number of
distinct r′ ≤ r such that [ar,s, br,s] ⊆ [ar′,s′ , br′,s′ ] ( [a, b] for some bad interval [ar′,s′ , br′,s′ ].
Note that [ar,2s−1, br,2s−1] and [ar,2s, br,2s] are either both bad or both good, i.e. not bad.
We now show the following:

I Lemma 10. Given distinct bad intervals [ari,si
, bri,si

] for 1 ≤ i ≤ ` all contained in some
interval [ar,s, br,s], where each interval has relative rank exactly q with respect to [ar,s, br,s],

∑̀
i=1

(
Tbri,si

− Tari,si

)
≤ 0.9q ·

(
Tar,s

− Tbr,s

)
.

As an immediate consequence, given distinct bad intervals [ari,si
, bri,si

] with absolute rank q,

∑̀
i=1

(
Tbri,si

− Tari,si

)
≤ 0.9q.

Proof. First, note that the bad intervals cannot overlap, except at endpoints, as the only
way for such intervals to overlap is for one to be contained in another, which would mean
they have different ranks. Now, we prove this by induction on br,s − ar,s. If br,s − ar,s = 1,
then for any value of q, this is quite straightforward, since there cannot exist bad intervals of
nonzero length with positive relative rank. Now, given br,s−ar,s > 1, then ar,s = ar+1,2s−1 ≤
br+1,2s−1 ≤ ar+1,2s ≤ br+1,2s = br,s, and at least one of the two outer inequalities must be
strict. If br+1,2s−1 = ar+1,2s, then neither [ar+1,2s−1, br+1,2s−1] nor [ar+1,2s, br+1,2s] are bad
intervals. We can separately look at intervals which are subintervals of [ar+1,2s−1, br+1,2s−1]
or [ar+1,2s, br+1,2s] to see which ones have rank q. By induction on br,s − ar,s, the total
length of the subintervals of relative rank q is at most

0.9q · (Tbr+1,2s−1 − Tar+1,2s−1) + 0.9q · (Tbr+1,2s − Tar+1,2s) = 0.9q · (Tbr,s − Tar,s).
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If br+1,2s−1 6= ar+1,2s, then if q = 1, we can only choose the subintervals [ar+1,2s−1, br+1,2s−1]
and [ar+1,2s, br+1,2s], and clearly

(Tbr+1,2s−1−Tar+1,2s−1)+(Tbr+1,2s−Tar+1,2s) ≤ (0.45+0.45)·(Tbr,s−Tar,s) = 0.9·(Tbr,s−Tar,s).

If q > 1, we can separately look at intervals which are subintervals of [ar+1,2s−1, br+1,2s−1]
and [ar+1,2s, br+1,2s] to see which ones have relative rank q − 1, where we have to subtract
one from the rank since [ar+1,2s−1, br+1,2s−1] and [ar+1,2s, br+1,2s] are both bad. Then, the
total length of the subintervals of relative rank q is at most

0.9q−1 · (Tbr+1,2s−1 − Tar+1,2s−1) + 0.9q−1 · (Tbr+1,2s
− Tar+1,2s

)

≤ 0.9q−1 · (0.45 + 0.45) · (Tbr,s
− Tar,s

) = 0.9q(Tbr,s
− Tar,s

). J

Next, for any λ, we bound the probability that there exists either a bad interval [ar,s, br,s]
with rank q such that |Sbr,s − Sar,s | ≥ 0.99q · λ or good intervals [ar,2s−1, br,2s−1], [ar,2s, br,2s]
such that min(|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s

− Sar,2s
|) ≥ 0.99r · λ. Note that by the Chebyshev

inequality,

P
(
|Sbr,s − Sar,s | ≥ 0.99q · λ

)
≤
Tbr,s

− Tar,s

0.992q · λ2 ,

since E
[
(Sbr,s

− Sar,s
)2] = Tbr,s

− Tar,s
by pairwise independence. Therefore, the probability

of us having this for any bad interval is at most
∞∑
q=1

∑
bad interval

rank q

Tbr,s
− Tar,s

0.992q · λ2 ≤
∞∑
q=1

0.9q

0.992q · λ2 = O(λ−2).

Next, note that for any good intervals [ar,2s−1, br,2s−1] and [ar,2s, br,2s], we have that

P
(
min

(
|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s − Sar,2s |

)
≥ λ · 0.99r

)
≤ P

(
(Sbr,2s−1 − Sar,2s−1)2(Sbr,2s

− Sar,2s
)2 ≥ λ4 · 0.994r)

≤
E
[
(Sbr,2s−1 − Sar,2s−1)2(Sbr,2s − Sar,2s)2]

λ4 · 0.994r

≤
(Tbr,2s−1 − Tar,2s−1)(Tbr,2s − Tar,2s)

λ4 · 0.994r ≤ 0.552r

λ4 · 0.994r

using 4-wise independence of X1, . . . , Xn. Since there are at most 2r such pairs of good
intervals for any r, the probability of |Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s

− Sar,2s
| both being greater

than λ · 0.99r for any pair of good intervals, is at most
∞∑
r=1

2r · 0.552r

λ4 · 0.994r = O(λ−4).

Finally, the probability of |Sn − S0| = |Sb0,1 − Sa0,1 | > λ is at most E[S2
n]

λ2 = O(λ−2).
These imply the following result:

I Lemma 11. The probability of there existing a bad interval [ar,s, br,s] with rank q such
that |Sbr,s

− Sar,s
| ≥ 0.99q · λ, or good intervals [ar,2s−1, br,2s−1] and [ar,2s, br,2s] such that

|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s − Sar,2s | are both greater than λ · 0.99r, or of |Sn − S0| ≥ λ is
O(λ−2).

Next, we prove the following:
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I Lemma 12. For any 0 ≤ i ≤ n, there exists a sequence 0 ≤ i0, i1, i2, . . . , id ≤ n with
i0 = 0, id = i, and a sequence of nested intervals [a0,s0 , b0,s0 ] ⊃ · · · ⊃ [ad,sd

, bd,sd
] such that

for any 1 ≤ j ≤ d − 1, ij is an endpoint of the interval [aj,sj
, bj,sj

] and of the interval
[aj−1,sj−1 , bj−1,sj−1 ]. Furthermore, for any 1 ≤ j ≤ d, either ij−1 = ij , or [aj,sj , bj,sj ]
is a bad interval, or ij equals aj,2s = bj,2s−1 and ij−1 is either aj,2s−1 or bj,2s such that
|Sij − Sij−1 | = min(|Sbj,2s − Saj,2s |, |Saj,2s−1 − Saj,2s−1 |). The intervals and values i0, . . . , id
may depend on the actual values of X1, . . . , Xn.

Proof. We know that i = id equals ad,sd
= bd,sd

for some sd, and thus must also equal either
ad−1,sd−1 or bd−1,sd−1 for some sd−1. If we are given ij+1 for some 1 ≤ j < d, if ij+1 equals
aj,2s−1 or bj,2s for some s, then let ij = ij+1 which equals aj−1,s or bj−1,s, respectively. If ij
equals aj,2s or bj,2s−1 for some s, then if aj,2s = bj,2s−1, we can choose ij−1 accordingly as
either aj,2s−1 = aj−1,s or bj,2s = bj−1,s based on whether |Sbj,2s−1−Saj,2s−1 | or |Sbj,2s−Saj,2s |
is smaller. If aj,2s 6= bj,2s−1, then if ij = aj,2s we choose ij−1 = aj−1,s and if ij = bj,2s−1
then we choose ij−1 = bj−1,s. J

As a result, we have that if the conditions of Lemma 11 do not hold, which happens with
probability 1−O(λ−2), then for any i, then every |Si| satisfies

|Si| ≤
d∑
j=1
|Sij − Sij−1 | ≤ λ+

∞∑
q=1

0.99q · λ+
∞∑
r=1

0.99r · λ = O(λ),

where I am using the fact that the intervals [aj,sj
, bj,sj

] are nested in each other, so no two
bad intervals can have the same rank.

In summary, we have with probability at least 1 − O(λ−2), the supremum of |Si| =
|X1 + · · ·+Xi| over all i doesn’t exceed O(λ), so we have proven Theorem 9. J

5 Open Problems

We note a few further directions that could be taken after this work. The first main open
problem is whether 3-wise independent random walks on n steps have supremum distance
bounded by O(

√
n) in expectation. As all 3-wise independent random walks are also 2-wise

independent, we know that the supremum distance is bounded by O(
√
n logn) in expectation

and the supremum square distance is bounded by O(n log2 n) in expectation. However, we
do not know if better bounds are true for 3-wise independent random walks. Likewise, for
odd k ≥ 5, we could ask if the kth moment of the supremum distance is bounded by O(nk/2)
in expectation, as we only know that the (k − 1)th moment of the supremum distance is
bounded by O(n(k−1)/2) in expectation by Equation (5), since k − 1 is even and at least 4.

Finally, we could ask how the constants increase as k grows. By our proof of Equation
(5) and the constants in Khintchine’s inequality [15], we know that the kth moment of
the supremum distance of a random walk is O(k)3k/2 · nk/2. Therefore, we could ask if the
constant O(k)3k/2 could be improved if k grows with respect to n (such as if k = Θ(logn)).
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20 Mihai Pǎtraşcu and Mikkel Thorup. On the k-Independence Required by Linear Probing and

Minwise Independence. ACM Trans. Algorithms, 12(1):8:1–8:27, 2016. doi:10.1145/2716317.
21 Yao-Feng Ren and Han-Ying Liang. On the best constant in Marcinkiewicz–Zygmund inequality.

Statistics & Probability Letters, 53(3):227–233, 2001. doi:10.1016/S0167-7152(01)00015-3.
22 Mathias Knudsen (via Jelani Nelson). Personal communication.

https://doi.org/10.1214/ECP.v11-1201
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.32
https://doi.org/10.1145/3034786.3034798
https://doi.org/10.1145/2897518.2897558
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1023/B:MCAP.0000026559.87023.ec
http://www.jstor.org/stable/4469865
http://eudml.org/doc/218383
http://eudml.org/doc/159258
http://eatcs.org/beatcs/index.php/beatcs/article/view/450
https://doi.org/10.1137/070702278
https://doi.org/10.1145/2716317
https://doi.org/10.1016/S0167-7152(01)00015-3


S. Narayanan 63:17

A Generalized Upper Bounds: Proof of Equations 4 and 5

Before we prove Equations (4) and (5), we construct 2−r/2-nets for 0 ≤ r ≤ 2 lgm + 1 in
a very similar way as in Theorem 1 in [8]. We define an ε-net to be a finite set of points
ar,0, ar,1, . . . , ar,dr

such that for every z(t), ||z(t) − ar,s||2 ≤ ε||z||2 for some 0 ≤ s ≤ dr. The
constructions are defined identically for both equations. Define a0,0 := z(0) as the only
element of the 2−0/2 = 1-net. For r ≥ 1, define ar,0 = z(0), and given ar,s = z(t1) then define
ar,s+1 as the smallest t > t1 such that

||z(t) − z(t1)||2 > 2−r/2 · ||z||22,

unless such a t does not exist, in which case let s = dr and do not define ar,s′ for any s′ > s.
We define the set Ar = {ar,s : 0 ≤ s ≤ dr}. The following is directly true from our

construction:

I Proposition 13. For any 0 ≤ t ≤ m and fixed r, if t1 ≤ t is the largest t1 such that
z(t1) = ar,s for some s, then ||z(t)−z(t1)||2 ≤ 2−r/2·||z||2. Consequently, Ar = {ar,0, . . . , ar,dr}
is a 2−r/2-net.

The above proposition implies the following:

I Proposition 14. For all 1 ≤ t ≤ m, z(t) = a2 lgm+1,s for some s.

Proof. Let t1 be the largest integer at most t such that z(t1) = a2 lgm+1,s for some s.
Then, ||z(t) − a2 lgm+1,s||22 ≤ 2−(2 lgm+1) · ||z||22 < 1, which is clearly impossible unless
z(t) = a2 lgm+1,s. J

Next, to prove Equations (4) and (5), we will need the Marcinkiewicz–Zygmund in-
equality (see for example [21]), which is a generalization of Khintchine’s inequality (see for
example [15]):

I Theorem 15. For any even k ≥ 2, there exists a constant Bk only depending on k such
that for any fixed vector v and totally independent random variables Y = (Y1, . . . , Yn),

E

( n∑
i=1

Yi

)k ≤ BkE
( n∑

i=1
Y 2
i

)k/2
 .

This implies the following result:

I Proposition 16. For any k ≥ 2 and vector v, there exists a Bk only dependent on k

such that

E
[
〈v, ~X〉

]k
= E

( n∑
i=1

viXi

)k ≤ Bk||v||k2 .
Proof. Since the expected value of (

∑
viXi)k is only dependent on k-wise independence, we

can assume that the Xi’s are totally independent but have the same marginal distribution.
This implies

E

( n∑
i=1

viXi

)k ≤ BkE
( n∑

i=1
v2
iX

2
i

)k/2


by Theorem 15. However, we know that E[X2d
i ] ≤ 1 for all i and all 1 ≤ d ≤ k/2, since

E[Xk
i ] ≤ 1 and E[X2d

i ]k/d ≤ E[Xk
i ] by Jensen’s inequality, so simply expanding and using

independence and linearity of expectation gets us the desired result. J
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We now prove equations (4) and (5).

Proof of Equation (4). For r ≥ 1 and s, suppose ar,s = z(t) and t1 ≤ t is the largest index
such that z(t1) ∈ Ar−1. Then, define f(s, t) to be the index s′ such that z(t1) = ar−1,s′ .

Consider the quadratic form
2 lgm+1∑
r=1

dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉2.

By Proposition 13, ||ar,s − ar−1,f(r,s)||2 ≤ 2−(r−1)/2 · ||z||2. Thus, by Proposition 16, we get
the expected value of the quadratic form equals

2 lgm+1∑
r=1

dr∑
s=0

E[〈(ar,2s+1 − ar,2s), ~X〉2] ≤ B2

2 lgm+1∑
r=1

dr∑
s=0
||ar,2s+1 − ar,2s||22

≤ B2

2 lgm+1∑
r=1

(
2r · 2−(r−1)||z||22

)
≤ 2B2(2 lgm+ 1)(||z||22).

Here, I am using the fact that an ε-net has size at most ε−2, which is easy to see since
z(0), . . . , z(m) is tracking an insertion stream (it is proven, for example, in Theorem 1 of [8]),
and thus dr ≤ 2r.

Now, for any 0 ≤ i ≤ n, consider z(i) and let z(i) = a2 lgm+1,s. Then, define sr = s if
r = 2 lgm+ 1 and sr−1 = f(r, sr) for 1 ≤ r ≤ 2 lgm+ 1. Note that s0 = 0 and for any r ≥ 1,
if ar,sr

∈ Ar−1, then ar,sr
= ar−1,sr−1 . Thus, each 〈(ar,sr

− ar−1,sr−1), ~X〉2 for 1 ≤ 2 lgm+ 1
is either 0 (because ar,sr

− ar−1,sr−1 = 0) or is a summand in our quadratic form. Therefore,
2 lgm+1∑
r=1

dr∑
s=0
〈(ar,s−ar,f(r,s)), ~X〉2 ≥

2 lgm+1∑
r=1

〈(ar,sr −ar−1,sr−1), ~X〉2 ≥ 1
2 lgm+ 1 · 〈z

(i), ~X〉2,

with the last inequality true since a2 lgm+1,s2 lg m+1 = z(i), a0,s0 = z(0), and by the Cauchy-
Schwarz inequality. As this is true for all i, taking the supremum over i and then expected
values gives us

2B2(2 lgm+ 1)(||z||22) ≥ E

[2 lgm+1∑
r=1

dr∑
s=0
〈(ar,2s+1 − ar,2s), ~X〉2

]

≥ 1
2 lgm+ 1 · sup

i
E
[
〈z(i), ~X〉2

]
,

and therefore,

E
[
〈z(i), ~X〉2

]
= O

(
||z||22 · lg2 m

)
. J

Proof of Equation (5). Consider the form
2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k,

with f(r, s) defined as in the proof of Equation (4). We again note that by Proposition 13,
||ar,s − ar−1,f(r,s)||2 ≤ 2−(r−1)/2 · ||z||2. Thus, by Proposition 16, we get the expected value
of the form equals

2 lgm+1∑
r=1

2r/2
dr∑
s=0

E[〈(ar,s − ar−1,f(r,s)), ~X〉k] ≤ Bk
2 lgm+1∑
r=1

2r/2
dr∑
s=0
||ar,s − ar−1,f(r,s)||k2
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≤ Bk
2 lgm+1∑
r=0

2r/2 · 2r · 2−(r−1)k/2||z||k2 ≤ Bk · 2k/2
∞∑
r=0

2r(3−k)/2||z||k2 = O(2k/2Bk)||z||k2 ,

since k ≥ 4. Again, I am using the fact that dr ≤ 2r as an ε-net has size at most ε−2.

Now, for any 0 ≤ i ≤ n, suppose s satisfies z(i) = a2 lgm+1,s. define sr = s if r = 2 lgm+ 1
and sr−1 = f(r, sr) for 1 ≤ r ≤ 2 lgm+ 1. Then, similarly to in the proof of Equation (4),

2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k ≥

2 lgm+1∑
r=1

2r/2〈(ar,sr
− ar−1,sr−1), ~X〉k

≥ Ω(k−1)k · 〈z(i), ~X〉k.

The last inequality requires justification, specifically that if x1 + · · · + x2 lgm+1 = 1,∑
2r/2xkr = Ω(k−1)k. This is sufficient since we can let xr = 〈(ar,sr

−ar−1,sr−1), ~X〉. To prove
this, define x′1, x′2, . . . , x′2 lgm+1 such that x′1 + · · · + x′2 lgm+1 = 1 and x′1 > · · · > x′2 lgm+1
are in a geometric series with common ratio 2−1/(2k) = 1 − Θ(1/k). Then, note that for
any x1, . . . , x2 lgm+1 such that x1 + · · · + x2 lgm+1 = 1, xi ≥ x′i for some i. But note that
(x′r)k2r/2 are equal for all r because of our geometric series, and equals (x′1)k = Ω(k−1)k
since x′1 = Ω(k−1)k is clearly true. Thus,

∑
2r/2xkr ≥ 2i/2(x′i)k = Ω(k−1)k, so we are done.

As this is true for all i, we can take the supremum over i and then take expected values
to get

2k/2Bk · ||z||k2 ≥ E

[2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k

]
≥ Ω(k−1)k · sup

i
E
[
〈z(i), ~X〉k

]
and therefore, for a fixed k,

E sup
i

[
〈z(i), ~X〉k

]
= O

(
||z||k2

)
. J
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