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Abstract

In this work we study stability of local memoryless packet scheduling policies in a distributed system

of n nodes/queues under contention. The local policies at nodes may only access their current

local queues, and have no other feedback from the underlying distributed system. Moreover, their

memory is limited to some basic parameters. The packets arrive at queues according to arrival

patterns controlled by an adversary restricted only by injection rate ρ and burstiness b, or driven

by a stochastic process; the former model analyzes worst-case stability while the latter – average

case. We assume that the underlying distributed system is a classic shared channel, in which no

two packets could be successfully scheduled (and removed from queues) at the same time. We show

that there is a local memoryless scheduling policy which is both adversarially and stochastically

stable for injection rates Ω(1/ logn). Another algorithm achieves even higher – constant – stable

injection rate, but only for a bounded range of burstiness. The first algorithm is utilizing properties

of interleaved ultra-selectors, for which we prove stronger properties than known so far, while the

second one is based on entirely new concept of selector with thresholds, unlike previously considered

binary selectors/codes in the literature.

Note that popular Backoff algorithms, some of which achieve stability for constant (stochastic)

injection rates [18], use memory to record current state (e.g., the number of unsuccessful transmissions

or the result of random sampling in each window) as well as randomization and feedback from the

channel; unlike solutions in this work, which are memoryless and do not rely on randomization or

channel feedback (thus, could be used independently from the link layer protocols).
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1 Introduction

Recently, due to rapidly growing number of devices and popularity of distributed protocols,

the impact of congestion on stability of queuing processes has become an important practical

and research topic. They are everywhere, often dependent on each other and competing for

the same resources (in this paper modeled as a shared channel with contention). Queues

are governed by scheduling algorithms, often run locally in a distributed way. The desired

property of the whole system of queues is stability – understood as existing of an upper

bound on the numbers of packets queued at devices at any time. In this work, we study
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17:2 Stable Memoryless Queuing under Contention

stability of local memoryless packet scheduling policies in the process of dynamic distributed

broadcasting on a shared channel. A shared channel, also called a multiple access channel, is

a broadcast network with instantaneous delivery of transmitted messages to every device

(also called a node or a station) in the system and a possibility of conflict for access to the

transmitting medium. A message sent via a channel by a station is received successfully

by all the stations when its transmission has not overlapped with transmissions by other

stations. In the queue system in contention, the channel represents the contention and is

interpreted as a rule that nothing happens to the queues if at least two of them schedule a

stored packet/job to be transmitted/executed at the same time.

The traditional approach to modeling queuing process on a shared channel was through

dynamic broadcasting problem and its corresponding queue system, but it could be easily

generalized to arbitrary queues with jobs or other types of elements. It has assumed continuous

packet injection subject to stochastic constraints (typically, Poisson arrival rates). Recent

papers, following the adversarial queuing approach for store-and-forward packet networks,

studied stability of the system of queues on a shared channel in adversarial settings. An

adversary is determined by two parameters: injection rate ρ, which is the average number of

injected packets, and burstiness b, which is the maximum number of packets that may be

injected in a round.

We focus on memoryless schedulers, showing that, although very restricted, they are quite

powerful in the sense that some of them could guarantee stability of the system for high

injection rates. Memoryless schedulers are local policies at nodes, which may only access their

current local queues, and have no other feedback from the underlying distributed system.

The assumption of limited feedback assures that designed policies are applicable in broad

spectrum of scenarios and systems; in particular they could adjust to multi-layer stacks of

protocols by assuring independence of a scheduling policy from the actual feedback from the

lower layers. Moreover, internal memory of nodes is limited to some basic parameters and

O(logn) control bits per each packet stored (necessary to keep e.g., basic packet informations

such as destination), where n is the number of queues in the system. This requirement

addressess the need of optimization of resources in contemporary and emerging scenarios, e.g.,

networks of computationally limited wireless entities run on batteries in IoT applications.

1.1 Our results

This paper studies stability of deterministic local memoryless packet schedulers in the context

of distributed broadcasting on a shared channel (as mentioned earlier, it could be generalized

to other types of queues with contention). The stability is studied in adversarial setting

(corresponding to worst case system behavior), defined in terms of global injection rate ρ

and burstiness b, and stochastic setting (corresponding to average case system behavior),

in which injections at each node follow the Bernoulli process. We show that there is a

local memoryless scheduling policy with relatively small memory (i.e., one bit per packet,

indicating whether the packet is old or relatively new), which is stable, both adversarially

and stochastically, for injection rates Ω(1/ logn) on a shared channel. The scheduler is based

on interwleaving ultra-selectors defined in [8]. Independently, we show better existential

results for ultra-selectors. The second scheduler is based on a different type of selector with

thresholds (unlike the previously used binary selectors/codes in the literature), and achieves

stability for constant injection rates with bounded values of burstiness. Comparison of our

results with the most relevant other recent results is given in Table 1.
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1.2 Previous and related work

There is a long history of research on dynamic broadcast on multiple access channels. Early

work includes developing and studying properties of protocols like Aloha [1] and binary

exponential backoff [24]. Recent study on this topic has focused on scenarios when packets

were injected subject to statistical constraints. Stochastic stability has been the basic quality

criterion to achieve, understood in the sense that the input and output rates were equal. See

the paper by Gallager [13] for an overview of early research; recent work includes the papers

of Goldberg et al. [15], Goldberg et al. [16], H̊astad et al. [18], Raghavan and Upfal [25],

Bender et al. [5] and [22].

Adversarial queuing was introduced by Borodin et al. [7] as a framework to study stability

of routing protocols in (point-to-point connected) networks under worst-case traffic scenarios

modeled by adversaries. Independently, Andrews et al. [4] defined a greedy protocol to be

universally stable when it was stable in all networks for any injection rate ρ < 1. This line of

research for wired networks has been intensively pursued for many models and protocols.

Chlebus at al. [10] were the first who studied adversarial queuing on a shared channel.

They however, similarly to all the follow up work (cf., [3, 2, 9]), assumed that schedulers

are embedded into the channel, in the sense that they can receive channel feedback or even

attach and read additional information bits. Several results were obtained and new protocols

designed and analyzed using this model, however they were derived for stronger schedulers

or for restartable schedulers (so called acknowledgment-based) which are incomparable to

local memoryless class. Recently, Garncarek et al. [14] investigated adversarial stability and

other properties of deterministic local packet schedulers. They considered two classes of local

schedulers: adaptive and non adaptive. The former allows stations to monitor and store

some digest of the local queue history (especially its size), which is much more powerful than

memoryless schedulers considered in this work, while the latter allows the policy only to

check whether the current local queue is empty or not, which in turn is a type of memoryless

policy. They showed that there is a local adaptive scheduling policy with relatively small

memory, which is universally stable on a shared channel, that is, it has bounded queues for

any ρ < 1 and b ≥ 0. On the other hand, they proved that memoryless policies with only

information about non-emptiness of their queues could reach the maximal stable injection

rate of O(1/ logn). They also showed a local non-adaptive policy, which is stable for slightly

smaller injection rate c/ log2 n, for some constant c > 0. In this context, general memoryless

local policies considered in this work could be seen as in-between of adaptive and no-adaptive

local schedulers considered in [14].

A simplified version of broadcasting on a shared channel with static input, in which

some k stations hold packets at the beginning of an execution, was also widely investigated.

The goal is to transmit at least one of them (selection problem) or all of them (k-broadcast

problem), in both cases minimizing time complexity. The selection problem was studied in

particular by Kushilevitz and Mansour [23] and Willard [26]. The k-broadcast problem was

studied by Greenberg and Winograd [17], Komlós and Greenberg [21], and Kowalski [22]. A

related leader election problem was studied by Jurdziński et al. [19] for channels without

collision detection.

Deterministic solutions for the mutual exclusion and consensus problems on multiple-

access channels when the adversary wakes up stations in arbitrary rounds were studied

by Czyżowicz et al. [11]. A randomized counterpart of their research was delivered by

Bieńkowski et al. [6].

D I S C 2 0 1 9



17:4 Stable Memoryless Queuing under Contention

Table 1 Comparison of our algorithms (WBA and QSA) with the previously known results under

adversarial packet injections. Row with ρ describes the highest injection rate for which an algorithm

is stable. Control messages can be separate packets (that need an additional successful transmission),

piggybacked on packets (sent in the same round as successful transmission of any packet) or neither.

Local memory is the number of bits to store information about history of events that each node can

remember. Queue access denotes whether a node has access to the size of its queue or only knows if

its queue is empty.

algorithm oblivious [14] WBA QSA adaptive [14] MBTF [9]

ρ O(1/ log2 n) O(1/ logn) O(1) < 1 ≤ 1
b any any bounded any any

control messages no no no separate piggybacked

local memory 0 O(1) 0 large O(n logn)
queue access emptiness size size size size

2 Model

We follow the description of local scheduling model under contention from [14], enhanced

by additional aspects of memoryless policies. There are n stations attached to a shared

channel. The stations have distinct names in [n] = {0, 1, . . . , n}. Each station v knows n and

its name v ∈ [n].

2.1 Shared channel

A shared channel, also called a multiple access channel, models environments in which

distributed nodes compete for access to the shared communication and distribution channel,

and in case of contention, no contender wins the access. We assume that the channel operates

synchronously. Every station (also called a node or queue) connected to it has its clock

and the clock cycles are all of exactly the same length and synchronized. An execution of

a protocol is partitioned into rounds – it takes precisely one round to transmit a message.

We assume that stations have access to a global clock, meaning that all the local clocks at

stations read the same round numbers.

Every station occasionally receives packets to broadcast. Packets are stored in a local

queue. Stations use local scheduling algorithms to decide whether to schedule a packet from

the queue for transmission in the current round or not. When exactly one station schedules

a packet for transmission in a round, then the message containing this packet is successfully

delivered and the packet disappears from the queue. We assume that local schedulers do

not receive any feedback from the channel – they could only make their decisions based on

examining local queue. When at least two stations transmit simultaneously in a round then

conflict for access or collision occurs in the round and none of the transmitted packet is

successful (i.e., all remain in their local queues). We consider syntactically weaker, but as we

will show still powerful, memoryless local policies, in which stations may only access their

current local queues and have no other feedback from the underlying distributed system.

Moreover, the size of their internal writeable memory is bounded by some basic parameters

and O(logn) control bits per each packet stored, storing e.g., packet destination or estimate

of arrival time – see Table 1 for details. W.l.o.g. we assume that the queue at a station

operates in the first-in-first-out (FIFO) fashion, as we are only interested in stability (i.e.,

bounded queue sizes).
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2.2 Packet injections

Packets are injected into stations in a dynamic fashion in the course of an execution of a

broadcasting protocol. We consider two packet injections – adversarial, corresponding to

worst case executions, and stochastic, corresponding to average case executions.

Consider packet injection modeled by an adversary. Adversaries are specified by constraints

on the maximum rate of injection ρ and by the burstiness of traffic b. An adversary generates

a number of packets in each round and for each packet assigns a station to inject the packet

in this round. The number of packets an adversary can inject into stations in one round is

called the burstiness of the adversary. The adversary of type (ρ, b) can inject at most ρt+ b

packets to stations, in total, during any time interval of t rounds. This type of adversary is

typically called leaky bucket.

We consider stochastic packet injections that are i.i.d. across rounds and independent

across nodes. The probability that a (exactly one) packet is injected in a round t into a node

v is ρv. Thus, each node receives packets in each round according to Bernoulli process. The

value ρ =
∑
v ρv is called the injection rate. We will only consider injections such that ρ ≤ 1,

since otherwise the system will obviously accumulate infinitely many packets over time.

2.3 Quality of service

We say that a local scheduler is stable for injection rate ρ if in any execution of the scheduler

against a (ρ, b)-adversary, for any b, queues are bounded at all times. Stochastic stability

means that the Markov Chain associated with the execution (random, due to stochastic

injections) has a positive recurrent set of states with low queues, i.e., starting from any queue

size, the expected time until the system contains few packets is bounded.

3 Generic queuing

In this section we present a queuing algorithm in the window-based model, which works for

arbitrary burstiness. Thanks to that, our algorithm is stable for both adversarial (worst-case)

and stochastic (average) packet injections. It is based on ultra-selectors – a combinatorial

tool introduced in [8].

I Definition 1 ([8]). For a given 1 ≤ a ≤ n and 0 < ε ≤ 1 a (n, a, ε)-US (ultra-selector) of

length m is a family of sets S1, . . . , Sm such that for any set A ⊆ [n] of size at most a and

more than a/2, at least a ε fraction of the sets in the family intersect A on a single element:

the size of {i ∈ [m] | |Si ∩A| = 1} is at least εm.

I Lemma 2 ([8]). For each ε < 1/32 and sufficiently large n, there is an integer c > 0 such

that for each 1 ≤ a ≤ n, there exists an (n, a, ε)-US of length at most m = c · a log(2n/a).

We improve the existential result from [8] by extending the range ε ∈ (0, 1/32) to ε <

(0, 1/(2e)).

I Lemma 3. For any ε < 1/(2e) there is an integer c > 0 such that for 1 ≤ a ≤ n, there

exists an (n, a, ε)-US of length at most m = c · a log(2n/a).

Proof. Observe that for n/2 < a ≤ n it is enough to take the family of all singletons of set

[n], as for any admissible set the number of its singleton intersections with the sets in the

family is bigger than a/2 > n/4, which gives ε ≥ 1/4 > 1/(2e) even better than the one

claimed in the lemma.

D I S C 2 0 1 9
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It remains to consider 1 ≤ a ≤ n/2. We show the existence by using the probabilistic

method. Let each set of the (n, a, ε)-US be selected independently at random as follows, and

the number of sets be c · a log(2n/a), for some constant c > 0, depended on ε, to be specified

later. For each set and integer v ∈ [n], element v belongs to the set with probability 1/a,

independently on other elements and sets.

Consider an arbitrary set A ⊆ [n] such that a/2 < |A| ≤ a. For any set T of the randomly

created (n, a, ε)-US, the probability that |T ∩A| = 1 is

|A| · 1
a
·
(

1− 1
a

)|A|−1
≥ 1

2 ·
(

1− 1
a

)a−1
≥ 1

2e .

Thus the expected number of sets T in the (n, a, ε)-US such that |T ∩ A| = 1 is at least

1/(2e) · c · a log(2k/a). By Chernoff bounds, the probability that the number of such sets is

smaller than ε · c · a log(2n/a) is less than

exp
(
−1/(2e) · c · a log(2n/a) · (1/(2e)− ε)2 · 1/2

)
= exp

(
−c · a log(2n/a) · 1− 2eε

8e2

)
. (1)

The number of all possible sets A ⊆ [n] satisfying a/2 < |A| ≤ a is

a∑
i=a/2+1

(
n

i

)
≤ a

2 ·
(
n

a

)
≤ a

2 ·
(ne
a

)a
, (2)

as
(
n
x

)
are monotonically increasing with growing x ≤ a ≤ n/2. Therefore, the probability

that there is an admissible set A having less than ε · c · a log(2n/a) singleton intersections

with the random (n, a, ε)-US is at most

a

2 ·
(ne
a

)a
· exp

(
−c · a log(2n/a) · 1− 2eε

8e2

)
≤

≤ exp
(

ln(a/2) + a ln(ne/a)− c · a log(2n/a) · 1− 2eε
8e2

)
.

This in turn is smaller than 1 for sufficiently large constant c, depending on ε. By the

probabilistic method, there is a (deterministic) (n, a, ε)-US of length c · a log(2n/a). J

In Sections 3.1–3.3, we devise a scheduling algorithm in window-based model which

uses ultra-selectors as a building block and show its stability against adversarial as well as

stochastic injections.

3.1 Algorithm

Our algorithm WBA (Window-Based Algorithm) makes use of ultra-selectors (n, 2i, ε)-US,

with i = 0, 1, . . . , logn − 1 such that the length of (n, 2i, ε)-US is at most c · 2i log(2n) for

the constant c from Lemma 2. Let Li denote the length of the used (n, 2i, ε)-US. Let j be

the smallest number such that 2j ≥ Li for all i. The algorithm works in windows which

consist of L = 2j logn rounds (see Algorithm 1 on page 7 for a pseudocode for a window).

A node is active in a window if the number of packets in its queue at the beginning of the

considered window is larger or equal to ε2j . Windows are split into logn phases of length

2j each. During the ith phase of a window (n, 2logn−i, ε)-US is “repeated” ri =
⌊
2j/Llogn−i

⌋
times and the remainder of the phase is wasted, i.e., no nodes try to transmit. (Note that

the wasted period of a phase is no longer than half of the phase.) The ith phase of a window
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is determined by a chosen (n, 2logn−i, ε)-US of length m ≤ 2j in the following way. Let

S1, . . . , Sm be the chosen (n, 2logn−i, ε)-US. Then, Sk for each k ∈ [m] is the set of potential

transmitters for all rounds k + lm, such that l ∈ [0, ri]. A node v transmits in the round t of

the considered window if it is active in the current window, v belongs to the set of potential

transmitters for round t and its queue is not empty.

Algorithm 1 Window(v). . A window of Algorithm WBA

1: if |Qv| ≥ ε2j then . Qv: the queue of packets of v

2: sv ← active

3: else sv ← non-active

4: for i = 1, . . . , logn do . Phase i

5: (S1, . . . , Sm)← the chosen (n, 2logn−i, ε)-US . m ≤ 2j
6: for t = 1, . . . , 2j do . Round t of Phase i

7: Pt ← S1+(t−1) mod m
8: if sv=active and Qv 6= ∅ and v ∈ Pt then
9: v transmits a message in round t of phase i

In the next two sections we will prove the following result.

I Theorem 4. Algorithm WBA achieves stability against adaptive adversaries with injection

rate ρ ≤ ε/(2 logn) and any burstiness b, where ε is a fraction of successes of (n, 2i, ε)-US

used. Moreover, WBA achieves stochastic stability against stochastic arrivals with injection

rate ρ′ < ε/(2 logn) .

3.2 Proof of part 1 of Theorem 4 – Adversarial analysis

Consider a window. We say that the ith phase of the window is efficient if the number of

active nodes x in the current window satisfies the inequalities 2logn−i−1 ≤ x ≤ 2logn−i, for

i = 0, 1, . . . , logn− 1. We split further analysis into two scenarios.

Scenario 1. There is an efficient phase in the window.

If the ith phase is efficient, then the active nodes during this phase transmit without collisions

in ε fraction of non-wasted rounds, i.e., they successfully transmit ε2j/2 times during the

phase, unless some (at least one) active node u has not enough packets to do so. In the

latter case, the node u transmitted all packets present in Qu at the beginning of the current

window. As u is active, the number of packets in Qu at the beginning of the current window

is at least ε2j . In either case there are at least S = ε2j/2 ≥ ρL successful transmission since

the start of the window by the active nodes.

Scenario 2. There is no efficient phase in the window.

In this case, there are no active nodes in the window and thus each node has less than ε2j
packets in its queue at the beginning of the window. As the adversary can inject at most

ρ2j logn+ b = ε2j/2 + b = S+ b packets during the window, there are at most ρ2j(n+ 1) + b

packets in the system in each round of the window (in particular, at the end of the window).

Thus, one of the following two conditions is satisfied for each window W :

Case 1: Window W satisfies Scenario 1. Consider a sequence of windows W =
W1,W2, . . . ,Wp such that Wi+1 directly precedes Wi, Scenario 1 holds for the windows

W2, . . . ,Wp and either Wp is the first window during an execution of the algorithm or the

window Wp+1 preceding Wp satisfies Scenario 2. Then, there are at most (n+ 1)ρL+ b

D I S C 2 0 1 9



17:8 Stable Memoryless Queuing under Contention

packets at the beginning of Wp (see Scenario 2). Moreover, at most ρpL + b packets

are injected in the time period corresponding to the windows Wp,Wp−1, . . . ,W1. On

the other hand, at least ρL packets are successfully transmitted in each of the windows

W1, . . . ,Wp. Therefore, the number of packets in all queues at the end of W1 is at most

(n+ 1)ρL+ 2b.
Case 2: Window W satisfies Scenario 2. As argued above in Scenario 2, there are at most

ρ2j(n+ 1) + b packets at the end of the window.

So the number of packets in the system is at most P = (n+ 1)ρL+ 2b+ ρ2j(n+ 1) + b

at the end of each window. Therefore, there are at most P + ρL+ b packets at each round of

an execution of the algorithm, which proves its stability.

3.3 Proof of part 2 of Theorem 4 – Stochastic analysis

We will prove that our algorithm is stochastically stable. That is to say, we will show that

the Markov Chain described by the queue states has a positive recurrent set of states with

low queues, i.e., starting from any queue size, the expected time until the system contains

few packets is finite.

Note that the expected number of packets injected into the system during a window of

length L = 2j logn equals E(
∑L
i=1Xi) = L · E[X] = ρ2j logn.

In a window, we consider two scenarios: Scenario (1) – there is an efficient phase;

Scenario (2) – there is no efficient phase.

In Scenario (2) there are no active nodes in the window and thus each node has less than

ε2j packets in its queue at the beginning of the window. As packet injections into each node

are described by binomial distribution, each node may receive at most 1 packet per round.

Therefore, during a window, each node can receive at most L = 2j logn packets. So, at the

end of the window, there are at most n · (ε2j + 2j logn) packets in the system.

In Scenario (1), as shown earlier (see Scenario (1) of the adversarial analysis), at least

s ≥ ε2j/2 packets are successfuly transmitted during the window. This means that the

expected change in the total number of packets in the system is ∆ ≤ E(
∑L
i=1Xi) − s ≤

ρ · 2j logn − ε2j/2. For ρ ≤ (ε − δ)/(2 logn) with some constant δ > 0, we get ∆ ≤
(ε− δ)/(2 logn) · 2j logn− ε2j/2 = −δ2j/2 < 0.

We will use Foster-Lyapunov Theorem to prove that there will only be (in expectation) a

finite number of windows of the type (2), before a window of the type (1) is reached.

Let Qi denote a vector of queue sizes of all nodes at round i of the algorithm execution.

Note that Qi+1 depends on the value of Qi, the stochastic injections (which are i.i.d. across

rounds) and algorithm’s transmission (which are a function of Qi). Therefore, (Qi) is a

time-homogeneous Markov chain.

I Theorem 5 (Foster-Lyapunov Theorem (see Theorem 1 in [12])). Consider a time-homogen-

eous Markov chain (Xi). Suppose that the drift E[V (X1)− V (X0)|X0 = x] of some function

V in one step satisfies the following conditions, for some positive N0, c, and H:

E[V (X1)− V (X0)|X0 = x] ≤ −c if V (x) > N0,

E[V (X1)− V (X0)|X0 = x] ≤ H <∞ if V (x) ≤ N0

Then the set B = {x : V (x) ≤ N0} is positive recurrent.

Consider a function V (Q) that assigns to a queue state Q the number of packets in the

system. We will show that set B = {q : V (q) ≤ nε2j + nL} is positive recurrent.
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At the end of a window of type (1), the queue sizes are bounded by nε2j + nL. This

means that, starting from any queue sizes, the system will return in expected finite time to

bounded queues, i.e., the algorithm is stochastically stable.

Now we will estimate the drift of function L at the ends of consecutive windows.

E[V (Q1)− V (Q2)|Q1 = q yields a window of type (2) ]
= V (Q1)− E[V (Q1) + ∆|Q1 = q yields a window of type (2) ] ≤ −δ/(2 logn) < 0

Therefore, according to the Foster-Lyapunov Theorem, after a finite (in expectation)

number of windows, the system returns to set B of states, i.e., to a state that yields a window

of type (1), and after that window, the queues are bounded by nε · 2j + nL. Therefore, our

algorithm is stochastically stable.

4 Queueing in the model without memory

In this section we consider the qsa model in which nodes do not have memory to write any

information about history of an execution of an algorithm. That is, at each round t, a node i

has only access to: the size of the network n, the value t of the global clock, its own ID i,

the size qi,t of its queue of packets, and the upper bound on burstiness b. Thus importantly,

the nodes can not store any information about history of computation and communication.

In the remaining part of this section, we prove the following theorem.

I Theorem 6. There exists a constant ρ > 0 such that for each b, n > 0, there exists a

scheduling algorithm in qsa model which is stable against each adversary with injection rate ρ

and burstiness b.

4.1 Overview of the proof of Theorem 6

As before, our algorithm relies on an appropriate combinatorial structure determining

behaviour of nodes in particular rounds of a window, where the number of rounds of the

window corresponds to the size of the underlying combinatorial structure. Algorithm QSA

uses logn different ultra-selectors in order to adjust to the unknown number of active nodes

(i.e., the nodes with sufficiently many packets in their queues) in the current window . The

fact that we need logn different selectors limits acceptable injection rate to O(1/ logn). In

order to achieve stability for injection rates O(1), we build a new combinatorial structure

which adjusts to the actual number of active nodes. However, we face here additional

difficulty: the nodes do not have opportunity to store information about history, therefore

“activity” can be determined merely on the current size of the queue of the node (not fixed for

the whole window, as in Algorithm QSA). In order to overcome this additional difficulty and

simultaneously improve acceptable injection rate to O(1), the new combinatorial structure is

not just a sequence of sets determining potential transmitters. Instead, each element (i.e.,

each round of the algorithm) of the structure is a vector of n thresholds [M1, . . . ,Mn]. In

our algorithm, the node i ∈ {1, . . . , n} is a potential transmitter in a round corresponding to

[M1, . . . ,Mn] iff the number |Qi| of packets in the queue of i is at least Mi. Moreover, in

order to prevent the adversary from malicious adjustment of sizes of queues (by injections)

to the thresholds, we use thresholds which are multiplicities of some parameter depending on

the burstiness b.

The general idea of the construction of the new combinatorial structure, called a capacitated

selector is as follows. Assume that the sum of the sizes of queues
∑n
i=1 |Qi| is at most S � b.

Then, there is at most 1 node with at least S packets, at most 2 nodes with at least S/2
packets each and in general there are at most 2i nodes with at least S/2i packets each. On
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the other hand, if the sum of the sizes of queues is at least S/2 and at most S, then there

is at least one i ∈ [logn] such that the number of nodes with queue sizes ≥ S/2i is in the

range [2i−2, 2i]. (If the number of nodes with queue sizes ≥ S/2i were greater than 2i for

any i ∈ [logn], then the sum of the queue sizes would be greater than S. If the number

of nodes with queue sizes ≥ S/2i were smaller than 2i−2 for all i ∈ [logn], then the sum

of the queue sizes would be smaller than S/2.) Therefore, if only nodes with queue sizes

≥ S/2i are potential transmitters, we can use (n, 2i−2, ε)-US or (n, 2i−1, ε)-US. As we do

not know the particular i satisfying these conditions, a direct application of ultra-selectors

would require to check all values of i ∈ [logn] which requires logn rounds and results in the

injection rate O(1/ logn), as in Theorem 4. Instead, we “compress” all these logn selectors

using thresholds in the following way. We choose the threshold [M1, . . . ,Mn] determining

possible transmitters such that Mj = 2i with probability pi = 2i

cS for some (fixed) constant

c. This assignment assures that the expected number of nodes exceeding their thresholds is

Θ(1). Using Probabilistic Method, we show that such adjustment of thresholds gives constant

fraction of successful rounds with non-zero probability, for large enough sequence of rounds.

This in turn guarantees that the number of all packets in the system decreases in a window,

provided the number of packets was in the range [S/2, S] at the beginning of that window.

The above ideas need further modifications to obtain an actual scheduling algorithm

guaranteeing stability for constant injection rates. In particular, the fact that the sizes

of queues can change both by successful transmissions and packet injections has to be

taken into account in the the estimation of probability that a chosen set of thresholds

guarantees sufficiently many successful rounds for each possible initial queue sizes and

adversarial injections.

4.2 Proof of Theorem 6

Our algorithm QBA (Query-size Based Algorithm) divides time into windows of length L (to

be fixed later). Behavior of each node in each window is determined by a fixed matrix M

over natural numbers with n rows and L columns. The node i transmits a packet in round

t of a window iff the number qi,t of packets in its queue at the beginning of that round is

larger than or equal to Mi,j . For a fixed matrix M , QBA(M) denotes the instance of QBA

algorithm which uses the matrix M in the above described way.

In order to adjust requirements sufficient for stability of an algorithm determined by such a

matrix M , we characterize states of the network (i.e., sizes of queues) and adversarial injections

by appropriate matrices. To this aim, we introduce the following combinatorial structure.

I Definition 7. Given natural numbers n, b and 0 < ρ < 1, a matrix M over positive

natural numbers with n rows and L columns is a (n, ρ, b) capacitated adversarial selector

((n, ρ, b)-cas) of size L iff there exists a natural number m, called the load of M , such that

n∑
i=1

qi,L ≤ m (3)

for each sequence q1,0, . . . , qn,0 ∈ N such that
∑n
i=1 qi,0 ≤ m and each matrix A ∈ Nn×L such

that
∑n
i=1
∑L
t=1Ai,t ≤ ρL+ b, where

qi,t =


max(0, qi,t−1 +Ai,t − 1) if qi,t−1 +Ai,t ≥Mi,t and qj,t−1 +Aj,t < Mj,t

for each j 6= i

qi,t−1 +Ai,t otherwise

for each i ∈ [n] and t ∈ [L].
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Intuitively, the vector q1,0, . . . , qn,0 in the above definition corresponds to the sizes of queues

at the beginning of a window of the algorithm QBA executed according to the matrix M .

Then, Ai,t is equal to the number of packets injected in the queue of the station i at round

t of the window. Moreover, qi,t describes the number of packets in the node i after round

t of the window. The assumption
∑n
i=1
∑L
t=1Ai,t ≤ ρL + b corresponds to the restriction

on a leaky bucket (ρ, b) adversary. The condition qi,t−1 +Ai,t ≥Mi,t corresponds to node i

transmitting at round t, while the condition qj,t−1 +Aj,t < Mj,t for each j 6= i corresponds

to the situation that all nodes other than i are not transmitting in round t. Finally, the

inequality
∑n
i=1 qi,L ≤ m implies that the number of packets in all queues does not exceed

m at the end of the window, provided the number of packets in queues at the beginning of

the window,
∑n
i=1 qi,0, is at most m as well. Below, we formalize this intuition.

I Lemma 8. Assume that there exists 0 < ρ < 1 such that, for each sufficiently large

n ∈ N and each natural b, there exists a (n, ρ, b)-cas M ∈ Nn,L for some L ∈ N, with load

m > ρL+ b. Then, the algorithm QBA(M) is stable against a (ρ, b) leaky bucket adversary.

Proof. Let M ∈ Nn,L be a (n, ρ, b)-cas with load m > ρL + b. We prove that the overall

number of packets in all queues is at most m over an execution of QBA(M) against a (ρ, b)
leaky bucket adversary. The proof goes by induction with respect to the number of windows.

As discussed above, if the sizes of queues at the beginning of the window are equal

q1,0, . . . , qn,0 and Ai,t denotes the number of packets injected by the adversary at round t of

the window in the queue of the node i, then qi,t (defined as in Def. 7) for i ∈ [n] and t ∈ [L]
denotes the number of packets in the queue of i after round t, for each i ∈ [n] and t ∈ [L].
There are no packets at the beginning of the first window of an execution of the algorithm.

Thus the number of packets at the end of that window is at most ρL + b ≤ m, since the

adversary can inject at most ρL + b packets in L rounds. For the inductive step assume

that the overall number of packets at the beginning of the jth window of the execution is∑n
i=1 qi,0 ≤ m. Then, the overall number of packets at the end of the window is at most∑n
i=1 qi,L, where qi,t are determined as in Definition 7. As M is (n, ρ, b)-cas with load m, the

final number of packets at the end of the considered window is at most
∑n
i=1 qi,L ≤ m. J

Given the above connection between capacitated adversarial selectors and QBA algorithm, it

is sufficient to show that (n, ρ, b)-cas exists for a constant ρ > 0.

I Lemma 9. There exists a constant ρ > 0 such that for each large enough n ∈ N and each

b ≥ 0, there exists a (n, ρ, b)-cas M of length L = O(n logn+ b) with load m = 8nL.

Observe that Th. 6 follows directly from Lemmas 8 and 9. Thus, it remains to prove Lem. 9.

4.3 Proof of Lemma 9

In order to emphasize connections with the algorithm QSA, the indices i ∈ [n] are called

nodes, and t ∈ [L] are called rounds.

Using Probabilistic Method, we will show that for each n and b, there exist L, m and

a matrix M which guarantees the properties stated in Definition 7. More specifically, we

prove the lemma for each ρ < 2− 33
8 , some L = O(n logn) such that L ≥ ρL + b and load

m = 1
2SmaxL, where Smax = 16n.

Consider any q1,0, . . . , qn,0 such that
∑n
i=1 qi,0 ≤ m and Ai,t such that

∑n
i=1
∑L
t=1Ai,t ≤

ρL+ b ≤ L. Let us consider two cases:

Case 1:
∑n

i=1 qi,0 ≤ m/2. Then,
∑n
i=1 qi,L ≤

∑n
i=1 qi,0 +

∑n
i=1
∑L
t=1Ai,t ≤

1
2m+ ρL+

b ≤ 1
2m+ L < m, and therefore the statement of the lemma holds.
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Case 2: m/2 ≤
∑n

i=1 qi,0 ≤ m. We consider Case 2 in the remaining part of the proof.

Let (round) t ∈ [L] be successful if qi,t−1 +Ai,t ≥Mi,t and qi,t−1 +Ai,t > 0 for exactly one

value of i ∈ [n]. Then

n∑
i=1

qi,L ≤
n∑
i=1

qi,0 +
n∑
i=1

L∑
i=1

Ai,t − |{t ∈ [L] | t is successful}

Now, our goal is to show that there exists matrix M which guarantees that∑n
i=1
∑L
i=1Ai,t − |{t ∈ [L] | t is successful}| ≤ 0, i.e., |{t ∈ [L] | t is successful}| ≥ ρL+ b.

Consider a random matrix M with n rows and L columns such that

Mi,t =

 L · 2k − t with probability
2k

c · Smax
for k ∈ [logSmax]

∞ with probability 1−
∑logSmax
j=1

2j

c·Smax
,

(4)

where c = 4. Our final goal is to show that such a matrix is (n, ρ, b)-cas of size L with load

m with non-zero probability which implies that such a matrix exists.

Given the above description of the probabilistic choice of M , we introduce some auxiliary

terminology and examine its properties. We say that (the node) i has si,t = d(qi,t + t)/Le
blocks at round t. Below, we observe that the number of blocks in a node i can change (at

most) twice in rounds 1, . . . , L and this prospective changes are just increments by one.

I Proposition 10. Let si,0, . . . , si,L be the number of blocks of the node i in rounds 1, . . . , L.

Then, si,0 ≤ si,1 ≤ · · · ≤ si,L ≤ si,0 + 2, provided that ρL+ b ≤ L.

Proof. Note that qi,t+1 ≥ qi,t − 1 and therefore si,t+1 = d(qi,t+1 + (t+ 1))/Le ≥ d(qi,t − 1 +
(t+ 1))/Le = si,t. On the other hand, qi,t ≤ qi,0 +

∑t
t′=1Ai,t′ ≤ qi,0 + ρL+ b ≤ qi,0 +L and

therefore

si,t ≤ d(qi,0 + L+ t)/Le ≤ dqi,0/Le+ 2 = si,0 + 2. J

The following proposition shows that the number of all blocks is limited for all t ∈ [L].
Intuitively, it follows from the facts that the initial number of packets is at most m = O(nL),
the sum of “injections” is

∑n
i=1
∑L
t=1Ai,t = O(L), while the size of a block is of the order of L.

I Proposition 11. The overall number of blocks St =
∑n
i=1 si,t in all nodes at round t ∈ [L]

is at least Smax/4 and at most Smax, provided that
∑n
i=1 qi,0 ∈ [m/2,m], m = 1

2SmaxL where

Smax = 16n.

Proof. At the beginning (t = 0), we have

n∑
i=1

si,0 =
n∑
i=1
dqi,0/Le ≤

n∑
i=1

(qi,0/L+ 1) ≤ 1
L
m+ n = 1

2Smax + n ≤ 9
16Smax

where the last inequality follows from the assumption Smax = 16n. By Proposition 10,

si,t ≤ si,0 + 2 for each t ∈ [L]. Therefore, for each t ∈ [L],

n∑
i=1

si,t ≤
n∑
i=1

(si,0 + 2) ≤ 9
16Smax + 2n = 11

16Smax ≤ Smax.

For the lower bound on the number of blocks, we use the property from Proposition 10 that

si,t ≥ si,0 for each t ∈ [L]:
∑n
i=1 si,t ≥

∑n
i=1 si,0 ≥

∑n
i=1(qi,0/L) ≥ 1

L ·
m
2 = 1

4Smax. J
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Given the notion of blocks and its properties, we split the set (of nodes) [n] at round t into

groups B0,t, B1,t, . . . , BlogSmax,t according to the numbers of blocks such that

Bl,t = {i ∈ [1, n] | 2l−1 ≤ d(qi,t + t)/Le < 2l} (5)

for l > 0 and B0,t is the set of nodes i ∈ [n] such that qi,t + t < L, i.e., the nodes with just

one block. Thus, i ∈ Bl,t iff the number of blocks of node i in round t satisfies the inequality

2l−1 ≤ si,t < 2l. For the sake of brevity, we say that a node i belongs to the group Bl in

rounds t iff i is in the group Bl,t. Proposition 10 implies that each node i ∈ Bj, can only

move to Bj+1, and then to Bj+2, . Using (5) and Proposition 11, we can bound the number

St of blocks at round t from above:

Smax/4 ≤ St =
n∑
i=1

si,t ≤
logSmax∑
j=0

|Bj,t|2j (6)

and below

Smax ≥ St =
n∑
i=1

si,t ≥
logSmax∑
j=0

|Bj,t|2j−1 (7)

Now, given the column/round t, we would like to estimate the probability that the

inequality qi,t ≥Mi,t holds for exactly one i ∈ [n] (i.e., t is successful). For a node i ∈ Bl,t,
we have 2l−1 ≤ b(qi,t + t)/Lc < 2l. Given the possible values of Mi,t (see equality (4)), the

highest value of Mi,t that is no larger than qi,t is Mi,t = L · 2l − t. Therefore, we have

Prob[qi,t ≥Mi,t] = Prob[Mi,t ≤ L · 2l − t] =
l−1∑
k=1

2k

cSmax
∈
[

2l−1

cSmax
,

2l

cSmax

]
. (8)

Let pt =
∑n
i=1 Prob[qi,t ≥ Mi,t], i.e., pt is the expected number of nodes i such that

qi,t ≥Mi,t. Using (8) and (6), we obtain the following bounds:

pt =
n∑
i=1

Prob[qi,t ≥Mi,t] ≥
logSmax∑
j=1

|Bj,t|
2j−1

c · Smax
≥ 1

2c · Smax

logSmax∑
j=0

|Bj,t|2j − |B0,t|

≥ 1
2c · Smax

·
(
Smax

4 − |B0,t|
)
≥ 1

16c

where the last inequality follows from the fact that Smax = 16n and |B0,t| ≤ n. On the other

hand

pt =
n∑
i=1

Prob[qi,t ≥Mi,t] ≤
logSmax∑
j=1

|Bj,t|
2j

c · Smax
≤ 2
c · Smax

·
logSmax∑
j=1

|Bj,t|2j−1

≤ 2
c · Smax

Smax = 2
c
.

Recall that c = 4. It is well known (see e.g. [20]) that given independent events E1, . . . , En
such that x ≤

∑n
i=1 Prob[Ei] ≤ 1

2 , the probability that exactly one of the events E1, . . . , En
is satisfied is at least x(1/4)x. Thus, in our case, the probability that exactly one of

the events qi,t ≥ Mi,t occurs is at least 1
16c (1/4

1/(16c)) ≥ d for d = 1
44 . Let X = |{t ∈

[L] | t is successful}| denote the number of successful “rounds” in [L] for fixed values of

qi,0 and Ai,t for i ∈ [n] and t ∈ [L]. The expected value of X is EX = dL. For the

sake of derandomization, we would like to show that X ≥ 1
2EX = 1

2dL with probability

≥ 1− 1/2−Ω(L).
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Observe that qi,t ≥ Mi,t for Mi,t = L · 2k − t iff i ∈
⋃logSmax
j=k Bj,t. Let us define a

scenario as a fixed sequence of partitions of [n] into groups B0,t, . . . , Bn,t for all t ∈ [L] which

might appear in our setting. There are at most (1 + logSmax)n initial partitions into groups

B0,0, . . . , Bn,0, since each j ∈ [n] is in exactly one block from Bi,0, . . . , Bi,logSmax . Moreover,

each i ∈ [n] can change its group at most twice (increase by one – see Prop. 10). One

can encode such changes of (a node) i ∈ [n] by (at most) two numbers in [L] determining

indices in [L] of (possible) increases of the index of the block at some rounds t1, t2 ∈ [L].
Thus, there are at most (1 + logSmax)n · L2n possible scenarios. For a fixed scenarios, the

success probabilities Prob[|{i | qi,t ≥Mi,t}| = 1] for various rounds t ∈ [L] are independent.

Therefore, we can use Chernoff Bound to estimate the probability that there are less than

dL/2 successful rounds:

Prob[X ≤ dL/2] ≤ Prob[X ≤ (1− 1/2)EX] ≤ e−dL/8.

Now, we would like to estimate the proabability (for a matrix M chosen randomly as described

above) that there are at least dL/2 successful rounds t ∈ [L] for any scenario. By the union

bound, the probability that there exists a scenario with less than dL/2 successful rounds is

at most

e−dL/8 · (1 + logSmax)n · L2n < e−dL/8 · (17n)n · L2n = e−dL/8+n ln(17n)+2n lnL < 1

for each L ≥ L0 such that L0 = O(n logn). Thus, there exists a matrix M which guarantees

dL/2 successful rounds, provided that
∑n
i=1 qi,0 ∈ [m/2,m] as assumed in Case 2. If ρ and

L are such that ρL+ b ≤ dL/2, then
∑n
i=1
∑L
t=1Ai,t ≤ ρL+ b ≤ dL/2 is smaller than

|{t ∈ [L] | qi,t ≥Mi,t for exactlny one i ∈ [n]}| ≥ dL/2.

Thus, given the constants d = 1/44, ρ < d/2, any L ≥ L1 for L1 = O(n logn + b
d/2−ρ ) =

O(n logn+ b) guarantees
∑n
i=1 qi,L ≤

∑n
i=1 qi,0, which finishes the proof of Lemma 9.

5 Conclusions

We investigated what stability guarantees we could get in a system with contention if protocols

have very limited (or no) space to store information inherited from history of computation

and communication. A natural research direction would be to prove tight bound on injection

rates and optimize other measures, such as packet latency. Schedulers could also be studied

in the context of other related models, such as SINR or dependency-graph models. We

introduced a novel class of selectors with thresholds, unlike the previously used binary

selectors/codes – studying their constructiveness in polynomial time and further applicability

is a prospective open direction.
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