
Privatization-Safe Transactional Memories
Artem Khyzha
Tel Aviv University, Tel Aviv, Israel

Hagit Attiya
Technion – Israel Institute of Technology, Haifa, Israel

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

Abstract
Transactional memory (TM) facilitates the development of concurrent applications by letting the
programmer designate certain code blocks as atomic. Programmers using a TM often would like to
access the same data both inside and outside transactions, and would prefer their programs to have
a strongly atomic semantics, which allows transactions to be viewed as executing atomically with
respect to non-transactional accesses. Since guaranteeing such semantics for arbitrary programs is
prohibitively expensive, researchers have suggested guaranteeing it only for certain data-race free
(DRF) programs, particularly those that follow the privatization idiom: from some point on, threads
agree that a given object can be accessed non-transactionally.

In this paper we show that a variant of Transactional DRF (TDRF) by Dalessandro et al. is
appropriate for a class of privatization-safe TMs, which allow using privatization idioms. We prove
that, if such a TM satisfies a condition we call privatization-safe opacity and a program using the
TM is TDRF under strongly atomic semantics, then the program indeed has such semantics. We
also present a method for proving privatization-safe opacity that reduces proving this generalization
to proving the usual opacity, and apply the method to a TM based on two-phase locking and a
privatization-safe version of TL2. Finally, we establish the inherent cost of privatization-safety: we
prove that a TM cannot be progressive and have invisible reads if it guarantees strongly atomic
semantics for TDRF programs.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Program semantics; Software and its engineering → Software verification

Keywords and phrases Transactional memory, privatization, observational refinement

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.24

Related Version An extended version is available at https://arxiv.org/abs/1908.03179.

Funding This research was funded in part by the Israel Science Foundation (grants 2005/17, 1749/14
and 380/18) and the European Research Council (Starting Grant RACCOON).

1 Introduction

Transactional memory (TM) facilitates the development of concurrent applications by letting
the programmer designate certain code blocks as atomic [23]. TM allows developing a
program and reasoning about its correctness as if each atomic block executes as a transaction
– atomically and without interleaving with other blocks – even though in reality the blocks
can be executed concurrently. A TM can be implemented in hardware [24, 29], software [34]
or a combination of both [13, 28].

Often programmers using a TM would like to access the same data both inside and
outside transactions. This may be desirable to avoid performance overheads of transactional
accesses, to support legacy code, or for explicit memory deallocation. One typical pattern
is privatization [31, 35], illustrated in Figure 1. There the atomic blocks return a value
signifying whether the transaction committed or aborted. In the program, an object x is

© Artem Khyzha, Hagit Attiya, and Alexey Gotsman;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2019.24
https://arxiv.org/abs/1908.03179
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Privatization-Safe Transactional Memories

{ priv = false ∧ x = 0 }
l1 = atomic {
priv = true; } //T1

if (l1 == committed)
x = 1; //n

atomic {
if (!priv)
x = 42;

} //T2

{ l1 = committed =⇒ x = 1 }

Figure 1 Privatization.

{ priv = true ∧ x = l = 0 }
x = 42; //n

l1 = atomic {
priv = false;

} //T1

l2 = atomic {
if (!priv)
l = x;

} // T2

{ l2 = committed ∧ l 6= 0 =⇒ l = 42 }

Figure 2 Publication.

{ x = y = 0 }
atomic {
x = 1;
y = 2;

} //T

l1 = x; //n1

l2 = y; //n2

{ l1 = 1 =⇒ l2 = 2 }

Figure 3 Data race.

guarded by a flag priv, showing whether the object should be accessed transactionally (false)
or non-transactionally (true). The left-hand-side thread first tries to set the flag inside
transaction T1, thereby privatizing x. If successful, it then accesses x non-transactionally.
A concurrent transaction T2 in the right-hand-side thread checks the flag priv prior to
accessing x, to avoid simultaneous transactional and non-transactional access to the object.
We expect the postcondition shown to hold: if privatization is successful, at the end of
the program x should store 1, not 42. The opposite idiom is publication, illustrated in
Figure 2. The left-hand-side thread writes to x non-transactionally and then clears the flag
priv inside transaction T1, thereby publishing x. The right-hand-side thread tests the flag
inside transaction T2, and if it is cleared, reads x. Again, we expect the postcondition to
hold: if the right-hand-side thread sees the write to the flag, it should also see the write to x.
The two idioms can be combined: the programmer may privatize an object, then access it
non-transactionally, and finally publish it back for transactional access.

Ideally, programmers mixing transactional and non-transactional accesses to objects
would like their programs to have strongly atomic semantics [8], where transactions can be
viewed as executing atomically also with respect to non-transactional accesses, i.e., without
interleaving with them. This is equivalent to considering every non-transactional access as a
single-instruction transaction. For example, the program in Figure 3 under strongly atomic
semantics can only produce executions where each of the non-transactional accesses n1 and
n2 executes either before or after the transaction T , so that the postcondition in Figure 3
always holds. Unfortunately, providing such semantics in software requires instrumenting
non-transactional accesses with additional instructions for maintaining TM metadata [19].
This undermines scalability and makes it difficult to reuse legacy code. Since most existing
TMs are either software-based or rely on a software fall-back, they do not perform such
instrumentation and, hence, provide weaker atomicity guarantees. For example, they may
allow the program in Figure 3 to execute non-transactional accesses n1 and n2 between
transactional writes to x and y and, thus, observe an intermediate state of the transaction,
e.g., x = 1 and y = 0, violating the postcondition in Figure 3.

Researchers have suggested resolving the tension between strong TM semantics and
performance by guaranteeing strongly atomic semantics only to data-race free (DRF) programs
– informally, programs without concurrent transactional and non-transactional accesses to
the same data [4, 5, 10, 11, 31, 33, 35]. For example, we do not have to guarantee strongly
atomic semantics for the program in Figure 3, which has such concurrent accesses to x and y.
On the other hand, the programs in Figure 1 and Figure 2 should be guaranteed strongly
atomic semantics, since at any point of time, an object is accessed either only transactionally
or only non-transactionally. Despite the intuitive simplicity of this idea, coming up with a
precise DRF definition is nontrivial: early on there were multiple competing proposals for the
notion of DRF, and it was unclear how to select among them [4, 10, 11, 25, 30]. To address
this, we have recently formalized the requirements on an appropriate notion of DRF using
observational refinement [27]: a TM needs to guarantee that, if a program is DRF under

A. Khyzha, H. Attiya, and A. Gotsman 24:3

the strongly atomic semantics (formalized as transactional sequential consistency [11]), then
all its executions are observationally equivalent to strongly atomic ones. This Fundamental
Property allows the programmer to never reason about weakly atomic semantics at all, even
when checking DRF.

Different TMs have different requirements on mixing transactional and non-transactional
accesses needed to validate the Fundamental Property. Privatization-safe TMs, such as
lock-based TMs [15, 21] and NOrec [12], allow the programmer to ensure the absence
of concurrent transactional and non-transactional accesses by synchronizing them using
transactional operations. Then the program in Figure 1, which synchronizes accesses to x
using priv, is guaranteed strongly atomic semantics as is. Privatization-unsafe TMs, such as
TL2 [14] and TinySTM [16], require the programmer to insert additional synchronization, e.g.,
via transactional fences [31, 35], which block until all the transactions that were active when
the fence was invoked complete. For example, such TMs do not guarantee strongly atomic
semantics to the program in Figure 1 unless the transaction T1 is immediately followed by a
transactional fence. This is because TMs such as TL2 execute transactions optimistically,
flushing their writes to memory only on commit. Then, in the absence of a fence, the
transaction T1 can privatize x and n can modify it after T2 started committing, but before
its write to x reached the memory, so that T2’s write subsequently overwrites n’s write and
violates the postcondition. TMs that make transactional updates in-place and undo them on
abort are subject to a similar problem.

Privatization-safe TMs provide a simpler programming model, since they do not require
the programmer to select where to place fences. However, the programmer still needs to avoid
programs of the kind shown in Figure 3, which would lead the TM to violate strong atomicity.
In this paper we show that a variant of transactional DRF (TDRF) previously proposed by
Dalessandro et al. [11] is appropriate to formalize the programmer’s obligations. To this
end, we show that this variant of TDRF validates the Fundamental Property, provided the
TM satisfies a generalization of opacity [20, 21], which we call privatization-safe opacity. To
formulate this kind of opacity, we generalize TDRF to arbitrary TM histories, not just strongly
atomic ones. These results complement our previous proposal of DRF for privatization-unsafe
TMs, which considers a more low-level programming model requiring fence placements [27].

We furthermore present a method for proving privatization-safe opacity and apply it
to a TM based on two-phase locking [21] and a privatization-safe version of TL2 [14] that
executes a fence at the end of each transaction. A key feature of our method is that it reduces
proving privatization-safe opacity to proving the ordinary opacity of the TM assuming no
mixed transactional/non-transactional accesses. This allows us to reuse the previous proofs
of opacity of the two-phase locking TM [21] and TL2 [27].

Finally, our framework allows proving an interesting result about the inherent cost of
privatization-safety. We prove that a TM that provides strongly atomic semantics to TDRF
programs cannot be progressive and have invisible reads: it cannot ensure that transactions
always complete when running solo and also that transactions reading objects do not prevent
transactions writing to them from committing. This result significantly simplifies and
strengthens a lower bound by Attiya and Hillel [7], which did not use a formal DRF notion.

2 Programming Language and Strongly Atomic Semantics

Language syntax. We formalize our results for a simple programming language with mixed
transactional and non-transactional accesses. A program P = C1 ‖ . . . ‖ CN in our language
is a parallel composition of commands Ct executed by different threads t ∈ ThreadID =

DISC 2019

24:4 Privatization-Safe Transactional Memories

{1, . . . , N}. Every thread t ∈ ThreadID has a set of local variables l ∈ LVart, which only it
can access; for simplicity, we assume that these are integer-valued. Threads have access to
a transactional memory (TM), which manages a fixed collection of shared register objects
x ∈ Reg. The syntax of commands C ∈ Com is as follows:

C ::= c | C ; C | if (b) then C else C | while (b) do C

| l = atomic {C} | l = x.read() | x.write(e)

where b and e denote Boolean, respectively, integer expressions over local variables and
constants. The language includes primitive commands c ∈ PCom, which operate on local
variables, and standard control-flow constructs. An atomic block l = atomic {C} executes C
as a transaction, which the TM can commit or abort. The system’s decision is returned in the
local variable l, which receives a distinguished value committed or aborted. We do not allow
programs to abort a transaction explicitly and forbid nested atomic blocks. Threads can
invoke two methods on a register x: x.read() returns the current value of x, and x.write(e)
sets it to e. These methods may be invoked both inside and outside atomic blocks.

Model of computations. The semantics of our programming language is defined in terms
of traces – certain finite sequences of actions, each describing a single computation step (in
this paper we consider only finite computations). Let ActionId be a set of action identifiers.
Actions are of two kinds. A primitive action denotes the execution of a primitive command
and is of the form (a, t, c), where a ∈ ActionId, t ∈ ThreadID and c ∈ PCom. An interface
action has one of the following forms (where x ∈ Reg and v ∈ Z):

Request actions Matching response actions

(a, t, begintx) (a, t, ok) | (a, t, aborted)
(a, t, trycommit) (a, t, committed) | (a, t, aborted)
(a, t, write(x, v)) (a, t, ret(⊥)) | (a, t, aborted)
(a, t, read(x)) (a, t, ret(v)) | (a, t, aborted)

Interface actions usually denote the control flow of a thread t crossing the boundary
between the program and the TM: request actions correspond to the control being transferred
from the former to the latter, and response actions, the other way around. A begintx action
is generated upon entering an atomic block, and a trycommit action when a transaction
tries to commit upon exiting an atomic block. The request actions write(x, v) and read(x)
denote invocations of the write, respectively, read methods of register x; a write action is
annotated with the value v written. The response actions ret(⊥) and ret(v) denote the return
from invocations of write, respectively, read methods of a register; the latter is annotated
with the value v read. The TM may abort a transaction at any point when it is in control;
this is recorded by an aborted response action. To simplify notation, we reuse the interface
actions for reads and writes to denote accesses outside transactions.

A trace τ is a finite sequence of actions satisfying the expected well-formedness conditions,
e.g., that request and response actions are properly matched, and so are actions denoting
the beginning and the end of transactions (we defer the formal definition to [26, §A]). A
transaction T is a nonempty trace such that it contains actions by the same thread, begins
with a begintx action and only its last action can be a committed or an aborted action. A
transaction T is: committed if it ends with a committed action, aborted if it ends with aborted,
commit-pending if it ends with trycommit, and live, in all other cases. A transaction T is
in a trace τ if T is a subsequence of τ and no longer transaction is. We refer to interface
actions in a trace outside of a transaction as non-transactional actions. We call a matching
request/response pair of a read or a write a non-transactional access (ranged over by n).

A. Khyzha, H. Attiya, and A. Gotsman 24:5

A history is a trace containing only interface actions (thus, omitting all accesses to local
variables); we use H,S to range over histories, and H(i) to refer to the i-th action in H.
We also use history(τ) to denote a projection of a trace to interface actions. Since histories
fully capture the possible interactions between a TM and a client program, we often conflate
the notion of a TM and the set of histories it produces. Hence, a transactional memory H
is a prefix-closed set of histories. We assume that a TM always allows a client program to
execute a request and, hence, require H to be closed under appending any request action
to its histories, provided that the latter remain well-formed. Note that histories include
actions corresponding to non-transactional accesses, even though these may not be directly
managed by the TM implementation. This is needed to account for changes to registers
performed by such actions when defining the TM semantics: e.g., in the case when a register
is privatized, modified non-transactionally and then published back for transactional access.
Of course, a well-formed TM semantics should not impose restrictions on the placement of
non-transactional actions, since these are under the control of the program.

Strongly atomic semantics. The semantics of a program P is given by the set JP K(H) of
traces it produces when executed with a TM H. Its formal definition follows the intuitive
meaning of commands, and we defer it to [26, §A]. Our semantics assumes that the underlying
memory is sequentially consistent, which allows us to focus on the key issues specific to TM
(we leave handling weak memory for future work, discussed in §9). We use the semantics
instantiated with one particular TM to define the strongly atomic semantics of programs [8],
which is equivalent to transactional sequential consistency [11]. Following [6], we use an
atomic TM Hatomic for this purpose: the strongly atomic semantics of a program P is given by
the set of traces JP K(Hatomic). The TMHatomic contains only histories that are non-interleaved,
i.e., where actions by one transaction do not overlap with actions of another transaction or
of non-transactional accesses. Out of such histories, Hatomic contains only histories following
the intuitive atomic semantics of transactions: every response action of a read(x) returns
the value v in the last preceding write(x, v) action that is not located in an aborted or live
transaction different from the one of the read; if there is no such write, the read returns the
initial value vinit. We defer a formal definition of Hatomic to [26, §A].

3 Transactional Data-Race Freedom

We now formalize in our framework a variant of transactional data-race freedom (TDRF)
of Dalessandro et al. [11]. According to this notion, a data race happens between a pair of
conflicting actions, as defined below.

I Definition 1. A non-transactional request action α and a transactional request action α′
conflict if α and α′ are executed by different threads, they are read or write actions on the
same register, and at least one of them is a write.

As is standard, we formalize when conflicting actions form a data race using a happens-
before relation hb(H) on actions in a history H. We first define the execution order of H as
follows: α <H α′ iff for some i and j, α = H(i), α′ = H(j) and i < j.

I Definition 2. The happens-before relation of a history H ∈ Hatomic is
hb(H) , (po(H) ∪ ef(H) ∪ cl(H))+, where

per-thread order po(H): α <po(H) α
′ iff α <H α′ and α, α′ are by the same thread;

effect order ef(H): α <ef(H) α
′ iff α <H α′ and α, α′ are by different transactions;

client order cl(H): α <cl(H) α
′ iff α <H α′ and α, α′ are non-transactional in H.

DISC 2019

24:6 Privatization-Safe Transactional Memories

I Definition 3. A history H ∈ Hatomic is transactional data-race free, written TDRF(H), if
every pair of conflicting actions in it is ordered by hb(H) one way or another. A program P

is transactional data-race free, written TDRF(P), if ∀τ ∈ JP K(Hatomic).TDRF(history(τ)).

Components of happens-before used to define TDRF describe various forms of synchro-
nization available in our programming language. First, actions by the same thread cannot be
concurrent and thus we let po(H) ⊆ hb(H). Second, privatization-safe TMs provide synchro-
nization between transactions, which follows their order in non-interleaved histories of an
atomic TM considered in the definition of TDRF on programs. Thus, we let ef(H) ⊆ hb(H).
Finally, we let cl(H) ⊆ hb(H), because in this paper we assume a sequentially consistent
memory model and, hence, do not consider pairs of conflicting non-transactional accesses as
races. This is the key difference between our variant of TDRF and the original definition by
Dalessandro et al. [11], which does not include the client order into happens-before. Our
variant of TDRF imposes fewer obligations on the programmer: as we show by establishing
the Fundamental Property for our variant of TDRF (§5), under sequentially consistent
memory races on non-transactional accesses are harmless for privatization-safety.

To illustrate the TDRF definition, we show that the program in Figure 1 is TDRF by
considering the histories it produces with the atomic TM (the program in Figure 2 can be
shown TDRF analogously). The possible conflicts are between the accesses to x in n and T2.
For a conflict to occur, T2 has to read false from priv; then T2 has to execute before T1,
yielding a history of the form T2T1n. In this history T2 precedes T1 in the effect order and T1
precedes n in the per-thread order, meaning that hb(H) orders the conflict between T2 and
n. Similarly, in [26, §B] we show that programs following a proxy privatization pattern [37],
where one thread privatizes an object for another thread, are also TDRF. On the other hand,
the program in Figure 3 is not TDRF, since in histories it produces with the atomic TM,
the happens-before never relates T with n1 and n2. Finally, the inclusion of cl(H) ⊆ hb(H)
allows us to consider DRF those programs that privatize an object by agreeing on its status
outside transactions (“partitioning by consensus” in [35]); we provide an example in [26, §B].

4 Privatization-Safe Opacity

We now present our first contribution – a generalization of opacity of a TM H [20, 21] that
guarantees that the TM provides strongly atomic semantics to TDRF programs. We call this
generalization privatization-safe opacity. Its definition requires that a history H of a TM H
can be matched by a history S of the atomic TM Hatomic that “looks similar” to H from the
perspective of the program. The similarity is formalized by a relation H v S, which requires
S to be a permutation of H preserving its per-thread and client orders.

I Definition 4. A history H1 corresponds to a history H2, written H1 v H2, if there is a
bijection θ : {1, . . . , |H1|} → {1, . . . , |H2|} such that ∀i.H1(i) = H2(θ(i)) and

∀i, j. i < j ∧H1(i) <po(H1)∪cl(H1) H2(j) =⇒ θ(i) < θ(j).

The above relation differs in several ways from the one used to define the ordinary opacity.
First, unlike in the ordinary opacity, our histories include non-transactional actions, because
these can affect the behavior of the TM. Second, instead of preserving cl(H1) in Definition 4,
the ordinary opacity requires preserving the following real-time order rt(H1) on actions:
α <rt(H) α

′ iff α ∈ {(_,_, committed), (_,_, aborted)}, α′ = (_,_, begintx) and α <H α′.
This orders non-overlapping transactions, with the duration of a transaction determined by
the interval from its begintx action to the corresponding committed or aborted action (or to
the end of the history if there is none). However, preserving real-time order is unnecessary if
all means of communication between program threads are reflected in histories [17].

A. Khyzha, H. Attiya, and A. Gotsman 24:7

We next lift privatization-safe opacity to TMs. A straightforward definition, mirroring
the ordinary opacity, would require any history of the TM H to have a matching history of
the atomic TM Hatomic. However, such a requirement would be too strong for our setting:
since the TM has no control over non-transactional actions of its clients, histories in H may
be produced by racy programs, and we do not want to require the TM to guarantee strong
atomicity in such cases. For example, even though a simple TM based on a single global lock
is privatization-safe, it has a history produced by the program from Figure 3 that does not
have a matching history of Hatomic (§1). Hence, our definition of privatization-safe opacity
requires only histories produced by TDRF programs to have justifications in Hatomic. To
express this restriction, we generalize data-race freedom to be defined over an arbitrary
concurrent history H, not just one produced by Hatomic. The new DRF requires that every
history of the atomic TM matching H according to the opacity relation be TDRF.

I Definition 5. A history H ∈ H is concurrent data-race free, written CDRF(H), if ∀S ∈
Hatomic. H v S =⇒ TDRF(S). Let H|CDRF = {H ∈ H | CDRF(H)}. A program P is concur-
rent data-race free with a TM H, written CDRF(P,H), if ∀τ ∈ JP K(H).CDRF(history(τ)).

I Definition 6. A TM H is privatization-safe opaque, written H|CDRF v Hatomic, if for every
history H ∈ H|CDRF there exists a history S ∈ Hatomic such that H v S holds.

The following lemma (proved in [26, §C]) justifies using CDRF as a generalization of TDRF
to concurrent histories by establishing that TDRF programs indeed produce CDRF histories.

I Lemma 7. For every program P and a TM system H, TDRF(P) implies CDRF(P,H).

5 The Fundamental Property

We next formalize the Fundamental Property of TDRF using observational refinement [6]: if
a program is TDRF under the atomic TM Hatomic, then any trace of the program under a
privatization-safe opaque TM H has an observationally equivalent trace under Hatomic.

I Definition 8. Traces τ and τ ′ are observationally equivalent, denoted by τ ∼ τ ′, if
∀t. τ |t = τ ′|t and τ |nontx = τ ′|nontx, where τ |nontx denotes the subsequence of τ containing all
actions from non-transactional accesses.

Equivalent traces are considered indistinguishable to the user. In particular, the sequences
of non-transactional accesses in equivalent traces (which usually include all I/O) satisfy the
same linear-time temporal properties. We lift the equivalence to sets of traces as follows.

I Definition 9. A set of traces T observationally refines a set of traces T ′, written T � T ′,
if ∀τ ∈ T .∃τ ′ ∈ T ′. τ ∼ τ ′.

I Theorem 10 (Fundamental Property). If H is a TM such that H|CDRF v Hatomic and P is
a program such that TDRF(P), then JP K(H) � JP K(Hatomic).

Theorem 10 establishes a contract between the programmer and the TM implementors. The
TM implementor has to ensure privatization-safe opacity of the TM assuming the program
is DRF: H|CDRF v Hatomic. The programmer has to ensure the DRF of the program under
strongly atomic semantics: TDRF(P). This contract lets the programmer check properties of
a program assuming strongly atomic semantics (JP K(Hatomic)) and get the guarantee that the
properties hold when the program uses the actual TM implementation (JP K(H)). Theorem 10
follows from Lemma 7 and the next lemma, which is an adaptation of a result from [6].

I Lemma 11. If H is a TM such that H|CDRF v Hatomic, then ∀P.CDRF(P,H) =⇒
JP K(H) � JP K(Hatomic).

DISC 2019

24:8 Privatization-Safe Transactional Memories

6 Proving Privatization-Safe Opacity

We now develop a method that reduces proving privatization-safe opacity (H|CDRF v Hatomic)
to proving the ordinary opacity. The method builds on a graph characterization of opacity
by Guerraoui and Kapalka [21], which was proposed for proving opacity of TMs that do not
allow mixed transactional/non-transactional accesses to the same data. The characterization
allows checking opacity of a history H by checking two properties: consistency of the history,
denoted cons(H), and the acyclicity of a certain opacity graph, which we define in the
following. Consistency is a basic well-formedness property of a history ensuring the following.
If a transaction T in H reads a value of a register x and writes to it before, then T reads the
latest value it writes. If T reads a value of x and does not write to it before, then it reads
some value written non-transactionally or by a committed or commit-pending transaction
(or the initial value, when everything else fails). Consistency also ensures that only the last
write to x by a transaction is read from. We define consistency formally in [26, §D] and focus
here on defining opacity graphs.

The vertexes in these graphs include transactions and non-transactional accesses in H.
The intention of the vis predicate below is to mark those vertexes that have taken effect,
including commit-pending transactions of this kind. The other components, intuitively,
constrain the order in which the vertexes should appear in the atomic history.

I Definition 12. The opacity graph of a history H is a tuple
G = (V, vis,WR,WW,RW,PO,CL), where:
V is the set of graph vertexes, i.e., all transactions and non-transactional accesses from
H (ranged over by ν).
vis ⊆ V is a visibility predicate, which holds of all non-transactional accesses and
committed transactions and does not hold of all aborted and live transactions.
WR : Reg→ 2V×V specifies per-register read-dependency relations on vertexes, such that

For each read dependency ν WRx−−−→ν′, we have that ν 6= ν′, ν contains (_,_,write(x, v)),
and ν′ contains a request (_,_, read(x)) and a matching response (_,_, ret(v)).
Each vertex that reads x has at most one corresponding read dependency:
∀ν, ν′, ν′′, x. ν WRx−−−→ ν′ ∧ ν′′ WRx−−−→ ν =⇒ ν = ν′′.
Each vertex that is read from is visible: ∀ν, x. ν WRx−−−→_ =⇒ vis(ν).

Informally, ν WRx−−−→ ν′ means that ν′ reads what ν wrote to x.
WW : Reg→ 2V×V specifies per-register write-dependency relations, such that for each
x ∈ Reg, WWx is an irreflexive total order on {ν ∈ V | vis(ν) ∧ (_,_,write(x,_)) ∈ ν}.
Informally, ν WWx−−−→ ν′ means that ν′ overwrites what ν wrote to x.
RW ∈ Reg→ 2V×V specifies per-register anti-dependency relations:

ν
RWx−−−→ ν′ ⇐⇒ ν 6= ν′ ∧ ((∃ν′′. ν′′ WWx−−−→ ν′ ∧ ν′′ WRx−−−→ ν) ∨

(vis(ν′) ∧ (_,_,write(x,_)) ∈ ν′ ∧ (_,_, ret(x, vinit)) ∈ ν)).

Informally, ν RWx−−−→ ν′ means that ν′ overwrites the write to x that ν previously read (the
initial value of x is overwritten by any write to x).
PO,CL ∈ 2V×V are the per-thread and client orders lifted to pairs of graph vertexes: e.g.,
ν

PO(H)−−−−→ ν′ ⇐⇒ ∃α ∈ ν, α′ ∈ ν′. α <po(H) α
′.

A. Khyzha, H. Attiya, and A. Gotsman 24:9

We let Graph(H) denote the set of all opacity graphs of H. We say that a graph G is
acyclic, written acyclic(G), if its edges do not form a directed cycle. We also refer to histories
resulting from topological sortings of vertexes in a graph G as its linearizations and denote
their set by lins(G). The next lemma shows that we can check privatization-safe opacity
of a history by checking its consistency and the acyclicity of its opacity graph, with any
linearization of the graph yielding a matching atomic history.

I Lemma 13. ∀H. (cons(H) ∧ ∃G ∈ Graph(H). acyclic(G)) =⇒ lins(G) ⊆ Hatomic.

The lemma is proven analogously to Lemma 6.4 in [27, §B.2]. It implies the following theorem,
which gives a criterion for the privatization-safe opacity of a TM H.

I Theorem 14. H v Hatomic holds if ∀H ∈ H. cons(H) ∧ ∃G ∈ Graph(H). acyclic(G).

In comparison to the graph characterization of the ordinary opacity [21], ours is more
complex: the graph includes non-transactional accesses and the acyclicity check has to take
into account paths involving them. We now formulate lemmas that simplify reasoning about
non-transactional operations: they allow proving the privatization-safe opacity of a TM
using Theorem 14 with only small adjustments to a proof of its ordinary opacity using
graph characterization. The latter characterization includes only transactions as nodes of
the graph, but additionally considers paths including the lifting of the real-time order from
§4 to transactions: for a history H, we let RT(H) be the relation between transactions in
H such that T <RT(H) T

′ iff for some α ∈ T and α′ ∈ T we have α <rt(H) α
′. We also let

DEP denote any edge in a given graph G, and we let txDEP denote an edge between two
transactions.

The following lemma exploits CDRF to show that, for every path between two transactions
in an acyclic opacity graph, there is another path replacing edges involving non-transactional
accesses by real-time order edges or transactional dependencies.

I Lemma 15. Consider an acyclic opacity graph G = (V, vis,WR,WW,RW,PO,CL) of
a consistent CDRF history H. For any two transactions T and T ′, if T DEP−−→∗ T ′, then
T

RT∪txDEP−−−−−−→∗ T ′.

The next lemma exploits CDRF to show that, for every path between a transaction and a
non-transactional access in an acyclic opacity graph, there is another path where per-thread
order is the only kind of an edge between transactions and non-transactional accesses.

I Lemma 16. Consider an acyclic opacity graph G = (V, vis,WR,WW,RW,PO,CL) of a
CDRF history H. For any transaction T and non-transactional access n:

if T DEP−−→∗ n, then there are T ′ and n′ such that T RT∪txDEP−−−−−−→∗ T ′ PO−−→ n′
CL−→∗ n;

if n DEP−−→∗ T , then there are T ′ and n′ such that n CL−→∗ n′ PO−−→ T ′
RT∪txDEP−−−−−−→∗ T .

Our method for proving the privatization-safe opacity of a TM (which we illustrate in §7)
uses Lemmas 15 and 16 to reduce proving the acyclicity of an opacity graph to proving the
absence of cycles in the projection of the graph to transactions, enriched with real-time order
edges. The simplified acyclicity check is exactly the one required in the graph characterization
of the ordinary opacity [21], allowing us to reuse existing proofs.

In the following we prove Lemmas 15 and 16. We show the existence of the paths required
in the lemmas by using CDRF to eliminate WR/WW/RW-dependencies between transactions
and non-transactional accesses. Each of the dependencies to be eliminated corresponds to a
conflict in a matching atomic history, which CDRF guarantees to relate by happens-before.
The next lemma exploits this observation.

DISC 2019

24:10 Privatization-Safe Transactional Memories

I Lemma 17. Consider an acyclic opacity graph G = (V, vis,WR,WW,RW,PO,CL) of a
consistent CDRF history H. For any transaction T and non-transactional access n:
1. if T DEP−−→ n, then there are T ′ and n′ such that T DEP−−→∗ T ′ PO−−→ n′

CL−→∗ n;
2. if n DEP−−→ T , then there are T ′ and n′ such that n CL−→∗ n′ PO−−→ T ′

DEP−−→∗ T .

For example, consider an execution of the program in Figure 1 where T2 reads false
from priv and writes to x before n does. The corresponding acyclic graph contains both
T2

WWx−−−→ n and T2
RWpriv−−−−→ T1

PO−−→ n. To prove Lemma 17, we lift <po(H), <ef(H), <cl(H) and
<hb(H) from Definition 2 to vertexes of the graph as expected, writing <PO(H), <EF(H),
<CL(H) and <HB(H) for the resulting relations. We also write ≤ for their reflexive closure.
We rely on the following easy result (proved in [26, §D]).

I Proposition 18. In a TDRF history H, for any T and n we have:
if T <HB(H) n, then there are T ′ and n′ such that T ≤EF(H) T

′ <PO(H) n
′ ≤CL(H) n;

if n <HB(H) T , then there are T ′ and n′ such that n ≤CL(H) n
′ <PO(H) T

′ ≤EF(H) T .

Proof of Lemma 17. We only prove part 1, as part 2 can be proven analogously. Assume
T

DEP−−→ n. If T PO−−→ n, then T DEP−−→∗ T PO−−→ n
CL−→∗ n, which trivially concludes the proof. In

the following, we consider the remaining case when ¬(T PO−−→n) and T WR∪RW∪WW−−−−−−−−−→n, so that
T and n contain conflicting actions. Let A denote the following set of pairs (T ′, n′) of a
transaction and a non-transactional access:

A , {(T ′, n′) | ∃L ∈ lins(G). T ≤EF(L) T
′ <PO(L) n

′ ≤CL(L) n}.

By Definition 12, for any (T ′, n′) ∈ A we have T ′ PO−−→ n′
CL−→∗ n. It suffices to show that

there is T ′ such that T DEP−−→∗ T ′ and (T ′,_) ∈ A. Proceeding by contradiction, let us
assume that this is not the case: for every (T ′,_) ∈ A, there is no edge T DEP−−→∗ T ′ in G.
Then extending the graph with edges {T ′ DEP−−→ T | (T ′,_) ∈ A} will not introduce a cycle.
Hence, there exists a linearization L ∈ lins(G) in which every (T ′,_) ∈ A occurs before T :
∀T ′. (T ′,_) ∈ A =⇒ T ′ <EF(L) T .

Since, the history H is consistent and has an acyclic opacity graph G, by Lemma 13 we
get L ∈ lins(G) ⊆ Hatomic. Since H is CDRF, the conflicting pair T and n are ordered by
HB(L). Moreover, since T occurs before n in L and HB(L) is consistent with the execution
order of L, we have T <HB(L) n. From this by Proposition 18, for some T ′′ and n′′ we
have T ≤EF(L) T

′′ <PO(L) n
′′ ≤CL(L) n. Hence, T ≤EF(L) T

′′ and (T ′′, n′′) ∈ A. But by the
construction of L we have T ′′ <EF(L) T , which contradicts the definition of ef as a total order
on transactions. This contradiction demonstrates the required. J

The following result leverages Lemma 17 to show that, for every path between two
transactions in an acyclic opacity graph, there is another path replacing some edges involving
non-transactional accesses by real-time order edges or transactional dependencies.

I Lemma 19. Consider an acyclic opacity graph G = (V, vis,WR,WW,RW,PO,CL) of a
consistent CDRF history H. For any two transactions T and T ′, if T DEP−−→+ T ′, then there
are two transactions T1 and T2 such that T DEP−−→∗ T1

txDEP∪RT−−−−−−→ T2
DEP−−→∗ T ′.

Proof. Assume T DEP−−→+ T ′ and consider the corresponding path in the graph G. If there are
no non-transactional accesses on this path, then T txDEP−−−−→+ T ′, so the lemma holds trivially.

Assume now that there are non-transactional accesses on the path corresponding to
T

DEP−−→+ T ′. Let n and n′ be the first and the last such accesses respectively, and also let
T ′1 (T ′2) be the transaction immediately preceding n (following n′) on the path. Since G

A. Khyzha, H. Attiya, and A. Gotsman 24:11

is acyclic and CL relates every pair of non-transactional accesses, we must have n CL−→∗ n′.
Then T DEP−−→∗ T ′1

DEP−−→ n
CL−→∗ n′ DEP−−→ T ′2

DEP−−→∗ T ′. Applying Lemma 17(1) to T ′1
DEP−−→ n and

Lemma 17(2) to n′ DEP−−→ T ′2, we get that there are T1, n1, T2 and n2 such that:

T
DEP−−→∗ T ′1

DEP−−→∗ T1
PO−−→ n1

CL−→∗ n CL−→∗ n′ CL−→ n2
PO−−→ T2

DEP−−→∗ T ′2
DEP−−→∗ T ′.

Then T DEP−−→∗ T1
PO−−→ n1

CL−→∗ n2
PO−−→ T2

DEP−−→∗ T ′. By Definition 12 of PO and CL, T1 ends
before T2 starts, so that T1

RT−−→ T2. Then T
DEP−−→∗ T1

RT−−→ T2
DEP−−→∗ T ′, as required. J

Proof of Lemma 15. To prove the lemma, we iteratively construct a path inG demonstrating
that T RT∪txDEP−−−−−−→∗ T ′. At the k-th iteration we construct a sequence πk of transactions
T0, T

′
0, T1, T

′
1, . . . , Tk, T

′
k ∈ V such that:

T0 = T , T ′k = T ′, and
T0

DEP−−→∗ T ′0
RT∪txDEP−−−−−−→ T1

DEP−−→∗ T ′1
RT∪txDEP−−−−−−→ . . .

RT∪txDEP−−−−−−→ Tk
DEP−−→∗ T ′k.

We start the construction with a sequence π0 = T, T ′, which satisfies the above conditions
because T DEP−−→∗ T ′. We stop the construction once we get a sequence πk such that Ti = T ′i
for each i = 0..k: in this case the sequence yields a path of the required form. Otherwise, we
construct πk+1 from πk as follows. We choose any two transactions Ti and T ′i in πk such that
Ti 6= T ′i and, hence, Ti

DEP−−→+ T ′i . By Lemma 19, there are T ′′i and T ′′′i such that Ti
DEP−−→∗

T ′′i
txDEP∪RT−−−−−−→ T ′′′i

DEP−−→∗ T ′i . Then we let πk+1 = T0, T
′
0, . . . , Ti, T

′′
i , T

′′′
i , T ′i , . . . , Tk, T

′
k.

Since G is acyclic, in any πk the only transactions that can coincide are some consecutive
Ti and T ′i . Thus, πk contains at least k+1 distinct transactions. But then our transformation
has to stop after at most n steps, where n is the number of transactions in G. J

Proof of Lemma 16. We only prove part 1, as part 2 can be proven analogously. Assume
T

DEP−−→∗ n. Then there are T ′′ and n′′ such that T DEP−−→∗ T ′′ DEP−−→ n′′
DEP−−→∗ n. By Lemma 17,

there are T ′ and n′ such that T DEP−−→∗ T ′′ DEP−−→∗ T ′ PO−−→ n′
CL−→∗ n′′ CL−→∗ n. Then T

DEP−−→∗
T ′

PO−−→ n′
CL−→∗ n. By Lemma 15, T RT∪txDEP−−−−−−→∗ T ′, implying the required. J

As we show in [26, §D], the observations in the proofs of the Lemmas 15 and 16 additionally
let us establish the following interesting theorem, giving an equivalent formulation of CDRF
in terms of dependencies between transactions.

I Theorem 20. Given a consistent history H, CDRF(H) holds if and only if in each acyclic
opacity graph G = (V, vis,WR,WW,RW,PO,CL) ∈ Graph(H) there is a path over edges from
PO ∪ CL ∪ txDEP ∪ RT(H) between every pair of vertexes containing conflicting actions.

7 Case Study: FencedTL2

In this section we illustrate how Lemmas 15 and 16 enable simple proofs of privatization-safe
opacity using an example of a privatization-safe version of TL2 [14]. We give only the key
parts of the proof and defer details to [26, §E]. There we also give a proof of privatization-safe
opacity of a TM based on two-phase locking [21], which is privatization-safe.

As we noted in §1, the TL2 algorithm by itself is not privatization-safe. The reason is
that TL2 executes transactions optimistically, buffering their writes, and flushes them to
memory only on commit. Thus, in the example in Figure 1, it is possible for the transaction
T1 to privatize x and for n to modify it after T2 started committing, but before its write to x
reached the memory, so that T2’s write subsequently overwrites n’s write and violates the

DISC 2019

24:12 Privatization-Safe Transactional Memories

postcondition. We can make TL2 privatization-safe by modifying its implementation so that
it executes a transactional fence [31, 35] at the end of every transaction, an implementation
we call FencedTL2. The fence has a semantics similar to Read-Copy-Update (RCU) [32]: it
blocks until all the concurrent transactions that were active when the fence was invoked
complete, by either committing or aborting. For instance, in the example in Figure 1
executing a transactional fence after T1 would block the thread until T2 commits or aborts,
thus ensuring that n is not overwritten by T2’s buffered write. The above way of making a
TM privatization-safe is used in the GCC compiler [18] (albeit with TinySTM [16] instead of
TL2) and has been experimentally evaluated in [36, 37].

To prove privatization-safe opacity of FencedTL2, for every one of its executions we
inductively construct an opacity graph (with added real-time order edges) that matches its
history. This is done with the help of the following graph updates, which specify how and
when in the execution to extend the graph:

At the start of a transaction T , a graph update txinit(T) adds a new vertex T and
extends the real-time order with edges T ′ RT−−→ T for every completed transaction T ′.
At the end of a read operation of a transaction T reading from an object x, a graph
update txread(T, x) adds a read dependency ν WRx−−−→T , where ν is the vertex that wrote
the value returned by the read.
During the commit of a transaction T , TL2 validates the consistency of T ’s read-set before
flushing T ’s write-set into memory. At the last step of the validation, a graph update
txwrite(T, x) adds a write dependency ν WWx−−−→ T for every object x in the write-set of
T , where ν is the vertex that wrote the previous value of x.
Upon each non-transactional write n to an object x, a graph update ntxwrite(n, x)
adds a new vertex n and a write-dependency ν WWx−−−→ n, where ν is the vertex that wrote
the previous value of x.
Upon each non-transactional read n from an object x, a graph update ntxread(n, x)
adds a new vertex n and a read dependency ν WRx−−−→ n, where ν is the vertex that wrote
the value returned by n.

The updates also add anti-dependencies of the form _ RW−−→ T induced by new read- and
write-dependencies.

At each step of the graph construction we prove that the graph remains acyclic. Then
Theorem 14 guarantees that the history of the execution is opaque. We use Lemmas 15
and 16 to reduce the task of proving the graph acyclicity to proving the absence of cycles
involving transactions only. To discharge the latter proof obligation, we reuse our previous
proof of opacity of TL2 [27], also done via the graph characterization. This proof establishes
the following invariant over pairs (H,G) of a history H and a graph G:

INV1: H is a consistent history and the relation txDEP ∪ RT is acyclic.
To enable the reduction from privatization-safe to ordinary opacity, we prove the following
invariant, which states the guarantee provided by fences in FencedTL2:

INV2: For every uncompleted transaction T and a transaction T ′, T txDEP−−−−→∗ T ′ PO−−→_
does not hold.

An informal justification of INV2 is as follows. By construction of the graph it is possible
to establish that T ′ can depend on an uncompleted transaction T only when they execute
concurrently. In this case, the fence of T ′ will wait for T to commit or abort, and until then
there cannot be any transactions or non-transactional accesses in the thread of T ′ later in
the per-thread order. By Theorem 14, privatization-safe opacity of FencedTL2 follows from

A. Khyzha, H. Attiya, and A. Gotsman 24:13

I Theorem 21. ∀H ∈ FencedTL2.CDRF(H) =⇒ ∃G. (H,G) ∈ INV1 ∧ INV2 ∧ acyclic(G).

We prove Theorem 21 by induction on the length of the TM execution inducing H, construct-
ing G as described above and showing that it remains acyclic after each update with the aid
of the two invariants. Due to space constraints, we only explain how we prove acyclicity in
the case of a graph update txwrite, which illustrates the use of Lemmas 15 and 16.

I Lemma 22. Let (H ′, G′) be the result of performing an update txwrite(T, x) on (H,G).
Assume that (H,G), (H ′, G′) ∈ INV1 ∧ INV2 and G is acyclic. Then G′ is acyclic too.

Proof. By contrapositive: we assume that G′ contains a simple cycle and show that G′

violates either INV1 or INV2. The graph update adds an edge of the form _ WWx−−−→ T and the
derived edges of the form _ RWx−−−→ T . Since both kinds of edges end in the same vertex T ,
they cannot occur in the same simple cycle. Hence, we can consider them separately.

Consider a simple cycle involving a new edge ν DEP−−→ T for some vertex ν. By our
assumption, there must be a reverse path T DEP−−→∗ ν in G. Let us first consider the case when
ν is a transaction T ′. Since G is acyclic and H is consistent and CDRF, by Lemma 15 the
path T DEP−−→∗ T ′ can be reduced to T RT∪txDEP−−−−−−→∗ T ′. Since G′ only extends G, the same path
is present in G′ too. Then T ′ txDEP−−−−→T

RT∪txDEP−−−−−−→∗ T ′ is a cycle over transactions in G′, which
contradicts (H ′, G′) ∈ INV1. We now consider the case when ν is a non-transactional access
n. Since G is acyclic and H is consistent and CDRF, by Lemma 16 there exist T ′ and n′

such that T txDEP−−−−→∗ T ′ PO−−→ n′
CL−→∗ n holds in G. Note that T is an uncompleted transaction,

since it currently performs a graph update. Therefore, T txDEP−−−−→∗ T ′ PO−−→ n′
CL−→∗ n is a

contradiction to (H,G) ∈ INV2. J

8 The Cost of Privatization-Safety

We now present a result about the inherent cost of privatization-safety, by which we mean
guaranteeing strongly atomic semantics to TDRF programs. In addition to TM histories, we
consider the prefix-closed set of all TM executions X , ranged over by ϕ. Unlike histories,
they include internal TM actions that only occur in transactions and are not a part of the
TM interface. One type of an internal action are write-backs of the form (a, t,wb(x, v)),
where a ∈ ActionId, t ∈ ThreadID, x ∈ Reg, and v ∈ Z. A write-back denotes a transaction
of a thread t writing a value v to a register x. We assume that a TM implementation is
represented by a pair (H,X) of a set of histories and a set of executions producing them.

I Definition 23. A TM system (H,X) is progressive when for any ϕ ∈ X with at most one
uncompleted transaction T , if the last interface action by T in ϕ is a request α, there exists a
sequence of internal TM actions ϕ′ by T and a response α′ matching α such that ϕϕ′α′ ∈ X .

I Definition 24. A TM system (H,X) has invisible reads when for any ϕϕ′ ∈ X such that ϕ
contains at most one uncompleted transaction T and ϕ′ is a sequence of actions corresponding
to another uncompleted transaction T ′ only conflicting with reads by T , if the last interface
action by T ′ is a request α, there exists a sequence of internal TM actions ϕ′′ by T ′ and a
response α′ 6= (_,_, aborted) matching α such that ϕϕ′ϕ′′α′ ∈ X .

Our progressiveness property is analogous to obstruction-freedom [22], requiring a trans-
action to complete when running solo. Our invisible reads property can be ensured when the
TM only writes to thread-local memory upon reading [21]. The FencedTL2 TM from §7 is
privatization-safe and has invisible reads, but is not progressive due to its use of fences. As
the following theorem shows, this is not accidental.

DISC 2019

24:14 Privatization-Safe Transactional Memories

I Theorem 25. A TM system that guarantees strongly atomic semantics to TDRF programs
cannot both be progressive and have invisible reads.

We rely on the following proposition, proved in [26, §G].

I Proposition 26. Consider a TM system that guarantees strongly atomic semantics to
TDRF programs. If ϕ is a TM execution of a single atomic block where the latter com-
mits, and (_,_,write(x, v)) is its last write request to x, then ϕ also contains a write-back
(_,_,wb(x, v)), and all write-backs to x occur in ϕ after the first write request to x.

Proof of Theorem 25. The proof is by contradiction. Assume there exists a progressive
TM (H,X) with invisible reads that guarantees strong atomicity to every TDRF program
P , so that JP K(H) � JP K(Hatomic). We choose a particular TDRF program P and construct
a counterexample trace from JP K(H) that does not have a matching trace in JP K(Hatomic).
Namely, we consider the following program P , similar to the one in Figure 1:

{ priv = false ∧ x = 0 }
l1 = atomic {

priv = true; } //T1

if (l1 == committed)
l2 = x; //n

atomic {
if (!priv)

x = 42;
} //T2

We first consider a single-threaded program executing the atomic block in the right-hand-
side thread t2 of P . The TM always allows the program to execute requests (§2), and the
invisible reads property ensures that the TM responds to them without aborting. Therefore,
there is an execution ϕ0

2 ∈ X consisting only of actions of the atomic block of t2 in P ending
with a commit-response. By Proposition 26, the execution of ϕ0

2 contains a write-back
(_, t2,wb(x, 42)). Let ϕ2 be the prefix of ϕ0

2 until the first write-back w = (_, t2,wb(x, 42)).
By Proposition 26, ϕ2 contains a write request to x and, therefore, a preceding response
(_, t2, ret(false)) to a read from priv. The set of TM executions is prefix-closed, so ϕ2w ∈ X .

Note that ϕ2 corresponds to a (partial) trace of P . We now let P continue ϕ2 by executing
the atomic block of the left-hand-side thread t1. The TM always allows t1 to execute requests
(§2), and the invisible reads property ensures that the TM responds to them without aborting,
as they only conflict with t2’s read from priv in ϕ2. We thus obtain a sequence of actions
ϕ1 corresponding to a committed transaction T1 such that ϕ2ϕ1 ∈ X . We can then execute
n = (_, t1, read(x))(_, t1, ret(0)), which returns the initial value of x as there has not been
any write-back to x yet. We thereby obtain an execution ϕ2ϕ1n ∈ X in which thread t1 of
P has executed to completion.

We now let P resume executing the atomic block of thread t2. Since the TM is progressive,
the execution ϕ2ϕ1n can be extended to an execution ϕ = ϕ2ϕ1nϕ

′
2 ∈ X where the atomic

block is completed, yielding a transaction T2. We first consider the case when T2 commits in
ϕ. The execution ϕ corresponds to a trace τ ∈ JP K(H). Since JP K(H) � JP K(Hatomic), there
exists a trace τ ′ ∈ JP K(Hatomic) matching τ . Above we established that ϕ2 reads false from
priv and, hence, so does T2. To justify reading this value in τ ′, T2 must commit in this
trace before T1 starts and, therefore, before n starts too. Hence, n must observe T2’s write
to x in τ ′, even though it observes the initial value in τ . Then τ ′ cannot match τ , and this
contradiction concludes the proof.

We now consider the case when T2 aborts in ϕ. Above we established that ϕ0
2 = ϕ2w_ ∈

X , so that ϕ2w ∈ X . Since the TM executes write-backs as atomic writes, if a transaction is
interrupted when a write-back w is pending, it proceeds with w once its execution resumes.
Hence, it must be the case that ϕ′2 takes the form of wϕ′′2 , so that ϕ = ϕ2ϕ1nwϕ

′′
2 . Since

A. Khyzha, H. Attiya, and A. Gotsman 24:15

the TM does not impose restrictions on the placement of the non-transactional accesses (§2),
it must also allow an execution ϕ2ϕ1wn

′ϕ′′2 ∈ X , where n′ = (_, t1, read(x))(_, t1, ret(42))
returns the value written by w. This execution corresponds to a trace τ ∈ JP K(H). Since
JP K(H) � JP K(Hatomic), there exists a trace τ ′ ∈ JP K(Hatomic) matching τ . In this trace n′
reads 42 written by an aborted transaction T2, which cannot happen under Hatomic. Hence,
τ ′ 6∈ JP K(Hatomic), and this contradiction concludes the proof. J

9 Related Work and Discussion

We have previously proposed a notion of DRF for privatization-unsafe TMs and a correspond-
ing variant of opacity that ensure the Fundamental Property [27]. This work considered
a more low-level programming model, which required inserting fences after some of the
transactions for a program to be DRF. The resulting DRF notion was thus more involved
than TDRF. Showing that the simpler TDRF is enough for privatization-safe TMs required
us to address new technical challenges, such as the need to generalize TDRF to concurrent
histories (to formulate privatization-safe opacity, §4) and to prove the delicate path reduction
lemmas linking TDRF with properties of opacity graphs (§6). Furthermore, unlike [27], our
results are also applicable to TMs that achieve privatization-safety by means other than
fences, such as a lock-based TM we handle in [26, §F]. Our results also suggest a strengthening
of those in [27]; we defer the details to [26, §H].

The notion of TDRF we use is a variant of the one proposed by Dalessandro et al. [11].
They also suggested that the notion should satisfy the Fundamental Property, but with strict
serializability as the required condition on the TM. As we argued in §4, this condition is too
strong, as it does not allow the proofs of TM correctness to benefit from the DRF of programs
using it. In this paper we justify the appropriateness of TDRF by proposing a matching TM
correctness condition that enables proofs of common TMs and proving the Fundamental
Property for it. This also requires us to generalize TDRF to concurrent histories.

In this paper we assumed sequential consistency as a baseline non-transactional memory
model. However, transactions are being integrated into languages, such as C++, that have
weaker memory models [1]. Transactional sequential consistency, which we use as our strongly
atomic semantics, is equivalent to that prescribed by the C++ memory model without relaxed
transactions or non-SC atomics [9], and our definition of a data race is given in the axiomatic
style used in the C++ memory model [2]. Hence, we believe that in the future our results
can be generalized to the wider C++ model, in particular, by weakening the client order in
Definition 2 to account for non-SC non-transactional accesses.

Abadi et al. also proposed disciplines for privatization with a formal justification of their
safety [3, 4]. However, these disciplines are more restrictive than ours: they either prohibit
mixing transactional and non-transactional accesses to the same register [4] or require explicit
commands to privatize and publish an object [3]. Such disciplines are particular ways of
achieving the more general notion of TDRF that we adopted.

Attiya and Hillel [7] investigated the cost of privatization in progressive TMs. Unlike
us, they considered support for privatization to be part of TM interface and did not rely
on a formal notion of privatization-safety. They proved the impossibility of supporting
privatization in eager TMs, and a lower bound on its implementation cost in lazy TMs. Our
Theorem 25 unifies and strengthens their results, as it states the impossibility of providing
privatization-safety for all progressive TMs with invisible reads. We also make the results
more rigorous by linking them to a formal notion of privatization-safety based on TDRF.

DISC 2019

24:16 Privatization-Safe Transactional Memories

References
1 ISO/IEC. Technical Specification for C++ Extensions for Transactional Memory, 19841:2015,

2015.
2 ISO/IEC. Programming Languages – C++, 14882:2017, 2017.
3 Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard. Implementation

and Use of Transactional Memory with Dynamic Separation. In International Conference on
Compiler Construction (CC), pages 63–77, 2009.

4 Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional
memory and automatic mutual exclusion. ACM Trans. Program. Lang. Syst., 33:2:1–2:50,
2011.

5 Martín Abadi, Tim Harris, and Katherine F. Moore. A Model of Dynamic Separation for
Transactional Memory. In International Conference on Concurrency Theory (CONCUR),
pages 6–20, 2008. doi:10.1007/978-3-540-85361-9_5.

6 Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. A programming language
perspective on transactional memory consistency. In Symposium on Principles of Distributed
Computing (PODC), pages 309–318, 2013. doi:10.1145/2484239.2484267.

7 Hagit Attiya and Eshcar Hillel. The Cost of Privatization in Software Transactional Memory.
IEEE Transactions on Computers, 62(12):2531–2543, 2013.

8 Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties of Transactional
Memory Atomicity Semantics. Computer Architecture Letters, 5(2), 2006.

9 Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions and weak
memory in x86, Power, ARM, and C++. In Conference on Programming Language Design
and Implementation (PLDI), pages 211–225, 2018.

10 Luke Dalessandro and Michael L. Scott. Strong Isolation is a Weak Idea. In Workshop on
Transactional Computing (TRANSACT), 2009.

11 Luke Dalessandro, Michael L. Scott, and Michael F. Spear. Transactions as the Foundation of
a Memory Consistency Model. In International Symposium on Distributed Computing (DISC),
pages 20–34, 2010.

12 Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: streamlining STM
by abolishing ownership records. In Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 67–78, 2010. doi:10.1145/1693453.1693464.

13 Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel
Nussbaum. Hybrid Transactional Memory. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 336–346, 2006.

14 David Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In International Symposium
on Distributed Computing (DISC), pages 194–208, 2006. doi:10.1007/11864219_14.

15 David Dice and Nir Shavit. TLRW: return of the read-write lock. In Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 284–293, 2010. doi:10.1145/1810479.
1810531.

16 P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-Based Software Transactional Memory.
IEEE Transactions on Parallel and Distributed Systems, 21(12):1793–1807, 2010.

17 Ivana Filipovic, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concur-
rent objects. Theoretical Computer Science, 411(51-52):4379–4398, 2010.

18 Free Software Foundation. Transactional Memory in GCC. URL: http://gcc.gnu.org/wiki/
TransactionalMemory.

19 Rachid Guerraoui, Thomas A. Henzinger, Michal Kapalka, and Vasu Singh. Transactions
in the jungle. In Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
263–272, 2010.

20 Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory. In
Symposium on Principles and Practice of Parallel Programming (PPOPP), pages 175–184,
2008.

https://doi.org/10.1007/978-3-540-85361-9_5
https://doi.org/10.1145/2484239.2484267
https://doi.org/10.1145/1693453.1693464
https://doi.org/10.1007/11864219_14
https://doi.org/10.1145/1810479.1810531
https://doi.org/10.1145/1810479.1810531
http://gcc.gnu.org/wiki/TransactionalMemory
http://gcc.gnu.org/wiki/TransactionalMemory

A. Khyzha, H. Attiya, and A. Gotsman 24:17

21 Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2010. doi:
10.2200/S00253ED1V01Y201009DCT004.

22 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchronization:
Double-Ended Queues as an Example. In International Conference on Distributed Computing
Systems (ICDCS), pages 522–529, 2003.

23 Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In International Symposium on Computer Architecture (ISCA),
pages 289–300, 1993. doi:10.1145/165123.165164.

24 Intel Corporation. Intel architecture instruction set extensions programming reference. Chapter
8: Intel transactional synchronization extensions, 2012.

25 Gokcen Kestor, Osman S. Unsal, Adrián Cristal, and Serdar Tasiran. T-Rex: a dynamic race
detection tool for C/C++ transactional memory applications. In European Systems Conference
(EuroSys), pages 20:1–20:12, 2014.

26 Artem Khyzha, Hagit Attiya, and Alexey Gotsman. Privatization-Safe Transactional Memories
(Extended Version). arXiv CoRR, 1908.03179, 2019. arXiv:1908.03179.

27 Artem Khyzha, Hagit Attiya, Alexey Gotsman, and Noam Rinetzky. Safe privatization in
transactional memory. In Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages pages 233–245, 2018. Extended version available at arXiv:1801.04249.

28 Sanjeev Kumar, Michael Chu, Christopher J Hughes, Partha Kundu, and Anthony Nguyen. Hy-
brid transactional memory. In Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 209–220, 2006.

29 H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J. Starke, C. May,
R. Odaira, and T. Nakaike. Transactional memory support in the IBM POWER8 processor.
IBM Journal of Research and Development, 59(1):8:1–8:14, 2015.

30 Mohsen Lesani, Victor Luchangco, and Mark Moir. Specifying Transactional Memories with
Nontransactional Operations. In Workshop on the Theory of Transactional Memory (WTTM),
2013.

31 Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. Scalable Techniques for
Transparent Privatization in Software Transactional Memory. In International Conference on
Parallel Processing (ICPP), pages 67–74, 2008.

32 Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update
Techniques in Operating System Kernels. PhD thesis, OGI School of Science and Engineering
at Oregon Health and Sciences University, 2004.

33 Katherine F. Moore and Dan Grossman. High-level small-step operational semantics for
transactions. In Symposium on Principles of Programming Languages (POPL), pages 51–62,
2008. doi:10.1145/1328438.1328448.

34 Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing, 10(2):99–
116, 1997.

35 Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott. Privatization
techniques for software transactional memory. In Symposium on Principles of Distributed
Computing (PODC), pages 338–339, 2007. Extended version appears as Technical Report 915,
Computer Science Department, University of Rochester.

36 Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-
Hsin S. Lee. Kicking the tires of software transactional memory: why the going gets tough.
In Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 265–274, 2008.
doi:10.1145/1378533.1378582.

37 Tingzhe Zhou, Pantea Zardoshti, and Michael F. Spear. Practical Experience with Transactional
Lock Elision. In International Conference on Parallel Processing (ICPP), pages 81–90, 2017.

DISC 2019

https://doi.org/10.2200/S00253ED1V01Y201009DCT004
https://doi.org/10.2200/S00253ED1V01Y201009DCT004
https://doi.org/10.1145/165123.165164
http://arxiv.org/abs/1908.03179
https://arxiv.org/abs/1801.04249
https://doi.org/10.1145/1328438.1328448
https://doi.org/10.1145/1378533.1378582

