
Small Cuts and Connectivity Certificates:
A Fault Tolerant Approach
Merav Parter
Weizmann Institute, Rehovot, Israel
merav.parter@weizmann.ac.il

Abstract
We revisit classical connectivity problems in the CONGEST model of distributed computing. By
using techniques from fault tolerant network design, we show improved constructions, some of which
are even “local” (i.e., with Õ(1) rounds) for problems that are closely related to hard global problems
(i.e., with a lower bound of Ω(Diam+

√
n) rounds).

Distributed Minimum Cut: Nanongkai and Su presented a randomized algorithm for computing
a (1 + ε)-approximation of the minimum cut using Õ(D +

√
n) rounds where D is the diameter of

the graph. For a sufficiently large minimum cut λ = Ω(
√
n), this is tight due to Das Sarma et al.

[FOCS ’11], Ghaffari and Kuhn [DISC ’13].
Small Cuts: A special setting that remains open is where the graph connectivity λ is small
(i.e., constant). The only lower bound for this case is Ω(D), with a matching bound known only
for λ ≤ 2 due to Pritchard and Thurimella [TALG ’11]. Recently, Daga, Henzinger, Nanongkai
and Saranurak [STOC ’19] raised the open problem of computing the minimum cut in poly(D)
rounds for any λ = O(1). In this paper, we resolve this problem by presenting a surprisingly
simple algorithm, that takes a completely different approach than the existing algorithms. Our
algorithm has also the benefit that it computes all minimum cuts in the graph, and naturally
extends to vertex cuts as well. At the heart of the algorithm is a graph sampling approach
usually used in the context of fault tolerant (FT) design.
Deterministic Algorithms: While the existing distributed minimum cut algorithms are
randomized, our algorithm can be made deterministic within the same round complexity. To
obtain this, we introduce a novel definition of universal sets along with their efficient computation.
This allows us to derandomize the FT graph sampling technique, which might be of independent
interest.
Computation of all Edge Connectivities: We also consider the more general task of
computing the edge connectivity of all the edges in the graph. In the output format, it is required
that the endpoints u, v of every edge (u, v) learn the cardinality of the u-v cut in the graph.
We provide the first sublinear algorithm for this problem for the case of constant connectivity
values. Specifically, by using the recent notion of low-congestion cycle cover, combined with the
sampling technique, we compute all edge connectivities in poly(D) · 2O(

√
log n log log n) rounds.

Sparse Certificates: For an n-vertex graph G and an integer λ, a λ-sparse certificate H is a
subgraph H ⊆ G with O(λn) edges which is λ-connected iff G is λ-connected. For D-diameter graphs,
constructions of sparse certificates for λ ∈ {2, 3} have been provided by Thurimella [J. Alg. ’97] and
Dori [PODC ’18] respectively using Õ(D) number of rounds. The problem of devising such certificates
with o(D +

√
n) rounds was left open by Dori [PODC ’18] for any λ ≥ 4. Using connections to fault

tolerant spanners, we considerably improve the round complexity for any λ ∈ [1, n] and ε ∈ (0, 1), by
showing a construction of (1−ε)λ-sparse certificates with O(λn) edges using only O(1/ε2 · log2+o(1) n)
rounds.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Distributed algorithms

Keywords and phrases Connectivity, Minimum Cut, Spanners

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.30

Funding Merav Parter : Support in part by an ISF grant no. 2084/18.

© Merav Parter;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2019.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Small Cuts and Connectivity Certificates

Acknowledgements I am thankful to DISC ’19 reviewers for valuable input, and to Michal Dory for
preliminary discussions on these problems. I am also grateful to Oded Goldriech for sparking my
curiosity on the derandomization of the fault tolerant sampling approach. Finally, special thanks to
Moni Naor and Karthik C. S. for useful discussions on universal sets.

1 Introduction

The connectivity of a graph is one of the most fundamental concept in graph theory and
network reliability. In this paper, we revisit some classical connectivity problems in the
CONGEST model of distributed computing via the lens of fault tolerant network design. We
mainly focus on two problems: exact computation of small1 edge (or vertex) cuts; and the
computation of sparse connectivity certificates. Both of these problems have been studied
thoroughly in the literature, and surprisingly still admit critically missing pieces. By using
techniques from fault tolerant network design we considerably improve the state-of-the-art,
as well as provide the first deterministic distributed algorithms for these problems.

1.1 Small Cuts
In the distributed minimum cut problem, given a graph G with edge connectivity λ, the
goal is to identify at least one minimum cut, that is a collection of λ edges whose removal
disconnect the graph. In the output format, each vertex should learn at least one possible
minimum (edge) cut. We start by providing a brief history for the problem2.

A Brief History. (I) Upper Bounds: The first non-trivial distributed algorithm for the
minimum cut problem was given by Ghaffari and Kuhn [10]. They presented a randomized
algorithm for computing a (2 + ε) approximation of minimum cut using Õε(D +

√
n) rounds,

with high probability. Shortly after, Nanongkai and Su [16] improved the approximation
ratio to (1 + ε) with roughly the same round complexity. Recently, Daga et. al [5] provided
an exact algorithm with sublinear round complexity which improves up on the state of the
art in the regime of large cuts (i.e., for λ = nΩ(1)).

(II) Lower Bounds: In their seminal paper, Das-Sarma et al. [23] presented a lower
bound of Ω̃(D +

√
n) rounds for the computation of an α-approximation of a weighted

minimum cut which holds even for graphs with diameter D = O(logn). This lower bound
applies only for weighted graphs with large weighted minimum cut of size Ω(

√
n). Ghaffari

and Kuhn [11] extended this lower bounds in two ways. First, they considered a weaker
setting for weighted minimum cuts where the edge weights correspond to capacities, and thus
nodes can exchange O(w logn) bits over edges of weight w in each round. They showed that
even in this weaker model, the α-approximation of minimum cut in λ-edge connected graphs
with λ = Θ(

√
n) and diameter O(logn) requires Ω̃(

√
n/(α · λ)) rounds3. Observe that since

in this construction λ = Θ(
√
n), this lower bound can also be stated as Ω(

√
λ) rather than

Ω(D +
√
n). In their second extension, Ghaffari and Kuhn attempted to capture also

unweighted simple graphs. Here, they showed a lower bound of Ω̃(D +
√
n/(α · λ)) rounds,

1 By small we mean of constant size.
2 Although historically, the lower bound by Das-Sarma et al. [23] appeared before the upper bound

algorithms, we reverse the order of presentation here.
3 In the conference version of [10], a lower bound of Ω̃(D +

√
n) was mistakenly claimed for any λ ≥ 1

and graphs with diameter D = O(logn). This was later on fixed in a modified arXiv version [11] and in
Ghaffari’s thesis [9].

M. Parter 30:3

for any λ ≥ 1 but only for graphs with diameter D = 1/λ ·
√
n/(α · λ). Again4, with such

a larger diameter, one can alternatively state this lower bound as Ω(λ · D), rather than
Ω̃(D +

√
n).

Computation of Small Cuts. The conclusion from the above discussion is that we still do
not have matching bounds for the distributed minimum cut problem in cases where either (i)
the value of the weighted minimum cut is o(

√
n), or (ii) the unweighted diameter is o(

√
n).

As most real-world networks admit small cuts [26], we are in particular intrigued by the
complexity of computing the cuts in unweighted graphs with constant connectivity. Pritchard
and Thurimella [21] showed an O(D)-round randomized algorithm for cut values up to 2.
The problem of devising an poly(D) round algorithm for any constant λ = O(1) was recently
raised by Daga et al. [5]:

“A special case that deserves attention is when the graph connectivity is small. For
example, is there an algorithm that can check whether an unweighted network has
connectivity at most k in poly(k,D, logn)? ... Bounds in these forms are currently
known only for k ≤ 2.”

We answer this question in the affirmative by presenting a poly(D)-round algorithm for
any constant connectivity λ = O(1). This algorithm in fact computes all possible minimum
cuts in G, in the sense that for any min-cut set E′ there is at least one vertex in the graph
that knows E′. Turning to vertex cuts, [21] showed an O(D + ∆/ logn) round algorithm
for computing the cut vertices. No exact algorithm is known for the case where the vertex
connectivity is at least two. Our algorithm can be easily adapted to compute deterministically
the (exact) vertex cuts in poly(D ·∆) rounds where ∆ is the maximum degree.

1.2 Sparse Connectivity Certificates
For a given unweighted n-vertex D-diameter graph G = (V,E) and integer λ ≥ 1, a
connectivity certificate is a subgraph H ⊆ G satisfying that it is λ-edge (or vertex) connected
iff G is λ-edge (or vertex) connected. The certificate is said to be sparse if H has O(λn)
edges. Sparse certificates were introduced by Nagamochi and Ibaraki [15]. Thurimella [24]
gave the first distributed construction of λ-sparse certificates using O(λ · (D +

√
n)) rounds

in the CONGEST model. For λ = 2, Censor-Hillel and Dory [3] showed5 the randomized
construction of a certificate with O(n) edges using O(D) rounds. In [7], Dory considered
the case of λ = 3, and showed the construction of a certificate with O(n logn) edges and
O(D log3 n) rounds. These algorithms are randomized and are based on the cycle space
sampling technique of Pritchard and Thurimella [21]. The problem of designing sparse
certificates for any λ ≥ 4 using Õ(D) rounds was left open therein [7].

In this paper, we provide an easy solution for this problem which takes only Õ(λ) rounds
for any λ. This is based on the observation that fault tolerant spanners are in fact sparse
connectivity certificates. As a result we get that the problem of designing sparse certificates
is local rather than global (i.e., does not depend on the graph diameter). In the Our Results
section we also improve the round complexity into Õ(1) (i.e., independent on λ) by loosing a
small factor in the approximation.

4 Also here the conference version [10] mistakenly claimed that the lower bound works even for graphs
with diameter D = O(logn), and this was fixed in [11, 9].

5 [3] studied the problem of the minimum k-edge-connected spanning subgraph (k-EECS), which for
unweighted graphs implies the computation of connectivity certificates with a small number of edges.

DISC 2019

30:4 Small Cuts and Connectivity Certificates

1.3 Our Results
Distributed Computation of Small Minimum Cuts. We consider an unweightedD-diameter
graph G = (V,E) with edge connectivity λ = O(1). We show a poly(D)-round randomized
algorithm to compute the minimum cut whose high level description can be stated in just
few lines: Fix a vertex s and apply poly(D) iterations, where in iteration i we do as follows.
(i) Sample a subgraph Gi ⊆ G by adding each edge e into Gi independently with some
fixed probability p. (ii) Compute a truncated BFS tree rooted at s up to depth O(λD) in
Gi, and (iii) let each vertex t collect its s-t path in this tree (if such exists). Finally, after
applying this procedure for poly(D) iterations, each vertex t computes locally the s-t cut on
the subgraph that it has collected. The argument shows that every vertex t that is separated
from s by some minimum cut E′, can compute this set of edges w.h.p.

I Theorem 1. Let G be an λ = O(1) connected D-diam graph and max degree ∆. There
exists a randomized minimum cut algorithm that runs in poly(D) rounds. In addition, with a
small modification it computes the minimum vertex cut in poly(D ·∆) rounds.

The algorithm is in fact stronger. Every vertex t also learns a collection (λ− 1) edge disjoint
paths from s (i.e., an integral flow from s). In addition, we do not compute only one minimum
cut but rather for each minimum cut in G, there is at least one vertex that learns it.

Deterministic Computation of Small Cuts. So-far, the distributed minimum cut compu-
tation was inherently randomized. The randomized component of the algorithm of Thm. 1 is
in the initial graph sampling in each iteration. To derandomize it, we introduce a new variant
of universal-sets. We use this notion to explicitly compute, in polynomial time, a collection
of poly(D) subgraphs G1, . . . , Gk that have the same key properties as those obtained by the
sampling approach. The polynomial computation is done locally at each vertex and thus
does not effect the round complexity.

I Theorem 2. One can compute small cuts deterministically in poly(D) rounds.

This derandomization technique can be used to derandomize all other algorithms that are
based on the fault tolerant (FT) sampling technique (e.g., [6],[27]), and it is therefore of
interest also for centralized algorithms. Independently of our work, Alon, Chechik and
Cohen [2] also studied the derandomization of algorithms that are based on the FT-sampling
approach, their solution is different than ours.

For a summary on the computation of small cuts, see Table 1.

Table 1 State of the art results for exact distributed computation of small cuts.

Min-Cut Value λ #Rounds Type
Pritchard & Thurimella [21] 2 Edges O(D) Rand.
Pritchard & Thurimella [21] 1 Vertex O(D + ∆) Rand.

This Work O(1) Edges poly(D) Det.
This Work O(1) Vertices poly(D ·∆) Det.

Computation of Edge-Connectivities. We then turn to consider the more general task of
computing the edge connectivity of all graph edges, up to some constant bound λ = O(1).
For an edge e = (u, v), the edge connectivity of e is the size of the u-v minimum (edge) cut in
G. In the output format for each edge e = (u, v), its endpoints are required to learn the edge

M. Parter 30:5

connectivity of e. Exact computation of all edge connectivites has been previously known
only λ ≤ 2 due to Pritchard and Thurimella [21]. They gave randomized algorithms for the
case of λ = 1, 2 with round complexities of O(D) and O(D +

√
n log∗ n), respectively.

In this paper, we again take a completely different approach and show a deterministic
algorithm with poly(D) · 2

√
logn log logn rounds for computing all edge connectivities up to

constant value of λ = O(1). Our algorithm is based on two tools: (1) low-congestion cycle
cover [17] and their distributed computation [18] ; and (2) the derandomization of the
FT-sampling approach.

I Theorem 3. For every D-diameter n-vertex graph G = (V,E), w.h.p., the edge connectivity
of all graphs edges up to λ = O(1) can be computed in poly(D) · 2O(

√
logn) rounds. This

algorithm can also be derandomized using poly(D) · 2O(
√

logn log logn) rounds.

Sparse Connectivity Certificates. In the second part of the paper we consider the related
problem of computing connectivity certificates. We first show that by a direct application of
fault tolerant spanners, one can compute a λ-edge connectivity certificate with O(λn) edges
using Õ(λ) rounds. This considerably improves and extends up on the previous constructions
with O(D) rounds that were limited only for λ ∈ {2, 3}.

I Lemma 4. For every λ ∈ N≥1, there is a randomized algorithm that computes a λ

connectivity certificate with O(λn) edges in O(λ log1+o(1) n) rounds, with high probability.

By plugging in the recent deterministic spanner construction of [12], one can compute λ-edge
connectivity certificate deterministically with Õ(λ · n) edges and λ · 2O(

√
logn) rounds6. This

answers the open problem raised by Dory [7] concerning the existence of efficient deterministic
constructions of connectivity certificates.

To avoid the dependency in λ in the round complexity, we use the well known Karger’s
edge-sampling technique, and show:

I Lemma 5. For every λ-connected graph and ε ∈ (0, 1), there is a randomized distributed
algorithm that computes a (1 − ε)λ connectivity certificate with O(λn) edges in O(1/ε2 ·
log2+o(1) n) rounds, with high probability.

Table 2 summarizes the state of the art. Note that if one uses fault tolerant spanners
resilient for vertex faults, we get Õ(λ)-round algorithm for computing λ-vertex-certificates7
with O(λ2n) edges. For clarity of presentation, we mainly focus on the edge-connectivity
certificates, but our results naturally extend to the vertex case as well.

Table 2 State of the art result for distributed computation of sparse connectivity certificates.

Edge Connectivity λ Certificate Size #Rounds Type
Thurimella [24] Any λ · n Õ(λ · (D +

√
n)) Det.

Pritchard & Thurimella [21] 2 2n O(D) Rand.
Dory [7] 3 O(n logn) O(D · log3 n) Rand.

This Work Any O(λn) O(λ · log1+o(1) n) Rand.
This Work Approx. (1− ε) O(λ · n) O(log2+o(1) n) Rand.
This Work Any Õ(λ · n) λ · 2O(

√
log n log log n) Det.

6 Combining the recent result of [22] with [12] seems to improve the deterministic spanner construction
to poly logn rounds, and thus provide Õ(λ)-round algorithm for λ-sparse certificates.

7 I.e., a subgraph H ⊆ G satisfying that H is λ-vertex connected iff G is λ-vertex connected.

DISC 2019

30:6 Small Cuts and Connectivity Certificates

Graph Notation. For a subgraph G′ ⊆ G and u, v ∈ V (G′), let π(u, v,G′) be the unique8
shortest-path in G′. When G′ is clear from the context, we may omit it and simply write
π(u, v). For u, v ∈ G, let dist(u, v,G) be the length of the shortest u-v path in G. For a
vertex pair s, t and subgraph G′ ⊆ G, let λ(s, t,G′) be the s-t cut in G′.

The Communication Model. We use a standard message passing model, the CONGEST
model [19], where the execution proceeds in synchronous rounds and in each round, each
node can send a message of size O(logn) to each of its neighbors.

2 Exact Computation of Small Cuts

Throughout, we consider unweighted multigraphs with diameter D, and (edge or vertex)
connectivity at most λ = O(1). Before presenting the algorithm we start by considering the
following simpler task.

Warm Up: Cut Verification. In the cut verification problem, one is given a subset of edges
E′ where |E′| ≤ λ, it is then required to test if G \E′ is connected. As we will see there is a
simple algorithm for this problem which is based on the following key lemma.

I Lemma 6. Consider a D-diameter unweighted graph G = (V,E) with maximum degree ∆.
(1) If u, v ∈ V are λ-edge connected9 (i.e., the u-v cut is at least λ) then dist(u, v,G \ F) ≤
c · λ ·D for every edge sequence F ⊆ E, |F | ≤ λ− 1 for some constant c.
(2) If u, v ∈ V are λ-vertex connected then dist(u, v,G \ F) ≤ c · λ ·∆ ·D for every vertex
sequence F ⊆ V , |F | ≤ λ− 1.

Proof. Let T be an arbitrary BFS tree in G of diameter O(D). We begin with (1). Fix a
set of faults F ⊆ E, |F | ≤ λ− 1, and let Pu,v,F be the u-v shortest path in G \ F . Since u
and v are λ-edge connected such path Pu,v,F exists. We next bound the length of Pu,v,F .
Consider the forest T \ F which has at most λ connected components C1, . . . , C`. We mark
each vertex on Pu,v,F with its component ID in the forest T \F . Note that all vertices in the
same component are connected by a path of length O(D) in G \ F . We can then traverse
the path Pu,v,F from u and jump to the last vertex u1 on the path (close-most to v) that
belongs to the component of u. The length of this sub-path is O(D) and using one connecting
edge on Pu,v,F , we move to a vertex belonging to a new component in T \ F . Overall the
path Pu,v,F can be covered by λ path segments P1, . . . , P` such that the endpoints of each
segments are in the same component in T \ F , each neighboring segments Pi and Pi+1 are
connected by an edge from Pu,v,F . Since each |Pi| = O(D), we get that |Pu,v,F | = O(λ ·D).
Claim (2) follows the exact same argument with the only distinction is that when a vertex
fails, the BFS tree might break up into ∆ + 1 components. Thus, for a subset F ⊆ V of
vertices with |F | ≤ λ− 1, the tree T breaks into O(λ ·∆) components. J

This lemma immediately implies an O(λD)-round solution for the cut verification task: build
a BFS tree T from an arbitrary source up to depth O(λ ·D). Then T is a spanning tree iff
E′ does not disconnect the graph.

I Corollary 7 (Cut Verification). Given a set of λ edges E′. One can test if E′ is a cut in G
using O(λ ·D) rounds.

8 Ties are broken is a consistent manner.
9 Note that we do not require the graph G to be λ connected.

M. Parter 30:7

The following definition is useful for the description and analysis of our algorithm.

I Definition 8 ((s, t) connectivity certificate). Given a graph G with minimum cut λ and a
pair of vertices s and t, the (s, t) connectivity certificate is a subgraph Gs,t ⊆ G satisfying
that s and t are λ-connected in Gs,t iff they are λ-connected in G.

Whereas a-priori the size of the s-t connectivity certificate, measured by the number of
edges, might be Ω(n), as will show later on, it is in fact bounded by (λD)O(λ), hence poly(D)
for λ = O(1). With this definition in mind, we are now ready to present the minimum
cut algorithm.

A poly(D)-Round Randomized Algorithm. The algorithm has two phases. In the first
phase, every vertex t computes its (s, t) certificate subgraph Gs,t w.r.t. a given fixed source
s. In the second phase, each vertex y locally computes its s-t cut in the subgraph Gs,t, and
one of the output λ-size cut is broadcast to the entire network. Throughout, we assume
w.l.o.g. that the value of the minimum cut λ is known, since λ = O(1) this assumption can
be easily removed.

The first phase has ` = O((λD)2λ) iterations, or experiments. In each iteration i, the
algorithm samples a subgraph Gi by including each edge e ∈ G into Gi independently
with probability p = 1 − 1/(c(λD)) for some constant c (taken from Lemma 6). For a
source vertex s (which is fixed in all iterations), a (truncated) BFS tree Bi rooted in s is
computed in Gi up to depth c · λ ·D. Next, every vertex in Bi learns its tree path from s by
pipelining these edges downward the tree. This completes the description of an iteration.
Let Gs,t =

⋃`
i=1 π(s, t, Bi).

In the second phase, every vertex t locally computes its s-t cut in the subgraph Gs,t. The
edges of the minimum cut are those obtained by one of the vertices t whose s-t connectivity
in Gs,t is at most λ.

Correctness. For the correctness of the algorithm it will be sufficient to show that w.h.p.
Gs,t is an s-t connectivity certificate for every t ∈ V .

B Claim 9. For every t, w.h.p., Gs,t is an s-t connectivity certificate.

Proof. Since Gs,t ⊆ G, it is sufficient to show that s and t are connected in Gs,t \ F for any
subset F ⊂ E, |F | ≤ λ satisfying that s and t are connected in G \ F . Fix such a triplet
〈s, t, F 〉 where s and t are connected in G \ F . An iteration i is successful for 〈s, t, F 〉 if

π(s, t,G \ F) ⊆ Gi and F ∩Gi = ∅.

Note that if iteration i is successful for 〈s, t, F 〉, then the truncated BFS tree Bi contains t
as dist(s, t,Gi) = |π(s, t,G \ F)| ≤ c · λ ·D, where the last inequality is due to Lemma 6(1).
In addition, since F ∩Gi = ∅, it also holds that π(s, t, Bi) ⊆ Gs,t \ F .

It remains to show that with probability at least 1− 1/nΩ(λ), every triplet 〈s, t, F 〉 where
s and t are connected in G \ F , has at least one successful iteration. The claim will then
follow by applying the union bound over all n2λ triplets. Recall that each edge is sampled
into Gi independently with probability p. Thus the probability that iteration i is successful
for 〈s, t, F 〉 is at least:

q = p(c·λD) · (1− p)λ = 1/(λ ·D)λ.

Since there are ` independent experiments, the probability that all of them fail is (1− q)` ≤
1/nΩ(λ), the claim follows. C

DISC 2019

30:8 Small Cuts and Connectivity Certificates

Finally, let t be a vertex such that s and t are not (λ + 1)-connected in G. Thus, by the
lemma above, λ(s, t,Gs,t) ≤ λ and the minimum cut computation applied locally by vertex t
in Gs,t outputs a subset F of at most λ edges. We claim that w.h.p. s and t are also not
connected in G \F . Assume otherwise, then by Lemma 6(1), dist(s, t,G \F) ≤ c · λ ·D, thus
by the argument above, w.h.p., there is an iteration i in which an s-t path that does not
go through F is taken into Gs,t, leading to a contradiction that s and t are disconnected
in Gs,t \ F .

I Corollary 10. For every D-diameter unweighted graph G = (V,E), λ ≥ 1 and vertex pair
s, t ∈ V , there exists an (s, t) certificate Gs,t ⊆ G of size (λD)O(λ).

Round Complexity. Each of the ` iterations takes O(λ · D) rounds for computing the
truncated BFS tree. Learning the edges along the tree path from the root also takes O(λ ·D)
rounds via pipeline, thus overall the round complexity is (λ ·D)(c+2)λ = poly(D) for λ = O(1).

Extension to Vertex Cuts The algorithm for computing vertex cuts is almost identical and
requires minor adaptations. First, instead of having a single source vertex s, we will pick
λ+ 1 arbitrary sources s1, . . . , sλ+1 and will run an algorithm, which is very similar to the
one described above, with respect to each source si. Note that since the vertex cut has size
λ, then there is at least one vertex cut V ′ ⊂ V of size λ that does not contain at least one of
the sources si. In such a case, our algorithm will find the cut V ′ when running the below
mentioned algorithm w.r.t the source si.

The algorithm for each source si works in iterations, where each iteration j samples
into a subgraph Gj a collection of vertices rather than edges. That is, the subgraph Gj is
defined by taking the induced graph on a sample of vertices, where each vertex gets sampled
independently with probability p′ = (1− 1/(cλ ·∆ ·D)) (the constant c is taken from Lemma
6(2)). Then a BFS tree Bj rooted at si is computed in Gj up to depth cλ ·∆ ·D. Every
vertex v ∈ Bj collects its path from the root. Let Gsi,t be the union of all paths collected for
each vertex t. In the second phase, the vertex t computes locally the si-t vertex-cut in Gsi,t.
The analysis is then identical to that of the edge case, where in particular, we get that w.h.p.
Gsi,t is the vertex-connectivity certificate for every t.

2.1 Deterministic Min-Cut Algorithms via Universal Sets
Our goal in this section is to derandomize the FT-sampling technique by locally computing
explicitly (at each node) a small family of graphs G = {Gi ⊆ G} such that in iteration
i, the vertices will apply the computation on the graph Gi in the same manner as in the
randomized algorithm. Here, however, the graph Gi is not sampled but rather computed
locally by all the vertices. The family of subgraphs G is required to satisfy the following
crucial property for a = c ·D · λ and b = λ:

For every two disjoint subsets of edges A,B with |A| ≤ a and |B| ≤ b, there exists a
subgraph Gi ∈ G satisfying that:

A ⊆ Gi and B ∩Gi = ∅ . (1)

In our algorithms, the subset B corresponds to a set of edge faults, and A corresponds to an
s-t shortest path in G \B. Thus, |B| ≤ λ and by Lemma 6, |A| = O(λ ·D). We begin with
the following observation that follows by the probabilistic method.

M. Parter 30:9

I Lemma 11. There exists a family of graphs G = {Gi ⊆ G} of size O(ab+1 · logn) that
satisfies Eq. (1) for every disjoint A,B ⊆ E with |A| ≤ a and |B| ≤ b.

Proof. We will show that a random family GR with ` = O(ab+1 · logn) subgraphs satisfies
Eq. (1) with non-zero probability. Each subgraph Gi in GR is computed by sampling each
edge in G into Gi with probability of p = (1− 1/a).

The probability that Gi satisfies Eq. (1) for a fixed set A and B of size at most a and
b (respectively) is q = pa · (1− p)b = 1/ab. The probability that none of the subgraph Gi
satisfy Eq. (1) for A,B is at most (1− q)ab+1·logn ≤ 1/n3a. Thus, by doing a union bound
over all n2a possible subsets of A,B, we get that GR satisfies Eq. (1) for all subsets with
positive probability. The lemma follows. J

Lemma 11 already implies a deterministic minimum cut algorithm with poly(D) rounds,
in case where nodes are allowed to perform unbounded local computation. Specifically, let
every node compute locally, in a brute force manner, the family of graphs G = {Gi ⊆ G}
of size ab+1 · logn. In each iteration i of the minimum-cut computation, nodes will use the
graph Gi ∈ G to compute the truncated BFS tree, and collect their tree paths in these trees.
Although the CONGEST model does allow for an unbounded local computation, it is still
quite undesirable. To avoid this, we next describe an explicit polynomial construction of
the graph family G. This explicit construction is based on stating our requirements in the
language of universal sets.

Universal Sets. A family of sets S = {S ⊆ [n]} is (n, k)-universal if every subset S′ ⊆ [n]
of |S′| = k elements is shattered by S. That is, for each of the 2k subsets S′′ ⊆ S′ there exists
a set S ∈ S such that S′ ∩ S = S′′. Using linear codes, one can compute (n, k)-universal sets
with nO(k) subsets. Alon [1] showed an explicit construction of size 2O(k4) logn using the
Justesen-type codes constructed by Friedman [8]. In our context, the parameter n corresponds
to the number of graph edges, and each subset is a subgraph. The parameter k corresponds
to the bound on the length of the path which is O(λ ·D). Using the existing constructions
lead to a family with 2λ·D subgraphs which is unfortunately super-linear, already for graphs
of logarithmic diameter.

A New Variant of Universal Sets. We define a more relaxed variant of universal sets, for
which a considerably improved size bounds can be obtained. In particular, for our purposes
it is not really needed to fully shatter subsets of size k. Instead, for every set S′ of k elements
we would like that for every small subset S′′ ⊆ S, |S′′| ≤ b (which plays the role of the faulty
edges), there will be a set S in the family satisfying that S′ ∩ S = S′ \ S′′. We call this
variant FT-universal sets, formally defined as follows.

I Definition 12 (FT-Universal Sets). For integers n, a, b where a ≤ b ≤ n, a family of
sets S = {S ⊂ [1, n]} is (n, a, b)-universal if for every two disjoint subsets A ⊂ [1, n] and
B ⊂ [1, n] where |A| ≤ a and |B| ≤ b, there exists a set S ∈ S such that (1) A ⊆ S and (2)
B ∩ S = ∅.

Our goal is compute a family of (n, a, b)-universal sets of cardinality O(ab+1 logn) in time
poly(n, ab). Towards that goal we will use the notion of perfect hash functions.

I Definition 13 (Perfect Hash Functions). For integers n and k < n a family of hash functions
H = {h : [n]→ [`]} is prefect if for every subset S ⊂ [1, n] for |S| ≤ k, there exists a function
h ∈ H such that h(i) 6= h(j), ∀i, j ∈ S, i 6= j.

DISC 2019

30:10 Small Cuts and Connectivity Certificates

I Definition 14 (Almost Pairwise Independence). A family of functions H mapping domain
[n] to range [m] is ε-almost pairwise independent if for every x1 6= x2 ∈ [n], y1, y2 ∈ [m], we
have: Pr[h(x1) = y1 and h(x2) = y2] ≤ (1 + ε)/m2.

I Fact 15 ([25]). For every α, β ∈ N and ε ∈ (0, 1), one can compute in poly(α · 2β · 1/ε) an
explicit family of ε-almost pairwise independent hash functions Hα,β = {h : {0, 1}α → {0, 1}β}
that contains O(α · 2β) functions.

We next show how to compute a family of (n, k)-perfect hash functions in polynomial time.

B Claim 16. One can compute an family of (n, k)-perfect hash functionsH = {h : [n]→ [2k2]}
of cardinality O(k4 logn) in time poly(n, k).

Proof. We use Fact 15 with α = logn, β = 4 log k, and ε = 0.1, to get an ε-almost pairwise
independent hash function family Hα,β = {h : {0, 1}α → {0, 1}β}. We now show that this
family is perfect for subsets S ∈ [1, n] of cardinality at most k. Fix a subset S ∈ [1, n],
|S| ≤ k. By definition, for every x1, x2 ∈ S and y1, y2 ∈ [2k2],

Pr
h∈H

[h(x1) = y1 and h(x2) = y2] ≤ (1 + ε)/(4k4).

Thus, the probability that a uniformly chosen random function h ∈ Ha,b collides on S is∑
x1 6=x2∈S

Pr
h∈H

[h(x1) = h(x2)] ≤ k2 · max
x1 6=x2∈S

Pr
h∈H

[h(x1) = h(x2)] (2)

= k2 · max
x1 6=x2∈S

∑
y∈[2k2]

Pr[h(x1) = h(x2) = y] ≤ 0.3 ,

by using the fact that Prh∈H[h(x1) = h(x2) = y] ≤ (1 + ε)/(4k4) (see Def. 14). We get
that there exists h′ ∈ Hα,β that has no collisions on S. As this holds for every S, the claim
follows. C

Equipped with the polynomial construction of families of (n, k)-perfect hash functions, we
next show how to compute our universal sets in polynomial time.

I Lemma 17 (Small Universal Sets). For every set of integers b < a < n, one can compute
in poly(n, ab), a family of universal sets Sn,a,b of cardinality O(ab+1 · logn).

Proof. Set k = a + b. We will use Claim 16 to compute an (n, k)-perfect family of hash
functions H = {h : [n]→ [2k2]}. For every h ∈ H and for every subset i1, . . . , ib ∈ [1, 2k2],
define:

Sh,i1,i2,...,ib = {` ∈ [n] | h(`) /∈ {i1, i2, . . . , ib}} .

Overall, Sn,a,b = {Sh,i1,i2,...,ib | h ∈ H, i1, i2, . . . , ib ∈ [1, 2k2]}.
The size of Sn,a,b is bounded by |H| · k2b = O(k3b · logn) as desired. We now show that

Sn,a,b is indeed a family of universal sets for n, a, b. Since H is an (n, k) perfect family of
hash functions, for every two disjoint subsets A,B ⊂ [n], |A| ≤ a and |B| ≤ b, there exists
a function h that does not collide on C = A ∪ B (since |C| ≤ k). That is, there exists a
function h ∈ H such that h(i) 6= h(j) for every i, j ∈ C, i 6= j. Thus, letting B = {s1, . . . , sb}
and i1 = h(s1), . . . , ib = h(sb), we have that h(s′j) /∈ {i1, . . . , ib} for every s′j ∈ A. Therefore,
the subset Sh,i1,i2,...,ib satisfies that A ⊆ Sh,i1,i2,...,ib and B ∩ Sh,i1,i2,...,ib = ∅. J

M. Parter 30:11

Deterministic Min-Cut Algorithm. Finally, we describe how to use FT-universal sets to
get a poly(D)-round distributed algorithm for exact computation of small cuts. The only
randomized part of the algorithm above is in defining the ` = poly(D) subgraphs Gi. Instead
of sampling these subgraphs, each vertex computes them explicitly and locally. First, we
rename all the edges to be in [1,m]. This can be easily done in O(D) rounds. Now, each
vertex locally computes a family of universal sets for parameters m, k = O(λ · D), q = λ.
By Lemma 17, the family S contains (λ ·D)λ = poly(D) subsets in [1,m]. Each of the sets
Si ∈ S will be used as a subgraph Gi in the ith iteration. That is, we iterate over all subsets
(subgraphs) in S. In iteration i, all vertices know the set Si and thus can locally decide
which of their incident edges is in Gi. The correctness now follows the exact same line as
that of the randomized algorithm.

3 Computation of All Edge Connectivities

Finally, we consider the more general task of computing the edge connectivity of all graph
edges up to some constant value λ. For an edge e = (u, v), let λ(e) be the u-v edge
connectivity in G, that is, the number of edge-disjoint u-v paths in G. By using the recent
notion of low-congestion cycle cover [17], we show:

I Lemma 18 (Distributed All Edge Connectivities). For every D-diameter graph G, there
is a randomized distributed algorithm that w.h.p. computes all edge connectivities up to
some constant value λ within 2O(

√
logn) · poly(D) rounds. That is, in the output solution,

the endpoints of every edge e = (u, v) know the connectivity λ(e) of this edge, as well as a
certificate for that connectivity.

Low Congestion Cycle Covers. A (d, c) cycle cover C is a collection of cycles of length at
most d, such that each edge appears on at least one cycle and at most c cycles. We will use
the recent deterministic distributed construction of cycle covers of [18].

I Lemma 19 ([18], Distributed Cycle Cover). For every bridgeless n-vertex graph G = (V,E)
with diameter D, one can compute a (d, c) cycle cover C with d = 2O(

√
logn) · D and

c = 2O(
√

logn), within Õ(d · c) rounds.

Combining the lemma above with the centralized construction of nearly-optimal cycle
covers of [17], we get:

I Corollary 20 (Distributed Opt. Cycle Cover). For an n-vertex graph G = (V,E) (not
necessarily connected), there is a randomized algorithm ApproxCycleCover that given the graph
G and parameter D′ computes w.h.p. a cycle collection C such that: (a) every edge e that lies
on a cycle Ce in G of length at most D′ is covered by a cycle C ′ ∈ C of length 2O(

√
logn) · |Ce|,

and (b) each edge appears on 2O(
√

logn) cycles. In the output format of the algorithm, every
edge e learns all the cycles in C that go through this edge. The round complexity of Alg.
ApproxCycleCover is 2O(

√
logn) ·D′.

The high level idea of Alg. ApproxCycleCover is based on the notion of neighborhood covers.
Roughly speaking, the k neighborhood cover for a graph G is a collection of subgraphs
G1, . . . , G` such that the following three properties hold: (1) for each vertex v, there is a
subgraph Gi that contains its entire k-hop neighborhood, (2) the diameter of each graph Gi
is O(k logn), and (3) each vertex appears on O(logn) subgraphs. Alg. ApproxCycleCover is
obtained by applying the cycle cover algorithm of Theorem 19 on each subgraph Gi in the

DISC 2019

30:12 Small Cuts and Connectivity Certificates

k neighborhood cover of G, for every value k = 2j , j ∈ {1, dlog(D′)e}. This increases the
total congestion of the cycles by at most a logarithmic factor. To see why this works,
consider an edge e that lies on a cycle Ce of length |Ce| ≤ D′ in G. Letting |Ce| ∈ [2j−1, 2j],
we have that Ce is fully contained in one of the subgraphs of a k neighborhood cover for
k = 2j . Hence, due to Theorem 19 the edge e is covered by a cycle of length 2O(

√
logn)|Ce|

as desired.

From Cycle Covers to Edge Connectivities. The algorithm for computing all the edge
connectivities is based on combining the FT-sampling approach with Alg. ApproxCycleCover.
In the high level, using the sampling technique, the algorithm attempts to compute not a
single cycle for covering an edge e = (u, v), but rather a collection of λ edge-disjoint cycles
that covers this edge (i.e., the edge e is the only common edge in these cycles). If it fails in
finding these edge disjoint cycles, it deduces that the u-v connectivity is less than λ. In the
latter case, it also finds all u-v cuts in G.

Let D′ = 2c·λ·D+1. The algorithm consists of ` = O(λ·Dλ logn) iterations that we treat
as experiments. In each experiment i, we sample each edge e ∈ E(G) into Gi with probability
p = (1− 1/(D′)λ), and compute a cycle cover Ci by applying Alg. ApproxCycleCover on Gi
with parameter D′. For every edge e = (u, v), let Gu,v =

⋃
i{C | e ∈ C,C ∈ Ci} be the

union of all cycles that go through e. The nodes u, v compute the edge connectivity of e
by locally computing the u-v cut in the subgraph Gu,v. For a pseudo-code of the algorithm
see Algorithm 1. By a similar argument to that of Cl. 9, we show:

B Claim 21. The subgraph Gu,v is a u-v connectivity certificate up to connectivity of λ.

Proof. Let e = (u, v) such that u and v are λ-edge connected. In other words, u and v are
(λ−1)-connected in G\{e}. Note that since the diameter of G\{e} is at most 2D, by Lemma
6, for every F ⊆ E(G) \ {e}, |F | ≤ λ− 2, we have that dist(u, v,G \ (F ∪ {e})) ≤ 2c · λ ·D.
Therefore, for any F ⊆ E(G) \ {e}, |F | ≤ λ − 2 the subgraph G \ F contains a cycle that
covers e of length at most D′ = 2c · λ ·D + 1.

To show that Gu,v is a λ-certificate for such a neighboring pair u, v (that is λ edge
connected in G), it is sufficient to show that for every failing of at most λ− 2 edges F where
e /∈ F , Gu,v contains a u-v path in Gu,v \ (F ∪ {e}). Or in the other words, that Gu,v \ F
contains a cycle that covers e.

Fix a failing set F , where e /∈ F and |F | ≤ λ − 2, and u and v are connected in
G\(F ∪{(u, v)}). We say that iteration i is successful for such a triplet 〈u, v, F 〉 if F ∩Gi = ∅,
(u, v) ∈ Gi and π(u, v,G \ (F ∪ {(u, v)})) ⊆ Gi. Note that in such a case, since Gi contains
a cycle of length at most D′ that covers e, Algorithm ApproxCycleCover computes a cycle
C ⊆ Gi that covers the edge e = (u, v), and thus a u-v path in Gi \ (F ∪ {e}) as desired. It
remains to show that w.h.p. every triplet 〈u, v, F 〉 has at least one successful iteration. Since
each edge is sampled w.p. p into Gi, the iteration is successful with probability Ω(1/Dλ).
By simple application of the Chernoff bound, we get that the probability that a given triplet
〈u, v, F 〉 does not have a successful iteration is at most 1/nc′·λ. Thus by applying the union
bound over all nλ+2 triplets, the claim follows. C

The proof of Lemma 18 follows by Cor. 20 and Cl. 21. Note that this algorithm can be
made deterministic while keeping the same round complexity, by using the derandomization
of the FT-sampling approach from Sec. 2.1 along with the deterministic neighborhood cover
construction of [12].

M. Parter 30:13

I Lemma 22. All edge connectivities, up to a constant λ, can be computed deterministically
in 2
√

logn·log logn · poly(D).

Proof. The algorithm requires two main adaptations. First the randomized algorithm
ApproxCycleCover is made deterministic by using the deterministic construction of neigh-
borhood covers of [12] that uses 2

√
logn·log logn rounds. In the second part, we use the

derandomization of the FT-sampling, as in the minimum cut algorithm. Overall, the total
round complexity is 2O(

√
logn·log logn) · poly(D). J

Algorithm 1 DistEdgeConnec(G = (V,E), λ).

Distributed Computation of λ-edge connected cycle covers.

1. For i = 1 to O(λ ·D)2λ:
Sample each edge e into Gi w.p. p = (1− 1/D′).
Ci ← ApproxCycleCover(Gi, D′).

2. C =
⋃
i Ci.

3. For every edge e = (u, v), let Gu,v = {C ∈ C | e ∈ C}.
4. λ(e) = MinCut(Gu,v).

4 Sparse Connectivity Certificates

Finally, we consider the related problem of computing sparse connectivity certificates. We
start by observing that an FT-spanner for the graph is also a connectivity certificate.

Fault Tolerant Spanners. Fault tolerant (FT) spanners [14, 4] are sparse subgraphs that
preserve pairwise distances in G (up to some multiplicative stretch) even when several edges
or vertices in the graph fails. These spanners have been introduced by Levcopoulos for
geometric graphs [14], and later on by Chechik et al. [4] for general graphs.

I Definition 23 (Fault Tolerant Spanners). For positive integers k, f , an f edge fault-tolerant
(2k − 1) spanner for an n-vertex graph G = (V,E) is a subgraph H ⊆ G satisfying that
dist(u, v,H \ F) ≤ (2k − 1)dist(u, v,G \ F) for every u, v ∈ V and F ⊆ E, |F | ≤ f . Vertex
fault-tolerant spanners are defined analogously where the fault F ⊂ V .

Chechik et al. [4] gave a generic algorithm for computing these spanners against edge failures.

I Fact 24 ([4]). Let A be an algorithm for computing the standard (fault-free) (2k − 1)
spanner with O(n1+1/k) edges and time t. Then one can compute f edge fault-tolerant (2k−1)
spanners with O(f · n1+1/k) edges in time O(f · t).

Dinitz and Krauthgamer provided a similar transformation for vertex faults that is based on
the FT-sampling technique, see Thm. 2.1 of [6].

Certificates from Fault Tolerant Spanners. The relation between FT-spanners and con-
nectivity certificates is based on the following observation.

I Observation 25. An f edge (resp., vertex) FT spanner H ⊆ G is a certificate for the f
edge (resp., vertex) connectivity of the graph.

DISC 2019

30:14 Small Cuts and Connectivity Certificates

Proof of Observation 25. Consider a λ-edge connected graph G, and let H be an f -FT-
spanner for G with f = λ− 1. We show that H is λ-edge connected, by showing that for
every vertex pair s, t and a subset of F edge faults, |F | ≤ f , there exists an s-t path in
H \ F . Let P be an s-t path in G \ F . Since G is λ-connected, such a path exists. For every
edge e = (u, v) ∈ P \H, it holds that dist(u, v,H \ F) ≤ 2k − 1, thus in particular, every
neighboring pair u, v on P are connected in H \ F , the claim follows. The proof of λ-vertex
connected graphs works in the same manner. J

Since spanners with logarithmic stretch have linear size, fault tolerant spanners with log-
arithmic stretch are sparse connectivity certificates. By using the existing efficient (in fact
local) distributed algorithms for spanners, we get:

I Observation 26. (1) There exists a randomized algorithm for computing a sparse λ-edge
certificate with O(λn) edges within O(λ · log1+o(1) n) rounds, w.h.p.; (2) There exists a
randomized algorithm for computing a λ-vertex certificate for the λ-vertex connectivity with
O(λ2 · logn) edges within O(λ3 · log2+o(1) n) rounds, w.h.p.;

Proof. Claim (1) follows by combining the ultra-sparse spanners construction of Pettie [20]
with Fact 24. To obtain sparse certificates, we use Fact 24 with algorithm A taken to be the
ultra-sparse algorithm by Pettie [20]. This algorithm computes an O(2log∗ n logn)-spanner H
with O(n) edges within O(log1+o(1) n) rounds. By taking λ disjoint copies of such spanner,
constructed sequentially one after the other, we obtain a certificate with O(λ ·n) edges. In the
same manner, Claim (2) follows by plugging the algorithm of Pettie [20] in the meta algorithm
for FT-spanners against vertex faults by Dinitz and Krauthgamer (Thm. 2.1 in [6]). J

While Obs. 26 gives efficient algorithm when λ = O(1), it is less efficient for large connectivity
values. In the next lemma we apply the edge sampling technique of Karger [13] to omit the
dependency in λ in the round complexity. Ideas along this line appear in [10].

I Lemma 27. For every λ = Ω(logn), and ε ∈ [0, 1], given an λ-edge connected graph G, one
can compute, w.h.p., an (1− ε)λ-edge sparse certificate within O(1/ε2 · log2+o(1) n) rounds.

Proof. We restrict attention to λ = Ω(logn), as otherwise, the lemma follows immediately
from Obs. 26. The key idea for omitting the dependency in λ is by randomly decomposing the
graph into spanning subgraphs each with connectivity min{λ,Θ(logn/ε2)} using random edge
sampling, and to run the algorithm of Obs. 26 on each of the subgraphs. We randomly put
each edge of G in one of µ subgraphs G1, . . . , Gµ for µ = dλ·ε2/(20 logn)e. Karger [13] showed
that each subgraph Gi has edge-connectivity in (1± ε)λ/µ with high probability. In addition,
the summation of the edge-connectivities λ1, . . . , λµ of the subgraphs G1, . . . , Gµ is at least
λ(1− ε). The algorithm then computes a λ′-edge sparse certificate Hi for λ′ = (1− ε)λ/µ in
each Gi subgraph simultaneously. The output certificate H is the union of all Hi subgraphs.

We next analyze the construction, and start with round complexity. Since theGi subgraphs
are edge disjoint, applying the algorithm of Obs. 26 takes O(λ′ · log1+o(1) n) rounds which is
O(log2+o(1) n) rounds. The edge bound follows immediately as |E(H)| = c · µ · λ′n = O(λn)
as required. It remains to show that H is indeed a (1 − ε)λ-edge connectivity certificate.
Consider a pair of vertices s, t, and a sequence of at most (1−ε)λ edge faults F . We will show
that s and t are connected in H \ F . Since the µ subgraphs are edge-disjoint, there must
be a subgraph Gi containing at most λ′ = (1− ε)λ/µ of the faults. Let Fi = F ∩Gi. Since
Gi is λ′-edge connected, s and t are connected in Gi \ Fi. Since Hi is a λ′-edge certificate
of Gi, it also holds that s and t are connected in Hi \ Fi and thus also in H \ F (i.e., as by
definition, (F \ Fi) ∩Hi = ∅). The claim follows. J

M. Parter 30:15

References
1 Noga Alon. Explicit construction of exponential sized families of k-independent sets. Discrete

Mathematics, 58(2):191–193, 1986.
2 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths

and Distance Sensitivity Oracles. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages 12:1–12:14, 2019.

3 Keren Censor-Hillel and Michal Dory. Fast Distributed Approximation for TAP and 2-Edge-
Connectivity. In 21st International Conference on Principles of Distributed Systems, OPODIS
2017, Lisbon, Portugal, December 18-20, 2017, pages 21:1–21:20, 2017.

4 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for
general graphs. SIAM Journal on Computing, 39(7):3403–3423, 2010.

5 Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Saranurak. Distributed Edge
Connectivity in Sublinear Time. In STOC, 2019.

6 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 169–178. ACM, 2011.

7 Michal Dory. Distributed Approximation of Minimum k-edge-connected Spanning Subgraphs.
In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
2018, Egham, United Kingdom, July 23-27, 2018, pages 149–158, 2018.

8 J Friedman. Constructing O (n log n) size monotone formulae for the k-th elementary
symmetric polynomial of n Boolean variables. In Foundations of Computer Science, 1984.
25th Annual Symposium on, pages 506–515. IEEE, 1984.

9 Mohsen Ghaffari. Improved Distributed Algorithms for Fundamental Graph Problems. PhD
thesis, MIT, USA, 2017. URL: https://groups.csail.mit.edu/tds/papers/Ghaffari/
PhDThesis-Ghaffari.pdf.

10 Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International
Symposium on Distributed Computing, pages 1–15. Springer, 2013.

11 Mohsen Ghaffari and Fabian Kuhn. Distributed Minimum Cut Approximation. arXiv preprint,
2013. arXiv:1305.5520.

12 Mohsen Ghaffari and Fabian Kuhn. Derandomizing Distributed Algorithms with Small
Messages: Spanners and Dominating Set. In 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pages 29:1–29:17, 2018.

13 David R Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, 24(2):383–413, 1999.

14 Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 186–195. ACM, 1998.

15 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparsek-
connected spanning subgraph of ak-connected graph. Algorithmica, 7(1-6):583–596, 1992.

16 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms. In
International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

17 Merav Parter and Eylon Yogev. Low Congestion Cycle Covers and Their Applications. SODA,
2019.

18 Merav Parter and Eylon Yogev. Optimal Short Cycle Decomposition in Almost Linear Time.
ICALP, 2019.

19 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
20 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distrib-

uted Computing, 22(3):147–166, 2010. doi:10.1007/s00446-009-0091-7.
21 David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space

sampling. ACM Transactions on Algorithms (TALG), 7(4):46, 2011.
22 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-Time Deterministic Network Decom-

position and Distributed Derandomization. arXiv preprint, 2019. arXiv:1907.10937.

DISC 2019

https://groups.csail.mit.edu/tds/papers/Ghaffari/PhDThesis-Ghaffari.pdf
https://groups.csail.mit.edu/tds/papers/Ghaffari/PhDThesis-Ghaffari.pdf
http://arxiv.org/abs/1305.5520
https://doi.org/10.1007/s00446-009-0091-7
http://arxiv.org/abs/1907.10937

30:16 Small Cuts and Connectivity Certificates

23 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

24 Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and bicon-
nected components. Journal of Algorithms, 23(1):160–179, 1997.

25 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

26 Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free and beyond.
IEEE circuits and systems magazine, 3(1):6–20, 2003.

27 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via
fast matrix multiplication. ACM Transactions on Algorithms (TALG), 9(2):14, 2013.

https://doi.org/10.1561/0400000010

	Introduction
	Small Cuts
	Sparse Connectivity Certificates
	Our Results

	Exact Computation of Small Cuts
	Deterministic Min-Cut Algorithms via Universal Sets

	Computation of All Edge Connectivities
	Sparse Connectivity Certificates

