
Polynomial-Time Fence Insertion for Structured
Programs
Mohammad Taheri
Sharif University of Technology, Tehran, Iran
sm.taheri@sharif.edu

Arash Pourdamghani
Sharif University of Technology, Tehran, Iran
pourdamghani@ce.sharif.edu

Mohsen Lesani
University of California at Riverside, CA, USA
lesani@ucr.edu

Abstract
To enhance performance, common processors feature relaxed memory models that reorder instructions.
However, the correctness of concurrent programs is often dependent on the preservation of the
program order of certain instructions. Thus, the instruction set architectures offer memory fences.
Using fences is a subtle task with performance and correctness implications: using too few can
compromise correctness and using too many can hinder performance. Thus, fence insertion algorithms
that given the required program orders can automatically find the optimum fencing can enhance
the ease of programming, reliability, and performance of concurrent programs. In this paper, we
consider the class of programs with structured branch and loop statements and present a greedy
and polynomial-time optimum fence insertion algorithm. The algorithm incrementally reduces fence
insertion for a control-flow graph to fence insertion for a set of paths. In addition, we show that
the minimum fence insertion problem with multiple types of fence instructions is NP-hard even for
straight-line programs.

2012 ACM Subject Classification Software and its engineering → Memory management; Software
and its engineering → Synchronization; Software and its engineering → Concurrent programming
structures

Keywords and phrases Fence Insertion, Synchronization, Concurrent Programming

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.34

Funding This project was supported by the NSF grant #1657204.

Acknowledgements We appreciate the reviewers of our DISC 2019 submission for constructive
comments.

1 Introduction

To gain performance, processors reorder instructions. However, the correctness of concurrent
programs is often crucially dependent on the preservation of the order of specific instructions.
For example, a flag should be set before another flag is read. Thus, architectures provide
memory fence instructions that preserve the relative order of specific instructions that
come before and after them in the program. Experts have been traditionally programming
synchronization algorithms with explicit fence instructions for specific architectures [7, 8,
12, 14]. The resulting program is an over-specification as it hard-codes the placement of
the fences that enforce the required orders for a particular architecture. Further, it is an
under-specification as the required orders that are implicitly provided by the architecture
do not explicitly appear in the program. Fences are just an implementation mechanism for

© Mohammad Taheri, Arash Pourdamghani, and Mohsen Lesani;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1251-6894
mailto:sm.taheri@sharif.edu
https://orcid.org/0000-0002-9213-1512
mailto:pourdamghani@ce.sharif.edu
mailto:lesani@ucr.edu
https://doi.org/10.4230/LIPIcs.DISC.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Polynomial-Time Fence Insertion for Structured Programs

b

a

d

e

g

h

c

f

(a) Control-flow graph (with solid arrows) and
required orders (with dashed and dotted arrows).

b

a

g

h

c

b

d

e

g

f

(b) Decomposition.

Figure 1 Fence insertion for structured programs.

high-level order requirements. Concurrent algorithm designers require the order of certain
instructions in their algorithms to be kept during the execution, and can readily declare
these orders. Given the high-level order requirements [4, 11, 9], automatic synthesis tools
that can decide the optimum fence insertion can enhance the ease of programming, reliability,
maintainability, portability and performance of synchronization algorithms. This approach
separates what from how. Programs can be verified using architecture-independent and
algorithm-level reasoning and tools can automatically translate the program to multiple
target architectures.

Lee et al. [21], Fang et al. [15], and Alglave et al. [5] presented methods to insert fences
that enforce sequential consistency. Others have tried to infer the required orders including
Kuperstein et al. [18], Meshman et al. [25] and Dan et al. [13]. Bender et. al. [9] proposed to
capture the required orders as a relation on the statements of each thread and implemented
a compiler to translate these declared orders to optimum fence insertion. Optimum fence
insertion for general programs can be modeled as the minimum multi-cut problem that
is NP-hard. The compiler presented in [9] used an exponential-time algorithm to insert
optimum fences. Later Lesani [22] presented a polynomial-time fence insertion algorithm for
the class of straight-line programs. This posed the problem of whether there are optimum or
approximation algorithms for fence insertion to programs with basic control structures.

In this paper, we introduce a greedy and polynomial-time optimum fence insertion
algorithm for the class of structured programs. This class includes programs that use
structured branching statements such as if-then-else and switch-case and structured loop
statements such as while and for. Further, through a reduction from the minimum set cover
problem, we show that the minimum fence insertion problem with multiple types of fence
instructions is NP-hard even for straight-line programs.

We observed that the control-flow graph of programs with structured branching has the
structured form of nested diamonds. Figure 1.(a) shows an example. The diamond that
branches at vertex b and merges at vertex g can represent an if-then-else statement where the
left branch represents the then statement and the right branch represents the else statement.
The example requires three orders: the order from c to h, from d to f , and from e to h

should be enforced. The orders are shown as arrows. We use both dashed and dotted arrows
to easily distinguish overlapping orders. The order between two vertices can be preserved
in a path between them by placing a fence on an edge of the path. What is the minimum
number of fences to preserve all the required orders?

M. Taheri, A. Pourdamghani, and M. Lesani 34:3

b

a

g

j

n

p

c

f

l

e

m

o

i

k

h

d

Figure 2 An example of AFG and its constraints. A constraint 〈s, t〉 is shown as a dashed arrow
from the source s to the sink t. The diamonds 〈e, m〉 and 〈g, n〉 are at level 0. The diamond 〈c, o〉
is at level 1 and the diamond 〈b, p〉 is at level 2. The constraint 〈h, k〉 is an internal constraint for
the diamond 〈e, m〉, the constraint 〈d, j〉 is a spanning constraint for the diamond 〈g, n〉, and The
constraint 〈d, p〉 is a passing constraint for the diamond 〈g, n〉.

In this paper, we present an algorithm that reduces fence insertion for structured control-
flow-graphs to fence insertion for a set of paths. It also presents a transformation that
reduces fence insertion for looping structured programs to loop-free structured programs.
For example, fence insertion for the graph shown in Figure 1.(a) is reduced to fence insertion
for the two paths shown in Figure 1.(b). The high-level idea is that we can incrementally
transform a diamond to a single branch by extracting branches. Fences can be independently
inserted for the extracted branches. For example, the right branch of Figure 1.(a) is extracted
in Figure 1.(b). The orders within a branch can be only preserved by fences inserted within
that branch. Thus, the extracted right branch takes the order from d to f with it. Further,
the extracted right branch can cover the spanning order from e to h with no extra fences.
Thus, it takes in the spanning order from e to h too; it takes it as the shrunk order from e

to g. Thus, fence insertion for the extracted right branch covers both constraints from d to f

and from e to h. The left branch and the vertices above and below the diamond make the
second path. The order from c to h overlaps with the left branch and stays within the second
extracted path. The result is two paths and fencing for each can be done in polynomial time.
We will elaborate on the algorithm in the following sections.

In the following sections, we first define the problem model (Section 2) and then present
the greedy fence insertion algorithm for loop-free structured programs and state its optimality
and complexity (Section 3). We then present a reduction from fence insertion for looping
programs to fence insertion for loop-free programs (Section 4). Then, we prove the NP-
hardness of fence insertion with multiple fence types (Section 5). Finally, we discuss the
related works (Section 6) before we conclude (Section 7).

DISC 2019

34:4 Polynomial-Time Fence Insertion for Structured Programs

2 Problem Model

We now present the basic definitions and the problem instances that we use throughout
the paper.

We consider the problem of minimum fence insertion for the set of structured programs
that use branching statements such as if-then-else and switch-case and loop statement such
as while and for. We represent this problem as the pair 〈G, C〉. The graph G = 〈V, E〉 is
the control-flow graph (CFG) of the program. Each vertex v ∈ V represents an executable
instruction, and each edge e ∈ E represents an execution transition. The control-flow graphs
for loop-free structured programs are acyclic; thus, we call them Acyclic Flow Graphs (AFG).
The constraints C is the set of pairs of vertices of G that represent the required orders: a
constraint is represented as a pair 〈s, t〉, where s and t are both vertices in V such that t is
reachable from s. Figure 2 illustrates an instance of the fence insertion problem. The order
between two vertices of a constraint can be preserved in a path between them by placing
a fence on an edge of the path. To preserve the required order of a constraint between
two vertices, a fence should be inserted in each path between them; then, we say that the
constraint is covered by the inserted fences. Common hardware memory models do not allow
reordering at the branch instructions. Therefore, we assume that branch instructions have
implicit fences. Given a problem instance 〈G, C〉, the goal is to find the minimum number of
fences that preserve all the constraints. We call the set of fences inserted on the edges of a
graph, a fencing for that graph.

An AFG has a structured shape of nested diamonds. It has only one vertex with the
input degree 0 that we call the start vertex and denote by v0. It has only one vertex with
the output degree 0 that we call the end vertex. Vertices with output degree more than one
are called branch vertices and denoted by b. Vertices with input degree more than one are
called merge vertices and denoted by m. The branch vertices start and the merge vertices
end diamonds. Diamonds will help us reduce the problem on large graphs into a set of simple
paths. A simple path is a path that has no branch vertex or merge vertex, except its head
and tail. Diamonds are nested. A pair of 〈b,m〉 is a diamond of level 0 (called a simple
diamond) iff (1) b is a branch vertex and m is a merge vertex and (2) all the paths starting
from b reach m and all such paths are simple. In Figure 2, 〈e, m〉 and 〈g, n〉 are diamonds of
level 0. A pair of 〈b, m〉 is a diamond of level k iff (1) b is a branch vertex and m is a merge
vertex and (2) all the paths starting from b reach m, and if there is any branch vertex in
between, it should be the starting vertex of a diamond of a level less than k whose merge
vertex is not m. In Figure 2, 〈c, o〉 is a diamond of level 1 and 〈b, p〉 is a diamond of level 2.

Given a diamond, we categorize constraints into three types with respect to that diamond.
A constraint is internal if both end points of the constraint are in the diamond. For example,
in Figure 2, the constraint 〈h, k〉 is an internal constraint for the diamond 〈e, m〉. A constraint
is spanning if only one of its endpoints is in the diamond. For example, in Figure 2, the
constraints 〈d, j〉 and 〈j, p〉 are spanning constraints for the diamond 〈g, n〉. A constraint
is passing if it passes over the diamond. More precisely, the branch vertex of the diamond
is reachable from the source vertex of the constraint, the sink vertex of the constraint is
reachable from the merge vertex of the diamond and every path from the source to the sink
vertex of the constraint contains branch and merge vertices of the diamond. For example,
in Figure 2, the constraint 〈d, p〉 is a passing constraint for the diamond 〈g, n〉. Since the
branch vertex of a diamond is a jump instruction and the end vertex of a diamond represents
the end label of the branch, there is no constraint between the two in real-world programs.
Thus, we assume that constraints do not start at the branch vertex and finish at the merge
vertex of a diamond.

M. Taheri, A. Pourdamghani, and M. Lesani 34:5

3 Fence Insertion Algorithm for Loop-free Programs

Algorithm 1 Fence Insertion.

1: procedure FenceInsertion (〈AF G, C〉)
2: Eliminate the constraints in C that are implicitly preserved in AF G.
3: Find diamonds in AF G and
4: store them in a minimum priority queue q based on their levels. (Algorithm 2)
5: Decompose the diamonds in q into a set of simple paths and their constraints and
6: find the optimum fencing for each. (Algorithm 3 and Algorithm 4)
7: Return the union of the fences placed on the simple paths.

In this section, we present an algorithm (Algorithm 1) that finds the optimal solution to
the fence insertion problem for a given AFG in polynomial time. The algorithm has three
steps. In the first step, it eliminates the constraints that are implicitly preserved, from the
AFG. In the second step, it finds the diamonds of the AFG and puts them into a minimum
priority queue based on their levels. The idea behind the algorithm for this step is to run
a breadth-first search to label the merge and branch vertices, and then match them up
accordingly. These labels are also used to assign the level of each diamond. The third step
of the algorithm iterates through the diamonds in the priority queue and decomposes them
into a set of separate simple paths. In this step, it also calculates the optimal fencing for
each of the simple paths. Finally, it returns the union of these fencings. We will visit each of
these steps in turn.

3.1 Constraint Elimination
Hardware memory models such as x86-TSO, SPARC TSO, MIPS and RISC-V can preserve
control dependencies [27, 6, 3]. Therefore, spanning constraints that start before the branch
vertex of a diamond and end inside a branch path of the diamond are implicitly preserved.
Similarly, the passing constraints are implicitly preserved. For example, in the graph of
Figure 2, the spanning constraints 〈a, g〉 and 〈d, j〉, and the passing constraint 〈d, p〉 are
implicitly preserved. As Figure 5.(a) shows, the implicitly provided constraints are eliminated
from the graph before the next steps. These constraints can be simply eliminated as follows:
traverse the vertices from the start vertex, and at each branch vertex, eliminate the constraints
which have been started but not finished.

3.2 Finding diamonds
In this section, we present an algorithm (Algorithm 2) that finds all the diamonds of the
input graph and computes their levels. It returns a minimum priority queue of the diamonds
based on their levels.

The algorithm starts from the start vertex v0 of the graph and traverses the vertices by
a breadth-first-search. It calculates a label for each vertex. It initializes the label of the
start vertex v0 to 0. In each iteration, a vertex v is visited. If v is not a branch vertex,
the algorithm sets the label of v to the maximum of the labels of its parents. On the other
hand, the labels advance on each branch. If v is a branch vertex, it sets the label of v to
one plus the maximum of the labels of its parents. It also adds the branch vertex to a stack.
If v is a merge vertex, its corresponding branch vertex b is popped from the stack. A new
diamond is found with the branch vertex b and merge vertex v. The level of the diamond is
the difference of the labels of the merge and branch vertices. When a diamond is found, it is
added to a priority queue based on its level. Finally, the priority queue is returned.

DISC 2019

34:6 Polynomial-Time Fence Insertion for Structured Programs

b

a

g

j

n

p

c

f

l

e

m

o

i

k

h

d

0

1

12

23 2

3

3

3

3

2

2

2

3

3

0 1 2 0

Figure 3 An example execution of Algorithm 2 that finds diamonds on the graph in Figure 2.
The calculated label of each vertex is shown close to it. Four diamonds are found. The numbers with
the dark background show the level of the enclosing diamonds. level(〈e, m〉) = 0, level(〈g, n〉) = 0,
level(〈c, o〉) = 1, level(〈b, p〉) = 2.

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.
The calculated label of each vertex is shown close to it and the numbers with the dark
background show the level of the enclosing diamonds. The label of the start vertex a is 0.
The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels
of the merge vertices m and o are both 3. Thus, the level of the diamond 〈e, m〉 is 0 and the
level of the diamond 〈c, o〉 is 1. The algorithm finds four diamonds with the following levels:
level(〈e, m〉) = 0, level(〈g, n〉) = 0, level(〈c, o〉) = 1, and level(〈b, p〉) = 2.

Algorithm 2 Finding Diamonds

1: procedure FindDiamonds (AF G)
2: . parents(v) and children(v) return parents and children of v in AF G

3: . Uses the FIFO queue q, the marked set m, the branch stack s and the priority queue p

4: label(v0) := 0
5: Add v0 to q

6: while q is not empty do
7: Pop v from q

8: Add v from m

9: label(v) := maxp∈parents(v) label(p)
10: if v is a branch vertex then
11: Push v to s

12: label(v) := label(v) + 1
13: if v is a merge vertex and all of its parents are in m then
14: Pop branch vertex b from the stack
15: Add diamond 〈b, v〉 with level label(v)− label(b) to p

16: else
17: continue.
18: Add children(v) that are not in m to q

19: return p

M. Taheri, A. Pourdamghani, and M. Lesani 34:7

b

a

d

f

g

h

c

e

(a) Example diamond 1.

b

a

d

f

g

h

c

e

(b) The diamond (a) after con-
straint elimination. The path
bceg is absorbing. The path bdfg
is emitting.

b

a

d

f

g

h

c

e

(c) The diamond (b) after the
transformation of the spanning
constraints. The constraints
〈e, h〉 and 〈e, g〉 are updated to
〈f, h〉 and 〈g, h〉.

Figure 4 Transformation of spanning constraints.

3.3 Decomposing Diamonds into Simple Paths

Algorithm 3 Decomposing Diamonds into a Set of Simple Paths.

1: procedure FenceInsertion (q) . q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ∅.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F

9: if t is absorbing then
10: Update the end point of the spanning constraints to the merge point of d.
11: else . t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into
simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds
from the innermost to the outermost. For each diamond, it incrementally extracts simple
paths until only a simple path remains in the diamond. Therefore, the degree of the nesting
diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As
the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited
when they are already simple.

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple
paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the
internal constraints of the path. The rationale for the separation of paths is that the internal
constraints of a path can be covered by only fences inside the path. Thus, the optimum
fencing for the internal constraints can be locally determined. The algorithm then checks if
the resulting fence placement can cover the spanning constraints of the path.

Accordingly there are two path types: absorbing and emitting. We use an example in
Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows
the resulting diamond after eliminating constraints that are implicitly preserved by the
control dependencies. We illustrate the two path types on the diamond in Figure 4.(b).

DISC 2019

34:8 Polynomial-Time Fence Insertion for Structured Programs

b

a

g

j

n

p

c

f

l

e

m

o

i

k

h

d

(a) The graph of Figure 2 after
constraint elimination.

b

a

g

j

n

p

c

f

l

e

m

o

d

g

n

h

i

k

m

e

(b) Decomposing diamonds of
level 0.

b

a

g

j

n

p

c

f

l

e

m

o

d

g

n

h

i

k

m

e c

o

(c) Decomposing diamonds of
level 1.

Figure 5 Decomposition of Nested Diamonds into a Set of Simple Paths.

b

a

g

j

n

p

c

f

l

e

m

o

d g

n

h

i

k

m

e c

o

b

p

Figure 6 The Final Set of Simple Paths
for Figure 5.(a)

a

b

c

d

e

f

g

h

i

j

Figure 7 Fence insertion for a simple path. The
algorithm visits the constraints in the order 〈a, c〉,
〈b, d〉, 〈c, e〉, 〈f, i〉, 〈g, i〉, and 〈h, i〉 and inserts the
fences 〈b, c〉, 〈d, e〉, and 〈h, i〉. The inserted fences
cover the spanning constraint starting from g.

M. Taheri, A. Pourdamghani, and M. Lesani 34:9

Absorbing: A path of a simple diamond is absorbing if the required fences for its internal
constraints can cover its spanning constraints as well. For example, the paths bceg in
Figure 4.(b) is absorbing because a fence at 〈e, g〉 handles both constraints.
Emitting: A path of a simple diamond is emitting if it is not absorbing. In other words, a
path is emitting if the required fences for its internal constraints cannot cover its spanning
constraints. For example, the paths bdfg in Figure 4.(b) is emitting. The optimum fencing
for the path bdfg in Figure 4.(b) is one fence on the edge 〈d, f 〉 that does not cover the
constraint 〈f , h〉.

To extract simple paths from a diamond, its spanning constraints should be transformed
to be totally in or out of the path. The algorithm updates the spanning constraints of the
paths according to their types. Absorbing paths absorb them inside and emitting paths emit
them outside of the path. The rationale behind this transformation is that an absorbing path
can cover the spanning constraint with no extra fence in the path. Thus, extra constraints
are covered without increasing the number of fences. Therefore, the spanning constraint is
pulled inside the path. On the other hand, in an emitting path, an extra fence is needed
to cover the spanning constraint. This extra fence cannot cover any additional constraints
inside the path but may cover other constraints outside the path. Therefore, the spanning
constraint is pushed outside. Thus, the algorithm performs the following two transformations.
(1) Transformation for absorbing paths: The spanning constraints stay in the path. The
endpoints of the spanning constraints are updated to the merge point of the diamond. For
example, in Figure 4.(b), the constraint 〈e, h〉 is updated to 〈e, g〉. (2) Transformation for
emitting paths: The spanning constraints are pushed out of the path. The start points of
the spanning constraints are updated to the merge point of the diamond. For example, in
Figure 4.(b), the constraint 〈f, h〉 is updated to 〈g, h〉. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of different levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are 〈e, m〉 and 〈g, n〉. For the diamond 〈e, m〉, the left simple path ehikm is extracted.
The constraint 〈k, p〉 is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge 〈i, k〉 that does not cover the
spanning constraint 〈k, p〉. So the path is emitting and the constraint 〈k, p〉 is shrunk to
〈m, p〉. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is 〈g, n〉. The left edge 〈g, n〉 with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is 〈c, o〉. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
one diamond 〈b, p〉 left. After Algorithm 3 processes this diamond, the end result is the set
of simple paths shown in Figure 6. The diamond 〈b, p〉 has no spanning constraints and it is
simply split into two simple paths. The graph is decomposed into five separate simple paths.

3.4 Fence Insertion for Simple Paths
In this section, we present an algorithm (Algorithm 4) that finds the optimum fencing for
simple paths. More precisely, given the internal constraints of a simple path and a bottom
spanning constraint, the algorithm finds a minimal fence placement that covers the internal
constraints and also decides whether the spanning constraint can be covered by no more
fences. The algorithm can be trivially extended for more spanning constraints.

DISC 2019

34:10 Polynomial-Time Fence Insertion for Structured Programs

Algorithm 4 Fence Insertion and Deciding the Type for a Simple Path.

1: procedure FenceInsertionForSimplePath (C, s)
2: . C is the set of internal constraints and s is the spanning constraint.
3: Initialize F to ∅.
4: Sort C to a list L according to the end point in the top-to-bottom order.
5: for (each constraint c in L in order) do
6: Add to F a fence f on the last edge of c.
7: Remove from C the constraints that are covered by f .
8: if (f covers s) then
9: Return 〈F, absorbing〉
10: else
11: Return 〈F, emitting〉

We illustrate the algorithm using the simple path shown in Figure 7 as an example. The
example path has the set C of six internal constraints and a spanning constraint s at the
bottom with the start vertex g and no end vertex. The algorithm first sorts the given set C

of internal constraints to a list L according to their endpoints in the top-to-bottom order.
In the example, the sorted order can be 〈a, c〉, 〈b, d〉, 〈c, e〉, 〈f, i〉, 〈g, i〉, and 〈h, i〉. It then
iterates over constraints in L in order. For the current constraint c, the algorithm adds
a fence at the bottom edge of c. It then removes any later constraint that is covered by
the inserted fence. The rationale for putting the fence at the bottom edge is to cover the
current constraint and also reach as far down as possible to cover the later constraints if
possible. In the example, first the constraint 〈a, c〉 is visited and a fence is inserted at the
edge 〈b, c〉. This fence covers the constraint 〈b, d〉 as well; so, it is removed from L. Next, the
constraint 〈c, e〉 is visited that results in the insertion of the fence 〈d, e〉. Similarly, the next
constraint 〈f, i〉 results in the fence 〈h, i〉. This fence covers the other two constraints as well.
So the resulting set F of fences is 〈b, c〉, 〈d, e〉, and 〈h, i〉. The algorithm then checks whether
the inserted fences cover the spanning constraint as well. If it does, the path is absorbing;
otherwise, the path is emitting. In this example, the spanning constraint starting from g is
covered by the inserted fence 〈h, i〉. So, the algorithm returns the set of fences F and that
the path is absorbing.

3.5 Optimality and Complexity

In this section, we show that the optimality of the algorithm. We show that every optimal
solution needs at least the number of fences that the algorithm inserts. In addition, we show
the time and space complexity of the algorithm.

I Theorem 1. Algorithm 4 provides optimum fence insertion for simple paths.

Proof. The proof is by the following pair of facts. First, the size of the optimum solution is
at least the size of every set of non-overlapping constraints. Second, the constraints that
lead to addition of fences are non-overlapping. The algorithm visits the constraints by
their endpoints, inserts fenced in the last edges of constraints, and removes all the covered
constraints. Thus, if a fence is inserted for a constraint, its start point can be only at or
after the end point of the last constraint that required a fence; thus, the two constraints do
not overlap. J

I Theorem 2. Algorithm 1 provides optimal fence insertion for AFGs.

M. Taheri, A. Pourdamghani, and M. Lesani 34:11

Proof. We prove this fact by induction on the level of diamonds. In the base case, suppose
we have a diamond of level 0. The internal constraints of a branch can be covered by only
fences inside the branch. Algorithm 1 uses Algorithm 4 to find the fencing for the branches of
the diamond. By Theorem 1, each of these fencings are optimal for the internal constraints
of that branch. Further, Algorithm 4 puts fences on the lowest possible edges. At the end, it
checks whether the inserted fences can cover the spanning constraint as well and accordingly
decides whether the paths are of absorbing or emitting type. Based on the type of the path,
Algorithm 1 transforms the spanning constraints of the path: an absorbing path absorbs it
inside and an emitting path emits it outside of the path. An absorbing path can cover the
spanning constraint with no extra fence in the path. Thus, extra constraints are covered
without increasing the number of fences. Therefore, the solution stays optimum after pulling
the spanning constraint inside the path. On the other hand, in an emitting path, an extra
fence is needed to cover the spanning constraint. If an extra fence is inserted inside the
path, it cannot cover any additional constraints inside or outside the path. However, if it is
put outside the path, it may cover other overlapping constraints. Therefore, pushing the
spanning constraint outside can result in either the same or fewer number of fences. In the
inductive case, consider a diamond of level k. Algorithm 1 reduces nested diamonds of lower
levels to simple paths; thus, the diamond is reduced to a diamond of level 0. With the same
argument as the base case, Algorithm 1 finds the optimum fencing. J

I Theorem 3. Algorithm 1 is of O(|C|log|C| + |C||V | + |V |log|V |) time and O(|C| + |V |)
space complexity.

Proof. Algorithm 1 has three steps and its time complexity is the sum of their complexity.
We consider each step in turn. We note that it takes O(|C|+ |E|) space to represent the input.

In the first step, we eliminate the constraints that are implicitly covered by the branch
vertices. The algorithm traverses the vertices from the start vertex, and for each branch
vertex eliminates the constraints which have been started but not finished. Since each edge
and each constraint is visited just once, the running time is O(|C| + |E|). Additionally, we
do not need any extra memory for running this step. Therefore, its space complexity is
O(|C| + |E|).

In the second step, the algorithm finds the diamonds (Algorithm 2) by traversing the
graph vertices using a breath-first-search and pushes the diamonds into a priority queue. So,
it takes O(|E|log|E| + |V |) time. The algorithm uses data structures that store vertices and
thus, needs O(|V |) extra space for this step.

In the third step, the algorithm decomposes the diamonds (Algorithm 3) into simple
paths and finds the optimum fencing for them. Algorithm 3 applies Algorithm 4 to each
branch of each diamond. For a path p, let Cp be set of constraints on p. Algorithm 4
sorts Cp, which takes O(|Cp|log|Cp|) and then traverses Cp and inserts fences which takes
O(|Cp|). Therefore, its time complexity is O(|C|log|C|). Also, it needs at most O(|E|) space
to represent the fencing. Thus, fence insertion for the branches takes O(|C|log|C|) time and
O(|E|) space for all the diamonds. In addition, Algorithm 3 updates spanning constraints for
branches and extracts branches of each diamond. The graph has at most O(|E|) diamonds
and in the worst case, a constraint may need to be updated when each diamond is visited.
Therefore, updating the constraints takes O(|E||C|) time. It only needs O(|E|) additional
space to represent the extracted paths.

We now sum the complexity of the steps. The time complexity of Algorithm 1 is O(|V | +
|E|log|E| + |C| log |C| + |C||E|). The space complexity of Algorithm 1 is O(|C| + |E| + |V |).
To further simplify these orders, we show that |E| ∈ O(|V |). It is easy to see that the

DISC 2019

34:12 Polynomial-Time Fence Insertion for Structured Programs

u1

v1

v2

v3

v4

v5

v6

v7

v8

u2

u3u4

Figure 8 Reduction Example.

a

b

g

h

c

e

f

(a) A CFG with a loop.

a

b

g

h

c

e

f

b'

(b) Transformation to an AFG.

Figure 9 Converting a Loop to a Diamond.

sum of the degree of all the merge vertices of an AFG is O(|V |). Similarly, the sum of
the degrees of all the branch vertices of an AFG is O(|V |). Also, the sum of the degrees
of all non-merge non-branch vertices is O(|V |). As a result, the sum of degrees of all the
vertices is O(|V |) thus, |E| ∈ O(|V |). Therefore, the time complexity of Algorithm 1 is
O(|V |log|V | + |C|log|C| + |C||V |) and its space complexity is O(|C| + |V |) J

4 Fence Insertion for Loops

In this section, we present a transformation for loops in a given CFG with loops to an AFG.
Therefore, we can reduce fence insertion for any CFG to an AFG and use Algorithm 1 to
find an optimal fence insertion.

We illustrate the transformation using an example. Figure 9.(a) shows a CFG with a
loop. The vertex b is the branch instruction: it jumps either to the body of loop at the
vertex c or out of the loop to vertex g. We call the edge 〈b, c〉 that jumps from the branch
vertex to the loop body, the start edge. The body of the loop is a CFG in general. In this
example, it is the simple path cef . We call the edge 〈f, b〉 that jumps from the end of the
loop body back to the branch vertex, the return edge. We call the edge 〈b, g〉 that jumps
from the branch vertex out of the loop, the exit edge.

We now transform the CFG in Figure 9.(a) to the AFG in Figure 9.(b). The graph has
two internal constraints in the loop body: 〈e, c〉 and 〈c, f〉, and the constraint 〈f, h〉 from
inside the loop body to outside of the loop. The constraint 〈e, c〉 is upwards: it requires
the execution of e in one iteration of the loop to be executed before the execution of c in
the next iteration of the loop. We notice that the branch instruction b is executed between
the instructions of any iteration and the next. As mentioned in Subsection 3.1, hardware
memory models can preserve control dependencies. Thus, the order of instruction between
one iteration and the next is preserved. Therefore, the constraint 〈e, c〉 in Figure 9.(a) is
implicitly enforced and is eliminated in Figure 9.(b). The constraint 〈f, h〉 will be eliminated
with the same argument. Thus, we should preserve the constrains when the loop body is
either executed once in an iteration or is not executed. To represent these two paths in a

M. Taheri, A. Pourdamghani, and M. Lesani 34:13

diamond, we add a vertex b′ to represent a dummy instruction after the loop. The return
edge 〈f, b〉 is updated to 〈f, b′〉. The exit edge 〈b, g〉 is updated to a dummy edge 〈b, b′〉 and
the edge 〈b′, g〉. Thus, the loop is transformed to the diamond 〈b, b′〉 and the constraint 〈c, f〉
remain unchanged.

No constraint ends at b′. Thus, Algorithm 4 puts no fence on the dummy edge 〈b, b′〉. In
addition, the transformation did not change the constraints in the body or out of the body
of the loop. Any fence on the new edge 〈b′, g〉 corresponds to a fence on the old edge 〈b, g〉.
Therefore, if a fence is needed in the resulting AFG, it is needed in the CFG as well and will
cover the same set of constraints. Therefore, every optimal fence insertion for the AFG is an
optimal fence insertion for the CFG.

5 Multi-type Fence Insertion Problem

Common architectures often offer different fence instructions that preserve the order of
certain instruction pairs. In this section, we study the complexity of the insertion problem
when there are different types of constraints and fences such that each fence type can cover
a subset of the constraint types. (We note that these constraint types are defined based on
the endpoint instructions for a target architecture, and are irrelevant to the three constraint
types presented in Section 2.) We show that this problem is NP-hard even for straight-line
programs through a reduction from the set cover problem.

An instance of the Multi-type Fence Insertion problem is defined as 〈CT, FT, G, C〉. CT is
the set of constraint types. Each constraint has a type according to its endpoint instructions.
FT is the set of fence types. Each fence type can cover a certain subset of the constraints
types CT . G is the CFG. C is the set of constraints on G of different types from CT . The
goal is to find the minimum number of fences, regardless of their types from FT , to cover C.

We provide a polynomial-time reduction from the minimum set cover problem to the
multi-type fence insertion problem. The set cover has been one of the fundamental problems in
computer science [17]. It has been shown that the minimum set cover problem is NP-hard [10]
and it can be approximated with a O(log n) factor [16].

I Theorem 4. The multi-type fence insertion problem is NP-hard.

Proof. We provide a reduction from an instance I of the minimum set cover problem to an
instance of I ′ the multi-type fence insertion problem for straight-line programs. Consider
an instance I of the minimum set cover problem 〈U, S〉 where U = {u1, u2, . . . , un} is the
set of all elements and S = {S1, S2, S3, . . . , Sk} are the subsets of U . The goal is to find the
minimum number of the subsets in S that cover U .

The reduction defines the set of constraint types CT to be U . Each element of the set
U corresponds to constraint type. The reduction also defines the set of fence types FT to
be S. Each fence type Si covers the set of constraint types that correspond to the elements
in Si. The reduction constructs a straight-line program with 2n instructions. Then, for
each element ui ∈ U , it creates a constraint ci = 〈vi, v2n−i〉 with type ui. Therefore, each
constraint ci will starts at the vertex vi and ends at the vertex v2n−i and can be covered by
a fence Si that includes the element ui. Let us call the constructed instance I ′.

As an example consider a minimum set cover instance with U = {u1, u2, u3, u4} and
S = {{u1, u3}, {u1, u2, u4}, {u3, u2}}. As Figure 8 shows, it is reduced to a straight-line
program with 8 instructions. The set of constraint types is U and the set of fence types is
S. The constraints will be 〈v1, v8〉, 〈v2, v7〉, 〈v3, v6〉 and 〈v4, v5〉 of types u1, u2, u3 and u4
respectively.

DISC 2019

34:14 Polynomial-Time Fence Insertion for Structured Programs

First, we show that given a solution of the set cover instance I, a solution for the multi-
type fence insertion problem I ′ can be constructed. Consider that the solution of I has
chosen the subsets Si to cover U . In the solution of I ′, we use the fences corresponding to
the subsets Si that I has chosen. The fences are all put in the middle edge of G. Since the
subsets Si cover all the elements u in U , the inserted fences Si can cover the constraints that
are of any type u in U . All the constructed constraints are of a type u in U ; thus all of them
are covered by the inserted fences. Next, we show that given a solution for the minimum
multi-type fence insertion I ′, a solution for the minimum set cover I can be constructed. Any
solution for the multi-type fence insertion can be transformed to a solution for it with the
same number and type of fences by moving the fences to the middle edge. This is because the
middle edge is in the middle of all the constraints. Thus, we consider an optimum solution
for I ′ that has all the fences in the middle edge. A solution for the minimum set cover I can
be constructed by simply choosing the sets Si that correspond to the inserted fences in the
solution of I ′. Because otherwise, a smaller set cover for I can be transformed to a smaller
fence insertion for I ′ that contradicts the assumption that the solution for I ′ is optimum. J

6 Related Work

In this paper, we introduced a polynomial-time algorithm to find the optimal fence insertion
for structured programs and showed that fence insertion with multiple fence types is NP-hard.
The previous methods that involve fence insertion can be grouped into the following categories.

Sequential Consistency: There have been attempts to insert fences to enforce sequential
consistency. Lee et al. [21] used delay set analysis and dominators to reduce the number
of fences that provide sequential consistency. To preserve sequential consistency during
compilation, Fang et al. [15] applied several techniques to enhance fence insertion for
memory models of specific architectures (SMPs on IBM Power 3 and Pentium 4). Linden
et al. [23] presented a heuristic approach to output a correct but maybe suboptimal fence
insertion to preserve sequential consistency on the x86-TSO memory model. Abdulla
et al. [1, 2] applied reachability analysis for TSO and PSO memory models to optimize
fence insertion for finite-state programs. Also, Alglave et al. [5] presented a practical
and approximate static approach for fence insertion. They showed that certain cycles
represent the violation of sequential consistency, statically detect the cycles and insert
fences to remove them. The above related works try to preserve sequential consistency,
are often empirical and do not focus on optimality guarantees. We observe that the
correctness of concurrent programs is often dependent on only a few crucial orders rather
than complete sequential consistency. Given these required orders, this paper presented a
fence insertion algorithm that finds the optimum fencing to preserve them.

Inference: A few projects applied different techniques to automatically infer the required
orders for the correctness of concurrent programs. Given a program, a correctness
property, and a memory model, Kuperstein et al. [20] infer the required execution orders.
They perform a whole-program state-space exploration that produces a logical formula,
solve the formula to get a set of execution orders, and use those orders to insert fences.
This approach infers sound but maybe suboptimal fence orders. Their follow-up works
[19, 25, 13] extend the approach to degrees of infinite-state programs. Liu et al. [24]
presented a dynamic inference approach that tests the input program to expose violations
and adds orders to prevent the violations. The fence insertion algorithm presented in
this paper takes the required orders as input and finds the optimum fencing to preserve
them. The tools above can assist algorithm designers to declare the set of orders that are
sufficient for correctness of the program.

M. Taheri, A. Pourdamghani, and M. Lesani 34:15

Fence Elimination: To reduce the number of fences on a given relaxed memory model, there
are practical techniques that eliminate redundant fences. Vafeiadis et al. [28] remove
redundant fences that precede later fences or locked instructions. Morisset et al. [26]
remove redundant fences for x86, ARM, and Power in the LLVM backend. Unlike the
two above works that present correct techniques to reduce the number of fences, this
paper proposes a fence-insertion algorithm with proof of optimality.

Hardness and Optimality: Lee et al. [21] showed that the decision version of the fence
insertion problem with one type of fence on a general graph is NP-Complete. Bender et
al. [9] implemented an exponential algorithm to compile declared orders to the optimum
fencing. Lesani [22] focused on the limited class of straight-line programs and presented
a polynomial-time algorithm. We observed that CFGs of structured programs have
structured forms that can make the problem solvable in polynomial-time.

7 Conclusion

This paper considered the fence insertion problem for the class of structured programs and
presented a greedy and polynomial-time optimum fence insertion algorithm. The algorithm
reduces fence insertion for a control-flow graph (CFG) to fence insertion for a set of paths. It
transforms looping CFGs to loop-free CFGs that are a set of nested diamonds. It then iterates
the diamonds from the innermost to the outermost and incrementally extracts branches.
Fence insertion for the extracted paths can be done independently and in polynomial time.
This paper also proved that fence insertion with multiple fence types is NP-hard even for
straight-line programs through a reduction from the set cover problem.

8 Future Work

This paper poses new avenues of investigation:

Multi-fence algorithms: If we assume that the number of different fence types is a constant
k, the question is whether there is a polynomial-time parametrized algorithm for k.
Otherwise, as the problem is NP-hard, the only other possible option is approximation
algorithms.

Stochastic optimization: This paper presented an algorithm to minimize the number of
fences. However, in common executions, some paths may be exercised more often than
others. Given a probabilistic measure of how often each branch is executed, the question
is to find the fencing that minimizes the probabilistic number of executed fences.

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lång, and Tuan Phong Ngo. Precise

and sound automatic fence insertion procedure under PSO. In International Conference on
Networked Systems, pages 32–47. Springer, 2015.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. The best of both worlds:
Trading efficiency and optimality in fence insertion for TSO. In European Symposium on
Programming Languages and Systems, pages 308–332. Springer, 2015.

3 Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
computer, 29(12):66–76, 1996.

4 Jade Alglave and Patrick Cousot. Ogre and Pythia: an invariance proof method for weak
consistency models. In ACM SIGPLAN NOTICES, volume 52 (1), pages 3–18. ACM, 2017.

DISC 2019

34:16 Polynomial-Time Fence Insertion for Structured Programs

5 Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t sit on the fence: A
static analysis approach to automatic fence insertion. ACM Transactions on Programming
Languages and Systems (TOPLAS), 39(2):6, 2017.

6 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory models.
In International Conference on Computer Aided Verification, pages 258–272. Springer, 2010.

7 Hagit Attiya, Danny Hendler, and Smadar Levy. An O (1)-barriers optimal RMRs mutual
exclusion algorithm. In Proceedings of the 2013 ACM symposium on Principles of distributed
computing, pages 220–229. ACM, 2013.

8 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Trading fences with rmrs and separating
memory models. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 173–182. ACM, 2015.

9 John Bender, Mohsen Lesani, and Jens Palsberg. Declarative Fence Insertion. In OOPSLA,
2015.

10 Korte Bernhard and J Vygen. Combinatorial optimization: Theory and algorithms. Springer,
Third Edition, 2005., 2008.

11 Karl Crary and Michael J Sullivan. A calculus for relaxed memory. In ACM SIGPLAN
Notices, volume 50 (1), pages 623–636. ACM, 2015.

12 Luke Dalessandro, Michael F Spear, and Michael L Scott. NOrec: streamlining STM by
abolishing ownership records. In ACM Sigplan Notices, volume 45 (5), pages 67–78. ACM,
2010.

13 Andrei Marian Dan, Yuri Meshman, Martin Vechev, and Eran Yahav. Predicate abstraction for
relaxed memory models. In International Static Analysis Symposium, pages 84–104. Springer,
2013.

14 Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In International Symposium
on Distributed Computing, pages 194–208. Springer, 2006.

15 Xing Fang, Jaejin Lee, and Samuel P Midkiff. Automatic fence insertion for shared memory
multiprocessing. In Proceedings of the 17th annual international conference on Supercomputing,
pages 285–294. ACM, 2003.

16 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

17 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

18 Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic Inference of Memory Fences.
In Proceedings of the 2010 Conference on Formal Methods in Computer-Aided Design, FMCAD
’10, pages 111–120, Austin, TX, 2010. FMCAD Inc.

19 Michael Kuperstein, Martin Vechev, and Eran Yahav. Partial-coherence Abstractions for
Relaxed Memory Models. In Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’11, pages 187–198, New York, NY,
USA, 2011. ACM. doi:10.1145/1993498.1993521.

20 Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of memory fences.
ACM SIGACT News, 43(2):108–123, 2012.

21 Jaejin Lee and David A Padua. Hiding relaxed memory consistency with compilers. In Parallel
Architectures and Compilation Techniques, 2000. Proceedings. International Conference on,
pages 111–122. IEEE, 2000.

22 Mohsen Lesani. Brief Announcement: Fence Insertion for Straight-line Programs is in P. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 97–99.
ACM, 2017.

23 Alexander Linden and Pierre Wolper. A verification-based approach to memory fence insertion
in relaxed memory systems. In International SPIN Workshop on Model Checking of Software,
pages 144–160. Springer, 2011.

24 Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and Eran Yahav. Dynamic
synthesis for relaxed memory models. ACM SIGPLAN Notices, 47(6):429–440, 2012.

https://doi.org/10.1145/1993498.1993521

M. Taheri, A. Pourdamghani, and M. Lesani 34:17

25 Yuri Meshman, Andrei Dan, Martin Vechev, and Eran Yahav. Synthesis of memory fences via
refinement propagation. In International Static Analysis Symposium, pages 237–252. Springer,
2014.

26 Robin Morisset and Francesco Zappa-Nardelli. Partially redundant fence elimination for x86,
ARM, and Power processors. In Proceedings of the 26th International Conference on Compiler
Construction, pages 1–10. ACM, 2017.

27 Susmit Sarkar, Peter Sewell, Francesco Zappa-Nardelli, Scott Owens, Tom Ridge, Thomas
Braibant, Magnus O Myreen, and Jade Alglave. The semantics of x86-CC multiprocessor
machine code. ACM SIGPLAN Notices, 44(1):379–391, 2009.

28 Viktor Vafeiadis and Francesco Zappa-Nardelli. Verifying fence elimination optimisations. In
International Static Analysis Symposium, pages 146–162. Springer, 2011.

DISC 2019

	Introduction
	Problem Model
	Fence Insertion Algorithm for Loop-free Programs
	Constraint Elimination
	Finding diamonds
	Decomposing Diamonds into Simple Paths
	Fence Insertion for Simple Paths
	Optimality and Complexity

	Fence Insertion for Loops
	Multi-type Fence Insertion Problem
	Related Work
	Conclusion
	Future Work

