
Brief Announcement: On Self-Adjusting Skip List
Networks
Chen Avin
Communication Systems Engineering Department,
Ben Gurion University of the Negev, Beersheva, Israel
avin@cse.bgu.ac.il

Iosif Salem
Faculty of Computer Science, University of Vienna, Austria
iosif.salem@univie.ac.at

Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria
stefan_schmid@univie.ac.at

Abstract
This paper explores the design of dynamic network topologies which adjust to the workload they
serve, in an online manner. Such self-adjusting networks (SANs) are enabled by emerging optical
technologies, and can be found, e.g., in datacenters. SANs can be used to reduce routing costs
by moving frequently communicating nodes topologically closer. This paper presents SANs which
provide, for the first time, provable working set guarantees: the routing cost between node pairs
is proportional to how recently these nodes communicated last time. Our SANs rely on skip lists
(which serve as the topology) and provide additional interesting properties such as local routing.

2012 ACM Subject Classification Networks → Topology analysis and generation

Keywords and phrases self-adjusting networks, skip lists, working set, online algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.35

1 Introduction

We design scalable and robust self-adjusting networks (SANs) [1, 5], e.g., providing not only
working set guarantees but also logarithmic diameter, low degree, and connectivity even
after a failure. To this end, we consider SAN topologies based on skip lists [4]. Skip lists
are not only interesting for data structures but also for networks as they, e.g., provide local
routing. This is particularly useful in the context of dynamic topologies, which change over
time, since we do not have to distribute information about new routing tables.

The main contribution of this paper is the first SAN that achieves the pairwise working
set property. To this end, we formally define a natural notion of working set which depends
on the number of distinct nodes that participated in communication requests, since the
last requests that included the corresponding source and destination nodes. Our algorithm
is based on a straight-forward extension of classic self-adjusting data structures, using a
“move-to-front” (MTF) data structure as a subroutine.

2 SASL2: A Self-Adjusting Algorithm for Skip List Networks

We first provide some background knowledge and modeling details. Then we present our
self-adjusting algorithm for skip list networks, SASL2.

Skip lists networks. The skip list [4] was designed as a search data structure that serves
as a probabilistic alternative to balanced trees. Let X = {x1, x2, . . . , xn} be a set of integer
keys (or items or elements) such that each xi is associated with a node vi. We also consider

© Chen Avin, Iosif Salem, and Stefan Schmid;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 35; pp. 35:1–35:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6647-8002
mailto:avin@cse.bgu.ac.il
https://orcid.org/0000-0003-2810-2781
mailto:iosif.salem@univie.ac.at
https://orcid.org/0000-0002-7798-1711
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.4230/LIPIcs.DISC.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 On Self-Adjusting Skip List Networks

Algorithm 1 SASL2: Self-adjusting Algorithm for Skip List Networks.

1 upon request (u, v)
2 route (u, v);
3 for x ∈ {u, v} do adjustSASL(x);

4 adjustSASL(z)
5 b← B(z);

6 promotion(z,B1);
7 UpdCountersProm(z);
8 for i = 1, . . . , b− 1
9 x← RandomSelect(i);

10 demotion(x,Bi+1);
11 UpdCountersDem(x);

two special nodes head and tail, with keys −∞ and +∞, respectively. Given a coin with a
fixed probability of heads p, each node decides on the height of its key h(xi), by starting at
height 1 and increasing the height by one for each flip that is heads until the first time the
coin flip is tails. The height H = maxi h(xi) of the skip list is expected to be in O(logn).

The skip list is formed by connecting vertically H doubly-linked lists that contain subsets
of X ∪ {−∞,+∞} linked in ascending order. We denote these lists by L1, . . . ,LH , where
|Li| = Θ(2i) and Li ⊂ Li+1, for i ∈ {1, . . . ,H − 1}. All lists start and end with −∞ and
+∞. The bottom list LH contains all the keys and list Li includes all items of height at
least i. We assume that bideractional vertical pointers link occurrences of each node xi
in adjacent lists Li and Li+1, i = 1, . . . ,H − 1. We refer to an item’s right neighbor in a
list as its successor and to its left neighbor as its predecessor. The search procedure for a
node v starts at the top of −∞ and proceeds forward until reaching a node w 6= v such that
its successor has a larger key than key(v). Then, the search moves to the list below and
continues until the same condition is satisfied. The search ends either (successfully) when the
node is found, or when it reaches the bottom list and the condition for moving lower holds.

A skip list can be also viewed as a graph or skip list network, where the node set is
V = {v1, v2, . . . , vn}, denoting routers or servers, and two nodes are connected with a
bidirectional link if their keys are adjacent at some level of the skip list. Each node vi stores
the triples (h, dir, x), for each level h = 1, 2, . . . , h(xi), direction dir ∈ {left, right}, and
adjacent key x ∈ {x1, x2, . . . , xn}. The data structure and graph point of view are equivalent.

Routing in skip list networks. In data structure terms, a routing request is quite similar to
finger search [2], i.e. a search request that originates in an item resp. node u 6= −∞ towards
another node v. We consider the following procedure that requires only local information.
If u < v (u > v) then the routing proceeds to the right (left). The routing procedure is
split in an up-phase and a down-phase. The routing path starts at the highest level of u
with the up-phase. During the up-phase, at the current item the path moves up if the next
item is smaller (larger) than v, unless the top level is reached, in which case it moves to the
right (left) and repeats. When the next item is larger (smaller) than v, then the down-phase
begins, which is essentially a standard skip list search for v. That is, at the current item, the
path moves to the right (left) if the next item is smaller (larger) than v, otherwise it moves
one level down and repeats the rightward (leftward) search, until locating v.

Prior work: Randomized self-adjusting skip lists for search sequences. Ciriani et al. [3]
presented SASL, an online Self-Adjusting Skip List algorithm for sequences of search requests,
that achieves static optimality, i.e. it performs as well as the static offline algorithm. SASL
is based on the following three principles: (a) logically partition the levels of a skip list L
in a O(log logn) number of bands (sets of consecutive lists) of exponentially increasing size
from top to bottom, (b) upon search of an element move it to the top band, and (c) if the
searched element was associated with the band x, demote an element uniformly at random

C. Avin, I. Salem, and S. Schmid 35:3

(using a random walk) for each band Bi to Bi+1, for i ∈ [1, x− 1]. To drive the random walk,
each node x maintains a set of counters ci(x) that keeps the number of elements reachable in
each band Bi via a classical skip list search starting from x.

Extending from data structures to networks: SASL2. We present an extension of SASL
to the case of routing in self-adjusting skip list networks. Our algorithm SASL2 (Algorithm 11)
uses the adjustment part of SASL, i.e. the promotion and demotion procedures, as a black
box. Let adjustSASL(z) be the adjustment part of SASL with input z [3]. Upon a
communication request (u, v), SASL2 serves the request and then calls adjustSASL(u) and
subsequently adjustSASL(v). A call to adjustSASL(z) promotes z to the top band, B1
(line 6), updates the counters of a skip list search to z after its promotion (line 7), and then
demotes an element x uniformly at random from Bi to Bi+1, for i = 1, . . . , b− 1 (lines 8–11),
where b (line 5) is the band in which z belonged before its promotion. For a single demotion
from band Bi, adjustSASL(z) first selects uniformly at random a node x from band Bi (line
9), reduces x’s height such that x belongs to Bi+1 (line 10), and updates the counters in a
skip list search to x before and after its demotion to the next band (line 11).

Working set theorem for sequences of communication requests in SASL2. Intuitively,
the working bag of a communication request σt = (st, dt) is the shortest suffix of the sequence
σ = (σ1, . . . , σt−1) that includes requests in which st and dt appear. The size of the working
bag is the working bag number. The working set includes all distinct elements in the working
bag and the working set number is the size of the working set. Our working bag and set
definitions are suitable for topologies that have a front/top, and it is thus possible to design
algorithms that follow a move-to-front/move-to-top principle. The motivation for these
definitions is that pairs of nodes that appear in a lot of searches separately should have a
relatively small joint working bag and set.

I Definition 1 (Working bag and working bag number). Let σ = (σt = (st, dt))t∈{1,...,m} be a
sequence of communication requests. We define the (pairwise) working bag of a communication
request σt = (st, dt) to be (σ1, . . . , σt), if st or dt appear in a request of σ for the first time at
time t and WB(st, dt) = min{σ′ v (σ1, . . . , σt−1) | last(σ′) = σt−1 ∧ ∃σi,σj∈σ′ st ∈ σi ∧ dt ∈
σj} otherwise, where v denotes the suffix relation and last(σ′) returns the last request of a
sequence σ′. We denote by |WB(st, dt)| the size of WB(st, dt) and refer to it as (st, dt)’s
working bag number.

I Definition 2 (Working set and working set number). The (pairwise) working set of a com-
munication request σt = (st, dt) ∈ σ is WS(σt) = WS(st, dt) = {x ∈ σi |σi ∈ WB(st, dt)}.
The working set number of σt is the size of WS(st, dt) and we denote it by |WS(st, dt)|.

I Theorem 3. For any communication request (u, v), SASL2 achieves the pairwise working
set property: E[cost(SASL2(u, v))] = O(log |WS(u, v)|).

References
1 Chen Avin and Stefan Schmid. Toward demand-aware networking: a theory for self-adjusting

networks. ACM SIGCOMM Computer Communication Review, 48(5):31–40, 2019.
2 Amitabha Bagchi, Adam L Buchsbaum, and Michael T Goodrich. Biased skip lists. Algorith-

mica, 42(1):31–48, 2005.
3 Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S Muthukrishnan. A data structure

for a sequence of string accesses in external memory. ACM TALG, 3(1):6, 2007.
4 William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the

ACM, 33(6):668–676, 1990.
5 Stefan Schmid et al. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Transac-

tions on Networking (TON), 24(3):1421–1433, 2016.

DISC 2019

	Introduction
	SASL^2: A Self-Adjusting Algorithm for Skip List Networks

