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Abstract
Global Navigation Satellite Systems (GNSS) are systems that continuously acquire data and provide
position time series. Many monitoring applications are based on GNSS data and their efficiency
depends on the capability in the time series analysis to characterize the signal content and/or to
predict incoming coordinates. In this work we propose a suitable Network Architecture, based on
Long Short Term Memory Recurrent Neural Networks, to solve two main tasks in GNSS time series
analysis: denoising and prediction. We carry out an analysis on a synthetic time series, then we
inspect two real different case studies and evaluate the results. We develop a non-deep network
that removes almost the 50% of scattering from real GNSS time series and achieves a coordinate
prediction with 1.1 millimeters of Mean Squared Error.
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1 Introduction

Nowadays global navigation satellite systems (GNSS), such as the GPS, are widely used
tools for many monitoring applications. Thanks to the capability of these systems to provide
continuously acquired data, which are converted in three-dimensional coordinates after
data processing, the monitoring is usually performed through time series analysis. GNSS
monitoring can have different purposes depending on the monitored object and the data
processing varies consequently therefore this leads to very different time series in terms of
signal to noise ratio and noise characteristics. Moreover, the analysis can have different goals:
sometimes a signal-denoising is required in order to allow more accurate characterization of
the signals, whereas in other cases the goal is a reliable prediction of the coordinates that
will be obtained from the incoming data. For GNSS time series analysis many forecasting
models have been proposed, based on ARMA, ARIMA and Kalman methods [2],[20],[16],[18],
[17] and many denoising models, based on moving averages, sequential filtering and, recently,
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based on deep learning [15],[12],[5]. Deep Neural Networks (DNNs) have been investigated
by many researchers during last years due to the development of computational resources
(e.g GPUs) and the raise of Big Data, in order to find mathematical models inspired by the
information flowing and processing in human brain. DNNs are widely employed to solve
different data science tasks such as pattern recognition, classification, regression, anomaly
detection, signal-denoising and density estimation. The class of DNNs algorithms provides a
family of networks, suited for sequential data processing, called Recurrent Neural Networks
(RNNs). Among them Long Short Term Memory (LSTM) model, introduced at the beginning
to solve vanishing gradient problems which affect all the RNNs [1],[9],[4], has showed its
strength for almost all of the time dependent problems. The LSTM is characterized by a
gated structure which allows it to store past sequence features in its memory block, bringing
out them in the output and preserving long term dependences. LSTM approach achieves
grateful results in speech recognition [7] and [8], hand-writing recognition [6] and recently in
Traffic Flow Prediction [19], Real Time Autonomous Vehicle Navigation [13]. The aim of this
work is to develop a deep learning method suitable for prediction and denoising of GNSS
time series. Our model add to the LSTM layer used in [12] an activation hyperbolic tangent
(tanh) layer and a Full Connected layer. In Section 2, first we introduce basic notions about
Deep Feed Forward Neural Networks, Recurrent Neural Networks and LSTM Network, then
we present the proposed network architecture and its forward equations. In Section 3 we
present three different time series used for the experiments and finally in Section 4 we discuss
the results.

2 Framework

In this section we carry out a brief review about DNNs and their developments. In the
first part we introduce Feed Forward Neural Networks (FFNNs) and we point out their
structure. In the second part we remark Recurrent Neural Networks (RNNs), a powerful
tool for sequential data processing. Finally we provide our model forward equations.

2.1 Feed Forward Neural Networks
The main goal of a FFNN algorithm is to approximate some function f∗ in a suitable
functional space. A FFNN describes an approximation map, called net, defined as follows:

y = f(x, θ1, . . . , θk), (1)

where x, y are the input and the output of the net, respectively, and θ1, . . . , θk are the
parameters that the net has to learn respect to a given training set. The map (1) is the
composition of k functions and it can be written as follows:

f(x, θ1, . . . , θk) = fk ◦ fk−1 ◦ · · · ◦ f1, (2)

setting x1 = x and yj = fj(xj , θj) ∀j = 1 . . . k, where xj = yj−1 ∀j = 2 . . . k. Each of
the functions fk is called the k-th hidden-layer. The depth of a FFNN is described by the
parameter k. The universal approximation theorem [11] states that a FFNN with a linear
output layer and at least one hidden layer can approximate as good as depth increases
any Borel measurable function from a finite dimensional space to another. For this reason
deeper FFNNs showed better results in many tasks; the drawback is the computational cost.
Hereafter we provide the forward equation of a 1-hidden layer network:
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x =input (3)
a =Wx+ b (4)
y =Φ(a) (5)

where W is the weight matrix, b is the bias vector, Φ is the pointwise activation function.
The goal is to find the weights and the bias by minimizing a certain loss function over a given
training set (e.g the mean squared error). This problem can be handled by using iterative
gradient based method such as stochastic gradient descent (SGD) or ADAM method [14],
while the Back Propagation Algorithm [3] is used to compute the gradients.

2.2 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a family of Neural Networks suited for time series
processing. In RNNs the output at previous time steps affects the output at the current time
step and therefore RNNs are able to catch long term dependencies in sequential data. Given
a starting hidden layer vector h0, then for each time step t and for each input vector xt the
forward equations of a general RNN are:

ht =Whhht−1 + Uxhxt + bh (6)
yt =Φ(ht) (7)

where Whh denotes the hidden-to-hidden weight matrix, Uxh the input-to-hidden weight
matrix, bh the bias vector and Φ is a pointwise non-linear activation function. The main
difference between FFNN (3)-(5) and RNN (6)-(7) forward equations, is that the latter have
a temporal structure. As for FFNNs, gradient based algorithms are used to optimize a
loss function respect to the unknown weights and the Back Propagation Through Time
(BPTT) algorithm is employed to compute the gradients. One drawback of RNNs is that
BPTT algorithm computes gradients that tend to vanish or explode due to the fact that we
are composing many times the same non linear function [1],[9]. The most effective model
used in practical applications are gated RNNs such as Long Short-Term Memory (LSTM)
nets. A LSTM network [10] is made up of LSTM units showed in Figure 1(b). Generally,
a LSTM unit is composed of a cell which is able to record the main information over long
time intervals [4] and three different gates: the forget gate, the input gate and the output
gate. These gates have the task to supervise the flow of information and prevent vanishing
gradient problems. The forget gate uses a sigmoid function to decide which information
has to be taken into account in the previous cell state. The input gate decides which new
information has to be stored in the cell memory. The output gate decides the contents of the
output vector. Each gate takes the same input: xt the current input and ht−1 the previous
hidden layer vector. The LSTM unit forward equations are presented below:

ft =σ(Ufxt +Wfht−1 + bf ) (8)
it =σ(Uixt +Wiht−1 + bi) (9)
gt =tanh(Ugxt +Wght−1 + bg) (10)
ct =it ∗ gt + ft ∗ ct−1 (11)
ot =σ(Uoxt +Woht−1 + bo) (12)
ht =tanh(ct) ∗ ot (13)
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Figure 1 (a) Complete process used in this study. (b) LSTM unit.

where ∗ represents the pointwise product, ft, it, ot are respectively the forget gate, the input
gate and the output gate vectors at time t, ct is the cell vector at time t and the terms U
and W in each equation are the weight matrices.

2.3 Proposed Network Architecture
Given an input sequence xt, for t = 1 . . .T, and an initial hidden vector h0, the model
proposed in this paper is a RNN model with the following forward equations:

h1
t =Φ(xt, ht−1) (14)
h2

t =tanh(h2
t ) (15)

yt =wh2 ∗ h1
t + bh2 (16)

where ∗ represents the scalar product, Φ is taken as the LSTM unit with the forward
equations (8)-(13). We add after the classic LSTM unit: an activation tanh layer and then a
full connected layer that realizes a dot product between the weights wh2 and the output of
the previous layers. We will call our model LSTM-Full in the following. A crucial point of
this architecture is the choice of the h1

t vector dimension which influences the number of the
weights to train. We remark that for each time t, the hidden layer vector h1

t has the same
dimension. In the following we indicate with H the length of these hidden layer vectors.

3 Materials

Global Navigation Satellite Systems (GNSS) is a technology that uses data sent by artificial
satellites to get the position of the receiver. Using the same data but changing the receiver
quality and the data processing it is possible to obtain a wide range of accuracy that ranges
from 10/15 meters in real-time positioning of a smartphone to a few millimeters (mm) using
a geodetic class receiver that acquires data for 24-hour to estimate the daily average position.
A GNSS receiver acquires data continuously and after a data processing phase provides a
time series of positions useful for geodynamics or geological applications such as tectonic
plate motion research, landslides and subsidence studies. We consider three sets of data
in order to evaluate the efficiency of the designed LSTM-Full network in GNSS time series
analysis. The first time series is a synthetic one, which allows to compare the output of
the network to a known “ground truth” and has been created taking into account the well
known characteristics of a geodetic time series of daily positions. The second time series
derives from a real GNSS permanent station that daily processes the data using a static
approach and it is characterized by a comparatively high signal to noise ratio. The third
time series comes from a monitoring GNSS station used for early warning monitoring and it
is characterized by a low signal compared to the measurements.
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3.1 Synthetic Time Series
To create a Synthetic Time Series that simulates properly a real GNSS one, it is important
to understand which are the main characteristics of the GNSS positioning. Using GNSS
signals a receiver can estimate its position, with different levels of accuracy, measuring the
transmitting time of GNSS signals emitted from four or more GNSS satellites and knowing
the position of each satellite during the time. The signal crosses the atmosphere with a
speed close to the speed of light depending on the physical characteristics of the atmosphere
that change continuously. Therefore a GNSS receiver installed on a building roof or on a
stable rock can measure during the time some periodical effects due to the seasonal thermal
dilatation or solid earth and ocean tides. For all these reasons a GNSS time series can be
composed by some periodical terms and, as literature shows, a noisy component which is
the sum of a white noise that follows a normal distribution and a random walk noise. The
synthetic time series is constructed as follows:

x(t) = mt+ q +Asin(2πft) (17)

and it is characterized by the following parameters: m = 0, q = 0.01, A = 0.01, f = 1
365 and

considering t ∈ [1, 4000]. We assume that x, q,A are expressed in meters (m) whereas t is
expressed in days (d) and f is expressed in d−1. In order to represent a realistic case study
we add: w gaussian noise, with mean equal to zero and standard deviation p = 2 mm and r
random walk noise or red noise generated using a normal distribution with mean zero and
standard deviation equal to 0.03 mm. Hence we construct the raw time-series as follows:

x̃(t) = x(t) + w + r. (18)

It is showed in Figure 2(a) using the green dots. Since in our model we use the activation
tanh layer it is suggested to scale all the time series values in [−1, 1]. This kind of action
increases the net performances.

3.2 Real Static Time Series
The first real time series, hereafter called “static” due to the GNSS data processing used, is 11
years long and each time step represents a daily solution. It has three different components:
North, East and Up components. The North component is depicted in Figure 3 (a) using
green dots. It is for sure the most accurate time series obtainable by GNSS technology
because each solution is the mean of the observations recorded with a sampling time of 30
seconds during 24 hours. Since these kind of time series are generally used for tectonic plate
motion or landslide monitoring it is important to have accurate and no noise solutions. The
analysis that we conduct refers to those applications where the goal is the characterization
of the periodical signals and in this case a signal denoising can improve the results.

3.3 Real Kinematic Time Series
The second real GNSS time series, hereafter called “kinematic”, derives from higher frequency
(1Hz) coordinates solutions, that were estimated using a kinematic approach during the
data processing. The time span considered for the test is about 30 days and every sample
represents a solution per second. As for the static time series, our data set is made up of
North, East and Up components. In Figure 4 (a) we depict the East Component of this time
series using the green dots. This is a completely different scenario respect to the previous one
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because we have a solution every second and for this reason, the redundancy of the system
and the accuracy are lower. This approach can be suitable for early warning applications
where it is much more important to have as soon as possible information about unexpected
changes respect to the normal movement. Since this kinematic time series is used for structure
monitoring such as bridge monitoring or critical landslides where a fast movement of the
object can be critical for the safety of life, here the ultimate goal of our analysis is to develop
a method capable to give an accurate prediction of the incoming coordinates to improve the
capability to detect some anomalies.

4 Results and Discussion

In this section we carry out an objective analysis in order to investigate the properties of
the proposed LSTM-Full method and demonstrate its effectiveness. All the experiments are
performed on a PC Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz 2.40GHz with 8.00Gb
RAM using Python 3.6 libraries, such as Keras and Pandas. In the first part we analyze the
synthetic static GNSS time series depicted as in Section 3.1, then we inspect the two real
GNSS time series, described in Section 3.2 and 3.3 respectively.

4.1 Data preparation
Since the LSTM-Full method is a supervised learning algorithm we need to define the form
of the input and the form of the label vectors. We can represent the whole raw time series
as a sequence of values x̃1, . . . , x̃T, where T is the number of analysed samples. Then we
construct the input as vectors defined as follows:

Xi = [x̃i, . . . , x̃i+s], i ∈ [1,T− s], (19)

where s is the sliding window parameter representing the length of each vector. We underline
that the data set has a time order respect to the variable i and the net has to be fed following
this order. We can say that in time series analysis the time is an hidden feature decoded
by the data set time order. The label vector is built as a vector y and its components are
defined as shown below:

yi = [x̃i+s+1], i ∈ [1,T− s]. (20)

In the following analysis the data set is divided in two disjoint subsets: the training set
(taken as 70% of the whole data set) and the test set (30% of the whole data set). The first
is used to optimize the model parameters, whereas the other is employed to evaluate model
accuracy. The Mean Squared Error (MSE) value is used to evaluate the prediction accuracy
of the proposed model whereas the standard deviation (STD) is used to evaluate the scatter
of the solution. The general mathematical expressions of MSE and STD are:

MSE(u, z) =

√√√√ 1
N

N∑
i=1

(ui − zi)2, (21)

STD(v) =

√√√√ 1
M

M∑
i=1

(vi − ṽ)2, (22)

where N is the length of the vectors u,z, M and ṽ are the length and the mean of the vector
v, respectively.
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Table 1 All the results are computed setting H = 30. Columns 1 and 2 show respectively the
MSE(x,ỹ) and STD(x,ỹ) values, where x is the theoretical signal and ỹ is the predicted signal, for
different length of the input, both in millimeters. The raw time series has a MSE equal to 2.327
millimeters and a STD equal to 1.329 millimeters. Column 3 shows the computational training time,
in seconds, choosing different input size.

s MSE(x,ỹ) (mm) STD(x,ỹ) (mm) time (s)
7 1.276 0.718 7.862
14 1.212 0.687 9.953
30 1.245 0.693 15.115
183 1.198 0.690 59.482
365 1.206 0.678 105.21

4.2 Synthetic time series analysis
The purposes of this analysis are to evaluate:

if the model proposed can predict the theoretical time series x(t) defined in (17) using
only the raw signal x̃(t) defined in (18),
if the model proposed can filter the raw data,
the sensitivity of the proposed method to the choice of the parameters H (defined in
Section 2.3) and s (defined in Section 4.1).

In the following we indicate with x, x̃ and ỹ the theoretical time series, the raw time series and
the solution constructed with the LSTM-Full algorithm, respectively. All of them represent
a 730 days solution. In the first column of Table 1 we report the results of MSE(x, ỹ),
over different choices of the sliding window parameter s. The choice of the sliding window
parameter is a crucial point and in practice it should be a trade off between the training
time and the prediction performance. Here we suggest, when possible, to choose s as the
lag with the highest Autocorrelation Function (ACF) value of raw data (see Figure 2(c));
this seems necessary if we want to compute a less scattered solution. In Figure 2(b) (red-dot
line) we depict the solution for s = 365, since that the time series considered has an annual
seasonality. In the second column of Table 1 we report the STD and we observe that the
scattering is reduced while the sliding window dimension increases. The best improvements
in terms of MSE (48% less than raw data) is reached choosing s = 183 whereas the best
improvements in denoising is reached choosing s = 365 (49% less than raw data). As we
expect the computational training time increases when the input size, that is s, increases. In
Figure 2(d) we report the ACF plot of the differences between the theoretical time steps
and the predicted time steps. The plot highlights that there is no relevant correlation
within prediction errors, as a good prediction is expected to be. All the previous results are
computed setting the hidden vectors length equal to 30. In Table 2 we report the summary
of the analysis carried out choosing different values for the parameter H and setting s = 365.
As it emerges from the first and the second column of Table 2 the best results in terms of
MSE and of STD are obtained setting H = 5 (50 % less for MSE and 51 % less for STD
respect to raw data). In the third column we report the computational training time that
again increases while the parameter H increases.

4.3 Static time series analysis
So far we have proved the effectiveness of the proposed LSTM-Full method on a test problem,
we now want to evaluate our model on the real time series described in Section 3.2. Since
the ultimate goal for this time series is to remove the noisy components, we set the hidden

TIME 2019
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Table 2 All the results are computed setting s = 365. Columns 1 and 2 show respectively the
MSE(x,ỹ) and STD(x,ỹ) values, where x is the theoretical signal and ỹ is the predicted signal, for
different length of H. The raw time series has a MSE equal to 2.327 millimeters and a STD equal to
1.329 millimeters. Column 3 shows the computational training time, in seconds, choosing different
values of H.

H MSE(x,ỹ) (mm) STD(x,ỹ) (mm) time (s)
5 1.169 0.646 109.174
30 1.205 0.678 115.049
100 1.309 0.727 224.441
300 1.262 0.708 2801.995

Table 3 Column 1 shows the STD values for the North Component, in millimeters, for different
size of the sliding window parameter. The raw time series have a STD value equal to 0.975 millimeters.
Column 2 shows the computational training time in seconds choosing different input size.

s STD(ps − ỹs) (mm) time (s)
7 0.563 8.026
14 0.481 10.153
30 0.432 15.348
183 0.432 66.314
365 0.423 183.304

vectors length parameter H equal to 5. In the following we indicate with x̃ and ỹs the
raw time steps and the filtered solution respect to the sliding window parameter s, with p0
and ps the 5th-degree regression polynomials respect to x̃ and ỹs. In order to evaluate the
scattering of raw data and of ỹs, we consider the value STD(ps − ỹs). In the first column
of Table 3 we compute the STD values of the filtered time series over different choices of
the sliding window parameter s. The best result is achieved using s equal to 365, which is
the lag with the highest autocorrelation function value, shown in Figure 3(b). In Figure
3(c) we plot the filtered time series values obtained using s = 365 compared with the raw
North Component of the static time series. In the second column of Table 3 we report the
computational training time, which increases while s increases, as it is for the synthetic case.
In Table 4 we report the STD values for the North Component, East Component and Up
Component of our real static time series, using a sliding window parameter equal to 365.

4.4 Kinematic time series analysis
In the case of the kinematic time series described in Section 3.3, the aim of the LSTM-Full
model is to give an accurate prediction for the incoming time steps, since we want to apply
this model for structural monitoring. Since we are not seeking for a filtered solution, we
fix the dimension of the LSTM hidden vectors at 100. In order to evaluate the efficiency of
the proposed method in this case we use the MSE value between the raw data x̃ and the
predicted time steps ỹ. The lag with the highest value of the ACF is 86164 (the number of
seconds in a sideral day), shown Figure 4 (b), and it is impossible to use it as sliding window
parameter, due to the computational cost of the algorithm. In the first column of Table
5 we report the MSE values over different arbitrary size of the sliding window parameter
increased until the machine used for this experiment can afford the computational cost. The
best results are reached using s = 60 or s = 300. In Figure 4 (a) and in Figure 4(c) we can
see that the predicted time series (red dots) model seems to well reproduce the data (green
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Figure 2 (a) Plot over 4000 days of the raw synthetic time series (green dots) and the theoretical
sinusoidal signal (line blue). (b) Predicted time steps over 730 days (red dots) compared with the
raw signal (green dots) and the theoretical sinuisoidal signal (blue line).(c) ACF over 400 lag of the
raw time series. (d) ACF of the prediction error over 365 lags.

Table 4 In the first column: STD values in millimeters for the North, East and Up component
of the real static time series, using a sliding window parameter equal to 365. In the second column:
the STD values of the raw signals for each component.

Component STD(ps − ỹs) (mm) STD(p0 − x̃) (mm)
N 0.423 0.975
E 0.559 1.031
U 1.221 2.808

dots). The computational training time, reported in the second column of Table 5, increases
while the slinding window parameter increases as for the other case studies. In Table 6 we
write down the MSE values for the North, East and Up Component of our time series setting
the slinding window parameter equal to 300.

5 Conclusions

The proposed LSTM-Full Network architecture is suitable for denoising and prediction tasks
for GNSS time series. Its performance depends on the choice of the sliding window parameter
and of the hidden vectors size of the LSTM layer. From the experiments we suggest to
choose the sliding window parameter as the lag with the highest value of the autocorrelation
function, when the computational resources allow it. The hidden vectors size should be
choosen small if the task is denoising otherwise it should be higher to give an accurate
prediction on incoming data.

TIME 2019
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Figure 3 (a) Plot of the raw North Component of the Static Time Series (green dots) and the
filtered time series (red dots). (b) ACF over 400 lag of the raw time series. (c) Plot of 509 filtered
time steps (red dots), computed choosing s=365, compared with the raw time steps (green dots).

Table 5 Column 1 shows the MSE(x̃, ỹ) values for the East Component, in millimeters, for
different size of the sliding window parameter. Column 2 shows the computational training time in
seconds choosing different input size.

s MSE(x̃, ỹ) (mm) time (s)
60 1.188 76.28
300 1.184 313.53
1800 1.208 1811.2350
3600 1.220 2872.0116

Table 6 MSE(x̃, ỹ) values in millimeters for the North, East and Up component of the real
kinematic time series, using a sliding window parameter equal to 300.

Component MSE(x̃, ỹ) (mm)
N 1.741
E 1.188
U 2.497
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Figure 4 (a) Plot of the raw East Component of the Static Time Series (green dots) and the
predicted time series (red dots). (b) ACF over 90000 lag of the raw time series. (c) Plot of the
predicted time series (red dots), computed choosing s=300, compared with the raw time steps
(green dots).
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