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Abstract
We study the problem of minimisation of a given finite pointed Kripke model satisfying a given CTL
formula, with the only objective to preserve the satisfaction of that formula in the resulting reduced
model. We consider minimisations of the model with respect both to state-based redundancies and
formula-based redundancies in that model. We develop a procedure computing all such minimisations,
illustrate it with some examples, and provide some complexity analysis for it.
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1 Introduction

1.1 The problem of study and our proposal
The Computation Tree Logic CTL ([7], [9]) is one of the most useful and applicable tem-
poral logics in computer science, because of its good balance between expressiveness and
computational efficiency of model checking. One of the main problems that arise in its
practical use is the state explosion problem, which calls for methods for reducing the size
of the state transition systems arising when modelling real programs or systems. A lot of
research has been done over the past three-four decades in addressing and resolving that
problem by applying various techniques, such as bisimulation minimisations, abstraction
refinements, BDD-based symbolic representations and symbolic model checking, partial order
reductions, SAT-based model checking, etc. (cf [8] for comprehensive and up-to-date accounts
of these). Most of these techniques follow the idea of applying minimisations, reductions, or
abstractions to the original model, prior to doing model checking of the desired properties
in it, by ensuring that the reduced model preserves all relevant properties (e.g., by being
bisimulation equivalent to the original one). This approach is certainly very natural and has
proved to be practically very useful.

Here, however, we take a somewhat different approach, viz. we study the problem of
minimisation of a given finite pointed Kripke model (aka, pointed interpreted transition
system) (M, s) that is already known to satisfy a given CTL formula θ, with the only
objective to preserve the satisfaction of that formula in the minimised model. We argue
that this problem is natural and important, too, because the formula θ can be viewed as
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13:2 Minimisation of CTL Models

a formal specification of all critical features that the system must possess. Then, one may
naturally want to synthesise a smallest and simplest possible abstract model of the system
that satisfies that specification at its initial state, e.g. in order to facilitate further multiple
verifications of various other properties and eventually its practical implementation. For
instance, such formulas might be specifications of components of a product transition system,
and such product constructions usually produce large redundancies that should preferably
be eliminated before the actual implementation.

The main problem of this study is more precisely described as follows. We assume that
some pointed Kripke model (M, s), satisfying a given CTL formula θ is already available, e.g.
extracted from a real system or constructed by some of the well-known methods (tableaux,
automata, etc, see e.g. [10]). We are then interested in producing a “minimal” such pointed
model out of the given one, that still satisfies θ. By “minimal” here we mean a pointed
model that cannot be further reduced by means of general and explicitly specified reducing
operations, such as identifying states or taking submodels, to an even smaller one that still
satisfies θ. We note that a given model satisfying a given formula may not be minimal
with respect to that property for at least two different reasons: it may have redundancies
caused by bisimilar states, and it may have redundancies with respect to the formula that
it must satisfy. Thus, minimizing procedures for both types of redundancies are generally
necessary, because most of the currently used methods for constructing satisfying models
of CTL formulas (typically, tableaux or automata-based) do not usually produce minimal
models in either sense.

Contributions. Our main contribution is the development of a minimization procedure
that eliminates both kinds of redundancies. Respectively, our proposal, in a nutshell, is to
combine and iterate two reduction procedures:
B Bisimulation reduction procedure, based on some of the well-known algorithms, e.g. in

[16] or [13]. This procedure eliminates redundancies caused by bisimilar states and works
in low polynomial (at most quadratic) time. Note that for our purpose we are only
interested in bisimulation reduction with respect to the language of the given formula θ
(called θ-bisimilarity in the following).

B Formula-driven reduction procedure, based on a tableaux-like construction. It imple-
ments two simple minimisation ideas:

to satisfy a disjunction, use part of the model to satisfy just one disjunct;
select only minimal (irreducible) sets of necessary successors of each state.

Because of the possible choices in both cases above, this procedure branches and eventually
may produce several minimisations.

While this work focuses on minimisation of models of CTL formulas, we also consider in
passing the simpler case of minimisation of models of formulas of the basic modal logic.

Related work. As the problem is important and very natural, there is much related work,
though, up to our knowledge, none of it addresses exactly the same problem or follows the
same approach as ours. We give a brief (and, for lack of space, quite incomplete) overview of
related approaches to model minimisation, in a roughly chronological order.

Algorithmic bisimulation minimisation of Kripke models (aka, interpreted transition
systems) has been explored extensively in the literature, going back to [13] and [16]; see [14]
for an overview and references therein. The question of generation of minimal models with
respect to bisimulation has been studied e.g. in [3], [2]. In [12] a method is proposed for
obtaining a minimal transition system, representing a communicating system given by a set
of parallel processes. More related to our work are [6] and [17], which explore compositional
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minimization. There, a system on which a CTL formula θ needs to be model-checked is taken
to be the product of n transitions systems M1, ..,Mn. A local model-checking of each Mi

allows for the computation of a BDD representing a reduced number of transitions, so to
reduce the final global product. Unlike our work, however, bisimulation-based reductions are
not taken into account and redundancies caused by disjunctions are not considered. The
above approach is then extended in [1], where a notion of formula-dependent state equivalence
is proposed. However, again, redundancies caused by disjunctions are ignored, as well as
subset inclusion (see Section 3.4).

Mogavero and Murano [15] have proposed a logic extending CTL∗ and internalizing
minimal model construction by means of two minimal model quantifiers, Λ and Ξ. That
approach, while thematically closely related, is somewhat orthogonal and incomparable
to ours. The main difference is that we do not extend the CTL language to reason about
truth in minimal models of formulas, but are interested in the actual computing of the
minimizations of a model with respect to a formula, which we do purely semantically and
constructively. Besides, we consider a stronger notion of minimality, taking into account also
bisimulation. Thus, the objectives, approaches and results are quite different. We compare
the two approaches with some more details and an example in Section 5.

Bozzelli and Pearce [4] explore the idea of “temporal equilibrium model” of an LTL
formula, satisfying minimality requirement with respect to state labels. Cerrito and David [5]
investigate the question of bisimulation minimisation of models of the multi-agent extension
ATL of CTL.

Structure of the paper. We start with a brief background on the logic CTL and on
bisimulation in Section 2. In Section 3 we describe two versions of our minimization
procedure and we illustrate it on some examples. Some results about properties of the
procedure are established in Section 4. We conclude by indicating some lines of future work
in Section 5. A few proofs of auxiliary results are put in a short appendix.

2 Preliminaries

2.1 CTL: syntax and semantics
Here we only provide brief basic preliminaries on CTL. For further details see e.g. [10, Ch.7].
The syntax of CTL is given by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ)

where > is the logical constant for truth, Prop is a set of proposition symbols and
p ∈ Prop. We also use the following abbreviations: AXϕ := ¬EX¬ϕ, EFϕ := E(>Uϕ),
AFϕ := A(>Uϕ), EGϕ := ¬AF¬ϕ and AGϕ := ¬EF¬ϕ.

The set of atomic propositions occurring in a formula ϕ is denoted by prop(ϕ). The
basic modal logic BML is the fragment of CTL that does not involve the operator U , i.e.
extends propositional logic only with EX .

CTL formulas are interpreted over transition systems.

I Definition 1. A transition system is a pair T = (S,R), where S is a nonempty set of
states and R ⊆ S × S is a transition relation on S. Unless otherwise specified, transition
systems will be assumed serial (this requirement is typically imposed for models of CTL
but not for models of BML), i.e. for every s ∈ S there is s′ ∈ S such that (s, s′) ∈ R.
When a distinguished state s ∈ S is considered, (T , s) is called a rooted (at s) transition
system, or a pointed transition system. A path in T is a sequence λ : N → S such
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13:4 Minimisation of CTL Models

that (λ(n), λ(n+1)) ∈ R for every n ∈ N. An interpreted transition system (ITS)
over T is a tuple M = (S,R,Prop, L), where Prop is a set of proposition symbols and
L : S → P(Prop) is a state description function defining for every state in S the set
of atomic propositions true at that state. A rooted (pointed) interpreted transition
system (M, s) is defined accordingly.

Given an ITSM = (S,R,Prop, L) and any subset P of Prop, we define the reduction
of M to P to be the ITS M|P = (S,R, P, L|P ), where L|P : S → P(P ) is defined by
L|P (s) = L(s) ∩ P for every s ∈ S.

Given an ITS M = (S,R,Prop, L), an ITS M′ = (S′, R′,Prop, L′) is said to be a
substructure of M whenever S′ ⊆ S, L′ is the restriction of L to S′, and R′ = R ∩
(S′ × S′). By an abuse of language, we say that M′ is a substructure of M also when
R′ = (R∩ (S′×S′))∪{< t1, t1 >, . . . , < tn, tn >} where {t1, .., tn} ⊆ S′, for any n ≥ 0. The
ITSM′ is said to be a proper substructure ofM when S′ ⊂ S.

I Definition 2. LetM = (S,R,Prop, L) be an interpreted transition system, s ∈ S and ϕ a
CTL-formula. Truth of ϕ at s in M, denoted by M, s |= ϕ, is defined inductively on ϕ
as follows (we give here only the non-boolean cases):

M, s |= EXϕ iff there is a state s′ such that (s, s′) ∈ R andM, s′ |= ϕ.

M, s |= E(ϕUψ) iff there is a path λ in M starting from s and i ≥ 0 such that
M, λ(i) |= ψ andM, λ(j) |= ϕ for every j < i.

M, s |= A(ϕUψ) iff for every path λ in M starting from s, there is i ≥ 0 such that
M, λ(i) |= ψ andM, λ(j) |= ϕ for every j < i.

An ITS (M, s) is a pointed model of ϕ wheneverM, s |= ϕ.

2.2 Types, components, and extended closure of CTL formulas
We use some notions and terminology from the literature on tableaux-based satisfiability
decision methods (see e.g. [10, Ch.13]). Formulas of CTL can be classified as: literals: >, ¬>,
p,¬p, where p ∈ Prop, successor formulas: EXϕ and ¬EXϕ, conjunctive formulas (also
called α-formulas), and disjunctive formulas (also called β-formulas). The formulas in
the last three classes have respective components that are given by Table 1. For convenience,
the tables provide also the components of some defined formulas (e.g. EFψ). It is well-known
(cf. [10, Ch.13]) that any conjunctive (resp. disjunctive) formula in the table is equivalent to
the conjunction (resp. disjunction) of its components.

Table 1 Types of formulas and their components.

Conjunctive formula Components
¬¬ϕ ϕ

¬(ϕ ∨ ψ) ¬ϕ, ¬ψ
¬E(ϕUψ) ¬ψ, ¬ϕ ∨ ¬EXE(ϕUψ)
¬A(ϕUψ) ¬ψ, ¬ϕ ∨ ¬AXA(ϕUψ)
EGϕ ϕ, EXEGϕ
AGϕ ϕ, AXAGϕ

Disjunctive formula Components
ϕ ∨ ψ ϕ, ψ

E(ϕUψ) ψ, ϕ ∧ EXE(ϕUψ)
A(ϕUψ) ψ, ϕ ∧ AXA(ϕUψ)
EFψ ψ, EXEFψ
AFψ ψ, AXAFψ

Successor formula Components
EXϕ (existential successor formula) ϕ

¬EXϕ (universal successor formula) ¬ϕ
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I Definition 3. The extended closure of a formula ϕ is the least set of formulas ecl(ϕ)
such that:
1. ϕ ∈ ecl(ϕ),
2. ecl(ϕ) is closed under taking all components of each formula ψ in ecl(ϕ), i.e., conjunctive,

disjunctive and successor components, according to the type of ψ
For any set of formulas Γ we define ecl(Γ) :=

⋃
{ecl(ϕ) | ϕ ∈ Γ}.

A formula E(ϕUψ) (in particular, EFψ) is said to be an existential eventuality and
A(ϕUψ) (in particular, AFψ) – a universal eventuality.

2.3 Bisimulations and invariance
We recall here the well-known notion of bisimilarity of interpreted transition systems (see,
for instance, [14] or [10, Ch.3]).

I Definition 4. LetM1 = (S1, R1,Prop, L1) andM2 = (S2, R2,Prop, L2) be two interpreted
transition systems over the same set of propositions Prop. A relation β ⊆ S1 × S2 is a

bisimulation between M1 and M2, denoted M1
β

�M2, iff for all s1 ∈ S1 and s2 ∈ S2,
s1βs2 implies:
1. Atom Equivalence: L1(s1) = L2(s2);
2. Forth condition: For any r1 ∈ S1, if s1R1r1 then there is some r2 ∈ S2 such that s2R2r2

and r1βr2;
3. Back condition: For any t2 ∈ S2, if s2R2t2 then there is some t1 ∈ S1 such that s1R1t1

and t1βt2.
Two states s1 ∈ S1 and s2 ∈ S2 are bisimilar if there is a bisimulation β betweenM1 and

M2 such that s1βs2. We denote that by (M1, s1)
β

� (M2, s2) (or, just (M1, s1)� (M2, s2)
when β is inessential) and say that the rooted models (M1, s1) and (M2, s2) are locally
bisimilar. If there is a bisimulation between M1 and M2 that links every state in S1 to
some state of S2 and vice versa, we say thatM1 andM2 are (globally) bisimilar.

The following is a minor adaptation of a well-known result relating bisimulations and
logic (see e.g. [18] or [10, Ch.3]). Here bisimulation is between reductions of ITS to a subset
P of atomic propositions, thus Atom Equivalence is relativised to the propositions in P only.

I Proposition 5 (Relativised bisimulation invariance). Let ϕ be a CTL formula, prop(ϕ) ⊆
Prop, M1=(S1,R1, Prop, L1) and M2=(S2, R2, Prop, L2), and β ⊆ S1 × S2 be a local
bisimulation between (M1|prop(ϕ), s1) and (M2|prop(ϕ), s2). Then (M1|prop(ϕ), s1) |= ϕ iff
(M2|prop(ϕ), s2) |= ϕ.

WhenM1
β

�M2 andM1 =M2 =M we say that β is a bisimulation in M. Every
such bisimulation is an equivalence relation inM and therefore generates a quotient-structure
fromM which we call the quotient of M with respect to β. It is well-known (see e.g.
[11] or [10, Ch.3]) that amongst all bisimulations in M there is a largest one, βM. The
quotient of M with respect to βM, hereafter denoted by M̃, is called the bisimulation
collapse of M. Note that every two different states in M̃ are non-bisimilar.

All these concepts relativise to reductions of ITS with respect to subsets P of atomic
propositions. Note that, the smaller the subset P is, the larger the respective largest
bisimulation inM|P , and therefore the smaller the bisimulation collapse M̃|P . Therefore,
when trying to minimize a model of a given formula θ with respect to bisimulations, we will
be interested in M̃|prop(θ).
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13:6 Minimisation of CTL Models

3 Model minimisation procedure (MMP)

3.1 Brief informal description
Our main aim is to develop an efficient procedure that minimises – in a sense to be made
precise later – any given finite pointed model (M, s) of a CTL formula θ.

To facilitate and optimise that procedure, we precede it with global model checking in
M of the formulas in the extended closure of θ. Since model checking of CTL formulas is
very efficient, viz., bi-linear in both the size of the model and the length of the formula
([7], see also [10, Ch.7]), this preprocessing would not increase the overall complexity of the
minimisation procedure.

Now, given (M, s) and the input formula θ, such that (M, s) |= θ, by applying global
model checking inM we identify the set ‖θ‖M of all states inM satisfying θ. If θ must be
satisfied in the same (up to bisimulation collapse) state as s in the obtained minimal model,
then the procedure works as described further shortly. If, however, satisfying θ at any state in
the obtained minimal model will be sufficient for the purposes of the intended minimization,
then a slightly different approach may be preferable: consider all states t ∈ ‖θ‖M, call the
minimisation procedure to (M, t) for each of them, and finally select one of the obtained
minimal models. Alternatively, to avoid some of that work, select amongst all states t ∈ ‖θ‖M
only those, for which the generated at t submodel ofM is minimal by inclusion with respect
to the others, and only apply the minimisation procedure to them.

We emphasize that either of these approaches may be preferable, depending on the
concrete case. So, we are only listing them here as reasonable options, but the actual choice
of concrete approach is left to the agent (or tool) performing the minimisation.

We assume hereafter that the possible selection of states indicated above has already
been performed and the task now is to minimise a given pointed model (M, s) so that the
formula θ is eventually satisfied at (the image of) the same state s in the minimised model.

As noted in the introduction, the minimisation procedure that we develop aims at
detecting and eliminating two kinds of redundancies inM, described below. These may have
to be applied repeatedly, in an order discussed further, in Section 4.1.
1. Model-based redundancies, that arise when the model contains different states that are

bisimilar with respect to the language of the input formula. These redundancies are
eliminated by applying a well-known bisimulation minimisation procedure, after ignoring
the atomic propositions not occurring in the formula. This procedure is deterministic and
produces a unique (up to state renaming) reduced model – the bisimulation quotient. 5

2. Formula-based redundancies, that arise when the model contains “unnecessary” states, that
can be removed without affecting the truth of the formula. Typically, such redundancies
arise when:
(i) the model satisfies both disjunctive components of a disjunctive (sub)formula at

some state, instead of only one of them, or
(ii) a state has more successors than what is needed to satisfy the (sub)formulas that

have to be true there, or
(iii) a state is not reached in the process of the evaluation of the formula. These include

all states that are not reachable by finite transition paths from the root state. In the
case of a BML formula of modal depth ≤ n these are also all states not reachable in
n transition steps from the root state.

These redundancies are eliminated by applying a tableaux-like procedure on the given input
model, systematically selecting a single branch in the search / decision tree whenever a
disjunction is to be satisfied, and selecting only a minimal subset of necessary successors
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of each state added to the selection; this notion is precisely defined in Section 3.4. This
procedure is non-deterministic and produces at least one, but possibly many reduced models,
some of which may contain others. After its completion we also remove all obtained reduced
models that are not minimal by inclusion.

Note that the preliminary global model checking is also useful in the tableaux-like
minimisation procedure to select only minimal subsets of necessary successors of the current
state, as well as to select in advance the shortest possible paths in the model realizing required
eventualities. This will be illustrated on the running examples of minimising redundant
models presented further.

3.2 Running examples
I Example 6. Consider the rooted model (M1, s) shown in Figure 1 and the following
formulas :

φ1 = EX p ∧ AF (q ∨ EF p), φ2 = EX¬p ∧ EX q ∧ AG (q → p),
φ3 = EX¬p ∧ EX E((p ∧ q) U¬q), φ4 = EX q ∧ EG (¬q ∧ p),
θ1 = φ1 ∨ φ2, θ2 = φ1 ∨ φ3, θ3 = φ1 ∨ φ4.

s : {p}

s2 : {p, q, r}s1 : {r} s3 : ∅s4 : {p, r} s5 : {p, q, r}

s6 : {p} s7 :{p, r} s8 : {p, q}s9 : {p}

Figure 1 The model M1.

M1 satisfies at s all φi, for i = 1..4. Hence, it satisfies each of θ1, θ2 and θ3 but, as we
will show, it has unnecessarily many states.

I Example 7. ModelM2 in Figure 4 satisfies (M2, s) |= EX (¬p∧EX (p∧EX (p∧q))). Again,
we will show that it contains states that are unnecessary for that purpose.

3.3 Bisimulation reduction (BR)
As explained in Section 2.3, in our procedure of bisimulation minimization of a (pointed)
model (M, s) satisfying a given CTL formula θ, in order to obtain a smallest possible
bisimulation collapse ofM that still satisfies θ we only need to compute the bisimulation
collapse of the reductionMθ =M|prop(θ) ofM to the language of θ. The resulting pointed
ITS (M̃|θ, s̃) still satisfies θ and has the minimal number of states amongst all ITS that
satisfy θ and are θ-bisimilar toM. We call this formula-oriented procedure θ-bisimulation
minimisation of M.

Some essential remarks are in order.
(i) In order to preserve the satisfaction of θ it suffices to compute a local bisimulation

collapse, of the submodel ofMθ that is generated by s.

TIME 2019



13:8 Minimisation of CTL Models

(ii) If θ is a BML-formula of modal depth n, then it suffices to compute the n-bisimulation
collapse of (Mθ, s), that identifies any two states satisfying the same formulas of depth
up to n in the language of θ. That will, in general, produce an even smaller model.

(iii) The issue arises of what happens to the atomic propositions not occurring in θ. The
procedure above ignores and forgets them completely. But that may be neither necessary
nor desirable, even though we are currently only concerned withM as a model satisfying
θ. This is because there may be other properties ofM, involving atoms not occurring
in θ, the truth of which may be affected by the minimisation procedure and may be
of importance later. So, we propose the following refinement: to keep a best possible
record of the truth of each atom r not occurring in θ in the resulting reduced model
(M̃|θ, s̃) by introducing, besides true and false, a third truth-value both, that will be
assigned to r at each state in the collapsed model where original states with different
truth values of r have been identified. Thus, the resulting refined model allows for
3-valued valuation of the truth of formulas involving such atomic propositions, that
can be used for evaluating the truth of some formulas that contain them. We will not
pursue systematically this idea here, but leave it to future work.

There are well-known efficient procedures for bisimulation minimisation based on partition
refinement such as the Kanellakis-Smolka algorithm [13], optimized to the Paige-Tarjan
algorithm in [16]. (For other, more involved and efficient algorithms see [14]; see also [1].) It
is quite easy to refine most of these θ-bisimulation minimisation procedures to account for
the refinements above, but for lack of space we will not spell out the details.

I Example 8 (Example 6 continued). Let us apply BR to the modelM1 with respect to the
language of the formulas θi of Example 6, i.e. over the set of atomic propositions P = {p, q}.
The coarsest partition of the set of states corresponding to the maximal bisimulation relation
in M1|P contains six clusters: C

0
= {s}, C

u
= {s1, s3}, CE = {s2, s8}, C� = {s4},

C⊗ = {s5}, C+ = {s6, s7, s9}. Note that, for instance, s6 and s9 are in the same cluster even
if they do not agree on the valuation of the propositional letter r, as it does not belong to
the language of our interest. These clusters of bisimilar states are visualized in Figure 2.
The corresponding quotient modelM′1, collapsing all states belonging to the same cluster
into a unique state, is given in Figure 3.

s : {p}0

s2 : {p, q, r}Es1 : ru s3 : ∅us4 : {p, r}� s5 : {p, q, r}⊗

s6 : {p}+ s7 : {p, r}+ s8 : {p, q}Es9 : {p}+

Figure 2 {p, q}-bisimilar states in the model M1.

3.4 Tableaux-based reduction (TR)
As explained earlier, the purpose of this reduction is to remove parts of the model that are
unnecessary for satisfying the target input formula, typically when satisfying disjunctive
choices and selecting successors. The input of the procedure TR is a pointed ITS (M, s)
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s : {p} 0

s2 :{p, q}Es1 : ∅us4 : {p} � s5 : {p, q} ⊗

s6 : {p}
+

Figure 3 The bisimulation quotient model M′
1 = M̃1|{p,q}

and a formula θ such that M, s |= θ is given/known to be true (our initial assumption).
The output is a family of reduced pointed ITS (M1, s), . . . (Mq, s) satisfying θ. Here is an
informal outline of the overall procedure:
1. TR starts with a global model checking in M of the formulas in the extended closure

ecl(θ) of the input formula θ.
2. Then TR runs a tableau-like procedure that iteratively labels states ofM with sets of

formulas. At start, the root state s of M is labeled with {θ}, while all other states have
an empty label. Then labels are possibly modified repeatedly until stabilisation, according
to a sub-procedure LAB that we outline later. A non-deterministic run of LAB produces
a submodelM′ ofM with state space S′ consisting of all states in S with non-empty
labels.
When all the possible runs of LAB are executed, in parallel or consecutively, a list of
reduced pointed models (M1, s), . . . (Mk, s) is produced.

3. Check for subset inclusion1: if Mi is included as a substructure in Mj , then remove
Mj from the list. The procedure eventually returns the family of minimal by inclusion
reduced pointed models that remain in the list.

We are now going to describe more formally and precisely the procedure outlined above.

I Definition 9. Let (M, s) be a pointed ITS and let Γ be a set of formulas that hold at s.
A (non-deterministic) optimal saturation of Γ is a procedure OS that, when applied
non-deterministically to Γ produces a set of formulas ∆ such that Γ ⊆ ∆ by repeatedly
applying the following operations until saturation:
1. Initially, ∆ := Γ.
2. If a conjunctive formula ϕ is in ∆ then OS adds both its components to ∆;
3. If a disjunctive formula ϕ is in ∆ and none of its disjunctive components is in ∆, then

OS chooses non-deterministically any of these components which is true at s and adds
it to ∆. However, the following exception applies: if ϕ is an eventuality, i.e. E(χUψ),
EFψ, A(χUψ), or AFψ, and none of its components is in ∆ but ψ is true at s, then OS
adds only ψ to ∆.

The sets ∆ produced by runs of OS are called (optimally) saturated extensions of Γ. Γ
is said to be optimally saturated if it equals an optimally saturated extension of itself.

1 More generally, TR can check for isomorphic embeddings, but that may increase substantially the
complexity of the whole procedure.

TIME 2019



13:10 Minimisation of CTL Models

The adjective “optimal” in the above definition is due to the third item, that minimizes
the number of disjunctive components required to be true and aims at fulfilling eventualities
as soon as possible. Note that if Γ ⊆ ecl(θ) for a given formula θ and ∆ is an optimally
saturated extension of Γ, then ∆ ⊆ ecl(θ). Moreover all the elements of ∆ are true at s, by
construction. In particular, so are all the successor formulas occurring in ∆.

I Definition 10. LetM be an ITS, s ∈M, let Γ be an optimally saturated set of formulas
true at s, and let Γsuc = {¬EXψ1, ...,¬EXψk,EXϕ1, ...,EXϕm} be its subset of successor
formulas (where each of k and m can be 0). A minimal set of successors of s w.r.t.
Γsuc is a set U of states inM that are (immediate) successors of s and:
1. Each existential successor formula EXϕj in Γsuc has a “witness” in U , viz. some state

w(ϕj) ∈ U such thatM, w(ϕj) |= ϕj;
2. U is minimal with respect to the above property: if any state is removed from U then the

resulting set S′ lacks a witness for at least one EXϕj ∈ Γsuc.
3. In case when m = 0, an arbitrary self-looping successor of s is added to U , just for the

sake of seriality.

By hypothesis, all formulas in Γsuc are true at s. Therefore, for all ¬EXψi ∈ Γsuc, the
formula ¬ψi is true at each state s′ ∈ U .

The procedure ANALYSE given below takes as input an ITS, a state s in it, and a set of
formulas L(s) currently labelling that state. It updates L(s) by saturating it and adding
formulas to the current labels of some successors of s, to produce the updated labels as an
output. The top procedure LAB calls ANALYSE.

The procedure ANALYSE.
1. Construct an optimal saturation ∆ of L(s) and reset the value of L(s) to ∆.
2. If L(s)suc = {¬EXψ1, ...,¬EXψk,EXϕ1, ..., EXϕm} is the subset of successor formulas of
L(s), then build a minimal set U of successors of s w.r.t. L(s)suc.

3. For each s′ ∈ U : if s′ = w(ϕj), then add ϕj and all ¬ψi, 1 ≤ i ≤ k, to the current value of
L(s′) (if they are not already in it).

The procedure LAB.
1. Initialization: set s to be the current state, L(s) := {θ} and L(s′) := ∅ for each other state

of M.
2. Until all labels L(s′) of states s′ of M become stable, do:

a. Apply ANALYSE to the current state t.
b. Then for each state t′ in the minimal set of successors U of t produced by ANALYSE at t,

set t′ to be the current state and recursively apply ANALYSE there.

Note that, for the sake of simplicity, here we are giving the pseudo-code for a non-
deterministic run of LAB. It can be converted to a deterministic algorithm, producing the
entire family of reduced models, by using suitable bookkeeping and backtracking mechanisms.

I Example 11 (Example 1 continued). Let us apply LAB to the modelM′1 of Figure 3 and
the formula θ1 = φ1∨φ2 that holds at s. At the initialisation, L(s) = {θ1}, while the labels of
all other states are the empty set. Since both φ1 and φ2 are true at s, a non-deterministic run
of LAB makes a choice of which of them to put in an optimized non-deterministic saturation
of L(s). Consider two cases:
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1. Suppose that the choice φ1 = EX p ∧ AF (q ∨ EF p) is made. Then both conjunctive
components of φ1, EX p and AF (q∨EF p), are added to the saturation. The latter formula
is an eventuality, whose disjunctive components are q ∨ EF p and AXAF (q ∨ EF p). Here
both components are true at s, but optimality forces us to choose q ∨ EF p. Now only
EF p is true at s, so it is the chosen disjunctive component. In turn, EF p is an eventuality
whose disjunctive components are p and EXEF p. Since p is true at s then p is chosen. To
summarise, the corresponding non-deterministic saturation of {θ1} built here is the set
{θ1, φ1, EX p, AF (q∨EF p), q∨EF p, EF p, p}. It becomes the new value of L(s). Its set
of successor formulas is {EX p}, for which we obtain three minimal sets of successors of s,
namely {s2}, {s4} and {s5}. A non-deterministic run of LAB chooses one of them, and
adds the formula p to the corresponding state. In each of the three cases, the analysis of
the newly labeled state produces no new label and the run halts, respectively producing:
the sub-modelMa ofM′1 containing just the states {s, s2}, the sub-modelMb containing
just the states {s, s4}, and the sub-model Mc containing just the states {s, s5} (with
loops, respectively, on s2, s4 and s5).

2. Suppose now that the choice φ2 =EX¬p ∧ EX q ∧ AG (q → p) is made.
Reasoning as above, by choosing suitable minimal sets of successors, we get:

either a candidate model having s, s1 and s2 as states, hence strictly includingMa,
and therefore excluded as a true minimal model by the inclusion-check that follows
the application of LAB procedure in TR,
or, a candidate model that strictly includesMc and is also disregarded.

Hence, after the inclusion-check, the complete run of TR onM′1 produces the family of
reduced models consisting ofMa,Mb andMc.

I Example 12 (Example 7 continued). Consider the model M2 of Figure 4 that satisfies
ψ = EX (¬p ∧ EX (p ∧ EX (p ∧ q))) at s. An application of the procedure BR w.r.t. the set of
propositions {p, q} identifies states s1 and s6 as bisimilar, producing the modelM′2 described
in Figure 4. Then, running TR on that model and ψ removes s5 and produces the model
M′′

2 described in Figure 4. The states s3 and s4 are now bisimilar, so a new application of
BR toM′′

2 is necessary. It produces the modelM∗2 of Figure 4, where s3 and s4 are now
collapsed into one state. Such a model of EX (¬p ∧ EX (p ∧ EX (p ∧ q))) cannot be further
reduced. This example shows that the procedure BR may have to be applied again after an
application of TR in order to minimise further the model.

4 Analysis and results

4.1 Minimisation procedures running BR and TR together
The examples run so far show that it may be necessary to alternate the procedures BR and
TR in order to produce truly minimal models of the target formula. Indeed, none of the two
procedures subsumes the other in terms of the outcomes. This can be seen by a simple example.
Take, for instance,M to be the modelM′2 of Figure 4 and ψ = EX (¬p∧EX (p∧EX (p∧ q))),
as in Example 12. If we run again BR on this input, we trivially get againM′2, sinceM′2
is already minimal with respect to ψ-bisimulation. However, running TR on M′2 and ψ

produces the modelM′′

2 shown in Figure 4. Thus, the two results are incomparable. More
generally, observe also that both BR and TR are idempotent, i.e. neither of them produces
new models if applied consecutively twice. These suggest that a minimising procedure might
either start with BR and then alternate TR and BR phases (on the input produced by the
previous phase) until stabilisation, or else start with TR and then alternate BR and TR
phases until stabilisation. However we can bound the number of such alternations until
stabilisation in both cases, due to the following result.
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The modelM2:
s : {p}

s1 : {p}s6 : {p, r} s2 : {q}

s4 : {p, q} s3 : {p, q, r} s5 : {p}

The modelM′2 obtained applying BR toM2:
s : {p}

s1 : {p} s2 : {q}

s4 : {p, q} s3 : {p, q} s5 : {p}

The modelM′′

2 , result of applying TR toM′2:
s : {p} s2 : {q}

s3 : {p, q}s4 : {p, q}

The modelM∗2 obtained by applying BR onM′′

2 :
s : {p} s2 : {q}

s3 : {p, q}

Figure 4 A complete reduction of the model M2.

I Lemma 13. The reduction TR has to be applied only at most once, that is:
given a pointed model (M1, t) and a formula θ, let (M2, t) be a reduced model produced by a
run of TR onM1 and let (M3, t̃) be the result of running BR on (M2, t). Then any run of
TR on (M3, t̃), θ produces again (M3, t̃) as a result.

Proof. Note that TR only removes states from its input model if they remain with empty
labels. So, it suffices to observe that, if any formula φ ∈ ecl(θ) was added by the first run of
TR to the label of a state s ∈M2, then the same formula will be added to the label of the
respective collapse state s̃ ∈M3 produced by applying BR toM2, and therefore that state
will be preserved in the application of TR toM3. The proof can be done by tracing step by
step the run of TR onM1 producingM2 and the respective run of TR onM2 = M̃2. We
omit the routine details. J
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Therefore, there are only two different ways to organize the whole procedure:
MMP1: Start with TR, then apply BR to each obtained model.
MMP2: Start with BR, then apply TR to the obtained model, then again BR to each resulting

model.

I Example 14 (Example 12 continued). In Example 12, we have actually run MMP2 on the
modelM2 (Figure 4) and the formula ψ = EX (¬p ∧ EX (p ∧ EX (p ∧ q))). If we rather run
MMP1 on the modelM2, TR immediately produces the modelM′′

2 , then an application of
BR to such a model makes s3 and s4 collapse and produces the minimal modelM∗2.

4.2 Convergence and comparison of MM1 and MM2
I Lemma 15. Given any pointed model (M, s) and a formula θ, every reduced pointed model
produced from (M, s) by applying first BR and then TR can also be produced by applying first
TR and then BR.

Proof. Let (M̃, s̃) be produced from (M, s) by applying BR and let (M̃′, s̃) be produced
from (M̃, s̃) by applying TR. It suffices to note that every run of procedure TR applied to
(M̃, s̃) to produce (M̃′, s̃) can be simulated, step by step, by a run of TR applied to (M, s),
by selecting at every step a set of successors which are respectively θ-bisimulation equivalent
to successors selected at the respective step of the run of TR applied to (M̃, s̃). That would
eventually produce a pointed model, on which BR would produce (M̃′, s̃). J

I Theorem 16. For every initial pointed model (M, s) and a given formula ϕ:
1. MMP1 and MMP2 produce the same families of reduced models.
2. Every reduced pointed model produced by either of MMP1 and MMP2 is minimal in

the following senses:
a. Bisimulation-minimal with respect to the language of ϕ.
b. State-minimal, in the sense that no state can be removed fromM to still preserve the

truth of ϕ at s.

Proof. We first prove the second claim. The bisimulation-minimality is immediate, as both
procedures end with BR. The state minimality follows from the minimality of every set of
successors preserved by TR, and using Lemma 13.

Now, the first claim. First, every reduced pointed model produced by MMP2 can also be
produced by MMP1, by Lemma 15 and the idempotency of BR. For the converse inclusion,
note that every run ρ of TR applied to a pointed model (M, s) and input formula θ can be
lifted to a run ρ̃ of TR on the θ-bisimulation quotient (M̃, s̃) by selecting there the respective
clusters of the selected successors in (M, s). Eventually, applying again BR to the resulting
submodel (M̃′, s̃) would produce the same θ-bisimulation quotient as BR applied to the
submodel of (M, s) produced by the run ρ of TR. J

We note that neither of the procedures MMP1 and MMP2 is intended, nor guaranteed,
to produce a smallest possible model of the input formula, but only to minimise the input
model in the senses described above. Indeed, e.g. the formula ψ in Example 12 has a
smaller model than the modelM∗2 in f Figure 4 that was obtained fromM2 by the reduction
procedure: a model with just two states, s, having label {p}, and its looping successor s2
having label {p, q}.

We end this section with some complexity analysis. First, note that, despite the equi-
valence, the procedures MMP1 and MMP2 may have quite different performances. For
instance, the deterministic version of MMP1 can take in some cases an exponentially larger
number of steps than MMP2, as shown by the following example.
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I Example 17. Let θ be a formula of the form EX ...EX p, where EX occurs n times, and let
M be a pointed model that is a fully balanced binary tree of height n, satisfying p at each
leaf and where all the states at the same level are bisimilar. Note that MMP2, starting
with BR, will collapse all branches into one, and then TR will not make any change. On the
other hand, MMP1, starting with TR, will produce 2n isomorphic reduced models, each of
them being a branch in the original model, i.e. a linear chain of length n. After checking for
isomorphisms at the end, TR will leave just one of them, which BR will not change.

Now, to analyse the complexity, we can focus on the procedure MMP1, taking as inputs
a formula θ and a pointed model (M, s), and returning a set2 of minimal reduced models.
MMP1 first computes ecl(θ) and does global model checking of all formulas in it inM, in
time linear in both |θ| (the size of θ) and |M| (the size ofM). Then, a non-deterministic
run of the sub-procedure LAB in the worst case treats all formulas in ecl(θ) and visits all
the states inM. Thus, it runs in time polynomial in |θ| and |M|. Eventually, it produces a
family of (possibly exponentially many, as evident from Example 17) minimal submodels,
but for the sake of comparing and selecting the smallest of them, they can be produced
consecutively, thus reusing space. Thus, TR can produce its output consecutively, in PSPACE.
Bisimulation reduction of each of the models obtained by TR can be done in O(m log n)[16],
where m is the number of transitions and n is the number of states of the model. Thus,
finally, it takes polynomial space to produce every reduced pointed model consecutively, as
an output of MMP1. A similar complexity analysis applies to MMP2.

5 Further work and concluding remarks

We have proposed a formula-oriented minimization procedure in two versions, MMP1 and
MMP2, that reduces the number of states of a model M satisfying a given CTL formula θ,
by taking into account both possible θ-bisimulation redundancies as well as redundancies
induced by the structure of θ. Using a tableau-like procedure for handling the second
type of redundancies and combining the two kinds of reduction procedures are the main
original ideas of our contribution. As already observed in the literature, to reduce the size of
components with respect to their corresponding specification formulas can help to tackle the
space explosion problems of product transition systems.

Our approach is related to, but different from, [15], as mentioned in the introduction. Not
only we do not modify CTL syntax, but our notion of minimality is different and we solve a
different algorithmic problem, too. Indeed, a formula φ1Ξφ2 in [15] holds at a state s of a
modelM when there is a minimal (and conservative, as defined in that work) sub-structure
ofM verifying φ2 at s that verifies also φ1. Here, minimality is with respect to an ordering
of sub-structures ofM. In our case, minimisation includes also bisimulation reduction. Thus,
for instance, consider again the rooted model (M1, s) and the formula θ1 of Example 6 and
let θ′1 be θ1 ∧ EX EX (p ∧ ¬q). Then running BR produces the quotient modelM′1 exhibited
by Figure 3, then a run of TR gives the model whose states are s, s5, s6 (with s connected
to s5, s5 connected to s6 and a loop on s6). The latter is not a sub-structure ofM1, and
model-checking the formula >Ξθ′1 of the logic in [15] cannot produce it.

Future work includes extending our approach to model minimization to richer logics,
in particular to the multi-agent extension ATL of CTL, whose models are minimized only
with respect to (alternating) bisimulation in [5]. We also intend to implement MMP1 and
MMP2 and to test experimentally and compare their performance in practical cases.

2 Thus, the minimisation problem that this procedure solves is not a decision problem.
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