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Abstract
In this paper, we introduce a new data mining framework that is based on qualitative reasoning.
We consider databases where the item domains are of different types, such as numerical values, time
intervals and spatial regions. Then, for the considered tasks, we associate to each item a constraint
network in a qualitative formalism representing the relations between all the pairs of objects of the
database w.r.t. this item. In this context, the introduced data mining problems consist in discovering
qualitative covariations between items. In a sense, our framework can be seen as a generalization of
gradual itemset mining. In order to solve the introduced problem, we use a declarative approach
based on the satisfiability problem in classical propositional logic (SAT). Indeed, we define SAT
encodings where the models represent the desired patterns.
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1 Introduction

Data mining techniques are applied on different data types, such as transactions, sequences,
graphs, texts, etc. In order to consider complex aspects of the real world, it is interesting to
extend these techniques for knowledge discovery to new complex data, such as spatio-temporal
pieces of information. However, it is important in this context to take into account the
simplicity of the pattern structure. Thus, the challenge in this work is to propose a framework
that allows us to deal with different complex data types and discovering patterns having a
simple structure.

Qualitative reasoning is concerned with facilitating reasoning about complex entities and
pieces of information through symbolic representation formalisms. In particular, this kind of
reasoning is strongly related to human one and, for instance, it can be used for dealing with
pieces of information that come from natural language. In the literature, the qualitative
formalisms are widely used for reasoning about two physical entities of the world that are time
and space (e.g. see [21]). Indeed, qualitative spatial and temporal reasoning is an important
research field in Artificial Intelligence in general, and knowledge representation in particular.
The spatial and temporal representation formalisms allow reasoning about configurations
by abstracting numerical quantities of space and time thanks to qualitative relations, such
as inside, before, after, etc. One of the best known qualitative representation formalisms is
the Point Algebra [31], which allows representing and reasoning about the possible relative
positions between two points on the timeline. The Interval Algebra [2, 3], for its part, is used
for reasoning about the possible positions between two intervals. Furthermore, regarding
qualitative spatial reasoning, the Region Connection Calculus RCC8 [25] is one of the most
studied formalisms in qualitative reasoning, which concerns topological relations between
two spatial regions.
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9:2 Qualitative Reasoning and Data Mining

In this work, we propose a framework for data mining using qualitative reasoning, which
allows considering different data types, such as numerical values, time intervals and spatial
regions. To this end, we first introduce the notion of qualitative database, which is defined
by associating to each item a constraint network in a qualitative formalism representing the
relations between the pairs of objects of the database w.r.t. this item. Then, we describe
data mining tasks for discovering qualitative covariations, called qualitative itemsets, in
the previous kind of databases. For instance, the desired patterns can capture pieces of
information of the form “a variation of an item a w.r.t. the qualitative relation r1 is associated
with a variation of b w.r.t. the qualitative relation r2”. In a sense, the proposed tasks can be
seen as a generalization of those related to gradual itemsets where the qualitative relations that
are considered in the extracted patterns are only ≤ and ≥ on numerical values [7, 10, 11, 20].
We express the interestingness predicate on the qualitative itemsets in a database through
two different definitions of support. The first definition takes into consideration a local view
by reasoning about the pairs of objects that satisfy the partial order induced by the itemset,
while the second is obtained by reasoning about the sequences respecting the previous partial
order. These two definitions allow extracting interesting recurrent pieces of information.
Finally, we use a declarative and flexible solution for solving the introduced data mining tasks
based on the use of the satisfiability problem in classical propositional logic (SAT). Indeed,
we define for each task a SAT encoding whose models allow us to obtain all the desired
patterns. Thus, we follow in our solution the constraint programming based approach for
data mining initiated in [24, 13], which offers a declarative and flexible representation model.

The rest of the paper is organized as follows. After describing related works in Section 2,
we introduce in Section 3 the notion of qualitative database. In Section 4, we present the
data mining tasks proposed in this work. In Section 5, we describe our SAT-based encodings
for solving these tasks, while Section 6 concludes the paper.

2 Related Works

The most related data mining tasks to our framework are those concerned with extracting
gradual itemsets [7, 10, 11, 20]. A gradual itemset is a pattern expressing covariations of
items having as domains sets of numerical values. For instance, the gradual itemset containg
three gradual items {sport≥, weight≥, diseases≤} can be used to express the fact “the higher
the time of physical activity, the higher the weight loss, and the fewer the number of diseases”.
The gradual itemset structure allows analyzing numerical data in a simple and intuitive way,
since it avoids the quantitative aspects of the considered data.

The data mining framework introduced in this work can be seen as a generalization of
that of mining gradual itemsets in the case of numerical data. Indeed, instead of using
only the inequality relations ≤ and ≥, many binary qualitative relations on different data
types can be used in our framework, in particular qualitative relations on time intervals and
spatial regions.

It is worth noting that we use in our framework measures for determining the quality of
a qualitative itemset similar to those proposed in the case of gradual itemsets. In fact, in
the same way as in gradual itemset mining, we consider two distinct definitions of support:
the first definition considers the pairs of objects that respect the itemset, while the second
definition is obtained by reasoning about the length of the sequences that respect the pattern.
More precisely, the first definition of support corresponds to the numbers of pairs of objects
that satisfy the partial order associated to the pattern, and the second definition corresponds
the length of the longest sequences of objects that are ordered using the partial order induced
by the pattern.
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The use of a declarative approach for data mining was originally proposed in [24] for
performing different tasks. Specifically, the authors have demonstrated that constraint
programming is an appropriate tool in many respects in itemset mining. One of the main
motivations lies in the fact that this framework offers a flexible and generic representation
model. Indeed, new constraints often require new implementations for specialized data
mining approaches, which can often be integrated in a fairly simple way into declarative
frameworks, since it is not needed to change the solving tools. In addition, the continual
evolution in the efficiency of tools dedicated to problems that can be used for data mining
modeling, like ASP (Answer Set Programming), CSP (Constraint Satisfaction Problem) and
SAT, is a strong argument in favor of using approaches based on these problems. Thus, from
this first work, a new line of research has emerged within the data mining community. Indeed,
in recent years, many works using CSP and SAT for different data mining tasks have been
proposed in the literature (e.g. [13, 16, 12, 30, 19, 9]). In particular, in [8], the authors show
that their SAT-based approach achieves better performance than state-of-the-art specialized
techniques. In this work, we use a SAT-based approach for solving all the considered data
mining tasks. Let us note that a SAT-based approach was recently used for extracting
gradual patterns in [22].

3 Qualitative Database

In this section, we introduce the notion of qualitative database. The main idea consists in
associating to each item a constraint network in a qualitative formalism representing the
relations between the pairs of objects of the database w.r.t. this item. To illustrate our
proposal, we consider three distinct qualitative formalisms for reasoning about time and
space, namely Point Algebra [31], Interval Algebra [2, 3] and Region Connection Calculus
RCC8 [25].

Given a finite set S, we use P(S) and |S| to denote respectively the powerset and the
cardinality of S. Given a finite set of items I, Va is used to denote the domain of the
item a ∈ I. The domain of an item can be a numerical value, a temporal interval, a
spatial region, etc. Further, we associate to each item a a finite set of qualitative base
relations Ba, which consists of jointly exhaustive and pairwise disjoint relations, i.e., for
each (v, v′) ∈ Va × Va, there exists exactly one b ∈ Ba such that (v, v′) ∈ b. Further, we
only consider the set of qualitative base relations Ba that contains the identity relation
id = {(v, v′) ∈ Va × Va | v = v′}, and is closed under the inverse operation (·)−1, namely
whenever b is in Ba, the inverse (b)−1 is also in Ba. A qualitative relation is said to be
universal if it contains all the base relations.

The weak composition of two base relations b and b′ in Ba, denoted b � b′, is defined as
the set of base relations {b′′ ∈ Ba | ∃(v, v′) ∈ b & (v′, v′′) ∈ b′ & (v, v′′) ∈ b′′}. The weak
composition operation is extended to the relations in P(Ba) as follows: r�r′ =

⋃
b∈r,b′∈r′ b�b′.

In this context, it is worth mentioning that the composition ◦ of two relations is defined as
follows: r ◦ r′ = {(v, v′) | ∃v′′, (v, v′′) ∈ r & (v′′, v′) ∈ r′}. In other words, r � r′ is the largest
set of base relations where each one shares at least one value with r ◦ r′.

For example, consider the point algebra (PA) qualitative formalism described in Figure 1,
which has been mainly used for temporal reasoning. Indeed, PA can be used to encode
temporal relations between two points in the timeline. We also describe in Figure 2 the base
relations of two other qualitative formalisms: interval algebra (IA) and region connection
calculus RCC8. The formalism IA allows encoding relative relations between intervals, while
RCC8 allows encoding topological relations between two regions. For instance, the expression
DC(Region1, Region2) represents the fact that the two spatial regions Region1 and Region2
are disconnected.

TIME 2019
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(a) The base relations of Point Algebra.
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(c) The composition table of Point Algebra.

Figure 1 Point Algebra.
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(b) The base relations of Interval Algebra.

Figure 2 The qualitative formalisms RCC8 and Interval Algebra.

I Definition 1 (Qualitative Column). A q-column is a structure of the form c = (a,O, R),
where a is an item, denoted item(c), O is a finite non empty set of objects, denoted obj(c),
and R is a mapping form O ×O to Ba, denoted rel(c).

Let us now introduce the notion of qualitative database, which is defined by associating to
each item a constraint network in a qualitative formalism representing the relations between
the pairs of objects of the database w.r.t. this item.

I Definition 2 (Qualitative Database). A qualitative database is a structure of the form
(O, I, C), where O is a finite non empty set of objects, I is a finite non empty set of items
and C is a set of q-columns s.t. (i) |C| = |I|, (ii) ∀c ∈ C, obj(c) = O, and (iii) ∀a ∈ I, there
exists exactly one c ∈ C s.t. item(c) = a.

In the sequel, we sometimes use Ra to denote rel(c) where c is the qualitative column
associated to the item a.

For example, we describe in Figure 3 a qualitative database: we provide in (a) a database
using values in item domains, in (b) the concret situation of the considered spatial regions,
and in (c) the qualitative database. For instance, the edge between o1 and o2 in the left-hand
graph represents the qualitative base relation in PA > (o1, o2), usually denoted o1 > o2.
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objects a b c
o1 2 [1,4] R1

o2 1 [2,3] R2

o3 4 [3,6] R3

o4 1 [2,4] R4

(a) A database using values in item domains.
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(b) A representation of the real situation the regions
R1, R2, R3 and R4.
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(c) The qualitative database corresponding to the database in (a).

Figure 3 A Qualitative Database.

4 Mining Qualitative Itemsets

In this section, we introduce data mining tasks for discovering qualitative covariations in
qualitative databases. For instance, the patterns in this context can be used to capture pieces
of information of the form “a variation of a w.r.t. the qualitative relation r1 is associated
with a variation of b w.r.t. the qualitative relation r2”.

I Definition 3 (Qualitative Itemset). A qualitative itemset is a finite non empty set of
qualitative items I, where a qualitative item is a structure of the form ar where a is an item
and r ⊆ Ba.

Let us now describe the partial order on the objects of a database that is induced by a
qualitative itemset, and also the notion of ordered sequence that is used for defining the
support of a qualitative itemset.

I Definition 4 (Induced Partial Order). Let D = (O, I, C) be a qualitative database, o, o′ ∈ O
and I = {ar1

1 , . . . , a
rk

k } a qualitative itemset. Then, we say that o precedes o′ w.r.t. I, written
o �I o′, if for all i ∈ 1..k, Ra(o, o′) ∈ ri holds.

I Definition 5 (Ordered sequence of objects). Let D be a qualitative database, L = 〈o1, . . . , ok〉
a sequence of distinct objects in D and I a qualitative itemset. We say that L respects I if it
is ordered with respect to �I , i.e., oi �I oi+1 for every i ∈ 1..k − 1.

We here use L(D, I) to denote all the sequences of objects occurring in D that respect
the qualitative itemset I.

In the same way as in gradual itemset mining, we express the quality of an itemset in a
database through two different definitions of support. The first definition captures a local
view by taking into consideration the number of pairs that satisfy the partial order induced
by the qualitative itemset (D = (O, I, C)):

supp1(I,D) = |{{o, o
′} ⊆ O | o 6= o′, o �I o′}|
|O| · (|O| − 1)/2 .

TIME 2019
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The second definition is obtained by reasoning about the sequences that respect the qualitative
itemset. Indeed, it corresponds to the length of the longest sequences that respect the
considered itemset:

supp2(I,D) = max{|L| | L ∈ L(D, I)}
|O|

.

Furthermore, we consider that it is more appropriate to allow the user to select the
relations that can be associated to every item in a pattern. For example, it is not interesting
to consider the universal or empty relations because they do not describe any variation.

Thus, we define two problems of enumerating qualitative itemsets as follows: given a
function f that maps each item a to a subset of relations f(a) ⊆ P(Ba) which is closed
under the inverse operation and the inclusion, and a minimum support threshold v, the
problems QIE1 and QIE2 consist in computing respectively the sets of qualitative itemsets
QIE1(D, f, v) = {I | supp1(I,D) ≥ v & ∀ar ∈ I, r ∈ f(a)} and QIE2(D, f, v) = {I |
supp2(I,D) ≥ v & ∀ar ∈ I, r ∈ f(a)}.

Let us consider now two condensed representations, which are similar to those that are
widely considered in itemset mining. Before that, we need the following partial order relation.
Given two qualitative itemsets I and J , we have I v J if, ∀ar ∈ I, ∃ar′ ∈ J s.t. r′ ⊆ r.
Moreover, we have I @ J if I v J and I 6= J .

I Definition 6 (Closedness). Let D be a database and I a qualitative itemset. Then, I is
said to be a closed qualitative itemset in D w.r.t. supp1 (resp. supp2) if, for all qualitative
itemset J with I @ J , supp1(I,D) > supp1(J,D) (resp. supp2(I,D) > supp2(J,D)) holds.

In other words, a qualitative itemset is closed if there is no more informative qualitative
itemset that has the same support.

I Definition 7 (Maximality). Let D be a database, v a minimum support threshold and I a
qualitative itemset. Then, I is said to be a maximal qualitative itemset w.r.t. supp1 (resp.
supp2) and the threshold v if, for all qualitative itemset J with I @ J , supp1(J,D) < v (resp.
supp2(J,D) < v) holds.

A qualitative itemset is maximal if there is no more informative qualitative itemset that
has a support greater than or equal to the minimum support threshold.

In the context of the condensed representations, one can easily see that we have the
following property.

I Proposition 8 (Anti-Monotonicity). Let D be a qualitative database and I and J two
qualitative itemsets in D. If I v J then supp1(I,D) ≥ supp1(I,D) and supp2(I,D) ≥
supp2(I,D).

Therefore, using the anti-monotonicity property, computing either the closed itemsets or the
maximal itemsets in QIE1(D, f, v) and QIE2(D, f, v) allows getting all the elements of these
two sets. Furthermore, the anti-monotonicity property can be used for defining Apriori-like
algorithms for solving the problems QIE1 and QIE2 in a fairly simple way. Let us recall that
Apriori algorithm was originally proposed in [1] for mining frequent itemsets.

It is worth mentioning that the qualitative relations are not necessarily transitive. For
example, we have 1{<,>}2{<,>}1 in PA (x{<,>}y means that x is different from y) without
having 1{<,>}1. This has as a consequence the fact that a sequence respects a qualitative
itemset does not implies that its sub-sequences (by avoiding intermediate objects) respect
also this pattern. Thus, in order to have transitivity, a solution can consist in restricting
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our mining task to the relations that satisfy �-idempotence: a qualitative relation r is said
to be �-idempotent if r � r = r. For example, in PA the �-idempotent relations are {=},
{<}, {<,=}, {>}, {>,=} and {<,=, >}, i.e., all the relations except {} and {<,>}. That
being said, we provide in this work general methods for solving QIE1 and QIE2 without
considering transitivity.

In order to illustrate the mining tasks described previously, we provide now a simple
example. Consider the database described in Table 1. It represents pieces of information
related to a set of workers about time at work, productivity and satisfaction degree. For the
corresponding qualitative database, we consider interval algebra for time at work, and point
algebra for both productivity and satisfaction degree. Moreover, we only consider QIE2 with
a support threshold equal to 3 without any restriction on the considered qualitative relations
in the patterns on time, but we only consider {<,≤, >,≥} on both productivity and
satisfaction. A first interesting qualitative pattern is I = {time{p,o,m}, productivity≤},
which has a support equal to 4 since it is satisfied by the sequence 〈w1, w2, w3, w4〉. In a
sense, it expresses that starting work earlier increase productivity. The pattern I is not
closed since it has the same supports as J = {time{p,o,m}, productivity<}. Moreover, J
is closed since J ∪ {satisfaction≤} and J ∪ {satisfaction≥} are respectively 2 and 3.
Moreover, J ∪{satisfaction>} is a maximal patterns since its support is equal to the fixed
threshold and it is not included in any other pattern.

Table 1 A description of a database.

worker time productivity satisfaction
w1 5am to 9am 100 1
w2 8am to 12am 80 4
w3 12am to 4pm 60 5
w4 5pm to 9pm 50 3

5 SAT-based Approach for Enumerating Qualitative Itemsets

In this section, we introduce a SAT-based approach for solving the problems QIE1 and
QIE2. We first describe the satisfiability problem in classical propositional logic. We then
introduce our SAT encodings for QIE1 and QIE2: the computation of the models of each
encoding corresponds to the computation of the desired qualitative itemsets. We here follow
the constraint programming based approach for data mining initiated in [24, 13].

5.1 Classical Propositional Logic
We here describe the syntax and the semantics of classical propositional logic. We use Prop to
denote the set of propositional variables. The propositional formulas of classical propositional
logic (CPL) are built using Prop, the constants >, denoting true, and ⊥, denoting false, the
unary logical connective ¬ and the usual binary connectives ∧, ∨, → and ↔. The grammar
is defined as follows:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | ¬φ

with p ∈ Prop. The set of propositional formulas is denoted Form. We use the letters
p, q, r, s to denote the propositional variables, and the Greek letters φ, ψ and χ to denote
the propositional formulas. Moreover, given a syntactic object o, we use V ar(o) to denote
the set of propositional variables occurring in o.

TIME 2019
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A Boolean interpretation B of a formula φ is defined as a function from the set of
variables V ar(φ) to {0, 1} (0 stands for false and 1 for true). It is inductively extended to
propositional formulas as usual:

B(>) = 1 B(⊥) = 0
B(¬φ) = 1− B(φ) B(φ→ ψ) = max(1− B(φ),B(ψ))
B(φ ∧ ψ) = min(B(φ),B(ψ)) B(φ ∧ ψ) = min(B(φ),B(ψ))
B(φ↔ ψ) = 0 if B(φ) 6= B(ψ), B(φ↔ ψ) = 1 otherwise

A formula φ is satisfiable if there exists a Boolean interpretation B of φ such that B(φ) = 1,
and B is called a model of φ in this case. We use Mod(φ) to denote the set of all the
models of φ.

Consider for instance the formula (p ∧ q)↔ p, which has exactly three models: B1 with
B1(p) = B1(q) = 0; B2 with B1(p) = B1(q) = 1; and B3 with B3(p) = 0 and B1(q) = 1.

A propositional formula in Conjunctive Normal Form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals. It is well-known that every propositional formula
can be translated to CNF w.r.t. the satisfiability problem using Tseitin’s linear encoding [29].
The problem of determining whether there exists a model that satisfies a given CNF formula,
abbreviated as SAT, is one of the most studied NP-complete problems.

A cardinality constraint is an inequality of the form
∑n
i=1 pi ≥ m. Several polynomial

encodings of this kind of constraints into propositional formulas have been proposed in
the literature (e.g. [4, 26, 5]). An AtMostOne constraint is a particular case of the form∑n
i=1 pi ≤ 1, which can be linearly encoded in SAT. For instance, the encoding using

sequential counter [26, 23] is defined as follows:

(¬p1 ∨ q1) ∧ (¬pn ∨ qn−1)∧
1<i<n

((¬pi ∨ qi) ∧ (¬qi−1 ∨ qi) ∧ (¬pi ∨ ¬qi−1))

where qi is a fresh propositional variable for i = 1, . . . , n− 1.

5.2 A SAT Encoding for QIE1
In this section, we propose a SAT encoding for the problem of enumerating qualitative
itemsets QIE1. More precisely, we associate to every instance of QIE1 a propositional
formula so that its models allow us to obtain all the corresponding qualitative itemsets.

Let D = (O, I, C) be a qualitative database, f a function that maps each a ∈ I to a
subset of P(Ba) closed under the inverse operation and the inclusion, and v a minimum
support threshold. We here use the integer α defined as the value v · (|D| · (|D| − 1)/2).

In order to define our encoding, we associate to each pair of an item a and a relation
r ∈ f(a) a distinct propositional variable denoted par . The variable par is used to express
the qualitative itemset in the sense that it is true if and only if ar belongs to the current
qualitative itemset. Furthermore, we associate to each ordered pair of different objects
(o, o′) in D a distinct propositional variable denoted q(o,o′). In the proposed encoding, a
variable q(o,o′) is true if and only if o precedes o′ with respect to the current qualitative
itemset. In order not to take into account both symmetric couples of objects in support com-
putation, we also associate a variable denote s{o,o′} to each pair of distinct objects {o, o′} in D.
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The first propositional formula of our encoding for QIE1 allows avoiding the empty
itemset by requiring at least one item:∨

a∈I

∨
r∈f(a)

par . (1)

Indeed, this formula corresponds to a single clause that expresses that there is at least one
variable of the form par assigned to true.

The following conjunction of AtMostOne constraints allows avoiding the association of
multiple variations to an item in the same pattern:∧

a∈I

∑
r∈f(a)

par ≤ 1. (2)

More precisely, each AtMostOne constraint is associated to a distinct item and means that
there is at most one qualitative relation associated to this item in the pattern.

The following formula allows establishing that each variable q(o,o′) is true if and only o
precedes o′ w.r.t. the qualitative itemset:∧

o,o′∈O,o 6=o′
¬q(o,o′) ↔

∨
({par | a ∈ I, r ∈ (f(a) \ {r′ ∈ f(a) | Ra(o, o′) ∈ r′})}. (3)

We exactly express in the previous formula that q(o,o′) is false if and only if there is a
qualitative item ar such that r(o, o′) does not hold.

We now introduce the formula that is used for symmetry breaking by considering in the
support computation at most one of the couples (o, o′) and (o′, o):∧

o,o′∈O,o 6=o′
s{o,o′} ↔ (q(o,o′) ∨ q(o′,o)). (4)

Finally, the following cardinality constraint expresses that support of every qualitative
itemset in D has to be greater than or equal to v:∑

o,o′∈O,o6=o′
s{o,o′} ≥ α. (5)

Let us note that the use of α in the previous constraint is clearly equivalent to the use of v
as a minimum support threshold.

We use ENC(D, f, v) to denote the conjunction of the previous formulas: (1)∧ (2)∧ (3)∧
(4) ∧ (5).

There are three important properties related to our encoding ENC(D, f, v). First, the
soundness property means that every model encodes a frequent qualitative itemset. Second,
the completeness property expresses that every frequent qualitative itemset is encoded in
a model of the encoding. Third, the non-redundancy property is used to capture the fact
that there is a bijective mapping between the set of the models and the set of the frequent
qualitative itemsets.

I Proposition 9 (Soundness). Given an instance (D, f, v) of QIE1, if B is a model of
ENC(D, f, v) then IB = {ar | B(par ) = 1} ∈ QIE1(D, f, v).

Proof. First, using the formula (1), we clearly have |IB| ≥ 1. Then, using (2), we know that
an item occurs at most once in every pattern. Moreover, using (3) ∧ (4), we obtain {s{o,o′} |
B(s{o,o′}) = 1} = {{o, o′} ⊆ O | o 6= o′, o �IB o′}. Thus, using the cardinality constraint (5),
we obtain |{s{o,o′} | B(s{o,o′}) = 1}| ≥ α and we have thereby supp1(IB,D) ≥ v. Therefore,
IB belongs to QIE1(D, f, v). J

TIME 2019
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I Proposition 10 (Completeness). Given an instance (D, f, v) of QIE1, if I ∈ QIE1(D, f, v)
then there exists a Boolean interpretation BI that satisfies the encoding ENC(D, f, v), where
I = {ar | BI(par ) = 1}.

Proof. Let us define BI as follows:
1. for every pair of an item a and a relation r ∈ f(a), BI(par ) = 1 iff ar ∈ I;
2. for every ordered pair of distinct objects (o, o′), BI(q(o,o′)) = 1 iff o �I o′;
3. for every pair of distinct objects {o, o′}, BI(s{o,o′}) = 1 iff o �I o′ or o′ �I o.
Using the fact that |I| ≥ 1, BI satisfies (1). Then, using the fact that an item cannot occur
more than once in I, BI satisfies (2). Further, using the properties 1 and 2 in the definition
of BI , we obtain that BI satisfies (3). Using the fact that BI satisfies (3) and the property 3
in the definition of BI , we also obtain that (4) is also satisfied by BI . Moreover, the formula
(5) is satisfied since supp1(I,D) ≥ v. J

I Proposition 11 (Non-Redundancy). Given an instance (D, f, v) of QIE1, for all two distinct
models B and B′ of ENC(D, f, v), {ar | B(par ) = 1} 6= {ar | B′(par ) = 1} holds.

Proof. This property is a direct consequence of the fact that we use the equivalence logical
connective in the formulas (3) and (4). Indeed, the support is encoded using the variables of
the form q(o,o′) and s{o,o′}, and a qualitative itemset cannot have two distinct values for the
support. J

It is worth noting that having a bijective mapping between the set of the models and the
set of the frequent qualitative itemsets allows us to adapt in a fairly simple way our encoding
for many variants of QIE1, such as counting the number of patterns.

Let us now introduce the notion of complementary qualitative itemset, which is mainly
used for reducing the search space.

I Definition 12 (Complementary Qualitative Itemset). Let I = {ar1
1 , . . . , a

rk

k } be a qualitative
itemset. The complementary of I, denoted Ic, is the qualitative itemset {a(r1)−1

1 , . . . , a
(rk)−1

k }.

We clearly have the following proposition.

I Proposition 13. The following two properties are satisfied, for all qualitative database D
and for all qualitative itemset I:

supp1(I,D) = supp1(Ic,D)
supp2(I,D) = supp2(Ic,D).

Proposition 13 can be used to avoid unnecessary computations. Indeed, at each found
model, we can avoid in the next step both the corresponding qualitative itemset and its
complementary itemset. It is worth noting that a similar property is used in the case of
gradual patterns [7, 10, 11, 20].

Let us now consider the condensed representations corresponding to the closed and the
maximal qualitative itemsets. In order to obtain the closed qualitative itemsets, we first need
to conjunctively add to the encoding ENC(D, f, v) the following formula:∧

a∈I

∧
r∈f(a)

((
∧

o,o′∈O,o6=o′
(q(o,o′) → Ra(o, o′) ∈ r))→

∨
r′⊆r

par′ ). (6)
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Indeed, this propositional formula means that, for all qualitative item ar, if we have
supp1(I,D) = supp1(I ∪ {ar},D), then there exists r′ ⊆ r such that ar′ belongs to I,
where I is the qualitative itemset associated to the current model. In other words, it allows
making the current qualitative itemset more informative without changing the support.

Then, we add the following formula to express that it is not possible to reduce the size of
any relation in the pattern without changing the support:∧

a∈I

∧
r∈f(a),|r|>1

(par →
∧
r′⊂r

(
∨

o,o′∈O,o6=o′
q(o,o′) ∧Ra(o, o′) /∈ r′)). (7)

We use ENC − C(D, f, v) to denote the SAT encoding for the problem of enumerating
the closed qualitative itemsets: ENC(D, f, v) ∧ (6) ∧ (7).

Similarly, to compute the maximal qualitative itemsets, we only need to conjunctively
add to ENC(D, f, v) the following two formulas:∧

a∈I

∧
r∈f(a)

(
∑

o,o′∈O,o 6=o′
(q(o,o′) ∧Ra(o, o′) ∈ r) ≥ α→

∨
r′⊆r

par′ ) (8)

∧
a∈I

∧
r∈f(a),|r|>1

(par →
∧
r⊂r

∑
o,o′∈O,o6=o′

(q(o,o′) ∧Ra(o, o′) /∈ r′) < α). (9)

The formula (8) allows maximizing the size of the current qualitative itemset while keeping the
support greater than or equal to v, (9) states that it is not possible to reduce the size of any
relation without reducing the support to a value smaller than v. We use ENC −M(D, f, v)
to denote the SAT encoding ENC(D, f, v) ∧ (8) ∧ (9).

5.3 A SAT Encoding for QIE2
We here propose a SAT encoding for the problem QIE2, which combines formulas defined for
QIE1 and new ones that are described in this section.

Let D = (O, I, C) be a database, f a function that maps each a ∈ I to a subset of P(Ba)
closed under the inverse operation and the inclusion, and v a minimum support threshold.
We here use the integer β defined as the value v · |D|. We now describe an encoding that
allows one to obtain all the elements of QIE2(D, v).

In the same way as the previous encoding, we also use in the same way the propositional
variables of the forms par and q(o,o′): the variables of the form par are used to encode the
qualitative itemset, and those of the form q(o,o′) to encode its support. Moreover, we associate
to each integer i ∈ 1..β and object o in D a fresh propositional variable tio, which is used to
express that the object o is used at the location i in a sequence in L(D, I), where I is the
current qualitative itemset.

The first formula in our encoding is the conjunction of (1) ∧ (2) ∧ (3) of the previous
encoding ENC(D, f, v). Indeed, (1) is used to express that every qualitative itemset contains
at least one qualitative item, (2) is used to avoid multiple occurrences of an item in the same
itemset, and (3) says that q(o,o′) is false if and only if there is a qualitative item ar such
that Ra(o, o′) ∈ r does not hold. As a consequence, every model of the previous conjunction
encodes a qualitative itemset, where the variables of the form q(o,o′) encode the pairs of
objects that satisfy the partial order induced by this itemset.
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Using the fact that the propositional variables of the form tio are used to build an ordered
sequence of objects, the following formula means that an object cannot be used more than
once in a sequence:

∧
o∈O

β∑
i=1

tio ≤ 1. (10)

The following formula says that there is exactly one object at each location:

β∧
i=1

∑
o∈O

tio = 1. (11)

Clearly, the previous formula allows us to only consider the qualitative itemsets that have
supports greater than or equal to v w.r.t. supp2.

In order to require the ordering induced by the qualitative itemset, the following formula
is used to capture the fact that if two objects o and o′ occur in successive locations, then
the couple (o, o′) respects the qualitative itemset, which is expressed by the truth of the
variable q(o,o′):

∧
o,o′∈O,o6=o′

β−1∧
i=1

((tio ∧ ti+1
o′ )→ q(o,o′)). (12)

We use ENC2(D, f, v) to denote the encoding that corresponds to the following conjunc-
tion: (1) ∧ (2) ∧ (3) ∧ (10) ∧ (11) ∧ (12).

I Proposition 14 (Soundness). Given an instance (D, f, v) of QIE2, if B is a model of
ENC2(D, f, v) then IB = {ar | B(par ) = 1} ∈ QIE2(D, f, v).

Proof. The soundness can be shown in the same way as in the case of QIE1. Using (1),
we know that IB contains at least one qualitative item. Then, using (2), each item occurs
at most once in every qualitative itemset. Further, using (3), we obtain ar ∈ IB iff, for
all o, o′ ∈ O, B(q(o,o′)) = 1 iff Ra(o, o′) ∈ r. Thus, using (10) ∧ (11) ∧ (12), we know that
there exists a sequence 〈o1, . . . , oβ〉 which respects IB, where B(tioi

) = 1 for i ∈ 1..β. As a
consequence, supp2(IB,D) ≥ v and IB belongs to QIE2(D, f, v) J

I Proposition 15 (Completeness). Given an instance (D, f, v) of QIE2, if I ∈ QIE2(D, f, v)
then there exists a Boolean interpretation BI that satisfies the encoding ENC2(D, f, v) where
I = {ar | BI(par ) = 1}.

Proof. First, given a sequence s = 〈o1, . . . , oβ〉 respecting I, we define BI as follows:
for every pair of an item a and a relation r ∈ f(a), BI(par ) = 1 iff ar ∈ I;
for every couple of distinct objects (o, o′), BI(q(o,o′)) = 1 iff o �I o′;
for every object o and location i ∈ 1..β, BI(tio) = 1 iff o = oi.

For the same reasons described in the proof of Proposition 10, BI satisfies (1) ∧ (2) ∧ (3).
Then, using the fact that the length of s is β and the objects in this sequence are pairwise
distinct, BI satisfies also (10) ∧ (11). Finally, using the fact that s respects the partial order
induced by I, BI satisfies (12). J

Contrary to our previous encoding, ENC2(D, f, v) does not satisfy the non-redundancy
property, since the same qualitative itemset may be associated to distinct sequences. How-
ever, this is not a problem for enumerating the qualitative itemsets without redundancy,
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because we only need to conjunctively add the negation of the found qualitative itemset at
each step instead of the negation of the found model. More precisely, if we found a model
representing the qualitative itemset I = {ar1

1 , . . . , a
rk

k }, then we conjunctively add the clause
¬pa1r1 ∨ · · · ∨ ¬pak

rk ∨
∨
ar /∈I p

r
a to avoid this itemset in the next steps.

In ENC2(D, f, v), we use propositional variables that are associated to only β locations,
since we aim at computing the qualitative itemsets having supports at least equal to v.
However, for computing the closed qualitative itemsets, we need to have the exact value of
the support, which means that we have to encode one of the longest sequences in each model
of the SAT encoding. In order to avoid this problem, we propose an intermediate solution by
restricting ENC2(D, f, v) to the closed qualitative itemsets w.r.t. QIE1. In this context, we
clearly have the following property.

I Proposition 16. Let D be a qualitative database and I a qualitative itemset. If I is closed
in D w.r.t. supp2, then it is also closed in D w.r.t. supp1.

Proof. This property is a direct consequence of the fact that if supp2(I,D) > supp2(J,D),
then supp1(I,D) > supp1(J,D) holds for every qualitative itemsets I and J with I @ J . J

Thus, the set of closed qualitative itemsets w.r.t. QIE2 is included in that of the qualitative
itemsets obtained from the encoding ENC2(D, f, v)∧(6)∧(7). As a consequence, the previous
SAT encoding can be used for enumerating all the closed qualitative itemsets w.r.t. QIE2.
Indeed, we only need in this context to select the largest patterns w.r.t. v for every value
for the support.

Let us now consider the problem of enumerating the maximal qualitative itemsets. In
this context, consider the following formulas:

∧
a∈I

∧
r∈f(a)

∧
o,o′∈O,o 6=o′

(
β−1∧
i=1

((tio ∧ ti+1
o′ ∧Ra(o, o′) ∈ r)→

∨
r′⊆r

par′ )), (13)

∧
a∈I

∧
r∈f(a),|r|>1

(par →
∧
r⊂r

(
∨

o,o′∈O,o6=o′

β−1∧
i=1

(tio ∧ ti+1
o′ ∧Ra(o, o′) /∈ r′)). (14)

These two formulas express that, for a sequence of length equal to β, the associated qualitative
itemset has to be the largest w.r.t. v. Therefore, in the same way as our encoding for
enumerating the closed qualitative itemsets, the encoding ENC2(D, f, v) ∧ (13) ∧ (14) allows
one to compute a set of patterns that contains all the maximal qualitative itemsets.

It is worth noting that the strategies proposed in [15, 18] for adapting Conflict-Driven
Clause-Learning (CDCL) based SAT-solvers to the task of model enumeration can be directly
used in the case of our encoding. Furthermore, it is also possible to directly use the
decomposition method introduced in [17] for improving the SAT-based approach in solving
data mining problems.

6 Conclusion and Perspectives

The first main contribution of this article is a definition of a framework for data mining
using qualitative reasoning. This framework allows considering different data types, such
as numerical values, time intervals and spatial regions. Moreover, the data mining tasks
introduced in this work can be seen as a natural generalization of those related to gradual
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itemsets. The second main contribution is our declarative and flexible solution for solving
the proposed data mining tasks based on the satisfiability problem in classical propositional
logic (SAT): each task is modeled as a propositional formula whose models correspond to
the desired patterns.

In our future work, we intend to further study qualitative reasoning in data mining
following three main directions: (1) the use of disjunctions of base relations between objects,
which allows, for instance, modeling vagueness; (2) considering qualitative formalisms that
are not closed under the inverse operation, such as cardinal direction calculus [27, 28];
(3) considering some qualitative relations with arities greater than two in the case of some
particular data types (e.g. [14, 6]). Furthermore, we plan to implement the proposed
SAT-based methods to provide an experimental study on the use of our framework.
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