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Abstract
Covering all edges of a graph by a small number of vertices, this is the NP-hard Vertex Cover
problem, is among the most fundamental algorithmic tasks. Following a recent trend in studying
dynamic and temporal graphs, we initiate the study of Multistage Vertex Cover. Herein, having
a series of graphs with same vertex set but over time changing edge sets (known as temporal graph
consisting of time layers), the goal is to find for each layer of the temporal graph a small vertex cover
and to guarantee that the two vertex cover sets between two subsequent layers differ not too much
(specified by a given parameter). We show that, different from classic Vertex Cover and some
other dynamic or temporal variants of it, Multistage Vertex Cover is computationally hard
even in fairly restricted settings. On the positive side, however, we also spot several fixed-parameter
tractability results based on some of the most natural parameterizations.
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1 Introduction

Vertex Cover (VC) asks, given an undirected graph G and an integer k ≥ 0, whether at
most k vertices can be deleted from G such that the remaining graph contains no edge. VC
is NP-hard and it is a formative problem of algorithmics and combinatorial optimization.
We study a time-dependent, “multistage” version, namely a variant of VC on temporal
graphs. A temporal graph G is a tuple (V, E , τ) consisting of a set V of vertices, a discrete
time-horizon τ , and a set of temporal edges E ⊆ (V2) × {1, . . . , τ}. Equivalently, a temporal
graph G can be seen as a vector (G1, . . . , Gτ) of static graphs (layers), where each graph is
defined over the same vertex set V . Then, our specific goal is to find a small vertex cover Si
for each layer Gi such that the sizes of the symmetric differences Si △ Si+1 between the
vertex covers Si and Si+1 of every two consecutive layers Gi and Gi+1 are small. Formally,
we thus introduce and study the following problem.
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14:2 Multistage Vertex Cover

Multistage Vertex Cover (MSVC)
Input: A temporal graph G = (V, E , τ) and two integers k ∈ N, ` ∈ N0.
Question: Is there a sequence S = (S1, . . . , Sτ ) such that

(i) for all i ∈ {1, . . . , τ}, it holds that Si ⊆ V is a size-at-most-k vertex cover
for Gi, and

(ii) for all i ∈ {1, . . . , τ − 1}, it holds that ∣Si△ Si+1∣ ≤ `?

Throughout this paper we assume that 0 < k < ∣V ∣ because otherwise we have a trivial
instance. In our model, we follow the recently proposed multistage [4, 16, 5, 11] view on
classical optimization problems on temporal graphs.

In general, the motivation behind a multistage variant of a classical problem such as
Vertex cover is that the environment changes over time (here reflected by the changing
edge sets in the temporal graph) and a corresponding adaptation of the current solution
comes with a cost. In this spirit, the parameter ` in the definition of MSVC allows to
model that only moderate changes concerning the solution vertex set may be wanted when
moving from one layer to the subsequent one. Indeed, in this sense ` can be interpreted as a
parameter measuring the degree of (non-)conservation [17, 1].

It is immediate that MSVC is NP-hard as it generalizes Vertex Cover (τ = 1). We
will study its parameterized complexity regarding the problem-specific parameters k, τ , `,
and some of their combinations, as well as restrictions to temporal graph classes [13].

Related Work. The literature on vertex covering is extremely rich, even when focusing on
parameterized complexity studies. Indeed, Vertex Cover (VC) can be seen as “drosophila”
of parameterized algorithmics. Thus, we only consider VC studies closely related to our
setting. First, we mention in passing that VC is studied in dynamic graphs [19, 3] and
graph stream models [6]. More importantly for us, Akrida et al. [2] studied a variant of VC
on temporal graphs. Their model significantly differs from ours: They want an edge to be
covered at least once over every time window of some given size ∆. That is, they define
a temporal vertex cover as a set S ⊆ V × {1, . . . , τ} such that, for every time window of
size ∆ and for each edge e = {v, w} appearing in a layer contained in the time window, it
holds that (v, t) ∈ S or (w, t) ∈ S for some t in the time window with (e, t) ∈ E . For their
model, they ask whether such an S of small cardinality exists. Note that if ∆ > 1, then for
some t ∈ {1, . . . , τ} the set St ∶= {v ∣ (v, t) ∈ S} is not necessarily a vertex cover of layer Gt.
For ∆ = 1, each St must be a vertex cover of Gt. However, in Akrida et al.’s model the size
of each St as well as the size of the symmetric difference between each St and St+1 may
strongly vary. They provide several hardness results and algorithms (mostly referring to
approximation or exact algorithms, but not to parameterized complexity studies).

A second related line of research, not directly referring to temporal graphs though, studies
reconfiguration problems which arise when we wish to find a step-by-step transformation
between two feasible solutions of a problem such that all intermediate results are feasible
solutions as well [18, 15]. Mouawad et al. [22, 21] studied, among other reconfiguration
problems, Vertex Cover Reconfiguration which takes as input a graph G, two vertex
covers S and T of size at most k each, and an integer τ . The goal is to determine whether
there is a sequence (S = S1, . . . , Sτ = T ) such that each St is a vertex cover of size at most k.
The essential difference to our model is that from one “sequence element” to the next only
one vertex may be changed and that the input graph does not change over time. Indeed,
there is an easy reduction of this model to ours while the opposite direction is unlikely to
hold. This is substantiated by the fact that Mouawad et al. [22] showed that Vertex Cover
Reconfiguration is fixed-parameter tractable when parameterized by vertex cover size k
while we show W[1]-hardness for the corresponding case of MSVC.
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Table 1 Overview on our results. The column headings describe the restrictions on the input
and each row corresponds to a parameter. p-NP-hard, PK, and NoPK abbreviate para-NP-hard,
polynomial problem kernel, and no problem kernel of polynomial size unless coNP ⊆ NP/poly.
† (Obs. 2.5)

general layers tree layers one-edge layers
0 ≤ ` < 2k ` ≥ 2k 0 ≤ ` < 2k 0 ≤ ` < 2

NP-hard NP-hard (Thm. 3.1(i)) NP-hard (Thm. 3.1(ii))

τ p-NP-hard (Thm. 3.1) p-NP-hard (Thm. 3.1) FPT, PK (Obs. 5.8)
k XP, W[1]-h., FPT†, NoPK XP, W[1]-h. open, NoPK

(Thm. 4.1) (Thm. 5.1) (Thm. 4.1) (Thm. 5.1)
k + τ FPT, PK (Thm. 5.5) FPT, PK (Thm. 5.5) FPT, PK (Thm. 5.5)

Finally, there is also a close relation to the research on dynamic parameterized problems [1,
20]. Krithika et al. [20] studied Dynamic Vertex Cover where one is given two graphs
on the same vertex set and a vertex cover for one of them together with the guarantee that
the cardinality of the symmetric difference between the two edge sets is upper-bounded by
a parameter d. The task then is to find a vertex cover for the second graph that is “close
enough” (measured by a second parameter) to the vertex cover of the first graph. They show
fixed-parameter tractability and a linear kernel with respect to d.

Our Contributions. Our results, focusing on the three perhaps most natural parameters, are
summarized in Table 1.1 We highlight a few specific results. Multistage Vertex Cover
remains NP-hard even if every layer consists of only one edge; clearly, the corresponding
hardness reduction then exploits an unbounded number τ of time layers. If one only has two
layers, however, one of them being a tree and the other being a path, then again Multistage
Vertex Cover already becomes NP-hard. MSVC parameterized by solution size k is fixed-
parameter tractable if ` ≥ 2k, but becomes W[1]-hard if ` < 2k. Considering the tractability
results for Dynamic Vertex Cover [20] and Vertex Cover Reconfiguration [22],
this hardness is surprising and is our most technical result. Furthermore, in the former case
(parameterization by k with ` ≥ 2k) MSVC does not admit a problem kernel of polynomial
size unless coNP ⊆ NP/poly. If one considers the combined parameter k + τ , however, then
besides fixed-parameter tractability in all cases we also obtain polynomial-sized kernels.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respectively. For
two sets A and B, we denote by A△B ∶= (A \B) ∪ (B \A) the symmetric difference of A
and B, and by A ⊎ B the disjoint union of A and B. We use basic notation from graph
theory [8] and parameterized algorithmics [7].

Temporal Graphs. A temporal graph G is a tuple (V, E , τ) consisting of the set of vertices V ,
the set of temporal edges E , and a discrete time-horizon τ . A temporal edge e is an element
in (V2)×{1, . . . , τ}. Equivalently, a temporal graph G is a vector of static graphs (G1, . . . , Gτ),

1 Several details and proofs (marked with ⋆) are deferred to the full version of the paper: https:
//arxiv.org/abs/1906.00659.
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where each graph is defined over the same vertex set V . We also denote by V (G), E(G),
and τ(G) the set of vertices, the set of temporal edges, and the discrete time-horizon of G,
respectively. The underlying graph G↓ = G↓(G) of a temporal graph G is the static graph
with vertex set V (G) and edge set {e ∣ ∃t ∈ {1, . . . , τ(G)} ∶ (e, t) ∈ E}.

General Observations on MSVC. We state some simple but useful observations on MSVC
and its relation to Vertex Cover.

I Observation 2.1 (⋆). Every instance (G, k, `) of MSVC with k ≥ ∑τ(G)
i=1 ∣E(Gi)∣ is a

yes-instance.

I Observation 2.2 (⋆). Let (G, k, `) be an instance of MSVC. If (G, k, `) is a yes-instance,
then there is a solution S = (S1, . . . , Sτ) such that ∣S1∣ = k and k − 1 ≤ ∣Si∣ ≤ k for all
i ∈ {1, . . . , τ}.

I Observation 2.3 (⋆). There is an algorithm that maps any instance (G, k) of Vertex
Cover in τ ⋅ ∣V (G)∣O(1) time to an equivalent instance (G, k, `) of MSVC with ` = 0,
where G is a sequence of any τ subgraphs of G such that the underlying graph is G.

I Observation 2.4 (⋆). There is a polynomial-time algorithm that maps any instance (G, k, `)
of MSVC with ` = 0 to an equivalent instance (G↓(G), k) of Vertex Cover.

I Observation 2.5 (⋆). An instance (G, k, `) of MSVC with ` ≥ 2k and G = (G1, . . . , Gτ)
can be decided by deciding each instance of the set {(Gi, k) ∣ 1 ≤ i ≤ τ} of Vertex
Cover-instances.

3 Hardness On Restricted Inputs

MSVC is NP-hard as it generalizes Vertex Cover (τ = 1). In this section we prove that
MSVC remains NP-hard on very restricted inputs.

I Theorem 3.1. Multistage Vertex Cover is NP-hard even if
(i) τ = 2, ` = 0, and the first layer is a path and the second layer is a tree, or
(ii) every layer contains only one edge and ` = 1.

I Remark 3.2. Theorem 3.1(i) is tight regarding τ since Vertex Cover (i.e., MSVC with
τ = 1) on trees is solvable in polynomial time. Theorem 3.1(ii) is tight regarding `, because
in the case of ` /= 1 either Observation 2.3 or Observation 2.5 is applicable.
Vertex Cover remains NP-complete on cubic Hamiltonian graphs when a Hamiltonian
cycle is additionally given in the input [12]—we refer to this problem as Hamiltonian Cubic
Vertex Cover (HCVC). To prove Theorem 3.1(i), we give a polynomial-time many-one
reduction from HCVC to MSVC with two layers, one being a path, the other being a tree.

I Proposition 3.3 (⋆). There is a polynomial-time algorithm that maps any instance (G =

(V,E), k, C) of HCVC to an equivalent instance (G, k′, `′) of MSVC with τ = 2 and the
first layer G1 being a path and second layer G2 being a tree.

In order to prove Theorem 3.1(ii), we give a polynomial-time many-one reduction from
Vertex Cover to MSVC.

I Proposition 3.4 (⋆). There is a polynomial-time algorithm that maps any instance (G =

(V,E), k) of Vertex Cover to an equivalent instance (G, k′, `′) of MSVC where `′ = 1
and every layer Gi contains only one edge.
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4 Parameter Vertex Cover Size

In this section, we study the parameter size k of the vertex cover of each layer for MSVC.
Vertex Cover and Vertex Cover Reconfiguration [22] when parameterized by the
vertex cover size are fixed-parameter tractable. We prove that this is no longer true for
MSVC (unless FPT = W[1]).

I Theorem 4.1. Multistage Vertex Cover parameterized by k is in XP and W[1]-hard.

We first show the XP-algorithm (Section 4.1) and then prove W[1]-hardness (Section 4.2).

4.1 An XP-Algorithm
In this section, we prove the following.

I Proposition 4.2. Every instance (G, k, `) of Multistage Vertex Cover can be decided
in O(τ(G) ⋅ ∣V (G)∣2k+1) time.

In a nutshell, we first consider for each layer all subsets of vertices of size at most k that
form a vertex cover. Second, we find a sequence of vertex covers for all layers such that the
sizes of the symmetric differences for every two consecutive solutions is at most `. We show
that the second step can be solved via computing a directed source-sink path in a helper
graph that we call configuration graph.

I Definition 4.3. Given a temporal graph G, the (k, `)-configuration graph of G is the
graph D = (V = V1 ⊎⋯⊎ Vτ ⊎ {s, t}, A, γ) equipped with a function γ ∶ V → {V ′

⊆ V (G) ∣
∣V ′∣ ≤ k} such that
(i) for every i ∈ {1, . . . , τ(G)}, it holds true that S is a vertex cover of Gi of size at most k

if and only if there is a vertex v ∈ Vi with γ(v) = S,
(ii) there is an arc from v to w, v, w ∈ V , if and only if v ∈ Vi, w ∈ Vi+1, and ∣γ(v)△

γ(w)∣ ≤ `, and
(iii) there is an arc (s, v) for all v ∈ V1 and an arc (v, t) for all v ∈ Vτ .
Note that Mouawad et al. [22] used a similar configuration graph to show fixed-parameter
tractability of Vertex Cover Reconfiguration parameterized by the vertex cover size k.
In the multistage setting the configuration graph is too large for fixed-parameter tractability
regarding k. However, we show an XP-algorithm regarding k to construct the configuration
graph.

I Lemma 4.4 (⋆). The (k, `)-configuration graph of a temporal graph G with n vertices and
time horizon τ
(i) can be constructed in O(τ ⋅ n2k+1) time, and
(ii) contains at most τ ⋅ 2nk + 2 vertices and (τ − 1)n2k + 2nk arcs.

I Lemma 4.5 (⋆). MSVC-instance (G, k, `) is a yes-instance if and only if there is an s-t
path in the (k, `)-configuration graph D of G.

We are ready to prove Proposition 4.2.

Proof of Proposition 4.2. First, compute the configuration graph D of the instance (G =
(V, E , τ), k, `) of Multistage Vertex Cover in O(τ ⋅ ∣V ∣2k+1) time (Lemma 4.4(i)). Then,
find an s-t path in D with a breadth-first search in O(τ ⋅ ∣V ∣2k) time (Lemma 4.4(ii)). If
an s-t path is found, then return yes, otherwise return no (Lemma 4.5). J

IPEC 2019
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Figure 1 Illustration of Construction 1 on an example graph (left-hand side) and the first seven
layers of the obtained graph (right-hand side). Star-shapes illustrate star graphs with k′ + 1 leaves.
Dashed vertical lines separate layers.

I Remark 4.6. The reason why the algorithm behind Proposition 4.2 is only an XP-algorithm
and not an FPT-algorithm regarding k for Multistage Vertex Cover is because we do
not have a better upper bound on the number of vertices in the (k, `)-configuration graph
for G than O(τ(G) ⋅ ∣V (G)∣k). This is due to the fact that we check for each subset of V (G)
of size k or k − 1 whether it is a vertex cover in some layer.

This changes if we consider Minimal Multistage Vertex Cover where we additionally
demand the i-th set in the solution to be a minimal vertex cover for the layer Gi. Here,
we can enumerate for each layer Gi all minimal vertex covers of size at most k (and hence
all candidates for the i-th set of the solution) with the folklore search-tree algorithm for
vertex cover. This leads to O(2kτ(G)) many vertices in the (k, `)-configuration graph
(for Minimal Multistage Vertex Cover) and thus to fixed-parameter tractability of
Minimal Multistage Vertex Cover parameterized by the vertex cover size k.

However, as we show next it is not likely (unless FPT=W[1]) that one can substantially
improve the algorithm behind Proposition 4.2.

4.2 Parameterized Intractability
In this section we show that MSVC is W[1]-hard when parameterized by k. This hardness
result is established by the following parameterized reduction from the W[1]-complete [9]
Clique problem, where, given an undirected graph G and a positive integer k, the question
is whether G contains a clique of size k (that is, k vertices that are pairwise adjacent).

I Proposition 4.7. There is an algorithm that maps any instance (G, k) of Clique in
polynomial time to an equivalent instance (G, k′, `) of MSVC with k′ = 2(k2) + k + 1, ` = 2,
and each layer of G being a tree.

The proof of Proposition 4.7 is deferred to the end of this section. It is a reduction from
Clique where we construct an instance of MSVC from an instance of Clique as follows
(see Figure 1 for an illustrative example).

I Construction 1. Let (G = (V,E), k) be an instance of Clique with m = ∣E∣ and
E = {e1, . . . , em}. Let

K = (k2), k
′
= 2K + k + 1, and κ = K + k + 3.

We construct a temporal graph G = (V ′
, E , τ) as follows. Let V ′ be initially V ∪ E (note

that E simultaneously describes the edge set of G and a vertex subset of G). We add the
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following vertex sets

U
t
= {utj ∣ j ∈ {1, . . . ,K}}, t ∈ {1, . . . , κ + 1} and C = {c1, . . . , c2mκ+1}.

Let E be initially empty. We extend the set V ′ and define E through the τ = 2mκ + 1 layers
we construct in the following.
(1) In each layer Gi with i being odd, make ci the center of a star with k′ + 1 leaves.
(2) In each layer G2mj+1, j ∈ {0, . . . , κ}, make each vertex in U

j+1 the center of a star
with k′ + 1 leaves.

(3) For each j ∈ {0, . . . , κ − 1}, in each layer G2mj+i with i ∈ {1, . . . , 2m + 1}, make uj+1
x

adjacent to uj+2
x for each x ∈ {1, . . . ,K}.

(4) For each i being even, add the edge {ci, ci+1} to Gi and to Gi+1.
(5) For each j ∈ {0, . . . , κ − 1}, for each i ∈ {1, . . . ,m}, in G2mj+2i, make cj2m+2i adjacent

with ei = {v, w}, v, and w.
This finishes the construction of G. ⌟

The construction essentially repeats the same gadget (which we call phase) κ times where
the layer 2m ⋅ i + 1 is simultaneously last layer of phase i and the first layer of phase i + 1.
In the beginning of phase i, a solution must contain the vertices of U i. The idea now is that
during phase i one has to exchange the vertices of U i with the vertices of U i+1.

It is not difficult to see that the instance in Construction 1 can be computed in polynomial
time. Hence, it remains to prove the equivalence stated in Proposition 4.7. We prepare the
proofs of the forward and the backward direction in Sections 4.2.1 and 4.2.2, respectively.

I Remark 4.8. We can turn the instance (G, k′, `) computed by Construction 1 into an
equivalent instance (G ′, k′′, `) where each layer is a tree as follows. Set k′′ = k′ + 1. Add a
vertex x to G. In each layer of G, make x a star with k′′ + 1 vertices and connect x with
exactly one vertex of each connected component. Note that in every solution x is contained
in a vertex cover for each layer in G ′.

4.2.1 Forward direction
The forward direction of Proposition 4.7 is—in a nutshell—as follows: If V ′ ∪E ′ with V ′

⊆ V

and E
′
⊆ E correspond to the vertex set and edge set of a clique of size k, then there

are K layers in each phase covered by V ′ ∪ E ′. Hence, having K layers where no vertices
from C have to be exchanged, in each phase t we can exchange all vertices from U

t to U t+1.
Starting with set S1 = U

1 ∪ V ′ ∪ E ′ ∪ {c1} then yields a solution.

I Lemma 4.9 (⋆). Let (G, k) be an instance of Clique and (G, k′, `) be the instance of
Multistage Vertex Cover resulting from Construction 1. If (G, k) is a yes-instance,
then (G, k′, `) is a yes-instance.

4.2.2 Backward direction
In this section we prepare the proof of the backward direction for the proof of Proposition 4.7.
We first show that if an instance of Multistage Vertex Cover computed by Construction 1
is a yes-instance, then it is safe to assume that neither two vertices are deleted from
nor added to a vertex cover in a consecutive step (we refer to these solutions as smooth,
see Definition 4.11). Moreover, a vertex from C is only exchanged with another vertex from C

and, at any time, there is exactly one vertex from C contained in the solution (similarly to the
constructed solution in Lemma 4.9). We call these solutions one-centered (Definition 4.13).

IPEC 2019
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We then prove that there must be a phase t for any one-centered solution that is deleting
at least (k2) times a vertex from “past” sets Ut′ , t

′
≤ t. This at hand, we prove that such a

phase witnesses a clique of size k.
That a solution needs to contain at least one vertex from C at any time follows immediately

from the fact that there is either an edge between two vertices in C or there is a vertex in C
which is the center of a star with k′ + 1 leaves.

I Observation 4.10. Let (G, k′, `) from Construction 1 be a yes-instance. Then for each
solution (S1, . . . , Sτ) it holds true that ∣Si ∩ C∣ ≥ 1 for all i ∈ {1, . . . , τ(G)}.

In the remainder of this section we denote the vertices which are removed from the
set Si−1 and added to the next set Si in a solution S = (. . . , Si−1, Si, . . . ) by

Si−1 � Si ∶= (Si−1 \ Si, Si \ Si−1).

If Si−1 \ Si or Si \ Si−1 have size one, then we will omit the brackets of the singleton.

I Definition 4.11. A solution S = (S1, . . . , Sτ) for (G, k′, `) from Construction 1 is smooth
if for all i ∈ {2, . . . , τ} we have ∣Si−1 \ Si∣ ≤ 1 and ∣Si−1 \ Si∣ ≤ 1.

I Observation 4.12. Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ).

Proof. By Observation 2.1, we know that there is a solution S = (S1, . . . , Sτ) such that
∣S1∣ = k

′ and k′ − 1 ≤ ∣Si∣ ≤ k
′ for all i ∈ {1, . . . , τ}. Hence, for all i ∈ {2, . . . , τ} it holds

true that ∣∣Si∣− ∣Si−1∣∣ ≤ 1. It follows that ∣Si−1 \Si∣ ≤ 1 and ∣Si−1 \Si∣ ≤ 1, and thus, S is
a smooth solution. J

Our goal is to prove the existence of the following type of solutions.

I Definition 4.13. A smooth solution S = (S1, . . . , Sτ) for (G, k′, `) from Construction 1 is
one-centered if
(i) for all i ∈ {1, . . . , τ} we have ∣Si ∩ C∣ = 1, and
(ii) for all i ∈ {2, . . . , τ} and Si−1 � Si = (a, b) we have that a ∈ C⇔ b ∈ C.

We now show that in the output instance of Construction 1, there are solutions (if there
is any) where c1 ∈ C is the only vertex from C in the first set of the solution.

I Lemma 4.14 (⋆). Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ) such that S1 ∩ C = {c1}.

Next, we show that there are solutions such that whenever we remove a vertex in C from
the vertex cover, then we simultaneously add another vertex from C to the vertex cover.
Formally, we prove the following.

I Lemma 4.15 (⋆). Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ) such that S1 ∩ C = {c1} and for all i with Si−1 � Si = (a, c)
and c ∈ C we also have a ∈ C.

Combining Observation 4.10 and Lemma 4.15, we can assume that given a yes-instance,
there is a solution which is one-centered.

I Corollary 4.16. Let (G, k′, `) from Construction 1 be a yes-instance. Then, there is a
solution S which is one-centered.
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Table 2 Note that εi − εi−1 = ∣F ti ∣ − ∣F ti−1∣ − (∣Y ti ∣ − ∣Y ti−1∣) − (f ti − f ti−1).

S
t
i−1 � S

t
i ∣F ti ∣ − ∣F ti−1∣ −(∣Y ti ∣ − ∣Y ti−1∣) −(f ti − f ti−1) εi − εi−1

(u, b) b ∈ E ∈ {−1, 0} ∈ {0, 1} 1 ∈ {0, 1, 2}
b ∈ Ûκ+1 ∈ {−1, 0} 1 0 ∈ {0, 1}
b ∈ V , b = ∅ ∈ {−1, 0} 1 1 ∈ {1, 2}

(a, u) a ∈ E 0 ∈ {1, 2} -1 ∈ {0, 1}
a ∈ V , a = ∅ 0 1 -1 0

(a, v) a ∈ E 0 ∈ {1, 2} 0 ∈ {1, 2}
a ∈ V , a = ∅ 0 1 0 1

(a, e) a ∈ V 0 1 0 1
a ∈ E, a = ∅ 0 ∈ {0, 1} 0 ∈ {0, 1}

In the remainder of this section, for each t ∈ {1, . . . , κ+ 1} let the union of U i for all i ≤ t
be denoted by

Ût = ⋃t
i=1 U

i
.

We introduce further notation regarding a one-centered solution S ∶= (S1
1 , . . . , S

1
2m+1 =

S
2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) for (G, k′, `). Here, Sti is the i-th set of phase t and thus

the (2m(t − 1) + i)-th set of S. We define the sets

Y
t
i ∶= {ej ∈ Sti ∩ E ∣ 2j ≥ i} and F

t
i ∶= {j > i ∣ Stj−1 � S

t
j = (u, b) with u ∈ Ût}.

Set Y ti is the set of vertices ej from E in S
t
i such that the corresponding layer for ej in

phase t is not before the layer with index i in phase t. Set F ti is the set of indices greater
than i of layers from G in phase t where a vertex from Ût is not carried over to the next
layer’s vertex cover. We now show that there is a phase t where ∣F t1∣ ≥ K.

I Lemma 4.17 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance. Then, there is a t ∈ {1, . . . , κ}
such that ∣F t1∣ ≥ K.

In the remainder of this section the value

f
t
i ∶= ∣Sti ∩ Ûκ+1∣ −K

describes the number of vertices in Ûκ+1 which we could remove from S
t
i such that Sti is

still a vertex cover for G2m(t−1)+i (the i-th layer of phase t). Observe that f ti ≥ 0 for all
i ∈ {1, . . . , 2m + 1} and t ∈ {1, . . . , κ}, because we need in each layer exactly K vertices
from Ûκ+1 in the vertex cover.

We now derive an invariant which must be true in each phase.

I Lemma 4.18 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance. Then, for all t ∈ {1, . . . , κ}
and i ∈ {1, . . . , 2m + 1}, it holds true that ∣F ti ∣ − ∣Y ti ∣ ≤ f ti .

Proof. Define εi = ∣F ti ∣− ∣Y ti ∣− f ti for all i ∈ {1, . . . , 2m+ 1}. We show that εi− εi−1 ≥ 0 for
all i ∈ {1, . . . , 2m + 1}. Since S is one-centered, in Table 2 all relevant tuples for Sti−1 � S

t
i

are shown.
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Now assume towards a contradiction that there is a j ∈ {1, . . . , 2m + 1} such that εj > 0.
Since εi−εi−1 ≥ 0 for all i ∈ {1, . . . , 2m+1}, we have that ε2m+1 > 0 ⟺ ∣F t2m+1∣−∣Y t2m+1∣ >
f
t
2m+1. By definition, we have that ∣F t2m+1∣ = 0 and ∣Y t2m+1∣ = 0 Moreover, since S is a
solution and each vertex cover needs at least K vertices from Ûτ , we have that f t2m+1 ≥ 0. It
follows that 0 = ∣F t2m+1∣ − ∣Y t2m+1∣ > f t2m+1 ≥ 0, yielding a contradiction. J

Next, we prove that in a phase t with ∣F t1∣ ≥ K, there are at most k vertices from V

contained in the union of the vertex covers of phase t.

I Lemma 4.19 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance, and let t ∈ {1, . . . , κ} be such
that ∣F t1∣ ≥ K. Then, ∣⋃2m+1

i=1 S
t
i ∩ V ∣ ≤ k.

Proof. From Lemma 4.18, we know that ∣Y t1 ∣ ≥ K − f t1. Let ∣Y t1 ∣ = K − f t1 + λ for some
λ ∈ N0, and εi = ∣F ti ∣ − ∣Y ti ∣ − f ti , for all i ∈ {1, . . . , 2m + 1}.

We now show that there are at most λ layers where we exchange a vertex currently in the
vertex cover with a vertex in V . Let i ∈ {2, . . . , 2m+1} such that Sti−1�S

t
i = (a, v) with v ∈ V .

From Table 2 (recall that one-centered solutions are smooth), we know that εi ≥ εi−1 + 1.
Assume towards a contradiction that there are λ + 1 many of these exchanges. Then,

there is a j ∈ {1, . . . , 2m + 1} such that

εj ≥ ε1 + λ + 1 = ∣F t1∣ − ∣Y t1 ∣ − f t1 + λ + 1 ≥ K − (K − f
t
1 + λ) − f t1 + λ + 1 ≥ 1

⟺ ∣F tj ∣ − ∣Y tj ∣ > f tj .

This contradicts the invariant of Lemma 4.18.
In the beginning of phase t, we have at most k − λ vertices from V in the vertex cover,

because ∣St1 ∩ V ∣ ≤ K + k − ∣Y t1 ∣ − f t1 = K + k − (K − f t1 + λ) − f t1 = k − λ. Since there are
at most λ many exchanges Sti−1 � S

t
i = (a, v) where v ∈ V and i ∈ {2, . . . , 2m+ 1}, we know

that the vertex set ⋃2m+1
i=1 S

t
i ∩ V is of size at most k. J

4.2.3 Proof of Proposition 4.7

Proof of Proposition 4.7. Let (G, k) be an instance of Clique and (G, k′, `) be the instance
of MSVC resulting from Construction 1. Observe that Construction 1 runs in polynomial
time. We prove that (G, k) is a yes-instance of Clique if and only if (G, k′, `) is a yes-
instance of MSVC.

(⇒) It follows from Lemma 4.9 that (G, k′, `) is a yes-instance if (G, k) is a yes-instance.
(⇐) Let (G, k′, `) be a yes-instance. From Corollary 4.16 it follows that there is a

one-centered solution S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) for (G, k′, `). By

Lemma 4.17, there is a t ∈ {1, . . . , κ} such that ∣F t1∣ ≥ K = (k2). By Lemma 4.19, we know
that ∣⋃2m+1

i=1 S
t
i ∩V ∣ ≤ k. Now we identify the clique of size k in G. Since ∣F t1∣ ≥ K, we know

that, by Construction 1, at least K layers are covered by vertices in V ∪E ∪ Ûκ+1 ∪ {ct2j+1 ∣
j ∈ {1, . . . ,m}} in phase t. Note that each of these layers corresponds to an edge e = {v, w}
in G and that we need in particular the vertices v and w in the vertex cover. Since we have
at most k vertices in ⋃2m+1

i=1 S
t
i ∩ V , these vertices induce a clique of size k in G.

Finally, following Remark 4.8, we can turn each layer into a tree preserving equivalence.
The W[1]-hardness of Clique [9] regarding k and that k′ ∈ O(k2) then finish the proof. J
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5 On Efficient Data Reduction

In this section, we study the possibility of effective data reduction for MSVC when parame-
terized by k, τ , and k + τ , that is, the possible existence of problem kernels of polynomial
size. We prove that unless coNP ⊆ NP/poly, MSVC admits no problem kernel of size
polynomial in k (Section 5.1). Yet, when combining k and τ , we prove a problem kernel of
size O(k2

τ) (Section 5.2). Moreover, we prove a problem kernel of size 5τ when each layer
consists of only one edge (Section 5.3). Recall that MSVC is para-NP-hard regarding τ even
if each layer is a tree.

5.1 No problem kernel of size polynomial in k
We prove that if
(i) each layer consists only of one edge and ` = 1, or
(ii) if each layer is planar and ` ≥ 2k,
then MSVC admits no kernel of size polynomial in k unless coNP ⊆ NP/ poly. Recall that
MSVC parameterized by k is fixed-parameter tractable in case of (i) (see Observation 2.5),
while we left open whether it also holds true in case (ii).

I Theorem 5.1. Unless coNP ⊆ NP/ poly, MSVC admits no polynomial kernel when
parameterized by k, even if
(i) each layer consists of one edge and ` = 1, or if
(ii) each layer is planar and ` ≥ 2k.

We prove Theorem 5.1 using AND-compositions.

I Definition 5.2. An AND-composition for a parameterized problem L is an algorithm
that given p instances (x1, k), . . . , (xp, k) of L, computes in time polynomial in ∑p

i=1 ∣xi∣ an
instance (y, k′) of L such that
(i) (y, k′) ∈ L if and only if (xi, k) ∈ L for all i ∈ {1, . . . , p}, and
(ii) k′ is polynomially upper-bounded in k.

Drucker [10] showed that if a parameterized problem whose unparameterized version is
NP-hard admits an AND-composition, then coNP ⊆ NP/poly. Note that coNP ⊆ NP/poly
implies a collapse of the polynomial-time hierarchy to its third level [23]. In the proof of
Theorem 5.1(i), we use the following.

I Construction 2. Let (G1 = (V, E1, τ1), k, `), . . . , (Gp = (V, Ep, τp), k, `) be p instances of
MSVC where each layer consists of one edge and ` = 1. We construct an instance (G =

(V, E , τ), k, `) of MSVC as follows. Denote by (Gi1, . . . , Giτi
) the sequence of layers of Gi.

Initially, let G be the temporal graph with layer sequence ((Gij)1≤j≤τi
)1≤i≤p. Next, for

each i ∈ {1, . . . , p − 1}, insert between G
i
τi

and G
i+1
1 the sequence (Hi

1, H
i
2, . . . ,H

i
2k) =

(Giτi
, G

i+1
1 , . . . , G

i+1
1 ). This finishes the construction. Note that τ = 2k(p − 1) +∑p

i=1 τi. ⌟

Construction 2 gives an AND-composition used in the proof of Theorem 5.1(i).

I Proposition 5.3 (⋆). MSVC where each layer consists of one edge and ` = 1 AND-
composes into itself parameterized by k.

Turning a set of input instances of Vertex Cover on planar graphs (this is equivalent
to MSVC with one layer which is a planar graph) into a sequence gives an AND-composition
used in the proof of Theorem 5.1(ii).
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G1
u v

G2
u v

G3
u v

G4
u v

G
′
1
u v

wu wv

G
′
2
u v

wu wv

G
′
3
u v

wu wv

G
′
4
u v

wu wv

Figure 2 Illustration of Reduction Rule 2, exemplified for two vertices u, v and k = 5. The
vertices wv, wu (gray squares) are introduced by the application of Reduction Rule 2.

I Proposition 5.4 (⋆). MSVC with one layer being a planar graph AND-composes into
MSVC parameterized by k with ` ≥ 2k and each layer being planar.

Proof of Theorem 5.1. Using Drucker’s result for AND-copositions [10], Propositions 5.3
and 5.4 prove Theorem 5.1(i) and (ii), respectively. Recall that MSVC where each layer
consists of one edge (Theorem 3.1) and Vertex Cover on planar graphs [14] are NP-
hard. J

5.2 A problem kernel of size O(k2
τ)

MSVC remains NP-hard for τ = 2, even if each layer is a tree (Theorem 3.1). Moreover,
MSVC does not admit a problem kernel of size polynomial in k, even if each layer consists of
one edge (Theorem 5.1). Yet, when combining both parameters we obtain a problem kernel
of cubic size.

I Theorem 5.5. There is an algorithm that maps any instance (G = (V, E , τ), k, `) of MSVC
in time O(∣V ∣2

τ) to an instance (G ′, k, `) of MSVC with at most 2k2
τ vertices and k2

τ tem-
poral edges.

To prove Theorem 5.5, we apply three polynomial-time data reduction rules. These
reduction rules can be understood as temporal variants of the folklore reduction rules for
Vertex Cover. Our first reduction rule is immediate.

I Reduction Rule 1 (Isolated vertices). If there is some vertex v ∈ V such that e ∩ v = ∅
for all e ∈ E(G↓), then delete v.

For Vertex Cover when asking for a vertex cover of size q, there is the well-known
reduction rule dealing with high-degree vertices: If there is a vertex v of degree larger than q,
then delete v and its incident edges and decrease q by one. For MSVC a high-degree vertex
can only appear in some layers, and hence deleting this vertex is in general not correct.
However, there is a temporal variant of the high-degree rule as follows.

I Reduction Rule 2 (High degree). If there exists a vertex v such that there is an inclusion-
maximal subset J ⊆ {1, . . . , τ} such that degGi

(v) > k for all i ∈ J , then add a vertex wv
to V and for each i ∈ J , remove all edges incident to v in Gi, and add the edge {v, wv}.

See Figure 2 for an illustration. We now show how Reduction Rule 2 can be applied and
that it does not turn a yes-instance into a no-instance or vice versa.

I Lemma 5.6 (⋆). Reduction Rule 2 is correct and exhaustively applicable in O(∣V ∣2
τ) time.



T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:13

Similarly as in the reduction rules for Vertex Cover, we now count the number of
edges in each layer: If more than k2 edges are contained in one layer, then no set of k vertices
each of degree at most k can cover more than k2 edges.

I Reduction Rule 3 (no-instance). If none of Reduction Rules 1 and 2 is applicable and
there is a layer with more than k2 edges, then output a trivial no-instance.

We are ready to prove that when none of the Reduction Rules 1 to 3 can be applied, then
the instance contains “few” vertices and temporal edges.

I Lemma 5.7 (⋆). Let (G, k, `) be an instance of MSVC such that none of Reduction Rules 1
to 3 is applicable. Then G consists of at most 2k2

τ(G) vertices and k2
τ(G) temporal edges.

We are ready to prove the main result of this section.

Proof of Theorem 5.5. Apply Reduction Rules 1 to 3 exhaustively in O(∣V ∣2
τ) time to

obtain an equivalent instance (G ′, k, `). Due to Lemma 5.7, G ′ consists of at most 2k2
τ

vertices and at most k2
τ temporal edges. J

5.3 A problem kernel of size 5τ
MSVC when each layer is a tree does not admit a problem kernel of any size in τ unless P = NP.
Yet, when each layer consists of only one edge, then each instance of MSVC contains at most τ
edges and, hence, at most 2τ non-isolated vertices. Thus, MSVC admits a straight-forward
problem kernel of size linear in τ .

I Observation 5.8. Let (G = (V, E , τ), k, `) be an instance of MSVC where each layer
consists of one edge. Then we can compute in O(∣V ∣ ⋅ τ) time an instance (G ′, k, `) of size
at most 5τ .

Proof. Observe that we can immediately output a trivial yes-instance if k ≥ τ (Observa-
tion 2.1) or ` ≥ 2 (Observation 2.5). Hence, assume that k ≤ τ−1 and ` ≤ 1. Apply Reduction
Rule 1 exhaustively on (G, k, `) to obtain (G ′, k, `). Since there are τ edges in G, there are at
most 2τ vertices in G ′. It follows that the encoding length of (G ′, k, `) is at most 5τ . J

6 Conclusion

We introduced Multistage Vertex Cover, proved it to be NP-hard even on restricted
inputs, and studied its parameterized complexity regarding the natural parameters k, `, and τ
(each given as input). We leave open whether MSVC parameterized by k is fixed-parameter
tractable when each layer consists of only one edge (see Table 1). Moreover, it is open
whether MSVC remains NP-hard on two layers each being a path (that is, strengthening
Theorem 3.1(i)).
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