
Beating Treewidth for Average-Case Subgraph
Isomorphism
Gregory Rosenthal
University of Toronto, Canada
http://www.cs.toronto.edu/~rosenthal/
rosenthal@cs.toronto.edu

Abstract
For any fixed graph G, the subgraph isomorphism problem asks whether an n-vertex input graph has
a subgraph isomorphic to G. A well-known algorithm of Alon, Yuster and Zwick (1995) efficiently
reduces this to the “colored” version of the problem, denoted G-SUB, and then solves G-SUB in
time O(ntw(G)+1) where tw(G) is the treewidth of G. Marx (2010) conjectured that G-SUB requires
time Ω(nconst·tw(G)) and, assuming the Exponential Time Hypothesis, proved a lower bound of
Ω(nconst·emb(G)) for a certain graph parameter emb(G) = Ω(tw(G)/ log tw(G)). With respect to the
size of AC0 circuits solving G-SUB, Li, Razborov and Rossman (2017) proved an unconditional
average-case lower bound of Ω(nκ(G)) for a different graph parameter κ(G) = Ω(tw(G)/ log tw(G)).

Our contributions are as follows. First, we show that emb(G) is at most O(κ(G)) for all graphs
G. Next, we show that κ(G) can be asymptotically less than tw(G); for example, if G is a hypercube
then κ(G) is Θ

(
tw(G)

/√
log tw(G)

)
. Finally, we construct AC0 circuits of size O(nκ(G)+const)

that solve G-SUB in the average case, on a variety of product distributions. This improves an
O(n2κ(G)+const) upper bound of Li et al., and shows that the average-case complexity of G-SUB is
no(tw(G)) for certain families of graphs G such as hypercubes.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Fixed parameter tractability; Mathematics of computing → Graph algorithms

Keywords and phrases subgraph isomorphism, average-case complexity, AC0, circuit complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.24

Related Version The full paper is available at https://arxiv.org/abs/1902.06380.

Funding Gregory Rosenthal: NSERC (PGS D)

Acknowledgements Thanks to Benjamin Rossman for introducing me to this topic, and for having
many helpful discussions about the research and about drafts of this paper. Thanks to Henry Yuen
for providing feedback on a draft of this paper as well. Part of this work was done while the author
was visiting the Simons Institute for the Theory of Computing.

1 Introduction

The subgraph isomorphism problem asks, given graphs X and G, whether X has a subgraph
isomorphic to G. In the “colored” or “partitioned” version of the problem, each vertex of the
larger graph X comes with a “color” from the vertex set of G, and we ask whether X has a
subgraph that is isomorphic to G with respect to this coloring. We denote the uncolored and
colored subgraph isomorphism problems by G-SUBuncol(X) and G-SUB(X) respectively.

Subgraph isomorphism is NP-complete (e.g. if G is a clique or Hamiltonian cycle), so
research has focused on algorithms for a variety of special cases in the context of parameterized
complexity, surveyed in [12]. If G is a fixed graph on k vertices then G-SUBuncol is solvable
in time O(nk) by brute force, where (here and throughout this section) n is the order of the
input graph. The color-coding algorithm of Alon, Yuster and Zwick [2] improves on this by
efficiently reducing G-SUBuncol to G-SUB and solving the latter in time O(ntw(G)+1), where
tw(G) is the treewidth of the fixed graph G.

© Gregory Rosenthal;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5099-9882
http://www.cs.toronto.edu/~rosenthal/
mailto:rosenthal@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.IPEC.2019.24
https://arxiv.org/abs/1902.06380
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Beating Treewidth

The exponent tw(G)+1 can sometimes be improved using fast matrix multiplication [14, 5],
but no significantly faster algorithm is known for either the colored or uncolored subgraph
isomorphism problem. The following was conjectured in [11]:

I Conjecture 1.1. There is no class G of graphs with unbounded treewidth, no algorithm A
that on inputs G and X solves G-SUB(X), and no function f such that if G is in G then A
runs in time f(G)no(tw(G)).

Marx [11] came close to proving Conjecture 1.1 assuming the Exponential Time Hypothesis
(ETH) [9], which is the hypothesis that solving 3SAT on n variables requires 2Ω(n) time. We
state his result in terms of a parameter emb(G) (short for “embedding”) which we will define
in Section 4:

I Theorem 1.2 ([11]). If there is a class G of graphs with unbounded treewidth, an algorithm
A that on inputs G and X solves G-SUB(X), and a function f such that if G is in G then A
runs in time f(G)no(emb(G)), then ETH is false.

Marx [11] proved that emb(G) is Ω(tw(G)/ log tw(G)), so Theorem 1.2 comes within
a logarithmic factor in the exponent of proving Conjecture 1.1. Our main result is a
counterexample to an average-case analogue of Conjecture 1.1, in a sense that will be made
precise in Section 3. Moreover, our result holds on circuits of depth depending only on G.

Li, Razborov and Rossman [10] proved that for fixed G, the average-case AC0 complexity
of G-SUB is between nκ(G)−o(1) and n2κ(G)+c, where κ(G) is a graph property defined in
Section 3 and c is an absolute constant.1 We tighten this gap, answering an open problem
posed in [10]:

I Theorem 1.3. There is a constant c > 0 such that for any fixed graph G, the average-case
AC0 complexity of G-SUB is at most nκ(G)+c.

We observe that a similar result holds easily on Turing machines, using as a subroutine
the sort-merge join algorithm from relational algebra. This involves sorting, which cannot be
done in AC0 [7], so our circuit instead uses hashing that relies on concentration of measure
for subgraphs of random graphs.

It was also proved in [10] that κ(G) is between Ω(tw(G)/ log tw(G)) and tw(G) + 1, from
which it follows that the worst-case complexity of G-SUB on bounded-depth circuits is at
least nΩ(tw(G)/ log tw(G)). The question was posed in [10] of whether κ(G) is Θ(tw(G)); an
affirmative answer would have implied that Conjecture 1.1 holds on bounded-depth circuits.

Our main result is a separation of κ from treewidth. The Hamming graph Kd
q has vertex

set {1, . . . , q}d and edges between every two vertices that differ in exactly one coordinate. It
is already known that Kd

q has treewidth Θ
(
qd
/√

d
)
[4]. We prove the following:

I Theorem 1.4. κ
(
Kd
q

)
is Θ(qd/d).

Thus, if G is the hypercube graph Kd
2 for example, then κ(G) is Θ

(
tw(G)

/√
log tw(G)

)
.

It follows that an average-case analogue of Conjecture 1.1 is false if G is taken to be the set
of all hypercubes. We also prove the following (for arbitrary graphs G):

I Theorem 1.5. emb(G) is O(κ(G)).

1 In [10], the parameter κ(G) was called κcol(G).

G. Rosenthal 24:3

Because of Theorem 1.5, even if our upper bound generalizes to the worst case, it is still
consistent with current knowledge (in particular Theorem 1.2) that ETH is true. Another
consequence of Theorem 1.5 is that the lower bound from Theorem 1.2 holds unconditionally
in AC0.

It follows from Theorems 1.4 and 1.5 that if G is a hypercube then emb(G) ≤ O(κ(G)) =
o(tw(G)), so proving that Conjecture 1.1 holds under ETH cannot be done by proving that
emb(G) is Θ(tw(G)). In fact, this conclusion was already known: Alon and Marx [1] proved
that if G is a 3-regular expander then emb(G) is Θ(tw(G)/ log tw(G)). It was proved in
[10] that if G is a 3-regular expander then κ(G) is Θ(tw(G)), which makes our separation
of κ from treewidth more surprising. On the other hand, we will see that Theorem 1.5 is
asymptotically tight in the case of Hamming graphs.

We can make a similar statement regarding AC0. Amano [3] observed that the color-
coding algorithm for G-SUB can be implemented by AC0 circuits of size O(ntw(G)+1) for
fixed G. Our separation of κ from treewidth implies that if Conjecture 1.1 holds in AC0,
then this cannot be proved using average-case complexity as defined here and in [10].

The paper is organized as follows. In Section 2 we introduce some notation and definitions.
In Section 3 we define the average-case problem and κ(G), and give an Õ(nκ(G))-time
algorithm for the average-case problem. In Section 4 we define emb(G) and prove that
emb(G) is O(κ(G)). In Section 5 we prove that κ

(
Kd
q

)
is Θ(qd/d), and obtain as a corollary

that emb
(
Kd
q

)
is Θ(qd/d) as well. We also summarize the proof of Chandran and Kavitha [4]

that tw
(
Kd
q

)
is Θ

(
qd
/√

d
)
. In Section 6 we prove our AC0 upper bound.

2 Preliminaries

It will be convenient to define Õ(f(n)) = f(n) logO(1) n. (This differs from the standard
notation when f(n) = no(1).) Let [k] = {1, . . . , k} for k ∈ N.

We use boldface to denote random variables. The indicator variable 1{E} equals 1
if the event E occurs and 0 otherwise. Expected value is denoted E[·]. An event occurs
asymptotically almost surely (a.a.s.) if it occurs with probability 1− o(1) as n goes to infinity.

2.1 Graphs
All graphs we consider are simple and undirected, and may have isolated vertices. If G is a
graph then let V (G) and E(G) denote its vertex and edge sets, with respective cardinalities
v(G) and e(G). If u and v are adjacent vertices then we denote the edge connecting them
by uv or vu. A graph H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G).

I Definition 2.1 (Colored subgraph isomorphism problem). For graphs G and X, where X
comes with a coloring χ : V (X) → V (G), the problem G-SUB(X) asks whether X has a
subgraph G′ such that χ (restricted to V (G′)) is an isomorphism from G′ to G. (Note that
G′ is not required to be an induced subgraph of X.)

For U ⊆ V (G) let G[U] be the induced subgraph of G on U , and more generally
let G[U1, . . . , Uk] = G[U1 ∪ · · · ∪ Uk]. Let G − U = G[V (G) − U], and for H ⊆ G let
G−H = G− V (H).

When the parent graph G is clear in context, let deg(u) be the degree of a vertex u, and
for disjoint S, T ⊆ V (G) let e(S, T) be the number of edges between S and T . Similarly, for
vertex-disjoint graphs A and B let e(A,B) = e(V (A), V (B)).

IPEC 2019

24:4 Beating Treewidth

Let G ∩H be the graph with vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H), and
define G ∪H similarly. Note that G ∩H may have isolated vertices even if G and H do not.
If A ⊆ B are graphs then let [A,B] = {H | A ⊆ H ⊆ B}, and let (A,B] be the same interval
without A, etc.

We denote by Kk the complete graph on k vertices, also called the k-clique. The graph
Kd
q has vertex set [q]d, and two vertices are adjacent if and only if they differ in exactly one

coordinate. Such graphs are called Hamming graphs. A special case is the d-dimensional
hypercube Qd = Kd

2 ; we will use {0, 1}d for its vertex set.
Finally, let ER (n, p) be the Erdős-Rényi graph on n vertices in which each possible edge

exists independently with probability p.

3 The Average-Case Problem and the Parameter κ(G)

3.1 Threshold Random Graphs
First we will define threshold weightings, which assign weights to the vertices and edges of a
graph subject to certain constraints. Then we will define a family of random graphs for each
threshold weighting. The content in this subsection is essentially all from [10].

I Definition 3.1. A threshold weighting on a graph G is a pair (α, β) ∈ [0, 1]V (G)× [0, 2]E(G)

with the following property. For H ⊆ G let α(H) =
∑
u∈V (H) α(u) and β(H) =

∑
e∈E(H) β(e),

and let ∆(H) = α(H)− β(H). Then, ∆(H) ≥ 0 for all H ⊆ G, and ∆(G) = 0. Let θ(G) be
the set of threshold weightings on G.

We will often denote ∆ = (α, β) in a slight abuse of notation. (Since ∆(u) = α(u) if u
is a single vertex, the pair (α, β) is uniquely determined by ∆.) The requirement that α be
nonnegative is redundant because it’s a special case of the requirement that ∆ be nonnegative.
The requirement that β ≤ 2 is also redundant because for every edge uv,

0 ≤ ∆(uv) = α(u) + α(v)− β(uv) ≤ 2− β(uv).

A trivial example is (α, β) = (0, 0), i.e. all vertices and edges have a weight of zero. The
following example is more general:

I Example 3.2 (Markov Chains). Let M ∈ RV (G)×V (G)
≥0 be a column stochastic matrix

(meaning each column sums to 1) such that if Mu,v 6= 0 then either u = v or uv ∈ E(G). Let
α(u) = 1−Mu,u for all u, and β(uv) = Mu,v +Mv,u for all uv ∈ E(G). Then for all H ⊆ G,

∆(H) =
∑

v∈V (H)
uv∈E(G)−E(H)

Mu,v ≥ 0, (1)

with equality if H = G. In fact, in the full paper we prove that every threshold weighting is
equivalent to at least one Markov Chain.

The following threshold weighting will be especially important, and can be thought of as
representing a uniform random walk on G:

I Definition 3.3. If G lacks isolated vertices then let ∆o = (1, βo) ∈ θ(G) be the threshold
weighting generated in Example 3.2 when Mu,v = 1{uv ∈ E(G)}/ deg(v). That is, ∆o =
(α, β), where α(u) = 1 for all u and β(uv) = 1/ deg(u) + 1/deg(v) for all u 6= v. If G is
d-regular then this simplifies to ∆o = (1, βo) = (1, 2/d).

Now we define threshold random graphs:

G. Rosenthal 24:5

I Definition 3.4. For ∆ = (α, β) ∈ θ(G) let X∆,n be the graph with vertices ui for u ∈ V (G)
and i ∈ [nα(u)], and for uv ∈ E(G), each edge uivj independently with probability n−β(uv).
The graph X∆,n comes with the coloring to G defined by ui 7→ u.

For H ⊆ G and X in the support of X∆,n, let SubX(H) be the set of subgraphs H ′ ⊆ X
such that the aforementioned coloring (restricted to V (H ′)) is an isomorphism from H ′ to
H. We say that such a graph H ′ is “H-colored”. Note that SubX(H) can be identified with a
subset of

∏
u∈V (H)[nα(u)].

I Lemma 3.5. If ∆ ∈ θ(G) and H ⊆ G then E[|SubX∆,n
(H)|] = n∆(H)(1± o(1)).

Proof. Let (α, β) = ∆. The set SubX∆,n
(H) contains each of its nα(H) possible elements

with probability n−β(H), so the result follows from linearity of expectation. (The 1± o(1)
accounts for having to round nα(·) to an integer.) J

Lemma 3.5 motivates the requirements that ∆ be nonnegative everywhere and that
∆(G) = 0. Recall that the problem G-SUB(X) asks whether SubX(G) is the empty set. Since
∆(G) is required to be zero, it follows that SubX∆,n

(G) has (approximately) one element on
average, and the probability that SubX∆,n

(G) is empty is known to be bounded away from 0
and 1 as n goes to infinity [10].

3.2 The Parameter κ(G) and an Algorithm for the Average Case
We now define κ(G):

I Definition 3.6 ([10]). Let G be a graph with no isolated vertices. Let Seq(G) be the set
of union sequences, meaning sequences (H1, . . . ,Hk) of distinct subgraphs of G such that
Hk = G and each Hi is either an edge or the union of two previous graphs in the sequence. For
∆ ∈ θ(G) let κ∆(G) = minS∈Seq(G) maxH∈S ∆(H). Finally, let κ(G) = max∆∈θ(G) κ∆(G).

To simplify the exposition, whenever we refer to κ(G), the graph G is implicitly assumed
to lack isolated vertices. It was proved in [10] that for any fixed G, constant-depth circuits
solving G-SUB(X∆,n) a.a.s. require size at least nκ∆(G)−o(1) and at most n2κ∆(G)+c (where
c is an absolute constant). The results about average-case complexity described in Section 1
are with respect to a ∆ such that κ∆(G) = κ(G).

I Theorem 3.7. The problem G-SUB(X∆,n) can be solved in time Õ(nκ∆(G)) ≤ Õ(nκ(G))
a.a.s. for any fixed G.

Proof. First we prove a weaker upper bound of Õ(n2κ∆(G)), in a manner analogous to the
circuit from [10], and then we describe a modification (on Turing machines) that removes
the factor of 2 from the exponent. In Section 6 we will remove the factor of 2 in AC0 using a
different approach.

Let S be a union sequence such that κ∆(G) = maxH∈S ∆(H). For any H ∈ S, by
Lemma 3.5 and Markov’s Inequality, P

(
|SubX∆,n

(H)| > n∆(H) logn
)
≤ 1/ logn. (We will

obtain a tighter bound of P (|SubX∆,n
(H)| > Õ(n∆(H))) ≤ n−ω(1) in Section 6.1.) By a union

bound it follows that if X ∼ X∆,n then maxH∈S |SubX(H)| ≤ Õ(nκ∆(G)) a.a.s. Assume this
condition holds for X. For each successive H in S, compute SubX(H) as follows. If H is a
single edge then this is trivial. Otherwise H = A ∪B for some previous A,B ∈ S, in which
case SubX(H) is the set of A∪B such that A ∈ SubX(A),B ∈ SubX(B) and the projections
of A and B onto [n]V (A∩B) are equal. Therefore SubX(H) can be computed by brute force
in time Õ(|SubX(A)| · |SubX(B)|) ≤ Õ(n2κ∆(G)). Finally, check whether SubX(G) is empty.

IPEC 2019

24:6 Beating Treewidth

We can save a quadratic factor by computing SubX(H) from SubX(A) and SubX(B)
as follows. (This is a case of the sort-merge join algorithm for computing the natural join
of two relations, as defined in database theory [20].) Fix an efficiently computable total
order on [n]V (A∩B), e.g. interpret elements of [n]V (A∩B) as v(A∩B)-digit base-n numbers in
increasing order, and then define a partial order on [n]V (A) ∪ [n]V (B) by first projecting onto
[n]V (A∩B). Sort SubX(A) and SubX(B) in nondecreasing order, and for convenience add
the symbol ⊥ to the end of both sorted lists. Let A and B be the first elements of SubX(A)
and SubX(B) respectively, and initialize an empty accumulator (which will ultimately equal
SubX(H)). While A 6=⊥ and B 6=⊥, do the following. If A < B then let A be the next
element of SubX(A). If B < A then let B be the next element of SubX(B). Otherwise, let
B′ = B, and while B′ 6=⊥ and the projections of A and B′ onto [n]V (A∩B) are equal, add
A ∪ B′ to the accumulator and let B′ be the next element of SubX(B). Then (once the
procedure involving B′ has finished) let A be the next element of SubX(A).

Sorting SubX(A) and SubX(B) takes Õ(|SubX(A)|+ |SubX(B)|) comparisons, and then
computing SubX(H) takes Õ(|SubX(A)|+ |SubX(B)|+ |SubX(H)|) ≤ Õ(nκ∆(G)) time. J

We will use the following graph-theoretic properties of κ(G):

I Theorem 3.8 ([10]2). Let G be a graph with no isolated vertices.
(i) There exists ∆ = (1, β) ∈ θ(G) (meaning ∆(u) = 1 for all vertices u) such that

κ(G) = κ∆(G).
(ii) κ(G) ≥ v(G)h(G)/(3 maxu∈V (G) deg(u)), where h(G) is the edge expansion of G.
(iii) If G is a minor of some graph H then κ(G) ≤ κ(H).

The following was observed in [10] as well:

I Corollary 3.9. If G is a bounded-degree expander then κ(G) is Θ(v(G)).

Proof. Theorem 3.8(ii) implies that κ(G) is Ω(v(G)). Recall from Section 1 that κ(G) ≤
tw(G) + 1 [10], and it is well known that tw(G) + 1 ≤ v(G). J

4 The Parameter emb(G) and Proof that emb(G) is O(κ(G))

Recall that emb(G) is significant because of its role in Marx’s ETH-hardness result for G-SUB,
namely Theorem 1.2.

I Definition 4.1 (emb(G)). Let G(q) be the graph formed by replacing each vertex of G
with a q-clique, i.e. it has vertices ui for all u ∈ V (G) and i ∈ [q], and edges uivj for all
ui 6= vj such that either u = v or uv ∈ E(G). Let emb(G) be the supremum of all r > 0 for
which there exists m0 = m0(G, r) such that if H is any graph with m ≥ m0 edges and no
isolated vertices, then H is a minor of G(dm/re), and furthermore a minor mapping from H

to G(dm/re) can be computed in time f(G)mO(1) for some function f .

Although the requirement that such a minor mapping be efficiently computable is crucial
in Theorem 1.2, none of the other results about emb(G) that we reference or derive depend on
this requirement, so we may safely ignore it going forward. The following example illustrates
Definition 4.1:

2 Specifically, Corollary 4.2, Theorem 4.9, and Theorem 5.1 of [10] correspond to Theorems 3.8(i) to 3.8(iii)
respectively.

G. Rosenthal 24:7

I Example 4.2 (emb(Kk) [11]). Since K(dm/re)
k = Kkdm/re, any graph H with m edges is a

minor of K(dm/re)
k if and only if v(H) ≤ kdm/re. If H has no isolated vertices then H could

have up to 2m vertices, so 2m ≤ kdm/re. Therefore emb(Kk) = k/2: it is sufficient for 2m
to be at most km/r (i.e. r ≤ k/2), and no r > k/2 satisfies 2m ≤ kdm/re for arbitrarily
large m.

I Remark. The name emb(G) comes from the fact that Marx [11] called a minor mapping
from H to G(q) an “embedding of depth q” from H into G. Marx [11] used the notation
G(q), but the parameter emb(G) is new in the current paper, all results about emb(G) in
[11, 1] having been stated in terms of embeddings of some depth.

The following is used in our proof that emb(G) is O(κ(G)):

I Lemma 4.3. κ
(
G(q)) ≤ qmax(κ(G), 2).

Proof Sketch. Given a threshold weighting ∆ on G(q), collapsing each cluster of q vertices
to a single “mega-vertex” induces a threshold weighting ∆′ on G. Let S be an optimal union
sequence for G with respect to ∆′, and project S back onto G(q). J

Now we prove that emb(G) is O(κ(G)) (Theorem 1.5), using an argument similar to the
proof by Marx [11] that emb(G) is O(tw(G)):

Proof. Let r > 0, and assume there exists an arbitrarily large 3-regular expander H that’s a
minor of G(de(H)/re). Then by Corollary 3.9, Theorem 3.8(iii), and Lemma 4.3,

e(H) = Θ(v(H)) = Θ(κ(H)) ≤ O
(
κ
(
G(de(H)/re)

))
≤ O (κ(G)e(H)/r) ,

so r must be O(κ(G)). J

In [10] the question was posed of whether Theorem 1.2 holds with κ(G) in place of
emb(G). By Theorem 1.5 this would be a stronger bound, which makes the question even
more interesting. This problem is open even in the case of 3-regular expanders: recall from
Section 1 that if G is a 3-regular expander then emb(G) is Θ(tw(G)/ log tw(G)) and κ(G) is
Θ(tw(G)) [1, 10].

The fact that κ(G) is Ω(emb(G)) gives an alternate proof, besides the one in [10], that
κ(G) is Ω(tw(G)/ log tw(G)).

5 Separating κ from Treewidth

In Section 5.1 we prove that κ(Kk) = k/4 +O(1), which is a special case of the more general
result that κ

(
Kd
q

)
= Θ(qd/d). We obtain tighter multiplicative constants in the case d = 1,

and it provides an opportunity to illustrate the main ideas of our proof in a simpler setting,
but when reading the full paper it may be skipped without penalty. In Section 5.2 we prove
that κ

(
Kd
q

)
is O(qd/d) when q is even, which is sufficient to separate κ from treewidth.

Again, this case is cleaner than the general case and conveys most of the intuition behind it.
In an appendix in the full paper we prove that κ

(
Kd
q

)
is O(qd/d) for all q. In Section 5.3

we prove that κ
(
Kd
q

)
is Ω(qd/d) in two different ways, completing the proof that κ

(
Kd
q

)
is

Θ(qd/d) (Theorem 1.4), and we obtain as a corollary that emb
(
Kd
q

)
is Θ(qd/d) as well. In

Section 5.4 we summarize the proof of Chandran and Kavitha [4] that tw
(
Kd
q

)
is Θ

(
qd
/√

d
)
.

IPEC 2019

24:8 Beating Treewidth

5.1 Proof that κ(Kk) = k/4 + O(1)
I Remark. It was already observed in [10] that κ(Kk) is Θ(k).

Rossman [16] proved that κ∆o(Kk) ≥ k/4, so it suffices to prove the upper bound. By
Theorem 3.8(i) it suffices to prove that κ∆(Kk) ≤ k/4 +O(1) for an arbitrary ∆ = (1, β) ∈
θ(G). First we construct a sequence U1 ⊆ · · · ⊆ Uk = V (Kk) such that Ui is an i-element
subset of V (Kk), and β(Kk[Ui]) ≥ βo(Kk[Ui]) for all i. The set Uk = V (Kk) satisfies this
requirement because β(Kk) and βo(Kk) are both equal to k. Given Ui, let Ui−1 be an
(i − 1)-element subset of Ui chosen uniformly at random. Each pair of elements in Ui is
included in Ui−1 with the same probability pi (= 1 − 2/i), so it follows from linearity of
expectation that

E[β(Kk[Ui−1])] =
∑

e∈E(Kk[Ui])

β(e)pi = piβ(Kk[Ui]) ≥ pi βo(Kk[Ui]) = E[βo(Kk[Ui−1])].

Therefore there exists a fixed Ui−1 such that β(Kk[Ui−1]) ≥ βo(Kk[Ui−1]).
We construct a union sequence S for Kk as follows. Start by enumerating the edges,

and then for i from 1 to k − 1, append (Kk[Ui] ∪ e1,Kk[Ui] ∪ e1 ∪ e2, . . . ,Kk[Ui+1]), where
e1, e2, . . . are the edges between Ui and Ui+1 − Ui. Then,

max
H∈S

∆(H) ≤ max
i

∆(Kk[Ui]) + 1 ≤ max
i

∆o(Kk[Ui]) + 1.

As observed in [16], it follows from Equation (1) that ∆o(Kk[Ui]) = i(k − i)/k, which is at
most k/4 (when i = k/2). Therefore κ∆(Kk) ≤ k/4 + 1.

5.2 Proof that κ
(
Kd
q

)
is O(qd/d) if q is Even

First we reduce this to the case q = 2. The graph Kd
q is a subgraph of Q((q/2)d)

d (recall
Definition 4.1), as explained in the full paper. By Theorem 3.8(iii) and Lemma 4.3, if κ(Qd)
is O(2d/d) then

κ
(
Kd
q

)
≤ κ

(
Q

((q/2)d)
d

)
≤ O

((q
2

)d
κ(Qd)

)
≤ O

((q
2

)d 2d

d

)
= O(qd/d).

Now we prove that κ(Qd) is O(2d/d), following some brief definitions and a high-level
overview of the argument. Fix d. We identify each u ∈ {0, 1}d with

∑d−1
i=0 ui2i. For

0 ≤ a ≤ 2d let G(a) = Qd[0, . . . , a − 1]. Recall that ∆o = (1, βo) = (1, 2/d) is a threshold
weighting on Qd (Definition 3.3). Let µ = max0≤a≤2d ∆o(G(a)).

I Remark. The intuition behind µ is as follows. The reader may note that κ∆o(Qd) ≤ µ+ 1,
by reasoning analogous to that in Section 5.1. That is, for each vertex u of Qd in increasing
lexicographic order, add to an accumulator all edges uv for which v < u.

There is another union sequence captured by µ as well. If a subgraph B ⊆ Qd isomorphic
to Qk for some k, then since Qk is isomorphic to G(2k) (and βo is uniform) it follows that
∆o(B) ≤ µ. Consider a depth-d binary tree in which each node at depth k is a subgraph of
Qd isomorphic to Qd−k (in particular, the root is Qd and the leaves are vertices), and each
interior node is the union of its two children along with some additional edges corresponding
to a coordinate cut. This tree describes a union sequence S for Qd: recursively obtain the
graphs L and R corresponding to the children of Qd, and then take L ∪ R and add the
missing edges. Note that maxH∈S ∆o(H) = 2 max0≤k≤d ∆o(G(2k)) ≤ 2µ.

G. Rosenthal 24:9

Analogous to Section 5.1, the upper bound is obtained by comparing κ∆(Qd) to µ for each
∆, and bounding µ. For this purpose we will consider the two union sequences mentioned
above, as well as hybrids of them.

In the full paper we prove that κ(Qd) is O(µ). It follows from Equation (1) that
µ = maxa ∆o(G(a)) = maxa e(G(a), Qd − G(a))/d, and in the full paper we prove that
maxa e(G(a), Qd −G(a)) is O(2d).

5.3 Proof that κ
(
Kd
q

)
is Ω(qd/d) and emb

(
Kd
q

)
is Θ(qd/d)

Alon and Marx [1, Theorem 4.3] proved that emb
(
Kd
q

)
is Ω(qd/d), and it follows from

Theorem 1.5 that emb
(
Kd
q

)
≤ O

(
κ
(
Kd
q

))
≤ O(qd/d). Therefore emb

(
Kd
q

)
is Θ(qd/d).

It is implicit in the above argument that κ
(
Kd
q

)
≥ Ω

(
emb

(
Kd
q

))
≥ Ω(qd/d). In the full

paper we present a second proof that κ
(
Kd
q

)
is Ω(qd/d), using Theorem 3.8(ii).

5.4 Proof that tw
(
Kd
q

)
is Θ

(
qd/

√
d
)
, Summarized

(See [4] for the full proof.) The proof that tw
(
Kd
q

)
is O

(
qd
/√

d
)
reduces to the case q = 2

by reasoning analogous to that in the beginning of Section 5.2. For k ∈ [d] let Uk be the set
of vertices of Qd with exactly k or k− 1 ones. The path (U1, . . . , Ud) is a tree decomposition
of Qd with width approximately 2

(
d
d/2
)
, and by Stirling’s approximation this is Θ

(
2d
/√

d
)
.3

For a graph G let φ(G) be the minimum over all U ⊆ V (G), v(G)/4 ≤ |U | ≤ v(G)/2
of the number of vertices in V (G) − U with at least one neighbor in U . From a result of
Robertson and Seymour [15] it follows that tw(G) ≥ φ(G)−1, and from a result of Harper [6]
it follows that φ

(
Kd
q

)
is Ω

(
qd
/√

d
)
. (Also note the parallels between tw(G) ≥ φ(G) − 1

and Theorem 3.8(ii); interestingly, we’ve sign that both are tight to within a constant factor
in the case of Kd

q .)

6 AC0 Upper Bound

An AC0 circuit is a constant-depth circuit with polynomially many unbounded-fanin AND
and OR gates and NOT gates. Fix a graph G and threshold weighting ∆ ∈ θ(G) for the
remainder of this section. We prove the following, which is a more precise statement of
Theorem 1.3:

I Theorem 6.1. There exists a constant-depth circuit with nκ∆(G)+c wires that solves
G-SUB(X∆,n) with probability 1− nω(1), where c > 0 is an absolute constant.

Since in any circuit the number of gates is at most one plus the number of wires, the circuit
from Theorem 6.1 has size nκ∆(G)+O(1) ≤ nκ(G)+O(1). (In this discussion, all ±O(1) terms
in an exponent are independent of G.) For comparison, it was proved in [10] (building on a
line of previous work [16, 3, 17, 13]) that the average-case AC0 complexity of G-SUB(X∆,n)
is between nκ∆(G)−o(1) and n2κ∆(G)+O(1). Another related result, regarding the uncolored k-
clique problem, is that the average-case AC0 complexity of Kk-SUBuncol

(
ER

(
n, n−2/(k−1)))

is at most nk/4+O(1) [3, 18] (= nκ(Kk)±O(1) by Section 5.1). See [19] for a survey of the
average-case circuit complexity of subgraph isomorphism more generally.

3 Compared to the tree decomposition from [4], this one is a simpler variant whose width is larger by up
to a constant factor.

IPEC 2019

24:10 Beating Treewidth

IDefinition 6.2. Let X be in the support of X∆,n, and let U ⊆ G be an arbitrary graph (which
we think of as a “universe”). Let Subn(U) be the set of all possible elements of SubX∆,n

(U);
note that this can be identified with

∏
v∈V (U)[nα(v)]. If A ⊆ U and A ∈ Subn(A) then let A

extend to U in X if there exists a graph U ∈ SubX(U) (called a U -extension of A) such that
A ⊆ U . (In context, X or X will be implicit.) Equivalently, A could be required to be in
SubX(A) rather than Subn(A) in the latter definition.

Let ∆∗U (A) = minA⊆H⊆U ∆(H). Let X be good if for all graphs U ⊆ G and A ⊆ U , and
for all A ∈ Subn(A) and vertices v ∈ V (U)−V (A), there are Õ

(
n∆∗U (A∪v)−∆∗U (A)) values of

i ∈ [nα(v)] such that A ∪ vi extends to U . (Recall our unconventional definition of Õ(·) from
Section 2, e.g. Õ(1) denotes logO(1) n.) Finally, let an event occur with high probability
(w.h.p.) if it occurs with probability 1− n−ω(1).

We prove the following:

I Theorem 6.3. The graph X∆,n is good w.h.p.

Observe that this is a substantially stronger concentration bound than the application of
Markov’s Inequality in the proof of Theorem 3.7. In Section 6.1 we prove Theorem 6.3, and
then in Section 6.2 we use this result to prove Theorem 6.1.

6.1 Proof of Theorem 6.3
First we derive some algebraic properties of the threshold weighting ∆.

I Lemma 6.4. If A,B ⊆ G then ∆(A) + ∆(B) = ∆(A ∩B) + ∆(A ∪B).

Proof. Each vertex or edge in one (resp. two) of A and B is also in one (resp. two) of A ∩B
and A ∪B. J

I Definition 6.5. For A ⊆ U ⊆ G let ΓU (A) =
⋂
{H ∈ [A,U] | ∆(H) = ∆∗U (A)}, and let A

be a U -base if ∆(A) = ∆∗U (A).

Throughout this subsection, U will be an arbitrary subgraph of G unless additional
structure is imposed on it, and missing subscripts on ∆∗ and Γ default to U .

I Lemma 6.6. If A ⊆ U then ∆(Γ(A)) = ∆∗(A) and A ⊆ Γ(A).

Proof. It suffices to show that the set S = {H ∈ [A,U] | ∆(H) = ∆∗(A)} is closed under
intersection. Let B,C ∈ S. By the definition of S, Lemma 6.4, and the fact that A ⊆ B ∪C,

2∆∗(A) = ∆(B) + ∆(C) = ∆(B ∩ C) + ∆(B ∪ C) ≥ ∆(B ∩ C) + ∆∗(A),

so ∆(B∩C) ≤ ∆∗(A). On the other hand, ∆(B∩C) ≥ ∆∗(A) because A ⊆ B∩C. Therefore
∆(B ∩ C) = ∆∗(A), so B ∩ C ∈ S. J

The proofs of the following two lemmas are of a similar flavor, and are included in the
full paper.

I Lemma 6.7. If A ⊆ Γ(A) ⊆ U ′ ⊆ U then Γ(A) is a U ′-base.

I Lemma 6.8. If A ⊆ B ⊆ U then Γ(A) ⊆ Γ(B).

We now analyze the concentration of X∆,n, making liberal use of the fact that if nO(1)

events occur with uniformly high probability then their conjunction also occurs w.h.p. by a
union bound. For the rest of this subsection, “extensions” are with respect to an implicit
X ≡ X∆,n.

G. Rosenthal 24:11

I Lemma 6.9. If A ⊆ U and ΓU (A) = U (i.e. ∆(H) > ∆(U) for all H ∈ [A,U)) then the
number of U -extensions of any A ∈ Subn(A) is Õ(1) w.h.p.

(The above conditions are equivalent because, by the definition of Γ(A), we have Γ(A) = U

if and only if U is the unique H ∈ [A,U] that minimizes ∆(H).)

Proof Sketch. Here we prove the weaker claim that the lemma holds with “a.a.s.” in place
of “w.h.p.” There are nα(U)−α(A) possible U -extensions of A, each of which occurs with
probability n−β(U)+β(A), soA has n∆(U)−∆(A) U -extensions in expection. Since ∆(U) < ∆(A)
by assumption, the result follows from Markov’s Inequality. J

I Lemma 6.10. If A is a U -base then any A ∈ Subn(A) has Õ(n∆(U)−∆(A)) U -extensions
w.h.p.

Proof Sketch. Again, if we replace “w.h.p.” with “a.a.s.” then the claim follows immediately
from Markov’s Inequality. A similar lower bound is also proved in an appendix in the full
paper. J

Now we prove that X∆,n is good w.h.p.:

Proof of Theorem 6.3. Let A ⊆ U , A ∈ Subn(A) and v ∈ V (U)−V (A). By a union bound
it suffices to prove that w.h.p. there are Õ(n∆∗(A∪v)−∆∗(A)) values of i such that A ∪ vi
extends to U . The number of such i is at most the number of i such that A ∪ vi extends to
Γ(A ∪ v), which is at most the number of Γ(A ∪ v)-extensions of A. Since Γ(A) ⊆ Γ(A ∪ v)
(Lemma 6.8), this equals the sum over all γ ∈ {Γ(A)-extensions of A} of the number Eγ of
Γ(A ∪ v)-extensions of γ.

It follows from Lemma 6.9 that A has Õ(1) extensions to Γ(A) w.h.p. (To see this, note
that if A ⊆ H ⊂ Γ(A) then ∆(H) ≥ ∆∗(A) = ∆(Γ(A)) (Lemma 6.6), and if ∆(H) = ∆∗(A)
then it follows from the definition of Γ(A) that Γ(A) ⊆ H, a contradiction.) Since Γ(A) is a
Γ(A∪v)-base (Lemma 6.7), it follows from Lemma 6.10 that any Eγ is Õ(n∆(Γ(A∪v))−∆(Γ(A)))
w.h.p. (= Õ(n∆∗(A∪v)−∆∗(A)) by Lemma 6.6). J

6.2 The Circuit
If D is a data structure then let |D| denote the number of bits used to represent it according
to whatever schema we describe. When there is a null element we represent it by the all-zeros
string.

Proof of Theorem 6.1. Since X∆,n is good w.h.p. (Theorem 6.3) it suffices to prove the
existence of a (small, constant-depth) circuit C such that PX∼X∆,n

(C(X) = G-SUB(X) |
X is good) = 1− nω(1). By Yao’s Principle [21] it suffices to prove the existence of a (small,
constant-depth) random circuit C such that P (C(X) = G-SUB(X)) = 1 − n−ω(1) for any
fixed good X.

The following result is essentially implicit in [10] (as is the argument above) and helps
keep the random circuit small:

I Lemma 6.11 (Random Hashing). Let S be a set containing a null element, and assume all
elements of S are represented using the same number of bits. Let l = l(n) and m = m(n)
be polynomially-bounded functions of n. Then there exists a random, constant-depth circuit
C : Sl → SÕ(m) such that if A is an array of l values in S, of which all but at most m are
null, then C has at most |A|no(1) gates and |A|Õ(l/m) wires, and w.h.p. the multiset of
non-null elements of C(A) is the same as that of A.

IPEC 2019

24:12 Beating Treewidth

We remark that Lemma 6.11 will only be called with l ≤ Õ(n).

Proof Sketch. The proof uses a Chernoff bound and a result from [8]. J

Given H ⊆ G and an ordering π = (π1, . . . , πv(H)) of V (H), let δi = ∆∗H(π1∪ · · ·∪πi) for
0 ≤ i ≤ v(H), and let φi = δi+1 − δi for 0 ≤ i < v(H). (In context H and π will be implicit.)

I Lemma 6.12. 0 ≤ φi ≤ 1 for all i.

Proof. Clearly δi ≤ δi+1. Let A ⊆ G such that π1, . . . , πi ∈ V (A) and ∆(A) = δi. Then
δi+1 ≤ ∆(A ∪ πi+1) ≤ ∆(A) + α(πi+1) ≤ δi + 1. J

Let T = T (H,π) be a depth-v(H) tree (i.e. the root has depth 0 and the leaves have
depth v(H)) in which each node at depth i < v(H) has nφi logci n children, where ci is a
sufficiently large constant. Each non-root node N has a partial label L(N) ∈ {null} ∪ [n],
and N ’s (complete) label is the sequence of partial labels along the path from the root to
N . A label is considered null if it includes any null partial labels. It is required that no two
nodes share a non-null label, and there exists a node labeled with (l1, . . . , li) if and only if4
{π1

l1
, . . . , πili} extends to H.
Let S be an immediate subtree of T (resp. of a node N), denoted S ∈ T (resp. S ∈ N),

if S’s root is a child of T ’s root (resp. of N). Any subtree is considered to have the same
(partial) label as its root.

If the underlying tree structure of T (that is, everything except the partial labels) is
implicit, then we can represent T by an array of values in {null}∪ [n], indexed by the vertices
of T . Each of these values can be associated with a bit string in a natural way. We will
consider circuits that compute T according to this representation.

I Lemma 6.13. |T | is Õ(n∆(H)).

Proof. δ0 = ∆(∅) = 0 and δv(H) = ∆∗H(V (H)) = ∆(H). It takes Õ(1) bits to store an
element of [n]V (H), and each φi is nonnegative (Lemma 6.12), so

|T | = Õ

v(H)−1∏
i=0

nφi

 = Õ

(
n
∑v(H)−1

i=0
φi

)
= Õ

(
nδv(H)−δ0

)
= Õ

(
n∆(H)

)
. J

I Lemma 6.14. For all H ⊆ G there exists a random, constant-depth circuit with Õ(n∆(H)+2)
wires, independent of X, that computes T (H,π′) from T (H,π) w.h.p.

Proof Sketch. Assume that π and π′ differ only in positions d and d + 1. (The general
case can be reduced to at most

(
v(H)

2
)
copies of this circuit in succession.) Define δ′i and φ′i

analogously to δi and φi, but with respect to π′ rather than π. Clearly δi = δ′i for i 6= d, so
φi = φ′i for i /∈ {d− 1, d}.

For each depth-(d−1) node N of T (H,π), in parallel, do the following. For τ ∈ N, j ∈ [n]
let Aτj be (if this exists) the subtree rooted at a child of τ whose partial label is j. After
updating the partial labels at what will become the new depth-d and depth-(d+ 1) nodes,
hash the number of columns of A down to Õ(nφ

′
d−1) (using Lemma 6.11), and hash each

remaining column down to a set of Õ(nφ′d) elements. The remaining columns are the new
immediate subtrees of N , and the remaining elements in each column are now the immediate
subtrees of that column. J

4 Recall that (πj)lj is a πj-colored vertex in X.

G. Rosenthal 24:13

For e ∈ E(G) we can construct T (e) in a similar manner, as explained in the full paper.

I Lemma 6.15. For all H,H ′ ⊆ G there exists a random, constant-depth circuit, independent
of X, with Õ(nmax(∆(H),∆(H′))+2) wires, that computes T (H ∪ H ′, π̂) from T (H,π) and
T (H ′, π′) w.h.p. for some π̂.

Proof Sketch. Let T = T (H,π) and T ′ = T (H ′, π′). By Lemma 6.14 we can assume
without loss of generality that {π1, . . . , πv(H∩H′)} = V (H ∩H ′) = V (H) ∩ V (H ′), and that
πk = π′k = π̂k for k ∈ [v(H ∩H ′)]. Define φ′ and φ̂ with respect to (H ′, π′) and (H ∪H ′, π̂)
respectively.

Let ψi = min(φi, φ′i). For 0 ≤ d ≤ v(H ∩ H ′) let Sd be a depth-d tree in which each
node at depth i < d (including i = 0) has Õ(nψi) children. Each node of Sd has a (partial)
label defined the same way as in T , such that no two nodes share a non-null label, and
{π1

l1
, . . . , πili} extends to both H and H ′ (but not necessarily to H ∪H ′) if and only if some

node is labeled with l. Each leaf of Sd with a non-null label l is associated with the pair
(τ, τ ′) of subtrees of T and T ′ respectively whose labels are also l.

The tree S0 is the single node (T, T ′), and we can compute Sd+1 from Sd as explained in
the full paper. Let S = Sv(H∩H′). For d from v(H ∩H ′) − 1 down to 0, for each depth-d
node N in S, hash (Lemma 6.11) the number of children of N down from Õ(nψd) to Õ(nφ̂d),
and if all of N ’s children are null and d > 0 then remove N ’s partial label. Finally, for each
leaf (τ, τ ′) of S, append a copy of τ ′ to each leaf of τ , and put this in place of (τ, τ ′) in S. J

For each successive H in an optimal union sequence, compute T (H) as described above,
and then apply a single OR gate to all leaves of T (G). J

References
1 Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph

problems. SIAM J. Discrete Math., 25(2):631–644, 2011. doi:10.1137/100812653.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.
3 Kazuyuki Amano. k-subgraph isomorphism on AC0 circuits. Comput. Complexity, 19(2):183–

210, 2010. doi:10.1007/s00037-010-0288-y.
4 L. Sunil Chandran and Telikepalli Kavitha. The treewidth and pathwidth of hypercubes.

Discrete Math., 306(3):359–365, 2006. doi:10.1016/j.disc.2005.12.011.
5 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and

dominating set. Theoret. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/j.tcs.2004.05.
009.

6 L. H. Harper. On an isoperimetric problem for Hamming graphs. Discrete Appl. Math.,
95(1-3):285–309, 1999. doi:10.1016/S0166-218X(99)00082-7.

7 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proc. 18th Ann.
ACM Symp. on Theory of Computing, pages 6–20, 1986. doi:10.1145/12130.12132.

8 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin Yi. Optimal depth, very small
size circuits for symmetric functions in AC0. Inform. and Comput., 108(2):200–211, 1994.
doi:10.1006/inco.1994.1008.

9 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

10 Yuan Li, Alexander Razborov, and Benjamin Rossman. On the AC0 complexity of subgraph
isomorphism. SIAM J. Comput., 46(3):936–971, 2017. doi:10.1137/14099721X.

11 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

IPEC 2019

https://doi.org/10.1137/100812653
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/s00037-010-0288-y
https://doi.org/10.1016/j.disc.2005.12.011
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/S0166-218X(99)00082-7
https://doi.org/10.1145/12130.12132
https://doi.org/10.1006/inco.1994.1008
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/14099721X
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005

24:14 Beating Treewidth

12 Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). In STACS,
volume 25 of LIPIcs, pages 542–553. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/LIPIcs.STACS.2014.542.

13 K. Nakagawa and O. Watanabe. Gap Between Two Combinatorial Measures for Constant
Depth Circuit Complexity of Subgraph Isomorphism. Technical report, Tokyo Institute of
Technology, 2011.

14 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Comment.
Math. Univ. Carolin., 26(2):415–419, 1985.

15 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

16 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proc. 40th Ann. ACM
Symp. on Theory of Computing (STOC), pages 721–730, 2008. doi:10.1145/1374376.1374480.

17 Benjamin Rossman. Average-Case Complexity of Detecting Cliques. Ph.d., MIT, 2010.
18 Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM J.

Comput., 43(1):256–279, 2014. doi:10.1137/110839059.
19 Benjamin Rossman. Lower bounds for subgraph isomorphism. In Proc. Intern. Congress of

Mathematicians (ICM), volume 3, pages 3409–3430, 2018. URL: https://eta.impa.br/dl/
051.pdf.

20 Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill Book Company, 6 edition, 2011.

21 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proc. 18th Ann. IEEE Symp. on Foundations of Computer Science, pages 222–227, 1977.
doi:10.1109/SFCS.1977.24.

https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1137/110839059
https://eta.impa.br/dl/051.pdf
https://eta.impa.br/dl/051.pdf
https://doi.org/10.1109/SFCS.1977.24

	Introduction
	Preliminaries
	Graphs

	The Average-Case Problem and the Parameter kappa(G)
	Threshold Random Graphs
	The Parameter kappa(G) and an Algorithm for the Average Case

	The Parameter emb(G) and Proof that emb(G) is O(kappa(G))
	Separating kappa from Treewidth
	Proof that kappa(K_k) = k/4 + O(1)
	Proof that kappa(Kqd) is O(qd/d) if q is Even
	Proof that kappa(Kqd) is Omega(qd/d) and emb(Kqd) is Theta(qd/d)
	Proof that tw(Kqd) is Theta(qd/root(d)), Summarized

	AC0 Upper Bound
	Proof of Theorem 6.3
	The Circuit

