
14th International Symposium
on Parameterized and Exact
Computation

IPEC 2019, September 11–13, 2019, Munich, Germany

Edited by

Bart M. P. Jansen
Jan Arne Telle

LIPIcs – Vo l . 148 – IPEC 2019 www.dagstuh l .de/ l ip i c s

Editors

Bart M. P. Jansen
Eindhoven University of Technology, the Netherlands
B.M.P.Jansen@tue.nl

Jan Arne Telle
University of Bergen, Norway
Jan.Arne.Telle@uib.no

ACM Classification 2012
Theory of computation → Parameterized complexity and exact algorithms

ISBN 978-3-95977-129-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-129-0.

Publication date
December, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.IPEC.2019.0

ISBN 978-3-95977-129-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-8204-1268
mailto:B.M.P.Jansen@tue.nl
https://orcid.org/0000-0002-9429-5377
mailto:Jan.Arne.Telle@uib.no
https://www.dagstuhl.de/dagpub/978-3-95977-129-0
https://www.dagstuhl.de/dagpub/978-3-95977-129-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.IPEC.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-129-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

IPEC 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Bart M. P. Jansen and Jan Arne Telle . 0:vii

Program Committee
. 0:ix

External Reviewers
. 0:xi

Authors
. 0:xiii–0:xvi

Regular Papers

Finding and Counting Permutations via CSPs
Benjamin Aram Berendsohn, László Kozma, and Dániel Marx 1:1–1:16

Width Parameterizations for Knot-Free Vertex Deletion on Digraphs
Stéphane Bessy, Marin Bougeret, Alan D. A. Carneiro, Fábio Protti, and
Uéverton S. Souza . 2:1–2:16

Parameterized Valiant’s Classes
Markus Bläser and Christian Engels . 3:1–3:14

Hierarchy of Transportation Network Parameters and Hardness Results
Johannes Blum . 4:1–4:15

Metric Dimension Parameterized by Treewidth
Édouard Bonnet and Nidhi Purohit . 5:1–5:15

Faster Subgraph Counting in Sparse Graphs
Marco Bressan . 6:1–6:15

Towards a Theory of Parameterized Streaming Algorithms
Rajesh Chitnis and Graham Cormode . 7:1–7:15

FPT Inapproximability of Directed Cut and Connectivity Problems
Rajesh Chitnis and Andreas Emil Feldmann . 8:1–8:20

C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual
Carving-Width

Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta . 9:1–9:17

The Complexity of Packing Edge-Disjoint Paths
Jan Dreier, Janosch Fuchs, Tim A. Hartmann, Philipp Kuinke, Peter Rossmanith,
Bjoern Tauer, and Hung-Lung Wang . 10:1–10:16

Hardness of FO Model-Checking on Random Graphs
Jan Dreier and Peter Rossmanith . 11:1–11:15

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Computing the Largest Bond of a Graph
Gabriel L. Duarte, Daniel Lokshtanov, Lehilton L. C. Pedrosa,
Rafael C. S. Schouery, and Uéverton S. Souza . 12:1–12:15

Parameterized Algorithms for Maximum Cut with Connectivity Constraints
Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, and Yusuke Kobayashi 13:1–13:15

Multistage Vertex Cover
Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche 14:1–14:14

Parameterized Complexity of Edge-Coloured and Signed Graph Homomorphism
Problems

Florent Foucaud, Hervé Hocquard, Dimitri Lajou, Valia Mitsou, and Théo Pierron 15:1–15:16

On the Fine-Grained Complexity of Least Weight Subsequence in Multitrees and
Bounded Treewidth DAGs

Jiawei Gao . 16:1–16:17

Resolving Infeasibility of Linear Systems: A Parameterized Approach
Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich 17:1–17:15

Clustering to Given Connectivities
Petr A. Golovach and Dimitrios M. Thilikos . 18:1–18:17

Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and
Kernelization

Guilherme C. M. Gomes and Ignasi Sau . 19:1–19:15

Finding Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear
Time

Thekla Hamm . 20:1–20:14

The Independent Set Problem Is FPT for Even-Hole-Free Graphs
Edin Husić, Stéphan Thomassé, and Nicolas Trotignon . 21:1–21:12

Improved Analysis of Highest-Degree Branching for Feedback Vertex Set
Yoichi Iwata and Yusuke Kobayashi . 22:1–22:11

Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs
Jana Novotná, Karolina Okrasa, Michał Pilipczuk, Paweł Rzążewski,
Erik Jan van Leeuwen, and Bartosz Walczak . 23:1–23:11

Beating Treewidth for Average-Case Subgraph Isomorphism
Gregory Rosenthal . 24:1–24:14

Invited Paper

The PACE 2019 Parameterized Algorithms and Computational Experiments Challenge:
The Fourth Iteration

M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher . 25:1–25:23

Preface

This volume contains the papers presented at IPEC 2019: the 14th International Symposium
on Parameterized and Exact Computation, which took place September 11–13 in Munich,
Germany. IPEC was co-located with five other algorithmic conferences as a part of the
annual ALGO congress.

Previous iterations of I(W)PEC
2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Ljubljana, Slovenia
2013 Sophia Antipolis, France
2014 Wrocław, Poland
2015 Patras, Greece
2016 Aarhus, Denmark
2017 Vienna, Austria
2018 Helsinki, Finland

The International Symposium on Parameterized and
Exact Computation (IPEC, formerly IWPEC) is a series
of international symposia covering research in all aspects
of parameterized and exact algorithms and complexity.
Started in 2004 as a biennial workshop, it became an
annual event in 2009.

In response to the call for papers, 40 abstracts were
submitted, which led to 38 submitted papers. Three pa-
pers were later withdrawn. Each submission received 3
reviews. The reviews came from the 15 members of the
program committee and from 22 external reviewers, to-
gether contributing 105 reviews. The program committee
held electronic meetings through the EasyChair platform.
In the end, the program committee selected 24 of the sub-
missions for presentation at the symposium and inclusion
in these proceedings.

The Best Paper Award was given to Giordano Da Lozzo, David Eppstein, Michael
Goodrich, and Siddharth Gupta, for their paper C-Planarity Testing of Embedded Clustered
Graphs with Bounded Dual Carving-Width.

The Best Student Paper Award was given to Gregory Rosenthal for his paper Beating
Treewidth for Average-Case Subgraph Isomorphism.

IPEC invited one plenary speaker to the ALGO meeting, Raphael Yuster, as part of the
award ceremony for the 2019 EATCS-IPEC Nerode Prize for outstanding papers in the area
of multivariate algorithmics. The Nerode prize committee consisted of Jianer Chen, Hans
L. Bodlaender, and Virginia Vassilevska Williams. They awarded the prize to Noga Alon,
Raphael Yuster, and Uri Zwick for their paper Color-Coding (Journal of the ACM 42(4):
844–856 (1995)).

IPEC also invited Pasin Manurangsi to present a tutorial on parameterized inapproximabil-
ity. Finally, IPEC hosted the award ceremony and poster session of the fourth Parameterized
Algorithms and Computational Experiments challenge, PACE. This yearly challenge was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. These proceedings contain a report by M. Ayaz Dzulfikar, Johannes K. Fichte, and
Markus Hecher on the 2019 PACE challenge.

We would like to thank the program committee, together with the external reviewers, for
their commitment in the difficult paper selection process. We also thank all the authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Susanne Albers, Ernst Bayer, and Gabriele Doblander, for their work on
the local arrangements.

Bart M. P. Jansen and Jan Arne Telle
Eindhoven and Bergen, October 2019

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Amir Abboud IBM Almaden Research Center United States
Édouard Bonnet ENS Lyon France
Jianer Chen Texas A&M University United States
Petr Golovach University of Bergen Norway
Bart M. P. Jansen (co-chair) Eindhoven University of Technology The Netherlands
Sudeshna Kolay Ben-Gurion University Israel
Lukasz Kowalik University of Warsaw Poland
O-joung Kwon Incheon National University South Korea
Daniel Marx MTA SZTAKI Hungary
Kitty Meeks University of Glasgow United Kingdom
Yota Otachi Kumamoto University Japan
Felix Reidl Birkbeck University of London United Kingdom
Christian Schulz University of Vienna Austria
Manuel Sorge University of Warsaw Poland
Jan Arne Telle (co-chair) University of Bergen Norway

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers

Kazuyuki Amano
Rémy Belmonte
Andreas Björklund
Karl Bringmann
Florent Capelli
Radu Curticapean
Andreas Emil Feldmann
Robert Ganian
Tesshu Hanaka
Thore Husfeldt
Tomasz Kociumaka
Christian Komusiewicz
Marvin Künnemann
Martin Lackner
Michael Lampis
Paloma de Lima
Andrea Lincoln
Alexander Noe
Liat Peterfreund
Marcin Pilipczuk
M.S. Ramanujan
Dimitrios Thilikos

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Benjamin Aram Berendsohn (1)
Institut für Informatik, Freie Universität Berlin,
Germany

Stéphane Bessy (2)
Université de Montpellier - CNRS, LIRMM,
Montpellier, France

Johannes Blum (4)
University of Konstanz, Germany

Markus Bläser (3)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Édouard Bonnet (5)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

Marin Bougeret (2)
Université de Montpellier - CNRS, LIRMM,
Montpellier, France

Marco Bressan (6)
Department of Computer Science, Sapienza
University of Rome, Italy

Guilherme C. M. Gomes (19)
Universidade Federal de Minas Gerais,
Departamento de Ciência da Computação, Belo
Horizonte, Brazil; LIRMM, Université de
Montpellier, Montpellier, France

Lydia Mirabel Mendoza Cadena (17)
Eötvös Loránd University, Budapest, Hungary

Alan D. A. Carneiro (2)
Universidade Federal Fluminense - Instituto de
Computação, Niterói, Brazil

Rajesh Chitnis (7, 8)
School of Computer Science, University of
Birmingham, UK

Graham Cormode (7)
University of Warwick, UK

Giordano Da Lozzo (9)
Roma Tre University, Rome, Italy

Jan Dreier (10, 11)
Dept. of Computer Science, RWTH Aachen
University, Germany

Gabriel L. Duarte (12)
Fluminense Federal University, Rio de Janeiro,
Brazil

M. Ayaz Dzulfikar (25)
University of Indonesia, Kota Depok, Jawa
Barat 16424, Indonesia

Christian Engels (3)
IIT Bombay, Mumbai, India

David Eppstein (9)
University of California, Irvine, USA

Hiroshi Eto (13)
Kyushu University, Fukuoka, Japan

Andreas Emil Feldmann (8)
Charles University, Czechia

Johannes K. Fichte (25)
Faculty of Computer Science, TU Dresden,
01062 Dresden, Germany

Till Fluschnik (14)
Algorithmics and Computational Complexity,
Faculty IV, TU Berlin, Germany

Florent Foucaud (15)
Univ. Orléans, INSA Centre Val de Loire, LIFO
EA 4022, F-45067 Orléans Cedex 2, France;
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, F-33400 Talence, France

Janosch Fuchs (10)
Dept. of Computer Science, RWTH Aachen
University, Germany

Jiawei Gao (16)
University of California, San Diego, CA, USA

Petr A. Golovach (18)
Department of Informatics, University of Bergen,
Norway

Michael T. Goodrich (9)
University of California, Irvine, USA

Siddharth Gupta (9)
Ben-Gurion University of the Negev, Beersheba,
Israel

Alexander Göke (17)
Universität Bonn, Bonn, Germany; Technische
Universität Hamburg, Hamburg, Germany

Thekla Hamm (20)
Algorithms and Complexity Group, TU Wien,
Vienna, Austria

Tesshu Hanaka (13)
Chuo University, Tokyo, Japan

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.1
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.2
https://orcid.org/0000-0003-1102-3649
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.4
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.3
https://orcid.org/0000-0002-1653-5822
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.5
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.2
https://orcid.org/0000-0001-5211-2264
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.6
https://orcid.org/0000-0002-5164-1460
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.19
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.17
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.2
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.7
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.8
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.7
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.9
https://orcid.org/0000-0002-2662-5303
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.11
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.12
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.25
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.3
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.9
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.13
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.8
https://orcid.org/0000-0002-8681-7470
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.25
https://orcid.org/0000-0003-2203-4386
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.14
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15
https://orcid.org/0000-0003-3993-222X
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.16
https://orcid.org/0000-0002-2619-2990
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.18
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.9
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.9
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.17
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.20
https://orcid.org/0000-0001-6943-856X
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.13
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Authors

Tim A. Hartmann (10)
Dept. of Computer Science, RWTH Aachen
University, Germany

Markus Hecher (25)
Institute of Logic and Computation, TU Wien,
Favoritenstraße 9-11, 1040 Wien, Austria;
University of Potsdam, Germany

Hervé Hocquard (15)
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, F-33400 Talence, France

Edin Husić (21)
Department of Mathematics, LSE, Houghton
Street, London, WC2A 2AE, United Kingdom

Yoichi Iwata (22)
National Institute of Informatics, Tokyo, Japan

Yasuaki Kobayashi (13)
Kyoto University, Kyoto, Japan

Yusuke Kobayashi (13, 22)
Kyoto University, Kyoto, Japan

László Kozma (1)
Institut für Informatik, Freie Universität Berlin,
Germany

Philipp Kuinke (10)
Dept. of Computer Science, RWTH Aachen
University, Germany

Dimitri Lajou (15)
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, F-33400 Talence, France

Daniel Lokshtanov (12)
University of California Santa Barbara, CA,
USA

Dániel Marx (1)
Max Planck Institute for Informatics, Saarland
Informatics Campus, Saarbrücken, Germany

Valia Mitsou (15)
Université Paris-Diderot, IRIF, CNRS, 75205,
Paris, France

Matthias Mnich (17)
Universität Bonn, Bonn, Germany; Technische
Universität Hamburg, Hamburg, Germany

Rolf Niedermeier (14)
Algorithmics and Computational Complexity,
Faculty IV, TU Berlin, Germany

Jana Novotná (23)
Department of Applied Mathematics, Faculty of
Mathematics and Physics, Charles University,
Prague, Czech Republic

Karolina Okrasa (23)
Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Lehilton L. C. Pedrosa (12)
University of Campinas, São Paulo, Brazil

Théo Pierron (15)
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, F-33400 Talence, France; DIMEA,
Masaryk University, 60200 Brno, Czech republic

Michał Pilipczuk (23)
Institute of Informatics, Faculty of Mathematics,
Informatics and Mechanics, University of
Warsaw, Poland

Fábio Protti (2)
Universidade Federal Fluminense - Instituto de
Computação, Niterói, Brazil

Nidhi Purohit (5)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

Valentin Rohm (14)
Algorithmics and Computational Complexity,
Faculty IV, TU Berlin, Germany

Gregory Rosenthal (24)
University of Toronto, Canada

Peter Rossmanith (10, 11)
Dept. of Computer Science, RWTH Aachen
University, Germany

Paweł Rzążewski (23)
Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Ignasi Sau (19)
CNRS, LIRMM, Université de Montpellier,
Montpellier, France

Rafael C. S. Schouery (12)
University of Campinas, São Paulo, Brazil

Uéverton S. Souza (2, 12)
Universidade Federal Fluminense - Instituto de
Computação, Niterói, Brazil

Bjoern Tauer (10)
Dept. of Computer Science, RWTH Aachen
University, Germany

Dimitrios M. Thilikos (18)
AlGCo project-team, LIRMM, Université de
Montpellier, CNRS, Montpellier, France

https://orcid.org/0000-0002-1028-6351
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://orcid.org/0000-0003-0131-6771
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.25
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.21
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.22
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.13
https://orcid.org/0000-0001-9478-7307
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.13
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.22
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.1
https://orcid.org/0000-0001-9716-6346
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.12
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.1
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15
https://orcid.org/0000-0002-4721-5354
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.17
https://orcid.org/0000-0003-1703-1236
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.14
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://orcid.org/0000-0003-1001-082X
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.12
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.2
https://orcid.org/0000-0003-4869-0031
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.5
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.14
https://orcid.org/0000-0002-5099-9882
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.24
https://orcid.org/0000-0003-0177-8028
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.11
https://orcid.org/0000-0001-7696-3848
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://orcid.org/0000-0002-8981-9287
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.19
https://orcid.org/0000-0002-0472-4810
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.12
https://orcid.org/0000-0002-5320-9209
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.2
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.12
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://orcid.org/0000-0003-0470-1800
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.18

Authors 0:xv

Stéphan Thomassé (21)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France;
Institut Universitaire de France, Paris, France

Nicolas Trotignon (21)
Univ Lyon, ENS de Lyon, Université Claude
Bernard Lyon 1, CNRS, LIP, F-69342, Lyon
Cedex 07, France

Erik Jan van Leeuwen (23)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Bartosz Walczak (23)
Department of Theoretical Computer Science,
Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Hung-Lung Wang (10)
Computer Science and Information Engineering,
National Taiwan Normal University, Taiwan

Philipp Zschoche (14)
Algorithmics and Computational Complexity,
Faculty IV, TU Berlin, Germany

IPEC 2019

https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.21
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.21
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.23
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.10
https://orcid.org/0000-0001-9846-0600
https://dx.doi.org/10.4230/LIPIcs.IPEC.2019.14

Finding and Counting Permutations via CSPs
Benjamin Aram Berendsohn
Institut für Informatik, Freie Universität Berlin, Germany
beab@zedat.fu-berlin.de

László Kozma
Institut für Informatik, Freie Universität Berlin, Germany
laszlo.kozma@fu-berlin.de

Dániel Marx
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
dmarx@mpi-inf.mpg.de

Abstract
Permutation patterns and pattern avoidance have been intensively studied in combinatorics and
computer science, going back at least to the seminal work of Knuth on stack-sorting (1968). Perhaps
the most natural algorithmic question in this area is deciding whether a given permutation of length
n contains a given pattern of length k.

In this work we give two new algorithms for this well-studied problem, one whose running time
is nk/4+o(k), and a polynomial-space algorithm whose running time is the better of O(1.6181n) and
O(nk/2+1). These results improve the earlier best bounds of n0.47k+o(k) and O(1.79n) due to Ahal
and Rabinovich (2000) resp. Bruner and Lackner (2012) and are the fastest algorithms for the problem
when k ∈ Ω(logn). We show that both our new algorithms and the previous exponential-time
algorithms in the literature can be viewed through the unifying lens of constraint-satisfaction.

Our algorithms can also count, within the same running time, the number of occurrences of
a pattern. We show that this result is close to optimal: solving the counting problem in time
f(k) · no(k/ log k) would contradict the exponential-time hypothesis (ETH). For some special classes of
patterns we obtain improved running times. We further prove that 3-increasing and 3-decreasing
permutations can, in some sense, embed arbitrary permutations of almost linear length, which
indicates that an algorithm with sub-exponential running time is unlikely, even for patterns from
these restricted classes.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Pattern matching

Keywords and phrases permutations, pattern matching, constraint satisfaction, exponential time

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.1

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.04673.

Funding Dániel Marx: Supported by the European Research Council (ERC) Consolidator Grant
No. 725978 SYSTEMATICGRAPH.

Acknowledgements An earlier version of the paper contained a mistake in the analysis of the
algorithm for Theorem 2. We thank Günter Rote for pointing out the error.
This work was prompted by the Dagstuhl Seminar 18451 “Genomics, Pattern Avoidance, and
Statistical Mechanics”. The second author thanks the organizers for the invitation and the participants
for interesting discussions.

1 Introduction

Let [n] = {1, . . . , n}. Given two permutations τ : [n]→ [n], and π : [k]→ [k], we say that τ
contains π, if there are indices 1 ≤ i1 < · · · < ik ≤ n such that τ(ij) < τ(i`) if and only if
π(j) < π(`), for all 1 ≤ j, ` ≤ k. In other words, τ contains π, if the sequence (τ(1), . . . , τ(n))

© Benjamin Aram Berendsohn, László Kozma, and Dániel Marx;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beab@zedat.fu-berlin.de
mailto:laszlo.kozma@fu-berlin.de
mailto:dmarx@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.IPEC.2019.1
https://arxiv.org/abs/1908.04673
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Finding and Counting Permutations via CSPs

has a (possibly non-contiguous) subsequence with the same ordering as (π(1), . . . , π(k)),
otherwise τ avoids π. For example, τ = (1, 5, 4, 6, 3, 7, 8, 2) contains (2, 3, 1), because its
subsequence (5, 6, 3) has the same ordering as (2, 3, 1); on the other hand, τ avoids (3, 1, 2).

Knuth showed in 1968 [40, § 2.2.1], that permutations sortable by a single stack are exactly
those that avoid (2, 3, 1). Sorting by restricted devices has remained an active research
topic [53, 46, 48, 12, 3, 5], but permutation pattern avoidance has also taken on a life of
its own (especially after the influential work of Simion and Schmidt [50]), becoming an
important subfield of combinatorics. For more background on permutation patterns and
pattern avoidance we refer to the extensive survey [55] and relevant textbooks [13, 14, 39].

Perhaps the most important enumerative result related to permutation patterns is
the theorem of Marcus and Tardos [41] from 2004, stating that the number of length-n
permutations that avoid a fixed pattern π is bounded by c(π)n, where c(π) is a quantity
independent of n. (This was conjectured by Stanley and Wilf in the late 1980s.)

A fundamental algorithmic problem in this context is Permutation Pattern Matching
(PPM): Given a length-n permutation τ (“text”) and a length-k permutation π (“pattern”),
decide whether τ contains π.

Solving PPM is a bottleneck in experimental work on permutation patterns [4]. The
problem and its variants also arise in practical applications, e.g. in computational biology [39,
§ 2.4] and time-series analysis [38, 10, 45]. Unfortunately PPM is, in general, NP-complete,
as shown by Bose, Buss, and Lubiw [15] in 1998. For small (e.g. constant-sized) patterns, the
problem is solvable in polynomial (in fact, linear) time, as shown by Guillemot and Marx [33]
in 2013. Their algorithm has running time n · 2O(k2 log k), establishing the fixed-parameter
tractability of the PPM problem in terms of the pattern length. The algorithm builds upon
the Marcus-Tardos proof of the Stanley-Wilf conjecture and introduces a novel decomposition
of permutations. Subsequently, Fox [30] refined the Marcus-Tardos result, thereby removing
a factor log k from the exponent of the Guillemot-Marx bound. (Due to the large constants
involved, it is however, not clear whether the algorithm can be efficient in practice.)

For longer patterns, e.g. for k ∈ Ω(logn), the complexity of the PPM problem is less
understood. An obvious algorithm with running time O(nk+1) is to enumerate all

(
n
k

)
length-k subsequences of τ , checking whether any of them has the same ordering as π. The
first result to break this “triviality barrier” was the O(n2k/3+1)-time algorithm of Albert,
Aldred, Atkinson, and Holton [4]. Shortly thereafter, Ahal and Rabinovich [1] obtained the
running time n0.47k+o(k).

The two algorithms are based on a similar dynamic programming approach: they embed
the entries of the pattern π one-by-one into the text τ , while observing the restrictions
imposed by the current partial embedding. The order of embedding (implicitly) defines a
path-decomposition of a certain graph derived from the pattern π, called the incidence graph.
The running time obtainable in this framework is of the form O(npw(π)+1), where pw(π) is
the pathwidth of the incidence graph of π.

Ahal and Rabinovich also describe a different, tree-based dynamic programming algorithm
that solves PPM in time O(n2·tw(π)+1), where tw(π) is the treewidth of the incidence graph
of π. Using known bounds on the treewidth, however, this running time does not improve
the previous one.

Our first result is based on the observation that PPM can be formulated as a constraint
satisfaction problem (CSP) with binary constraints. In this view, the path-based dynamic
programming of previous works has a natural interpretation not observed earlier: it amounts
to solving the CSP instance by Seidel’s invasion algorithm, a popular heuristic [49],[54, § 9.3].

B.A. Berendsohn, L. Kozma, and D. Marx 1:3

It is well-known that binary CSP instances can be solved in time O(nt+1), where n is
the domain size, and t is the treewidth of the constraint graph [32, 24]. In our reduction, the
domain size is the length n of the text τ , and the constraint graph is the incidence graph
of the pattern π; we thus obtain a running time of O(ntw(π)+1), improving upon the earlier
O(n2·tw(π)+1). Second, making use of a bound known for low-degree graphs [28], we prove
that the treewidth of the incidence graph of π is at most k/3 + o(k). The final improvement
from k/3 to k/4 is achieved via a technique inspired by recent work of Cygan, Kowalik, and
Socała [23] on the k-OPT heuristic for the traveling salesman problem (TSP).

In summary, we obtain the following result, proved in § 3.

I Theorem 1. Permutation Pattern Matching can be solved in time nk/4+o(k).

Expressed in terms of n only, none of the mentioned running times improve, in the
worst case, upon the trivial 2n; consider the case of a pattern of length k ≥ n/ logn. The
first improvement in this parameter range was obtained by Bruner and Lackner [18]; their
algorithm runs in time O(1.79n).

The algorithm of Bruner and Lackner works by decomposing both the text and the
pattern into alternating runs (consecutive sequences of increasing or decreasing elements),
and using this decomposition to restrict the space of admissible matchings. The exponent
in the running time is, in fact, the number of runs of T , which can be as large as n. The
approach is compelling and intuitive, the details, however, are intricate (the description of
the algorithm and its analysis in [18] take over 24 pages).

Our second result improves this running time to O(1.618n), with an exceedingly simple
approach. A different analysis of our algorithm yields the bound O(nk/2+1), i.e. slightly
above the Ahal-Rabinovich bound [1], but with polynomial space. The latter bound also
matches an earlier result of Guillemot and Marx [33, § 7], obtained via involved techniques.

I Theorem 2. Permutation Pattern Matching can be solved using polynomial space, in time
O(1.6181n) or O(nk/2+1).

At the heart of this algorithm is the following observation: if all even-index entries of
the pattern π are matched to entries of the text τ , then verifying whether the remaining
odd-index entries of π can be correctly matched takes only a linear-time sweep through
both π and τ . This algorithm can be explained very simply in the CSP framework: after
substituting a value to every even-index variable, the graph of the remaining constraints is a
union of paths, and hence can be handled very easily.

Counting patterns. We also consider the closely related problem of counting the number
of occurrences of π in τ , i.e. finding the number of subsequences of τ that have the same
ordering as π. Easy modifications of our algorithms solve this problem within the bounds of
Theorems 1 and 2.

I Theorem 3. The number of solutions for Permutation Pattern Matching can be computed
in time nk/4+o(k),
in time O(nk/2+2) and polynomial space, and
in time O(1.6181n) and polynomial space.

Note that the FPT algorithm of Guillemot and Marx [33] cannot be adapted for the
counting version. In fact, we argue (§ 5) that a running time of the form nO(k) is almost best
possible and a significant improvement in running time for the counting problem is unlikely.

I Theorem 4. Assuming the exponential-time hypothesis (ETH), there is no algorithm that
counts the number of occurrences of π in τ in time f(k) · no(k/ log k), for any function f .

IPEC 2019

1:4 Finding and Counting Permutations via CSPs

Special patterns. It is possible that PPM is easier if the pattern π comes from some
restricted family of permutations, e.g. if it avoids some smaller fixed pattern σ. Several such
examples have been studied in the literature, and recently Jelínek and Kync̆l [37] obtained
the following characterization: PPM is polynomial-time solvable for σ-avoiding patterns π,
if σ is one of (1), (1, 2), (1, 3, 2), (2, 1, 3) or their reverses, and NP-complete for all other σ.
(All tractable cases are such that π is a separable permutation [15, 36, 56, 4].)

In particular, Jelínek and Kync̆l show that PPM is NP-complete even if π avoids (1, 2, 3)
or (3, 2, 1), but polynomial-time solvable for any proper subclass of these families. For
(1, 2, 3)-avoiding and (3, 2, 1)-avoiding patterns, it is known however, that PPM can be solved
in time nO(

√
k), i.e. faster than the general case (Guillemot and Vialette [34]).

These results motivate the following general and natural question.

I Question. What makes a permutation pattern easier to find than others?

A permutation is t-monotone, if it can be obtained by interleaving t monotone sequences.
When all t sequences are increasing (resp. decreasing), we call the resulting permutation
t-increasing (resp. t-decreasing). It is well-known that t-increasing (resp. t-decreasing)
permutations are exactly those that avoid (t+ 1, . . . , 1), resp. (1, . . . , t+ 1), see e.g. [7].

We prove that if π is 2-monotone, then the running time of the algorithm of Theorem 1
is nO(

√
k). This result follows from bounding the treewidth of the incidence graph of π, by

observing that this graph is almost planar. For 2-increasing or 2-decreasing patterns we thus
match the bound of Guillemot and Vialette by a significantly simpler argument. (In these
special cases the incidence graph is, in fact, planar.)

Jordan-permutations are a natural family of geometrically-defined permutations with
applications in computational geometry [47]. They were studied by Hoffmann, Mehlhorn,
Rosenstiehl, and Tarjan [35], who showed that they can be sorted with a linear number of
comparisons (see also [2] for related enumerative results). A Jordan permutation is generated
by the intersection-pattern of two simple curves in the plane: label the intersection points
between the curves in increasing order along the first curve, and read out the labels along the
second curve; the obtained sequence is a Jordan-permutation (Figure 1). As the incidence
graph of the pattern π is planar whenever π is a Jordan-permutation, in this case too an
nO(
√
k) bound on the running time follows.

I Theorem 5. The treewidth of the incidence graph of π is O(
√
k),

(i) if π is 2-monotone, or (ii) if π is a Jordan-permutation.

We show that both 2-monotone (and even 2-increasing or 2-decreasing) and Jordan-
permutations of length O(k) may contain grids of size

√
k ×
√
k in their incidence-graphs,

both statements of Theorem 5 are therefore tight, via known lower bounds on the treewidth
of grids [11].

In light of these results, one may try to obtain further treewidth-bounds for families
of patterns, in order to solve PPM in sub-exponential time. In this direction we show a
(somewhat surprising) negative result.

I Theorem 6. There are 3-increasing permutations of length k whose incidence graph has
treewidth Ω(k/ log k).

The same bound applies, by symmetry, to 3-decreasing permutations. The result is
obtained by embedding the incidence graph of an arbitrary permutation of length O(k/ log k)
as a minor of the incidence graph of a 3-increasing permutation of length k.

Theorems 5 and 6 (proved in § 4) lead to an almost complete characterization of the
treewidth of σ-avoiding patterns. By the Erdős-Szekeres theorem [27] every k-permutation

B.A. Berendsohn, L. Kozma, and D. Marx 1:5

contains a monotone pattern of length d
√
ke. Thus, for all permutations σ of length at

least 10, the class of σ-avoiding permutations contains all 3-increasing or all 3-decreasing
permutations, hence by Theorem 6 there exist σ-avoiding patterns π with tw(π) ∈ Ω(k/ log k).
Addressing a few additional small cases by similar arguments (details given in the thesis of
the first author), the threshold 10 can be further reduced. We remark that no algorithm is
known to solve PPM in time no(tw(π)); see the discussion in [1, 37].

With a weaker bound we obtain a full characterisation that strengthens the dichotomy-
result of Jelínek and Kync̆l: in the worst case, the only σ-avoiding patterns π for which
tw(π) ∈ o(

√
k) are those for which PPM is known to be polynomial-time solvable.

Further related work. The complexity of the PPM problem has also been studied under
the stronger restriction that the text τ is pattern-avoiding. The problem is polynomial-
time solvable if τ is monotone [21] or 2-monotone [19, 34, 6, 4, 43], but NP-hard if τ is
3-monotone [37]. A broader characterization is missing.

Only classical patterns are considered in this paper; variants in the literature include
vincular, bivincular, consecutive, and mesh patterns; we refer to [17] for a survey of related
computational questions.

Newman et al. [44] study pattern matching in a property-testing framework (aiming to
distinguish pattern-avoiding sequences from those that contain many copies of the pattern).
In this setting, the focus is on the query complexity of different approaches, and sampling
techniques are often used; see also [9, 31].

A different line of work investigates whether standard algorithmic problems on permuta-
tions (e.g. sorting, selection) become easier if the input can be assumed to be pattern-
avoiding [8, 20].

2 Preliminaries

A length-n permutation σ is a bijective function σ : [n]→ [n], alternatively viewed as the
sequence (σ(1), . . . , σ(n)). Given a length-n permutation σ, we denote as Sσ = {(i, σ(i)) |
1 ≤ i ≤ n} the set of points corresponding to permutation σ.

For a point p ∈ Sσ we denote its first entry as p.x, and its second entry as p.y, referring
to these values as the index, respectively, the value of p. Observe that for every i ∈ [n], we
have |{p ∈ Sσ | p.x = i}| = |{p ∈ Sσ | p.y = i}| = 1.

We define four neighbors of a point (x, y) ∈ Sσ as follows.

NR((x, y)) = (x+ 1, σ(x+ 1)),
NL((x, y)) = (x− 1, σ(x− 1)),
NU ((x, y)) = (σ−1(y + 1), y + 1),
ND((x, y)) = (σ−1(y − 1), y − 1).

The superscripts R, L, U , D are meant to evoke the directions right, left, up, down,
when plotting Sσ in the plane. Some neighbors of a point may coincide. When some
index is out of bounds, we let the offending neighbor be a “virtual point” as follows:
NR(n, i) = NU (i, n) = (∞,∞), and NL(1, i) = ND(i, 1) = (0, 0), for all i ∈ [n]. The virtual
points are not contained in Sσ, we only define them to simplify some of the statements.

The incidence graph of a permutation σ is Gσ = (Sσ, Eσ), where

Eσ = {(p,Nα(p)) | α ∈ {R,L,U,D} and p,Nα(p) ∈ Sσ} .

IPEC 2019

1:6 Finding and Counting Permutations via CSPs

In words, each point is connected to its (at most) four neighbors: its successor and predecessor
by index, and its successor and predecessor by value. It is easy to see that Gσ is a union of
two Hamiltonian paths on the same set of vertices and that this is an exact characterization
of permutation incidence-graphs. (See Figure 1 for an illustration.)

Figure 1 (left) Permutation π = (6, 5, 3, 1, 4, 7, 2) and its incidence graph Gπ. Solid lines indicate
neighbors by index, dashed lines indicate neighbors by value (lines may overlap). Indices plotted on
x-coordinate, values plotted on y-coordinate. (right) Jordan-permutation (4, 1, 2, 3, 8, 5, 6, 7).

Throughout the paper we consider a text permutation τ : [n] → [n], and a pattern
permutation π : [k]→ [k], where n ≥ k. We give an alternative definition of the Permutation
Pattern Matching (PPM) problem in terms of embedding Sπ into Sτ .

Consider a function f : Sπ → Sτ . We say that f is a valid embedding of Sπ into Sτ if for
all p ∈ Sπ the following hold:

f(NL(p)).x < f(p).x < f(NR(p)).x, and (1)
f(ND(p)).y < f(p).y < f(NU (p)).y, (2)

whenever the corresponding neighbor Nα(p) is also in Sπ, i.e. not a virtual point. In words,
valid embeddings preserve the relative positions of neighbors in the incidence graph.

I Lemma 7. Permutation τ contains permutation π if and only if there exists a valid
embedding f : Sπ → Sτ .

For sets A ⊆ B ⊆ Sπ and functions g : A → Sτ and f : B → Sτ we say that g is the
restriction of f to A, denoted g = f |A, if g(i) = f(i) for all i ∈ A. In this case, we also say
that f is the extension of g to B. Restrictions of valid embeddings will be called partial
embeddings. We observe that if f : B → Sτ is a partial embedding, then it satisfies conditions
(1) and (2) with respect to all edges in the induced graph Gπ[B], i.e. the corresponding
inequality holds whenever p,Nα(p) ∈ B.

3 Pattern matching as constraint satisfaction

Readers familiar with the terminology of CSPs should immediately recognize that the
definition of valid embedding and Lemma 7 allow us to formulate PPM as a CSP instance
with binary constraints. Then known techniques can be applied to solve the problem. A
(somewhat different) connection of PPM to CSPs was previously observed by Guillemot
and Marx [33]. We first review briefly the CSP problem, referring to [54, 49, 22] for more
background.

A binary CSP instance is a triplet (V,D,C), where V is a set of variables, D is a set of
admissible values (the domain), and C is a set of constraints C = {c1, . . . , cm}, where each
constraint ci is of the form ((x, y), R), where x, y ∈ V , and R ⊆ D2 is a binary relation.

B.A. Berendsohn, L. Kozma, and D. Marx 1:7

A solution of the CSP instance is a function f : V → D (i.e. an assignment of admissible
values to the variables), such that for each constraint ci = ((xi, yi), Ri), the pair of assigned
values (f(xi), f(yi)) is contained in Ri.

The reduction from PPM to CSP is straightforward. Given a PPM instance with text
τ and pattern π, of lengths n and k respectively, let V = {x1, . . . , xk}, and D = {1, . . . , n}.
The fact that variable xi takes value j signifies that π(i) is matched (embedded) to τ(j). For
the embedding to be valid, by Lemma 7, the relative ordering of entries must be respected,
in accordance with conditions (1) and (2). These conditions can readily be described by
binary relations for all pairs of variables whose corresponding entries are neighbors in the
incidence graph Gπ.

More precisely, for p,Nα(p) ∈ Sπ, for α ∈ {R,L,U,D}, we add constraints of the form
((xi, xj), R), where i = p.x, j = Nα(p).x and R contains those pairs (a, b) ∈ [n]2, for which
the relative position of (a, τ(a)) and (b, τ(b)) matches the relative position of p and Nα(p).

The constraint graph of the binary CSP instance (also known as primal graph or Gaifman
graph) is a graph whose vertices are the variables V and whose edges connect all pairs of
variables that occur together in a constraint. Observe that for instances obtained via our
reduction, the constraint graph is exactly the incidence graph Gπ. We make use of the
following well-known result.

I Lemma 8 ([32, 24]). A binary CSP instance (V,D,C) can be solved in time O(|D|t+1)
where t is the treewidth of the constraint graph.

As discussed in § 2, the incidence graphGπ consists of two Hamiltonian-paths. Accordingly,
its vertices have degree at most 4, and the following structural result is applicable.

I Lemma 9 ([28, 29]). If G is an order-k graph with vertices of degree at most 4, then the
pathwidth (and consequently, the treewidth) of G is at most k/3 + o(k). A corresponding
tree-(path-)decomposition can be found in polynomial time.

Algorithms. Our first algorithm amounts to reducing the PPM instance to a binary CSP
instance, and using the algorithm of Lemma 8 with a tree-decomposition obtained via
Lemma 9. To reach the bound given in Theorem 1, it remains to improve the k/3 term in
the exponent to k/4. We achieve this with a recent technique of Cygan et al. [23], developed
in the context of the k-OPT heuristic for TSP.

In our setting, the technique works as follows. We split [n] into n1/4 contiguous intervals
of equal widths, n3/4 each. (For simplicity, we ignore issues of rounding and divisibility.)
The intervals induce vertical strips in the text τ . For each pattern-index i ∈ [k] we guess
the vertical strip of τ into which i is mapped in the sought-for embedding of π into τ . It is
sufficient to do this for a subset of the entries in π, namely those that become the leftmost
in their respective strips in τ . Let X ⊆ [k] be the set of indices of such entries in π.

Guessing X and the strips of τ into which entries of X are mapped increases the running
time by a factor of

∑
X⊆[k]

(
n1/4

|X|
)
≤
∑
X⊆[k] n

|X|/4. Assuming that we guessed correctly,
the problem simplifies. First, each pattern-entry can now be embedded into at most n3/4

possible locations, hence the domain of each variable will be of size at most n3/4. Second,
the horizontal constraints that go across strip-boundaries can now be removed as they are
implicitly enforced by the distribution of entries into strips (the L-constraint of every X-entry
is removed). We have thus reduced the number of edges in the constraint-graph by |X| − 1
and can use a stronger upper bound of (k− |X|)/3 + o(k) on the treewidth (see e.g. [28, 23]).

IPEC 2019

1:8 Finding and Counting Permutations via CSPs

The overall running time becomes∑
X⊆[k]

n
|X|

4 · n 3
4 ·(

k
3−
|X|

3)+o(k) = 2k · nk/4+o(k) = nk/4+o(k).

We remark that our use of this technique is essentially the same as in Cygan et al. [23],
but the CSP-formalism makes its application more transparent. We suspect that further
classes of CSPs could be handled with a similar approach.

The even-odd method. The algorithm for Theorem 2 can be obtained as follows. Let
(QE , QO) be the partition of Sπ into points with even and odd indices. Formally, QE =
{(2k, π(2k)) | 1 ≤ k ≤ bk/2c}, and QO = {(2k − 1, π(2k − 1)) | 1 ≤ k ≤ dk/2e}. Construct
the CSP instance corresponding to the problem as above. A solution is now found by trying
first every possible combination of values for the variables representing QE . Clearly, there
are n|QE | = nbk/2c possible combinations. If the value of a variable xi is fixed to a ∈ [n],
then xi is removed from the problem and every neighbor of xi is restricted by a new unary
constraint in an appropriate way, i.e. if there is a constraint ((xi, xj), R), then xj should be
restricted to values b for which (a, b) ∈ R.

How does the constraint graph look like if we remove every variable (and its incident edges)
corresponding to QE? It is easy to see that this destroys every constraint corresponding to
L-R neighbors and all the remaining binary constraints represent U-D neighbors. As these
constraints form a Hamiltonian path, the remaining constraint graph consists of a union of
disjoint paths. Such graphs have treewidth 1, hence the resulting CSP instance can be solved
efficiently using Lemma 8, resulting in the running time O(nk/2+2). A more careful argument
improves this bound to O(nk/2+1); we defer the details to the full version of the paper.

We can refine the analysis, noting that when we are assigning values a2 < a4 < a6 < . . .

to the variables x2, x4, x6, . . . representing QE , then we need to consider only increasing
sequences where there is a gap of at least one between each successive entry (e.g. a4 > a2 + 1)
to allow a value for the odd-indexed variables. The number of such subsequences is

(
n−dk/2e
bk/2c

)
:

consider a sequence with a minimum required gap of one between consecutive entries, then
distribute the remaining total gap of n − k among the bk/2c + 1 slots. As maxk

(
n−k
k

)
=

O(1.6181n), see e.g. [52, 51], we obtain an upper bound of this form (independent of k) on
the running time of the algorithm.

Counting solutions. The algorithms described above can be made to work for the counting
version of the problem. This has to be contrasted with the FPT algorithm of Guillemot and
Marx [33], which cannot be adapted for the counting version: a crucial step in that algorithm
is to say that if the text is sufficiently complicated, then it contains every pattern of length
k, hence we can stop. Indeed, as we show in § 5, we cannot expect an FPT algorithm for the
counting problem.

To solve the counting problem, we modify the dynamic programming algorithm behind
Lemma 8 in a straightforward way. Even if not stated in exactly the following form, results
of this type are implicitly used in the counting literature.

I Lemma 10. The number of solutions of a binary CSP instance (V,D,C) can be computed
in time O(|D|t+1) where t is the treewidth of the constraint graph.

It is not difficult to see that by replacing the use of Lemma 8 with Lemma 10 in the algorithms
of Theorems 1 and 2, the counting algorithms stated in Theorem 3 follow.

B.A. Berendsohn, L. Kozma, and D. Marx 1:9

4 Special patterns

In this section we prove Theorems 5 and 6. We define a k-track graph G = (V,E) to be
the union of two Hamiltonian paths H1 and H2, where V can be partitioned into sequences
S1, S2, . . . , Sk, the tracks of G, such that both H1 and H2 visit the vertices of Si in the
given order, for all i ∈ [k]. Observe that k-track graphs are exactly the incidence graphs of
permutations that are either k-increasing or k-decreasing.

2-monotone patterns. We prove Theorem 5(i). As a special case, we first look at patterns
that are 2-increasing. Let G be a 2-track graph. Arrange the vertices of the two tracks on
a line `, the first track in reverse order, followed by the second track in sorted order. Any
Hamiltonian path that respects the order of the two tracks can be drawn (without crossings)
on one side of `. This means that the two Hamiltonian paths of G can be drawn on different
sides of `, and therefore G is planar. See Figure 2 (left) for an example.

Figure 2 (left) A planar drawing of a 2-track graph, with one of the two Hamiltonian paths
drawn with dashed arcs. Note that edges contained in both Hamiltonian paths are drawn twice for
clarity. (right) A drawing of the incidence graph of a 2-monotone permutation. Red and blue dots
indicate an increasing (resp. decreasing) subsequence.

The treewidth of a k-vertex planar graph is known to be O(
√
k) [11, 25]. A corresponding

path-decomposition can be obtained by a recursive use of planar separators. For the case
of a pattern π that consists of an increasing and a decreasing subsequence (i.e. 2-monotone
patterns), we show that the straight-line drawing of Gπ (with points Sπ as vertices) has at
most one intersection. An O(

√
k) bound on the treewidth follows via known results [26].

Divide Sπ by one horizontal and one vertical line, such that each of the resulting four
sectors contains a monotone sequence. More precisely, the top left and bottom right sectors
contain decreasing subsequences, and the other two sectors contain increasing subsequences.
Let e = {u, v} be an edge of the horizontal Hamiltonian path such that u.x = v.x− 1, and
let f = {s, t} be an edge that intersects e, such that s.x < t.x. Edge f must come from
the vertical Hamiltonian path, i.e. |s.y − t.y| = 1. As u and v are horizontal neighbors,
s.x < u.x < v.x < t.x holds. Assume that u.y < v.y (otherwise flip Gπ vertically before the
argument, without affecting the graph structure). We claim that u.y < t.y < s.y < v.y must
hold, as otherwise π contains the pattern (2, 1, 4, 3) and cannot decompose into an increasing
and a decreasing subsequence.

Thus (s, u, v, t) must form the pattern (3, 1, 4, 2), and therefore s and t belong to the
decreasing and u and v to the increasing subsequence. It is easy to see now that s, u, v, t
must be in pairwise distinct sectors, and u (s, t, v) is the unique rightmost (bottommost,

IPEC 2019

1:10 Finding and Counting Permutations via CSPs

topmost, leftmost) point of the bottom left (top left, top right, bottom right) sector, and
due to the monotonicity of all four sectors no more intersections can happen; see Figure 2
(right). This concludes the proof of Theorem 5(i).

We show that the previous result is tight, by constructing a 2-track graph G = (V,E)
with n = 2k2 vertices, for some even k, that contains a k × 2k grid graph.

Let x1, x2, . . . , xk2 and y1, y2, . . . , yk2 be the two tracks of G. We obtain G as the union
of the following two Hamiltonian paths:

x1, y1, y2, x2, x3, y3, y4, x4, . . . , xk2−1, yk2−1, yk2 , xk2 ; and
x1, x2, . . . , xk,

y1, xk+1, xk+2, y2, y3, xk+3, xk+4, y4, . . . yk2−k−1xk2−1, xk2 , yk2−k,

yk2−k+1, yk2−k+2, . . . , yk2 .

The two Hamiltonian paths respect the order of the two tracks.
We now relabel the vertices to show the contained grid. For i ∈ [k], j ∈ [2k], let

zi,j = xbj/2ck+i if j is odd, and zi,j = y(j/2−1)k+i if j is even. It is easy to see that zi,j
is adjacent to zi+1,j and zi,j+1 for i ∈ [k − 1] and j ∈ [2k − 1]. For an illustration of the
obtained permutation and the contained grid graph, see Figure 3.

Figure 3 A 2-increasing permutation of length 32 whose incidence graph contains a 4× 8 grid.
Vertex shape indicates the track, colors are for emphasis of the grid structure.

The case of Jordan patterns (Theorem 5(ii)) is immediate, as the incidence graph of
Jordan permutations is by definition planar. We defer the details to the full version of the
paper.

3-monotone patterns. We now prove Theorem 6. Due to space constraints we omit some
figures that illustrate the proof; these can be found in the full version of the paper. We start
with some definitions and observations. For a set Π of length-n permutations, define the
graph GH(Π) = ([n], E), where E is the union of the Hamiltonian paths corresponding to all
π ∈ Π. For an arbitrary length-n permutation π, the graph Gπ is isomorphic to GH({idn, π}),
where idn is the length-n identity permutation.

Permutation π′ is a split of a permutation π if π′ arises from π by moving a subsequence
of π to the front. For example, (1, 3, 5, 2, 4) is a split of id5, obtained by moving (1, 3, 5) to
the front. We call a permutation split permutation if it is a split of the identity permutation.
Observe that for a length-n split permutation σ 6= idn, there is a unique integer p(σ) ∈ [n]

B.A. Berendsohn, L. Kozma, and D. Marx 1:11

such that both σ(1), σ(2), . . . , σ(p(σ)) and σ(p(σ) + 1), σ(p(σ) + 2), . . . , σ(n) are increasing.
Furthermore, σ−1 is a merge of the two subsequences 1, 2, . . . , p(σ) and p(σ)+1, p(σ)+2, . . . , n.

If π′ is a split of π, then π′ = π ◦σ for some split permutation σ. Ahal and Rabinovich [1]
mention that every n-permutation can be obtained from idn by at most dlogne splits. Let π
be an arbitrary n-permutation and consider the sequence idn = π1, . . . , πm = π, where for
each i ∈ [m− 1] we have πi+1 = πi ◦σi for some split permutation σi 6= idn, and m ≤ dlogne.
Let Π = {π1, . . . , πm}.

To prove Theorem 6, we show that the graph GH(Π) can be embedded (as a minor) in
the incidence graph G of some permutation of length at most 2mn. We further show that G
is a 3-track graph (and thus, its underlying permutation can be assumed 3-increasing). The
lower bound on the treewidth of G then follows by (i) choosing π to be a permutation whose
incidence graph has treewidth Ω(n), (ii) the fact that Gπ is a subgraph of GH(Π), and thus,
a minor of G, and (iii) the observation that the treewidth of a graph is not less than the
treewidth of its minor.

We first define the vertex sets corresponding to the three tracks of G. Let

Vx = {xi,j | i ∈ [m], j ∈ [n]},
Vy = {yi,j | i ∈ [m− 1], j ∈ [p(σi)]}, and
Vz = {zi,j | i ∈ [m− 1], j ∈ [n] \ [p(σi)]}.

Let V = Vx∪Vy∪Vz be the vertex set of G, and observe that |V | = mn+(m−1)n ≤ 2mn.
To later show that G is a 3-track graph, we fix a total order ≺ on each track, namely,

the lexicographic order of the vertex-indices, i.e. xi,j ≺ xi′,j′ if and only if i < i′ or
(i = i′) ∧ (j < j′), and analogously for Vy and Vz. Before proceeding, we define the following
functions:

sx : Vx \ {xm,n} → Vx \ {x1,1},

sx(xi,j) =
{
xi,j+1, if j < n,

xi+1,1, if j = n.

sc : V \ {xm,j | j ∈ [n]} → V \ {x1,j | j ∈ [n]},

sc(xi,j) =
{
yi,σ−1

i
(j), if σ−1

i (j) ≤ p(σi),
zi,σ−1

i
(j), if σ−1

i (j) > p(σi).

sc(yi,j) = xi+1,j ,

sc(zi,j) = xi+1,j .

Note that sx is just the successor with respect to the total order ≺ on Vx, and that sc is
a bijection.

Now we define the two Hamiltonian paths whose union is G. The first path P1 goes as
follows: start at x1,1, then, from every xi,j with i < m, go to sc(xi,j), and then to sx(xi,j).
For xm,j with j < n, go directly to sx(xm,j). Path P1 contains all vertices of Vx in the
correct order. The same holds for Vy and Vz, by the definition of sc.

The second path P2 also starts at x1,1, but first goes along Vx until it reaches x2,1, i.e.
the first part of P2 is x1,1, x1,2, . . . , x1,n, x2,1. Then, from every xi,j with i ≥ 2, it first moves
to s−1

c (xi,j) and then to sx(xi,j). Again, P2 contains all vertices of Vx in the correct order.
As s−1

c (xi,j) is either yi−1,j or zi−1,j , this is also true for Vy and Vz.
To obtain GH(Π) = ([n], E), color the vertices of the graph with n colors, where color k

induces a path Ck of length m in G. We then prove that for each {k1, k2} ∈ E, the graph G

IPEC 2019

1:12 Finding and Counting Permutations via CSPs

contains adjacent vertices of the colors k1 and k2. Then, by contracting Ck for k ∈ [n], we
obtain a supergraph of GH(Π).

For k ∈ [n], define the path Ck = (x1,k, sc(x1,k), s2
c(x1,k), . . . , s2m−2

c (x1,k)). As sc is a
bijection, these paths are disjoint. Note that for each xi,j ∈ Vx \ {xm,n},

s2
c(xi,j) = xi+1,σ−1

i
(j).

We claim that the color of xi,j is πi(j). This is because:

s2i−2
c (x1,πi(j)) = s2i−2

c (x1,σ1σ2...σi−1(j))
= s2i−4

c (x2,σ−1
1 σ1σ2...σi(j)) = s2i−4

c (x2,σ2σ3...σi−1(j))

= ... = s2i−2`
c (x`,σ`σ`+1...σi−1(j))

= ... = xi,j .

Now let k1 and k2 be adjacent in GH(Π). Then, there exist i, j such that πi(j) = k1 and
πi(j + 1) = k2 and, as discussed above, xi,j ∈ Ck1 and xi,j+1 ∈ Ck2 . By definition xi,j ∈ Ck1

implies s−1
c (xi,j) ∈ Ck1 . Finally, P2 has an edge from s−1

c (xi,j) to sx(xi,j) = xi,j+1. This
concludes the proof.

The construction can be extended to embed the union of k arbitrary Hamiltonian paths
on n vertices as a minor of a 3-track graph with O(kn logn) vertices. As every order-n graph
of maximum degree d is edge-colorable with d+ 1 colors (by Vizing’s theorem), such graphs
are in the union of at most d+ 1 Hamiltonian paths, can thus be embedded in 3-track graphs
of order O(dn logn).

5 Hardness result

In this section we prove Theorem 4. The hardness proof proceeds in two steps. First, we
reduce the partitioned subgraph isomorphism (PSI) problem to the partitioned permutation
pattern matching (PPPM) problem. Then, we reduce from the more difficult, counting
variant of PPPM to the regular counting PPM (the subject of Theorem 4), using a (by now
standard) technique based on inclusion-exclusion.

PSI to PPPM. The input to the PSI problem (introduced in [42]) consists of a graph G, a
graph H, and a coloring φ of V (G) with colors V (H). The task is to decide whether there is
a mapping g : V (H) → V (G) such that {u, v} ∈ E(H) if and only if {g(u), g(v)} ∈ E(G),
and φ(g(u)) = u for all u ∈ V (H). In words, we look for a subgraph of G that is isomorphic
to H, with the restriction that each vertex of H can only correspond to a vertex of G from a
prescribed set, moreover, these sets are disjoint.

Let n denote the number of vertices of G, and let k denote the number of edges of H.
It is known [42, Corr. 6.3], that PSI cannot be solved in time f(k) · no(k/ log k), unless ETH
fails, moreover, this holds even if |E(H)| = |V (H)| (see e.g. [16]).

The input to the PPPM problem (introduced in [33]) consists of permutations τ and π of
lengths n and k respectively, and a coloring φ : [n]→ [k] of the entries of τ . The task is to
decide whether there is an embedding g : [k]→ [n] of π into τ in the sense of the standard
PPM problem, with the additional restriction that φ(g(i)) = i, for all i ∈ [k].

Guillemot and Marx show [33, Thm. 6.1], through a reduction from partitioned clique,
that PPPM is W [1]-hard. Due to the density of a clique, the same reduction would, at
best, yield a lower bound with exponent

√
k. We strengthen (and somewhat simplify) this

reduction, to show that PPPM is at least hard as PSI, obtaining the following.

B.A. Berendsohn, L. Kozma, and D. Marx 1:13

I Lemma 11. PPPM cannot be solved in time f(k) · no(k/ log k), unless ETH fails.

#PPPM to #PPM. The counting variant of PPPM (denoted #PPPM) is clearly at least
as hard as PPPM. We now show that the counting variant of PPM (denoted #PPM) is at
least as hard as #PPPM, thereby proving Theorem 4.

We use oracle-calls to #PPM for all subsets X ⊆ [k], to count the number of embeddings
of π into τ using entries of τ with colors from the set X, but ignoring colors for the purpose
of the embedding. (We can achieve this by deleting the entries of τ with color in [k] \X
before each oracle-call.) Then, using the inclusion-exclusion formula, we obtain the number
C of embeddings that use all colors in [k] as follows:

C =
∑
X⊆[k]

(−1)k−|X| CX ,

where CX denotes the number of embeddings that use colors from the set X (obtained by
oracle calls). Since π is of length k, the quantity C counts exactly the number of embeddings
that use each color once.

It remains to show that embeddings that use every color in [k] are such that πi is matched
to an entry of τ of color i, for all i ∈ [k], i.e. the colors are not permuted. This is indeed
the case for the hard instance constructed in the proof of Lemma 11. Towards this claim
(referring to the details of the reduction in the full version of the paper) observe that all
points that are unique in their respective pattern-cell (i, j) can only be matched to a point
in the corresponding text-cell (i, j), which is of the correct color. In each diagonal cell (i, i),
for i > 0, there is a matched point, and the pattern has two bracketing points in decreasing
order in pattern-cell (i, 0), and two bracketing points in increasing order in pattern-cell (0, i).
By construction, the only two points in the correct order are the nearest bracketing points in
text-cell (i, 0), resp. (0, i), which are indeed of the correct color.

The number of oracle calls and additional overhead amounts to a factor 2k in the running
time, absorbed in the quantity f(k) · no(k/ log k). This concludes the proof.

References
1 Shlomo Ahal and Yuri Rabinovich. On Complexity of the Subpattern Problem. SIAM J.

Discrete Math., 22(2):629–649, 2008. doi:10.1137/S0895480104444776.
2 M.H. Albert and M.S. Paterson. Bounds for the growth rate of meander numbers. Journal of

Combinatorial Theory, Series A, 112(2):250–262, 2005. doi:10.1016/j.jcta.2005.02.006.
3 Michael Albert and Mireille Bousquet-Mélou. Permutations sortable by two stacks in parallel

and quarter plane walks. Eur. J. Comb., 43:131–164, 2015. doi:10.1016/j.ejc.2014.08.024.
4 Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A. Holton. Algorithms for

Pattern Involvement in Permutations. In Proceedings of the 12th International Symposium on
Algorithms and Computation, ISAAC ’01, pages 355–366, London, UK, 2001. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=646344.689586.

5 Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, and Vincent Vatter.
Generating permutations with restricted containers. J. Comb. Theory, Ser. A, 157:205–232,
2018. doi:10.1016/j.jcta.2018.02.006.

6 Michael H. Albert, Marie-Louise Lackner, Martin Lackner, and Vincent Vatter. The Complexity
of Pattern Matching for 321-Avoiding and Skew-Merged Permutations. Discrete Mathematics
& Theoretical Computer Science, 18(2), 2016. URL: http://dmtcs.episciences.org/2607.

7 David Aldous and Persi Diaconis. Longest Increasing Subsequences: From Patience Sorting to
the Baik-Deift-Johansson Theorem. Bull. Amer. Math. Soc, 36:413–432, 1999.

IPEC 2019

https://doi.org/10.1137/S0895480104444776
https://doi.org/10.1016/j.jcta.2005.02.006
https://doi.org/10.1016/j.ejc.2014.08.024
http://dl.acm.org/citation.cfm?id=646344.689586
https://doi.org/10.1016/j.jcta.2018.02.006
http://dmtcs.episciences.org/2607

1:14 Finding and Counting Permutations via CSPs

8 David Arthur. Fast Sorting and Pattern-avoiding Permutations. In Proceedings of the Fourth
Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2007, pages 169–174, 2007.
doi:10.1137/1.9781611972979.1.

9 Omri Ben-Eliezer and Clément L. Canonne. Improved Bounds for Testing Forbidden Order
Patterns. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 2093–2112, 2018. doi:10.1137/1.9781611975031.137.

10 Donald J. Berndt and James Clifford. Using Dynamic Time Warping to Find Patterns in
Time Series. In Proceedings of the 3rd International Conference on Knowledge Discovery and
Data Mining, AAAIWS’94, pages 359–370. AAAI Press, 1994. URL: http://dl.acm.org/
citation.cfm?id=3000850.3000887.

11 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

12 Miklós Bóna. A survey of stack-sorting disciplines. The Electronic Journal of Combinatorics,
9(2):1, 2003.

13 Miklós Bóna. Combinatorics of Permutations. CRC Press, Inc., Boca Raton, FL, USA, 2004.
14 Miklós Bóna. A Walk Through Combinatorics: An Introduction to Enumeration and Graph

Theory. World Scientific, 2011. URL: https://books.google.de/books?id=TzJ2L9ZmlQUC.
15 Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern Matching for Permutations. Inf.

Process. Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.
16 Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting Set for

Hypergraphs of Low VC-dimension. In 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark, pages 23:1–23:18, 2016. doi:10.4230/LIPIcs.
ESA.2016.23.

17 Marie-Louise Bruner and Martin Lackner. The computational landscape of permutation
patterns. Pure Mathematics and Applications, 24(2):83–101, 2013.

18 Marie-Louise Bruner and Martin Lackner. A Fast Algorithm for Permutation Pattern
Matching Based on Alternating Runs. Algorithmica, 75(1):84–117, 2016. doi:10.1007/
s00453-015-0013-y.

19 Laurent Bulteau, Romeo Rizzi, and Stéphane Vialette. Pattern Matching for k-Track Per-
mutations. In Costas Iliopoulos, Hon Wai Leong, and Wing-Kin Sung, editors, Combinatorial
Algorithms, pages 102–114, Cham, 2018. Springer International Publishing.

20 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-Avoiding Access in Binary Search Trees. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, pages 410–423, 2015. doi:10.1109/FOCS.
2015.32.

21 Maw-Shang Chang and Fu-Hsing Wang. Efficient algorithms for the maximum weight clique
and maximum weight independent set problems on permutation graphs. Information Processing
Letters, 43(6):293–295, 1992. doi:10.1016/0020-0190(92)90114-B.

22 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1):2:1–
2:32, 2009. doi:10.1145/1592451.1592453.

23 Marek Cygan, Lukasz Kowalik, and Arkadiusz Socala. Improving TSP Tours Using Dynamic
Programming over Tree Decompositions. In 25th Annual European Symposium on Algorithms,
ESA 2017, pages 30:1–30:14, 2017. doi:10.4230/LIPIcs.ESA.2017.30.

24 Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38(3):353–366, 1989. doi:10.1016/0004-3702(89)90037-4.

25 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

26 Vida Dujmovic, David Eppstein, and David R. Wood. Structure of Graphs with Locally
Restricted Crossings. SIAM J. Discrete Math., 31(2):805–824, 2017. doi:10.1137/16M1062879.

27 Pál Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470, 1935. URL: http://www.numdam.org/item/CM_1935__2__463_0.

https://doi.org/10.1137/1.9781611972979.1
https://doi.org/10.1137/1.9781611975031.137
http://dl.acm.org/citation.cfm?id=3000850.3000887
http://dl.acm.org/citation.cfm?id=3000850.3000887
https://doi.org/10.1016/S0304-3975(97)00228-4
https://books.google.de/books?id=TzJ2L9ZmlQUC
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.4230/LIPIcs.ESA.2016.23
https://doi.org/10.4230/LIPIcs.ESA.2016.23
https://doi.org/10.1007/s00453-015-0013-y
https://doi.org/10.1007/s00453-015-0013-y
https://doi.org/10.1109/FOCS.2015.32
https://doi.org/10.1109/FOCS.2015.32
https://doi.org/10.1016/0020-0190(92)90114-B
https://doi.org/10.1145/1592451.1592453
https://doi.org/10.4230/LIPIcs.ESA.2017.30
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1137/16M1062879
http://www.numdam.org/item/CM_1935__2__463_0

B.A. Berendsohn, L. Kozma, and D. Marx 1:15

28 Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On Two Techniques
of Combining Branching and Treewidth. Algorithmica, 54(2):181–207, 2009. doi:10.1007/
s00453-007-9133-3.

29 Fedor V. Fomin and Kjartan Høie. Pathwidth of cubic graphs and exact algorithms. Information
Processing Letters, 97(5):191–196, 2006. doi:10.1016/j.ipl.2005.10.012.

30 Jacob Fox. Stanley-Wilf limits are typically exponential. CoRR, abs/1310.8378, 2013. arXiv:
1310.8378.

31 Jacob Fox and Fan Wei. Fast property testing and metrics for permutations. Combinatorics,
Probability and Computing, pages 1–41, 2018.

32 Eugene C. Freuder. Complexity of K-tree Structured Constraint Satisfaction Problems. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence - Volume 1, AAAI’90, pages
4–9. AAAI Press, 1990. URL: http://dl.acm.org/citation.cfm?id=1865499.1865500.

33 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, pages 82–101, 2014. doi:10.1137/1.9781611973402.7.

34 Sylvain Guillemot and Stéphane Vialette. Pattern Matching for 321-Avoiding Permutations.
In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra, editors, Algorithms and Computation, pages
1064–1073. Springer Berlin Heidelberg, 2009.

35 Kurt Hoffmann, Kurt Mehlhorn, Pierre Rosenstiehl, and Robert E. Tarjan. Sorting Jordan
sequences in linear time using level-linked search trees. Information and Control, 68(1-3):170–
184, 1986.

36 Louis Ibarra. Finding pattern matchings for permutations. Information Processing Letters,
61(6):293–295, 1997. doi:10.1016/S0020-0190(97)00029-X.

37 Vít Jelínek and Jan Kyncl. Hardness of Permutation Pattern Matching. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages
378–396, 2017. doi:10.1137/1.9781611974782.24.

38 Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu. Finding surprising patterns in a
time series database in linear time and space. In Proceedings of the Eighth ACM SIGKDD
2002 International Conference on Knowledge Discovery and Data Mining, pages 550–556, 2002.
doi:10.1145/775047.775128.

39 Sergey Kitaev. Patterns in Permutations and Words. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2011. doi:10.1007/978-3-642-17333-2.

40 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms.
Addison-Wesley, 1968.

41 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf
conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004. doi:10.1016/j.jcta.2004.04.
002.

42 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

43 Both Neou, Romeo Rizzi, and Stéphane Vialette. Permutation Pattern matching in (213,
231)-avoiding permutations. Discrete Mathematics & Theoretical Computer Science, Vol. 18
no. 2, Permutation Patterns 2015, 2017. URL: https://dmtcs.episciences.org/3199.

44 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing
for Forbidden Order Patterns in an Array. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1582–1597, 2017. doi:
10.1137/1.9781611974782.104.

45 Pranav Patel, Eamonn Keogh, Jessica Lin, and Stefano Lonardi. Mining Motifs in Massive
Time Series Databases. In In Proceedings of IEEE International Conference on Data Mining
ICDM’02, pages 370–377, 2002.

46 Vaughan R. Pratt. Computing Permutations with Double-ended Queues, Parallel Stacks and
Parallel Queues. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC ’73, pages 268–277. ACM, 1973. doi:10.1145/800125.804058.

IPEC 2019

https://doi.org/10.1007/s00453-007-9133-3
https://doi.org/10.1007/s00453-007-9133-3
https://doi.org/10.1016/j.ipl.2005.10.012
http://arxiv.org/abs/1310.8378
http://arxiv.org/abs/1310.8378
http://dl.acm.org/citation.cfm?id=1865499.1865500
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1016/S0020-0190(97)00029-X
https://doi.org/10.1137/1.9781611974782.24
https://doi.org/10.1145/775047.775128
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://dmtcs.episciences.org/3199
https://doi.org/10.1137/1.9781611974782.104
https://doi.org/10.1137/1.9781611974782.104
https://doi.org/10.1145/800125.804058

1:16 Finding and Counting Permutations via CSPs

47 Pierre Rosenstiehl. Planar permutations defined by two intersecting Jordan curves. In
Graph Theory and Combinatorics, pages 259–271. London, Academic Press, 1984. URL:
https://hal.archives-ouvertes.fr/hal-00259765.

48 Pierre Rosenstiehl and Robert E. Tarjan. Gauss codes, planar hamiltonian graphs, and
stack-sortable permutations. Journal of Algorithms, 5(3):375–390, 1984. doi:10.1016/
0196-6774(84)90018-X.

49 Raimund Seidel. A New Method for Solving Constraint Satisfaction Problems. In Proceedings
of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, pages 338–342,
1981. URL: http://ijcai.org/Proceedings/81-1/Papers/062.pdf.

50 Rodica Simion and Frank W. Schmidt. Restricted Permutations. European Journal of
Combinatorics, 6(4):383–406, 1985. doi:10.1016/S0195-6698(85)80052-4.

51 N. J. A. Sloane. The Encyclopedia of Integer Sequences, http://oeis.org. Sequence A073028.
52 S. M. Tanny and M. Zuker. On a unimodal sequence of binomial coefficients. Discrete

Mathematics, 9(1):79–89, 1974. doi:10.1016/0012-365X(74)90073-9.
53 Robert E. Tarjan. Sorting Using Networks of Queues and Stacks. J. ACM, 19(2):341–346,

April 1972. doi:10.1145/321694.321704.
54 Edward P. K. Tsang. Foundations of constraint satisfaction. Computation in cognitive science.

Academic Press, 1993.
55 Vincent Vatter. Permutation Classes. In Miklós Bóna, editor, Handbook of Enumerative

Combinatorics, chapter 12. Chapman and Hall/CRC, New York, 2015. Preprint at https:
//arxiv.org/abs/1409.5159.

56 V. Yugandhar and Sanjeev Saxena. Parallel algorithms for separable permutations. Discrete
Applied Mathematics, 146(3):343–364, 2005. doi:10.1016/j.dam.2004.10.004.

https://hal.archives-ouvertes.fr/hal-00259765
https://doi.org/10.1016/0196-6774(84)90018-X
https://doi.org/10.1016/0196-6774(84)90018-X
http://ijcai.org/Proceedings/81-1/Papers/062.pdf
https://doi.org/10.1016/S0195-6698(85)80052-4
https://doi.org/10.1016/0012-365X(74)90073-9
https://doi.org/10.1145/321694.321704
https://arxiv.org/abs/1409.5159
https://arxiv.org/abs/1409.5159
https://doi.org/10.1016/j.dam.2004.10.004

Width Parameterizations for
Knot-Free Vertex Deletion on Digraphs
Stéphane Bessy
Université de Montpellier - CNRS, LIRMM, Montpellier, France
stephane.bessy@lirmm.fr

Marin Bougeret
Université de Montpellier - CNRS, LIRMM, Montpellier, France
marin.bougeret@lirmm.fr

Alan D. A. Carneiro
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
aaurelio@ic.uff.br

Fábio Protti
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
fabio@ic.uff.br

Uéverton S. Souza1

Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
ueverton@ic.uff.br

Abstract
A knot in a directed graph G is a strongly connected subgraph Q of G with at least two vertices,
such that no vertex in V (Q) is an in-neighbor of a vertex in V (G) \ V (Q). Knots are important
graph structures, because they characterize the existence of deadlocks in a classical distributed
computation model, the so-called OR-model. Deadlock detection is correlated with the recognition
of knot-free graphs as well as deadlock resolution is closely related to the Knot-Free Vertex
Deletion (KFVD) problem, which consists of determining whether an input graph G has a subset
S ⊆ V (G) of size at most k such that G[V \ S] contains no knot. Because of natural applications in
deadlock resolution, KFVD is closely related to Directed Feedback Vertex Set. In this paper
we focus on graph width measure parameterizations for KFVD. First, we show that: (i) KFVD
parameterized by the size of the solution k is W[1]-hard even when p, the length of a longest directed
path of the input graph, as well as κ, its Kenny-width, are bounded by constants, and we remark
that KFVD is para-NP-hard even considering many directed width measures as parameters, but
in FPT when parameterized by clique-width; (ii) KFVD can be solved in time 2O(tw) × n, but
assuming ETH it cannot be solved in 2o(tw) × nO(1), where tw is the treewidth of the underlying
undirected graph. Finally, since the size of a minimum directed feedback vertex set (dfv) is an upper
bound for the size of a minimum knot-free vertex deletion set, we investigate parameterization by
dfv and we show that (iii) KFVD can be solved in FPT-time parameterized by either dfv + κ or
dfv + p. Results of (iii) cannot be improved when replacing dfv by k due to (i).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Parameterized complexity and exact algorithms

Keywords and phrases Knot, deadlock, width measure, FPT, W[1]-hard, directed feedback vertex
set

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.2

Related Version A full version of the paper is available at http://arxiv.org/abs/1910.01783.

1 corresponding author

© Stéphane Bessy, Marin Bougeret, Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephane.bessy@lirmm.fr
mailto:marin.bougeret@lirmm.fr
mailto:aaurelio@ic.uff.br
mailto:fabio@ic.uff.br
mailto:ueverton@ic.uff.br
https://doi.org/10.4230/LIPIcs.IPEC.2019.2
http://arxiv.org/abs/1910.01783
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Funding Supported by Grant E-26/203.272/2017, Rio de Janeiro Research Foundation (FAPERJ)
and by Grant 303726/2017-2, National Council for Scientific and Technological Development (CNPq).

Acknowledgements We thank Ignasi Sau for introducing Alan Carneiro to Stéphane Bessy and
Marin Bougeret.

1 Introduction

The study of the Knot-Free Vertex Deletion problem emerges from its application in
resolution of deadlocks, where a deadlock is detected in a distributed system and then a
minimum cost deadlock-breaking set must be found and removed from the system. More
precisely, distributed computations are usually represented by directed graphs called wait-for
graphs. In a wait-for graph G = (V,E), the vertex set V represents processes, and the set
E of directed arcs represents wait conditions [4]. An arc exists in E directed away from
vi ∈ V towards vj ∈ V if vi is blocked waiting for a signal from vj . The graph G changes
dynamically according to a set of prescribed rules (the deadlock model), as the computation
progresses. In essence, the deadlock model governs how processes should behave throughout
computation, i.e., the deadlock model specifies rules for vertices that are not sinks (vertices
with at least one out-neighbor) in G to become sinks [3] (vertices without out-neighbors).
The two main classic deadlock models are the AND model, in which a process vi can only
become a sink when it receives a signal from all the processes in N+(vi), where N+(vi)
stands for the set of out-neighbors of vi (a conjunction of resources is needed); and the OR
model, in which it suffices for a process vi to become a sink to receive a signal from at
least one of the processes in N+(vi) (a disjunction of resources is sufficient). Distributed
computations are dynamic, however deadlock is a stable property, in the sense that once
it occurs in a consistent global state of a distributed computation, it still holds for all the
subsequent states. Therefore, as it is typical in deadlock studies, G represents a static wait-for
graph that corresponds to a snapshot of the distributed computation in the usual sense of a
consistent global state [13]. Thus, the motivation of our work comes from deadlock resolution,
where deadlocks are detected into a consistent global state G, and must be solved through
some external intervention such as aborting one or more processes to break the circular wait
condition causing the deadlock.

Deadlock resolution problems differ according to the considered deadlock model, i.e.,
according to the graph structure that characterizes the deadlock situation. In the AND-
model, the occurrence of deadlocks is characterized by the existence of cycles [3, 5]. Therefore,
deadlock resolution by vertex deletion in the AND-model corresponds precisely to the
well-known Directed Feedback Vertex Set (DFVS) problem, proved to be NP-hard
in the seminal paper of Karp [24], and proved to be FPT in [14]. On the other hand,
the occurrence of deadlocks in wait-for graphs G working according to the OR-model are
characterized by the existence of knots in G [5, 21]. A knot in a directed graph G is a
strongly connected subgraph Q of G (with at least two vertices) such that there is no arc
uv of G with u ∈ V (Q) and v /∈ V (Q). Thus, deadlock resolution by vertex deletion in the
OR-model can be viewed as the following problem.

Knot-Free Vertex Deletion (KFVD)
Instance: A directed graph G = (V,E); a positive integer k.
Question: Determine if G has a set S ⊂ V (G) such that |S| ≤ k and G[V \ S] is
knot-free.
Notice that a digraph G is knot-free if and only if for any vertex v of G, v has a path to

a sink.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:3

In [12], Carneiro, Souza, and Protti proved that KFVD is NP-complete; and, in [11], it
was shown that KFVD is W[1]-hard when parameterized by k.

KFVD is closely related to DFVS not only because of their relation to deadlocks, but
also some structural similarities between them: the goal of DFVS is to obtain a direct
acyclic graph (DAG) via vertex deletion (in such graphs all maximal directed paths end
at a sink); the goal of KFVD is to obtain a knot-free graph, and in such graphs for every
vertex v there exists at least one maximal path containing v that ends at a sink. Finally,
every directed feedback vertex set is a knot-free vertex deletion set; thus an optimum for
DFVS provides an upper bound for KFVD. Although Directed Feedback Vertex Set
is a well-known problem, this is not the case of Knot-Free Vertex Deletion, which we
propose to analyze more deeply in this work.

Let S be a solution for KFVD, and let Z be the set of sinks in G[V \ S]. One can see
that any v ∈ V \ S has a path (that does not use any vertex in S) to a vertex in Z. Thus,
KFVD can be seen as the problem of creating a set Z of sinks (doing at most k vertex
removals) such that every remaining vertex has a path (in G[V \ S]) to a vertex in Z. In
this paper, we denote the set of deleted vertices by S, and the set of sinks in G[V \ S] by Z.

To get intuition on KFVD, note that the choice of the vertices to be removed must be
carefully done, since the removal of a subset of vertices can turn some strongly connected
components into new knots that will need to be broken by the removal of some internal
vertices. Ideally, it is desirable to solve the current knots by removing as few vertices as
possible for each knot, without creating new ones. Unfortunately, the generation of other
knots can not always be avoided.

In [10, 12], Carneiro, Souza, and Protti present a polynomial-time algorithm for KFVD
in graphs with maximum degree three. They also show that the problem is NP-complete
even restricted to planar bipartite graphs G with maximum degree four. Later, in [11], a
parameterized analysis of KFVD is presented, where it was shown that: KFVD is W[1]-hard
when parameterized by the size of the solution; and it can be solved in 2k logϕnO(1) time,
but assuming SETH it cannot be solved in (2− ε)k logϕnO(1) time, where ϕ is the size of the
largest strongly connected subgraph.

Since the introduction of directed treewidth, much effort has been devoted to identify
algorithmically useful digraph width measures [26]. Useful width measures imply polynomial
time tractability for many combinatorial problems on digraphs of constant width. Since
KFVD is W[1]-hard when parameterized by k, in this paper we investigate the ecology
of width measures in order to find useful parameters to solve KFVD in FPT time. First,
taking k as parameter, we show that KFVD remains W[1]-hard even on instances with
both longest directed path and K-width bounded by constants. From the same reduction, it
follows that KFVD is para-NP-hard even considering many width measures as parameters,
such as directed treewidth and DAG-width. Contrasting with the hardness of KFVD
on several directed width measure parameterizations, we show that KFVD is FPT when
parameterized by the clique-width of the underlying undirected graph; and it can be solved
in 2O(tw)×n time, but assuming ETH it cannot be solved in 2o(tw)×nO(1) time, where tw is
the treewidth of the underlying undirected graph. After that, we consider the most natural
width parameter related to KFVD, the size of a minimum directed feedback vertex set
(dfv). Such a parameter is at the same time a measure of the distance from the input graph
to a DAG as well as an upper bound for the size of a minimum knot-free vertex deletion
set. Finally, we show that KFVD can be solved in FPT time either parameterized by dfv
and K-width, or dfv and the length of a longest directed path. The complexity of KFVD
parameterized only by dfv remains open.

IPEC 2019

2:4 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

In the rest of this section we give necessary definitions and concepts used in this work.
In Section 2 we present some useful observations and preliminary results. In Section 3
we discuss digraph width measures and show the W[1]-hardness. In Section 4 we discuss
the consequences of treewidth parameterization. Finally, Section 5 we explore the directed
feedback vertex set number as a parameter.

Due to space constraints, some proofs are omitted.

Additional notation. We use standard graph-theoretic and parameterized complexity nota-
tions and concepts, and any undefined notation can be found in [9, 17]. We consider here
directed graphs. Given a vertex v and a subset of vertices Z, we say that there is a path
from v to Z iff there exists z ∈ Z such that there is a vz-(directed) path. For v ∈ V (G),
let D(v) denote the set of descendants of v in G , i.e. nodes that are reachable from v by
a non-empty directed path. Given a set of vertices C = {v1, v2, . . . , vp} of G, we define
D(C) =

⋃p
i=1D(vi). Let A(vi) denote the set of ancestors of vi in G, i.e., nodes that reach

vi through a non-empty directed path. We also define A[vi] = A(vi) ∪ {vi}, and given a
set of vertices C = {v1, v2, . . . , vp} of G, we define A(C) =

⋃p
i=1A(vi). For a vertex v of G,

the out-neighborhood of v is denoted by N+(v) = {u|vu ∈ E}, and given a set of vertices
C = {v1, v2, . . . , vp}, we define N+(C) =

⋃p
i=1N

+(vi)\C. We refer to a Strongly Connected
Component as an SCC. A knot in a directed graph G is an SCC Q of G with at least two
vertices such that there is no arc uv of G with u ∈ V (Q) and v /∈ V (Q). Finally, a sink (resp.
a source) of G is a vertex with out-degree 0 (resp. in-degree 0). Given a subset of vertices S,
we denote GS = G[S] and S̄ = V \ S. Thus, GS̄ denote the graph obtained by removing S.

We denote by dfv(G) the size of a minimum directed feedback vertex set of G. We
generally use F to denote a directed feedback vertex set and by R the remaining subset,
i.e., R = V \ F . The length of a longest directed path of G is denoted by p(G). The
Kenny-width [18] or K-width of G is denoted by κ(G) and is the maximum number of distinct
directed st-paths in G over all pairs of distinct vertices s, t ∈ V (G), where two st-paths are
distinct iff they do not use the exact same set of arcs. For any function g (like dfv, κ, p),
g(G) will be denoted simply by g when the considered graph G can be deduced from the
context. In what follows we denote by g-KFVD the KFVD problem parameterized by g
(g = k denotes the parameterization by the solution size).

2 Preliminaries

In this section we present some useful remarks and reduction rules. Remind that in the
decision version of the problem we are given G and a positive integer k.
The first observation is immediate, as if we can make the graph acyclic, then it will be
knot-free.

I Observation 1. If k ≥ dfv(G) then G is a yes-instance.

The two others observations are less obvious but rather natural.

I Observation 2. Let S be a solution with set of sinks Z in GS̄, and s ∈ S. Let S′ = S \ {s}
and Z ′ be the set of sinks of GS̄′ . If there is a path from s to Z ′ in GS̄′ then S′ is also a
solution.

Informally, after deleting a vertex s, we can add s back to the graph when it is certain that
s has a path to a sink in the current graph. This is detailed by the following lemma and its
corollary.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:5

I Lemma 1. Let S be a solution with set of sinks Z in GS̄. If there exists s ∈ S with
s /∈ N+(Z), then S′ = S \ {s} is also a solution.

I Corollary 2. In any optimal solution S with set of sinks Z in GS̄, we have N+(Z) = S.

I Observation 3. Let S be a knot-free vertex deletion with set of sinks Z in GS̄. If |S| ≤ k
then for any vertex v with d+(v) > k it holds that v /∈ Z.

To complete the previous observations, we can design two general reduction rules.

I Reduction Rule 1. If v ∈ V (G) is an SCC of size one then remove A[v].

Proof. Let G′ be the graph obtained by removing A[v]. Let of first show that (G, k) is a
yes-instance implies that (G′, k) is also a yes-instance. Let S be a solution of G of size at
most k with set of sinks Z in GS̄ . Let S′ = S \ A[v], and Z ′ the set of sinks in G′

S̄′ . Let
us prove that every u ∈ V (G′

S̄′) has a path ot Z ′ in G′
S̄′ . Let u ∈ V (G′

S̄′). As u is also in
V (GS̄), there is a uz-path P in GS̄ where z ∈ Z. As u /∈ A[v], V (P) ∩ A[v] = ∅ and thus,
the path P still exists in G′

S̄′ . Moreover, u /∈ A[v] implies that N+(z) ∩A[v] = ∅, and thus
that N+(v) ⊆ S′, implying that z ∈ Z ′.

Let us now consider the reverse implication, and let S′ be a solution of G′ of size at
most k with set of sinks Z ′ in G′

S̄′ and prove that S′ is a solution of G. Let us start with
u ∈ V (GS̄′) \ A[v]. As S′ is a solution of G′ and u ∈ V (G′

S̄′), there is uz′-path P ′ in G′
S̄′

where z′ ∈ Z ′, and this path still exists in GS̄′ . As N+(z′) ∩ A[v] = ∅, z′ is still a sink in
GS̄′ and we are done. Consider now a vertex u ∈ V (GS̄′) ∩A[v]. As S′ ∩A[v] = ∅, there is
uv-path P in GS̄′ . If N+(v) ⊆ S′ then v is a sink in GS̄′ and we are done. Otherwise, let
w ∈ N+(v) \S′. As v is a SCC of size 1, N+(v)∩A[v] = ∅, implying that w ∈ V (GS̄′) \A[v],
and thus according to the previous case w has a path to a sink in GS̄′ . J

The previous reduction rule removes in particular sources and sinks, as they are SCC’s of
size one.

I Reduction Rule 2. Let Ui be a strongly connected component of G with strictly more than
k out-neighbors in G[V \ V (Ui)]. Then we can safely remove A[Ui].

Proof. Let G′ be the graph obtained by removing A[Ui]. Let us first show that (G, k) is a
yes-instance implies that (G′, k) is also a yes-instance. Let S be a solution of G of size at
most k and Z the set of sinks in GS̄ . Let S′ = S \A[Ui], and Z ′ the set of sinks in G′S̄′ . Using
the same argument (replacing A[v] by A[Ui]) as in the first part of proof of Reduction 1, we
get that every u ∈ V (G′

S̄′) has a path ot Z ′ in G′
S̄′ .

Let us now consider the reverse implication, and let S′ be a solution of G′ of size at
most k with set of sinks Z ′ in G′

S̄′ and prove that S′ is a solution of G. Let us start with
u ∈ V (GS̄′) \A[v]. As S′ is a solution of G′ there is uz′-path P ′ in G′

S̄′ where z′ ∈ Z ′, and
this path still exists in GS̄′ . As N+(z′) ∩ A[Ui] = ∅, z′ is still a sink in GS̄′ and we are
done. Consider now a vertex u ∈ V (GS̄′) ∩A[Ui]. As S′ ∩A[Ui] = ∅, there is uUi-path P in
GS̄′ . As Ui has strictly more than k out-neighbors in G[V \ V (Ui)], there is arc from Ui to
w ∈ V (GS̄′) and thus according to the previous case w has a path to a sink in GS̄′ . J

3 W[1]-hardness and directed width measures

k-KFVD was shown to be W[1]-hard using a reduction from k-Multicolored Independ-
ent Set (k-MIS) [11]. However, the gadget used in this reduction to encode each color
class has a longest directed path of unbounded length. First, we remark that it is possible to
modify the reduction in order to prove that k-KFVD is W[1]-hard even if the input graph
G has longest path length and K-width bounded by constants.

IPEC 2019

2:6 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

I Theorem 3. There is a polynomial-time reduction, preserving the size of the parameter,
from k-MIS to k-KFVD such that the resulting graph has longest directed path of length at
most 5 and K-width equal to 2.

Proof. Let (G′, k) be an instance of Multicolored Independent Set, and let
V 1, V 2, . . . , V k be the color classes of G′. We construct an instance (G, k) of Knot-Free
Vertex Deletion with bounded longest path length and K-width as follows.

1. for each vi ∈ V (G′), create a directed cycle of size two with the vertices wi and zi in G;
2. for a color class V j in G′, create one vertex uj ;
3. for each vertex zi in G corresponding to a vertex vi of the color class V j in G′, create an

arc from zi to uj and from uj to zi.
4. for each vertex wi in G corresponding to a vertex vi of the color class V j in G′, create an

arc from uj to wi
5. for each edge ep = (vi, vl) in G′ create a set Xp with two artificial vertices xip and xlp and

the arcs xipxlp and xlpxip;
6. for each artificial vertex xip, create an edge from xip towards zi in G.

Finally, set Yj = {wi, zi : vi ∈ V j}∪ {uj}, Yj is the set of vertices of G corresponding to
the vertices of G′ in the same color class V j . Notice that, the longest path of G has at most
5 vertices, and for any pair s, t in V (G) there are at most 2 distinct directed st-paths in G.

Now, suppose that now S′ is a k-independent set with exactly one vertex of each set V j
of G′. By construction, G has k knots which are G[Y1], . . . , G[Yk]. Thus, at least k vertex
removals are necessary to make G free of knots. We set S = {zi | vi ∈ S′} and show that
G[V \ S] is knot-free. For j = 1, . . . , k the vertex wj is a sink in G \ S, and every vertex of
Yj \ S still reaches wj . Now, as S′ is a k-independent set of G′ each set Xp in G is adjacent
to at least one vertex that is not in S. Hence, each Xp will still have at least one arc pointing
outside Xp, i.e., no new knots are created, and G \ S is knot-free.

Conversely, suppose that G has a set of vertices S of size k such that G[V \S] is knot-free.
In particular S has to contain exactly one vertex of each of the knot Yj , for j = 1, . . . , k.
Since at least one sink has to be created in order to untie the knot Yj , and since the only
vertices of Yj with only one out-neighbor are the w’s ones, S has to contain a vertex zi of
each set Y1, . . . , Yk. Moreover by deleting one vertex zi in a knot Yj , the vertex wj is turned
into sink and every other vertex of the same knot still has a path to wj . Since G[V \ S]
is knot-free, no new knots are created by the deletion of S; thus, every SCC Xp will still
have at least one arc pointing outside it. So, we set S′ = {vi | zi ∈ S}. Since each SCC Xp

corresponds to an edge of G′, and at least one vertex of each edge of G′ is not in S′, the
set S′ contains no pair of adjacent vertices. Moreover, S′ is composed by one vertex of each
knot, which corresponds to a color of G′. Therefore, S′ is a multicolored independent set of
G′. J

I Corollary 4. k-KFVD is W[1]-hard even if the input graph has longest directed path of
length at most 5 and K-width equal to 2.

After the introduction of the notion of directed treewidth (dtw) [23], a large number
of width measures in digraphs were developed, such as: cycle rank [20] (cr); directed
pathwidth [2] (dpw); zig-zag number [25] (zn); Tree-Zig-Zag number [26] (Tzn); Kelly-
width [22] (Kelw); DAG-width [6] (dagw); D-width [29] (Dw); weak separator number [26]
(s); entanglement [7] (ent); DAG-depth [18] (ddp). However, if a graph problem is hard when
both the longest directed path length and the K-width are bounded, then it is hard for all
these measures (see Figure 1).

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:7

Tzn(G) dtw(G) dagw(G)

Kelw(G)

zn(G)

Dw(G)s(G)

ddp(G) cr(G)

ent(G)

ddp(G)

dfv(G)

κ(G)

p(G)
[26]

[26]

[22]

[6]

[23]

[1]

[20]

[25]

[18]

[6]

[28]

[25]

[20]

[19]

[19]

[18]

[18]

Figure 1 A hierarchy of digraph width measure parameters. α→ β indicates that α(G) ≤ f(β(G))
for any digraphG and some function f . More details about the relationships between these parameters
can be found in the references corresponding to each arrow.

Therefore, from the reduction presented in Theorem 3 we can observe that KFVD is
para-NP-hard with respect to all these width measures, and k-KFVD is W[1]-hard even
on inputs where such width measures are bounded. Thus, it seems to be extremely hard
to identify nice width parameters for which KFVD can be solved in FPT-time or even in
XP-time. Fortunately, there remain some parameters for which, at least, XP-time solvability
is achieved. One of them is the directed feedback vertex set number (dfv). This invariant is an
upper bound on the size of a minimum knot-free vertex deletion set, so XP-time algorithms
are trivial. This parameter is discussed in more detail in Section 5.

Another interesting width parameter for directed graphs G that is not bounded by a
function of the K-width and the length of a longest directed path is the clique-width of G.
Courcelle et al. [16] showed that every graph problem definable in LinEMSOL can be solved
in time f(w)× nO(1) on graphs with clique-width at most w, when a w-expression is given
as input. Using a result of Oum [27], the same follows even if no w-expression is given.

I Proposition 5. [15] There is a monadic second-order formula expressing the following
property of vertices x, y and of a set of vertices X of a directed graph G: “x, y ∈ X and there
is a directed path from x to y in the subgraph induced by X”.

From Proposition 5 one can show that KFVD is LinEMSOL-definable. Thus Theorem 6
holds.

I Theorem 6. KFVD is FPT when parameterized by clique-width of the underlying undir-
ected graph.

The fixed-parameter tractability for clique-width parameterization implies fixed-parameter
tractability of KFVD for many other popular parameters. For example, it is well-known
that the clique-width of a directed graph G is at most 22tw(G)+2 + 1, where tw(G) is the
treewidth of the underlying undirected graph (see [15, Proposition 2.114]). However, although
Theorem 6 implies the FPT-membership of the problem parameterized by the treewidth of
the underlying undirected graph, the dependence on tw(G) provided by the model checking
framework is huge. So, it is still a pertinent question whether such a parameterized problem
admits a single exponential algorithm, which is discussed in Section 4.

4 The treewidth of the underlying undirected graph as parameter

Given a tree decomposition T , we denote by t one node of T and by Xt the vertices contained
in the bag of t. We assume w.l.o.g that T is a nice tree decomposition (see [17]), that is,
we assume that there is a special root node r such that Xt = ∅ and all edges of the tree
are directed towards r and each node t has one of the following four types: Leaf, Introduce
vertex, Forget vertex, and Join.

IPEC 2019

2:8 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Based on the following results we can assume that we are given a nice tree decomposition
of G.

I Theorem 7. [8] There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k) × n and either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

I Lemma 8. [17] Given a tree decomposition (T, {Xt}t∈V (T)) of G of width at most k, one
can in time O(k2 ·max(|V (T)|, |V (G)|)) compute a nice tree decomposition of G of width at
most k that has at most O(k|V (G)|) nodes.

Now we are ready to use a nice tree decomposition in order to obtain an FPT-time
algorithm with single exponential dependency on tw(G) and linear with respect to n.

I Theorem 9. Knot-Free Vertex Deletion can be solved in 2O(tw) × n time, but
assuming ETH there is no 2o(tw)nO(1) time algorithm for KFVD, where tw is the treewith
of the underlying undirected graph of the input G.

Proof. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of the input digraph G, with
width equal to tw. First, we consider the following additional notation and definitions: t
is the index of a bag of T ; Gt is the graph induced by all vertices v ∈ Xt′ such that either
t′ = t or Xt′ is a descendant of Xt in T ; Given a knot-free vertex deletion set S, for any bag
Xt there is a partition of Xt into St, Zt, Ft, Bt where

St (removed) is the set of vertices of Xt that are going to be removed (St = S ∩Xt);
Zt (sinks) is the set of vertices of Xt that are going to be turned into sinks after the
removal of S;
Ft (free/released) is the set of vertices of Xt that, after the removal of S, are going to
reach a sink that belongs to V (Gt);
Bt (blocked) is the set of vertices of Xt that, after the removal of S, are going to reach
no sink that belongs to V (Gt);

Let Y ⊆ Xt. We denote by At(Y) the set of vertices in Ft that reach some vertex of Y in
the graph induced by V (Gt) \ St.

The recurrence relation of our dynamic programming has the signature C[t, St, Zt, Ft, Bt],
representing the minimum number of vertices in Gt that must be removed in order to produce
a graph such that for every remaining vertex v either v reaches a vertex in Bt (meaning that
it may still be released in the future) or v reaches a vertex that became a sink (possibly
the vertex itself), where every vertex in St is removed, every vertex in Zt becomes a sink,
every vertex in Ft will have a path to a sink in Gt, and St, Zt, Ft, Bt form a partition of Xt.
Notice that the generated table has size 4tw × tw × n, and when t = r, Xt = ∅ and therefore
C[r, ∅, ∅, ∅, ∅] contains the size of a minimum knot-free vertex deletion set of Gr = G.

The recurrence relation for each type of node is described as follows.
First, notice that if v ∈ Zt and there is an out-neighbor w of v that is not in St, there is

an inconsistency, i.e. w must be deleted (must belong to St). In addition, if v ∈ Bt but has
an out-neighbor in Zt∪Ft, there is another inconsistency (v is not blocked), and if v ∈ Ft but
the removal of St ∪Bt turns v into an isolated vertex, v is not released, and it must belong
to Bt. For the inconsistent cases, C[t, St, Zt, Ft, Bt] = +∞. Such cases can be recognized
and treated by simple preprocessing in linear time on the size of the table. Therefore, we
consider next only consistent cases.
Leaf Node: If Xt is a leaf node then Xt = ∅. Therefore

C[t, ∅, ∅, ∅, ∅] = 0.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:9

Insertion Node: Let Xt be a node of T with a child Xt′ such that Xt = Xt′ ∪ {v} for some
v /∈ Xt′ . We have the following:

C[t, St, Zt, Ft, Bt] =

1) case v ∈ St :
– C[t′, St \ {v}, Zt, Ft, Bt] + 1,
2) case v ∈ Zt :
– minA′⊆At(v){C[t′, St, Zt \ {v}, Ft \A′, Bt ∪A′]},
3) case v ∈ Ft :
– minA′⊆At(v){C[t, St, Zt, Ft \ {A′ ∪ {v}}, Bt ∪A′]},
4) case v ∈ Bt :
– C[t′, St, Zt, Ft, Bt \ {v}]

.

Recall that At(v) is the set of vertices in Ft that reach v in the graph induced by
V (Gt) \ St, i.e., the set of vertices that can be released by v if it was blocked in Gt′ . Also
note that, for simplicity, we consider only consistent cases, thus in case 2 it holds that
N+(v) ∩Xt ⊆ St, in case 3 it holds that N+(v) ∩ (Zt ∪ Ft) 6= ∅, and in case 4 it holds
that N+(v) ∩ {Zt ∪ Ft} = ∅.

Forget Node: Let Xt be a forget node with a child Xt′ such that Xt = Xt′ \ {v}, for some
v ∈ Xt′ . The forget node selects the best scenario considering all the possibilities for the
forgotten vertex, discarding cases that lead to non-feasible solutions. In this problem,
unfeasible cases are identified when the forgotten vertex v of Xt′ was blocked and reached
no other node in Bt. Hence:

If N+(v) ∩Bt′ 6= ∅ then

C[t, St, Zt, Ft, Bt] = min

C[t′, St ∪ {v}, Zt, Ft, Bt],
C[t′, St, Zt ∪ {v}, Ft, Bt],
C[t′, St, Zt, Ft ∪ {v}, Bt],
C[t′, St, Zt, Ft, Bt ∪ {v}]

.

If N+(v) ∩Bt′ = ∅ then

C[t, St, Zt, Ft, Bt] = min

C[t′, St ∪ {v}, Zt, Ft, Bt],
C[t′, St, Zt ∪ {v}, Ft, Bt],
C[t′, St, Zt, Ft ∪ {v}, Bt],

.

Join Node: Let Xt be a join node with children Xt1 and Xt2 , such that Xt = Xt1 = Xt2 .
For any optimal knot-free vertex deletion set S of G it holds that V (Gt)∩S = {V (Gt1)∩
S} ∪ {V (Gt2) ∩ S}. Clearly, if St ⊆ S then we can assume that St = St1 = St2 . In
addition, Zt = Zt1 = Zt2 otherwise we will have an inconsistency. Also note that a vertex
is released in Gt if it reaches a vertex (possibly the vertex itself) that is released either in
Gt1 or Gt2 . Thus:

C[t, St, Zt, Ft, Bt] = min
∀F ′,F ′′

{C[t1, St, Zt, F ′, B′] + C[t2, St, Zt, F ′′, B′′]} − |St|,

where At(F ′ ∪ F ′′) = Ft.

Note that At(F ′ ∪ F ′′) is the set of vertices that either are released in Gti (i ∈ {1, 2}) or
can be released in Gt by vertices of F ′ ∪ F ′′, even if they are blocked in both Gt1 and

IPEC 2019

2:10 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Gt2 ; this can occur, for example, if a blocked vertex v reaches another blocked node w in
Gt1 , and in Gt2 vertex w is released.
Now, in order to run the algorithm, one can visit the bags of T in a bottom-up fashion,
performing the queries described for each type of node. Since the reachability between
the vertices of a bag can be stored in a bottom-up manner on T , one can fill each entry of
the table in 2O(tw) time, and as the table has size 2O(tw) × n, the dynamic programming
can be performed in time 2O(tw) × n.
Regarding correctness, let S∗ be a minimum knot-free vertex deletion set of a digraph G
with a tree decomposition T . Let S∗t , Z∗t , F ∗t , B∗t be a partition of the vertices of Xt into
removed, sinks, released and blocked, with respect to Gt after the removal of S∗. Note
that S∗t = Xt ∩ S∗.

Fact 1. There is no vertex w ∈ V (Gt)\Xt such that w reaches a vertex v ∈ B∗t in G[V (Gt)\
St] and w ∈ S∗. Otherwise, since every vertex in B∗t will reach a sink that is not in Gt,
by Observation 2 one can remove from S∗ every vertex that reaches B∗t in G[V (Gt) \ St],
obtaining a subset of S∗ which is also a knot-free vertex deletion set, contradicting the
fact that S is minimum.
This fact implies that the paths considered to compute At(v)/At(F ′ ∪ F ′)’ can in fact be
used to release blocked vertices. Similarly, Fact 2 also holds.

Fact 2. Let Ŝ be a set for which the minimum is attained in the definition of
C[t, S∗t , Z∗t , F ∗t , B∗t]. Then Ŝ ∪ (S∗ \ V (Gt)) is also a solution (which is minimum)
for KFVD. Otherwise, from Ŝ ∪ (S∗ \ V (Gt)) we can also obtain a knot-free vertex
deletion set smaller than S∗, which is a contradiction.
Fact 2 implies that we have stored enough information. At this point, the correctness of
the recursive formulas is straightforward.
Finally, to show a lower bound based on ETH, we can transform an instance F of 3-SAT
into an instanceGF of KFVD using the polynomial reduction presented in [11, Theorem 4],
obtaining in polynomial time a graph with |V | = 2n + 2m, and so tw = O(n + m).
Therefore, if KFVD can be solved in 2o(tw)|V |O(1) time, then we can solve 3-SAT in
2o(n+m)(n+m)O(1) time, i.e., ETH fails. J

5 The size of a minimum directed feedback vertex set as parameter

Recall that k-KFVD is W [1]-hard (for fixed K-width and longest directed path) and that, as
noticed in Observation 1, we can assume k < dfv(G). This motivates us to determining the
status of dfv-KFVD. In this section, we present two FPT-algorithms. Both with the size
of a minimum directed feedback vertex set as parameter but with an aggregate parameter,
the K-width, κ(G), for the first one and the length of a longest directed path, p(G), for the
second one. Since finding a minimum directed feedback vertex set F in G can be solved
in FPT-time (with respect to dfv) [14], we consider that F , a minimum DFVS, is given.
Namely, we show that both (dfv, κ)-KFVD and (dfv, p)-KFVD are FPT.

At this point, we need to define the following variant of KFVD.

Disjoint Knot-Free Vertex Deletion (Disjoint-KFVD)
Instance: A directed graph G = (V,E); a subset X ⊆ V ; and a positive integer k.
Question: Determine if G has a set S ⊂ V (G) such that |S| ≤ k, S∩X = ∅ and G[V \S]
is knot-free.

We call forbidden vertices the vertices of the set X. It is clear that Disjoint-KFVD
generalizes KFVD by taking X = ∅.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:11

Let us now define two more steps that are FPT parameterized by dfv and that will be
used for both (dfv, κ)-KFVD and (dfv, p)-KFVD. The next step will allow us to consider
that the vertices of F are forbidden. We need the following straightforward observation.

I Observation 4. Let (G, k) be an instance of KFVD and v ∈ V (G).
if (G, k) is a yes-instance and there exists a solution S with v ∈ S, then (G \ {v}, k − 1)
is a yes-instance
if (G \ {v}, k − 1) is a yes-instance then (G, k) is a yes-instance

I Branching 1 (On the directed feedback vertex set F). Let (G,F, k) be an instance of
dfv-KFVD. In time 3dfv×O(n) we can build 3dfv instances (Gi, F i1, Xi, ki) of dfv-Disjoint-
KFVD as follows. We consider all possible partitions of F into three parts: F1, the set of
vertices of F that will not be removed (i.e., they become forbidden); F2, the set of vertices in
F that will be removed; and F3, the set of vertices in F that will be turned into sinks. For
each such a partition (indicated by the index i), we remove the set Y i = F i2 ∪ N+(F i3) of
vertices and we apply exhaustively Reduction Rules 1 and 2 (see Section 2). We denote by
Gi the obtained graph, Xi = F i1, and ki = k − |Y |.

According to Observation 4, it is clear that (G,F, k) is a yes-instance of dfv-KFVD if and
only if one of the instances (Gi, F i1, Xi, ki), 1 ≤ i ≤ 3dfv, of dfv-Disjoint-KFVD is a
yes instance. Since there are at most 3dfv partitions of F , the branching reduction can be
performed in FPT time. Although at this point Xi = F i1, in the next steps some vertices of
V (G) \F1 may become forbidden and therefore should be added to Xi. Also, from this point
forward, we assume that we are given an instance (G,F1, X, k) of dfv-Disjoint-KFVD.

Notice that after applying Reduction Rule 1 (Section 2), each strongly connected com-
ponent of G is at least of size two. Thus, each of them must contain at least one cycle;
therefore, the number of strongly connected components of G is bounded by dfv. Moreover,
for any strongly connected component U of G, Reduction Rule 2 gives an upper bound for
the number of vertices in N+(V (U)) (i.e., vertices that are not in U but it is out-neighbour
of some vertex in U). This implies that G has at most dfv × k ≤ dfv2 such vertices between
its strongly connected components. This observation leads to a branching rule.

I Branching 2 (On strongly connected components). Let SH be the set of vertices that
are extremities of arcs between the strongly connected components of G. We have |SH | ≤
2× dfv × k ≤ 2× dfv2 and we can branch in FPT-time trying all possible partitions of SH
into two sets: S1, the set of vertices to be deleted in G such that |S1| ≤ k; and S2 = SH \ S1,
the set of vertices marked as forbidden, and then added into X.

Notice that this step involves a 2|SH | branching. At this point, we may consider that we
have an instance (G,F,X, k) where F ⊆ X and such that for any arc uv between two SCC’s
Ui and Uj , {u, v} ⊆ X. We call such an instance as a nice instance.

I Lemma 10 (After cleaning of Branching 2). If there is an algorithm running in time
g(dfv) × poly(n) for dfv-Disjoint-KFVD restricted to nice instances that are strongly
connected, then there is an FPT algorithm running in time g(dfv)× poly(n)× c.n.log(dfv)
(where c is a constant) to solve dfv-Disjoint-KFVD for any nice instance.

Proof. Let (G,F,X, k) be a nice instance and S be a solution. Let U = {U1, . . . , Us} be the
partition of V (G) where each Ui is an SCC, and let K = {Ui : Ui is a knot}. Without loss of
generality we can assume that K = {U1, . . . , Ut} for some t ≤ s. Let Si = S ∩Ui. Notice that
if S is a solution then for any i ∈ [t], Si is a solution of (G[Ui], F ∩Ui, X ∩Ui, |Si|). Moreover,
for any solutions S′i to (G[Ui], F ∩Ui, X ∩Ui, |S′i|) where

∑t
i=1 |S′i| ≤ k, S′ =

⋃t
i=1 S

′
i will be

IPEC 2019

2:12 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

a solution to (G,F,X, k) because vertices of some Uj /∈ K will still have a path to a set Ui ∈ K
in GS̄′ since any arc between two SCC’s has forbidden endpoints. Thus, given a nice instance
(G,F,X, k) and an algorithm A for a nice instance restricted to one SCC, for any Ui ∈ K we
perform a binary search to find the smallest ki such that A(G[Ui], F ∩Ui, X ∩Ui, ki) answers
yes, and we answer yes iff

∑t
i=1 ki ≤ k. J

From Lemma 10, we may assume that we have an instance (G,F,X, k) such that F ⊆ X
and G is strongly connected (there is only one SCC). We call such an instance as a super
nice instance.

5.1 Combining DFVS-number and K-width
In this section, we prove that (dfv, κ)-Disjoint-KFVD restricted to super nice instances is
FPT.

Let F = {v1, . . . , vdfv}. For every pair of integers i, j with 1 ≤ i, j ≤ dfv we define Hi,j

as the (i, j)-connectivity set, that is, the set of vertices which are contained in a directed
path from vi to vj in the induced subgraph G[V \ (F \ {vi, vj})] (if i = j then Hi,i is the
set of vertices contained in a cycle in G[V \ (F \ {vi})]). Let us define a set B on which we
will later branch in a way to ensure connectivity among different connectivity sets. We start
with B = {∅}, and then, for each possible pair of connectivity sets Hi,j , Hi′,j′ we increase B
as follows:
(i) add N+(Hi,j \Hi′,j′) ∩Hi′,j′ to B.
(ii) add N+(Hi,j ∩Hi′,j′) ∩ (Hi′,j′ \Hi,j) to B.
(iii) add N+(Hi′,j′ \Hi,j) ∩Hi,j to B.
(iv) add N+(Hi′,j′ ∩Hi,j) ∩ (Hi,j \Hi′,j′) to B.
For a given pair of connectivity sets, in each of the items i), ii), iii) and iv) the number of
added vertices to B is at most κ. For instance,let y1, . . . , yl be the vertices added by item
i), where each ys ∈ N+(Hi,j \Hi′,j′) ∩Hi′,j′ . By definition, there exist vertices x1, . . . , xl
of Hi,j \Hi′,j′ such that xsys are arcs of G for s = 1, . . . , l. Notice that while the ys’s are
distinct, the xs’s are not forced to be so. For any s ∈ {1, . . . , l}, there exists a path Ps in
Hi′,j′ from ys to vj′ , and such a path does not intersect Hi,j \Hi′,j′ . In the same way, by
finding a path Qs from vi to xs for every s ∈ {1, . . . , l}, we form l distinct paths QsPs from
vi to vj′ , implying l ≤ κ, the K-width of G. So, as there are dfv2 different connectivity sets,
at the end of the process B contains at most κ× dfv4 vertices. Figure 2 shows examples of
vertices to be added in B regarding the interaction of two different connectivity sets.

vi vj

vi’ vj’

vi vj

vi’

a) b) c)

vi

vi’

Figure 2 a) two connectivity sets with no intersection. b) an intersection with two vertices
belonging to both connectivity sets. c) two connectivity sets Hi,j with i = j. Vertices to be added
in B are marked in blue.

Next we establish our last branching rule.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:13

I Branching 3 (On the connectivity sets). We branch by partitioning B into three parts: B1,
the set of vertices that will not be removed (ie. they become forbidden); B2, the set of vertices
that will be removed; and B3, the set of vertices that will become sinks. Since |B| ≤ κ× dfv4,
we branch at most 3κ.dfv4 times.

At this point, without loss of generality, one can assume that none of the above branching
and reductions rules are applicable. Hence, the analysis boils down to the case where
F ∪B ⊆ X, meaning that all the vertices of F ∪B are forbidden to be deleted or become
sinks, and G is strongly connected.

I Observation 5 (The consequences of Branching 3). Let G be a graph for which no Reduction
Rules 1 and 2 or Branching Rules 1 to 3 can be applied. Let Hi,j and Hi′,j′ be two different
connectivity arc sets in G. If there is an arc from Hi,j \Hi′,j′ to Hi′,j′ \Hi,j or Hi,j ∩Hi′,j′

to Hi′,j′ \Hi,j in G[Hi,j ∪Hi′,j′], then the head vertex of such an arc is a forbidden vertex.

We now aim to show that, for any vertex v∗ such that v∗ can be turned into a sink, that
is, N+(v∗) ∩X = ∅ and d+(v∗) ≤ k, the deletion of N+(v∗) is sufficient for G to become
knot-free.

I Lemma 11. Let (G,F,X, k) be an instance of (dfv, κ)-Disjoint-KFVD such that G is
strongly connected and none of the branching and reduction rules can be applied. If there is a
vertex v∗ with no forbidden out-neighbors, then G[V \N+(v∗)] is knot-free.

Proof. Let (G,F, k,X) and v∗ as stated. Denote by G′ the resulting graph, i.e, G′ =
G[V \ N+(v∗)]. For contradiction, assume that G′ contains a knot K. As G is strongly
connected, K was not a knot in G, implying that there exists an arc xy of G such that
x ∈ V (K) and y ∈ N+(v∗). Notice that v∗ /∈ F since vertices from F cannot become sinks
and y /∈ X, since y has to be deleted in order to v∗ to become a sink. Let us now define a
connectivity set containing both y and v∗. Let s be any source of the DAG G[V \ F] such
that there is a sv∗ path in G[V \ F], and let z be any sink of G[V \ F] such that there
is a yz path in G[V \ F]. As G is strongly connected, there exist arcs vis and zvj where
{vi, vj} ⊆ F and we get that {v∗, y} ⊆ Hi,j . Notice that i = j is possible. Similarly, as
G[V (K)] is strongly connected, it contains a cycle C ′ containing x and thus there exists
a connectivity set Hk,l containing a path P from vk to vl which is a subpath of G[V (K)]
containing x, and with {vk, vl} ⊆ V (K). Notice first that v∗, y /∈ F . In addition, v∗ is not
a vertex of Hk,l, otherwise there would exist a path P ′ from vk to v∗ containing no vertex
of F \ {vk}, which is not possible. Indeed, either V (P ′) ∩ N+(v∗) = ∅ and we would get
that K is not a knot, or V (P ′) ∩N+(v∗) 6= ∅, implying that there is a cycle with no vertex
of F . Thus, as y was not a forbidden vertex, it means that y /∈ Hk,l otherwise the arc v∗y
would go from Hi,j \Hk,l to Hi,j ∩Hk,l and y should be forbidden by Branching 3 item i).
Then we have y ∈ Hi,j \Hk,l. Similarly, we have x /∈ Hi,j ∩Hk,l, otherwise by item ii) of
Branching 3, vertex y would be forbidden. Finally x ∈ Hk,l \Hi,j and y ∈ Hi,j \Hk,l, since
(Hi,j \Hk,l) ⊆ Hi,j , and by item iii) of Branching 3, vertex y would again be a forbidden
vertex, a contradiction. J

In conclusion, by Lemma 11, we can find in polynomial time the optimum solution for G:
we choose a vertex v∗ with minimum out-degree.

I Theorem 12. Knot-free Vertex Deletion can be solved in 2O(κdfv5) × nO(1).

Proof. Let us now compute the running time of the overall algorithm. First notice that
applying Branchings 1 and 2 results in 3dfv × 22dfv2 branches. Branching 3 can be done

IPEC 2019

2:14 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

in time 3κ.dfv4 , but may re-create several SCC’s, forcing us to apply again Branching 2
and reduction rules again, but decreasing k. This implies that the total running time is
3dfv × (22dfv23κ.dfv4)k × nO(1), thus the result holds. J

5.2 Combining DFVS-number and length of a longest directed path
In this subsection we investigate the length of a longest path and dfv(G) as aggregate
parameters.

I Lemma 13. (dfv, p)-Disjoint-KFVD on super nice instances can be solved in
2O(dfv3)pO(dfv) × nO(1).

Proof. Let (G,F,X, k) be a super nice instance. Recall that the directed feedback vertex
set F is a set of forbidden vertices (F ⊆ X) and G is strongly connected. The proof is by
induction on |F |. If |F | = 1, then, for any vertex v of V (G) \ F that can be turned into a
sink, N+(v) will be a solution set for G. Therefore, the optimum solution can be found in
polynomial time. Assume now that |F | ≥ 2 and denote F by {v1, . . . , vdfv}. As G is strongly
connected, there exists a path P1 of length at most p from v1 to v2 and a path P2 of length
at most p from v2 to v1. Denote by C the digraph G[V (P1)∪V (P2)]; it is strongly connected,
contains v1 and v2 and at most 2p vertices. Since the number of vertices in C is bounded,
we may branch 2p+ 1 times by trying to guess a vertex that will be deleted in C. Each time
a vertex of C will be guessed as deleted, the parameter k will decrease by one. So, k will
decrease in all branches, except in the one where we guess that no vertex is deleted, and then
where all the vertices of C are forbidden. In this case, C is a strongly connected component
whose vertices are all forbidden and containing at least two vertices of F . So, we contract
C to obtain a new instance G′. Formally, we remove V (C) from G, add a new vertex vC ,
and for all vertices of G \ C having at least one in-neighbor (resp. out-neighbor) in C, we
add an arc from vC (resp. to vC) to this vertex. Let F ′ be the set {vC} ∪ F \ V (C) and
notice that F ′ is a directed feedback vertex set of G′ and that |F ′| < |F |. Similarly, let X ′
be the set (X \ V (C)) ∪ {vC}. We claim that both instances (G,F, k,X) and (G′, F ′, k,X ′)
are equivalent. Indeed, it suffices to notice that as V (C) contains only forbidden vertices in
G and that vC is forbidden in G′, then any solution to the KFVD problem for G is a solution
of G′, and conversely. Then, we apply Branchings 1 and 2 to obtain a super nice instance
equivalent to (G′, F ′, k,X ′), and we can apply the induction hypothesis.
So at each branching, either the parameter k decreases by at least one or the size of F
decreases by at least one. As both values are bounded above by dfv, we branch consecutively
at most 2dfv times. And since Branching rules 1 and 2 create at most 3dfv × 22dfv2

branches, and branching on cycle C creates 2p+ 1 branches, the total number of branches is
(3dfv × 22dfv2 × (2p+ 1))2dfv = 2O(dfv3)pO(dfv), and we get the desired running time. J

Given that we can obtain a super nice instance in 2O(dfv3)×nO(1), it holds that Knot-free
Vertex Deletion can be solved in time 2O(dfv3)pO(dfv) × nO(1).

References
1 Saeed Akhoondian Amiri, Lukasz Kaiser, Stephan Kreutzer, Roman Rabinovich, and Sebastian

Siebertz. Graph searching games and width measures for directed graphs. In 32nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

2 János Barát. Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics, 22(2):161–172, 2006.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:15

3 Valmir C. Barbosa. The Combinatorics of Resource Sharing. In Models for Parallel and
Distributed Computation, pages 27–52. Springer, 2002.

4 Valmir C. Barbosa and Mario R. F. Benevides. A graph-theoretic characterization of AND-OR
deadlocks. Technical Report COPPE-ES-472/98, Federal University of Rio de Janeiro, Rio de
Janeiro, Brazil, 1998.

5 Valmir C. Barbosa, Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Deadlock
Models in Distributed Computation: Foundations, Design, and Computational Complexity.
In Proceedings of the 31st ACM/SIGAPP Symposium on Applied Computing, pages 538–541,
2016.

6 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek. The
dag-width of directed graphs. Journal of Combinatorial Theory, Series B, 102(4):900–923,
2012.

7 Dietmar Berwanger and Erich Grädel. Entanglement – A Measure for the Complexity of
Directed Graphs with Applications to Logic and Games. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages 209–223, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

8 Hans L Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

9 John A. Bondy and Uppaluri S. R. Murty. Graph theory with applications, volume 290.
Macmilan, 1976.

10 Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Deletion Graph Problems Based
on Deadlock Resolution. In The 23rd International Computing and Combinatorics Conference,
COCOON 2017, Hong Kong, China, August 3-5, 2017. Lecture Notes in Computer Science,
volume 10392, pages 75–86. Springer, 2017.

11 Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Fine-Grained Parameterized
Complexity Analysis of Knot-Free Vertex Deletion – A Deadlock Resolution Graph Problem. In
The 24th International Computing and Combinatorics Conference, COCOON 2018, Qingdao,
China , July 2-4, 2018. Lecture Notes in Computer Science, volume 10976, pages 84–95.
Springer, 2018.

12 Alan D. A. Carneiro, Fábio Protti, and Uéverton S Souza. Deadlock resolution in wait-for
graphs by vertex/arc deletion. Journal of Combinatorial Optimization, 37(2):546–562, 2019.

13 K Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3:63–75, 1985.

14 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM), 55(5):21,
2008.

15 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

16 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

18 Robert Ganian, Petr Hliněnỳ, Joachim Kneis, Alexander Langer, Jan Obdržálek, and Peter
Rossmanith. Digraph width measures in parameterized algorithmics. Discrete applied math-
ematics, 168:88–107, 2014.

19 Robert Ganian, Petr Hliněnỳ, Joachim Kneis, Daniel Meister, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? In International Symposium
on Parameterized and Exact Computation, pages 135–146. Springer, 2010.

20 Hermann Gruber. Digraph Complexity Measures and Applications in Formal Language Theory.
Discrete Mathematics & Theoretical Computer Science, 14(2):189–204, 2012.

IPEC 2019

2:16 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

21 Richard C Holt. Some deadlock properties of computer systems. ACM Computing Surveys
(CSUR), 4(3):179–196, 1972.

22 Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and
orderings. Theoretical Computer Science, 399(3):206–219, 2008. Graph Searching.

23 Thor Johnson, Neil Robertson, P.D. Seymour, and Robin Thomas. Directed Tree-Width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

24 RichardM. Karp. Reducibility among Combinatorial Problems. In RaymondE. Miller, JamesW.
Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Springer US, 1972.

25 Mateus de O. Oliveira. Subgraphs satisfying MSO properties on z-topologically orderable
digraphs. In International Symposium on Parameterized and Exact Computation, pages
123–136. Springer, 2013.

26 Mateus de O. Oliveira. An algorithmic metatheorem for directed treewidth. Discrete Applied
Mathematics, 204:49–76, 2016.

27 Sang-Il Oum. Approximating Rank-width and Clique-width Quickly. ACM Transactions on
Algorithms, 5(1):10:1–10:20, 2008.

28 Roman Rabinovich and Lehr-und Forschungsgebiet. Complexity measures of directed graphs.
PhD thesis, RWTH Aachen University, 2008.

29 Mohammad Ali Safari. D-Width: A More Natural Measure for Directed Tree Width. In
Joanna Jȩdrzejowicz and Andrzej Szepietowski, editors, Mathematical Foundations of Computer
Science 2005, pages 745–756, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Parameterized Valiant’s Classes
Markus Bläser
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
mblaeser@cs.uni-saarland.de

Christian Engels
IIT Bombay, Mumbai, India
christian@cse.ittb.ac.in

Abstract
We define a theory of parameterized algebraic complexity classes in analogy to parameterized
Boolean counting classes. We define the classes VFPT and VW[t], which mirror the Boolean counting
classes #FPT and #W[t], and define appropriate reductions and completeness notions. Our main
contribution is the VW[1]-completeness proof of the parameterized clique family. This proof is
far more complicated than in the Boolean world. It requires some new concepts like composition
theorems for bounded exponential sums and Boolean-arithmetic formulas. In addition, we also look
at two polynomials linked to the permanent with vastly different parameterized complexity.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic complexity theory, parameterized complexity theory, Valiant’s
classes

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.3

Related Version https://arxiv.org/abs/1907.12287

Acknowledgements We thank Holger Dell for valuable comments on a first draft of this paper and
Radu Curticapean and Marc Roth for helpful discussions.

1 Introduction

When Valiant invented the theory of computational counting and #P-completeness, he also
defined an algebraic model for computing families of polynomials [24]. This was very natural,
since many (Boolean) counting problems are evaluations of polynomials: Counting perfect
matchings in bipartite graphs is the same as evaluating the permanent at the adjacency matrix,
counting Hamiltonian tours in directed graphs is the same as evaluating the Hamiltonian
cycle polynomial at the adjacency matrix, etc. There is a fruitful interplay between the
Boolean and the algebraic world: algebraic methods like interpolation can be used to design
counting algorithms as well as for proving hardness results. Proving lower bounds might be
easier in the algebraic world and then we can use transfer theorems from the algebraic world
to the Boolean world [3].

Parameterized counting complexity has been very successful in the recent years, see for
instance [1, 8, 6, 7, 16, 23]. Parameterized complexity provides a more fine-grained view
on #P-complete problems. There are problems like counting vertex covers of size k, which
are fixed-parameter tractable, and others, which are presumably harder, like the problem
of counting cliques of size k. Beside the classes VP and VNP (and subclasses of them),
which correspond to time bounded computation in the Boolean world, there have also been
definitions of algebraic classes that correspond to space bounded Boolean computation,
see [18, 17, 20]. However, we are not aware of any parameterized classes in the algebraic
world despite some algorithmic upper bounds being known, see for instance [4, 10].

© Markus Bläser and Christian Engels;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
mailto:christian@cse.ittb.ac.in
https://doi.org/10.4230/LIPIcs.IPEC.2019.3
https://arxiv.org/abs/1907.12287
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Parameterized Valiant’s Classes

1.1 Our Contribution
In this paper, we define a theory of parameterized algebraic complexity classes. While some
of the definitions are rather obvious modifications of the Boolean ones and some of the basic
theorems easily transfer from the Boolean world to the algebraic world, some concepts have
to be modified. For instance, we cannot use projections to define hardness in general in the
parameterized world, since they can only decrease the degree. On the one hand, one could
choose the degree as a parameter, for instance, when computing the vertex cover polynomial.
On the other hand, one could have parameterized families where the degree is always n, like
the permanent on bounded (orientable1) genus graphs. One cannot compare these families
with projections, although both of them turn out to be fixed parameter tractable. We could
use c-reductions instead (which are the analogue of Turing reductions). However, these
seem too powerful. We propose some intermediate concept, namely fpt-substitutions: We
may replace the variables of a polynomial by other polynomials that are computed by small
circuits (and not simply constants and variables like in the case of projections). This mirrors
what is done in parsimonious reductions: the input is transformed by a polynomial time
computable function but no post-processing is allowed.

Our main technical contribution is the VW[1]-completeness proof of the parameterized
clique polynomial. This proof turns out to be far more complicated than in the Boolean world,
since we are not counting satisfying assignments to Boolean circuits but we are computing
sums over algebraic circuits. First we prove that one can combine two exponential sums into
one sum. While this is very easy in the case of VNP, it turns out to be quite complicated in
the case of VW[1]. Then we prove a normal form for so-called weft 1 circuits, the defining
circuits for VW[1]. We go on with proving that the components consisting of all monomials
that depend on a given number of variables of a polynomial computed by a weft 1 formula
can be written as a bounded exponential sum over so-called Boolean-arithmetic expressions.
We then show how to reduce such a sum to the clique problem.

In our final section, we study two polynomials based on cycle covers. In the first one,
the covers consist of one cycle of length k and all other cycles being self loops. The second
polynomial is similar, but allows all other cycles to be of constant length. We prove that the
first problem is VW[1] complete while the second problem is hard for VW[t] for all t.

2 Valiant’s Classes

We give a brief introduction to Valiant’s classes, for further information we refer the reader
to [2, 19]. Throughout the whole paper, K will denote the underlying ground field. An
arithmetic circuit C is an acyclic directed graph such that every node has either indegree 0 or
indegree 2. Nodes with indegree 0 are called input nodes and they are either labeled with a
constant from K or with some variable. The other nodes are called computation gates, they
are either labeled with + (addition gate) or ∗ (multiplication gate). Every gate computes a
polynomial in the obvious way. There is exactly one gate of outdegree 0, the polynomial
computed there is the output of C. The size of a circuit is the number of edges in it. The
depth of a circuit is length of a longest path from an input node to the output node. Later,
we will also look at circuits in which the computation gates can have arbitrary fan-in.

The objects that we study will be polynomials over K in variables X1, X2, . . . (Occasion-
ally, we will rename these variables to make the presentation more readable.) We will denote

1 We restrict ourselves to study orientable genus in this paper.

M. Bläser and C. Engels 3:3

{X1, X2, . . . } by X. The circuit complexity C(f) of a polynomial f is the size of a smallest
circuit computing f . We call a function r : N→ N p-bounded if there is a polynomial p such
that r(n) ≤ p(n) for all n.

I Definition 2.1. A sequence of polynomials (fn) ∈ K[X] is called a p-family if for all n,
1. fn ∈ K[X1, . . . , Xp(n)] for some p-bounded function p and
2. deg fn is p-bounded.

I Definition 2.2. The class VP consists of all p-families (fn) such that C(fn) is p-bounded.

Let f ∈ K[X] be a polynomial and s : X → K[X] be a mapping that maps indeterminates
to polynomials. Now, s can be extended in a unique way to an algebra endomorphismK[X]→
K[X]. We call s a substitution. (Think of the variables being replaced by polynomials.)

I Definition 2.3. 1. Let f, g ∈ K[X]. f is called a projection of g if there is a substitution
r : X → X∪K such that f = r(g). We write f ≤p g in this case. (Since g is a polynomial,
it only depends on a finite number of indeterminates. Therefore, we only need to specify
a finite part of r.)

2. Let (fn) and (gn) be p-families. (fn) is a p-projection of (gn) if there is a p-bounded
function q : N→ N such that fn ≤p gq(n). We write (fn) ≤p (gn).

Projections are very simple reductions. Therefore, we can also use them to define hardness
for “small” complexity classes like VP. More powerful are so-called c-reductions, which are an
analogue of Turing reductions. c-reductions are strictly more powerful than p-projections [15].
Let g be a polynomial in s variables. A g-oracle gate is a gate of arity s that on input
t1, . . . , ts outputs g(t1, . . . , ts). The size of such a gate is s. Cg(f) denotes the minimum size
of a circuit with g-oracle gates that computes f . If G is a set of polynomials, then CG(f) is
the minimum size of an arithmetic circuit that can use any g-oracle gates for any g ∈ G.

I Definition 2.4. Let (fn) and (gn) be p-families. (fn) is a c-reduction of (gn) if there is a p-
bounded function q : N→ N such that CGq(n)(fn) is p-bounded, where Gq(n) = {gi | i ≤ q(n)}.
We write (fn) ≤c (gn).

I Definition 2.5. A p-family (fn) is in VNP, if there are p-bounded functions p and q and a
sequence (gn) ∈ VP of polynomials gn ∈ K[X1, . . . , Xp(n), Y1, . . . , Yq(n)] such that

fn =
∑

e∈{0,1}q(n)

gn(X1, . . . , Xp(n), e1, . . . , eq(n)).

VP and VNP are algebraic analogues of the classes P and #P in the Boolean world. The
permanent family (pern) is complete for VNP under p-projections (over fields of characteristic
distinct from two) and the problem of computing the permanent of a given {0, 1}-matrix is
complete for #P under parsimonious reductions.

3 Parameterized (Counting) Complexity

Parameterized counting complexity was introduced by Flum and Grohe [11]. We give a
short introduction to fixed parameterized counting complexity. For more information on
parameterized complexity, we refer the reader to [12, 9].

I Definition 3.1. A parameterized counting problem is a function F : Σ∗ × N→ N.

The idea is that an input has two components (x, k), x ∈ Σ∗ is the instance and the
parameter k measures the “complexity” of the input.

IPEC 2019

3:4 Parameterized Valiant’s Classes

I Definition 3.2. A parameterized counting problem is fixed parameter tractable if there is
an algorithm computing F (x, k) in time f(k)|x|c for some computable function f : N → N
and some constant c. The class of all fixed parameter tractable counting problems is denoted
by #FPT.

A parameterized counting problem is fixed-parameter tractable if the running time is
polynomial in the instance size. The “combinatorial explosion” is only in the parameter
k. In particular, the exponent of n does not depend on k. The classical example for a
parameterized counting problem in #FPT is the vertex cover problem: Given a graph G and
a natural number k, count all vertex covers of G of size k.

Fixed parameter tractable problems represent the “easy” problems in parameterized
complexity. An indication that a problem is not fixed parameter tractable is that it is
hard for the class #W[1]. Reductions that are used to define hardness are parsimonious
fpt-reductions: Such a reduction maps an instance (x, k) to an instance (x′, k′) such that
the value of the two instances is the same, the running time of the reduction is f(k)|x|c
for some computable function f and a constant c, and there is a computable function g

such that k′ ≤ g(k). It is quite easy to see that the composition of two parsimonious fpt-
reductions is again a parsimonious fpt-reduction and that #FPT is closed under parsimonious
fpt-reductions.

We now define weft t formulas inductively.2

I Definition 3.3. A weft 0 formula is a layered Boolean formula and the gates have fan-in
two (over the basis ∧, ∨, and ¬). A weft t formula is a layered Boolean formula where the
gates have fan-in two, except one layer of gates that has unbounded fan-in. This formula has
as inputs weft t− 1 formulas.

Weft t formulas have t layers of unbounded fan-in gates, and all other gate have bounded
fan-in. Weft t formulas are the defining machine model of the #W[t] classes:

I Definition 3.4. The class #W[t] are all parameterized counting problems that are reducible
by parsimonious fpt-reductions to the following problem: Given a weft t formula C of constant
depth and a parameter k, count all satisfying assignments of C that have exactly k 1s.

A classical example of a counting problem, that is #W[1]-complete, is counting cliques
of size k in a graph. Clique is used as a major complete problem for #W[1] by Flum and
Grohe [11]. It is known that P = #P implies #FPT = #W[1]. Curticapean [5] proves that
counting k-matchings, the parameterized analogue to the permanent, is #W[1]-hard (under
Turing fptreductions).

4 Parameterized Valiant’s Classes

We now define fixed-parameter variants of Valiant’s classes. Our families of polynomials
will now have two indices. They will be of the form (pn,k). Here, n is the number of
indeterminates and k is the parameter.

I Definition 4.1. A parameterized p-family is a family (pn,k) of polynomials such that
1. pn,k ∈ K[X1, . . . , Xq(n)] for some p-bounded function q, and
2. the degree of pn,k is p-bounded (as a function of n+ k).

2 The term “weft” originates from textile fabrication and has been used in Boolean parameterized
complexity from its very beginning.

M. Bläser and C. Engels 3:5

The most natural parameterization is by the degree: Let (pn) be any p-family then
we get a parameterized family (pn,k) by setting pn,k = Hk(pn). Here Hk(f) denotes the
homogeneous part of degree k of some polynomial f .3 Since deg(pn) is polynomially bounded,
pn,k is zero when k is large enough. (This will usually be the case for any parameterization.)
More generally, we will also allow that pn,k = Ht(k)(pn) for some function t that solely
depends on k.

Recall that a vertex cover C of a graph G = (V,E) is a subset of V such that for every
edge e ∈ E at least one endpoint is in C.

I Example 4.2. Let G = (Gn) be a family of graphs such that Gn has n nodes. We will
assume that the nodes of Gn are {1, . . . , n}.
1. The vertex cover family (VCGn) with respect to G is defined as

VCGn =
∑

C⊆{1,...,n}

∏
i∈C

Xi

where the sum is taken over all vertex covers C of Gn.
2. The parameterized vertex cover family (VCGn,k), with respect to G, is defined as

VCGn,k =
∑

C⊆{1,...,n}
|C|=k

∏
i∈C

Xi

where we now sum over all vertex covers of size k of Gn. This is a homogeneous polynomial
of degree k. (We will call both families VCG . There is no danger of confusion, since we
mainly deal with the parameterized family.)

Every node has a label Xi and for every vertex cover we enumerate (or more precisely,
sum up) its weight, which is the product of the labels of the nodes in it. Above, every graph
family defines a particular vertex cover family. We can also define a unifying vertex cover
family.

I Example 4.3. Let Ei,j , Xi, 1 ≤ i < j ≤ n, be variables over some field K. The parameter-
ized vertex cover polynomial of size n is defined by

VCn,k =
∑

C⊆{1,...,n}
|C|=k

∏
i,j /∈C
i<j

(1− Ei,j)
∏
i∈C

Xi.

The parameterized vertex cover family is defined as (VCn,k).

If we set the variables Ei,j to values ei,j ∈ {0, 1} we get the vertex cover polynomial of
the graph given by the adjacency matrix (ei,j). The first product is 0 if there is an uncovered
edge. More generally, if we take a family of graphs G = (Gn) such that Gn has n nodes and
if we plug in the adjacency matrix of Gn into in each VCn,k then we get the family (VCGn,k).
(VCGn,k) is parameterized by the degree since we have VCGn,k = Hk(VCGn). (VCn,k), however,
is not parameterized by the degree as VCn,k contains monomials of degree polynomial in n
(independent of k).

Recall that a clique C of a graph is a subset of the vertices such that for every pair of
nodes in C there is an edge between them.

3 I.e., the sum of all monomials of degree k with their coefficients.

IPEC 2019

3:6 Parameterized Valiant’s Classes

I Example 4.4. 1. Let Ei,j , Xi, 1 ≤ i, j ≤ n, i < j, be variables over some field K. The
clique polynomial of size n is defined by

Cliquen =
∑

C⊆{1,...,n}

∏
i,j∈C
i<j

Ei,j
∏
i∈C

Xi.

The clique family is defined as (Cliquen).
2. The parameterized clique family (Cliquen,k) is defined by

Cliquen,k =
∑

C⊆{1,...,n}
|C|=k

∏
i,j∈C
i<j

Ei,j
∏
i∈C

Xi.

(Again, we will call both families Clique.)

If we set the variables Ei,j to values ei,j ∈ {0, 1}, we get the clique polynomial of the
graph given by the adjacency matrix (ei,j), since the first product checks whether C is a
clique. For each clique, we enumerate a monomial

∏
i∈C Xi. Xi is the label of the node i.

Clique is a polynomial defined on edges and nodes. This seems to be necessary, since the
polynomial

∑
C⊆{1,...,n}

∏
i∈C Xi = (1 +X1) · · · (1 +Xn), which is the “node-only” version

of clique polynomial of the complete graph, is easy to compute. Therefore, we cannot expect
that the “node-only” version of the clique family is hard for some class.

Notice, that the parameterized clique family (Cliquen,k) has variables standing in for
vertices. These vertices seem to be necessary, as in the counting world, counting the number
of k cliques and counting the number of k-independent sets are tightly related. Namely, the
number of cliques is the number of independent sets on the complement graph. We want
to keep this relationship as the problem is an important member of #W[1] and hence we
incorporate the vertices.

(Cliquen,k) is parameterized by the degree, since Cliquen,k = H(k
2)+k(Cliquen). Here is

another example, beside the general vertex cover family, of a family that is parameterized by
a different parameter:

I Example 4.5. Let G = (Gn,k) be a family of bipartite graphs such that Gn,k has n nodes
on both sides and genus k, k ≤ d(n − 2)2/4e.4 Let An,k be the n × n-matrix that has a
variable Xi,j in position (i, j) if there is an edge between i and j in Gn,k and a 0 otherwise.
The G-parameterized permanent family perG = (perGn,k) is defined as perGn,k = per(Ai,j).

There is another natural way to parameterize the permanent:

I Example 4.6. Given a k × n-matrix X = (Xi,j) with variables as entries, the rectangular
permanent is defined as

rpern,k(X) =
∑

f : {1,...,k}→{1,...,n}
f is injective

k∏
i=1

Xi,f(i).

When k = n then this is the usual permanent. The rectangular permanent family is defined
as rper = (rpern,k).

4 This is the genus of the Kn,n [22].

M. Bläser and C. Engels 3:7

We will give some more parameterizations of the permanent in Section 8 where we also prove
some hardness results.

We now define fixed parameter variants of Valiant’s classes.

I Definition 4.7. 1. A parameterized p-family (pn,k) is in the class VFPT if C(pn,k) is
bounded by f(k)p(n) for some p-bounded function p and some arbitrary function f : N→
N.5

2. The subclass of VFPT of all parameterized p-families that are parameterized by the degree
is denoted by VFPTdeg.

We will also say above that C(pn,k) is fpt-bounded. We will see in one of the next sections
that the vertex cover family and the bounded genus permanent are in VFPT. We will say
that a family of circuits (Cn, k) has fpt size if the size is bounded by f(k)p(n) for some
function f : N→ N and p-bounded function p.

I Definition 4.8. A parameterized p-family f = (fn,k) is an fpt-projection of another
parameterized p-family g = (gn,k) if there are functions r, s, t : N → N such that r is p-
bounded and fn,k is a projection of gr(n)s(k),k′ for some k′ ≤ t(k).6 We write f ≤fpt

p g.

I Lemma 4.9. If f ∈ VFPT (or VFPTdeg) and g ≤fpt
p f , then g ∈ VFPT (or VFPTdeg,

respectively).

I Lemma 4.10. ≤fpt
p is transitive.

One can define a notion of completeness. In the case of fpt-projections, the degree of
the polynomial is the only meaningful parameter to consider: The permanent family on
bounded genus graphs perG is in VFPT and so is (a variant of) the vertex cover family
VC. However, every polynomial in the permanent family has degree equal to the number
of nodes in the graph (independent of the genus) whereas the degree of the vertex cover
polynomial depends on the degree. If a polynomial p is a projection of q, then deg p ≤ deg q.
Therefore, perG cannot be an fpt-projection of VC. Now we can call a parameterized family
f VFPTdeg-complete (under fpt-projections), if it is in VFPTdeg and for all g ∈ VFPTdeg,
g ≤fpt

p f .
For other parameters, we need a stronger notion of reduction. There are the so-called

c-reductions, see [2], which are the analogue of Turing reductions in Valiant’s world. This
is the strongest kind of reduction one could use. However, the p-projections in Valiant’s
world seem to be weaker than parsimonious polynomial-time reductions in the Boolean world.
Therefore, we propose an intermediate concept, which models parsimonious reductions in
the algebraic world. In parsimonious reductions, the input instance is transformed by a
polynomial time or fpt computable reduction, then the function we reduce to is evaluated,
and the result that we get shall be the value of our given function evaluated at the original
instance.

In the algebraic world, this is modeled as follows: We call a p-family f = (fn) with
fn ∈ K[X1, . . . , Xp(n)] a p-substitution of a p-family g = (gn) with gn ∈ K[X1, . . . , Xq(n)]
if there is a p-bounded function r, and for all n, there are h1, . . . , hq(r(n)) such that fn =
gr(n)(h1, . . . , hq(r(n))) and deg(hi)7 as well as C(hi) is p-bounded for all i. We write f ≤s g.

5 f need not be computable, since Valiant’s model is nonuniform.
6 k′ might depend on n, but its size is bounded by a function in k. There are examples in the Boolean
world, where this dependence on n is used.

7 Note that a polynomial size circuit can construct superpolynomial degree polynomials by repeated
squaring

IPEC 2019

3:8 Parameterized Valiant’s Classes

Compared to a projection, we are now allowed to substitute polynomials of p-bounded
complexity. We have that ≤s is transitive and that p ≤s q and q ∈ VP implies p ∈ VP.

The parameterized analogue is defined as follows.

I Definition 4.11. A parameterized p-family f = (fn,k) with fn,k ∈ K[X1, . . . , Xp(n)] is an
fpt-substitution of another parameterized p-family g = (gn,k) with gn,k ∈ K[X1, . . . , Xq(n)]
if there are functions r, s, t : N → N such that for all n, k, r is p-bounded and there exist
polynomials h1,. . . ,hq(r(n)s(k)) ∈ K[X1, . . . , Xp(n)] such that

fn,k = gr(n)s(k),k′(h1, . . . , hq(r(n)s(k)))

for some k′ ≤ t(k) and deg(hi) as well as C(hi) are fpt-bounded (with respect to n and k)
for all i. We write f ≤fpt

s g.

The proof of the following two lemmas is almost identical to the proofs of Lemmas 4.9
and 4.10. The only difference is that fpt-substitutions do not preserve the degree.

I Lemma 4.12. If f ∈ VFPT and g ≤fpt
s f , then g ∈ VFPT.

I Lemma 4.13. ≤fpt
s is transitive.

To define an algebraic analogue of #W[t], we study unbounded fan-in arithmetic circuits.
These circuits have multiplication and addition gates of arbitrary fan-in. A gate with fan-in 2
will be called a gate of bounded fan-in, any other gate is a gate of unbounded fan-in. (Instead
of 2, we can fix any other bound b.)

I Definition 4.14. Let C be an arithmetic circuit. The weft of C is the maximum number
of unbounded fan-in gates on any path from a leaf to the root.

For s, k ∈ N,
〈
s
k

〉
denotes the set of all {0, 1}-vectors of length s having exactly k 1s.

I Definition 4.15. 1. A parameterized p-family (fn,k) is in VW[t], if there is a p-family
(gn) of polynomials gn ∈ K[X1, . . . , Xp(n), Y1, . . . , Yq(n)] with p-bounded p and q such that
gn is computed by a constant depth unbounded fan-in circuit of weft ≤ t and polynomial
size8 and

(fn,k) ≤fpt
s

(∑
e∈〈q(n)

k 〉
gn(X1, . . . , Xp(n), e1, . . . , eq(n))

)
. (1)

2. VWdeg[t] is the subset of all families in VW[t], that have the degree as the parameter.

In essence, we emulate the Boolean #W[t] definition. Instead of Boolean circuits of weft
t we take an arithmetic circuit and instead of counting the number of assignments, we sum
over all assignments. In addition, we only count the assignments that have weight k by
adjusting the vectors we sum over, namely to {0, 1}-vectors with exactly k ones. While in
the Boolean setting the closure is taken with respect to parsimonious fpt-reductions, in the
arithmetic setting, we take fpt-substitutions. Hence, our definition seems to be the most
appropriate analogue.

The clique family is in VW[1], since we can write it as

Cliquen,k =
∑
v∈〈nk〉

n∏
i,j=1
i<j

(Ei,jvivj + 1− vivj)
n∏
i=1

(Xivi + 1− vi).

8 Note, that we do not need to require fpt-size, as we use an fpt sized reduction.

M. Bläser and C. Engels 3:9

This formula has weft 1, since there are two unbounded product gates and none is a predecessor
of the other. We replace the product over all C by a product over all vertices and use the
v-vectors to switch variables on and off.

Like in the Boolean case, we will show that the parameterized clique family is complete for
the class VW[1] (albeit for a stronger notion of reductions, namely fpt-c-reductions). It turns
out that this proof is far more complicated than in the Boolean setting, since our circuits can
compute arbitrary polynomials and not only Boolean values. Furthermore, multiplication
and addition cannot be reduced to each other since there is no analog of de Morgan’s law.

I Definition 4.16. Let f = (fn,k) and g = (gn,k) be parameterized p-families. f fpt-c-
reduces to g if there is a p-bounded function q : N→ N and functions s, t : N→ N such that
CGq(n)s(k),t(k)(fn,k) is fpt-bounded, where Gq(n)s(k),t(k) = {gi,j | i ≤ q(n)s(k), j ≤ t(k)}. We
write f ≤fpt

c g.

The following two lemmas are proved like for ≤c and VP. We replace oracle gates by
circuits and use the fact that fpt-bounded functions are closed under composition.

I Lemma 4.17. If f ∈ VFPT and g ≤fpt
c f , then g ∈ VFPT.

I Lemma 4.18. ≤fpt
c is transitive.

So we have two different notions to define #W[t]-hardness. Presumably, they are different,
see [15].

5 VFPT

I Theorem 5.1. For every family of graphs G = (Gn), where Gn has n nodes, VCGn,k is in
VFPTdeg.

I Remark 5.2. It is unlikely that the general family VCn,k is in VFPT. Take any graph
G = (V,E) on n nodes and m edges and compute VCn,k on this graph, i.e., set all edge
variables to zero that do not occur in E.. Now, for i < j, we set

Ei,j =
{

1− S if {i, j} ∈ E,
0 otherwise,

and Xi = T for all i. Then we get a bivariate polynomial. This polynomial contains a
monomial SiT j iff there is a vertex cover of size j in G not covering i edges, or, equivalently,
covering m− i edges. Note that since the polynomial is now bivariate, we can easily compute
its coefficients using interpolation. While the (Boolean decision version of) vertex cover is
in FPT, it turns out [14] that the more general question whether there is a set of nodes of
size k covering at least t edges is W[1]-hard (with parameter k). Therefore, it seems to be
unlikely that VCn,k has circuits of fpt size.

Mahajan and Saurabh [21] define another variant of the vertex cover polynomial. We
multiply each cover by a product over the uncovered edges. They multiply by a product
over the covered edges. Both polynomials are essentially equivalently, one can turn one into
the other by dividing through the product over all edges, doing a variables transform, and
removing divisions.

The sun graph Sn,k = (V,E) on n nodes is defined as follows: The first k nodes form a
clique. And every other node is connected to the nodes 1, . . . , k, but to no other nodes, that
is, the nodes k + 1, . . . , n form an independent set. (Note that there are other definitions

IPEC 2019

3:10 Parameterized Valiant’s Classes

of sun graphs in the literature, but all of them look like a sun when drawn appropriately.)
Every graph G with n nodes that contains a vertex cover of size k is a subgraph of Sn,k.
To see this, we map the nodes of the vertex cover of G to the nodes of the clique and the
remaining nodes of G to the other n− k nodes. Note that there are cannot be any edges in
G between the nodes outside of the vertex cover.

We define VCsn,k like VCn,k but on the graph Sn,k instead of Kn, i.e., all edge variables
not in Sn,k are set to zero. The difference to VC is, that we now have some idea where the
vertex cover is located (like it is in the Boolean case where we can find a potential set for
instance by computing a maximum matching). Therefore, we can obtain:

I Theorem 5.3. VCs ∈ VFPT.

Both parameterized permanent families turn out to be fixed parameter tractable.

I Theorem 5.4 ([13]). For every family of bipartite graphs G = (Gn,k) such that Gn,k has n
nodes and genus k, perG is in VFPT.

I Theorem 5.5 ([25]). rper ∈ VFPT.

Kernelization is an important concept in parameterized complexity. In the algebraic
setting, VFPT can also be characterized by kernels with size only bounded by k.

We also develop a notion of kernelization. We refer the reader to the full version.

6 The VW-hierarchy

We start with proving some basic facts about the VW[t] classes, in analogy to the Boolean
world.

I Lemma 6.1. VFPT = VW[0] and VFPTdeg = VWdeg[0].

Proof. The proof is obvious, since VW[0] and VWdeg[0] are defined as the closure under
fpt-substitutions, so we can compute problems in VFPT simply by using the reduction. J

The following lemma is obvious.

I Lemma 6.2. For every t, VW[t] ⊆ VW[t+ 1] and VWdeg[t] ⊆ VWdeg[t+ 1].

We call a parameterized p-family f VW[t]-hard (under fpt-substitutions), if for all
g ∈ VW[t], g ≤fpt

s f . f is called VW[t]-complete (under fpt-substitutions) if in addition,
f ∈ VW[t]. If the same way, we can also define hardness and completeness under fpt-c-
reductions.

For the classes VWdeg[t], it is reasonable to study hardness and completeness under
fpt-projections. We call a parameterized p-family f VWdeg[t]-hard (under fpt-projections),
if for all g ∈ VW[t], g ≤fpt

p f . f is called VWdeg[t]-complete (under fpt-projections) if in
addition, f ∈ VW[t].

I Lemma 6.3. If f is VW[t + 1]-complete under fpt-substitutions and f ∈ VW[t], then
VW[t] = VW[t+ 1]. In the same way, if f is VWdeg[t+ 1]-complete under fpt-substitutions
or fpt-projections and f ∈ VWdeg[t], then VWdeg[t] = VWdeg[t+ 1].

It is open in the Boolean case whether W[t] = W[t + 1] or #W[t] = #W[t + 1] implies
a collapse of the corresponding hierarchy. Maybe the algebraic setting can provide more
insights.

M. Bläser and C. Engels 3:11

I Theorem 6.4. If VFPT 6= VW[1] then VP 6= VNP.

If one takes the defining problems for VW[t] (sums over {0, 1} vectors with k 1s of weft t
circuits) instead of clique, one can prove the same theorem for arbitrary classes VW[t] in
place of VW[1]. The proof only gets technically a little more complicated.

7 Hardness of Clique

Our main technical result is the VW[1]-hardness of Clique. The proof is technically much
more intricate than in the Boolean setting. We will first give a short outline.

First, we prove as a technical tool that two bounded exponential sums over a weft t
circuit can be expressed by one exponential sum over a (different) weft t circuit. In the
case of VNP, a similar proof is easy: Instead of summing over bit vectors of length p

and then of length q, we can sum over bit vectors of length p+ q instead. If the number
of ones is however bounded, this does not work easily anymore. It turns out that for
the most interesting class VW[1] of the VW-hierarchy, the construction is astonishingly
complicated.
Next, we prove a normal form for weft 1 circuits. Every weft 1 circuit can be replaced by
an equivalent weft 1 circuit that has five layers: The first layer is a bounded summation
gate, the second layer consist of bounded multiplication gates, the third layer is the only
layer of unbounded gates, the fourth layer again consists of bounded addition gates and
the fifth layer of bounded multiplication gates.
Then we introduce Boolean-arithmetic formulas: A Boolean-arithmetic formula is a
formula of the form

B(X1, . . . , Xn) ·
n∏
i=1

(RiXi + 1−Xi)

where B is an arithmetization of some Boolean formula and the Ri some polynomial or even
rational function (over a different set of variables). For each satisfying {0, 1}-assignment
e to B, that is, B(e) = 1, the right hand side produces one product and the ei (assigned
to the Xi variables) switch the factors Ri on or off. For a polynomial f , the monomials of
support size k are all monomials that depend on exactly k variables. The sum of all these
monomials is denoted by Sk(f). A central result for the hardness proof is that when f is
computed by a circuit of weft 1, then we can write Sk(f) as a bounded sum over a weft 1
Boolean arithmetic expression, that is, Sk(f) =

∑
e∈〈p(n,k)

q(k) 〉 B(e) ·
∏p(n,k)
i=1 (Riei + 1− ei).

Finally, we prove that Clique is VW[1]-complete under fpt-c-reductions (or under fpt-
substitutions that allow rational expressions). Given some bounded sum over a polynomial
gn(X1, . . . , Xp, Y1 . . . , Yq) computed by a weft 1 circuit, we view gn as a polynomial over
the Y -variables, the coefficients of which are polynomials in the X-variables. Then
S0(g), . . . , Sk(g) are the parts of gn that contribute to the sum when summing over all
bit vectors with k ones. We can write this as a bounded sum over a Boolean-arithmetic
formula. The concept of Boolean-arithmetic formulas allows us to reuse parts of the
Boolean hardness proof.

Note that once we have the VW[1]-hardness of Clique, we get further hardness results for
free.

IPEC 2019

3:12 Parameterized Valiant’s Classes

8 Hardness of the Permanent and Cycle Covers

In this section we will highlight the vast difference between the provable complexity of the
following two problems. Having cycle covers where one cycle is of length k and all other
cycles are self loops and the complexity of all cycle covers where one cycle is length k and all
other cycle covers are of length some fixed constant c. As always in this paper, we will look
at corresponding polynomials to this problem.

8.1 Hardness of the k-permanent
We are adapting the proof from Curticapean and Marx [8] to show the hardness of the
following parameterization of the permanent. Notice that the theorem from [8] is not enough
for us. It is in general unclear how and in which way the cycles transfer in the theorem while
we need an explicit fpt-projection.

We define the k-permanent polynomial as follows. Let S′n be the set of all permutations
on n elements that map n− k elements to itself. Then

perk =
∑
σ∈S′

n

∏
i∈[n]

xi,σ(i).

Notice, we do not include the selected vertices, as all vertices are in the cycle cover and hence
the two problems are equivalent.

I Corollary 8.1. (perk) is VW[1] hard under fpt-c-reductions.

8.2 Bounded length Cycle Covers
I Definition 8.2. We define per≤c,k, the bounded length k-permanent, to be the following
polynomial over all cycle covers where one cycle has length k and all other cycles have length
bounded by some constant c ≥ 3.

per≤c,k =
∑
σ∈S′′

n

∏
i∈[n]

xi,σ(i)

where S′′n is the set of permutations σ on n elements such that σ has one cycle of length k
and all other cycles have length ≤ c.

With this, we can prove the following theorem.

I Theorem 8.3. For all t, there exists a constant c such that per≤ c, k is hard for VW[t]
under fpt-c-reductions.

References
1 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for

parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:10.1016/j.
jcss.2017.03.003.

2 Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Springer, 2000.
3 Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theor. Comput. Sci., 235(1):71–88, 2000.

doi:10.1016/S0304-3975(99)00183-8.
4 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity

of graph enumeration problems definable in monadic second-order logic. Discrete Applied
Mathematics, 108(1-2):23–52, 2001. doi:10.1016/S0166-218X(00)00221-3.

https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/S0304-3975(99)00183-8
https://doi.org/10.1016/S0166-218X(00)00221-3

M. Bläser and C. Engels 3:13

5 Radu Curticapean. Counting Matchings of Size k Is W[1]-Hard. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 352–363.
Springer, 2013. doi:10.1007/978-3-642-39206-1_30.

6 Radu Curticapean, Holger Dell, Fedor V. Fomin, Leslie Ann Goldberg, and John Lapinskas.
A Fixed-Parameter Perspective on #BIS. CoRR, abs/1702.05543, 2017. arXiv:1702.05543.

7 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:10.1145/
3055399.3055502.

8 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Bounded-
ness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139.
IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.22.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

10 Uffe Flarup, Pascal Koiran, and Laurent Lyaudet. On the Expressive Power of Planar Perfect
Matching and Permanents of Bounded Treewidth Matrices. In Takeshi Tokuyama, editor,
Algorithms and Computation, 18th International Symposium, ISAAC 2007, Sendai, Japan,
December 17-19, 2007, Proceedings, volume 4835 of Lecture Notes in Computer Science, pages
124–136. Springer, 2007. doi:10.1007/978-3-540-77120-3_13.

11 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

13 Anna Galluccio and Martin Loebl. On the Theory of Pfaffian Orientations. I. Perfect Matchings
and Permanents. Electr. J. Comb., 6, 1999. URL: http://www.combinatorics.org/Volume_
6/Abstracts/v6i1r6.html.

14 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized Complexity of
Vertex Cover Variants. Theory Comput. Syst., 41(3):501–520, 2007. doi:10.1007/
s00224-007-1309-3.

15 Christian Ikenmeyer and Stefan Mengel. On the relative power of reduction notions in arithmetic
circuit complexity. Inf. Process. Lett., 130:7–10, 2018. doi:10.1016/j.ipl.2017.09.009.

16 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Combinatorica, 37(5):965–990, 2017. doi:10.1007/s00493-016-3338-5.

17 Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the complex field. In
Ludek Kucera and Antonín Kucera, editors, Mathematical Foundations of Computer Science
2007, 32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August
26-31, 2007, Proceedings, volume 4708 of Lecture Notes in Computer Science, pages 359–370.
Springer, 2007. doi:10.1007/978-3-540-74456-6_33.

18 Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the reals. In Wolfgang
Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Symposium on Theoretical
Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceedings, volume
4393 of Lecture Notes in Computer Science, pages 417–428. Springer, 2007. doi:10.1007/
978-3-540-70918-3_36.

19 Meena Mahajan. Algebraic Complexity Classes. CoRR, abs/1307.3863, 2013. arXiv:1307.
3863.

20 Meena Mahajan and B. V. Raghavendra Rao. Small-Space Analogues of Valiant’s Classes.
In Miroslaw Kutylowski, Witold Charatonik, and Maciej Gebala, editors, Fundamentals of
Computation Theory, 17th International Symposium, FCT 2009, Wroclaw, Poland, September

IPEC 2019

https://doi.org/10.1007/978-3-642-39206-1_30
http://arxiv.org/abs/1702.05543
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-540-77120-3_13
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html
http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html
https://doi.org/10.1007/s00224-007-1309-3
https://doi.org/10.1007/s00224-007-1309-3
https://doi.org/10.1016/j.ipl.2017.09.009
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1007/978-3-540-74456-6_33
https://doi.org/10.1007/978-3-540-70918-3_36
https://doi.org/10.1007/978-3-540-70918-3_36
http://arxiv.org/abs/1307.3863
http://arxiv.org/abs/1307.3863

3:14 Parameterized Valiant’s Classes

2-4, 2009. Proceedings, volume 5699 of Lecture Notes in Computer Science, pages 250–261.
Springer, 2009. doi:10.1007/978-3-642-03409-1_23.

21 Meena Mahajan and Nitin Saurabh. Some Complete and Intermediate Polynomials in Algebraic
Complexity Theory. In Alexander S. Kulikov and Gerhard J. Woeginger, editors, Computer
Science - Theory and Applications - 11th International Computer Science Symposium in Russia,
CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Proceedings, volume 9691 of Lecture Notes
in Computer Science, pages 251–265. Springer, 2016. doi:10.1007/978-3-319-34171-2_18.

22 Gerhard Ringel. Das Geschlecht des vollständigen paaren Graphen. Abh. Math. Sem. Univ.
Hamburg 28, pages 139–150, 1965.

23 Marc Roth. Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices.
In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 63:1–63:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.63.

24 Leslie G. Valiant. Completeness Classes in Algebra. In Michael J. Fischer, Richard A. DeMillo,
Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

25 Virginia Vassilevska and RyanWilliams. Finding, minimizing, and counting weighted subgraphs.
In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 455–464.
ACM, 2009. doi:10.1145/1536414.1536477.

https://doi.org/10.1007/978-3-642-03409-1_23
https://doi.org/10.1007/978-3-319-34171-2_18
https://doi.org/10.4230/LIPIcs.ESA.2017.63
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/1536414.1536477

Hierarchy of Transportation Network Parameters
and Hardness Results
Johannes Blum
University of Konstanz, Germany
johannes.blum@uni-konstanz.de

Abstract
The graph parameters highway dimension and skeleton dimension were introduced to capture the
properties of transportation networks. As many important optimization problems like Travelling
Salesperson, Steiner Tree or k-Center arise in such networks, it is worthwhile to study them
on graphs of bounded highway or skeleton dimension.

We investigate the relationships between mentioned parameters and how they are related to other
important graph parameters that have been applied successfully to various optimization problems.
We show that the skeleton dimension is incomparable to any of the parameters distance to linear
forest, bandwidth, treewidth and highway dimension and hence, it is worthwhile to study mentioned
problems also on graphs of bounded skeleton dimension. Moreover, we prove that the skeleton
dimension is upper bounded by the max leaf number and that for any graph on at least three vertices
there are edge weights such that both parameters are equal.

Then we show that computing the highway dimension according to most recent definition is
NP-hard, which answers an open question stated by Feldmann et al. [18]. Finally we prove that on
graphs G = (V,E) of skeleton dimension O(log2 |V |) it is NP-hard to approximate the k-Center
problem within a factor less than 2.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion→ Problems, reductions and completeness; Theory of computation→ Parameterized complexity
and exact algorithms

Keywords and phrases Graph Parameters, Skeleton Dimension, Highway Dimension, k-Center

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.4

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.11166.

1 Introduction

Many important optimization problems arise in the context of road or flight networks, e.g.
Travelling Salesperson or Steiner Tree, and have applications in domains like route
planning or logistics. Therefore, several approaches have been developed that try to exploit
the special structure of such transportation networks. Examples are the graph parameters
highway dimension and skeleton dimension. Intuitively, a graph has low highway dimension
hd or skeleton dimension κ, if there is only a limited number of options to leave a certain
region of the network on a shortest path. Both parameters were originally used in the
analysis of shortest path algorithms and it was shown that if hd or κ are small, there
are preprocessing-based techniques to compute shortest paths significantly faster than the
algorithm of Dijkstra [3, 2, 1, 24].

The highway dimension was also investigated in the context of NP-hard optimization
problems, such as Travelling Salesperson (TSP), Steiner Tree and Facility Lo-
cation [18], k-Center [17, 20, 10] or k-Median and Bounded-Capacity Vehicle
Routing [10]. It was shown that in many cases, graphs of low highway dimensions allow
better algorithms than general graphs. To our knowledge, the skeleton dimension has exclu-
sively been studied in the context of shortest path algorithms so far. However, it was shown
that real-world road networks exhibit a skeleton dimension that is clearly smaller than the

© Johannes Blum;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1102-3649
mailto:johannes.blum@uni-konstanz.de
https://doi.org/10.4230/LIPIcs.IPEC.2019.4
https://arxiv.org/abs/1905.11166
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Hierarchy of Transportation Network Parameters and Hardness Results

highway dimension [11]. Moreover, in contrast to the highway dimension, it can be computed
in polynomial time. Hence it is natural to study the aforementioned problems on networks
of low skeleton dimension.

Further graph classes that have been used to model transportation networks are for
instance planar graphs and graphs of low treedwidth or doubling dimension. Moreover, many
important optimization problems have been studied extensively for classic graph parameters
like treewidth or pathwidth [12, 4]. Still, there are only partial results on how the highway
dimension hd and skeleton dimension κ are related to these parameters. This is the starting
point of the present paper. A better understanding of the relationships between hd, κ
and different well-studied graph parameters will allow a deeper insight in the structure
of transportation networks and might enable further algorithms custom-tailored for such
networks.

1.1 Related Work
We now briefly sum up some algorithmic results in the context of optimization problems in
transportation networks. Arora [5] developed a general framework that enables PTASs for
several geometric problems where the network is embedded in the Euclidean plane. Building
upon the work of Arora, Talwar [27] developed QPTASs for TSP, Steiner Tree, k-Median
and Facility Location on graphs of low doubling dimension (for a formal definition, see
Definition 2). This was improved by Bartal et al. [6], who obtained a PTAS for TSP. As
the skeleton dimension of a graph upper bounds its doubling dimension (cf. Section 2.1)
the aforementioned results immediately imply a PTAS for TSP and QPTASs for Steiner
Tree, k-Median and Facility Location.

The k-Center problem is NP-complete on general graphs [28] and has been subject to ex-
tensive research. In fact, for any ε > 0, it is NP-hard to compute a (2−ε)-approximation, even
when considering only planar graphs [25], geometric graphs using L1 or L∞ distances or graphs
of highway dimension O(log2 |V |)[17]. However, there is a fairly simple 2-approximation
algorithm for general graphs by Hochbaum and Shmoys [22].

One way to approximate k-Center better than by a factor of 2 is the use of so called
fixed-parameter approximation algorithms (FPAs). The basic idea is to combine the concepts
of fixed-parameter algorithms and approximation algorithms. Formally, for α > 1, an α-FPA
for a parameter p is an algorithm that computes an α-approximation in time f(p) · nO(1)

where f is a computable function. Feldmann [17] showed there is a 3/2-FPA for k-Center
when parameterizing both by the number of center nodes k and the highway dimension hd.
Later, Becker et al. [10] showed that for any ε > 0 there is a (1 + ε)-FPA for k-Center when
parameterizing by k and hd, using a slightly different definition for the highway dimension as
in [17] (see also Section 2.2). Moreover, on graphs of doubling dimension d, it is possible to
compute a (1 + ε)-approximation in time

(
kk/εO(k·d)) ·nO(1) [20]. As the doubling dimension

is a lower bound for the skeleton dimension κ, this implies a (1 + ε)-FPA for parameter
(ε, k, κ). However, computing a (2− ε)-approximation is W [2]-hard when parameterizing only
by k, and unless the exponential time hypothesis (ETH) fails, it is not possible to compute a
(2− ε)-approximation in time 22o(

√
hd) · nO(1) for highway dimension hd [17].

1.2 Contributions and Outline
We first give an overview of various graph parameters, in particular we review several slightly
different definitions of the highway dimension that can be found in the literature. Then
we show relationships between skeleton dimension, highway dimension and other important
parameters. Our results include the following.

J. Blum 4:3

The max leaf number ml is a tight upper bound for the bandwidth bw. This improves a
result of Sorge et al. who showed that bw ≤ 2ml [26].
The skeleton dimension is incomparable to any of the parameters distance to linear forest,
bandwidth, treewidth and highway dimension (when using the definitions from [3] or [2]).
The skeleton dimension κ is upper bounded by the max leaf number. Moreover, for any
graph on at least 3 vertices there are edge weights for which both parameters are equal. As
the max leaf number is an upper bound for the pathwidth pw, it follows that κ ≥ pw. This
improves a result of Blum and Storandt, who showed that one can choose edge weights
for any graph such that the skeleton dimension is at least (pw − 1)/(log2 |V |+ 2) [11].

The resulting parameter hierarchy is illustrated in Figure 1. In the second part of the paper
we show hardness for two problems in transportation networks.

We show that computing the highway dimension is NP-hard when using the most recent
definition from [1]. This answers an open question stated in [18], where NP-hardness was
only shown for the definitions used in [3] and [2].
We study the k-Center problem in graphs of low skeleton dimension. We extend a
result from [17] and show how graphs of low doubling dimension can be embedded into
graphs of low skeleton dimension. It follows that for any ε > 0 it is NP-hard to compute
a (2− ε)-approximation on graphs of skeleton dimension O(log2 |V |).

2 Preliminaries

We consider undirected graphs G = (V,E) and denote the number of nodes and edges
by n and m, respectively. Let ∆ be the maximum degree of G. For weighted graphs, let
` : E → Q+ be the cost function. For nodes u, v ∈ V , let distG(u, v) (or simply dist(u, v))
be length of the shortest path from u to v in G. A weighted graph G = (V,E) is metric if
(V,distG) is a metric, i.e. its edge weights satisfy the triangle inequality, that is for all nodes
u, v, w ∈ V we have dist(u,w) ≤ dist(u, v) + dist(v, w). We assume that the shortest path
between any two nodes of G is unique, which can be achieved e.g. by slightly perturbing the
edge weights. For u ∈ V and r ∈ R, we define the ball around the node u of radius r as
Br(u) = {v ∈ V | dist(u, v) ≤ r}. The length of a path π is denoted by |π|.

2.1 Skeleton Dimension and Doubling Dimension
The skeleton dimension was introduced by Kosowski and Viennot to analyze the performance
of hub labels, a route planning technique used for road networks [24]. To define it formally,
we first need to introduce the geometric realization G̃ = (Ṽ, Ẽ) of a graph G = (V,E) with
edge weights `. Intuitively, G̃ is a continuous version of G, where every edge is subdivided
into infinitely many infinitely short edges. This means that V ⊆ Ṽ , for all u, v ∈ V we have
distG̃(u, v) = distG(u, v) and for every edge {u, v} of G and every 0 ≤ α ≤ `({u, v}) there is
a node w ∈ Ṽ satisfying dist(u,w) = α and dist(w, v) = `({u, v})− α.

For a node s ∈ V let Ts be the shortest path tree of s and let T̃s be its geometric
realization. Recall that shortest paths are unique, and hence the same holds for Ts and T̃s.
The skeleton T ∗s is defined as the subtree of T̃s induced by the nodes v ∈ Ṽ that have a
descendant w in T̃s satisfying dist(v, w) ≥ 1/2 · dist(s, v). Intuitively, we obtain T ∗s by taking
every shortest path with source s, cutting off the last third of the path and taking the union
of the truncated paths. For a radius r ∈ R let Cutr

s be the set of all nodes u in T ∗s satisfying
dist(s, u) = r.

I Definition 1 (Skeleton Dimension). The skeleton dimension κ of a graph G is maxs,r |Cutr
s|.

IPEC 2019

4:4 Hierarchy of Transportation Network Parameters and Hardness Results

Max Leaf # Highway
Dimension 1

Distance to
Linear Forest Bandwidth

Skeleton
Dimension

Highway
Dimension 2

Pathwidth
Maximum
Degree

Treewidth h-index

Acyclic
Chromatic #

Minimum
Degree

strict bound

general bound

incomparable

(a) Relationships between general graph parameters.

∆ddim

κ

hd2

hd3 hd1

h̃d2 hd3(hd3 + 1)

2hd3(∆ + 1)hd2 h̃d1

(∆ + 1)hd1 2hd3(hd3 + 1)

(b) Relationships between maximum degree ∆, doubling dimension ddim, skeleton dimension κ and
different highway dimensions.

Figure 1 Relationships between graph parameters. New results are highlighted in green. Solid
lines denote strict bounds (e.g. treewidth ≤ pathwidth), dashed lines denote general bounds (e.g.
pathwidth ≤ distance to linear forest + 1). Dotted lines denote incomparabilities.

J. Blum 4:5

Intuitively, a graph has low skeleton dimension, if for any starting node s there are only
a few main roads that contain the major central part of ever shortest path originating from
s. Clearly, the skeleton dimension can be computed in polynomial time by computing the
shortest path tree and its skeleton for every node s ∈ V and determining Cutr

s for every
radius r ∈ R. On large networks, a naïve implementation is still impracticable, but in [11] it
was shown that it is possible to compute κ even for networks with millions of vertices.

Related to the skeleton dimension is the doubling dimension, which was introduced as a
generalization of several kinds of metrics, e.g. Euclidean or Manhattan metrics.

I Definition 2 (Doubling Dimension). A graph G is d-doubling, if for any radius r, any ball
of radius r is contained in the union of d balls of radius r/2. If d is the smallest such integer,
the doubling dimension of G is log2 d.

Computing the doubling dimension is NP-hard [21]. Kosowski and Viennot showed that
a graph with skeleton dimension κ is (2κ+ 1) doubling [24].

2.2 Highway Dimension
The highway dimension was introduced by Abraham et al., motivated by the observation of
Bast et al. that in road networks, all shortest paths leaving a certain region pass through
one of a small number of nodes [7, 8]. In the literature, several slightly different definitions
of the highway dimension can be found. The first one was given in [3].

I Definition 3 (Highway Dimension 1). The highway dimension of a graph G is the smallest
integer hd1 such that for any radius r and any node u there is a hitting set S ⊆ B4r(u) of
size hd1 for the set of all shortest paths π satisfying |π| > r and π ⊆ B4r(u).

In [19, 20], a generalized version of hd1 was used, where balls of radius c · r for c ≥ 4 were
considered. It was observed that the highway dimension is highly sensitive to the chosen
radius, i.e. there are graphs of highway dimension 1 w.r.t. radius c and highway dimension of
Ω(n) w.r.t. radius c′ > c.

In [2] the highway dimension was defined as follows.

I Definition 4 (Highway Dimension 2). The highway dimension of a graph G is the smallest
integer hd2 such that for any radius r and any node u there is a hitting set S ⊆ V of size
hd2 for the set of all shortest paths π satisfying 2r ≥ |π| > r that intersect B2r(u).

The definition of hd1 requires to hit all shortest paths contained in the ball of radius
4r, while for hd2 only the shortest paths intersecting the ball of radius 2r need to be hit.
Hence, we have hd2 ≤ hd1. Abraham et al. motivate their new definition with the fact that
a smaller highway dimension can be achieved on real-world instances, while previous results
still hold [2]. Both previously defined highway dimensions are incomparable to the maximum
degree and the doubling dimension [3].

In [1], a continuous version of the highway dimension hd2 was introduced, which is based
on the geometric realization. For the definition, assume w.l.o.g. that `(e) ≥ 1 for all edges
e ∈ E.

I Definition 5 (Continuous Highway Dimension). The continuous highway dimension of a
graph G is the smallest integer h̃d2 such that for any radius r ≥ 1 and any node u ∈ Ṽ of
the geometric realization G̃ there is a hitting set S ⊆ V of size h̃d2 for the set of all shortest
paths π satisfying 2r ≥ |π| > r that intersect B2r(u).

IPEC 2019

4:6 Hierarchy of Transportation Network Parameters and Hardness Results

Clearly, we have hd2 ≤ h̃d2. In [24] it was observed that h̃d2 is upper bounded by
(∆ + 1)hd2. Along the lines of Definition 3, we can also introduce the continuous version h̃d1
of hd1. It holds that hd1 ≤ h̃d1 ≤ (∆ + 1)hd1 and moreover h̃d2 ≤ h̃d1. In [1], yet another
definition of the highway dimension was given. It is based on the notion of r-significant
shortest paths.

I Definition 6 (r-significant shortest path). For r ∈ R, a shortest path π = v1 . . . vk is
r-significant iff it has an r-witness path π′, which means that π′ is a shortest path satisfying
|π′| > r and one of the following conditions hold: (i) π′ = π, or (ii) π′ = v0π, or π′ = πvk+1,
or (iv) π′ = v0πvk+1 for nodes v0, vk+1 ∈ V .

In other words, π is r-significant, if by adding at most one vertex to every end we can
obtain a shortest path π′ of length more than r (the r-witness). For r, d ∈ R, a shortest path
π is (r, d)-close to a vertex v, if there is an r-witness path π′ of π that intersects the ball
Bd(v).

I Definition 7 (Highway Dimension 3). The highway dimension of a graph G is the smallest
integer hd3 such that for any radius r and any node u there is a hitting set S ⊆ V of size
hd3 for the set of all shortest paths π that are (r, 2r)-close to u.

The advantage of the latest definition is that it also captures continuous graphs. In
particular, it was shown that hd3 ≤ h̃d2 ≤ 2hd3 [1]. Hence there is no need for a continuous
version of hd3, apart from the fact that there is no meaningful notion of an r-witness in a
continuous graph.

It can be easily seen that hd2 ≤ hd3 as every shortest path π that is longer than r and
intersects B2r(u) is also (r, 2r)-close to u (using π itself as the r-witness). Moreover, the
skeleton dimension κ is a lower bound for hd3, i.e. κ ≤ hd3 [24]. Feldmann et al. showed that
hd1 ≤ hd3(hd3 + 1) [18]. Combining their proof with [1] yields that h̃d1 ≤ 2hd3(hd3 + 1).

Computing the highway dimensions hd1 and hd2 is NP-hard [18]. In Section 4.1 we show
that this also holds for hd3, which answers an open question stated in [18].

2.3 Classic graph parameters
We now provide an overview of several classic graph parameters. They are all defined on
unweighted graphs, but we can also apply them to weighted graphs, simply neglecting edge
weights. We start with introducing the treewidth and the related parameters pathwidth and
bandwidth.

I Definition 8 (Treewidth). A tree decomposition of a graph G = (V,E) is a tree T = (X , E)
where every node (also called bag) X ∈ X is a subset of V and the following properties are
satisfied: (i)

⋃
X∈X X = V , (ii) for every edge {u, v} ∈ E there is a bag X ∈ X containing

both u and v, and (iii) for every u ∈ V , the set of all bags containing u induce a connected
subtree of T . The width of a tree decomposition T = (X , E) is the size of the largest bag
minus one, i.e. maxX∈X (|X| − 1). The treewidth tw of a graph G = (V,E) is defined as the
minimum width of all tree decompositions of G.

I Definition 9 (Pathwidth). A path decomposition of a graph G is a tree decomposition of G
that is a path. The pathwidth pw of G is the minimum width of all path decompositions of G.

It follows directly from the definitions, that the pathwidth is an upper bound for the
treewidth and one can show that the minimum degree is a lower bound for the treewidth [26].
The maximum degree ∆ is incomparable to both treewidth and pathwidth, as for a square
grid graph we have ∆ = 4 and tw ∈ Ω(

√
n) whereas for a star graph we obtain ∆ ∈ Ω(n)

and pw = 1.

J. Blum 4:7

I Definition 10 (Bandwidth). A vertex labeling of a graph G = (V,E) is a bijection f : V →
{1, . . . , n}. The bandwidth of G is the minimum of max{|f(u)− f(v)| : {u, v} ∈ E}, taken
over all vertex labelings f of G.

It was shown that the bandwidth bw is a tight upper bound for the pathwidth [23], and
that ∆ ≤ 2 · bw [26].

I Definition 11 (Max Leaf Number). The max leaf number ml of a graph G is the maximum
number of leaves of all spanning trees of G.

I Definition 12 (Distance to Linear Forest). The distance to linear forest (also known as
distance to union of paths) of a graph G = (V,E) is the size of the smallest set S ⊆ V that
separates G into a set of disjoint paths.

I Definition 13 (h-Index). The h-index of a graph G = (V,E) is the largest integer h such
that G has h vertices of degree at least h.

The max leaf number is closely related to the notion of a connected dominating set. It is
an upper bound for several graph parameters. It was shown that for the max leaf number
ml and the distance to linear forest dl we have dl ≤ ml − 1 [15]. We will show that it also
upper bounds the bandwidth and the skeleton dimension. For distance to linear forest dl and
pathwidth pw it is known that pw ≤ dl + 1 [13]. Clearly, the h-index is a lower bound for
the maximum degree. It was shown that the h-index is incomparable to the treewidth [26].

3 Parameter Relationships

In this section we show relationships between skeleton dimension, highway dimension and
other graph parameters. We will see that the max leaf number is an upper bound for the
skeleton dimension and the bandwidth, whereas many of the remaining parameters are
pairwise incomparable. This shows that they are all useful and worth studying.

3.1 Upper Bounds
We first relate the max leaf number to the skeleton dimension and the bandwidth. We will
use the fact, that every tree has as least as many leaves as any subtree.

I Observation 14. Let T ′ be a subtree of a tree T and let L and L′ be the leaves of T and
T ′, respectively. Then we have |L′| ≤ |L|.

This allows to show that the max leaf number is an upper bound for the skeleton
dimension.

I Theorem 15. For the skeleton dimension κ and the max leaf number ml we have κ ≤ ml.
For any unweighted undirected graph on n ≥ 3 nodes there are metric edge weights such that
κ = ml.

Proof. Let G = (V,E) be a graph. Consider the skeleton T ∗s of some node s ∈ V that has
a cut C of size κ. As for any two distinct nodes u, v ∈ C the lowest common ancestor in
T ∗s is distinct from u and v, T ∗s has at least κ leaves. The skeleton T ∗s is a subtree of the
shortest path tree Ts of s, so Observation 14 implies that Ts has at least κ leaves. As Ts is a
spanning tree of G it follows that κ ≤ ml.

IPEC 2019

4:8 Hierarchy of Transportation Network Parameters and Hardness Results

To show that the bound is tight, consider a spanning tree T = (V,ET) of an unweighted
graph G = (V,E) with ml leaves. We choose edge weights ` such that the skeleton dimension
of the resulting weighted graph equals ml. Let

`({u, v}) =

2 if {u, v} ∈ ET and u or v is a leaf of T
1/n if {u, v} ∈ ET and neither u nor v is a leaf of T
5 else

To examine the skeleton dimension of the resulting graph, consider an internal node s of T .
Such a node exists if n > 2. We observe that the shortest path tree Ts of s is equal to T
as for any vertex v we have dist(s, v) < 3, and hence no edge e ∈ E \ ET can be contained
in Ts. Moreover, for any leaf v we have dist(s, v) ≥ 2 and for any internal node v we have
dist(s, v) < 1. Consider now the skeleton T ∗s . Any leaf of T ∗s has distance at least 2/3 · 2 > 1
from s. As T ∗s has ml leaves, the cut of T ∗s at radius 4/3 has size ml.

Note that in general, the resulting graph is not metric. To fix this, let distT (u, v) be the
shortest path distance from u to v when applying the previously chosen edge weights. For
{u, v} ∈ ET we define ` as previously, but for {u, v} 6∈ ET choose `(u, v) = distT (u, v) − ε
where for every edge, ε is chosen from (0, 1/n2) such that shortest paths are unique. Consider
an internal node s of T . The shortest path tree Ts of s may now differ from T , but the
number of leaves of Ts is still ml. For any leaf v of T we have now dist(s, v) > 2− n/n2 ≥ 3/2

and for any internal node v we have dist(s, v) < 1. Hence, the cut of T ∗s at radius 1 has size
ml. J

As the max leaf number ml is an upper bound for the pathwidth pw, it follows that
for any graph G on n ≥ 3 nodes there are edge weights such that κ ≥ pw. This improves
a result of Blum and Storandt, who showed that there are edge weights such that κ ≥
(pw − 1)/(log2 n+ 2) [11].

Sorge et al. showed that the bandwidth can be upper bounded by two times the max leaf
number [26]. We slightly modify their proof to remove the factor of 2 and show that the
resulting bound is tight.

I Lemma 16. For the max leaf number ml and the bandwidth bw we have bw ≤ ml. This
bound is tight.

Proof. Let T be a BFS tree of a graph G = (V,E) and let f : V → {1, . . . , n} be a vertex
labeling that assigns to every node the time of its BFS discovery. W.l.o.g. we assume
that f(vi) = i. Choose an edge {vi, vj} ∈ E maximizing f(vj) − f(vi). It follows that
bw ≤ f(vj)− f(vi) = j − i.

Observe that in the BFS tree T , the node vi is the parent of vj as by the choice of {vi, vj}
there is no k < i such that {vk, vj} ∈ E. Consider the subtree T ′ of T induced by the nodes
{v1, . . . , vj}. As vi is the parent of vj and nodes are ordered by their discovery time, it
follows that vi+1, . . . , vj are leaves of T ′. Observation 14 implies T has at least (j − i) leaves.

Tightness follows from the complete graph Kn where bw = ml = n− 1. J

3.2 Incomparabilities
We now show incomparabilities between several parameters, which means that they are all
worth studying. In [26] it was proven that the treewidth is incomparable to the h-index. We
observe that the same holds for the pathwidth.

I Theorem 17. The pathwidth and h-index are incomparable.

J. Blum 4:9

Proof. The
√
n×
√
n grid graph has pathwidth

√
n and h-index at most 4. The caterpillar

tree with d backbone vertices of degree d has pathwidth 1 and h-index d. J

We proceed with relating the highway dimensions hd1 and hd2 to the treewidth and
pathwidth. In [19] it was observed that graphs of low highway dimension hd1 do not
have bounded treewidth, as the complete graph on vertex set {1, . . . , n} with edge weights
`({i, j}) = 4max(i,j) has highway dimension hd1 = 1 and treewidth n − 1.1 The complete
graph Kn has indeed a minimum degree of n− 1, which is a lower bound for the treewidth.
On the other hand, there are graphs of constant bandwidth and a linear highway dimension
hd2. For instance, consider a complete caterpillar tree on b backbone vertices of degree 3.
Its bandwidth is 2. Choose the weight of an edge as 1/n if it is a backbone edge and as 1
otherwise. Every edge of weight 1 is a shortest path intersecting the ball of radius 1 around
some fixed backbone vertex and hence hd2 ≥ b = n/2− 2. This gives us the follows theorem.

I Theorem 18. The highway dimensions hd1 and hd2 are incomparable to the bandwidth
and the minimum degree.

We would also like to relate the skeleton dimension to bandwidth and treewidth. On
general graphs, it is easy to show, that the skeleton dimension is incomparable to the other
two parameters. For instance, a star graph has treewidth 1 and linear skeleton dimension,
whereas a complete graph has linear treewidth, but we can choose edge weights such that the
shortest path tree of every vertex becomes a path which implies a constant skeleton dimension.
However, by choosing such weights for the latter graph, most edges become useless as they
do not represent a shortest path and removing all unnecessary edges produces a graph of
low treewidth. Still, we can show, that even on metric graphs the skeleton dimension is
incomparable to both bandwidth and treewidth.

I Theorem 19. On metric graphs the skeleton dimension and the bandwidth are incomparable.

Proof. Consider the complete caterpillar tree on b backbone vertices of degree 3. It has a
bandwidth of 2. Set the weight of every backbone edge to 1 and pick an arbitrary backbone
vertex v. For the remaining edges, choose edge weights such that all leaves have the same
distance d ≥ 2 from v. It follows that the skeleton dimension of the weighted caterpillar tree
equals the number of leaves which is b+ 2 = n/2 + 1.

The complete binary tree B2d+1 of depth 2d+1 has pathwidth d [14]. Choosing `({u, v}) =
3−j for j and (j + 1) being the depth of u and v in the tree, respectively, yields a graph of
skeleton dimension at most 3. J

I Theorem 20. On metric graphs the skeleton dimension and the treewidth are incomparable.

Proof. The star graph Sn on n vertices has treewidth 1 and skeleton dimension n− 1.
We now construct a graph of treewidth Ω(

√
n) and constant skeleton dimension. Consider

a square grid graph G on the vertex set V = {v1, . . . , vn}. Subdivide every edge {u, v} by
inserting two vertices xuv and yuv, i.e. replace the edge {u, v} through a path uxuv yuv v.
Connect the vertices v1, . . . , vn through a path P and denote the resulting graph by G′ =
(V ′, E′). The original grid graph G has treewidth

√
n and is a minor of G′. Hence, G′ has

treewidth Ω(
√
n).

1 The edge weights chosen in [19] are actually `({i, j}) = 4min(i,j), which results in a non-metric graph.
Removing all edges that are not a shortest path yields a star graph of treewidth 1.

IPEC 2019

4:10 Hierarchy of Transportation Network Parameters and Hardness Results

We now choose edges weights for G′ resulting in a constant skeleton dimension. For every
edge e that is part of the path P , let `(e) = 1. Consider an edge {u, v} of G that was replaced
by the path uxuv yuv v and denote the shortest path distance between u and v on the path P
by distP (u, v). We choose `({u, xuv}) = `({yuv, v}) = 1 and `({xuv, yuv}) = distP (u, v) + 1/2.
It is easy to verify that the resulting graph is metric.

To bound the skeleton dimension, we use the following claim: For every edge {u, v} of G,
neither of the shortest paths from u to xuv or from v to yuv contains the edge {xuv, yuv}. To
prove the claim, observe that by concatenating the subpath of P between u and v and the
edge {v, yuv}, we obtain a path of length distP (u, v) + 1. Any path from u to yuv containing
the edge {xuv, yuv} has length distP (u, v) + 3/2. The case of v and xuv is symmetric.

It follows that in G′ the shortest path tree of a vertex s cannot contain the edge
{xuv, yuv} unless s ∈ {xuv, yuv}, as any subpath of a shortest path must be a shortest path
itself. Consider the shortest path tree Ts of some vertex s ∈ V . The previous claim implies
that Ts is a caterpillar tree where P is the backbone path. Moreover, Ts ha maximum degree
∆ ≤ 6 and all edges have unit length. Let r > 0 and consider the set Cutr

s. For r ≤ 1, the set
Cutr

s intersects only edges incident to s and hence |Cutr
s| ≤ 6. For 1 < r ≤ 2, the set Cutr

s

intersects only edges incident to the two neighbors of s on P , which implies |Cutr
s| ≤ 10.

Finally, for r > 2 we have |Cutr
s| ≤ 2 because for any vertex v 6∈ P̃ , the distance to its

furthest descendant is less than 1 < r/2 and hence, the set Cutr
s intersects only edges from

the path P . Similarly, it can be shown that |Cutr
s| ≤ 6 if s 6∈ V (i.e. s = xuv or s = yuv). It

follows that the skeleton dimension of G′ is κ ≤ 10. J

So far, it was only known that there can be an exponential gap between skeleton and
highway dimension [24]. However, we can use the graph G′ from the previous proof to show
that the skeleton dimension and the highway dimensions hd1 and hd2 are incomparable.
Let {v1,1, . . . , vq,q} be the vertex set of the original grid graph and choose the path P used
in the construction of G′ as v1,1 . . . v1,q v2,1 . . . v2,q . . . vq,1 . . . vq,q. In the resulting graph
G′, for i ∈ {1, . . . , q}, the shortest path from v1,i to v2,i has length q and hence the edge
ei = {xv1,i,v2,i , yv1,i,v2,i} has length q + 1

2 . As any edge of {e1, . . . , eq} intersects the ball
around v1,1 of radius 2q and no two of this edges share a common vertex, the highway
dimension hd2 of G′ is at least q =

√
n. The star graph on n vertices with unit edge weights

has a skeleton dimension of n − 1 and a highway dimension hd1 of 1, so we obtain the
following corollary.

I Corollary 21. The skeleton dimension is incomparable to both highway dimensions hd1
and hd2.

Finally it can be shown that the distance to linear forest dl is incomparable to the
bandwidth bw, the skeleton dimension κ and the highway dimensions hd1 and hd2. For
instance, a caterpillar tree of constant maximum degree has a distance to linear forest of Ω(n),
but constant bandwidth, skeleton dimension and highway dimensions (for suitably chosen edge
weights), whereas there are star-like graphs for which dl ∈ O(1) and bw, κ, hd1, hd2 ∈ Ω(n).

I Theorem 22. The distance to linear forest is incomparable to the bandwidth, the skeleton
dimension and the highway dimensions hd1 and hd2.

Proof. We will use the fact that the caterpillar tree Cb on b backbone vertices of degree 3
has a distance to linear forest of b = n/2− 1

Bandwidth. The caterpillar Cb has bandwidth 2. The star graph Sn on n vertices has a
bandwidth of bn/2c and a distance to linear forest of 1.

J. Blum 4:11

Skeleton dimension. Consider the caterpillar Cb and choose the weight of an edge
{u, v} as 2 if u and v are both backbone vertices and as 1 otherwise. The skeleton T ∗s of any
vertex s contains exactly one vertex of degree 3 (the backbone vertex that is closest to s)
and no vertex of degree more than 3. Hence, the skeleton dimension is 3. The star graph
Sn on n vertices with unit edge weights has a skeleton dimension of n− 1 and a distance to
linear forest of 1.

Highway dimensions. Consider the caterpillar Cb and choose the weight of an edge
{u, v} as 5 if u and v are both backbone vertices and as 1 otherwise. To bound the highway
dimension hd1, consider some node v and let r > 0. Consider a maximum path P ⊆ B4r(v)
containing only backbone vertices. It holds that |P | ≤ 8r. We can greedily choose a set
S ⊆ P such that |S| ≤ 7 and any subpath π of P of length |π| ≥ r − 2 is hit by S. Consider
a path π′ ⊆ B4r(v) that is not hit by S. The path π′ contains at most two edges of length 1
incident to a leaf and a subpath of P that has length less than r− 2. Hence, π′ has length at
most r. It follows that for any v ∈ V and any r > 0 we can hit all shortest paths π satisfying
|π| > r and π ⊆ B4r(v) with at most 7 vertices, which means that hd1 ≤ 7.

Take a star graph with l leaves, subdivide every edge by inserting one vertex and choose
the weight of every edge in the resulting graph as 1. We obtain a graph of distance to linear
forest 1 and highway dimension hd2 = l, as every edge incident to a leaf is a shortest path of
length 1 intersecting the ball of radius 1 around the central vertex. J

4 Hardness Results

In this section we show hardness for two problems in transportation networks. We first
show that computing the highway dimension in NP-hard, even when using the most recent
definition. Then we consider the k-Center problem and show that for any ε > 0, computing
a (2− ε)-approximation is NP-hard on graphs of skeleton dimension O(log2 n).

4.1 Highway Dimension Computation
In [18] it was shown that computing the highway dimension hd1 is NP-hard. The presented
reduction is from Vertex Cover and also works for hd2. It does not directly carry over to
hd3 as the constructed graph has maximum degree ∆ = n− 1 and we have hd3 ≥ ∆. Still,
using a slightly different reduction, we can show NP-hardness for the computation of hd3.

I Theorem 23. Computing the highway dimension hd3 is NP-hard.

Proof. We present a reduction from Vertex Cover on graphs with maximum degree ∆ ≤ 3.
Consider therefore a graph G = (V,E) on n nodes satisfying ∆ ≤ 3. We construct a weighted
graph G′ = (V ′, E′) as follows. Add a single node x and for any node v ∈ V , add a new node
v∗ and the edges {v, v∗} and {v∗, x}. For an edge e ∈ E′ choose edge weight `(e) = 5 if e is
incident to x and `(e) = 1 otherwise.

Let C be a minimum vertex cover of G. We may assume that |C| > ((∆+1)6−1)/∆ ∈ O(1)
as for any constant c we can decide in polynomial time whether G has a minimum vertex
cover of size c. We show that G′ has highway dimension hd3 = |C|+ n+ 1. Observe that
hd3 is still linear in n, but it may vary between n+ 1 and 2n, depending on |C|.

Let 0 < r < 5/2. Consider a node u ∈ V ′. Let N be the closed neighborhood of the
ball around u of radius 2r, i.e. v ∈ N iff v ∈ B2r(u) or v is adjacent to a node w ∈ B2r(u).
Clearly, N is a hitting set for all shortest paths that are (r, 2r)-close to u. For u 6= x, the ball
B2r(u) contains at most

∑4
i=0(∆ + 1)i nodes, as 2r < 5. Moreover, every node in B2r(u) has

at most ∆ + 1 neighbors. Hence, N is a hitting set of size
∑5

i=0(∆ + 1)i = ((∆ + 1)6 − 1)/∆

IPEC 2019

4:12 Hierarchy of Transportation Network Parameters and Hardness Results

for all shortest paths that are (r, 2r)-close to u. For u = x, we have N = V ′ \V and therefore
|N | = n+ 1.

Let r = 5/2. The ball around x of radius 2r = 5 is B2r(x) = V ′ \ V . Any edge {u, v} ∈ E
is (r, 2r)-close to x, as u∗ u v v∗ is an r-witness. Moreover, any node u ∈ V ′ \ V is a shortest
path that is (r, 2r)-close to x. However, a single node u ∈ V is not r-significant, as it can only
be extended to a witness of length 2 < r. Hence, a shortest path π is (r, 2r)-close to x iff and
only if π ∈ E or π ∈ V ′ \V . Consider a smallest hitting set H ⊆ V for all shortest paths that
are (r, 2r)-close to x. We have (V ′ \ V) ⊆ H, we H needs to hit all paths that consist of one
single node v ∈ V ′ \ V . Moreover, H needs to hit all edges E. In other words, H consists of
V ′ \V and a vertex cover for G. Hence, the hitting set H has size |V ′ \V |+ |C| = |C|+n+ 1.

Observe that for r = 5/2, any r-significant shortest path in G′ is (r, 2r)-close to x, as any
node of G′ has a neighbor contained in B2r(x). Hence, for any node u ∈ V ′, there is a hitting
set for all shortest paths that are (r, 2r)-close to u of size at most |C|+ n + 1. Moreover,
for any node u and any r > 5/2, a shortest path can only be (r, 2r)-close to u, if it is also
(5/2, 5)-close to u. Hence, for any u ∈ V ′ and any r > 5/2, for all shortest paths that are
(r, 2r)-close to u there is a hitting set of size at most |C|+ n+ 1.

We conclude that the highway dimension of G′ is hd3 = |C|+ n+ 1 if and only if G has
a minimum vertex cover of size |C|. J

4.2 Hardness of Approximating k-Center
In the k-Center problem, we are given a graph G = (V,E) with positive edge weights and
the goal is to select k center nodes C ⊆ V while minimizing maxu∈V minv∈C dist(u, v), that
is the maximum distance from any node to the closest center node. A possible scenario is
that one wants to place a limited number of hospitals on a map such that the maximum
distance from any point to the closest hospital is minimized.

We will prove that computing a (2 − ε)-approximation on graphs with low skeleton
dimension is NP-hard. For that purpose, we first show the following lemma, which is a
non-trivial extension of a result of Feldmann [17]. The aspect ratio of a metric (X,distX)
is the ratio of the maximum distance between any pair of vertices in X and the minimum
distance.

I Lemma 24. Let (X,distX) be a metric of constant doubling dimension d and aspect ratio
α. For any 0 < ε < 1 it is possible to compute a graph G = (X,E) in polynomial time that
has the following properties:
(a) for all u, v ∈ X we have distX(u, v) ≤ distG(u, v) ≤ (1 + ε) distX(u, v),
(b) the graph G has highway dimension hd2 ∈ O((log(α)/ε)d), and
(c) the graph G has skeleton dimension κ ∈ O((log(α)/ε)d),

Proof (Sketch). In [17] it was shown, how to compute a graph H that satisfies properties
a and b. This was done by choosing so called hub sets Yi ⊆ X for i = 0, . . . , dlog2 αe such
that in H any shortest path in the range (2i, 2i+1] contains some node from Yi. The hub
sets form a hierarchy, i.e. Yi ⊇ Yj for all i < j. The computed graph has

(|X|
2
)
edges and the

weight of every edge {u, v} depends on the hub sets containing u and v. However, we can
show that many of these edges are not a shortest path and can be removed. Using properties
of the hub sets Yi and the fact that the metric has doubling dimension d and aspect ratio α,
a thorough investigation yields that the skeleton dimension of the resulting graph is bounded
by O((log(α)/ε)d). J

Feldmann [17] observed that due to a result of Feder and Greene [16], it is NP-hard for
any ε > 0 to compute a (2− ε)-approximation for k-Center on graphs of doubling dimension

J. Blum 4:13

4 and aspect ratio at most n. Lemma 24 hence implies that it is NP-hard to compute a
(2− ε)-approximation if the skeleton dimension is in O(log2 n). It remains open whether this
also holds for κ ∈ o(log2 n) and in particular for constant skeleton dimension.

It was also shown, that under the exponential time hypothesis (ETH) it is not possible to
compute a (2− ε)-approximation for k-Center on graphs of highway dimension hd2 in time
22o(
√
hd2) · nO(1) [17]. Analogously, Lemma 24 implies a bound of 22o(

√
κ) · nO(1) for skeleton

dimension κ. We summarize our findings in the following theorem.

I Theorem 25. For any ε > 0, it is NP-hard to compute a (2 − ε)-approximation for the
k-Center problem on graphs of skeleton dimension κ ∈ O(log2 n). Assuming ETH there is
no 22o(

√
κ) · nO(1) time algorithm that computes a (2− ε)-approximation.

5 Conclusion and Future Work

We showed that the skeleton dimension, the highway dimension (when defined as in [3]
or [2]) and several other graph parameters are pairwise incomparable. Nevertheless, the
skeleton dimension is upper bounded by the max leaf number and lower bounded through
the maximum degree and the doubling dimension.

However, for the highway dimensions hd1 and hd2 there are still no tight upper or lower
bounds. Using a grid graph and a complete graph, it can be shown that they are not even
comparable to the minimum degree or the maximum clique size, which are lower bounds for a
large number of graph parameters. Bauer et al. showed, that for any unweighted graph there
are edge weights such that hd2 ≥ (pw − 1)/(log3/2 |V |+ 2) where pw is the pathwidth [9]. It
remains open whether this bound is tight.

It turned out that computing the highway dimension is NP-hard for all three different
definitions used in the literature. Still, knowing the highway dimension of real-world networks
will give further insight in the structure of transportation networks and hence it is worthwhile
to study whether there are FPT algorithms to compute the highway dimension and to what
extent it can be approximated.

We proved that on graphs of skeleton dimension O(log2 n) it is not possible to beat
the well-known 2-approximation algorithm by Hochbaum and Shmoys for k-Center. Yet,
the experimental results reported in [11] indicate that the skeleton dimension of real-world
networks might actually be a constant independent of the size of the network. This raises the
question whether there is a (2− ε)-approximation algorithm for graphs of constant skeleton
dimension.

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.

Highway Dimension and Provably Efficient Shortest Path Algorithms. J. ACM, 63(5):41:1–
41:26, 2016. doi:10.1145/2985473.

2 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F.
Werneck. VC-Dimension and Shortest Path Algorithms. In Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP), pages 690–699, 2011. doi:
10.1007/978-3-642-22006-7_58.

3 Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Highway
Dimension, Shortest Paths, and Provably Efficient Algorithms. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 782–793, 2010. doi:
10.1137/1.9781611973075.64.

IPEC 2019

https://doi.org/10.1145/2985473
https://doi.org/10.1007/978-3-642-22006-7_58
https://doi.org/10.1007/978-3-642-22006-7_58
https://doi.org/10.1137/1.9781611973075.64
https://doi.org/10.1137/1.9781611973075.64

4:14 Hierarchy of Transportation Network Parameters and Hardness Results

4 Stefan Arnborg. Efficient Algorithms for Combinatorial Problems with Bounded Decompos-
ability - A Survey. BIT, 25(1):2–23, 1985.

5 Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and other Geometric Problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

6 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The Traveling Salesman Problem:
Low-Dimensionality Implies a Polynomial Time Approximation Scheme. SIAM J. Comput.,
45(4):1563–1581, 2016. doi:10.1137/130913328.

7 H. Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast Shortest-Path Queries via Transit
Nodes. In The Shortest Path Problem, Proceedings of a DIMACS Workshop, volume 74 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 175–192.
DIMACS/AMS, 2006. doi:10.1090/dimacs/074/07.

8 H. Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In Transit
to Constant Time Shortest-Path Queries in Road Networks. In Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2007. doi:10.1137/
1.9781611972870.5.

9 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theor. Comput. Sci., 645:112–127, 2016. doi:10.1016/j.tcs.2016.
07.003.

10 Amariah Becker, Philip N. Klein, and David Saulpic. Polynomial-Time Approximation Schemes
for k-center, k-median, and Capacitated Vehicle Routing in Bounded Highway Dimension.
In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, Proceedings of the 26th Annual
European Symposium on Algorithms (ESA), volume 112 of LIPIcs, pages 8:1–8:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.8.

11 Johannes Blum and Sabine Storandt. Computation and Growth of Road Network Dimensions.
In Lusheng Wang and Daming Zhu, editors, Proceedings of the 24th International Computing
and Combinatorics Conference (COCOON), volume 10976 of Lecture Notes in Computer
Science, pages 230–241. Springer, 2018. doi:10.1007/978-3-319-94776-1_20.

12 Hans L. Bodlaender. Dynamic Programming on Graphs with Bounded Treewidth. In Timo
Lepistö and Arto Salomaa, editors, Proceedings of the 15th International Colloquium on
Automata, Languages and Programming (ICALP), volume 317 of Lecture Notes in Computer
Science, pages 105–118. Springer, 1988. doi:10.1007/3-540-19488-6_110.

13 Hans L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

14 Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. A Simple Linear-Time Algorithm
for Finding Path-Decompositions of Small Width. Inf. Process. Lett., 57(4):197–203, 1996.
doi:10.1016/0020-0190(95)00190-5.

15 Ermelinda DeLaViña and Bill Waller. A note on a conjecture of Hansen et al. Un-
published manuscript, 2009. URL: http://cms.dt.uh.edu/faculty/delavinae/research/
DelavinaWaller2009.pdf.

16 Tomás Feder and Daniel H. Greene. Optimal Algorithms for Approximate Clustering. In Janos
Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 434–444. ACM, 1988. doi:10.1145/62212.62255.

17 Andreas Emil Feldmann. Fixed-Parameter Approximations for k-Center Problems in
Low Highway Dimension Graphs. Algorithmica, 81(3):1031–1052, 2019. doi:10.1007/
s00453-018-0455-0.

18 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1 + ε)-
Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs. CoRR,
abs/1502.04588, 2015. arXiv:1502.04588.

19 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1+ε)-
Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs. SIAM J.
Comput., 47(4):1667–1704, 2018. doi:10.1137/16M1067196.

https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/130913328
https://doi.org/10.1090/dimacs/074/07
https://doi.org/10.1137/1.9781611972870.5
https://doi.org/10.1137/1.9781611972870.5
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.4230/LIPIcs.ESA.2018.8
https://doi.org/10.1007/978-3-319-94776-1_20
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/0020-0190(95)00190-5
http://cms.dt.uh.edu/faculty/delavinae/research/DelavinaWaller2009.pdf
http://cms.dt.uh.edu/faculty/delavinae/research/DelavinaWaller2009.pdf
https://doi.org/10.1145/62212.62255
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1007/s00453-018-0455-0
http://arxiv.org/abs/1502.04588
https://doi.org/10.1137/16M1067196

J. Blum 4:15

20 Andreas Emil Feldmann and Dániel Marx. The Parameterized Hardness of the k-Center
Problem in Transportation Networks. In David Eppstein, editor, Proceedings of the 16th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 101 of LIPIcs,
pages 19:1–19:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/
LIPIcs.SWAT.2018.19.

21 Lee-Ad Gottlieb and Robert Krauthgamer. Proximity Algorithms for Nearly Doubling Spaces.
SIAM J. Discrete Math., 27(4):1759–1769, 2013. doi:10.1137/120874242.

22 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

23 Haim Kaplan and Ron Shamir. Pathwidth, Bandwidth, and Completion Problems to Proper
Interval Graphs with Small Cliques. SIAM J. Comput., 25(3):540–561, 1996. doi:10.1137/
S0097539793258143.

24 Adrian Kosowski and Laurent Viennot. Beyond Highway Dimension: Small Distance Labels
Using Tree Skeletons. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1462–1478. SIAM, 2017.

25 Jan Plesník. On the computational complexity of centers locating in a graph. Aplikace
matematiky, 25(6):445–452, 1980. URL: https://dml.cz/bitstream/handle/10338.dmlcz/
103883/AplMat_25-1980-6_8.pdf.

26 Manuel Sorge, Matthias Weller, Florent Foucaud, Ondřej Suchý, Pascal Ochem, Martin Vat-
shelle, and Gerhard J. Woeginger. The Graph Parameter Hierarchy. Unpublished manuscript,
2019. URL: https://manyu.pro/assets/parameter-hierarchy.pdf.

27 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In László
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(SODA), pages 281–290. ACM, 2004. doi:10.1145/1007352.1007399.

28 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.
com/computer/theoretical+computer+science/book/978-3-540-65367-7.

IPEC 2019

https://doi.org/10.4230/LIPIcs.SWAT.2018.19
https://doi.org/10.4230/LIPIcs.SWAT.2018.19
https://doi.org/10.1137/120874242
https://doi.org/10.1145/5925.5933
https://doi.org/10.1137/S0097539793258143
https://doi.org/10.1137/S0097539793258143
https://dml.cz/bitstream/handle/10338.dmlcz/103883/AplMat_25-1980-6_8.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/103883/AplMat_25-1980-6_8.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf
https://doi.org/10.1145/1007352.1007399
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7

Metric Dimension Parameterized by Treewidth
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Nidhi Purohit
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
nidhi.purohit@ens-lyon.fr

Abstract
A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the
same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum
size, and in its decision form, a resolving set of size at most some specified integer. This problem is
NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect
to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth.
On the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs,
but the general case of treewidth at most two is open. On the complexity side, no parameterized
hardness is known. This has led several papers on the topic to ask for the parameterized complexity
of Metric Dimension with respect to treewidth.

We provide a first answer to the question. We show that Metric Dimension parameterized by
the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential
Time Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)no(pw) on
n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable
function. This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete
Math. ’17] with respect to the combined parameter tl + ∆, where tl is the tree-length and ∆ the
maximum-degree of the input graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Metric Dimension, Treewidth, Parameterized Hardness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.5

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.08093.

1 Introduction

The Metric Dimension problem has been introduced in the 1970s independently by Slater
[22] and by Harary and Melter [13]. Given a graph G and an integer k, Metric Dimension
asks for a subset S of vertices of G of size at most k such that every vertex of G is uniquely
determined by its distances to the vertices of S. Such a set S is called a resolving set, and a
resolving set of minimum-cardinality is called a metric basis. The metric dimension of graphs
finds application in various areas including network verification [2], chemistry [4], and robot
navigation [18].

Metric Dimension is an entry of the celebrated book on intractability by Garey and
Johnson [12] where the authors show that it is NP-complete. In fact Metric Dimension
remains NP-complete in many restricted classes of graphs such as planar graphs [6], split,
bipartite, co-bipartite graphs, and line graphs of bipartite graphs [9], interval graphs of
diameter two [11], permutation graphs of diameter two [11], and in a subclass of unit disk
graphs [16]. Furthermore Metric Dimension cannot be solved in subexponential-time
unless 3-SAT can [1]. On the positive side, the problem is polynomial-time solvable on
trees [22, 13, 18]. Diaz et al. [6] generalize this result to outerplanar graphs. Fernau et al. [10]

© Édouard Bonnet and Nidhi Purohit;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1653-5822
mailto:edouard.bonnet@ens-lyon.fr
https://orcid.org/0000-0003-4869-0031
mailto:nidhi.purohit@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.IPEC.2019.5
https://arxiv.org/abs/1907.08093
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Metric Dimension Parameterized by Treewidth

give a polynomial-time algorithm on chain graphs. Epstein et al. [9] show that Metric
Dimension (and even its vertex-weighted variant) can be solved in polynomial time on
co-graphs and forests augmented by a constant number of edges. Hoffmann et al. [15] obtain
a linear algorithm on cactus block graphs.

Hartung and Nichterlein [14] prove that Metric Dimension is W[2]-complete (paramet-
erized by the size of the solution k) even on subcubic graphs. Therefore an FPT algorithm
solving the problem is unlikely. However Foucaud et al. [11] give an FPT algorithm with
respect to k on interval graphs. This result is later generalized by Belmonte et al. [3] who
obtain an FPT algorithm with respect to tl + ∆ (where tl is the tree-length and ∆ is the
maximum-degree of the input graph), implying one for parameter tl + k. Indeed interval
graphs, and even chordal graphs, have constant tree-length. Hartung and Nichterlein [14]
presents an FPT algorithm parameterized by the vertex cover number, Eppstein [8], by the
max leaf number, and Belmonte et al. [3], by the modular-width (a larger parameter than
clique-width).

The complexity of Metric Dimension parameterized by treewidth is quite elusive. It
is discussed [8] or raised as an open problem in several papers [3, 6]. On the one hand,
it was not known, prior to our paper, if this problem is W[1]-hard. On the other hand,
the complexity of Metric Dimension in graphs of treewidth at most two is still an open
question.

1.1 Our contribution

We settle the parameterized complexity of Metric Dimension with respect to treewidth.
We show that this problem is W[1]-hard, and we rule out, under the Exponential Time
Hypothesis (ETH), an algorithm running in f(tw)|V (G)|o(tw), where G is the input graph, tw
its treewidth, and f any computable function. Our reduction even shows that an algorithm
in time f(pw)|V (G)|o(pw) is unlikely on constant-degree graphs, for the larger parameter
pathwidth pw. This is in stark contrast with the FPT algorithm of Belmonte et al. [3] for
the parameter tl + ∆ where tl is the tree-length and ∆ is the maximum-degree of the graph.
We observe that this readily gives an FPT algorithm for ctw + ∆ where ctw is the connected
treewidth, since ctw > tl. This unravels an interesting behavior of Metric Dimension,
at least on bounded-degree graphs: usual tree-decompositions are not enough for efficient
solving. Instead one needs tree-decompositions with an additional guarantee that the vertices
of a same bag are at a bounded distance from each other.

As our construction is quite technical, we chose to introduce an intermediate problem
dubbed k-Multicolored Resolving Set in the reduction from k-Multicolored Inde-
pendent Set to Metric Dimension. The first half of the reduction, from k-Multicolored
Independent Set to k-Multicolored Resolving Set, follows a generic and standard
recipe to design parameterized hardness with respect to treewidth. The main difficulty is
to design an effective propagation gadget with a constant-size left-right cut. The second
half brings some new local attachments to the produced graph, to bridge the gap between
k-Multicolored Resolving Set and Metric Dimension. Along the way, we introduce
a number of gadgets: edge, propagation, forced set, forced vertex. They are quite stream-
lined and effective. Therefore, we believe these building blocks may help in designing new
reductions for Metric Dimension.

É. Bonnet and N. Purohit 5:3

1.2 Organization of the paper
In Section 2 we introduce the definitions, notations, and terminology used throughout the
paper. In Section 3 we present the high-level ideas to establish our result. We define
the k-Multicolored Resolving Set problem which serves as an intermediate step for
our reduction. In Section 4 we design a parameterized reduction from the W[1]-complete
k-Multicolored Independent Set to k-Multicolored Resolving Set parameter-
ized by treewidth. In Section 5 we show how to transform the produced instances of
k-Multicolored Resolving Set to Metric Dimension-instances (while maintaining
bounded treewidth). Due to space constraints, the proofs of lemmas marked with a star are
deferred to the long version (in appendix).

2 Preliminaries

We denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X the union of them.

2.1 Graph notations
All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by
V (G), respectively E(G), the set of vertices, respectively of edges, of the graph G. For
S ⊆ V (G), we denote the open neighborhood (or simply neighborhood) of S by NG(S), i.e.,
the set of neighbors of S deprived of S, and the closed neighborhood of S by NG[S], i.e., the
set NG(S)∪S. For singletons, we simplify NG({v}) into NG(v), and NG[{v}] into NG[v]. We
denote by G[S] the subgraph of G induced by S, and G− S := G[V (G) \ S]. For S ⊆ V (G)
we denote by S the complement V (G) \ S. For A,B ⊆ V (G), E(A,B) denotes the set of
edges in E(G) with one endpoint in A and the other one in B.

The length of a path in an unweighted graph is simply the number of edges of the path.
For two vertices u, v ∈ V (G), we denote by distG(u, v), the distance between u and v in G,
that is the length of the shortest path between u and v. The diameter of a graph is the
longest distance between a pair of its vertices. The diameter of a subset S ⊆ V (G), denoted
by diamG(S), is the longest distance between a pair of vertices in S. Note that the distance
is taken in G, not in G[S]. In particular, when G is connected, diamG(S) is finite for every
S. A pendant vertex is a vertex with degree one. A vertex u is pendant to v if v is the only
neighbor of u. Two distinct vertices u, v such that N(u) = N(v) are called false twins, and
true twins if N [u] = N [v]. In particular, true twins are adjacent. In all the above notations
with a subscript, we omit it whenever the graph is implicit from the context.

2.2 Exponential Time Hypothesis, FPT reductions, and W[1]-hardness
The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [17] asserting
that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables. Lokshtanov
et al. [20] survey conditional lower bounds under the ETH.

A standard use of an FPT reduction is to derive conditional lower bounds: if a problem
(Π, κ) is thought not to admit an FPT algorithm, then an FPT reduction from (Π, κ) to
(Π′, κ′) indicates that (Π′, κ′) is also unlikely to admit an FPT algorithm. We refer the
reader to the textbooks [7, 5] for a formal definition of W[1]-hardness. For the purpose of
this paper, we will just state that W[1]-hard are parameterized problems that are unlikely
to be FPT, and that the following problem is W[1]-complete even when all the Vi have the
same number of elements, say t (see for instance [21]).

IPEC 2019

5:4 Metric Dimension Parameterized by Treewidth

k-Multicolored Independent Set (k-MIS) Parameter: k
Input: An undirected graph G, an integer k, and (V1, . . . , Vk) a partition of V (G).
Question: Is there a set I ⊆ V (G) such that |I ∩ Vi| = 1 for every i ∈ [k], and G[I] is
edgeless?

Every parameterized problem that k-Multicolored Independent Set FPT-reduces
to is W[1]-hard. Our paper is thus devoted to designing an FPT reduction from k-
Multicolored Independent Set to Metric Dimension parameterized by tw. Let
us observe that the ETH implies that one (equivalently, every) W[1]-hard problem is not in
the class of problems solvable in FPT time (FPT 6=W[1]). Thus if we admit that there is no
subexponential algorithm solving 3-SAT, then k-Multicolored Independent Set is not
solvable in time f(k)|V (G)|O(1). Actually under this stronger assumption, k-Multicolored
Independent Set is not solvable in time f(k)|V (G)|o(k). A concise proof of that fact can
be found in the survey on the consequences of ETH [20].

2.3 Metric dimension, resolved pairs, distinguished vertices
A pair of vertices {u, v} ⊆ V (G) is said to be resolved by a set S if there is a vertex w ∈ S
such that dist(w, u) 6= dist(w, v). A vertex u is said to be distinguished by a set S if for any
w ∈ V (G) \ {u}, there is a vertex v ∈ S such that dist(v, u) 6= dist(v, w). A resolving set of
a graph G is a set S ⊆ V (G) such that every two distinct vertices u, v ∈ V (G) are resolved
by S. Equivalently, a resolving set is a set S such that every vertex of G is distinguished
by S. Then Metric Dimension asks for a resolving set of size at most some threshold k.
Note that a resolving set of minimum size is sometimes called a metric basis for G.

Metric Dimension (MD) Parameter: tw(G)
Input: An undirected graph G and an integer k.
Question: Does G admit a resolving set of size at most k?

Here we anticipate on the fact that we will mainly consider Metric Dimension paramet-
erized by treewidth. Henceforth we sometimes use the notation Π/tw to emphasize that Π is
not parameterized by the natural parameter (size of the resolving set) but by the treewidth
of the input graph.

3 Outline of the W[1]-hardness proof of Metric Dimension/tw

We will show the following.

I Theorem 1. Unless the ETH fails, there is no computable function f such that Metric
Dimension can be solved in time f(pw)no(pw) on constant-degree n-vertex graphs.

We first prove that the following generalized version of Metric Dimension is W[1]-hard.

k-Multicolored Resolving Set (k-MRS) Parameter: tw(G)
Input: An undirected graph G, an integer k, a set X of q disjoint subsets of V (G):
X1, . . . , Xq, and a set P of pairs of vertices of G: {x1, y1}, . . . , {xh, yh}.
Question: Is there a set S ⊆ V (G) of size q such that

(i) for every i ∈ [q], |S ∩Xi| = 1, and
(ii) for every p ∈ [h], there is an s ∈ S satisfying distG(s, xp) 6= distG(s, yp)?

In words, in this generalized version the resolving set is made by picking exactly one
vertex in each set of X , and not all the pairs should be resolved but only the ones in a
prescribed set P. We call critical pair a pair of P. In the context of k-Multicolored

É. Bonnet and N. Purohit 5:5

Resolving Set, we call legal set a set which satisfies the former condition, and resolving set
a set which satisfies the latter. Thus a solution for k-Multicolored Resolving Set is a
legal resolving set.

The reduction from k-Multicolored Independent Set starts with a well-established
trick to show parameterized hardness by treewidth. We create m “empty copies” of the
k-MIS-instance (G, k, (V1, . . . , Vk)), where m := |E(G)| and t := |Vi|. We force exactly one
vertex in each color class of each copy to be in the resolving set, using the set X . In each
copy, we introduce an edge gadget for a single (distinct) edge of G. Encoding an edge of
k-MIS in the k-MRS-instance is fairly simple: we build a pair (of P) which is resolved by
every choice but the one selecting both its endpoints in the resolving set. We now need to
force a consistent choice of the vertex chosen in Vi over all the copies. We thus design a
propagation gadget. A crucial property of the propagation gadget, for the pathwidth of the
constructed graph to be bounded, is that it admits a cut of size O(k) disconnecting one copy
from the other. Encoding a choice in Vi in the distances to four special vertices, called gates,
we manage to build such a gadget with constant-size “left-right” separator per color class.
This works by introducing t pairs (of P) which are resolved by the south-west and north-east
gates but not by the south-east and north-west ones. Then we link the vertices of a copy
of Vi in a way that the higher their index, the more pairs they resolve in the propagation
gadget to their left, and the fewer pairs they resolve in the propagation gadget to their right.

We then turn to the actual Metric Dimension problem. We design a gadget which
simulates requirement (i) by forcing a vertex of a specific set X in the resolving set. This
works by introducing two pairs that are only resolved by vertices of X. We attach this new
gadget, called forcing set gadget, to all the k color classes of the m copies. Finally we have to
make sure that a candidate solution resolves all the pairs, and not only the ones prescribed
by P. For that we attach two adjacent “pendant” vertices to strategically chosen vertices.
One of these two vertices have to be in the resolving set since they are true twins, hence not
resolved by any other vertex. Then everything is as if the unique common neighbor v of the
true twins was added to the resolving set. Therefore we can perform this operation as long
as v does not resolve any of the pairs of P.

To facilitate the task of the reader, henceforth we stick to the following conventions:
Index i ∈ [k] ranges over the k rows of the (G)MD-instance or color classes of k-MIS.
Index j ∈ [m] ranges over the m columns of the (G)MD-instance or edges of k-MIS.
Index γ ∈ [t], ranges over the t vertices of a color class.

We invite the reader to look up Table 1 when in doubt about a notation/symbol relative to
the construction.

4 Parameterized hardness of k-Multicolored Resolving Set/tw

In this section, we give an FPT reduction from the W[1]-complete k-Multicolored
Independent Set to k-Multicolored Resolving Set parameterized by treewidth.
More precisely, given a k-Multicolored Independent Set-instance (G, k, (V1, . . . , Vk))
we produce in polynomial-time an equivalent k-Multicolored Resolving Set-instance
(G′, k′,X ,P) where G′ has pathwidth (hence treewidth) O(k).

4.1 Construction
Let (G, k, (V1, . . . , Vk)) be an instance of k-Multicolored Independent Set where
(V1, . . . , Vk) is a partition of V (G) and Vi := {vi,γ | 1 6 γ 6 t}. We arbitrarily number
e1, . . . , ej , . . . , em the m edges of G.

IPEC 2019

5:6 Metric Dimension Parameterized by Treewidth

4.1.1 Overall picture

We start with a high-level description of the k-MRS-instance (G′, k′,X ,P). For each color
class Vi, we introduce m copies V 1

i , . . . , V
j
i , . . . , V

m
i of a selector gadget to G′. Each set V ji

is added to X , so a solution has to pick exactly one vertex within each selector gadget. One
can imagine the vertex-sets V 1

i , . . . , V
m
i to be aligned on the i-th row, with V ji occupying

the j-th column (see Figure 1). Each V ji has t vertices denoted by vji,1, v
j
i,2, . . . , v

j
i,t, where

each vji,γ “corresponds” to vi,γ ∈ Vi. We make vji,1v
j
i,2 . . . v

j
i,t a path with t− 1 edges.

For each edge ej ∈ E(G), we insert an edge gadget G(ej) containing a pair of vertices
{cj , c′j} that we add to P. Gadget G(ej) is attached to V ji and V ji′ , where ej ∈ E(Vi, Vi′).
The edge gadget is designed in a way that the only legal sets that do not resolve {cj , c′j}
are the ones that precisely pick vji,γ ∈ V

j
i and vji′,γ′ ∈ V ji′ such that ej = vi,γvi′,γ′ . We add a

propagation gadget P j,j+1
i between two consecutive copies V ji and V j+1

i , where the indices
in the superscript are taken modulo m. The role of the propagation gadget is to ensure that
the choices in each V ji (j ∈ [m]) corresponds to the same vertex in Vi.

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1 V 6

1

V 1
2 V 2

2 V 3
2 V 4

2 V 5
2 V 6

2

V 1
3 V 2

3 V 3
3 V 4

3 V 5
3 V 6

3

P 1,2
1 P 2,3

1 P 3,4
1 P 4,5

1 P 5,6
1

P 1,2
2 P 2,3

2 P 3,4
2 P 4,5

2 P 5,6
2

P 1,2
3 P 2,3

3 P 3,4
3 P 4,5

3 P 5,6
3

P 6,1
1

P 6,1
2

P 6,1
3

G(e1) G(e2) G(e3) G(e4) G(e5) G(e6)

Figure 1 The overall picture with k = 3 color classes, t = 5 vertices per color class, m = 6 edges,
e1 = v1,3v2,4, e2 = v1,4v2,1, e3 = v1,5v3,1, etc. The dashed lines on the left and right symbolize that
the construction is cylindrical.

The intuitive idea of the reduction is the following. We say that a vertex of G′ is selected
if it is put in the resolving set of G′, a tentative solution. The propagation gadget P j,j+1

i

ensures a consistent choice among the m copies V 1
i , . . . , V

m
i . The edge gadget ensures that

the selected vertices of G′ correspond to an independent set in the original graph G. If both
the endpoints of an edge ej are selected, then the pair {cj , c′j} is not resolved. We now detail
the construction.

É. Bonnet and N. Purohit 5:7

4.1.2 Selector gadget
For each i ∈ [k] and j ∈ [m], we add to G′ a path on t− 1 edges vji,1, v

j
i,2, . . . , v

j
i,t, and denote

this set of vertices by V ji . Each vji,γ corresponds to vi,γ ∈ Vi. We call j-th column the set⋃
i∈[k] V

j
i , and i-th row, the set

⋃
j∈[m] V

j
i . We set X := {V ji }i∈[k],j∈[m]. By definition of

k-Multicolored Resolving Set, a solution S has to satisfy that for every i ∈ [k], j ∈ [m],
|S ∩ V ji | = 1. We call legal set a set S of size k′ = km that satisfies this property. We call
consistent set a legal set S which takes the “same” vertex in each row, that is, for every
i ∈ [k], for every pair (vji,γ , v

j′

i,γ′) ∈ (S ∩ V ji)× (S ∩ V j
′

i), then γ = γ′.

4.1.3 Edge gadget
For each edge ej = vi,γvi′,γ′ ∈ E(G), we add an edge gadget G(ej) in the j-th column of G′.
G(ej) consists of a path on three vertices: cjgjc′j . The pair {cj , c′j} is added to the list of
critical pairs P. We link both vji,γ and vji′,γ′ to gj by a private path1 of length t + 2. We
link the at least two and at most four vertices vji,γ−1, v

j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1 (whenever they

exist) to cj by a private path of length t+ 2. This defines at most six paths from V ji ∪ V
j
i′ to

G(ej). Let us denote by Wj the at most six endpoints of these paths in V ji ∪ V
j
i′ . For each

v ∈Wj , we denote by P (v, j) the path from v to G(ej). We set Eji :=
⋃
v∈Wj∩V j

i
P (v, j) and

Eji′ :=
⋃
v∈Wj∩V j

i′
P (v, j). We denote by Xj the set of the at most six neighbors of Wj on

the paths to G(ej). Henceforth we may refer to the vertices in some Xj as the cyan vertices.
Individually we denote by eji,γ the cyan vertex neighbor of vji,γ in P (vji,γ , j). We observe that
for fixed i and j, eji,γ exists for at most three values of γ. We add an edge between two cyan
vertices if their respective neighbors in V ji are also linked by an edge (or equivalently, if they
have consecutive “indices γ”). These extra edges are useless in the k-MRS-instance, but will
turn out useful in the MD-instance. See Figure 2 for an illustration of the edge gadget.

The rest of the construction will preserve that for every v ∈ (V ji ∪ V
j
i′) \ {v

j
i,γ , v

j
i′,γ′},

dist(v, c′j) = dist(v, cj) + 2, and for each v ∈ {vji,γ , v
j
i′,γ′}, dist(v, cj) = dist(v, gj) + 1 =

dist(v, c′j). In other words, the only two vertices of V ji ∪ V
j
i′ not resolving the critical pair

{cj , c′j} are v
j
i,γ and vji′,γ′ , corresponding to the endpoints of ej .

4.1.4 Propagation gadget
Between each pair (V ji , V

j+1
i), where j + 1 is taken modulo m, we insert an identical copy of

the propagation gadget, and we denote it by P j,j+1
i . It ensures that if the vertex vji,γ is in

a legal resolving set S, then the vertex of S ∩ V j+1
i should be some vj+1

i,γ′ with γ 6 γ′. The
cylindricity of the construction and the fact that exactly one vertex of V ji is selected, will
therefore impose that the set S is consistent.

P j,j+1
i, comprises four vertices swji , se

j
i , nw

j
i , ne

j
i , called gates, and a set Aji of 2t vertices

aji,1, . . . , a
j
i,t, α

j
i,1, . . . , α

j
i,t. We make both aji,1a

j
i,2 . . . a

j
i,t and α

j
i,1α

j
i,2 . . . α

j
i,t a path with t− 1

edges. For each γ ∈ [t], we add the pair {aji,γ , α
j
i,γ} to the set of critical pairs P. Removing

the gates disconnects Aji from the rest of the graph.
We now describe how we link the gates to V ji , V

j+1
i , and Aji . We link vji,1 (the “top”

vertex of V ji) to swji and vji,t (the “bottom” vertex of V ji) to nwji both by a path of length 2.

1 We use the expression private path to emphasize that the different sources get a pairwise internally
vertex-disjoint path to the target.

IPEC 2019

5:8 Metric Dimension Parameterized by Treewidth

V 4
1

V 4
2

V 4
3

v4
1,1
v4

1,2
v4

1,3
v4

1,4
v4

1,5

e4
1,4

e4
1,5

g4

c4

c′4
G(e4)

6

6

6

6

6

Figure 2 The edge gadget G(e4) with e4 = v1,5v3,3. Weighted edges are short-hands for subdivi-
sions of the corresponding length. The edges between the cyan vertices will not be useful for the
k-MRS-instance, but will later simplify the construction of the MD-instance.

We also link vj+1
i,1 to seji by a path of length 3, and vj+1

i,t to neji by a path of length 2. Then
we make nwji adjacent to a

j
i,1 and αji,1, while we make neji adjacent to α

j
i,1 only. We make

seji adjacent to aji,t and α
j
i,t, while we make swji adjacent to aji,t only. Finally, we add an

edge between neji and nwji , and between swji and seji . See Figure 3 for an illustration of the
propagation gadget P j,j+1

i with t = 5.

vji,1

vji,2

vji,3

vji,4

vji,5

vj+1
i,1

vj+1
i,2

vj+1
i,3

vj+1
i,4

vj+1
i,5

V ji V j+1
i

swji seji

nwji neji

6|7

7|8

6|7

5|6

4|5

6|6

7|7

7|7

6|6

5|5

aji,1 αji,1

aji,2 αji,2

aji,3 αji,3

aji,4 αji,4

aji,5 αji,5

2

32

2

Figure 3 The propagation gadget P j,j+1
i . The critical pairs {aji,γ , α

j
i,γ} are surrounded by thin

dashed lines. The blue (resp. red) integer on a vertex of Aji is its distance to the blue (resp. red)
vertex in V ji (resp. V j+1

i). Note that the blue vertex distinguishes the critical pairs below it, while
the red vertex distinguishes critical pairs at its level or above.

É. Bonnet and N. Purohit 5:9

Let us motivate the gadget P j,j+1
i . One can observe that the gates neji and swji resolve

the critical pairs of the propagation gadget, while the gates nwji and seji do not. Consider
that the vertex added to the resolving set in V ji is vji,γ . Its shortest paths to critical pairs
below it (that is, with index γ′ > γ) go through the gate swji , whereas its shortest paths to
critical pairs at its level or above (that is, with index γ′ 6 γ) go through the gate nwji . Thus
vji,γ only resolves the critical pairs {aji,γ′ , αi,γ′} with γ′ > γ. On the contrary, the vertex of
the resolving set in V j+1

i only resolves the critical pairs {aji,γ′ , α
j
i,γ′} at its level or above.

This will force that its level is γ or below. Hence the vertices of the resolving in V ji and
V j+1
i should be such that γ′ > γ. Since there is also a propagation gadget between V mi and
V 1
i , this circular chain of inequalities forces a global equality.

4.1.5 Wrapping up
We put the pieces together as described in the previous subsections. At this point, it is
convenient to give names to the neighbors of V ji in the propagation gadgets P j−1,j

i and
P j,j+1
i . We may refer to them as blue vertices (as they appear in Figure 4). We denote by

tlji the neighbor of vji,1 in P j−1,j
i , trji , the neighbor of vji,1 in P j,j+1

i , blji , the neighbor of vji,t
in P j−1,j

i , and brji , the neighbor of vji,t in P
j,j+1
i . We add the following edges and paths.

For any pair i, j such that the edge ej has an endpoint in Vi, the vertices tlji , tr
j
i ,bl

j
i ,br

j
i

are linked to gj by a private path of length the distance of their unique neighbor in V ji to
cj . We add an edge between seji and sej+1

i , and between nwji and nwj+1
i (where j + 1 is

modulo m). Finally, for every ej ∈ E(Vi, Vi′), we add four paths between seji , se
j
i′ ,nw

j
i ,nw

j
i′

and gj ∈ G(ej). More precisely, for each i′′ ∈ {i, i′}, we add a path from gj to seji′′ of length
dist(gj , swji′′)− 4, and a path from gj to nwji′′ of length dist(gj ,nwji′′)− 4. These distances
are taken in the graph before we introduced the new paths, and one can observe that the
length of these paths is at least t. This finishes the construction.

4.2 Correctness of the reduction
We now check that the reduction is correct. We start with the following technical lemma. If
a set X contains a pair that no vertex of N(X) (that is N [X] \X) resolves, then no vertex
outside X can distinguish the pair.

I Lemma 2. Let X be a subset of vertices, and a, b ∈ X be two distinct vertices. If for every
vertex v ∈ N(X), dist(v, a) = dist(v, b), then for every vertex v /∈ X, dist(v, a) = dist(v, b).

Proof. Let v be a vertex outside of X. We further assume that v is not in N(X), otherwise
we can already conclude that it does not distinguish {a, b}. A shortest path from v to
a, has to go through N(X). Let wa be the first vertex of N(X) met in this shortest
path from v to a. Similarly, let wb be the first vertex of N(X) met in a shortest path
from v to b. Since wa, wb ∈ N(X), they satisfy dist(wa, a) = dist(wa, b) and dist(wb, a) =
dist(wb, b). Then, dist(v, a) 6 dist(v, wb) + dist(wb, a) = dist(v, wb) + dist(wb, b) = dist(v, b),
and dist(v, b) 6 dist(v, wa) + dist(wa, b) = dist(v, wa) + dist(wa, a) = dist(v, a). Thus
dist(v, a) = dist(v, b). J

We use the previous lemma to show that every vertex of a V ji only resolves critical pairs
in gadgets it is attached to. This will be useful in the two subsequent lemmas.

I Lemma 3 (?). For any i ∈ [k], j ∈ [m], and v ∈ V ji , v does not resolve any critical pair
outside of P j−1,j

i , P j,j+1
i (where indices in the superscript are taken modulo m), and {cj , c′j}.

Furthermore, if ej ∈ E(G) has no endpoint in Vi ⊆ V (G), then v does not resolve {cj , c′j}.

IPEC 2019

5:10 Metric Dimension Parameterized by Treewidth

The two following lemmas show the equivalences relative to the expected use of the edge
and propagation gadgets. They will be useful in Sections 4.2.1 and 4.2.2.

I Lemma 4 (?). A legal set S resolves the critical pair {cj , c′j} with ej = vi,γvi′,γ′ if and
only if the vertex vji,γi

in V ji ∩ S and the vertex vji′,γi′ in V ji′ ∩ S satisfy (γ, γ′) 6= (γi, γi′).

I Lemma 5 (?). A legal set S resolves all the critical pairs of P j,j+1
i if and only if the vertex

vji,γ in V ji ∩ S and the vertex vj+1
i,γ′ in V j+1

i ∩ S satisfy γ 6 γ′.

We can now prove the correctness of the reduction. The construction can be computed
in polynomial time in |V (G)|, and G′ itself has size bounded by a polynomial in |V (G)|. We
postpone checking that the pathwidth is bounded by O(k) to the end of the second step,
where we produce an instance of MD whose graph G′′ admits G′ as an induced subgraph.

4.2.1 k-Multicolored Independent Set in G ⇒ legal resolving set in G′

Let {v1,γ1 , . . . , vk,γk
} be a k-multicolored independent set in G. We claim that S :=⋃

j∈[m]{v
j
1,γ1

, . . . , vjk,γk
} is a legal resolving set in G′ (of size km). The set S is legal by

construction. Since for every i ∈ [k], and j ∈ [m], vji,γi
and vj+1

i,γi
are in S (j + 1 is modulo

m), all the critical pairs in the propagation gadgets are resolved by S, by Lemma 5. Since
{v1,γ1 , . . . , vk,γk

} is an independent set in G, there is no ej = vi,γvi′,γ′ ∈ E(G), such that
(γ, γ′) = (γi, γi′). Thus every critical pair {cj , c′j} is resolved by S, by Lemma 4.

4.2.2 Legal resolving set in G′ ⇒ k-Multicolored Independent Set in G

Assume that there is a legal resolving set S in G′. For every i ∈ [k], for every j ∈ [m], the
vertex vji,γ(i,j) in V

j
i ∩S and the vertex vj+1

i,γ(i,j+1) in V
j+1
i ∩S (j+1 is modulom) are such that

γ(i, j) 6 γ(i, j+1), by Lemma 5. Thus γ(i, 1) 6 γ(i, 2) 6 . . . 6 γ(i,m−1) 6 γ(i,m) 6 γ(i, 1),
and γi := γ(i, 1) = γ(i, 2) = . . . = γ(i,m− 1) = γ(i,m). We claim that {v1,γ1 , . . . , vk,γk

} is a
k-multicolored independent set in G. Indeed, there cannot be an edge ej = vi,γi

vi′,γi′ ∈ E(G),
since otherwise the critical pair {cj , c′j} is not resolved, by Lemma 4.

5 Parameterized hardness of Metric Dimension/tw

In this section, we produce in polynomial time an instance (G′′, k′′) of Metric Dimension
equivalent to (G′,X , km,P) of k-Multicolored Resolving Set. The graph G′′ has also
pathwidth O(k). Now, an instance is just a graph and an integer. There is no longer X and
P to constrain and respectively loosen the “resolving set” at our convenience. This creates
two issues: (1) the vertices outside the former set X can now be put in the resolving set,
potentially yielding undesired solutions2 and (2) our candidate solution (when there is a
k-multicolored independent set in G) may not distinguish all the vertices.

5.1 Construction
5.1.1 Forced set gadget
To deal with the issue (1), we introduce two new pairs of vertices for each V ji . The intention
is that the only vertices resolving both these pairs simultaneously are precisely the vertices

2 Also, it is now possible to put two or more vertices of the same V ji in the resolving set S

É. Bonnet and N. Purohit 5:11

of V ji . For any i ∈ [k] and j ∈ [m], we add to G′ two pairs of vertices {pji , q
j
i } and {r

j
i , s

j
i},

and two gates πji and ρji . Vertex π
j
i is adjacent to pji and qji , and vertex ρji is adjacent to rji

and sji .
We link vji,1 to pji , and vji,t to r

j
i , each by a path of length t. It introduces two new

neighbors of vji,1 and vji,t (the brown vertices in Figure 4). We denote them by tbji and bbji ,
respectively. The blue and brown vertices are linked to πji and ρji in the following way. We
link tlji and trji to π

j
i by a private path of length t, and to ρji by a private path of length 2t−1.

We link blji and brji to πji by a private path of length 2t− 1, and to ρji by a private path of
length t. (Let us clarify that the names of the blue vertices blji and brji are for “bottom-left”
and “bottom-right”, and not for “blue” and “brown”.) We link tbji (neighbor of v

j
i,1) to ρ

j
i

by a private path of length 2t − 1. We link bbji (neighbor of vji,t) to π
j
i by a private path

of length 2t− 1. Note that the general rule to set the path length is to match the distance
between the neighbor in V ji and pji (resp. r

j
i). With that in mind we link, if it exists, the top

cyan vertex tcji (the one with smallest index γ) neighboring V ji to πji with a path of length
dist(vji,γ , p

j
i) = t+ γ − 1 where vji,γ is the unique vertex in N(tcji) ∩ V

j
i . Observe that with

the notations of the previous section tcji = eji,γ . We also link, if it exists, the bottom cyan
vertex bcji (the one with largest index γ) to ρji with a path of length dist(v, rji) where v is
again the unique neighbor of bcji in V

j
i .

It can be observed that we only have two paths (and not all six) from the at most three
cyan vertices to the gates πji and ρji . This is where the edges between the cyan vertices will
become relevant. See Figure 4 for an illustration of the forced vertex gadget, keeping in mind
that, for the sake of legibility, four paths to {πji , ρ

j
i} are not represented.

5.1.2 Forced vertex gadget
We now deal with the issue (2). By we add (or attach) a forced vertex to an already present
vertex v, we mean that we add two adjacent neighbors to v, and that these two vertices
remain of degree 2 in the whole graph G′′. Hence one of the two neighbors will have to be
selected in the resolving set since they are true twins. We call forced vertex one of these two
vertices (picking arbitrarily).

For every i ∈ [k] and j ∈ [m], we add a forced vertex to the gates nwji and seji of P j,j+1
i .

We also add a forced vertex to each vertex in N({πji , ρ
j
i}) \ {p

j
i , q

j
i , r

j
i , s

j
i}. This represents a

total of 12 vertices (6 neighbors of πji and 6 neighbors of ρji). For every j ∈ [m], we attach a
forced vertex to each vertex in N(gj) \ {cj , c′j}. This constitutes 14 neighbors (hence 14 new
forced vertices). Therefore we set k′′ := km+ 12km+ 2km+ 14m = 15km+ 14m.

5.1.3 Finishing touches and useful notations
We use the convention that P (u, v) denotes the path from u to v which was specifically
built from u to v. In other words, for P (u, v) to make sense, there should be a point in the
construction where we say that we add a (private) path between u and v. For the sake of
legibility, P (u, v) may denote either the set of vertices or the induced subgraph. We also
denote by ν(u, v) the neighbor of u in the path P (u, v). Observe that P (u, v) is a symmetric
notation but not ν(u, v).

We add a path of length dist(ν(πji , tr
j
i), sw

j
i) = t between ν(πji , tr

j
i) and seji , and a path

of length dist(ν(πji ,bl
j
i),ne

j−1
i) = 2t− 1 between ν(πji ,bl

j
i) and nwj−1

i . Similarly, we add a
path of length dist(ν(ρji , tr

j
i), sw

j
i) = 2t− 1 between ν(ρji , tr

j
i) and seji , and a path of length

dist(ν(ρji ,bl
j
i),ne

j−1
i) = t between ν(ρji ,bl

j
i) and nwj−1

i . We added these four paths so that
no forced vertex resolves any critical pair in the propagation gadgets P j−1,j

i and P j,j+1
i .

IPEC 2019

5:12 Metric Dimension Parameterized by Treewidth

V ji

G(ej)

gj

cjc′j

6

6

6

swji seji

nwji neji

swj−1
i sej−1

i

nwj−1
i nej−1

i

2

4

4 pji π
j
i q

j
i

rji ρ
j
i s

j
i

5

9

5

9

5

5

8

6

9
9

Figure 4 Vertices tlji , tr
j
i , bl

j
i , br

j
i (blue vertices) are linked to πji , ρ

j
i by paths of appropriate

lengths (see Section 5.1.1). Vertex tbji is linked by a path to ρji , while bbji is linked by a path to πji .
To avoid cluttering the figure, we did not represent four paths: from tlji and bcji to ρ

j
i , and from

blji and tcji to πji . We also did not represent the paths already in the k-MRS-instance from the
blue vertices to gj . Black vertices are forced vertices. Gray edges are the edges in the propagation
gadgets already depicted in Figure 3. Not represented on the figure, we add a forced vertex to
each neighbor of the red vertices, except pji , q

j
i , r

j
i , s

j
i , cj , c

′
j . Finally we add four more paths and

potentially two edges (see Section 5.1.3).

Finally we add an edge between ν(gj ,nwji) and ν(cj ,bcji) whenever V
j
i have exactly three

cyan vertices. We do that to resolve the pair {ν(cj , tcji), ν(cj ,bcji)}, and more generally
every pair {x, y} ∈ P (cj , tcji) × P (cj ,bcji) such that dist(cj , x) = dist(cj , y). This finishes
the construction of the instance (G′′, k′′ := 15km+ 14m) of Metric Dimension.

5.2 Correctness of the reduction
The two next lemmas will be crucial in Section 5.2.1. The first lemma shows how the forcing
set gadget simulates the action of former set X .

I Lemma 6 (?). For every i ∈ [k] and j ∈ [m],
∀v ∈ V ji , v resolves both pairs {pji , q

j
i } and {rji , s

j
i},

∀v /∈ V ji , v resolves at most one pair of {pji , q
j
i } and {rji , s

j
i},

∀v /∈ V ji ∪ P (vji,1, p
j
i) ∪ P (vji,t, r

j
i) ∪ {q

j
i , s

j
i}, v does not resolve {pji , q

j
i } nor {rji , s

j
i}.

For Section 5.2.1, we also need the following lemma, which states that the forced vertices
do not resolve critical pairs.

I Lemma 7 (?). No forced vertex resolves a pair of P.

É. Bonnet and N. Purohit 5:13

5.2.1 MD-instance has a solution ⇒ k-MRS-instance has a solution
Let S be a resolving set for the Metric Dimension-instance. We show that S′ := S ∩⋃
i∈[k],j∈[m] V

j
i is a solution for k-Multicolored Resolving Set. The set S \S′ is made of

14km+14m forced vertices, none of which is in some V ji ∪P (vji,1, p
j
i)∪{q

j
i }∪P (vji,t, r

j
i)∪{s

j
i}.

Thus by Lemma 6, S \ S′ does not resolve any pair {pji , q
j
i } or {r

j
i , s

j
i}. Now S′ is a set of

k′′ − (14km+ 14m) = km vertices resolving all the 2km pairs {pji , q
j
i } and {r

j
i , s

j
i}. Again

by Lemma 6, this is only possible if |S′ ∩ V ji |= 1. Thus S′ is a legal set of size k′ = km. Let
us now check that S′ resolves every pair of P in the graph G′.

By Lemma 7, S \ S′ does not resolve any pair of P in the graph G′′. Thus S′ resolves all
the pairs of P in G′′. Since the distances between V ji and the critical pairs in the edge and
propagation gadgets V ji is attached to are the same in G′ and in G′′, S′ also resolves every
pair of P in G′. Thus S′ is a solution for the k-MRS-instance.

5.2.2 k-MRS-instance has a solution ⇒ MD-instance has a solution
Let S be a solution for k-Multicolored Resolving Set. We show that S′ := S ∪ F ,
where F is the set of forced vertices, is a solution for Metric Dimension.

I Lemma 8 (?). Every vertex in G′′ is distinguished by S′.

The reduction is correct and it takes polynomial-time in |V (G)| to compute G′′. The
maximum degree of G′′ is 16. It is the degree of the vertices gj (nwji and seji have degree at
most 11, πji and ρji have degree 8, and the other vertices have degree at most 5). We use the
pathwidth characterization of Kirousis and Papadimitriou [19], to show:

I Lemma 9 (?). pw(G′′) 6 90k + 83.

Then solving Metric Dimension on constant-degree graphs in time f(pw)no(pw) could be
used to solve k-Multicolored Independent Set in time f(k)no(k), disproving the ETH.

References
1 Florian Barbero, Lucas Isenmann, and Jocelyn Thiebaut. On the Distance Identifying Set

Meta-Problem and Applications to the Complexity of Identifying Problems on Graphs. In
13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August
20-24, 2018, Helsinki, Finland, pages 10:1–10:14, 2018. doi:10.4230/LIPIcs.IPEC.2018.10.

2 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann,
Matús Mihalák, and L. Shankar Ram. Network Discovery and Verification. IEEE Journal on
Selected Areas in Communications, 24(12):2168–2181, 2006. doi:10.1109/JSAC.2006.884015.

3 Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach, and M. S. Ramanujan. Metric Dimension
of Bounded Tree-length Graphs. SIAM J. Discrete Math., 31(2):1217–1243, 2017. doi:
10.1137/16M1057383.

4 Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud Oellermann. Resolvability in
graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3):99–113,
2000. doi:10.1016/S0166-218X(00)00198-0.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Josep Díaz, Olli Pottonen, Maria J. Serna, and Erik Jan van Leeuwen. Complexity of metric
dimension on planar graphs. J. Comput. Syst. Sci., 83(1):132–158, 2017. doi:10.1016/j.
jcss.2016.06.006.

IPEC 2019

https://doi.org/10.4230/LIPIcs.IPEC.2018.10
https://doi.org/10.1109/JSAC.2006.884015
https://doi.org/10.1137/16M1057383
https://doi.org/10.1137/16M1057383
https://doi.org/10.1016/S0166-218X(00)00198-0
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.jcss.2016.06.006
https://doi.org/10.1016/j.jcss.2016.06.006

5:14 Metric Dimension Parameterized by Treewidth

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

8 David Eppstein. Metric Dimension Parameterized by Max Leaf Number. J. Graph Algorithms
Appl., 19(1):313–323, 2015. doi:10.7155/jgaa.00360.

9 Leah Epstein, Asaf Levin, and Gerhard J. Woeginger. The (Weighted) Metric Dimension
of Graphs: Hard and Easy Cases. Algorithmica, 72(4):1130–1171, 2015. doi:10.1007/
s00453-014-9896-2.

10 Henning Fernau, Pinar Heggernes, Pim van ’t Hof, Daniel Meister, and Reza Saei. Computing
the metric dimension for chain graphs. Inf. Process. Lett., 115(9):671–676, 2015. doi:
10.1016/j.ipl.2015.04.006.

11 Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, Location-Domination and Metric Dimension on Interval and Permutation
Graphs. II. Algorithms and Complexity. Algorithmica, 78(3):914–944, 2017. doi:10.1007/
s00453-016-0184-1.

12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

13 Frank Harary and Robert A Melter. On the metric dimension of a graph. Ars Combin,
2(191-195):1, 1976.

14 Sepp Hartung and André Nichterlein. On the Parameterized and Approximation Hardness of
Metric Dimension. In Proceedings of the 28th Conference on Computational Complexity, CCC
2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 266–276, 2013. doi:10.1109/CCC.
2013.36.

15 Stefan Hoffmann, Alina Elterman, and Egon Wanke. A linear time algorithm for metric
dimension of cactus block graphs. Theor. Comput. Sci., 630:43–62, 2016. doi:10.1016/j.tcs.
2016.03.024.

16 Stefan Hoffmann and Egon Wanke. Metric Dimension for Gabriel Unit Disk Graphs Is NP-
Complete. In Algorithms for Sensor Systems, 8th International Symposium on Algorithms for
Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS
2012, Ljubljana, Slovenia, September 13-14, 2012. Revised Selected Papers, pages 90–92, 2012.
doi:10.1007/978-3-642-36092-3_10.

17 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, December
2001.

18 Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in Graphs. Discrete
Applied Mathematics, 70(3):217–229, 1996. doi:10.1016/0166-218X(95)00106-2.

19 Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and searching. Discrete
Mathematics, 55(2):181–184, 1985. doi:10.1016/0012-365X(85)90046-9.

20 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

21 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. J. Comput. Syst. Sci., 67(4):757–
771, 2003. doi:10.1016/S0022-0000(03)00078-3.

22 Peter J Slater. Leaves of trees. Congr. Numer, 14(549-559):37, 1975.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.7155/jgaa.00360
https://doi.org/10.1007/s00453-014-9896-2
https://doi.org/10.1007/s00453-014-9896-2
https://doi.org/10.1016/j.ipl.2015.04.006
https://doi.org/10.1016/j.ipl.2015.04.006
https://doi.org/10.1007/s00453-016-0184-1
https://doi.org/10.1007/s00453-016-0184-1
https://doi.org/10.1109/CCC.2013.36
https://doi.org/10.1109/CCC.2013.36
https://doi.org/10.1016/j.tcs.2016.03.024
https://doi.org/10.1016/j.tcs.2016.03.024
https://doi.org/10.1007/978-3-642-36092-3_10
https://doi.org/10.1016/0166-218X(95)00106-2
https://doi.org/10.1016/0012-365X(85)90046-9
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1016/S0022-0000(03)00078-3

É. Bonnet and N. Purohit 5:15

Table 1 Glossary of the construction.

Symbol/term Definition/action
{aji,γ , α

j
i,γ} critical pair of the propagation gadget P j,j+1

i

Aji set of vertices
⋃
γ∈[t]{a

j
i,γ , α

j
i,γ}

bbji bottom brown vertex, ν(vji,t, r
j
i)

bcji bottom cyan vertex (smallest index γ)
blji neighbor of vji,t in P

j−1,j
i

blue vertex one of the four neighbors of V ji in the propagation gadgets
brji neighbor of vji,t in P

j,j+1
i

brown vertex vertices ν(vji,1, p
j
i) and ν(vji,t, r

j
i)

{cj , c′j} critical pair of the edge gadget G(ej)
cyan vertex neighbor of V ji in the paths to G(ej)

Eji vertices in the paths from V ji to G(ej)
eji,γ alternative labeling of the cyan vertices, neighbor of vji,γ
F set of all forced vertices
G(ej) edge gadget on {gj , cj , c′j} between V

j
i and V ji′ , where ej ∈ E(Vi, Vi′)

mcji middle cyan vertex (not top nor bottom)
neji north-east gate of P j,j+1

i

nwji north-west gate of P j,j+1
i

neji , sw
j
i resolve the critical pairs of P j,j+1

i

nwji , se
j
i do not resolve the critical pairs of P j,j+1

i

ν(u, v) neighbor of u in the path P (u, v)
P list of critical pairs

{pji , q
j
i } pair only resolved by vertices in V ji ∪ P (vji,1, p

j
i) ∪ {q

j
i }

πji gate of {pji , q
j
i }, linked by paths to most neighbors of V ji

P j,j+1
i propagation gadget between V ji and V j+1

i

P (u, v) path added in the construction expressly between u and v
{rji , s

j
i} pair only resolved by vertices in V ji ∪ P (vji,t, r

j
i) ∪ {s

j
i}

ρji gate of {rji , s
j
i}, linked by paths to most neighbors of V ji

seji south-east gate of P j,j+1
i

swji south-west gate of P j,j+1
i

t size of each Vi
tbji top brown vertex, ν(vji,1, p

j
i)

tcji top cyan vertex (largest index γ)
tlji neighbor of vji,1 in P j−1,j

i

trji neighbor of vji,1 in P j,j+1
i

Vi partite set of G
V ji “copy of Vi”, stringed by a path, in G′ and G′′
vji,γ vertex of V ji representing vi,γ ∈ V (G)
Wj endpoints in V ji ∪ V

j
i′ of paths from V ji ∪ V

j
i′ to G(ej)

X set containing all the sets V ji for i ∈ [k] and j ∈ [m]
Xj neighbors of Wj on the paths to G(ej) (cyan vertices)

IPEC 2019

Faster Subgraph Counting in Sparse Graphs
Marco Bressan
Department of Computer Science, Sapienza University of Rome, Italy
bressan@di.uniroma1.it

Abstract
A fundamental graph problem asks to compute the number of induced copies of a k-node pattern
graph H in an n-node graph G. The fastest algorithm to date is still the 35-years-old algorithm
by Nešetřil and Poljak [28], with running time f(k) · O(nωb k3 c+2) where ω ≤ 2.373 is the matrix
multiplication exponent. In this work we show that, if one takes into account the degeneracy d of G,
then the picture becomes substantially richer and leads to faster algorithms when G is sufficiently
sparse. More precisely, after introducing a novel notion of graph width, the DAG-treewidth, we prove
what follows. If H has DAG-treewidth τ(H) and G has degeneracy d, then the induced copies of H
in G can be counted in time f(d, k) · Õ(nτ(H)); and, under the Exponential Time Hypothesis, no
algorithm can solve the problem in time f(d, k) · no(τ(H)/ ln τ(H)) for all H. This result characterises
the complexity of counting subgraphs in a d-degenerate graph. Developing bounds on τ(H), then, we
obtain natural generalisations of classic results and faster algorithms for sparse graphs. For example,
when d = O(poly log(n)) we can count the induced copies of any H in time f(k) · Õ(nb k4 c+2), beating
the Nešetřil-Poljak algorithm by essentially a cubic factor in n.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Design and analysis of algorithms; Theory of computation → Graph algorithms
analysis

Keywords and phrases subgraph counting, tree decomposition, degeneracy

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.6

Related Version https://arxiv.org/abs/1805.02089

Funding Marco Bressan is supported in part by the ERC Starting Grant DMAP 680153, by a
Google Focused Research Award “ALL4AI”, and by the “Dipartimenti di Eccellenza 2018-2022”
grant awarded to the Department of Computer Science of the Sapienza University of Rome.

1 Introduction

Given a host graph G on n nodes and a pattern graph H on k nodes, we want to count
the number of induced copies of H in G. This problem is at the heart of many algorithmic
applications but, unfortunately, is largely intractable. The fastest algorithm known has
running time O(nωb k3 c+2) where ω is the matrix multiplication exponent [28]; and the margin
to improve the dependence on k is limited, since under the Exponential Time Hypothesis [21]
nΩ(k) operations are required even just to detect a clique [8, 9]. The picture changes, however,
if we make additional assumptions on G. A natural assumption is that G be sparse, as
is often the case in practice. Under certain notions of sparsity, indeed, it is known that
subgraph counting becomes tractable: for example, any H can be counted in time f(k) ·O(n)
if G has bounded maximum degree ∆(G) = O(1) [29]. Alternatively, any H can be counted
in time f(k) ·O(n) if G has bounded treewidth t(G) = O(1), as a consequence of Courcelle’s
theorem [27]. Similar bounds can be proved when G is planar [14]. These assumptions are
much stronger than just having O(1) average degree, and often do not hold in practice. For
example, in social networks t(G) is typically large [26].

In this work we adopt a different measure of sparsity: the degeneracy of G, denoted by
d = d(G). The degeneracy can be defined as the minimum, over all acyclic orientations of
G, of the maximum outdegree of a node; it is a notion strictly stronger than the average

© Marco Bressan;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5211-2264
mailto:bressan@di.uniroma1.it
https://doi.org/10.4230/LIPIcs.IPEC.2019.6
https://arxiv.org/abs/1805.02089
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Faster Subgraph Counting in Sparse Graphs

degree (which it bounds from above), but strictly weaker than the maximum degree or
the treewidth. Unlike ∆(G) or t(G), in social networks d is typically small [16]. Moreover,
low-outdegree orientations of G, like the one that defines d, seem to help subgraph counting
in practice [35, 22, 30]. Therefore, d seems a good candidate for a parameterization. Yet,
no good bounds in terms of d exist, save for specific patterns such as cliques or complete
bipartite graphs. This work aims at filling this gap. We develop techniques for counting
subgraphs that exploit the low-outdegree orientation of G. This leads to a rich picture, and
to faster algorithms to count subgraphs in sparse graphs.

1.1 Results
We present algorithms for counting homomorphisms, non-induced copies, and induced copies
of a k-node pattern graph H in an n-node graph G, parameterized by n, k and the degeneracy
d of G. Our contributions are of two kinds: bounds and techniques. For simplicity we assume
k = O(1) (see Subsection 1.2 for more details).

1.1.1 Bounds
Let hom(H,G), sub(H,G), and ind(H,G) denote respectively the number of homomorphisms,
copies, and induced copies of H in G. Our first result is a general-purpose bound, that is,
one holding for all H (including disconnected ones):

I Theorem 1. For any k-node pattern H one can compute hom(H,G), sub(H,G), and
ind(H,G) in time f(d, k) · Õ(nb k4 c+2).

This bound improves to 0.25k + O(1) the exponent of n, which is 0.791k + O(1) in the
state-of-the-art algorithm of [28]. As an immediate consequence, we have:

I Theorem 2. Suppose G has degeneracy d = O(polylog(n)). Then for any k-node pattern
H one can compute hom(H,G), sub(H,G), and ind(H,G) in time f(k) · Õ(n0.25k+2).

Hence, when d = O(polylog(n)), for all sufficiently large k our algorithm beats [28] by a
cubic factor. In fact, our algorithm is faster than [28] already for d < n0.721 assuming
ω ≈ 2.373 [25], and in any case for d < n

5
9 ≈ n0.556 since ω ≥ 2. A second consequence of

Theorem 1 comes from the well-known fact that |E(G)| ≥
(
d
2
)
. Indeed, this implies:

I Theorem 3. Suppose G has average degree O(polylog(n)). Then for any k-node pattern
H one can compute hom(H,G), sub(H,G), and ind(H,G) in time f(k) · Õ(n0.625k+1).

Again, this holds for all patterns H, even disconnected ones. To the best of our knowledge,
this is the first general-purpose algorithm faster than [28] for graphs with small average
degree – the weakest possible notion of sparsity.

We give bounds for special classes of patterns, too. First, we consider quasi-cliques, a
typical pattern in social graph mining [33, 32, 31]. We prove:

I Theorem 4. If H is the clique minus ε edges, then one can compute hom(H,G), sub(H,G),
and ind(H,G) in time f(d, k) · Õ(nd

1
2 +
√

ε
2 e).

This generalizes the classic O(ndk−1) bound for counting cliques [10], at the price of a
polylogarithmic factor. Next, we look at complete quasi-multipartite graphs. We prove:

I Theorem 5. If H is a complete multipartite graph, then one can compute hom(H,G) and
sub(H,G) in time f(d, k) · Õ(n). If H is a complete multipartite graph plus ε edges, then
one can compute sub(H,G) in time f(d, k) · Õ(nb ε4 c+2).

M. Bressan 6:3

This generalizes a classic f(d, k) · O(n) bound to count non-induced complete bi-partite
graphs [13], again at the price of an additional factor.

1.1.2 Techniques
The bounds above are instantiations of a more general result, stated in terms of a novel
notion of width, that we call dag treewidth τ(H) of H. Formally, we prove:

I Theorem 6. For any k-node pattern H one can compute hom(H,G), sub(H,G), and
ind(H,G) in time f(d, k) · Õ(nτ(H)).

This bound, and the width measure τ(H), arise as follows. As a first step, we orient G
acyclically so that it has maximum outdegree d (see below). The problem then becomes
counting the copies of all acyclic orientations P of H in G. By inclusion-exclusion arguments,
we reduce the problem to counting homomorphisms between a dag P and the dag G. At this
point we introduce our technical tool, the dag tree decomposition of P . This decomposition
allows one to count homomorphisms naturally via dynamic programming, exactly like the
standard tree decomposition of a graph; and the running time of the dynamic program is
f(d, k) · Õ(nτ(H)), where the dag treewidth τ(H) is, simplifying a little, the width of the
decomposition. The crucial fact is that for τ(H) we can provide bounds better than just k
or ωbk3 c+ 2 (for example, we prove τ(H) ≤ bk4 c+ 2).

We complement Theorem 6 with a conditional lower bound, showing how τ(H) charac-
terises the complexity of counting subgraphs in d-degenerate graphs:

I Theorem 7. Under the Exponential Time Hypothesis [21], no algorithm can compute
sub(H,G) or ind(H,G) in time f(d, k) · no(τ(H)/ ln τ(H)) for all H.

I Remark 8. Our algorithms work for the colored versions of the problem (count only copies
of H with prescribed vertex and/or edge colors) as well as the weighted versions of the
problem (compute the total weight of copies of H in G where G has weights on nodes or
edges). This follows immediately by adapting our homomorphism counting algorithms.

1.2 Preliminaries and notation
The host graph G = (V,E) and the pattern graph H = (VH , EH) are simple, arbitrary graphs.
For any subset V ′ ⊆ V we denote by G[V ′] the subgraph of G induced by V ′; the same
notation applies to any graph. A homomorphism from H to G is a map φ : VH → V such
that {u, u′} ∈ EH implies {φ(u), φ(u′)} ∈ E. We write φ : H → G to highlight the edges that
φ preserves. When H and G are oriented, φ must preserve the direction of the arcs. If φ is
injective then we have an injective homomorphism. We denote by hom(H,G) and inj(H,G)
the number of homomorphisms and injective homomorphisms from H to G. We denote by
ψ a map that is not necessarily a homomorphism. The symbol ' denotes isomorphism. A
copy of H in G is a subgraph F ⊆ G such that F ' H. If moreover F ' G[VF] then F is
an induced copy. We denote by sub(H,G) and ind(H,G) the number of copies and induced
copies of H in G; we may omit G if clear from the context. We denote by P a generic dag
obtained by orienting H acyclically. All the notation described above applies to directed
graphs in the natural way.

We denote by ∆ the maximum degree of G. The degeneracy of G is the smallest d such
that there is an acyclic orientation of G with maximum outdegree bounded by d. Such an
orientation can be found in time O(|E|) by repeatedly removing from G a minimum-degree
node [27]. From now on, we assume G has this orientation. We also assume G is encoded

IPEC 2019

6:4 Faster Subgraph Counting in Sparse Graphs

via sorted adjacency lists (every node keeps a sorted list of its out-neighbors). Checking for
an arc in G thus takes time O(log(d)), but to lighten the notation we assume it is O(1). We
always assume k = O(1). Nonetheless, most of our bounds hold in their current form for
k = O(lnn) or k = O(

√
lnn). All asymptotic notations hide poly(k) factors, and the Õ(·)

notation hides polylog(ndk) factors.
Finally, we recall the definitions of tree decomposition and treewidth of a graph. For any

two nodes X,Y in a tree T , we denote by T (X,Y) the unique path between X and Y in T .

I Definition 9 (see [12], Ch. 12.3). Given a graph G = (V,E), a tree decomposition of G is
a tree D = (VD, ED) such that each node X ∈ VD is a subset X ⊆ V , and that 1:
1. ∪X∈VDX = V

2. for every edge e = {u, v} ∈ G there exists X ∈ D such that u, v ∈ X
3. ∀X,X ′, X ′′ ∈ VT , if X ∈ D(X ′, X ′′) then X ′ ∩X ′′ ⊆ X
The width of a tree decomposition T is t(T) = maxX∈VT |X| − 1. The treewidth t(G) of a
graph G is the minimum of t(T) over all tree decompositions T of G.

1.3 Related work
The fastest algorithms known for computing ind(H,G) are based on matrix multiplication
and have running time O(nωb k3 c+(k mod 3)) [28] or O(nω(bk/3c,d(k−1)/3e,dk/3e)) [17], where
ω(p, q, r) is the cost of multiplying an np×nq matrix by an nq×nr matrix and ω = ω(n, n, n).
With the current matrix multiplication algorithms, these bounds are essentially O(n0.791k+2).
These algorithms ignore the sparsity of G, and do not run faster if d = O(1). In contrast, our
goal is to reduce the running time when G is sparse. We mention that alternative techniques
exist for probabilistic approximate counting. Notably, the color coding technique of Alon et
al. [2] can be used to sample pattern copies uniformly at random from G in time O(ck|G|)
for some constant c > 0 [5, 6, 7].

It is known that several notions of sparsity lead to bounds linear in n. If G has bounded
maximum degree ∆ = O(1), then we can compute ind(H,G) in time f(k) · O(n) via
multivariate graph polynomials [29]. If instead G has bounded treewidth t(G) = O(1), and
we are given a tree decomposition of G of width O(1), then by an extension of Courcelle’s
theorem we can compute ind(H,G) in time f(k) ·O(n) [27]. Similarly, if G is planar, then it
can be partitioned into pieces of small treewidth, leading again to an f(k) ·O(n) bound [14].
All these conditions are strictly stronger than (and they imply) bounded degeneracy, d = O(1).
The techniques used for these bounds are radically different from ours.

For d-degenerate graphs, bounds are known only for special classes of patterns. Chiba
and Nishizeki [10] show how to count k-cliques in time O(dk−1n), which can be improved
to O(dωd(k−1)/3en) via matrix multiplication [1]. Eppstein shows how to list all complete
bipartite subgraphs in time O(d322dn) [13] and all maximal cliques in O(d3d/3n) [15]. All
these algorithms exploit the degeneracy orientation of G. We exploit such orientation as well,
but in a more systematic way and without listing explicitly all occurrences of the pattern;
we exploit the structure of H, too, which results in richer bounds.

Concerning the structure of H, hom(H,G) can be computed in time f(k) ·O(nt(H)+1) [18],
and sub(H,G) can be computed in time f(k) · nc(H)+O(1) where c(H) is the vertex-cover
number of H [24, 34, 3]. Our bounds are instead parameterized by a novel notion of width,
τ(H), that is within constant factors of the independence number but gives tighter bounds.

1 Formally, we should define a tree together with a mapping between its nodes and the subsets of V . To
lighten the notation, we opt for a less formal definition where the nodes are themselves subsets of V .

M. Bressan 6:5

Similarly, although several notions of tree decomposition for directed graphs exist [19], our
dag tree decomposition is novel and different from all of them.

No lower bound in terms of d and of the structure of H, such as those we give, was known
before. The existing lower bounds, based on the Exponential Time Hypothesis (ETH) [21],
adopt the parameterizations mentioned above in terms of t(H) or c(H); see [11] and [8, 9].

Manuscript organisation. Section 2 is a gentle and intuitive introduction to our approach.
Section 3 introduces our dag tree decomposition, the dynamic programming for counting
homomorphisms, and the corresponding running time bounds. Section 4 bounds the dag
treewidth for several classes of patterns, leading to our faster algorithms. Finally, Section 5
proves our lower bounds. All proofs omitted due to space limitations can be found in [4].

2 Exploiting degeneracy orientations

We build the intuition behind our approach, starting from the classic algorithm for counting
cliques of [10]. The algorithm begins by orienting G acyclically so that maxv∈G dout(v) ≤ d,
which requires linear time. With G oriented acyclically, we take each v ∈ G in turn and
enumerate every subset of (k − 1) out-neighbors of v. In this way we can explicitly find all
k-cliques of G in time f(k) ·O(ndk−1) = f(d, k) ·O(n). What makes the algorithm tick is
the fact that an acyclically oriented clique has exactly one source, that is, a node with no
incoming arcs. We would like to extend this approach to an arbitrary pattern H. Since
every copy of H in G appears with some acyclic orientation, we can just take every possible
acyclic orientation P of H, count the copies of P in G, and sum all the counts. Thus, we
can reduce the problem to the following one: given a k-node dag P , and an n-node dag G
with maximum outdegree d, count the copies of P in G.

Let us try a first approach. If P has s = s(P) sources, we enumerate all the
(
n
s

)
= O(ns)

ordered s-uples of V to which those sources can be mapped. For each such s-uple, we list
the possible mappings of the remaining k − s nodes, which can be done in time O(dk−s) by
listing the mappings of a fixed spanning forest of P . Finally, we check if the k nodes induce
P in G. The total running time is f(k) ·O(nsdk−s). Unfortunately, if P is an independent
set then s = k and the running time is O(nk). The situation does not improve even if P is
connected, as we can have s = k − 1 (for the inward-oriented star).

Here our approach comes into play. We use the pattern P in Figure 1 as a toy example.
Instead of listing all occurrences of P in G, we decompose P into two pieces, P (1) and P (2, 3),
where P (u) denotes the subgraph of P reachable from u (that is, the transitive closure of u
in P), and P (u1, . . . , ur) = ∪ri=1P (ui). The idea is to compute the count of P by combining
the counts of the two pieces, P (1) and P (2, 3).

To simplify the task, we focus on counting the homomorphisms between P and G; we
can then recover the number of induced copies by inclusion-exclusion arguments. In fact,
we solve a slightly more complex problem: for each pair of nodes x, y ∈ G, we count the
homomorphisms from P to G that map nodes 2 and 4 (see Figure 1) to x and y respectively.
To recover hom(P,G) we then just sum over all pairs x, y. Formally, for a given pair x, y
let φ : {2, 4} 7→ V be the map given by φ(2) = x and φ(4) = y, and let hom(P,G, φ) be the
number of homomorphisms from P to G whose restriction to {2, 4} is φ. In the same way
define hom(P (1), G, φ) and hom(P (2, 3), G, φ). It is easy to see that:

hom(P,G, φ) = hom(P (1), G, φ) · hom(P (2, 3), G, φ) (1)

To compute hom(P,G, φ) we then just need hom(P (1), G, φ) and hom(P (2, 3), G, φ). But
we can compute hom(P (1), G, φ) simultaneously for all φ in time f(d, k) · Õ(n), using our

IPEC 2019

6:6 Faster Subgraph Counting in Sparse Graphs

listing technique to build a dictionary mapping each φ to its count. (The Õ(·) factor comes
from the cost of accessing the dictionary, which has size poly(n)). Similarly, we can compute
hom(P (2, 3), G, φ) in time f(d, k) · Õ(n2). The total running time is f(d, k) · Õ(n2), whereas
our first approach would take time f(d, k) ·O(n3).

1

5

6

Figure 1 Toy example: an acyclic orientation P of H = C6, decomposed into two pieces.

Abstracting from our toy example, we want to decompose P into a set of pieces P1, . . . , Pκ
with the following properties: (i) each piece Pi has a small number of sources s(Pi), and
(ii) we can obtain hom(P,G, φ) by combining the homomorphism counts of the Pi. This is
achieved precisely by the dag tree decomposition, which we introduce in Section 3. Like the
tree decomposition of an undirected graph, the dag tree decomposition leads to a dynamic
program to compute hom(P,G). The running time is Õ(nmaxi s(Pi)), hence to make the
algorithm useful we must show that a decomposition with “small” maxi s(Pi) always exists,
which we do in Section 4.

3 DAG tree decompositions

Let P = (VP , AP) be a directed acyclic graph. We denote by SP , or simply S, the set of nodes
of P having no incoming arc. These are the sources of P . We denote by VP (u) the transitive
closure of u in P , i.e. the set of nodes of P reachable from u, and we let P (u) = P [VP (u)]
be the corresponding subgraph of P . More generally, for a subset of sources B ⊆ S we let
VP (B) = ∪u∈BVP (u) and P (B) = P [VP (B)]. Thus, P (B) is the subgraph of P induced by
all nodes reachable from any source in B. We call B a bag of sources. We can now formally
introduce our decomposition.

I Definition 10 (Dag tree decomposition). Let P = (VP , AP) be a dag. A dag tree decompos-
ition (d.t.d.) of P is a rooted tree T = (B, E) with the following properties:
1. each node B ∈ B is a bag of sources B ⊆ SP
2.
⋃
B∈B B = SP

3. for all B,B1, B2 ∈ T , if B ∈ T (B1, B2) then VP (B1) ∩ VP (B2) ⊆ VP (B)
One can see immediately the resemblance to the standard tree decomposition of a graph
(Definition 9). However, our dag tree decomposition differs crucially in two aspects. First, the
bags of the tree are subsets of S rather than subsets of VP . This is because the time needed
to list the homomorphisms between P (Bi) and G is driven by |Bi|, which is the number of
sources in P (Bi). Second, the path-intersection property concerns not the bags themselves,
but the pieces reachable from the bags themselves. The reason is that, to combine the counts
of two pieces together, their intersection must form a separator in G (similarly to what
happens with the standard tree decomposition).

The dag tree decomposition induces immediately the following notions of width, that we
use throughout the rest of the article.

M. Bressan 6:7

I Definition 11. The width of T is τ(T) = maxB∈B |B|. The dag treewidth τ(P) of P is
the minimum of τ(T) over all dag tree decompositions T of P .

Figure 2 shows a pattern P , together with a d.t.d. T of width 1. Note that 1 ≤ τ(P) ≤ k

for any P . Note also that τ(P) has no relationship with the treewidth t(H) of H: they can
both be Θ(k), or we can have τ(P) = 1 but t(H) = k (when H is a clique). In fact, τ(P) is
within constant factors of the independence number α(H) of H (see Section 4.3), and thus
decreases as H becomes denser. The intuition is that adding arcs increases the number of
nodes reachable from the sources, hence we need smaller bags to cover all of P . When H is
a clique, P is reachable from just one source and τ(P) = 1.

44

4

5

3
2

1

Figure 2 A dag P with one possible decomposition into five pieces (left), and one possible dag tree
decomposition T for P (right). Since τ(T) = 1, we can compute hom(P,G) in time f(d, k) ·O(n).

3.1 Counting homomorphisms via dag tree decompositions

For any B ∈ B let T (B) be the subtree of T rooted at B. We let Γ[B] be the down-closure of
B in T , that is, the union of all bags in T (B). Consider P (Γ[B]), the subgraph of P induced
by the nodes reachable from any u ∈ Γ[B] (note the difference with P (B), which contains
only the nodes reachable from any u ∈ B). We compute hom(P (Γ[B]), G) in a bottom-up
fashion over all B, starting with the leaves of T and moving towards the root. This is, in
essence, the dynamic program given by the standard tree decomposition (see [18])2.

As anticipated, we actually compute a refined count: hom(P (Γ[B]), φ), the number of
homomorphisms that extend a fixed mapping φ. Formally:

I Definition 12. Let P1 = (VP1 , AP1), P2 = (VP2 , AP2) be two subgraphs of P , and let
φ1 : P1 → G and φ2 : P2 → G be two homomorphisms. We say φ1 and φ2 respect each other
if φ1(u) = φ2(u) for all u ∈ VP1 ∩ VP2 . We denote by hom(P1, G, φ2) or simply hom(P1, φ2)
the number of homomorphisms from P1 to G that respect φ2.

We can now present our main algorithmic result.

I Lemma 13. Let P be any k-node dag, and T = (B, E) be a d.t.d. for P . Fix any B ∈ B
as the root of T . There exists a dynamic programming algorithm HomCount(P, T,B) that
computes hom(P (Γ[B]), φB) for all φB : P (B)→ G in time f(d, k) · Õ(nτ(T)).

2 The correctness of our dynamic program does not follow automatically from the dynamic program over
standard tree decompositions. A proof of correctness is given in the full version of the manuscript.

IPEC 2019

6:8 Faster Subgraph Counting in Sparse Graphs

Note that hom(P,G) is simply the sum of all the counts hom(P (Γ[B]), φB) returned by the
algorithm. Therefore, we can compute hom(P,G) in time f(d, k) · Õ(nτ(T)). Now, a d.t.d.
that minimises τ(T) can obviously be found in time f(k) = O(f(d, k)). Therefore:

I Theorem 14. We can compute hom(P,G) in time f(d, k) · Õ(nτ(P)).

Equipped with Theorem 14, we can turn to the original problem of counting the copies of H.

3.2 Inclusion-exclusion arguments
We turn to computing hom(H,G), sub(H,G) and ind(H,G). We do so via standard inclusion-
exclusion arguments, using our algorithm for computing hom(P,G) as a primitive. To this
end, we shall define appropriate notions of width for undirected pattern graphs. Let Σ(H)
be the set of all dags P that can be obtained by orienting H acyclically. Let Θ(H) be the set
of all equivalence relationships on VH , and for θ ∈ Θ let H/θ be the pattern obtained from
H by identifying equivalent nodes according to θ and removing loops and multiple edges.
Let D(H) be the set of all supergraphs of H (including H) on the same node set VH .

I Definition 15. The dag treewidth of H is τ(H) = τ3(H), where:

τ1(H) = max{τ(P) : P ∈ Σ} (2)
τ2(H) = max{τ1(H/θ) : θ ∈ Θ} (3)
τ3(H) = max{τ2(H ′) : H ′ ∈ D(H)} (4)

We can then state:

I Theorem 16. One can compute:
hom(H,G) in time f(d, k) · Õ(nτ1(H)),
sub(H,G) in time f(d, k) · Õ(nτ2(H)),
ind(H,G) in time f(d, k) · Õ(nτ(H)).

The algorithmic part of our work is complete. We shall now focus on bounding τ1(H),
τ2(H), and τ(H), so to instantiate Theorem 16 and prove the upper bounds of Section 1.1.

4 Bounds on the dag treewidth

In this section we develop upper bounds on τ1(H), τ2(H), τ(H) as a function of H. First, we
bound τ(H) for cliques minus ε edges, obtaining a generalization of the classic clique counting
bound of [10]. Then, we bound τ2(H) for complete multipartite graphs plus ε edges, obtaining
a generalization of a result by Eppstein [13]. Next, we show that Ω(α(H)) ≤ τ(H) ≤ α(H).
Finally, we show that τ(H) ≤ bk4 c+ 2 for every pattern H, including disconnected ones. This
requires a nontrivial proof.

Before proceeding, we need some definitions. We say a node v ∈ P is a joint if it is
reachable from two or more sources, i.e. if v ∈ VP (u)∩ VP (u′) for some u, u′ ∈ S with u 6= u′.
We write JP or simply J for the set of all joints of P . We write J(u) for the set of joints
reachable from u, and for any X ⊆ VP we let J(X) = ∪u∈XJ(u).

4.1 Quasi-cliques
I Lemma 17. If H has

(
k
2
)
− ε edges then τ(H) ≤ d 1

2 +
√

ε
2 e.

M. Bressan 6:9

Proof. The source set |S| of P is an independent set, hence |EH | ≤
(
k
2
)
−
(|S|

2
)
. Therefore

ε ≥
(|S|

2
)
, which implies |S| ≤ 1 +

√
2ε. A d.t.d. for P is the tree on two bags B1, B2 that

satisfy B1 ∪B2 = S, |B1| = b|S|/2c, and |B2| = d|S|/2e. Hence τ(P) ≤ d|S|/2e ≤ d1
2 +

√
ε
2 e.

Now consider any H ′ obtained from H by adding edges or identifying nodes. Obviously
|EH′ | ≥

(
k′

2
)
− ε where k′ = |VH′ |, and the argument above implies τ(P ′) ≤ d 1

2 +
√

ε
2 e for

any orientation P ′ of H ′. By Definition 15, then, τ(H) ≤ d 1
2 +

√
ε
2 e. J

By Theorem 16 and since τ1(H) ≤ τ2(H) ≤ τ(H) it follows that we can compute hom(H,G),
sub(H,G) and ind(H,G) in time f(d, k) · Õ(nd

1
2 +
√

ε
2 e), proving Theorem 4.

4.2 Quasi-multipartite graphs (non-induced)
I Lemma 18. If H is a complete multipartite graph, then τ2(H) = 1. If H is a complete
multipartite graph plus ε edges, then τ2(H) ≤ b ε4c+ 2.

Proof. Suppose H = (VH , EH) is a complete multipartite graph. Let VH = V 1
H ∪ . . . ∪ V κH

where each H[V jH] is a maximal independent set. Note that, in any orientation P of H, all
sources are contained in exactly one V jH . Moreover, VP (u) = VP (u′) for any two sources u, u′.
A d.t.d. T of width τ(T) = 1 is the trivial one with one source per bag.

Suppose then we add ε edges to H. Again, in any orientation P of H, all sources are
contained in exactly one V jH , but we might have VP (u) 6= VP (u′) for two distinct sources
u, u′. Note however that all nodes in VH \ V jH are reachable from all sources and are thus
irrelevant to a d.t.d.. More precisely, any d.t.d. for P [V jH] is a d.t.d. for P . But P [V jH] has at
most ε edges and by Theorem 20 (see below) it has a d.t.d. of width at most b ε4c+ 2.

This arguments apply also to any pattern H ′ obtained by identifying nodes of H: if
there is a source node u in H ′ that in H is in V jH , then every node of H ′ that in H is in
VH \ V jH is reachable from u. In addition, if a node in VH \ V jH has been identified with a
node in V jH then all nodes are reachable from all sources and there is a trivial d.t.d. of width
1. Otherwise, in H ′ the nodes of V jH have been identified with a subset of V jH itself and we
just need a d.t.d. of width at most b ε4c+ 2 as above. J

By Theorem 16, if H is complete multipartite then we can compute hom(H,G) and sub(H,G)
in time f(d, k) ·Õ(n). If instead H is complete multipartite plus ε edges, then we can compute
hom(H,G) and sub(H,G) in time f(d, k) · Õ(nb ε4 c+2). This proves Theorem 5.

4.3 Independence number and dag treewidth
I Lemma 19. Any k-node graph H satisfies Ω(α(H)) ≤ τ(H) ≤ α(H).

Proof. Let H be any pattern graph on k nodes. For the upper bound, note that in any
acyclic orientation P of H the sources form an independent set, and that α(H ′) ≤ α(H) for
any H ′ obtained by adding edges or identifying nodes of H.

For the lower bound, we exhibit a pattern H ′ obtained by adding edges to H such that
τ(P) = Ω(α(H)) for all its acyclic orientations P . Let I ⊆ VH be an independent set
of H with |I| = Ω(α(H)) and |I| mod 5 ≡ 0. Partition I in I1, I2 where |I1| = 2

5 |I| and
|I2| = 3

5 |I|. On top of I1 we virtually build a 3-regular expander E = (I1, EE) of linear
treewidth t(E) = Ω(|I1|). It is well known that such expanders exist (see e.g. Proposition 1
and Theorem 5 of [20]). For each edge uv ∈ EE we choose a distinct node euv ∈ I2 and add
to H[I] the edges euvu and euvv. In words, H[I] is the 1-subdivision of E . Let H ′ be the
resulting pattern. Note that t(E) = Ω(|I1|) = Ω(|I|) = Ω(α(H)).

IPEC 2019

6:10 Faster Subgraph Counting in Sparse Graphs

Let now P = (VP , AP) be any acyclic orientation of H ′ having I2 as source set, and let T
be any d.t.d. of P . We show that τ(T) ≥ 1

2 (t(E) + 1). To this end, we build a tree D by
replacing each bag B ∈ T with the bag J(B). We can show that D is a tree decomposition
of E (see Definition 9). First, by point (2) of Definition 10 we have ∪B∈TB = SP . It follows
that ∪J(B)∈DJ(B) = I1. This proves property (1). Second, by construction for every e ∈ EE
we have a node u = ue ∈ VP . Then, again by point (2) of Definition 10, there is B ∈ T such
that u ∈ B; and by construction of D it holds e = {v, w} ⊆ J(B). This proves property (2).
Third, fix any J(B1), J(B2), J(B3) ∈ D such that J(B1) is on the path from J(B2) to J(B3)
in D, and consider any v ∈ J(B2)∩ J(B3). There is u ∈ B2 such that v ∈ J(u), and u′ ∈ B3
such that z ∈ J(u′). Thus v ∈ J(u) ∩ J(u′) ⊆ J(B2) ∩ J(B3); but since B1 is on the path
from B2 to B3 in T , point (3) of Definition 9 implies v ⊆ J(B1). This proves property (3).
Hence D is a tree decomposition of E . Finally, by construction |I2| ≤ 2|J(I2)|. Then by
Definition 9 and Definition 11 we have t(E) ≤ 2τ(P)− 1, that is, τ(P) ≥ 1

2 (t(E) + 1). But
t(E) = Ω(α(H)), thus τ(P) = Ω(α(H)). J

4.4 All patterns
This subsection is devoted entirely to prove:

I Theorem 20. For any dag P = (VP , AP), in time O(1.7549k) we can compute a dag tree
decomposition T = (B, E) with τ(T) ≤ min(b e4c, b

k
4 c) + 2, where k = |VP | and e = |AP |.

Combined with Definition 15, this gives:

I Corollary 21. Any k-node graph H satisfies τ(H) ≤ bk4 c+ 2.

The proof of Theorem 20 proceeds as follows. First, we greedily find a subset B∗ ⊆ S such
that |VP (B∗)| ≥ 4|B∗|. If this subset coincides with S, we are done. Otherwise we delete
B∗ and VP (B∗) from P , partitioning P itself in ` ≥ 1 connected components. We can easily
show that the d.t.d.’s of the individual components can be combined into a d.t.d. for P , if
we add B∗ to every bag. The crux, then, is bounding the dag treewidth of the individual
components. We show that, if the i-th component has ki nodes, then it admits a d.t.d. of
width ki

4 + 2. This requires to first “peel” the component, getting rid of the tree-like parts,
and then decomposing its core using tree decompositions.

The proof makes heavy use of the skeleton of P , defined as follows.

I Definition 22. The skeleton of a dag P = (VP , AP) is the directed bipartite graph Λ(P) =
(S ∪ J,EΛ) where EΛ ⊆ S × J and (u, v) ∈ EΛ if and only if v ∈ J(u).

Figure 3 gives an example. Note that Λ(P) does not contain nodes that are neither sources
nor joints; the reason is that those nodes are irrelevant to the construction of a d.t.d.. Note
also that building Λ(P) takes time O(poly(k)).

1 2 3 4

5 6 7 8 9

1 2 3 4

6 7 8 9

Figure 3 Left: a dag P . Right: its skeleton Λ(P) (sources S above, joints J below).

Let us now delve into the proof. For any node x, we denote by dx the current degree of x
in the skeleton.

M. Bressan 6:11

1. Shattering the skeleton. Set B(0) = ∅ and let Λ(0) = (S(0) ∪ J (0), E
(0)
Λ) be a copy of

Λ. Set j = 0 and proceed iteratively as follows. If there is a source u ∈ S(j) with du ≥ 3,
let B(j+1) = B(j) ∪ {u}, and let Λ(j+1) = (S(j+1) ∪ J (j+1), E

(j+1)
Λ) be obtained from Λ(j) by

removing u and J (j)(u); otherwise stop. Suppose the procedure stops at j = j∗, producing
the subset B∗ = B(j∗) and the sub-skeleton Λ∗ = Λ(j∗) = (S∗ ∪ J∗, E∗Λ). We prove:

I Lemma 23. |B∗| ≤ min
(k−|Λ∗|

4 ,
e−|E∗Λ|

4
)
, where k = |VP | and e = |AP |.

Proof. Since each step removes at least 4 nodes from Λ(j), then 4|B∗| ≤ |Λ\Λ∗| ≤ (k−|Λ∗|),
and |B∗| ≤ k−|Λ∗|

4 . Now consider the nodes {u} ∪ J (j)(u) removed at step j. Note that Λ(j)

is just the skeleton of P (j) = P \ P (B(j)), and that J (j)(u) ⊆ P (j)(u). This implies P (j)(u)
contains at least 3 arcs. Moreover, there must be at least one arc from P (j) \ P (j)(u) to
P (j)(u), otherwise P (j)(u) would not contain joints of P (j). We have therefore at least 4
arcs pointing to nodes of P (j)(u). These arcs are counted only once, since P (j)(u) is then
removed from P (j). Hence e ≥ 4|B∗|+ |E∗Λ|, and |B∗| ≤

e−|E∗Λ|
4 . J

Now, if B∗ = S, then obviously T = ({B∗}, ∅) is a d.t.d. of P . Moreover in this case Λ∗
is empty, so Lemma 23 gives τ(T) = |B∗| ≤ min(k4 ,

e
4), proving Theorem 20.

Suppose instead B∗ ⊂ S. Let P ∗ = P \ P (B∗), and let Λi = (Si ∪ Ji, Ei) : i = 1, . . . , ` be
the connected components of Λ∗. One can check that Λi is precisely the skeleton of P ∗(Si),
the i-th connected component of P ∗. As the next lemma says, we can obtain a d.t.d. for P
by simply combining the d.t.d.’s of the P ∗(Si) in a tree and adding B∗ to all the bags. For
simplicity, we say “a d.t.d of Λi” for “a d.t.d. of P ∗(Si)”.

I Lemma 24. For i = 1, . . . , ` let Ti = (Bi, Ei) be a d.t.d. of Λi. Consider the tree T
obtained as follows. The root of T is the bag B∗, and the subtrees below B∗ are T1, . . . , T`,
where each bag B ∈ Ti has been replaced by B ∪B∗. Then T = (B, E) is a d.t.d. of P with
τ(T) ≤ |B∗|+ maxi=1,...,` τ(Ti) and |B| = 1 +

∑`
i=1 |Bi|.

Proof. The claims on τ(T) and |B| are trivial. Let us check via Definition 10 that T is a d.t.d.
of P . Point (1) is immediate. For point (2), note that ∪B∈Bi = Si because Ti is by hypothesis
a d.t.d. of Λi; by construction, then, ∪B∈B = B∗ ∪`i=1 Si = SP . Now point (3). Choose any
two bags B′ ∪B∗ and B′′ ∪B∗ of T , where B′ ∈ Ti and B′′ ∈ Tj for some i, j ∈ {1, . . . , `},
and any bag B ∪ B∗ ∈ T (B′ ∪ B∗, B′′ ∪ B∗). Suppose first i = j; thus by construction
B ∈ T (B′, B′′). Since Ti is a d.t.d., then Ji(B′) ∩ Ji(B′′) ⊆ Ji(B), and in T this implies
VP (B′ ∪B∗)∩VP (B′′ ∪B∗) ⊆ VP (B ∪B∗). Suppose instead i 6= j. Thus Ji(Si)∩ Jj(Sj) = ∅
and this means that J(Si) ∩ J(Sj) ⊆ J(B∗). But VP (Bi) ∩ VP (Bj) ⊆ J(Si) ∩ J(Sj) and
J(B∗) ⊆ VP (B∗), thus VP (Bi) ∩ VP (Bj) ⊆ VP (B∗). It follows that for every bag B ∪B∗ of
T we have VP (Bi ∪B∗) ∩ VP (Bj ∪B∗) ⊆ VP (B ∪B∗). J

2. Peeling Λi. We now remove the tree-like parts of Λi = (Si∪Ji, Ei); for instance, sources
that point to only a single joint. The intuition is that those parts do not increase the dag
treewidth. As a base case, if |Si| = 1 then Ti = ({Si}, ∅) is a d.t.d. for Λi of width 1. Suppose
instead |Si| > 1. Note that every u ∈ Si satisfies du = |Ji(u)| ≤ 2, for otherwise u would
have been removed in the previous phase. Consider the following conditions:
1. ∃u ∈ Si : du = 1. Then fix any such u, and fix any u′ ∈ Si \ {u} with Ji(u) ∩ Ji(u′) 6= ∅.
2. Ji(u) = Ji(u′) for some u, u′ ∈ Si with u 6= u′. Then, fix u and u′ as above.
3. ∃v ∈ Ji : dv = 1 (this is initially false). Then fix any such v, let u be the unique source

such that v ∈ Ji(u), and let u′ 6= u be any source with Ji(u) ∩ Ji(u′) 6= ∅.

IPEC 2019

6:12 Faster Subgraph Counting in Sparse Graphs

Note that, in any case, u′ must exist since |Si| > 1 and Λi is always connected. We then
“peel” Λi by defining Ti recursively, as follows. Let Λ′i = Λi \ {u}, and assume we have a
d.t.d. T ′i of Λ′i. Since u′ 6= u then u′ ∈ Si \ {u}, and thus for some B′ ∈ T ′i we have u′ ∈ B′.
Create the bag Bu = {u} and set it as a child of B′. We obtain a tree Ti where Bu is a leaf;
and note that, by construction, for any u′′ ∈ Si \ {u, u′} we have Ji(u) ∩ Ji(u′′) ⊆ Ji(u′).
This implies that Ti is a d.t.d. for Λi. Then remove u from Λi, as well as any v : dv = 0.

We repeat this peeling process until we meet the base case, or until |Si| > 1 and all three
conditions above fail. In the latter case, we move to the next phase.

u1u0 u2 u3 u4 u5 u6 u7 u8 u9 u10

1 2 3 4 5 6

u1 u2 u3

1 2 3

1

2

3

u1

u2

u3

Figure 4 Above: example of a skeleton component Λi. Below: the core Λ•i obtained from Λi
after peeling (left), and its encoding as Ci (right).

3. Decomposing the core. We denote by Λ•i = (S•i ∪ J•i , E•i) the subgraph of Λi left after
the peeling. We say Λ•i is the core of Λi; intuitively, it is the part determining the dag
treewidth of Λi. Now, since Λ•i violates all three conditions of the peeling step, certainly
du = 2 for every source u and dv ≥ 2 for every joint v. This means that the joints and
sources of Λ•i can be represented as nodes and edges of a simple graph. Formally, we encode
Λ•i as Ci = (VCi , ECi) where VCi = J•i and ECi = {eu : u ∈ S•i }, as Figure 4 shows.

Using Ci, we can find a good bound on τ(Λ•i) via tree decompositions. The key fact is
that any tree decomposition for Ci of width t can be turned in time poly(k) into a d.t.d.
for Λ•i of width t+ 1 (intuitively, the tree decomposition covers the edges of Ci, which are
the sources of Λ•i). By a bound of [23], Ci admits a tree decomposition of width at most
|ECi |

5 + 2, and this can be computed in time O(1.7549k) [18]. In the end, this yields:

I Lemma 25. Let ki = |S•i ∪J•i |. In time O(1.7549ki) we can compute a d.t.d. T •i = (B•i , E•i)
of Λ•i such that τ(T •i) ≤ bki4 c+ 2.

With Lemma 25 we have essentially finished. It remains to wrap all our bounds together.

4. Assembling the tree. Let Ti be the d.t.d. for Λi, as returned by the recursive peeling
followed by the core decomposition. Note that τ(Ti) ≤ τ(T •i), since the peeling phase only
add bags of width 1. Therefore, by Lemma 25, τ(Ti) ≤ bki4 c+ 2 where ki = |S•i ∪ J•i |.

Let now T = (B, E) be the d.t.d. for P obtained by composing T1, . . . , T` (Lemma 24).
By Lemma 24 itself, τ(T) ≤ |B∗|+ maxi=1,...,` τ(Ti), thus:

τ(T) ≤ |B∗|+ max
i=1,...,`

⌊ki
4
⌋

+ 2 (5)

Now, from Lemma 23 we know that P (B∗) has at least 4|B∗| nodes and 4|B∗| arcs. Similarly,
since each Λi has at least ki nodes and ki arcs, then P \ P (B∗) has at least

∑
i=1,...,` ki

M. Bressan 6:13

nodes and
∑
i=1,...,` ki arcs. By a simple summation, then, we have τ(T) ≤ bk4 c + 2 and

τ(T) ≤ b e4c+ 2, hence τ(T) ≤ min(bk4 c, b
e
4c) + 2. Finally, by Lemma 25 the time to build Ti

is O(1.7549ki), since the peeling phase clearly takes time poly(ki). The total time to build T
is therefore O(1.7549k), which concludes the proof of Theorem 20.

5 Lower bounds

We prove the lower bound of Theorem 7. Note that, since τ(H) = Θ(α(H)) by Lemma 19,
the bound still holds if one replaces s(H) by α(H) in the statement.

I Theorem 26. For any function a : [k]→ [1, k] there exists an infinite family of patterns
H such that (1) s(H) = Θ(a(k)) for each H ∈ H, and (2) if there exists an algorithm that
computes ind(H,G) or sub(H,G) in time f(d, k) · no(a(k)/ ln a(k)) for all H ∈ H where d is
the degeneracy of G, then ETH fails.

Proof. We reduce counting cycles in an arbitrary graph to counting a gadget pattern on k
nodes and dag treewidth O(τ(k)), where τ(k) = a(k), in a d-degenerate graph.

The gadget is the following. Consider a simple cycle on k0 ≥ 3 nodes. Choose an integer
d = d(k) ≥ 2 with d(k) ∈ Ω(k

τ(k)). For each edge e = uv of the cycle create a clique Ce
on d − 1 nodes; delete e and connect both u and v to every node of Ce. The resulting
pattern H has dk0 = k nodes. Let us prove τ(H) ≤ k0. This implies τ(H) = O(τ(k)) since
k0 = k

d ∈ O(τ(k)). Consider again the generic edge e = uv. Since Ce ∪ u is itself a clique, it
has independent set size 1; and thus in any orientation Hσ of H, Ce ∪ u contains at most
one source. Applying the argument to all e shows S(Hσ) ≤ k0, and since τ(Hσ) ≤ |S(Hσ)|,
we have τ(Hσ) ≤ k0. Note any H ′σ obtained from Hσ by adding edges or identifying nodes
has at most k0 roots, too. Hence τ(H) ≤ k0.

Now consider the task of counting the cycles of length k0 ≥ 3 in a simple graph G0 on n0
nodes and m0 edges. We replace each edge of G0 as described above. The resulting graph
G has n = m0(d− 1) + n0 = O(dn2

0) nodes, has degeneracy d, and can be built in poly(n0)
time. Note that every k0-cycle of G0 is univocally associated to a(n induced) copy of H in
G. Suppose then there exists an algorithm that computes ind(H,G) or sub(H,G) in time
f(d, k) · no(τ(H)/ ln τ(H)). Since τ(H) ≤ k0, k = f(d, k0), n = O(dn2

0), and d = f(k0), the
running is time f(d, k0) · no(k0/ ln k0). This implies one can count the number of k0-cycles in
G in time f(k0) · no(k0/ ln k0). The proof is completed by invoking:

I Theorem 27 ([11], Theorem I.2). The following problems are #W [1]-hard and, assuming
ETH, cannot be solved in time f(k) · no(k/ log k) for any computable function f : counting
(directed) paths or cycles of length k, and counting edge-colorful or uncolored k-matchings in
bipartite graphs. J

6 Conclusions

We have shown how one can exploit the sparsity of a graph to count subgraphs faster than
with state-of-the-art algorithms. Our main technical ingredient, the dag tree decomposition,
not only yields better algorithms, but sheds light on the algorithmic role of degeneracy in
subgraph counting, too. It would be interesting to know if our decomposition can be applied
to problems other than subgraph counting.

An obvious line of future research is to tighten the bounds. For all patterns, one could
improve the upper bound by reducing the exponent by constant or logarithmic factors; larger
improvements seem unlikely, due to the lower bounds. For special classes of patterns, instead,

IPEC 2019

6:14 Faster Subgraph Counting in Sparse Graphs

the situation is different: our lower bounds hold for some infinite family of patterns, not
for any infinite family. This leaves open the question of finding special classes of patterns
that can be counted even faster, or of tightening the lower bounds. In the second case, the
dag treewidth would completely characterise the complexity of subgraph counting when
parameterized by the degeneracy of the host graph.

References

1 N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular network
motif counting and discovery by color coding. Bioinformatics, 24(13):i241–249, July 2008.
doi:10.1093/bioinformatics/btn163.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Counting Thin Subgraphs via Packings
Faster Than Meet-in-the-middle Time. In Proc. of ACM-SIAM SODA, pages 594–603, 2014.
doi:10.1137/1.9781611973402.45.

4 Marco Bressan. Faster subgraph counting in sparse graphs. CoRR, abs/1805.02089, 2018.
arXiv:1805.02089.

5 Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi.
Counting Graphlets: space vs. time. In Proc. of ACM WSDM, pages 557–566, 2017. doi:
10.1145/3018661.3018732.

6 Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi.
Motif Counting Beyond Five Nodes. ACM Transactions on Knowledge Discovery from Data,
20(2):1–25, April 2018. doi:10.1145/3186586.

7 Marco Bressan, Stefano Leucci, and Alessandro Panconesi. Motivo: fast motif counting via
succinct color coding and adaptive sampling. Proc. of the VLDB Endowment, 12(11):1651–1663,
July 2019. doi:10.14778/3342263.3342640.

8 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj, and
Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation, 201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/j.jcss.2006.04.007.

10 Norishige Chiba and Takao Nishizeki. Arboricity and Subgraph Listing Algorithms. SIAM J.
Comput., 14(1):210–223, 1985. doi:10.1137/0214017.

11 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Bounded-
ness of the Vertex-Cover Number Counts. In Proc. of IEEE FOCS, pages 130–139, Washington,
DC, USA, 2014. IEEE Computer Society. doi:10.1109/FOCS.2014.22.

12 Reinhard Diestel. Graph Theory. Springer Publishing Company, Incorporated, 5th edition,
2017. doi:10.1007/978-3-662-53622-3.

13 David Eppstein. Arboricity and Bipartite Subgraph Listing Algorithms. Inf. Process. Lett.,
51(4):207–211, August 1994. doi:10.1016/0020-0190(94)90121-X.

14 David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Problems. Journal of
Graph Algorithms and Applications, 3(3):1–27, 1999. doi:10.7155/jgaa.00014.

15 David Eppstein, Maarten Löffler, and Darren Strash. Listing All Maximal Cliques in Sparse
Graphs in Near-Optimal Time. In Algorithms and Computation, pages 403–414. Springer
Berlin Heidelberg, 2010. doi:10.1007/978-3-642-17517-6_36.

16 David Eppstein and Darren Strash. Listing All Maximal Cliques in Large Sparse Real-
World Graphs. In Experimental Algorithms, pages 364–375. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-20662-7_31.

https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/1.9781611973402.45
http://arxiv.org/abs/1805.02089
https://doi.org/10.1145/3018661.3018732
https://doi.org/10.1145/3018661.3018732
https://doi.org/10.1145/3186586
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1137/0214017
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1007/978-3-642-17517-6_36
https://doi.org/10.1007/978-3-642-20662-7_31

M. Bressan 6:15

17 Peter Floderus, Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and
Counting Small Pattern Graphs. SIAM J. Discrete Math., 29(3):1322–1339, 2015. doi:
10.1137/140978211.

18 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag Berlin
Heidelberg, 1 edition, 2010. doi:10.1007/978-3-642-16533-7.

19 Robert Ganian, Petr Hliněný, Joachim Kneis, Daniel Meister, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? Journal of Combinatorial
Theory, Series B, 116:250–286, January 2016. doi:10.1016/j.jctb.2015.09.001.

20 Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. Journal of
Combinatorial Theory, Series B, 99(1):218–228, 2009. doi:10.1016/j.jctb.2008.06.004.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In Proc. of IEEE FOCS, pages 653–662, 1998. doi:10.1109/sfcs.
1998.743516.

22 Shweta Jain and C. Seshadhri. A Fast and Provable Method for Estimating Clique Counts Using
Turán’s Theorem. In Proc. of WWW, pages 441–449, 2017. doi:10.1145/3038912.3052636.

23 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Algorithms Based on
the Treewidth of Sparse Graphs. In Graph-Theoretic Concepts in Computer Science, pages
385–396. Springer Berlin Heidelberg, 2005. doi:10.1007/11604686_34.

24 Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and Detecting Small
Subgraphs via Equations. SIAM Journal on Discrete Mathematics, 27(2):892–909, January
2013. doi:10.1137/110859798.

25 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proc. of ISSAC, pages
296–303, 2014. doi:10.1145/2608628.2608664.

26 Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study of the Treewidth of
Real-World Graph Data. In Proc. of ICDT, pages 12:1–12:18, 2019. doi:10.4230/LIPIcs.
ICDT.2019.12.

27 J. Nešetřil and P.O. de Mendez. Sparsity: Graphs, Structures, and Algorithms. Algorithms
and Combinatorics. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-27875-4.

28 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:
//eudml.org/doc/17394.

29 Viresh Patel and Guus Regts. Computing the Number of Induced Copies of a Fixed Graph
in a Bounded Degree Graph. Algorithmica, 81(5):1844–1858, September 2018. doi:10.1007/
s00453-018-0511-9.

30 Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. ESCAPE: Efficiently counting all 5-vertex
subgraphs. In Proc. of WWW, pages 1431–1440, 2017. doi:10.1145/3038912.3052597.

31 Ahmet Erdem Sariyüce and Ali Pinar. Peeling Bipartite Networks for Dense Subgraph
Discovery. In Proc. of ACM WSDM, pages 504–512, 2018. doi:10.1145/3159652.3159678.

32 Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. Nucleus Decom-
positions for Identifying Hierarchy of Dense Subgraphs. ACM Trans. Web, 11(3):16:1–16:27,
July 2017. doi:10.1145/3057742.

33 Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable Motif-
aware Graph Clustering. In Proc. of WWW, pages 1451–1460, 2017. doi:10.1145/3038912.
3052653.

34 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

35 Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local Higher-Order Graph
Clustering. In Proc. of ACM KDD, pages 555–564, 2017. doi:10.1145/3097983.3098069.

IPEC 2019

https://doi.org/10.1137/140978211
https://doi.org/10.1137/140978211
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1016/j.jctb.2015.09.001
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1109/sfcs.1998.743516
https://doi.org/10.1109/sfcs.1998.743516
https://doi.org/10.1145/3038912.3052636
https://doi.org/10.1007/11604686_34
https://doi.org/10.1137/110859798
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1007/978-3-642-27875-4
http://eudml.org/doc/17394
http://eudml.org/doc/17394
https://doi.org/10.1007/s00453-018-0511-9
https://doi.org/10.1007/s00453-018-0511-9
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1145/3159652.3159678
https://doi.org/10.1145/3057742
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1137/09076619X
https://doi.org/10.1145/3097983.3098069

Towards a Theory of Parameterized Streaming
Algorithms
Rajesh Chitnis
School of Computer Science, University of Birmingham, UK
rajeshchitnis@gmail.com

Graham Cormode
University of Warwick, UK
g.cormode@warwick.ac.uk

Abstract
Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems:
instead of measuring the running time as a function of only the input size, we analyze the running time
with respect to additional parameters. This approach has proven to be highly successful in delineating
our understanding of NP-hard problems. Given this success with the TIME resource, it seems but
natural to use this approach for dealing with the SPACE resource. First attempts in this direction
have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS’14] and
Chitnis et al. [SODA’15] introduced the notions of streaming kernels and parameterized streaming
algorithms respectively. For example, the latter shows how to refine the Ω(n2) bit lower bound for
finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the
parameterized k-VC problem which uses O(k2 logn) bits.

In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized
streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS,
SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph
problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into
this hierarchy (see Figure 1 and Table 1). On the algorithmic side, our parameterized streaming
algorithms use techniques from the FPT world such as bidimensionality, iterative compression and
bounded-depth search trees. On the hardness side, we obtain lower bounds for the parameterized
streaming complexity of various problems via novel reductions from problems in communication
complexity. We also show a general (unconditional) lower bound for space complexity of parameterized
streaming algorithms for a large class of problems inspired by the recently developed frameworks for
showing (conditional) kernelization lower bounds.

Parameterized algorithms and streaming algorithms are approaches to cope with TIME and
SPACE intractability respectively. It is our hope that this work on parameterized streaming
algorithms leads to two-way flow of ideas between these two previously separated areas of theoretical
computer science.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Parameterized Algorithms, Streaming Algorithms, Kernels

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.7

Related Version Full version of the paper is available at https://arxiv.org/abs/1911.09650

Funding Rajesh Chitnis: Work done while at University of Warwick, UK and supported by ERC
grant 2014-CoG 647557.
Graham Cormode: Supported by ERC grant 2014-CoG 647557.

Acknowledgements We thank MohammadTaghi Hajiaghayi, Robert Krauthgamer and Morteza
Monemizadeh for helpful discussions. Algorithm 1 was suggested to us by Arnold Filtser.

© Rajesh Chitnis and Graham Cormode;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajeshchitnis@gmail.com
mailto:g.cormode@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.IPEC.2019.7
https://arxiv.org/abs/1911.09650
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Towards a Theory of Parameterized Streaming Algorithms

1 Introduction

Designing and implementing efficient algorithms is at the heart of computer science. Tra-
ditionally, efficiency of algorithms has been measured with respect to running time as a
function of instance size. From this perspective, algorithms are said to be efficient if they can
be solved in time which is bounded by some polynomial function of the input size. However,
very many interesting problems are NP-complete, and so are grouped together as “not known
to be efficient”. This fails to discriminate within a large heterogenous group of problems,
and in response the theory of parameterized (time) algorithms was developed in late 90’s by
Downey and Fellows [20]. Parameterized complexity attempts to delineate the complexity of
problems by expressing the costs in terms of additional parameters. Formally, we say that a
problem is fixed-parameter tractable (FPT) with respect to parameter k if the problem can
be solved in time f(k) · nO(1) where f is a computable function and n is the input size. For
example, the problem of checking if a graph on n vertices has a vertex cover of size at most
k can be solved in 2k · nO(1) time. The study of various parameters helps to understand
which parameters make the problem easier (FPT) and which ones cause it to be hard. The
parameterized approach towards NP-complete problems has led to development of various
algorithmic tools such as kernelization, iterative compression, color coding, and more [21, 14].

Kernelization: A key concept in fixed parameter tractability is that of kernelization which
is an efficient preprocessing algorithm to produce a smaller, equivalent output called the
“kernel”. Formally, a kernelization algorithm for a parameterized problem Q is an algorithm
which takes as an instance 〈x, k〉 and outputs in time polynomial in (|x|+ k) an equivalent1
instance 〈x′, k′〉 such that max{|x′|, k′} ≤ f(k) for some computable function f . The output
instance 〈x′, k′〉 is called the kernel, while the function f determines the size of the kernel.
Kernelizability is equivalent to fixed-parameter tractability, and designing compact kernels
is an important question. In recent years, (conditional) lower bounds on kernels have
emerged [3, 16, 17, 22, 27].

Streaming Algorithms: A very different paradigm for handling large problem instances
arises in the form of streaming algorithms. The model is motivated by sources of data
arising in communication networks and activity streams that are considered to be too big to
store conveniently. This places a greater emphasis on the space complexity of algorithms.
A streaming algorithm processes the input in one or a few read-only passes, with primary
focus on the storage space needed. In this paper we consider streaming algorithms for graph
problems over fixed vertex sets, where information about the edges arrives edge by edge [29].
We consider variants where edges can be both inserted and deleted, or only insertions are
allowed. We primarily consider single pass streams, but also give some multi-pass results.

1.1 Parameterized Streaming Algorithms and Kernels
Given that parameterized algorithms have been extremely successful for the TIME resource,
it seems natural to also use it attack the SPACE resource. In this paper, we advance the
model of parameterized streaming algorithms, and start to flesh out a hierarchy of complexity
classes. We focus our attention on graph problems, by analogy with FPT, where the majority
of results have addressed graphs. From a space perspective, there is perhaps less headroom

1 By equivalent we mean that 〈x, k〉 ∈ Q⇔ 〈x′, k′〉 ∈ Q

R. Chitnis and G. Cormode 7:3

than when considering the time cost: for graphs on n vertices, the entire graph can be stored
using O(n2) space2. Nevertheless, given that storing the full graph can be prohibitive, there
are natural space complexity classes to consider. We formalize these below, but informally,
the classes partition the dependence on n as: (i) (virtually) independent of n; (ii) sublinear
in n; (iii) (quasi)linear in n; (iv) superlinear but subquadratic in n; and (v) quadratic in n.

Naively, several graph problems have strong lower bounds: for example, the problem
of finding a minimum vertex cover on graphs of n vertices has a lower bound of Ω(n2)
bits. However, when we adopt the parameterized view, we seek streaming algorithms for
(parameterized) graph problems whose space can be expressed as a function of both the
number of vertices n and the parameter k. With this relaxation, we can separate out the
problem space and start to populate our hierarchy. We next spell out our results, which derive
from a variety of upper and lower bounds building on the streaming and FPT literature.

1.2 Our Results & Organization of the paper
For a graph problem with parameter k, there can be several possible choices for the space
complexity needed to solve it in the streaming setting. In this paper, we first define some
natural space complexity classes below:
1. Õ(f(k)) space: Due to the connection to running time of FPT algorithms, we call the

class of parameterized problems solvable using Õ(f(k)) bits as FPS (fixed-parameterized
streaming)3.

2. Sublinear space: When the dependence on n is sublinear, we call the class of parameterized
problems solvable using Õ(f(k) · n1−ε) bits as SubPS (sublinear parameterized streaming)

3. Quasi-linear space: Due to the connection to the semi-streaming model [26, 33], we call the
set of problems solvable using Õ(f(k) · n) bits as SemiPS (parameterized semi-streaming).

4. Superlinear, subquadratic space: When the dependence on n is superlinear (but subquad-
ratic), we call the class of parameterized problems solvable using Õ(f(k) · n1+ε) bits (for
some 1 > ε > 0) as SupPS (superlinear parameterized streaming).

5. Quadratic space: We call the set of graph problems solvable using O(n2) bits as BrutePS
(brute-force parameterized streaming). Note that every graph problem is in BrutePS
since we can just store the entire adjacency matrix using O(n2) bits (see Remark 2).

I Remark 1. Formally, we need t consider the following 7-tuple when we attempt to find its
correct position in the aforementioned hierarchy of complexity classes:

[Problem, Parameter, Space,# of Passes, Type of Algorithm, Approx. Ratio, Type of Stream]

By type of algorithm, we mean that the algorithm could be deterministic or randomized.
For the type of stream, the standard alternatives are (adversarial) insertion, (adversarial)
insertion-deletion, random order, etc. Table 2 gives a list of results for the k-VC problem (as
a case study) in various different settings. Unless stated otherwise, throughout this paper,
we consider the space requirement for 1-pass exact deterministic algorithms for problems
with the standard parameter (size of the solution)on insertion-only streams.

I Remark 2. There are various different models for streaming algorithms depending on how
much computation is allowed on the stored data. In this paper, we consider the most general
model by allowing unbounded computation at each edge update, and also at the end of the
stream.

2 Throughout the paper, by space we mean words/edges/vertices. Each word can be represented using
O(logn) bits

3 Throughout this paper, we use the Õ notation to hide logO(1) n factors

IPEC 2019

7:4 Towards a Theory of Parameterized Streaming Algorithms

Our goal is to provide a tight classification of graph problems into the aforementioned
complexity classes. We make progress towards this goal as follows: Section 2 shows how various
techniques from the FPT world such as iterative compression, branching, bidimensionality,
etc. can also be used to design parameterized streaming algorithms. First we investigate
whether one can further improve upon the FPS algorithm of Chitnis et al. [9] for k-VC
which uses O(k2 · logn) bits and one pass. We design two algorithms for k-VC which use
O(k · logn) bits4: an 2k-pass algorithm using bounded-depth search trees (Section 2.1) and
an (k · 22k)-pass algorithm using iterative compression (Section 2.2). Finally, Section 2.3
shows that any minor-bidimensional problem belongs to the class SemiPS.

Section 3 deals with lower bounds for parameterized streaming algorithms. First, in
Section 3.1 we show that some parameterized problems are tight for the classes SemiPS
and BrutePS. In particular, we show that k-Treewidth, k-Path and k-Feedback-Vertex-Set
are tight for the class SemiPS, i.e., they belong to SemiPS but do not belong to the sub-
class SubPS. Our SemiPS algorithms are based on problem-specific structural insights. Via
reductions from the Perm problem [35], we rule out algorithms which use Õ(f(k) · n1−ε)
bits (for any function f and any ε ∈ (0, 1)) for these problems by proving Ω(n logn) bits
lower bounds for constant values of k. Then we show that some parameterized problems
such as k-Girth and k-Dominating-Set are tight for the class BrutePS, i.e, they belong to
BrutePS but do not belong to the sub-class SupPS. Every graph problem belongs to BrutePS
since we can store the entire adjacency matrix of the graph using O(n2) bits. Via reductions
from the Index problem [30], we rule out algorithms which use Õ(f(k) · n1+ε) bits (for any
function f and any ε ∈ (0, 1)) for these problems by proving Ω(n2) bits lower bounds for
constant values of k.

Section 3.2 shows a lower bound of Ω(n) bits for any algorithm that approximates (within
a factor β

32) the size of min dominating set on graphs of arboricity (β + 2), i.e., this problem
has no Õ(f(β) · n1−ε) bits algorithm (since β is a constant), and hence does not belong to
the class SubPS when parameterized by β. In Section 3.3 we obtain unconditional lower
bounds on the space complexity of 1-pass parameterized streaming algorithms for a large
class of graph problems inspired by some of the recent frameworks to show conditional lower
bounds for kernels [3, 16, 17, 22, 27]. In the full version we also show that any parameterized
streaming algorithm for the d-SAT problem (for any d ≥ 2) must (essentially) follow the
naive algorithm of storing all the clauses.

Figure 1 provides a pictorial representation of the complexity classes, and the known
classification of several graph problems (from this paper and some previous work) into these
classes. Table 1 summarizes our results, and clarifies the stream arrival model(s) under which
they hold.

1.3 Prior work on Parametrized Streaming Algorithms
Prior work began by considering how to implement kernels in the streaming model. Formally,
a streaming kernel [25] for a parameterized problem (I, k) is a streaming algorithm that
receives the input I as a stream of elements, stores f(k) · logO(1) |I| bits and returns an
equivalent instance5. This is especially important from the practical point of view since
several real-world situations can be modeled by the streaming setting, and streaming kernels
would help to efficiently preprocess these instances. Fafianie and Kratsch [25] showed that

4 Which is essentially optimal since the algorithm also returns a VC of size k (if one exists)
5 [25] required f(k) = kO(1), but we choose to relax this requirement

R. Chitnis and G. Cormode 7:5

FPS

SubPS

SemiPS

SupPS

BrutePS

k-Girth, k-Dominating Set

k-Path, k-FVS, k-Treewidth

k-VC

O(d)-approx. for est. max matching
on graphs of arboricity d in

dynamic streams [7]

O(logn
δ)-approx. for DomSet in Õ(n1+δ) space

and O(1/δ) passes [28]

Minor-Bidimensional-problems

β
32 -approx for estimating

DomSet in graphs of arboricity (β + 2)

Figure 1 Pictorial representation of classification of some graph problems into complexity classes:
our results are in black and previous work is referenced in blue. All results are for 1-pass deterministic
algorithms on insertion-only streams unless otherwise specified. It was already known that k-VC
∈ FPS [9, 7] using only 1-pass, but here we design an algorithm with optimal space storage at the
expense of multiple passes.

the kernels for some problems like Hitting Set and Set Matching can be implemented in the
streaming setting, but other problems such as Edge Dominating Set, Feedback Vertex Set,
etc. do not admit (1-pass) streaming kernels.

Chitnis et al. [9] studied how to circumvent the worst case bound of Ω(n2) bits for Vertex
Cover by designing a streaming algorithm for the parameterized k-Vertex-Cover (k-VC)6.
They showed that the k-VC problem can be solved in insertion-only streams using storage
of O(k2) space. They also showed an almost matching lower bound of Ω(k2) bits for any
streaming algorithm for k-VC. A sequence of papers showed how to solve the k-VC problem
in more general streaming models: Chitnis et al. [9, 8] gave an Õ(k2) space algorithm under
a particular promise, which was subsequently removed in [7].

6 That is, determine whether there is a vertex cover of size at most k?

IPEC 2019

7:6 Towards a Theory of Parameterized Streaming Algorithms

Table 1 Table summarizing our results (in the order in which they appear in the paper). All our
algorithms are deterministic. All the lower bounds are unconditional, and hold even for randomized
algorithms in insertion-only streams. Proofs of results labeled with [?] appear in the full version.

Problem Passes
of

Number

Stream
Type of

Upper Bound
Space

Lower Bound
Space

problems [Sec. 2.3]
g(r)-minor-bidimensional

1 Ins-Del. words
Õ((g−1(k + 1))10n)

—
k-VC [Sec. 2.2] 22k · k Ins-only O(k) words Ω(k) words
k-VC [Sec. 2.1] 2k Ins-only O(k) words Ω(k) words

k-Treewidth [Sec. 3.1]
k-FVS, k-Path

1 Ins-only O(k · n) words bits algorithm
No f(k) · n1−ε logO(1) n

k-Treewidth [Sec. 3.1]
k-FVS, k-Path

1 Ins-Del. Õ(k · n) words bits algorithm
No f(k) · n1−ε logO(1) n

[Sec. 3.1]
k-Girth, k-DomSet,

1 Ins-Del. O(n2) bits bits algorithm
No f(k) · n2−ε logO(1) n

arboricity β [Sec. 3.2]
min DomSet on graphs of

β
32 -approximation for size of

1 Ins-only Õ(nβ) bits bits algorithm
No f(β) · n1−ε

problems [Sec. 3.3]
and OR-compatible

AND-compatible problems

1 Ins-only O(n2) bits bits algorithm
No Õ(f(k) · n1−ε)

N variables [?]
d-SAT with

1 Arrival
Clause

Õ(d ·Nd) bits Ω((N/d)d) bits

Table 2 Table summarizing some of the results for the k-VC problem in the different settings
outlined in Remark 1. Proofs of results labeled with [?] appear in the full version.

Problem Passes
of

Stream
Type of

Algorithm
Type of

Ratio
Approx.

Bound
Space

k-VC 1 Ins-only Det. 1 O(k2 logn) bits [9]
k-VC 1 Ins-only Rand. 1 Ω(k2) bits [9]
k-VC 1 Ins-Del. Rand. 1 O(k2 logO(1) n) bits [7]
k-VC 2k Ins-only Det. 1 O(k logn) bits [Algorithm 1]
k-VC k · 2k Ins-only. Det. 1 O(k logn) bits [?]

Estim. k-VC Ω(k/ logn) Ins-only. Rand. 1 O(k logn) bits [1, Theorem 16]

on Trees
Estim. k-VC

1 Ins-only. Rand.
Det.

(3/2− ε) Ω(
√
n) bits [24, Theorem 6.1]

Ω(n) bits [24, Theorem 6.1]

Recently, there have been several papers considering the problem of estimating the size
of a maximum matching using o(n) space in graphs of bounded arboricity. If the space
is required to be sublinear in n, then versions of the problem that involve estimating the
size of a maximum matching (rather than demonstrating such a matching) become the
focus. Since the work of Esfandiari et al. [24], there have been several sublinear space
algorithms [31, 32, 12, 7] which obtain O(α)-approximate estimations of the size of maximum
matching in graphs of arboricity α. The current best bounds [4, 12] for insertion-only streams
is O(logO(1) n) space and for insertion-deletion streams is Õ(α · n4/5). All of these results
can be viewed as parameterized streaming algorithms (FPS or SubPS) for approximately
estimating the size of maximum matching in graphs parameterized by the arboricity.

R. Chitnis and G. Cormode 7:7

2 Parameterized Streaming Algorithms Inspired by FPT techniques

In this section we design parameterized streaming algorithms using three techniques from the
world of parameterized algorithms, viz. branching, iterative compression and bidimensionality.

2.1 Multipass FPS algorithm for k-VC using Branching
The streaming algorithm from Section 2.2 already uses optimal storage of O(k logn) bits but
requires O(22k · k) passes. In this section, we show how to reduce the number of passes to 2k
(while still maintaining the same storage) using the technique of bounded-depth search trees
(also known as branching). The method of bounded-depth search trees gives a folklore FPT
algorithm for k-VC which runs in 2O(k) · nO(1) time. The idea is simple: any vertex cover
must contain at least one end-point of each edge. We now build a search tree as follows:
choose an arbitrary edge, say e = u− v in the graph. Start with the graph G at the root
node of the search tree. Branch into two options, viz. choosing either u or v into the vertex
cover7. The resulting graphs at the two children of the root node are G − u and G − v.
Continue the branching process. Note that at each step, we branch into two options and
we only need to build the search tree to height k for the k-VC problem. Hence, the binary
search tree has 2O(k) leaf nodes. If the resulting graph at any leaf node is empty (i.e., has no
edges) then G has a vertex cover of size ≤ k which can be obtained by following the path
from the root node to the leaf node in the search tree. Conversely, if the resulting graphs at
none of the leaf nodes of the search tree are empty then G does not have a vertex cover of
size ≤ k: this is because at each step we branched on all the (two) possibilities at each node
of the search tree.

Simulating branching-based FPT algorithm using multiple passes: We now simulate the
branching-based FPT algorithm described in the previous section using 2k passes and
O(k logn) bits of storage in the streaming model.

I Definition 3. Let V (G) = {v1, v2, . . . , vn}. Fix some ordering φ on V (G) as follows:
v1 < v2 < v3 < . . . < vn. Let Dictk be the dictionary ordering on the 2k binary strings
of {0, 1}k. Given a string X ⊆ {0, 1}k, let Dictk(Next(X)) denote the string that comes
immediately after X in the ordering Dictk. We set Dictk(Next(1k)) = ♠

We formally describe our multipass algorithm in Algorithm 1. This algorithm crucially
uses the fact that in each pass we see the edges of the stream in the same order.

I Theorem 4. [?] 8 Algorithm 1 correctly solves the k-VC problem using 2k passes and
O(k logn) bits of storage.

Note that the total storage of Algorithm 1 is O(k logn) bits which is essentially optimal
since the algorithm also outputs a vertex cover of size at most k (if one exists).

The next natural question is whether one need exponential (in k) number of passes when
we want to solve the k-VC problem using only O(k logn) bits. A lower bound of (k/ logn)
passes follows for such algorithms from the following result of Abboud et al.

I Theorem 5. (rewording of [1, Thm 16]) Any algorithm for the k-VC problem which uses
S bits of space and R passes must satisfy RS ≥ n2

7 Note that if we choose u in the first branch then that does not imply that we cannot or will not choose
v later on in the search tree

8 Proofs of results labeled with [?] appear in the full version.

IPEC 2019

7:8 Towards a Theory of Parameterized Streaming Algorithms

Algorithm 1 2k-pass Streaming Algorithm for k-VC using O(k logn) bits via Branching.
Input: An undirected graph G = (V,E) and an integer k.
Output: A vertex cover S of G of size ≤ k (if one exists), and NO otherwise
Storage: i, j, S, X
1: Let X = 0k, and suppose the edges of the graph are seen in the order e1, e2, . . . , em
2: while X 6= ♠ do

S = ∅, i = 1, j = 1
3: while i 6= k + 1 do
4: Let ej = u− v such that u < v under the ordering φ
5: if Both u /∈ S and v /∈ S then
6: if X[i] = 0 then S ← S ∪ {u}
7: else S ← S ∪ {v}
8: i← i+ 1
9: j ← j + 1

10: if j = m+ 1 then Return S and abort
11: else X ← Dictk(Next(X))
12: if X = ♠ then Return NO

2.2 Multipass FPS algorithm for k-VC using Iterative Compression
The technique of iterative compression was introduced by Reed et al. [34] to design the first
FPT algorithm for the k-OCT problem9. Since then, iterative compression has been an
important tool in the design of faster parameterized algorithms [6, 10, 5] and kernels [15].
In the full version, using the technique of iterative compression, we design an algorithm for
k-VC which uses O(k logn) bits but requires O(k · 22k) passes. Although this algorithm is
strictly worse (same storage, but higher number of passes) compared to Algorithm 1, we
mention it here to illustrate that the technique of iterative compression can be used in the
streaming setting.

As in the FPT setting, a natural problem to attack using iterative compression in the
streaming setting would be the k-OCT problem. It is known that 0-OCT, i..e, checking if
a given graph is bipartite, in the 1-pass model has an upper bound of O(n logn) bits [26]
and a lower bound of Ω(n logn) bits [35]. For k ≥ 1, can we design a g(k)-pass algorithm
for k-OCT which uses Õ(f(k) · n) bits for some functions f and g, maybe using iterative
compression? To the best of our knowledge, such an algorithm is not known even for 1-OCT.

2.3 Minor-Bidimensional problems belong to SemiPS

The theory of bidimensionality [18, 19] provides a general technique for designing (subexpo-
nential) FPT for NP-hard graph problems on various graph classes. In this section, we briefly
sketch how we can use this technique to show that a large class of problems belong to the
class SemiPS. All the details (including graph-theoretic definitions such as minors, treewidth,
etc.) of this section are deferred to the full version.

I Definition 6 (minor-bidimensional). A graph problem Π is g(r)-minor-bidimensional if
The value of Π on the r × r grid is ≥ g(r)
Π is closed under taking minors, i.e., the value of Π does not increase under the operations
of vertex deletions, edge deletions, edge contractions.

9 Is there a set of size at most k whose deletion makes the graph odd cycle free, i.e. bipartite

R. Chitnis and G. Cormode 7:9

Hence, we obtain the following “win-win” approach for designing FPT algorithms for
bidimensional problems:

Either the graph has small treewidth and we can then use dynamic programming al-
gorithms for bounded treewidth graphs; or
The treewidth is large10 which implies that the graph contains a large grid as a minor.
This implies that the solution size is large, since the parameter is minor-bidimensional.

Several natural graph parameters are known to be minor-bidimensional. For example,
treewidth is Ω(r)-minor-dimensional and Feedback Vertex Set, Vertex Cover, Minimum
Maximal Matching, Long Path, etc are Ω(r2)-minor-bidimensional. To design parameterized
streaming algorithms, we will replace the dynamic programming step for bounded treewidth
graphs by simply storing all the edges of such graphs. The main theorem of this section is
that minor-bidimensional problems belong to the class SemiPS.

I Theorem 7. [?] (minor-bidimensional problems ∈ SemiPS) Let Π be a g(r)-minor-dimensional
problem. Then the k-Π problem on graphs with n vertices can be solved using

O((g−1(k + 1))10 · n) space in insertion-only streams
Õ((g−1(k + 1))10 · n) space in insertion-deletion streams

Theorem 7 implies the following results for specific graph problems11:
Since Treewidth is Ω(r)-minor-bidimensional, it follows that k-Treewidth has an O(k10 ·n)
space algorithm in insertion-only streams and Õ(k10 · n) space algorithm in insertion-
deletion streams.
Since problems such as Long Path, Vertex Cover, Feedback Vertex Set, Minimum Maximal
Matching, etc. are Ω(r2)-minor-bidimensional, it follows that their parameterized versions
have O(k5 · n) space algorithm in insertion-only streams and Õ(k5 · n) space algorithm in
insertion-deletion streams.

In Section 3.1, we design algorithms for some of the aforementioned problems with smaller
storage. In particular, we design problem-specific structural lemmas to reduce the dependency
of k on the storage from kO(1) to k.

I Remark 8. It is tempting to conjecture a lower bound complementing Theorem 7: for
example, can we show that the bounds for minor-bidimensional problems are tight for SemiPS,
i.e., they do not belong to SubPS or even FPS? Unfortunately, we can rule out such a converse
to Theorem 7 via the two examples of Vertex Cover (VC) and Feedback Vertex Set (FVS)
which are both Ω(r2)-minor-bidimensional. Chitnis et al. [9] showed that k-VC can be solved
in O(k2) space and hence belongs to the class FPS. However, we show in the full version that
k-FVS cannot belong to SubPS since it has a Ω(n logn) bits lower bound for k = 0.

3 Lower Bounds for Parameterized Streaming Algorithms

3.1 Tight Problems for the classes SemiPS and BrutePS

In this section we show that certain problems are tight for the classes SemiPS and BrutePS.
All of the results hold for 1-pass in the insertion-only model. Our algorithms are deterministic,
while the lower bounds also hold for randomized algorithms.

10Chuzhoy and Tan [11] showed that treewidth = O(r9 · logO(1) r)⇒ there is a r × r grid minor
11We omit the simple proofs of why these problems satisfy the conditions of Definition 6

IPEC 2019

7:10 Towards a Theory of Parameterized Streaming Algorithms

Tight Problems for the class SemiPS: We now show that some parameterized problems
are tight for the class SemiPS, i.e.,

They belong to SemiPS, i.e., can be solved using Õ(g(k) · n) bits for some function g.
They do not belong to SubPS, i.e., there is no algorithm which uses Õ(f(k) · n1−ε) bits
for any function f and any constant 1 > ε > 0. We do this by showing Ω(n · logn) bits
lower bounds for these problems for constant values of k.

For each of the problems considered in this section, a lower bound of Ω(n) bits (for constant
values of k) was shown by Chitnis et al. [7]. To obtain the improved lower bound of Ω(n · logn)
bits for constant k, we will reduce from the Perm problem defined by Sun and Woodruff [35].

Perm
Input: Alice has a permutation δ : [N]→ [N] which is represented as a bit string
Bδ of length N logN by concatenating the images of 1, 2, . . . , N under δ. Bob has
an index I ∈ [N logN].
Goal: Bob wants to find the I-th bit of Bδ

Sun and Woodruff [35] showed that the one-way (randomized) communication complexity of
Perm is Ω(N · logN). Using the Perm problem, we show Ω(n · logn) bit lower bounds for
constant values of k for various problem such as k-Path, k-Treewidth, k-Feedback-Vertex-Set,
etc. We also show a matching upper bound for these problems: for each k, these problems
can be solved using O(kn · logn) words in insertion-only streams and Õ(kn · logn) words in
insertion-deletion streams. The proofs of these results are deferred to the full version. To
the best of our knowledge, the only problems known previously to be tight for SemiPS were
k-vertex-connectivity and k-edge-connectivity [13, 35, 23].

Tight Problems for the class BrutePS: We now show that some parameterized problems
are tight for the class BrutePS, i.e.,

They belong to BrutePS, i.e., can be solved using O(n2) bits. Indeed any graph problem
can be solved by storing the entire adjacency matrix which requires O(n2) bits.
They do not belong to SubPS, i.e., there is no algorithm which uses Õ(f(k) · n1+ε) bits
for any function f and any ε ∈ (0, 1). We do this by showing Ω(n2) bits lower bounds for
these problems for constant values of k via reductions from the Index problem.

Index
Input: Alice has a string B = b1b2 . . . bN ∈ {0, 1}N . Bob has an index I ∈ [N]
Goal: Bob wants to find the value bI

There is a Ω(N) lower bound on the (randomized) one-way communication complexity
of Index [30]. Via reduction from the Index problem, we are able to show Ω(n2) bits for
constant values of k for several problems such as k-Dominating-Set and k-Girth. The proofs
of these reductions are deferred to the full version.

I Remark 9. We usually only design FPT algorithms for NP-hard problems. However, paramet-
erized streaming algorithms make sense for all graph problems since we are only comparing
ourselves against the naive choice of storing all the O(n2) bits of adjacency matrix. Hence,
here we consider the k-Girth problem as an example of a polynomial time solvable problem.

Finally, in the full version, we also show that for any d ≥ 2, any streaming algorithm
for d-SAT (in the clause arrival model) must essentially store all the clauses (and hence fits
into the “brute-force” streaming setting). This is the only non-graph-theoretic result in this
paper, and may be viewed as a “streaming analogue” of the Exponential Time Hypothesis.

R. Chitnis and G. Cormode 7:11

3.2 Lower bound for approximating size of minimum Dominating Set
on graphs of bounded arboricity

I Theorem 10. Let β ≥ 1 be any constant. Then any algorithm which β
32 -approximates the

size of a min dominating set on graphs of arboricity β + 2 requires Ω(n) space.

Note that Theorem 10 shows that the naive algorithm which stores all the O(nβ) edges
of an β-arboriticy graph is essentially optimal. Our lower bound holds even for randomized
algorithms (required to have success probability ≥ 3/4) and also under the vertex arrival
model, i.e., we see at once all edges incident on a vertex. We (very) closely follow the
outline from [2, Theorem 4] who used this approach for showing that any α-approximation
for estimating size of a minimum dominating set in general graphs requires Ω̃(n

2

α2) space.
Because we are restricted to bounded arboriticy graphs, we cannot just sue their reduction
as a black-box but need to adapt it carefully for our purposes.

Let V (G) = [n + 1], and Fβ be the collection of all subsets of [n] with cardinality β.
Consider the following distribution Dest for DomSetest.

Distribution Dest: A hard input distribution for DomSetest.

Alice. The input of Alice is a collection of n sets S ′ = {S′1, S′2, . . . , S′n} where for
each i ∈ [n] we have that S′i = {i} ∪ Si with Si being a set chosen independently and
uniformly at random from Fβ .
Bob. Pick θ ∈ {0, 1} and i∗ ∈ [n] independently and uniformly at random; the input
of Bob is a single set T defined as follows.

If θ = 0, then T = [n] \ T is a set of size β/8 chosen uniformly at random from Si∗ .
If θ = 1, then T = [n] \ T is a set of size β/8 chosen uniformly at random from
[n] \ Si∗ .

Recall that OPT(S ′, T) denotes the size of the minimum dominating set of the graph G
whose edge set is given by N [i] = {i}∪Si for each i ∈ [n] and N [n+1] = {n+1}∪T . It is easy
to see that G has arboricity ≤ (β+2) since it has (n+1) vertices and ≤ (β+1)n+(1+n− β

8)
edges. We first establish the following lemma regarding the parameter θ and OPT(S ′, T) in
the distribution Dest.

I Lemma 11. [?] Let α = β
32 . Then, for (S ′, T) ∼ Dest we have

1. Pr (OPT(S ′, T) = 2 | θ = 0) = 1.
2. Pr (OPT(S ′, T) > 2α | θ = 1) = 1− o(1).

The proof of Lemma 11 is deferred to the full version. The first observation is that the
distribution Dest is not a product distribution due to the correlation between the input given
to Alice and Bob. However, we can express the distribution Dest as a convex combination
of a relatively small set of product distributions. The proof of Theorem 10 then follows by
showing a lower bound on this set of product distributions. This proof is a bit technical, and
we defer it to the full version.

3.3 Streaming Lower Bounds Inspired by Kernelization Lower Bounds
Streaming algorithms and kernelization are two (somehwhat related) compression models. In
kernelization, we have access to the whole input but our computation power is limited to
polynomial time whereas in streaming algorithms we don’t have access to the whole graph
(have to pay for whatever we store) but have unbounded computation power on whatever
part of the input we have stored.

IPEC 2019

7:12 Towards a Theory of Parameterized Streaming Algorithms

A folklore result states that a (decidable) problem is FPT if and only if it has a kernel.
Once the fixed-parameter tractability for a problem is established, the next natural goals
are to reduce the running time of the FPT algorithm and reduce the size of the kernel. In
the last decade, several frameworks have been developed to show (conditional) lower bounds
on the size of kernels [3, 16, 17, 22, 27]. Inspired by these frameworks, we define a class of
problems, which we call as AND-compatible and OR-compatible, and show (unconditionally)
that none of these problems belong to the class SubPS.

I Definition 12. We say that a graph problem Π is AND-compatible if there exists a constant
k such that

for every n ∈ N there exists a graph GYES of size n such Π(GYES, k) is a YES instance
for every n ∈ N there exists a graph GNO of size n such Π(GNO, k) is a NO instance
for every t ∈ N we have that Π

(
]ti=1 Gi, k

)
= ∧ti=1Π(Gi, k) where G =]ti=1Gi denotes

the union of the vertex-disjoint graphs G1, G2, . . . , Gt

Examples of AND-compatible graph problems are k-Treewidth, k-Girth, k-Pathwidth,
k-Coloring, etc.

I Definition 13. We say that a graph problem Π is OR-compatible if there exists a constant
k such that

for every n ∈ N there exists a graph GYES of size n such Π(GYES, k) is a YES instance
for every n ∈ N there exists a graph GNO of size n such Π(GNO, k) is a NO instance
for every t ∈ N we have that Π(]ti=1Gi, k) = ∨ti=1Π(Gi, k) where G =]ti=1Gi denotes
the union of the vertex-disjoint graphs G1, G2, . . . , Gt

A general example of an OR-compatible graph problem is the subgraph isomorphism
problem parameterized by size of smaller graph: given a graph G of size n and a smaller
graph H of size k, does G have a subgraph isomorphic to H? Special cases of this problem
are k-Path, k-Clique, k-Cycle, etc.

I Theorem 14. If Π is an AND-compatible or an OR-compatible graph problem then
Π /∈ SubPS

Proof. Let Π be an AND-compatible graph problem, and G =]ti=1Gi for some t ∈ N. We
claim that any streaming algorithm ALG for Π must use t bits. Intuitively, we need at least
one bit to check that each of the instances (Gi, k) is a YES instance of Π (for all 1 ≤ i ≤ t).
Consider a set of t graphs G = {G1, G2, . . . , Gt}: note that we don’t fix any of these graphs
yet. For every subset X ⊆ [t] we define the instance (GX , k) of Π where GX =]j∈JGj .
Suppose that ALG uses less than t bits. Then by pigeonhole principle, there are two subsets
I, I ′ of [t] such that ALG has the same answer on (GI , k) and (GI′ , k). Since I 6= I ′ (without
loss of generality) there exists i∗ such that i∗ ∈ I \ I ′. This is where we now fix each of
the graphs in G to arrive at a contradiction: consider the input where Gi = GYES for all
(I ∪ I ′) \ i∗ and Gi∗ = GNO. Then, it follows that (GI , k) is a NO instance but (GI′ , k) is a
YES instance.

Suppose that Π ∈ SubPS, i.e., there is an algorithm for Π which uses f(k) ·N1−ε · logO(1) N

bits (for some 1 > ε > 0) on a graph G of size N to decide whether (G, k) is a YES or NO
instance. Let G =]ti=1Gi where |Gi| = n for each i ∈ [t]. Then |G| = N = nt. By the
previous paragraph, we have that

f(k) · (nt)1−ε · logO(1)(nt) ≥ t⇒ f(k) · n1−ε · logO(1)(nt) ≥ tε

R. Chitnis and G. Cormode 7:13

Choosing t = n
2−ε
ε we have that f(k) · logO(1) n1+(2−ε

ε) ≥ n, which is a contradiction for
large enough n (since k and ε are constants).

We now prove the lower bound for AND-compatible problems. Recall that De Morgan’s
law states that ¬(∨iPi) = ∧i(¬Pi). Hence, if Π is an OR-compatible graph problem then the
complement12 problem Π is an AND-compatible graph problem, and hence the lower bound
follows from the previous paragraph. J

I Remark 15. Note that throughout this paper we have considered the model where we allow
unbounded computation at each edge update, and also at the end of the stream. However, if
we consider a restricted model of allowing only polynomial (in input size n) computation at
each edge update and also at end of the stream, then it is easy to see that existing (conditional)
lower bounds from the parameterized algorithms and kernelization setting translate easily
to this restricted model. For example, the following two lower bounds for parameterized
streaming algorithms follow immediately in the restricted (polytime computation) model:

Let X be a graph problem that is W [i]-hard parameterized by k (for some i ≥ 1). Then
(in the polytime computation model) X /∈ FPS unless FPT = W [i].

Let X be a graph problem that is known to not have a polynomial kernel unless NP ⊆
coNP/poly. Then (in the polytime computation model) X does not have a parameterized
streaming algorithm which uses kO(1) · logO(1) n bits, unless NP ⊆ coNP/poly.

4 Conclusions & Open Problems

In this paper, we initiate a systematic study of graph problems from the paradigm of
parameterized streaming algorithms. We define space complexity classes of FPS, SubPS,
SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied
graph problems such as Longest Path, Feedback Vertex Set, Girth, Treewidth, etc. into these
classes. Our parameterized streaming algorithms use techniques of bidimensionality, iterative
compression and branching from the FPT world. In addition to showing lower bounds for
some parameterized streaming problems via communication complexity, we also show how
(conditional) lower bounds for kernels and W-hard problems translate to lower bounds for
parameterized streaming algorithms.

Our work leaves open several concrete questions. We list some of them below:

The streaming algorithm (Algorithm 1) for k-VC (on insertion-only streams) from
Section 2.1 has an optimal storage of O(k logn) bits but requires 2k passes. Can we
reduce the number of passes to poly(k), or instead show that we need passes which are
superpolynomial in k if we restrict space usage to O(k logn) bits? The only known lower
bound for such algorithms is (k/ logn) passes (see Theorem 5).

For k ≥ 1 can we design algorithms which use f(k) · n · logO(1) n bits and g(k) passes for
the k-OCT problem (for some functions f, g)? The technique of iterative compression
seems like a natural tool to use here.

12By complement, we mean that Π(G, k) is YES if and only if Π(G, k) is NO

IPEC 2019

7:14 Towards a Theory of Parameterized Streaming Algorithms

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller Cuts, Higher Lower

Bounds. CoRR, abs/1901.01630, 2019. arXiv:1901.01630.
2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming

complexity of the set cover problem. In STOC, pages 698–711, 2016. doi:10.1145/2897518.
2897576.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
Problems Without Polynomial Kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

4 Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegel-
shohn, Sofya Vorotnikova, and Samson Zhou. Structural Results on Matching Estima-
tion with Applications to Streaming. Algorithmica, 81(1):367–392, 2019. doi:10.1007/
s00453-018-0449-y.

5 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

6 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via Sampling with
Applications to Finding Matchings and Related Problems in Dynamic Graph Streams. In
SODA, pages 1326–1344, 2016. doi:10.1137/1.9781611974331.ch92.

8 Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
and Morteza Monemizadeh. Brief Announcement: New Streaming Algorithms for Paramet-
erized Maximal Matching & Beyond. In SPAA, pages 56–58, 2015. doi:10.1145/2755573.
2755618.

9 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized Streaming: Maximal Matching and Vertex Cover. In SODA,
pages 1234–1251, 2015. doi:10.1137/1.9781611973730.82.

10 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

11 Julia Chuzhoy and Zihan Tan. Towards Tight(er) Bounds for the Excluded Grid Theorem. In
SODA, pages 1445–1464, 2019. doi:10.1137/1.9781611975482.88.

12 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs. In
ESA, pages 29:1–29:15, 2017. doi:10.4230/LIPIcs.ESA.2017.29.

13 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic Graphs in the Sliding-
Window Model. In ESA, pages 337–348, 2013. doi:10.1007/978-3-642-40450-4_29.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Frank K. H. A. Dehne, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw. Greedy
Localization, Iterative Compression, Modeled Crown Reductions: New FPT Techniques, an
Improved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover. In
IWPEC, pages 271–280, 2004. doi:10.1007/978-3-540-28639-4_24.

16 Holger Dell. AND-Compression of NP-Complete Problems: Streamlined Proof and Minor
Observations. Algorithmica, 75(2):403–423, 2016. doi:10.1007/s00453-015-0110-y.

17 Holger Dell and Dieter van Melkebeek. Satisfiability Allows no Nontrivial Sparsification
Unless the Polynomial-Time Hierarchy Collapses. In STOC, pages 251–260, 2010. doi:
10.1145/1806689.1806725.

http://arxiv.org/abs/1901.01630
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1007/s00453-018-0449-y
https://doi.org/10.1007/s00453-018-0449-y
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1137/1.9781611973730.82
https://doi.org/10.1145/2700209
https://doi.org/10.1137/1.9781611975482.88
https://doi.org/10.4230/LIPIcs.ESA.2017.29
https://doi.org/10.1007/978-3-642-40450-4_29
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1007/s00453-015-0110-y
https://doi.org/10.1145/1806689.1806725
https://doi.org/10.1145/1806689.1806725

R. Chitnis and G. Cormode 7:15

18 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

19 Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its
Algorithmic Applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

20 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

21 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

22 Andrew Drucker. New Limits to Classical and Quantum Instance Compression. In FOCS,
pages 609–618, 2012. doi:10.1109/FOCS.2012.71.

23 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

24 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming Algorithms for Estimating the Matching Size in Planar Graphs
and Beyond. In SODA, pages 1217–1233, 2015. doi:10.1137/1.9781611973730.81.

25 Stefan Fafianie and Stefan Kratsch. Streaming Kernelization. In MFCS, pages 275–286, 2014.
doi:10.1007/978-3-662-44465-8_24.

26 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

27 Lance Fortnow and Rahul Santhanam. Infeasibility of Instance Compression and Succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.

28 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards Tight Bounds
for the Streaming Set Cover Problem. In PODS, pages 371–383, 2016. doi:10.1145/2902251.
2902287.

29 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. External memory algorithms, 50:107–118, 1998.

30 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

31 Andrew McGregor and Sofya Vorotnikova. Planar Matching in Streams Revisited. In AP-
PROX/RANDOM, pages 17:1–17:12, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.17.

32 Andrew McGregor and Sofya Vorotnikova. A Simple, Space-Efficient, Streaming Algorithm for
Matchings in Low Arboricity Graphs. In SOSA, pages 14:1–14:4, 2018. doi:10.4230/OASIcs.
SOSA.2018.14.

33 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005. doi:10.1561/0400000002.

34 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

35 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion Streams.
In APPROX-RANDOM, pages 435–448, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.
435.

IPEC 2019

https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1109/FOCS.2012.71
https://doi.org/10.1145/265910.265914
https://doi.org/10.1137/1.9781611973730.81
https://doi.org/10.1007/978-3-662-44465-8_24
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1145/2902251.2902287
https://doi.org/10.1145/2902251.2902287
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.1561/0400000002
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435

FPT Inapproximability of Directed Cut and
Connectivity Problems
Rajesh Chitnis
School of Computer Science, University of Birmingham, UK
rajeshchitnis@gmail.com

Andreas Emil Feldmann
Charles University, Czechia
feldmann.a.e@gmail.com

Abstract
Cut problems and connectivity problems on digraphs are two well-studied classes of problems

from the viewpoint of parameterized complexity. After a series of papers over the last decade, we now
have (almost) tight bounds for the running time of several standard variants of these problems para-
meterized by two parameters: the number k of terminals and the size p of the solution. When there is
evidence of FPT intractability, then the next natural alternative is to consider FPT approximations.
In this paper, we show two types of results for directed cut and connectivity problems, building on
existing results from the literature: first is to circumvent the hardness results for these problems by
designing FPT approximation algorithms, or alternatively strengthen the existing hardness results by
creating “gap-instances” under stronger hypotheses such as the (Gap-)Exponential Time Hypothesis
(ETH). Formally, we show the following results:
Cutting paths between a set of terminal pairs, i.e., Directed Multicut: Pilipczuk and Wahlstrom

[TOCT ’18] showed that Directed Multicut is W[1]-hard when parameterized by p if k = 4.
We complement this by showing the following two results:

Directed Multicut has a k/2-approximation in 2O(p2) · nO(1) time (i.e., a 2-approximation
if k = 4),
Under Gap-ETH, Directed Multicut does not admit an (59

58−ε)-approximation in f(p)·nO(1)

time, for any computable function f , even if k = 4.
Connecting a set of terminal pairs, i.e., Directed Steiner Network (DSN): The DSN problem on

general graphs is known to be W[1]-hard parameterized by p+ k due to Guo et al. [SIDMA ’11].
Dinur and Manurangsi [ITCS ’18] further showed that there is no FPT k1/4−o(1)-approximation
algorithm parameterized by k, under Gap-ETH. Chitnis et al. [SODA ’14] considered the
restriction to special graph classes, but unfortunately this does not lead to FPT algorithms
either: DSN on planar graphs is W[1]-hard parameterized by k. In this paper we consider the
DSNPlanar problem which is an intermediate version: the graph is general, but we want to find
a solution whose cost is at most that of an optimal planar solution (if one exists). We show the
following lower bounds for DSNPlanar:

DSNPlanar has no (2− ε)-approximation in FPT time parameterized by k, under Gap-ETH.
This answers in the negative a question of Chitnis et al. [ESA ’18].
DSNPlanar is W[1]-hard parameterized by k + p. Moreover, under ETH, there is no (1 + ε)-
approximation for DSNPlanar in f(k, p, ε) · no(k+

√
p+1/ε) time for any computable function f .

Pairwise connecting a set of terminals, i.e., Strongly Connected Steiner Subgraph (SCSS):
Guo et al. [SIDMA ’11] showed that SCSS is W[1]-hard parameterized by p+ k, while Chitnis
et al. [SODA ’14] showed that SCSS remains W[1]-hard parameterized by p, even if the input
graph is planar. In this paper we consider the SCSSPlanar problem which is an intermediate
version: the graph is general, but we want to find a solution whose cost is at most that of an
optimal planar solution (if one exists). We show the following lower bounds for SCSSPlanar:

SCSSPlanar is W[1]-hard parameterized by k + p. Moreover, under ETH, there is no (1 + ε)-
approximation for SCSSPlanar in f(k, p, ε) · no(

√
k+p+ 1

ε
) time for any computable function f .

Previously, the only known FPT approximation results for SCSS applied to general graphs para-
meterized by k: a 2-approximation by Chitnis et al. [IPEC ’13], and a matching (2− ε)-hardness
under Gap-ETH by Chitnis et al. [ESA ’18].

© Rajesh Chitnis and Andreas Emil Feldmann;
licensed under Creative Commons License CC-BY

th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajeshchitnis@gmail.com
mailto:feldmann.a.e@gmail.com
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 FPT Inapproximability of Directed Cut and Connectivity Problems

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Directed graphs, cuts, connectivity, Steiner problems, FPT inapproximability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.8

Related Version Full version of the paper is available at http://arxiv.org/abs/1910.01934.

Funding Rajesh Chitnis: Work done while at University of Warwick, UK and supported by ERC
grant 2014-CoG 647557.
Andreas Emil Feldmann: Supported by the Czech Science Foundation GAČR (grant #19-27871X),
and by the Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/S-
CI/004).

Acknowledgements We thank Pasin Manurangsi for helpful discussions.

1 Introduction

Given a weighted directed graph G = (V,E) with two terminal vertices s, t the problems of
finding a minimum weight s t cut and a minimum weight s t path can both be famously
solved in polynomial time. There are two natural generalizations when we consider more
than two terminals: either we look for connectivity/cuts between all terminals of a given set,
or we look for connectivity/cuts between a given set of terminal pairs. This leads to the four
problems of Directed Multiway Cut, Directed Multicut, Strongly Connected
Steiner Subgraph and Directed Steiner Network:

Cutting all paths between a set of terminals: In the Directed Multiway Cut
problem, we are given a set of terminals T = {t1, t2, . . . , tk} and the goal is to find a
minimum weight subset X ⊆ V such that G\X has no ti tj path for any 1 ≤ i 6= j ≤ k.
Cutting paths between a set of terminal pairs: In the Directed Multicut
problem, we are given a set of terminal pairs T = {(si, ti)}ki=1 and the goal is to find a
minimum weight subset X ⊆ V such that G \X has no si ti path for any 1 ≤ i ≤ k.
Connecting all terminals of a given set: In the Strongly Connected Steiner
Subgraph (SCSS) problem, we are given a set of terminals T = {t1, t2, . . . , tk} and the
goal is to find a minimum weight subset X ⊆ V such that G[X] has a ti tj path for
every 1 ≤ i 6= j ≤ k.
Connecting a set of terminal pairs: In the Directed Steiner Network (DSN)
problem, we are given a set of terminal pairs T = {(si, ti)}ki=1 and the goal is to find a
minimum weight subset X ⊆ V such that G[X] has an si ti path for every 1 ≤ i ≤ k.

All four of the aforementioned problems are known to be NP-hard, even for small values
of k. One way to cope with NP-hardness is to try to design polynomial time approximation
algorithms with small approximation ratio. However, apart from Directed Multiway Cut,
which admits a 2-approximation in polynomial time [35], all the other three problems are
known to have strong lower bounds (functions of n) on the approximation ratio of polynomial
time algorithms [16, 19, 25]. Another way to cope with NP-hardness is to try to design FPT
algorithms. However, apart from Directed Multiway Cut which has an FPT algorithm
parameterized by the size p of the cutset, all the other three problems are known to be
W[1]-hard (and hence fixed-parameter intractable) parameterized by size p of the solution X
plus the number k of terminals/terminal pairs. When neither of the paradigms of polynomial
time approximation algorithms nor (exact) FPT algorithm seem to be successful, the next
natural alternative is to try to design FPT approximation algorithms or show hardness of
FPT approximation results.

https://doi.org/10.4230/LIPIcs.IPEC.2019.8
http://arxiv.org/abs/1910.01934

R. Chitnis and A. E. Feldmann 8:3

In this paper, we consider the remaining three problems of Directed Multicut,
Strongly Connected Steiner Subgraph and Directed Steiner Network, for which
strong approximation and parameterized lower bounds exist, from the viewpoint of FPT
approximation algorithms. We obtain two types of results for these three problems: the first
is to circumvent the W[1]-hardness and polynomial-time inapproximability results for these
problems by designing FPT approximation algorithms, and the second is to strengthen the ex-
isting W[1]-hardness by creating “gap-instances” under stronger hypotheses than FPT 6= W[1]
such as (Gap-) Exponential Time Hypothesis (ETH). Throughout, we use k to denote number
of terminals or terminal pairs and p to denote size of the solution. First, in Section 1.1, we give
a brief overview of the current state-of-the-art results for each the three problems from the
lens of polynomial time approximation algorithms, FPT algorithms, and FPT approximation
algorithms followed by the formal statements of our results. Then, in Section 1.2 we describe
the recent flux of results which have set up the framework of FPT hardness of approximation
under (Gap-)ETH, and how we use it obtain our hardness results in this paper.

1.1 Previous work and our results
The Directed Multicut problem

Garg et al. [23] showed that Directed Multicut is NP-hard even for k = 2. The current
best approximation ratio in terms of n is O(n11/23 · logO(1) n) due to Agarwal et al. [1], and
it is known that Directed Multicut is hard to approximate in polynomial time to within
a factor of 2Ω(log1−ε n) for any constant ε > 0, unless NP ⊆ ZPP [16]. There is a simple
k-approximation in polynomial time obtained by solving each terminal pair as a separate
instance of min s t cut and then taking the union of all the k cuts. Chekuri and Madan [8]
and later Lee [30] showed that this is tight: assuming the Unique Games Conjecture of
Khot [28], it is not possible to approximate Directed Multicut better than factor k in
polynomial time, for any fixed k. On the FPT side, Marx and Razgon [34] showed that
Directed Multicut is W[1]-hard paramterized by p. For the case of bounded k, Chitnis
et al. [14] showed that Directed Multicut is FPT parameterized by p when k = 2, but
Pilipczuk and Wahlstrom [36] showed that the problem remains W[1]-hard parameterized
by p when k = 4. The status of Directed Multicut parameterized by p when k = 3
is an outstanding open question. We first obtain the following FPT approximation for
Directed Multicut parameterized by p, which beats any approximation obtainable when
parameterizing by k (even in XP time) according to [8, 30]:

I Theorem 1. The Directed Multicut problem admits an dk/2e-approximation in
2O(p2) · nO(1) time.

The proof of the above theorem uses the FPT algorithm of Chitnis et al. [14, 12] for
Directed Multiway Cut parameterized by p as a subroutine. Note that Theorem 1
gives an FPT 2-approximation for Directed Multicut With 4 Pairs. We complement
this upper bound with a constant factor lower bound for approximation ratio of any FPT
algorithm for Directed Multicut With 4 Pairs.

I Theorem 2. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(p)·nO(1) time algorithm that computes an (59

58−ε)-approximation for Directed Multicut
With 4 Pairs.

We did not optimize the constant 59/58 in order to keep the analysis simple: we believe
it can be easily improved, but our techniques would not take it close to the upper bound of 2.

IPEC 2019

8:4 FPT Inapproximability of Directed Cut and Connectivity Problems

The Directed Steiner Network (DSN) problem

The DSN problem is known to be NP-hard, and furthermore even computing an O(2log1−ε n)-
approximation is not possible [19] in polynomial time, unless NP ⊆ DTIME(npolylog(n)).
The best known approximation factors for polynomial time algorithms are O(n2/3+ε) and
O(k1/2+ε) [4, 7, 21]. On the FPT side, Feldman and Ruhl [20] designed an nO(k) algorithm
for DSN (cf. [22]). Chitnis et al. [15] showed that the Feldman-Ruhl algorithm is tight:
under ETH, there is no f(k) · no(k) algorithm (for any computable function f) for DSN
even if the input graph is a planar directed acyclic graph. Guo et al. [24] showed that DSN
remains W[1]-hard even when parameterized by the larger parameter k + p. Dinur and
Manurangsi [18] further showed that DSN on general graphs has no FPT approximation
algorithm with ratio k1/4−o(1) when parameterized by k, under Gap-ETH.

Chitnis et al. [11] considered two relaxations of the Directed Steiner Network
problem: the bi-DSN problem where the input graph is bidirected1, and the DSNPlanar
problem where the input graph is general but the goal is to find a solution whose cost is
at most that of an optimal planar solution (if one exists). The main result of Chitnis et
al. [11] is that although bi-DSNPlanar (i.e., the intersection of bi-DSN and DSNPlanar) is
W[1]-hard parameterized by k + p, it admits a parameterized approximation scheme: for any
ε > 0, there is a max{2k2O(1/ε)

, n2O(1/ε)} time algorithm for bi-DSNPlanar which computes
a (1 + ε)-approximation. Such a parameterized approximation is not possible for bi-DSN
as Chitnis et al. [11] showed that under Gap-ETH there is a constant α > 0 such that there
is no FPT α-approximation. They asked whether a parameterized approximation scheme for
the remaining variant of DSN, i.e., the DSNPlanar problem, exists. We answer this question
in the negative with the following lower bound

I Theorem 3. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(k) · nO(1) time algorithm that computes a (2− ε)-approximation for DSNPlanar, even if
the input graph is a directed acyclic graph (DAG).

The W[1]-hardness proof of [15] for DSN on planar graphs parameterized by k does not
give hardness parameterized by p since in that reduction the value of p grows with n. Our next
result shows that the slightly more general problem of DSNPlanar (here the input graph is gen-
eral, but we want to find a solution of cost ≤ p if there is a planar solution of size ≤ p) is indeed
W[1]-hard parameterized by k+p. Also we obtain a lower bound for approximation schemes for
this problem under ETH, i.e., under a weaker assumption than the one used for Theorem 3.2

I Theorem 4. The DSNPlanar problem is W[1]-hard parameterized by p+k, even if the input
graph is a directed acyclic graph (DAG). Moreover, under ETH, for any computable function f

there is no f(k, p) · no(k+√p) time algorithm for DSNPlanar, and
there is no f(k, ε, p) ·no(k+

√
p+1/ε) time algorithm which computes a (1+ε)-approximation

for DSNPlanar for every ε > 0.

Note that just the W[1]-hardness of DSNPlanar parameterized by k + p already follows
from [11] who showed that even the special case of bi-DSNPlanar is W[1]-hard parameterized
by k+p. However, this reduction from [11] was from `-Clique to an instance of bi-DSNPlanar
with k = O(`2) and p = O(`5), whereas Theorem 4 gives a reduction from `-Clique to
DSNPlanar with k = O(`) and p = O(`2). This gives much improved lower bounds on the
running times.

1 Bidirected graphs are directed graphs which have the property that for every edge u → v in G the
reverse edge v → u exists in G as well and moreover has the same weight as u→ v.

2 In the following, o(f(k, p, ε)) means any function g(f(k, p, ε)) such that g(x) ∈ o(x).

R. Chitnis and A. E. Feldmann 8:5

The Strongly Connected Steiner Subgraph (SCSS) problem

The SCSS problem is NP-hard, and the best known approximation ratio in polynomial time
for SCSS is kε for any ε > 0 [6]. A result of Halperin and Krauthgamer [25] implies SCSS
has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas
algorithms. On the FPT side, Feldman and Ruhl [20] designed an nO(k) algorithm for SCSS
(cf. [22]). Chitnis et al. [15] showed that the Feldman-Ruhl algorithm is almost optimal:
under ETH, there is no f(k) ·no(k/ log k) algorithm (for any computable function f) for SCSS.
Guo et al. [24] showed that SCSS remains W[1]-hard even when parameterized by the larger
parameter k + p. Chitnis et al. [11] showed that the SCSS problem restricted to bidirected
graphs remains NP-hard, but is FPT parameterized by k. The SCSS problem admits a
square-root phenomenon on planar graphs: Chitnis et al. [15] showed that SCSS on planar
graphs has an 2O(k log k) · nO(

√
k) algorithm, and under ETH there is a tight lower bound of

f(k) · no(
√
k) for any computable function f . The W[1]-hardness proof of [15] for SCSS on

planar graphs parameterized by k does not give hardness parameterized by p, since in that
reduction the value of p grows with n. Our next result shows that the slightly more general
problem of SCSSPlanar (here the input graph is general, but we want to find a solution of
cost ≤ p if there is a planar solution of size ≤ p) is indeed W[1]-hard parameterized by k + p.
We also obtain a lower bound for approximation schemes for this problem under ETH:

I Theorem 5. The SCSSPlanar problem is W[1]-hard parameterized by p + k. Moreover,
under ETH, for any computable function f

there is no f(k, p) · no(
√
k+p) time algorithm for SCSSPlanar, and

there is no f(k, ε, p)·no(
√
k+p+1/ε) time algorithm which computes an (1+ε)-approximation

for SCSSPlanar for every ε > 0.

To the best of our knowledge, the only known FPT approximation results for SCSS
applied to general graphs parameterized by k: a simple FPT 2-approximation due to Chitnis
et al. [13], and a matching (2− ε)-hardness (for any constant ε > 0) under Gap-ETH due
to Chitnis et al. [11].

1.2 FPT inapproximability results under (Gap-)ETH
A standard hypothesis for showing lower bounds for running times of FPT and exact exponen-
tial time algorithms is the Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [26].

I Hypothesis 6. Exponential Time Hypothesis (ETH): There exists a constant δ > 0
such that no algorithm can decide whether any given 3-CNF formula is satisfiable in time
O(2δm) where m denotes the number of clauses.

The original conjecture stated the lower bound as exponential in terms of the number of
variables not clauses, but the above statement follows from the Sparsification Lemma of [27].
The Exponential Time Hypothesis has been used extensively to show a variety of lower
bounds including those for FPT algorithms, exact exponential time algorithms, hardness of
polynomial time approximation, and hardness of FPT approximation. We refer the interested
reader to [31] for a survey on lower bounds based on ETH.

To show the W[1]-hardness of DSNPlanar (Theorem 4) and SCSSPlanar (Theorem 5)
parameterized by k + p we design parameterized reductions from `-Clique to these problems
such that max{k, p} is upper bounded by a function of `. Furthermore, by choosing ε to be
small enough such that computing an (1 + ε)-approximation is the same as computing the

IPEC 2019

8:6 FPT Inapproximability of Directed Cut and Connectivity Problems

optimal solution, we also obtain runtime lower bounds for (1 + ε)-approximations for these
two problems by translating the f(`) · no(`) lower bound for `-Clique [9] under ETH (for any
computable function f).

Recently, a gap version of the ETH was proposed:

I Hypothesis 7. Gap-ETH [17, 32]: There exists a constant δ > 0 such that, given a 3CNF
formula Φ on n variables, no 2o(n)-time algorithm can distinguish between the following two
cases correctly with probability at least 2/3:

Φ is satisfiable.
Every assignment to the variables violates at least a δ-fraction of the clauses of Φ.

It is known [5, 2] that Gap-ETH follows from ETH given other standard conjectures,
such as the existence of linear sized PCPs or exponentially-hard locally-computable one-way
functions. We refer the interested reader to [17, 5] for a discussion on why Gap-ETH is
a plausible assumption. In a breakthrough result, Chalermsook et al. [5] used Gap-ETH
to show that the two famous parameterized intractable problems of Clique and Set Cover
are completely inapproximable in FPT time parameterized by the size of the solution. In
this paper, we obtain two hardness of approximation results (Theorem 2 and Theorem 3)
based on Gap-ETH. The starting point of our hardness of approximation results are based
on the recent results on parameterized inapproximability of the Densest k-Subgraph
problem. Recall that, in the Densest k-Subgraph (DkS) problem [29], we are given an
undirected graph G = (V,E) and an integer k and the goal is to find a subset S ⊆ V of size
` that induces as many edges in G as possible. Chalermsook et al. [5] showed that, under
randomized Gap-ETH, there is no FPT approximation (parameterized by k) with ratio ko(1).
This was improved recently by Dinur and Manurangsi [18] who showed better hardness and
under deterministic Gap-ETH. We state their result formally3:

I Theorem 8 ([18, Theorem 2]). Under Gap-ETH, for any function h(`) = o(1), there is
no f(`) · nO(1)-time algorithm that, given a graph G on n vertices and an integer k, can
distinguish between the following two cases:

(YES) G contains at least one `-clique as a subgraph.
(NO) Every `-subgraph of G contains less than `h(`)−1 ·

(
`
2
)
edges.

Note that this result is essentially tight: there is a simple O(`) approximation since the
number of edges induced by a `-vertex subgraph is at most

(
`
2
)
and at least b`/2c (without

loss of generality, we can assume there are no isolated vertices). Instead of working with
DkS, we will reduce from a “colored” version of the problem called Maximum Colored
Subgraph Isomorphism, which can be defined as follows.

Maximum Colored Subgraph Isomorphism (MCSI)
Input : An instance Γ of MCSI consists of three components:

An undirected graph G = (VG, EG),
A partition of vertex set VG into disjoint subsets V1, . . . , V`,
An undirected graph H = (VH = {1, . . . , `}, EH).

Goal: Find an assignment φ : VH → VG where φ(i) ∈ Vi for every i ∈ [`] that
maximizes the number of edges i− j ∈ EH such that φ(i)− φ(j) ∈ EG.

3 Dinur and Manurangsi [18] actually state their result for 2-CSPs

R. Chitnis and A. E. Feldmann 8:7

This problem is referred to as Label Cover in the hardness of approximation liter-
ature [3]. However, Chitnis et al. [11] used the name Maximum Colored Subgraph
Isomorphism to be consistent with the naming conventions in the FPT community: this
problem is an optimization version of Colored Subgraph Isomorphism [33]. The graph
H is sometimes referred to as the supergraph of Γ. Similarly, the vertices and edges of H
are called supernodes and superedges of Γ. Moreover, the size of Γ is defined as n = |VG|, the
number of vertices of G. Additionally, for each assignment φ, we define its value val(φ) to be
the fraction of superedges i− j ∈ EH such that φ(i)− φ(j) ∈ EG; such superedges are said
to be covered by φ. The objective of MCSI is now to find an assignment φ with maximum
value. We denote the value of the optimal assignment by val(Γ), i.e., val(Γ) = maxφ val(φ).

Using Theorem 8 we derive the following two corollaries regarding hardness of approx-
imation for Maximum Colored Subgraph Isomorphism when the supergraph H has
special structure. These corollaries follow quite straightforwardly from Theorem 8 using the
idea of splitters, but we provide proofs in the full version [10] for completeness.

I Corollary 9. [?]4 Assuming Gap-ETH, for any function h(`) = o(1), there is no f(`) ·nO(1)-
time algorithm that, given a MCSI instance Γ of size n such that the supergraph H = K`,
can distinguish between the following two cases:

(YES) val(Γ) = 1.
(NO) val(Γ) < `h(`)−1

I Corollary 10. [?] Assuming Gap-ETH, for any function h(`) = o(1), there is no f(`) ·nO(1)-
time algorithm that, given a MCSI instance Γ of size n such that the supergraph H is the
complete bipartite subgraph K `

2 ,
`
2
, can distinguish between the following two cases:

(YES) val(Γ) = 1.
(NO) val(Γ) < `h(`)−1.

We prove Theorem 2 and Theorem 3 via reductions from Corollary 9 and Corollary 10
resepctively.

2 FPT (In)Approximability of Directed Multicut

In this section we design an FPT 2-approximation for Directed Multicut With 4 Pairs
parameterized by p (Section 2.1) and complement this with a lower bound (Section 2.2)
showing that no FPT algorithm (parameterized by p) for Directed Multicut With 4
Pairs can achieve a ratio of (59

58 − ε) under Gap-ETH.

2.1 FPT approximation algorithm
It is well-known that a k-approximation can be computed in polynomial time by taking union
of min cuts of each of the k terminal pairs. Chekuri and Madan [8] and later Lee [30] showed
that this approximation ratio is best-possible for polynomial time algorithms under the
Unique Games Conjecture of Khot [28]. The same lower bound also applies for any constant k,
i.e., even an XP algorithm parameterized by k cannot compute a better approximation than
a polynomial time algorithm. We now design an FPT dk/2e-approximation for Directed
Multicut. The idea is borrowed from the proof of Chitnis et al. [14] that Directed
Multicut With 2 Pairs is FPT parameterized by p.

4 All proofs labelled with [?] appear in the full version [10]

IPEC 2019

8:8 FPT Inapproximability of Directed Cut and Connectivity Problems

I Theorem 1. The Directed Multicut problem admits a dk/2e-approximation in 2O(p2) ·
nO(1) time. Formally, the algorithm takes an instance (G, T) of Directed Multicut and
in 2O(p2) · nO(1) time either concludes that there is no solution of cost at most p, or produces
a solution of cost at most pdk/2e.

Proof. Let the pairs be T = {(si, ti) : 1 ≤ i ≤ k}, and let OPT be the optimum value for
the instance (G, T) of Directed Multicut. For now, assume that k is even. Introduce
k/2 new vertices rj , qj , for 1 ≤ j ≤ k/2, of weight p+ 1 each, and add the following edges:

rj → s2j−1 and t2j−1 → qj
qj → s2j and t2j → rj

Let the resulting graph be G′, and note that G has an si → ti path for some 1 ≤ i ≤ k if and
only if G′ has a qi/2 → ri/2 or r(i−1)/2 → q(i−1)/2 path (depending on whether i is even or
odd). Since the vertices rj , qj have weight p+ 1 each, it follows that G has a solution of size
at most p for the instance (G, {(s2j−1, t2j−1), (s2j , t2j)}) of Directed Multicut if and only
if G′ has a solution of size at most p for the Directed Multiway Cut instance with input
graph G and terminals rj , qj . We use the algorithm of Chitnis et al. [14, 12] for Directed
Multiway Cut which checks in 2O(p2) ·nO(1) time5 if there is a solution of cost at most p. If
there is no solution of cost at most p between rj and qj in G′ then this implies that G has no
cut of size at most p separating (s2j−1, t2j−1) and (s2j , t2j) and hence OPT > p. Otherwise,
there is a cut Cj in G of cost at most p which separates (s2j−1, t2j−1) and (s2j , t2j).

The output of the algorithm is the cut C =
⋃k/2
j=1 Cj . Clearly, if k is even then C

is a feasible solution for the instance (G, T) of Directed Multicut with cost at most∑k/2
j=1 cost(Cj) ≤ pk/2. In case k is odd we use the above procedure for the terminal pairs

{(si, ti) : 1 ≤ i ≤ k − 1}, and finally add a min cut between the last terminal pair (sk, tk).
This results in the desired dk/2e-approximation. J

2.2 No FPT (59
58 − ε)-approximation under Gap-ETH

With the parameterized hardness of approximating MCSI ready, we can now prove our
hardness results for Directed Multicut with 4 terminal pairs.

I Theorem 2. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(p)·nO(1) time algorithm that computes an (59

58−ε)-approximation for Directed Multicut
With 4 Pairs.

Our proof of the parameterized inapproximability of Directed Multicut With 4
Pairs is based on a reduction from Maximum Colored Subgraph Isomorphism whose
properties are described below.

I Lemma 11. There exists a polynomial time reduction that, given an instance Γ =
(G,K`, V1 ∪ · · · ∪ V`) of MCSI , produces an instance (G′, T ′) of Directed Multicut
With 4 Pairs such that

(Completeness): If val(Γ) = 1, then there exists a solution N ⊆ V (G′) of cost 29`2 for
the instance (G′, T ′) of Directed Multicut With 4 Pairs
(Soundness): If val(Γ) < 1

10 , then every solution N ⊆ V (G′) for the instance (G′, T ′)
of Directed Multicut With 4 Pairs has cost more than 29.5`2.
(Parameter Dependency): The size of the solution is p = O(`2).

5 This is independent of number of the terminals

R. Chitnis and A. E. Feldmann 8:9

In the proof of Lemma 11, we actually use the same reduction as from [36], but with different
weights. We reduce to the vertex-weighted variant of Directed Multicut With 4 Pairs
where we have four different types of weights for the vertices:

light vertices (shown using gray color) which have weight B = `2

(`2)
medium vertices (shown using green color) which have weight 2B
heavy vertices (shown using orange color) which have weight 20`
super-heavy vertices (shown using white color) which have weight 100`2

2.2.1 Construction of the Directed Multicut With 4 Pairs instance
Without loss of generality (by adding isolated vertices if necessary) we can assume that
|Vi| = n for each i ∈ [`]. For each i ∈ [`] let Vi = {vi1, vi2, vi3, . . . , vin}. Then |V (G)| = n`. We
now describe the construction of the (vertex-weighted) Directed Multicut With 4 Pairs
instance (G′, T ′).

Introduce eight terminals, arranged in four terminal pairs as follows:

T ′ = {(sx0→n, tx0→n), (sy0→n, t
y
0→n), (s<n→0, t

<
n→0), (s>n→0, t

>
n→0)}

Each of the 8 terminals is super-heavy.
For every 1 ≤ i ≤ `, we introduce a bidirected path on 2n+ 1 vertices (see Figure 2)

Zi := zi0 ↔ ẑi1 ↔ zi1 ↔ ẑi2 ↔ zi2 ↔ . . .↔ ẑin ↔ zin,

called henceforth the z-path for color class i. For each 0 ≤ a ≤ n the vertex zia is
super-heavy and for each 1 ≤ a ≤ n the vertex ẑia is heavy.
For every pair (i, j) where 1 ≤ i, j ≤ `, i 6= j, we introduce two bidirected paths (see
Figure 2 and Figure 1) on 2n+ 1 vertices

Xi,j := xi,j0 ↔ x̂i,j1 ↔ xi,j1 ↔ x̂i,j2 ↔ xi,j2 ↔ . . .↔ x̂i,jn ↔ xi,jn

and

Yi,j := yi,j0 ↔ ŷi,j1 ↔ yi,j1 ↔ ŷi,j2 ↔ yi,j2 ↔ . . .↔ ŷi,jn ↔ yi,jn

We call these paths the x-path and the y-path for the pair (i, j). For each 0 ≤ a ≤ n the
vertices xi,ja and yi,ja are super-heavy. For each 1 ≤ a ≤ n the vertices x̂i,ja and ŷi,ja are
medium.
For every pair (i, j) with 1 ≤ i, j ≤ `, i 6= j, and every 0 ≤ a ≤ n, we add arcs (xi,ja , zia)
and (zia, yi,ja). See Figure 2 for an illustration.
Furthermore, we attach terminals to the paths as follows: (shown using magenta edges
in Figure 1 and Figure 2)

for every pair (i, j) with 1 ≤ i, j ≤ `, i 6= j, we add arcs (sx0→n, x
i,j
0) and (yi,jn , ty0→n);

for every 1 ≤ i ≤ ` we add arcs (sy0→n, zi0) and (zin, tx0→n);
for every pair (i, j) with 1 ≤ i < j ≤ ` we add arcs (s<n→0, x

i,j
n) and (yi,j0 , t<n→0);

for every pair (i, j) with ` ≥ i > j ≥ 1 we add arcs (s>n→0, x
i,j
n) and (yi,j0 , t>n→0).

For every pair (i, j) with 1 ≤ i < j ≤ ` we introduce an acyclic n × n grid Pi,j with
vertices pi,ja,b for 1 ≤ a, b ≤ n and arcs (pi,ja,b, p

i,j
a+1,b) for every 1 ≤ a < n and 1 ≤ b ≤ n,

as well as (pi,ja,b, p
i,j
a,b+1) for every 1 ≤ a ≤ n and 1 ≤ b < n. We call this grid Pi,j as

the p-grid for the pair (i, j). We set the vertex pi,ja,b to be a light vertex if viav
j
b ∈ E(G),

and super-heavy otherwise. Finally, for every 1 ≤ a ≤ n we introduce the following arcs
(shown as dotted in Figure 1):

(xi,ja , p
i,j
a,1), (pi,ja,n, y

i,j
a−1), (xj,ia , p

i,j
1,a), (pi,jn,a, y

j,i
a−1).

IPEC 2019

8:10 FPT Inapproximability of Directed Cut and Connectivity Problems

sx0→n

s<n→0

t>n→0
ty0→n

t<n→0

s>n→0

xi,jn

xi,j0

yj,i0 yj,in

yi,jn

yi,j0

xj,inxj,i0

x
-p
at
h
fo
r
th
e
pa

ir
(i
,j

)

y-path for the pair (j, i)

y-path
for

the
pair

(i,j)

x-path for the pair (j, i)

Figure 1 Illustration of the reduction for Directed Multicut With 4 Pairs. For 1 ≤ i < j ≤ `,
the grid Pi,j is surrounded by the bidirectional paths Xi,j on the left, Xj,i on the top, Yi,j on the
right and Yj,i on the bottom. Edges incident on terminals are shown in magenta. Green vertices
are medium, orange vertices are heavy and white vertices are super-heavy. A desired solution is
marked by red circles.

R. Chitnis and A. E. Feldmann 8:11

sx0→n sy0→n t<n→0

s<n→0 tx0→n ty0→n

x̂i,ja ẑia ŷi,ja

Figure 2 Illustration of the reduction for Directed Multicut With 4 Pairs. For every
1 ≤ i < j ≤ `, the z-path Zi corresponding to the color class i is surrounded by the bidirectional
paths Xi,j on the left and Yi,j on the right. Edges incident on terminals are shown in magenta.
Green vertices are medium, orange vertices are heavy and white vertices are super-heavy.

IPEC 2019

8:12 FPT Inapproximability of Directed Cut and Connectivity Problems

This concludes the construction of the instance (G′, T ′) of Directed Multicut With
4 Pairs. Note that |V (G′)| = (n+ `)O(1), and also G′ can be constructed in (n+ `)O(1) time.

2.2.2 Completeness of Lemma 11:
val(Γ) = 1⇒ Multicut of cost ≤ 29`2

Suppose that val(Γ) = 1, i.e., G has a `-clique which has exactly one vertex in each Vi for
1 ≤ i ≤ `. Let this clique be given by {viα(i) : 1 ≤ i ≤ `}. Define

X = {x̂i,jα(i), ŷ
i,j
α(i) : 1 ≤ i, j ≤ `, i 6= j} ∪ {ẑiα(i) : 1 ≤ i ≤ `} ∪ {pi,jα(i),α(j) : 1 ≤ i < j ≤ `}.

Note that X consists of exactly ` heavy ẑiα(i) vertices, 4
(
`
2
)
medium x̂i,jα(i) and ŷi,jα(i) vertices,

and
(
`
2
)
light pi,jα(i),α(j) vertices (the fact that pi,jα(i),α(j) is light for every 1 ≤ i < j ≤ ` follows

from the assumption that the vertices viα(i) induce a clique in G). Hence, the weight of X
is exactly ` · 20` +

(
`
2
)
· (4 · 2B) +

(
`
2
)
· B = 20`2 +

(
`
2
)
· 9B = 29`2. As shown in [36], this

set X is a cutset for the instance (G′, T ′) of Directed Multicut With 4 Pairs. The
details are deferred to the full version [10].

2.2.3 Soundness of Lemma 11:
Multicut of cost ≤ 29.5`2 ⇒ val(Γ) ≥ 1

10

Let X be a solution to the instance (G′, T ′) of Directed Multicut With 4 Pairs such
that weight of X is 29.5`2. We now show that val(Γ) ≥ 1

10 .

I Observation 12. Note that every super-heavy vertex has weight 100`2 and hence X cannot
contain any super-heavy vertex.

I Lemma 13. [?] For each i ∈ [`], the solution X contains at least one heavy vertex from Zi.

I Lemma 14. [?] For each 1 ≤ i 6= j ≤ `, the solution X contains at least one medium
vertex from Xi,j and at least one medium vertex from Yi,j.

I Definition 15. An integer i ∈ [`] is good if X contains exactly one heavy vertex from the
z-path for the color class i, i.e., |X ∩ Zi| = 1. In this case, we say that viβi be the unique
vertex from the z-path for class i in the solution X .

I Lemma 16. [?] Let Good = {i ∈ [`] : i is good}. Then |Good| ≥ 37`
40

I Definition 17. Let 1 ≤ i < j ≤ `. We say that the pair (i, j) is great if X contains
exactly one medium vertex from the x-path for the pair (i, j)
exactly one medium vertex from the y-path for the pair (i, j)
exactly one medium vertex from the x-path for the pair (j, i)
exactly one medium vertex from the y-path for the pair (j, i)
exactly one light vertex from the p-grid for the pair (i, j)

Let Good-Pairs = {(i, j) : 1 ≤ i < j ≤ `, i, j ∈ Good}

I Lemma 18. [?] Let 1 ≤ i < j ≤ `. If both i and j are good, and the pair (i, j) is great
then viβi − v

j
βj
∈ E(G).

I Definition 19. Let 1 ≤ i < j ≤ `. We define Xi,j = X ∩ (Xi,j ∪Xj,i ∪ Yi,j ∪ Yj,i ∪ Pi,j)

R. Chitnis and A. E. Feldmann 8:13

I Lemma 20. [?] Let 1 ≤ i < j ≤ ` be such that i, j ∈ Good. Then either
the pair (i, j) is great and weight of Xi,j is exactly 9B, or
weight of Xi,j is at least 10B

I Lemma 21. [?] Let E = {1 ≤ i < j ≤ ` : i, j ∈ Good and (i, j) is great}. Then
|E| ≥ 1

10 ·
(
`
2
)

Consider the following `-vertex subgraph C: for each i ∈ [`]
if i ∈ [`] is good then add viβi to C,
otherwise add any vertex from Vi into C.

From Lemma 21 it follows that there are at least 1
10 ·
(
`
2
)
edges in G which have both endpoints

in C, and hence val(Γ) ≥ 1
10

2.3 Finishing the proof of Theorem 2
We again prove by contrapositive. Suppose that, for some constant ε > 0 and for some comput-
able function f(p) independent of n, there exists an f(p) · nO(1)-time (59

58 − ε)-approximation
algorithm for Directed Multicut. Let us call this algorithm A.

We create an algorithm B that can distinguish between the two cases of Corollary 9
with h(`) = 1 − log(10)

log ` = o(1). Our new algorithm B works as follows. Given an instance
(G,H, V1 ∪ · · · ∪ V`) of MCSI where H = K`, the algorithm B uses the reduction from
Lemma 11 to create a Directed Multicut With 4 Pairs instance (G′, T ′) with 4 terminal
pairs. B then runs A on this instance with p = 29`2; if A returns a solution N of cost less
than 29.5`2, then B returns YES. Otherwise, B returns NO.

To see that algorithm B can indeed distinguish between the YES and NO cases, first
observe that, in the YES case the completeness property of Lemma 11 guarantees that the
optimal solution has cost at most 29`2. Since A is a (59

58 − ε)-approximation algorithm, it
returns a solution of cost at most (59

58 − ε) · 29`2 < 29.5`2: this means that B outputs YES.
On the other hand, if (G,H, V1 ∪ · · · ∪ V`) is a NO instance, i..e, val(Γ) < 1

10 = `h(`)−1, then
the soundness property of Lemma 22 guarantees that the optimal solution in G′ has cost
more than 29.5`2 (which is greater than (59

58 − ε) · 29`2) and hence B correctly outputs NO.
Finally, observe that the running time of B is f(p) · |V (G′)|O(1) plus the (|V (G)|+ `)O(1)

time needed to construct G′. Since |V (G′)| = (|V (G) + `|)O(1) and p = O(`2) it follows
that the total running time is g(`) · |V (G)| for some computable function g. Hence, from
Corollary 9, Gap-ETH is violated.

3 FPT inapproximability for DSNPlanar

3.1 (2− ε)-hardness for FPT approximation under Gap-ETH
The goal of this section is to show the following theorem:

I Theorem 3. Under Gap-ETH, for any ε > 0 and any computable function f , there is no
f(k) · nO(1) time algorithm that computes a (2− ε)-approximation for DSNPlanar.

3.1.1 Reduction from Colored Biclique to DSNPlanar

I Lemma 22. For every constant γ > 0, there exists a polynomial time reduction that, given
an instance Γ = (G,H, V1 ∪ · · · ∪ V`,W1,W2, . . . ,W`) of MCSI where the supergraph H is
K`,`, produces an instance (G′,D′) of DSNPlanar, such that

IPEC 2019

8:14 FPT Inapproximability of Directed Cut and Connectivity Problems

(Completeness) If val(Γ) = 1, then there exists a planar network N ⊆ G′ of cost
2(1 + γ1/5) that satisfies all demands.
(Soundness) If val(Γ) < γ, then every network N ⊆ G′ that satisfies all demands has
cost more than 2(2− 4γ1/5).
(Parameter Dependency) The number of demand pairs k = |D′| is 2`.

Lemma 22 is proven as follows: we construct the DSNPlanar instance in Section 3.1.1.2. The
proofs of completeness and soundness of the reduction are deferred to the full version [10].
First, we construct a “path gadget” which we use repeatedly in our construction.

3.1.1.1 Constructing a directed “path” gadget

For every integer n we define the following gadget Pn which contains 2n vertices (see Figure 3).
Since we need many of these gadgets later on, we will denote vertices of Pn by Pn(v) etc., in
order to be able to distinguish vertices of different gadgets. All edges will have the same weight
B, which we will fix later during the reductions. The gadget Pn is constructed as follows: Pn
has a directed path of one edge corresponding to each i ∈ [n]. This is given by Pn(0i)→ Pn(1i)

Pn(01) Pn(11)

Pn(0i) Pn(1i)

Pn(0n) Pn(1n)

Figure 3 The construction of the path gadget for Pn. Note that the gadget has 2n vertices.
Each edge of Pn has the same weight B.

3.1.1.2 Construction of the DSNPlanar instance

We give a reduction which transforms an instance G = (V,E) of MCSI(K`,`) into an instance
of DSN which has 2` demand pairs and an optimum which is planar. Let the partition of
V into color classes be given by {V1, V2, . . . , V`,W1,W2, . . . ,W`}. Without loss of generality
(by adding isolated vertices if necessary), we can assume that each color class has the same
number of vertices. Let |Vi| = |Wi| = n′ for each 1 ≤ i ≤ `. Then n = |V (G)| = 2n′`. For
each 1 ≤ i, j ≤ ` we denote by Ei,j the set of edges with one end-point in Vi and other in Wj .

We design two types of gadgets: the main gadget and the secondary gadget. The reduction
from MCSI(K`,`) represents each edge set Ei,j with a main gadget Mi,j . This is done as
follows: each main gadget is a copy of the path gadget P|Ei,j | from Section 3.1.1.1 with
B = 2

`2 , i.e., there is a row in Mi,j corresponding to each edge in Ei,j . Each main gadget

R. Chitnis and A. E. Feldmann 8:15

is surrounded by four secondary gadgets: on the top, right, bottom and left. Each of these
gadgets are copies of the path gadget from Section 3.1.1.1 with B = 0:

For each 1 ≤ i ≤ `+ 1, 1 ≤ j ≤ ` the horizontal gadget HSi,j is a copy of P|Wj |

For each 1 ≤ i ≤ `, 1 ≤ j ≤ `+ 1 the vertical gadget V Si,j is a copy of P|Vi|

We refer to Figure 4 (bird’s-eye view) and Figure 5 (zoomed-in view) for an illustration
of the reduction. Fix some 1 ≤ i, j ≤ `. The main gadget Mi,j has four secondary gadgets
surrounding it:

Above Mi,j is the vertical secondary gadget V Si,j+1

On the right of Mi,j is the horizontal secondary gadget HSi+1,j

Below Mi,j is the vertical secondary gadget V Si,j
On the left of Mi,j is the horizontal secondary gadget HSi,j

Hence, there are `(`+ 1) horizontal secondary gadgets and `(`+ 1) vertical secondary gadgets.

Red intra-gadget edges: Fix (i, j) such that 1 ≤ i, j ≤ `. Recall thatMi,j is a copy of P|Ei,j |
with B = 2

`2 and each of the secondary gadgets are copies of Pn′ with B = 0. With slight abuse
of notation, we assume that the rows ofMi,j are indexed by the set {(x, y) : (x, y) ∈ Ei,j , x ∈
Wi, y ∈ Vj}. We add the following edges (in red color) of weight 0: for each (x, y) ∈ Ei,j

Add the edge V Si,j+1(1x)→Mi,j(0(x,y)). These edges are called top-red edges incident
on Mi,j .
Add the edge HSi,j(1y)→Mi,j(0(x,y)). These edges are called left-red edges incident on
Mi,j .
Add the edge Mi,j(1(x,y))→ HSi+1,j(0y). These edges are called right-red edges incident
on Mi,j .
Add the edge Mi,j(1(x,y))→ V Si,j(0x). These edges are called bottom-red edges incident
on Mi,j .

These are called the intra-gadget edges incident on Mi,j .
Introduce the following 4` vertices (which we call border vertices):
a1, a2, . . . , a`

b1, b2, . . . , b`

c1, c2, . . . , c`

d1, d2, . . . , d`

Orange edges: For each i ∈ [`] add the following edges (shown as orange in Figure 4) with
weight 2γ1/5

4` :
ai → V Si,`+1(0v) for each v ∈ Vi. These are called top-orange edges.
V Si,1(1v)→ bi for each v ∈ Vi. These are called bottom-orange edges.
cj → HS1,j(0w) for each w ∈Wj . These are called left-orange edges.
HS`+1,j(1w)→ dj for each w ∈Wj . These are called right-orange edges.

Finally, the set of demand pairs D′ is given by:
Type I: the pairs (ai, bi) for each 1 ≤ i ≤ `.
Type II: the pairs (cj , dj) for each 1 ≤ j ≤ `.

Clearly, the total number of demand pairs is k = |D′| = 2`. Let the final graph constructed
be G′. Note that G′ has size N = (n + `)O(1) and can be constructed in (n + `)O(1) time.
It is also easy to see that G′ is actually a DAG.

IPEC 2019

8:16 FPT Inapproximability of Directed Cut and Connectivity Problems

M1,1

M1,2

M1,3

M2,1

M2,2

M2,3

M3,1

M3,2

M3,3

c1

c2

c3

d1

d2

d3

b1 b2 b3

a1 a2 a3

HS1,1 HS2,1 HS3,1 HS4,1

HS1,2 HS2,2 HS3,2 HS4,2

HS1,3 HS2,3 HS3,3 HS4,3

V S1,1 V S2,1 V S3,1

V S1,2 V S2,2 V S3,2

V S1,3 V S2,3 V S3,3

V S1,4 V S2,4 V S3,4

Figure 4 A bird’s-eye view of the instance of G′ with ` = 3 and n′ = 4 (see Figure 5 for a
zoomed-in view). Additionally we have some red edges between each main gadget and the four
secondary gadgets surrounding it which are omitted in this figure for clarity (they are shown in
Figure 5 which gives a more zoomed-in view).

R. Chitnis and A. E. Feldmann 8:17

HSi,j HSi+1,j

V Si,j

V Si,j+1

Mi,j

Mi,j(0x,y) Mi,j(1x,y)

V Si,j+1(1x)

HSi,j(1y)

V Si,j(0x)

HSi+1,j(0y)

Figure 5 A zoomed-in view of the main gadget Mi,j surrounded by four secondary gadgets:
vertical gadget V Si,j+1 on the top, horizontal gadget HSi,j on the left, vertical gadget V Si,j on
the bottom and horizontal gadget HSi+1,j on the right. Each of the secondary gadgets is a copy of
the uniqueness gadget Un (see Section 3.1.1.1) and the main gadget Mi,j is a copy of the uniqueness
gadget U|Si,j |. The only inter-gadget edges are the red edges: they have one end-point in a main
gadget and the other end-point in a secondary gadget. We have shown four such red edges which
are introduced for every (x, y) ∈ Ei,j .

IPEC 2019

8:18 FPT Inapproximability of Directed Cut and Connectivity Problems

3.1.2 Finishing the proof of Theorem 3
We can now easily prove Theorem 3 by combining Lemma 22 and Corollary 10.

Proof of Theorem 3. We again prove by contrapositive. Suppose that, for some constant
ε > 0 and for some function f(k) independent of n, there exists an f(k) ·NO(1)-time (2− ε)-
approximation algorithm for DSNPlanar where k is the number of terminal pairs and N is
the size of the instance. Let us call this algorithm A.

Given ε > 0, it is easy to see that there exists a sufficiently small γ∗ = γ∗(ε) such that
2(2−4γ∗1/5)

2(1+γ∗1/5) ≥ (2− ε). We create an algorithm B that can distinguish between the two cases
of Corollary 10 with h(`) = 1 − log(1/γ∗)

log ` = o(1). Our new algorithm B works as follows.
Given an instance (G,H, V1 ∪ · · · ∪V`,W1 ∪ · · · ∪W`) of MCSI of size n where H = K`,`, the
algorithm B uses the reduction from Lemma 22 to create in (n+ `)O(1) time a DSNPlanar
instance on the graph G′ with k = 2` terminal pairs and size N = (`+n)O(1). The algorithm
B then runs A on this instance; if A returns a solution N of cost at most 2(2− 4γ∗1/5), then
B returns YES. Otherwise, B returns NO.

We now show that the algorithm B can indeed distinguish between the YES and NO cases
of Corollary 10. In the YES case, i.e., val(Γ) = 1, the completeness property of Lemma 22
guarantees that the optimal planar solution has cost at most 2(1 + γ∗1/5). Since A is a
(2− ε)-approximation algorithm, it returns a solution of cost at most 2(1 + γ∗1/5) · (2− ε) ≤
2(2− 4γ∗1/5) where the inequality comes from our choice of γ∗; this means that B outputs
YES. On the other hand, in the NO case, i.e., val(Γ) < γ, the soundness property of Lemma 22
guarantees that the optimal solution (and hence the planar optimal solution as well, if it
exists) in G′ has cost more than 2(2− 4γ∗1/5), which implies that B outputs NO.

Finally, observe that the running time of B is f(k) · NO(1) + poly(` + n)O(1) which is
bounded by f ′(`) · nO(1) for some computable function f ′ since k = 2` and N = (n+ `)O(1).
Hence, from Corollary 10, Gap-ETH is violated. J

3.2 Lower Bounds for FPT Approximation Schemes for DSNPlanar

We obtain the following result regarding the parameterized complexity of DSNPlanar para-
meterized by k + p.

I Theorem 4. [?] The DSNPlanar problem is W[1]-hard parameterized by p+ k. Moreover,
under ETH, for any computable function f and any ε > 0

There is no f(k, p) · no(k+√p) time algorithm for DSNPlanar, and
There is no f(k, ε, p)·no(k+

√
p+1/ε) time algorithm which computes a (1+ε)-approximation

for DSNPlanar

4 Lower Bounds for FPT Approximation Schemes for SCSSPlanar

We obtain the following result regarding the parameterized complexity of DSNPlanar para-
meterized by k + p.

I Theorem 5. [?] The SCSSPlanar problem is W[1]-hard parameterized by p+ k. Moreover,
under ETH, for any computable function f and any ε > 0

there is no f(k, p) · no(
√
k+p) time algorithm for SCSSPlanar, and

there is no f(k, ε, p)·no(
√
k+p+1/ε) time algorithm which computes an (1+ε)-approximation

for SCSSPlanar.

R. Chitnis and A. E. Feldmann 8:19

References
1 Amit Agarwal, Noga Alon, and Moses Charikar. Improved approximation for directed cut

problems. In STOC, pages 671–680, 2007. doi:10.1145/1250790.1250888.
2 Benny Applebaum. Exponentially-Hard Gap-CSP and Local PRG via Local Hardcore

Functions. In FOCS 2017, pages 836–847, 2017. doi:10.1109/FOCS.2017.82.
3 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate

Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci.,
54(2):317–331, 1997. doi:10.1006/jcss.1997.1472.

4 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and Directed Steiner
Forest. Information and Computation, 222:93–107, 2013.

5 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability: Clique,
Dominating Set, and More. In FOCS, pages 743–754, 2017. doi:10.1109/FOCS.2017.74.

6 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation Algorithms for Directed Steiner Problems. J. Algorithms,
33(1):73–91, 1999. doi:10.1006/jagm.1999.1042.

7 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed Steiner network problem. ACM Transactions on
Algorithms, 7(2):18, 2011.

8 Chandra Chekuri and Vivek Madan. Approximating Multicut and the Demand Graph. In
SODA, pages 855–874, 2017. doi:10.1137/1.9781611974782.54.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

10 Rajesh Chitnis and Andreas Emil Feldmann and. FPT Inapproximability of Directed Cut
and Connectivity Problems. CoRR, abs/1910.01934, 2019. arXiv:1910.01934.

11 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized Approxim-
ation Algorithms for Bidirected Steiner Network Problems. In ESA, pages 20:1–20:16, 2018.
doi:10.4230/LIPIcs.ESA.2018.20.

12 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

13 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. Fixed-Parameter
and Approximation Algorithms: A New Look. In IPEC 2013, pages 110–122, 2013.
doi:10.1007/978-3-319-03898-8_11.

14 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-Parameter
Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset. SIAM J.
Comput., 42(4):1674–1696, 2013. doi:10.1137/12086217X.

15 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight Bounds
for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and
Extensions). In SODA, pages 1782–1801, 2014. doi:10.1137/1.9781611973402.129.

16 Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed cut
problems. J. ACM, 56(2):6:1–6:28, 2009. doi:10.1145/1502793.1502795.

17 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

18 Irit Dinur and Pasin Manurangsi. ETH-Hardness of Approximating 2-CSPs and Directed
Steiner Network. In ITCS, pages 36:1–36:20, 2018. doi:10.4230/LIPIcs.ITCS.2018.36.

19 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
STOC 1999, pages 750–759, 1999.

20 Jon Feldman and Matthias Ruhl. The Directed Steiner Network Problem is Tract-
able for a Constant Number of Terminals. SIAM J. Comput., 36(2):543–561, 2006.
doi:10.1137/S0097539704441241.

IPEC 2019

https://doi.org/10.1145/1250790.1250888
https://doi.org/10.1109/FOCS.2017.82
https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1109/FOCS.2017.74
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1137/1.9781611974782.54
http://arxiv.org/abs/1910.01934
https://doi.org/10.4230/LIPIcs.ESA.2018.20
https://doi.org/10.1145/2700209
https://doi.org/10.1007/978-3-319-03898-8_11
https://doi.org/10.1137/12086217X
https://doi.org/10.1137/1.9781611973402.129
https://doi.org/10.1145/1502793.1502795
https://doi.org/10.4230/LIPIcs.ITCS.2018.36
https://doi.org/10.1137/S0097539704441241

8:20 FPT Inapproximability of Directed Cut and Connectivity Problems

21 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation al-
gorithms for Directed Steiner Forest. J. Comput. Syst. Sci., 78(1):279–292, 2012.
doi:10.1016/j.jcss.2011.05.009.

22 Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems. CoRR, abs/1707.06808, 2017. arXiv:1707.06808.

23 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway Cuts in Directed and
Node Weighted Graphs. In ICALP, pages 487–498, 1994. doi:10.1007/3-540-58201-0_92.

24 Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized Complexity of Arc-Weighted
Directed Steiner Problems. SIAM J. Discrete Math., 25(2):583–599, 2011.

25 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. STOC ’03,
pages 585–594, 2003. doi:10.1145/780542.780628.

26 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

28 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767–775,
2002. doi:10.1145/509907.510017.

29 Guy Kortsarz and David Peleg. On Choosing a Dense Subgraph (Extended Abstract). In
FOCS 1993, pages 692–701, 1993.

30 Euiwoong Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. In ICALP,
pages 92:1–92:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.92.

31 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/92.

32 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In ICALP, pages 78:1–78:15, 2017.

33 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010.
doi:10.4086/toc.2010.v006a005.

34 Dániel Marx and Igor Razgon. Fixed-Parameter Tractability of Multicut Parameterized by
the Size of the Cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

35 Joseph Naor and Leonid Zosin. A 2-Approximation Algorithm for the Directed Multiway
Cut Problem. SIAM J. Comput., 31(2):477–482, 2001. doi:10.1137/S009753979732147X.

36 Marcin Pilipczuk and Magnus Wahlström. Directed Multicut is W[1]-hard, Even for Four
Terminal Pairs. TOCT, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

https://doi.org/10.1016/j.jcss.2011.05.009
http://arxiv.org/abs/1707.06808
https://doi.org/10.1007/3-540-58201-0_92
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/509907.510017
https://doi.org/10.4230/LIPIcs.ICALP.2017.92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1137/110855247
https://doi.org/10.1137/S009753979732147X
https://doi.org/10.1145/3201775

C-Planarity Testing of Embedded Clustered
Graphs with Bounded Dual Carving-Width
Giordano Da Lozzo
Roma Tre University, Rome, Italy
giordano.dalozzo@uniroma3.it

David Eppstein
University of California, Irvine, USA
eppstein@uci.edu

Michael T. Goodrich
University of California, Irvine, USA
goodrich@uci.edu

Siddharth Gupta
Ben-Gurion University of the Negev, Beersheba, Israel
siddhart@post.bgu.ac.il

Abstract
For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the
C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph
and a representation of each cluster as a region homeomorphic to a closed disk such that 1. the
subgraph induced by each cluster is drawn in the interior of the corresponding disk, 2. each edge
intersects any disk at most once, and 3. the nesting between clusters is reflected by the representation,
i.e., child clusters are properly contained in their parent cluster. The computational complexity of
this problem, whose study has been central to the theory of graph visualization since its introduction
in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs, ESA’95], has only been recently
settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability, to appear
at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the
graph has a prescribed planar embedding, i.e, for embedded clustered graphs.

We show that the C-Planarity Testing problem admits a single-exponential single-parameter
FPT algorithm for embedded clustered graphs, when parameterized by the carving-width of the
dual graph of the input. This is the first FPT algorithm for this long-standing open problem with
respect to a single notable graph-width parameter. Moreover, in the general case, the polynomial
dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. To
further strengthen the relevance of this result, we show that the C-Planarity Testing problem
retains its computational complexity when parameterized by several other graph-width parameters,
which may potentially lead to faster algorithms.

2012 ACM Subject Classification Human-centered computing → Graph drawings; Theory of com-
putation → Fixed parameter tractability; Mathematics of computing → Graph theory

Keywords and phrases Clustered planarity, carving-width, non-crossing partitions, FPT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.9

Related Version A full version of the paper [47] is available at https://arxiv.org/abs/1910.02057.

Funding Giordano Da Lozzo: Supported in part by H2020-MSCA-RISE project 734922 – “CON-
NECT”, by MIUR Project “AHeAD” under PRIN 20174LF3T8, by MIUR Project “MODE” under
PRIN 20157EFM5C, and by MIUR-DAAD JMP N◦ 34120.
David Eppstein: Supported in part by the US NSF under grants CCF-1618301 and CCF-1616248.
Michael T. Goodrich: Supported in part by the US NSF under grant 1815073.
Siddharth Gupta: Supported in part by the Zuckerman STEM Leadership Program and by the
Frankel Foundation.

© Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giordano.dalozzo@uniroma3.it
mailto:eppstein@uci.edu
mailto:goodrich@uci.edu
mailto:siddhart@post.bgu.ac.il
https://link.springer.com/chapter/10.1007%2F3-540-60313-1_145
https://arxiv.org/abs/1907.13086
https://arxiv.org/abs/1907.13086
https://doi.org/10.4230/LIPIcs.IPEC.2019.9
https://arxiv.org/abs/1910.02057
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

1 Introduction

Many real-word data exhibit an intrinsic hierarchical structure that can be captured in the
form of clustered graphs, i.e., graphs equipped with a recursive clustering of their vertices.
This graph model has proved very powerful to represent information at different levels of
abstraction and drawings of clustered networks appear in a wide variety of application
domains, such as software visualization, knowledge representation, visual statistics, and data
mining. More formally, a clustered graph (for short, c-graph) is a pair C(G, T), where G is the
underlying graph and T is the inclusion tree of C, i.e., a rooted tree whose leaves are the vertices
of G. Each non-leaf node µ of T corresponds to a cluster containing the subset Vµ of the
vertices of G that are the leaves of the subtree of T rooted at µ. Edges between vertices of the
same cluster (resp., of different clusters) are intra-cluster edges (resp., inter-cluster edges).

A natural and well-established criterion for a readable visualization of a c-graph has been
derived from the classical notion of graph planarity. A c-planar drawing of a c-graph C(G, T)
(see Fig. 4c) is a planar drawing of G together with a representation of each cluster µ in T
as a region D(µ) homeomorphic to a closed disc such that: (i) for each cluster µ in T , region
D(µ) contains the drawing of the subgraph G[Vµ] of G induced by Vµ; (ii) for every two
clusters µ and η in T , it holds D(η) ⊆ D(µ) if and only if η is a descendant of µ in T ; (iii)
each edge crosses the boundary of any cluster disk at most once; and (iv) the boundaries of
no two cluster disks intersect. A c-graph is c-planar if it admits a c-planar drawing.

The C-Planarity Testing problem, introduced by Feng, Cohen, and Eades more than
two decades ago [31], asks for the existence of a c-planar drawing of a c-graph. Despite several
algorithms having been presented in the literature to construct c-planar drawings of c-planar
c-graphs with nice aesthetic features [9, 28, 42, 48], determining the computational complexity
of the C-Planarity Testing problem has been one of the most challenging quests in the
graph drawing research area [16, 21, 53]. To shed light on the complexity of the problem,
several researchers have tried to highlight its connections with other notoriously difficult
problems in the area [3, 53], as well as to consider relaxations [6, 7, 10, 30, 25, 56] and more
constrained versions [2, 4, 5, 8, 23, 32, 33] of the classical notion of c-planarity. Algebraic
approaches have also been considered [34, 41]. Only recently, Fulek and Tóth settled the
question by giving a polynomial-time algorithm for a generalization of the C-Planarity
Testing problem called Atomic Embeddability [36].

A cluster µ is connected if G[Vµ] is connected, and it is disconnected otherwise. A c-graph
is c-connected if every cluster is connected. Efficient algorithms for the c-connected case have
been known since the early stages of the research on the problem [22, 27, 31]. Afterwards,
polynomial-time algorithms have also been conceived for c-graphs satisfying other, weaker,
connectivity requirements [20, 38, 40]. A c-graph is flat if each leaf-to-root path in T consists
of exactly two edges, that is, the clustering determines a partition of the vertex set; see,
e.g., Fig. 4a. For flat c-graphs polynomial-time algorithms are known for several restricted
cases [2, 11, 13, 17, 29, 35, 33, 43, 45, 46].

Motivations and contributions. In this paper, we consider the parameterized complexity of
the C-Planarity Testing problem for embedded c-graphs, i.e., c-graphs with a prescribed
combinatorial embedding; see also [13, 18, 26, 46] for previous work in this direction.

In Section 2, we show that the C-Planarity Testing problem retains its complexity
when restricted to instances of bounded path-width and to connected instances of bounded
tree-width. Such a result implies that the goal of devising an algorithm parameterized by
graph-width parameters that are within a constant factor from tree-width (e.g., branch-

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:3

width [50]) or that are bounded by path-width (e.g., tree-width, rank-width [49], boolean-
width [1], and clique-width [19]) and with a dependency on the input size which improves
upon the one in [36] has to be regarded as a major algorithmic challenge.

Remarkably, before the results presented in [36], the computational complexity of the
problem was still unsolved even for instances with faces of bounded size, and polynomial-
time algorithms were known only for “small” faces and in the flat scenario. Namely,
Jelinkova et al. [46] presented a quadratic-time algorithm for 3-connected flat c-graphs
with faces of size at most 4. Subsequently, Di Battista and Frati [29] presented a linear-
time/linear-space algorithm for embedded flat c-graphs with faces of size at most 5.

Motivated by the discussion above and by the results in Section 2, we focus our attention
on embedded c-graphs C(G, T) whose underlying graph G has both bounded tree-width and
bounded face size, i.e., instances such that the carving-width of the dual δ(G) of G is bounded.
In Section 3, we present an FPT algorithm based on a dynamic-programming approach on
a bond-carving decomposition to solve the problem for embedded flat c-graphs, which is
ultimately based on maintaining a succinct description of the internal cluster connectivity
via non-crossing partitions. We remark that, to the best of the authors’ knowledge, this is
the first FPT algorithm for the C-Planarity Testing problem, with respect to a single
graph-width parameter. More formally, we prove the following.

I Theorem 1. C-Planarity Testing can be solved in O(24ω+logωn+ n2) time for any
n-vertex embedded flat c-graph C(G, T), where ω is the carving-width of δ(G), if a carving
decomposition of δ(G) of width ω is provided, and in O(24ω+logωn+ n3) time, otherwise.

It is well know that the carving-width cw(δ(H)) of the dual graph δ(H) of a plane
graph H with maximum face size `(H) and tree-width tw(H) satisfies the relationship
cw(δ(H)) ≤ `(H)(tw(H) + 2) [12, 15]. Therefore, Theorem 1 provides the first1 polynomial-
time algorithm for instances of bounded face size and bounded tree-width, which answers an
open question posed by Di Battista and Frati [29, Open Problem (ii)] for instances of bounded
tree-width; also, since any n-vertex planar graph has tree-width in O(

√
n), it provides an

2O(
√
n) subexponential-time algorithm for instances of bounded face size, which improves the

previous 2O(
√
n logn) time bound presented in [26] for such instances.

Further implications of Theorem 1 for instances of bounded embedded-width and of
bounded dual cut-width are discussed in Section 4. Moreover, we extend Theorem 1 to
get an FPT algorithm for general non-flat embedded c-graphs, whose running time is
O(44ω+logωn + n2) if a carving decomposition of δ(G) of width ω is provided, and is
O(44ω+logωn + n3), otherwise. The details for such an extension can be found in the full
version [47].

2 Definitions and Preliminaries

In this section, we give definitions and preliminaries that will be useful throughout.

Graphs and connectivity. A graph G = (V,E) is a pair, where V is the set of vertices of G
and E is the set of edges of G ,i.e., pairs of vertices in V . A multigraph is a generalization of
a graph that allows the existence of multiple copies of the same edge. The degree of a vertex
is the number of its incident edges. We denote the maximum degree of G by ∆(G). Also, for
any S ⊆ V , we denote by G[S] the subgraph of G induced by the vertices in S.

1 The results in this paper were accepted for publication before the contribution of Fulek and Tóth in [36].

IPEC 2019

9:4 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

A graph is connected if it contains a path between any two vertices. A cutvertex is a
vertex whose removal disconnects the graph. A connected graph containing no cutvertices is
2-connected. The blocks of a graph are its maximal 2-connected subgraphs. In this paper, we
only deal with connected graphs, unless stated otherwise.

Planar graphs and embeddings. A drawing of a graph is planar if it contains no edge
crossings. A graph is planar if it admits a planar drawing. Two planar drawings of the
same graph are equivalent if they determine the same rotation at each vertex, i.e, the same
circular orderings for the edges around each vertex. A combinatorial embedding (for short,
embedding) is an equivalence class of planar drawings. A planar drawing partitions the plane
into topologically connected regions, called faces. The bounded faces are the inner faces,
while the unbounded face is the outer face. A combinatorial embedding together with a choice
for the outer face defines a planar embedding. An embedded graph (resp. plane graph) G is
a planar graph with a fixed combinatorial embedding (resp. fixed planar embedding). The
length of a face f of G is the number of occurrences of the edges of G encountered in a
traversal of the boundary of f . The maximum face size `(G) of G is the maximum length
over all faces of G.

C-Planarity. An embedded c-graph C(G, T) is a c-graph whose underlying graph G has a
prescribed combinatorial embedding, and it is c-planar if it admits a c-planar drawing that
preserves the given embedding. Since we only deal with embedded c-graphs, in the remainder
of the paper we will refer to them simply as c-graphs. Also, when G and T are clear from
the context, we simply denote C(G, T) as C. A candidate saturating edge of C is an edge not
in G between two vertices of the same cluster in T that are incident to the same face of G;
refer to Fig. 4b. A c-graph C′(G′, T ′) with T ′ = T obtained by adding to C a subset E+ of
its candidate saturating edges is a super c-graph of C ; also, set E+ is a planar saturation if
G′ is planar. Further, c-graph C is hole-free if there exists a face f in G such that when f is
chosen as the outer face for G no cycle composed of vertices of the same cluster encloses a
vertex of a different cluster in its interior. Finally, two c-graphs are equivalent if and only if
they are both c-planar or they are both not c-planar.

I Remark 2. In this paper, we only consider c-graphs whose underlying graph is connected,
unless stated otherwise.

We will exploit the following characterization presented by Di Battista and Frati [29],
which holds true also for non-flat c-graphs although originally only proved for flat c-graphs.

I Theorem 3 ([29], Theorem 1). A c-graph C(G, T) is c-planar if and only if:
(i) G is planar,
(ii) C is hole-free, and
(iii) there exists a super c-graph C∗(G∗, T ∗) of C such that G∗ is planar and C∗ is c-connected.

Condition i of Theorem 3 can be tested using any of the known linear-time planarity-
testing algorithms. Condition ii of Theorem 3 can be verified in linear time as described by
Di Battista and Frati [29, Lemma 7], by exploiting the linear-time algorithm for checking if
an embedded, possibly non-flat, c-graph is hole-free presented by Dahlhaus [27]. Therefore,
in the following we will assume that any c-graph satisfies these conditions and thus view the
C-Planarity Testing problem as one of testing Condition iii.

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:5

(a)

ρ

ρ′′ρ′

(b)

ρ

ρ′′ρ′

Iρ′ Iρ′′

(c)

Figure 1 (a) Running example: An embedded graph G and its dual δ(G). (b) A bond-carving
decomposition (D, γ) of the dual δ(G) of the graph G in Fig. 1a. (c) The decomposition (D, γ)
where the vertices of δ(G) are replaced by the corresponding faces of G.

Tree-width. A tree decomposition of a graph G is a tree T whose nodes, called bags, are
labeled by subsets of vertices of G. For each vertex v the bags containing v must form
a nonempty contiguous subtree of T , and for each edge (u, v) of G at least one bag of T
must contain both u and v. The width of the decomposition is one less than the maximum
cardinality of any bag. The tree-width tw(G) of G is the minimum width of any of its tree
decompositions.

Cut-sets and duality. Let G = (V,E) be a connected graph and let S be a subset of V .
The partition {S, V \ S} of V is a cut of G and the set (S, V \ S) of edges with an endpoint
in S and an endpoint in V \ S is a cut-set of G. Also, cut-set (S, V \ S) is a bond if G[S]
and G[V \ S] are both non-null and connected.

For an embedded graph, the dual δ(G) of G is the planar multigraph that has a vertex vf ,
for each face f of G, and an edge (vf , vg), for each edge e shared by faces f and g. The edge
e is the dual edge of (vf , vg), and vice versa. Also, δ(G) is 2-connected if and only if G is
2-connected. Fig. 1a shows a plane graph G (black edges) and its dual δ(G) (purple edges);
we will use these graphs as running examples throughout the paper. The following duality is
well known.

I Lemma 4 ([37], Theorem 14.3.1). If G is an embedded graph, then a set of edges is a cycle
of G if and only if their dual edges form a bond in δ(G).

Carving-width. A carving decomposition of a graph G = (V,E) is a pair (D, γ), where D
is a rooted binary tree whose leaves are the vertices of G, and γ is a function that maps
the non-root nodes of D, called bags, to cut-sets of G as follows. For any non-root bag
ν, let Dν be the subtree of D rooted at ν and let Lν be the set of leaves of Dν . Then,
γ(ν) = (Lν , V \ Lν). The width of a carving decomposition (D, γ) is the maximum of |γ(ν)|
over all bags ν in D. The carving-width cw(G) of G is the minimum width over all carving
decompositions of G. The dual carving-width is the carving-width of the dual of G. A
bond-carving decomposition is a special kind of carving decomposition in which each cut-set
is a bond of the graph; i.e., in a bond-carving decomposition every cut-set separates the
graph into two connected components [51, 54].

In this paper, we view a bond-carving decomposition of the vertices of the dual δ(G) of an
embedded graph G as a decomposition of the faces of G; see Fig. 1c. A similar approach was
followed in [12]. In particular, due to the duality expressed by Lemma 4, the cut-sets γ(ν) of

IPEC 2019

9:6 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

the bags ν of D correspond to cycles that can be used to recursively partition the faces of
the primal graph, where these cycles are formed by the edges of the primal that are dual to
those in each cut-set.

Partitions. Let Q = {q1, q2, . . . , qn} be a ground set. A partition of Q is a set {Q1, . . . , Qk}
of non-empty subsets Qi’s of Q, called parts, such that Q =

⋃k
i=1 Qi and Qi ∩Qj = ∅, with

1 ≤ i < j ≤ k. Observe that k ≤ |Q|. Let now S = (s1, s2, . . . , sn) be a cyclically-ordered
set, i.e., a set equipped with a circular ordering. Let a, b, and c be three elements of S such
that b appears after a and before c in the circular ordering of S; we write a ≺b c. A partition
P of S is crossing, if there exist elements a, c ∈ Si and b, d ∈ Sj , with Si, Sj ∈ P and i 6= j,
such that a ≺b c and c ≺d a; and, it is non-crossing, otherwise. We denote the set of all
the non-crossing partitions of S by NC(S). Note that, |NC(S)| coincides with the Catalan
number CAT(n) of n, which satisfies CAT(n) ≤ 22n.

2.1 Relationship between Graph-Width Parameters and Connectivity
In this section, we present reductions that shed light on the effect that the interplay between
some notable graph-width parameters and the connectivity of the underlying graph have on
the computational complexity of the C-Planarity Testing problem.

We will exploit recent results by Cortese and Patrignani, who proved the following:
(a) Any n-vertex non-flat c-graph C(G, T) can be transformed into an equivalent O(n · h)-

vertex flat c-graph in quadratic time [24, Theorem 1], where h is the height of T .
(b) Any n-vertex flat c-graph can be turned into an equivalent O(n)-vertex independent flat

c-graph, i.e., a flat c-graph such that each non-root cluster induces an independent set,
in linear time [24, Theorem 2].

We remark that the reductions from [24] preserve the connectivity of the underlying graph.

I Theorem 5. Let C(G, T) be an n-vertex (flat) c-graph and let h be the height of T . In
O(n2) time (in O(n) time), it is possible to construct an O(n · h)-vertex (O(n)-vertex)
independent flat c-graph C′(G′, T ′) that is equivalent to C such that:
(i) G′ is a collection of stars or
(ii) G′ is a tree.

Sketch. Let C(G, T) be an n-vertex (flat) c-graph. By the results a and b above, we can
construct an O(n · h)-vertex (O(n)-vertex) independent flat c-graph C+(G+, T +) equivalent
to C in O(n2) time (in O(n) time). Note that, G+ only contains inter-cluster edges.

Let e = (u, v) be an edge of G+. Consider a c-graph C1(G1, T 1) obtained from C+ as
follows. First, subdivide the edge e with two dummy vertices ue and ve to create edges
(u, ue), (ue, ve), and (ve, v). Then, delete the edge (ue, ve). Note that, the rotation scheme
at u and v is same in G′ as in G, considering u = ve and v = ue in the cyclic ordering of
the neighbors of v and of u respectively in G. Finally, assign ue and ve to a new cluster µe,
and add µe as a child of the root of the tree T +. To construct C′ in case (i), we perform
the above transformation for all the edges of G+. To construct C′ in case (ii), as long as the
graph contains a cycle, we perform the above transformation for an edge e of such a cycle.
Since the construction of C ′ from C+ can be done in linear time both in case (i) and (ii), the
running time follows. The equivalence can be proved by performing the above transformation,
and its reverse, in c-connected super c-graphs of C+ and of C1, respectively. J

We point out that by applying the reduction in the above proof without enforcing
a specific embedding, Theorem 5 also holds for general instances of the C-Planarity
Testing problem, i.e., non-embedded c-graphs. Moreover, since the reduction given in [24]

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:7

c

v

u

c+f ′

f ′′

f1

c

u

v

f α

f1
νf

α′

λ′

ν ′f ′′ ν ′f ′
f f1

f1

f ′f ′′

(D, γ) (D′, γ′)C(G, T) C ′(G′, T ′)

Figure 2 Reduction of Lemma 6 focused on cutvertex c. The transformation of (D, γ) into
(D′, γ′) is shown. The red dashed edges are dual to those in the cut-set of each bag.

also works for disconnected instances, applying the reduction of Theorem 5 for case (i) to a
general disconnected instance C(G, T) would result in an equivalent independent flat c-graph
C′(G′, T ′) such that G′ is a collection of stars. An immediate, yet important, consequence of
this discussion is that an algorithm with running time in O(r(n)) for flat instances whose
underlying graph is a collection of stars would result in an algorithm with running time in
O(r(n)) for flat instances and in O(r(n2) + n2) for general, possibly non-flat, instances.

The proof of the following lemma, which will turn useful in the following sections, is
based on the duality expressed by Lemma 4.

I Lemma 6. Given an n-vertex c-graph C(G, T) and a carving decomposition (D, γ) of δ(G)
of width ω, in O(n) time, it is possible to construct an O(n)-vertex c-graph C′(G′, T ′) that is
equivalent to C such that G′ is 2-connected, and a carving decomposition (D′, γ′) of δ(G′) of
width ω′ = max(ω, 4).

Proof. We construct C′(G′, T ′) as follows. Let β(G) < n be the number of blocks of G.
Let c be a cutvertex of G, let µ be the cluster that is the parent of c in T , and let (u, c)

and (v, c) be two edges belonging to different blocks of G that are incident to the same face f
of G. Consider the c-graph C+(G+, T +) obtained from C by embedding a path (u, c+, v)
inside f , where c+ is a new vertex that we add as a child of µ; see Fig. 2. We denote by f ′ the
face of G+ bounded by the cycle (u, c+, v, c) and by f ′′ the other face of G+ incident to c+.
Clearly, this augmentation can be done in O(1) time and G+ contains β(G)− 1 blocks. Also,
C and C+ are equivalent. This is due to the fact that any saturating edge (c, x) incident
to c and lying in f (of a c-connected c-planar super c-graph of C) can be replaced by two
saturating edges (x, c+) lying in f ′′ and (c+, c) lying in f ′ (of a c-connected c-planar super
c-graph of C+), and vice versa.

We now show how to modify the carving decomposition (D, γ) of δ(G) of width ω into a
carving decomposition (D+, γ+) of δ(G+) of width ω+ = max(ω, 4) in O(1) time. Consider
the leaf bag νf of D corresponding to face f and let α be the parent of νf in D. We
construct D+ from D as follows. First, we initialize (D+, γ+) = (D, γ); in the following,
we denote by ν′ the bag of D+ corresponding to the bag ν of D. We remove ν′f from D+,
add a new non-leaf bag λ′ as a child of α′ and two leaf bags ν′f ′ , corresponding to face f ′,
and ν′f ′′ , corresponding to face f ′′, as children of λ′; refer to Fig. 2. Further, we have
γ+(ν′f ′) = {(u, c), (u, c+), (v, c), (v, c+)}, γ+(ν′f ′′) = γ(ν′f) \ {(u, c), (v, c)} ∪ {(u, c+), (v, c+)},
γ+(λ′) = γ(ν′f), and γ+(ν′) = γ(ν), for any other bag ν belonging to both D+ and D. In
particular, the size of the edge-cuts defined by all the bags different from ν′f ′ stays the same,
while the size of the edge-cut of ν′f ′ is 4. Therefore, (D+, γ+) is a carving decomposition
of δ(G+) of width ω+ = max(ω, 4).

IPEC 2019

9:8 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

s1

s2

s3

s4

(a) G(P ′) and G(P ′′)

s1

s2

s3

s4

(b) H

s1

s4

(c) G(P ∗)

Figure 3 Illustrations for the definition of bubble merge.

Repeating the above procedure, eventually yields a 2-connected c-graph C′(G′, T ′), with
|V (G′)| = n+ β(G)− 1 = O(n), that is equivalent to C and a carving decomposition (D′, γ′)
of δ(G′) of width ω′ = max(ω, 4). Since each execution of the above procedure takes O(1)
time and since the cutvertices and the blocks of G can be computed in O(n) time [44], we
have that C′ and (D′, γ′) can be constructed in O(n) time. This concludes the proof. J

3 A Dynamic-Programming Algorithm for Flat Instances

In this section, we present an FPT algorithm for the C-Planarity Testing problem of flat
c-graphs parameterized by the dual carving-width. We first describe a dynamic-programming
algorithm to test whether a 2-connected flat c-graph C is c-planar, by verifying whether C
satisfies Condition iii of Theorem 3. Then, by combining this result and Lemma 6, we extend
the algorithm to simply-connected instances.

Basic operations. Let C(G, T) be a flat c-graph. A partition {S1, . . . , Sk} of V ′ ⊆ V (G)
is good if, for each part Si, there exists a non-root cluster µ such that all the vertices in Si
belong to µ; also, we say that the part Si belongs to the cluster µ. Further, a partition of a
cyclically-ordered set S ⊆ V (G) is admissible if it is both good and non-crossing. We define
the binary operator], called generalized union, that given two good partitions P ′ and P ′′
of ground sets Q′ and Q′′, respectively, returns a good partition P ∗ = P ′] P ′′ of Q′ ∪Q′′
obtained as follows. Initialize P ∗ = P ′ ∪ P ′′. Then, as long as there exist Qi, Qj ∈ P ∗ such
that Qi ∩ Qj 6= ∅, replace sets Qi and Qj with their union Qi ∪ Qj in P ∗. We have the
following.

I Lemma 7. P ∗ = P ′] P ′′ can be computed in O(|Q′|+ |Q′′|) time.

Let P be a good partition of the ground set Q and let Q′ ⊂ Q. The projection of P
onto Q′, denoted as P |Q′ , is the good partition of Q′ obtained from P by first replacing each
part Si ∈ P with Si ∩Q′ and then removing empty parts, if any.

An admissible partition P of a cyclically-ordered set S can be naturally associated with
a 2-connected plane graph G(P) as follows. The outer face of G(P) is a cycle C(P) whose
vertices are the elements in S and the clockwise order in which they appear along C(P) is
the same as in S. Also, for each part Si ∈ P such that |Si| ≥ 2, graph G(P) contains a
vertex vi in the interior of C(P) that is adjacent to all the elements in Si, i.e., removing all
the edges of C(P) yields a collection of stars, whose central vertices are the vi’s, and isolated
vertices. We say that G(P) is the cycle-star associated with P ; see, e.g., Fig. 3c.

We also extend the definitions of generalized union and projection to admissible partitions
by regarding the corresponding cyclically-ordered sets as unordered.

Let P ′ and P ′′ be two admissible partitions of cyclically-ordered sets S ′ and S ′′, respect-
ively, with the following properties (where S∩ = {s1, s2, . . . , sk} denotes the set of elements
that are common to S ′ and S ′′): (i) |S∩| ≥ 2 and S ′ ∪ S ′′ \ S∩ 6= ∅, (ii) the elements of S∩

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:9

(a) (b) (c)

Iρ′

f∞ρ′

(d)

Iρ′

(e)

Figure 4 (a) A flat c-graph C(G, T). (b) A super c-graph of C containing all the candidate
saturating edges. (c) A c-planar drawing of C and the corresponding planar saturation. (d) A planar
saturation of a c-graph, whose underlying graph is the graph Gρ′ of the decomposition in Fig. 1,
where no saturating edge lies in the interior of f∞ρ′ . (e) The admissible partition P determined by
the planar saturation in (d); sets of vertices of Iρ′ belonging to the same cluster and connected by
saturating edges in (d) form distinct parts in P (enclosed by shaded regions).

appear consecutively both in S ′ and S ′′, and (iii) the cyclic ordering of the elements in S∩
determined by S ′ is the reverse of the cyclic order of these elements determined by S ′′.
We define the binary operator , called bubble merge, that returns an admissible partition
P ∗ = P ′ P ′′ obtained as follows. Consider the cycle-stars G(P ′) and G(P ′′) associated
with P ′ and P ′′, respectively. First, we identify the vertices corresponding to the same
element of S∩ in both C(P ′) and C(P ′′) (see Fig. 3a) to obtain a new plane graph H (see
Fig. 3b). Observe that H is 2-connected since G(P ′) and G(P ′′) are 2-connected and since
|S∩| ≥ 2; therefore, the outer face fH of H is a simple cycle. Second, we traverse fH clockwise
to construct a cyclically-ordered set S∗ ⊆ S ′ ∪ S ′′ on the vertices of fH . Finally, we set
P ∗ = (P ′] P ′′)|S∗ . P ∗ is good by the definition of generalized union. The fact that P ∗
is a non-crossing partition of S∗ follows immediately by the planarity of H (see Fig. 3c).
Lemma 7 and the fact that the graph H can be easily constructed from P ′ and P ′′ in linear
time imply the following.

I Lemma 8. P ∗ = P ′ P ′′ can be computed in O(|S ′|+ |S ′′|) time.

Algorithm. Let C(G, T) be a 2-connected flat c-graph. Let (D, γ) be a bond-carving
decomposition of δ(G) of width at most ω and let ν be a non-root bag of D. We denote by Fν
the set of faces of G that are dual to the vertices of δ(G) that are leaves of the subtree Dν

of D rooted at ν. Also, let Gν be the embedded subgraph of G induced by the edges of the
faces in Fν . The interface graph Iν of ν is the subgraph of Gν induced by the edges that are
incident to a face of Gν not in Fν . The boundary Bν of ν is the vertex set of Iν . Note that,
the edges of Iν are dual to those in γ(ν). By Lemma 4 and by the definition of bond-carving
decomposition, we derive the next observation about Iν .

I Observation 1. The interface graph Iν of ν is a cycle of length at most ω.

Since G is 2-connected, by Observation 1, the vertices in Bν have a natural (clockwise)
circular ordering defined by cycle Iν , and Iν bounds the unique face f∞ν of Gν not in Fν .
Therefore, from now on, we regard Bν as a cyclically-ordered set.

Let P ∈ NC(Bν) be an admissible partition and let Cν(Gν , Tν) be the flat c-graph obtained
by restricting C to Gν . Also, let C�ν (G�ν , T �ν) be a super c-graph of Cν containing no saturating
edges in the interior of f∞ν and such that G�ν is planar.

IPEC 2019

9:10 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

I Definition 9. The c-graph C�ν realizes P if (refer to Fig. 4):
(a) for every two vertices u, v ∈ Bν , we have that u and v belong to the same part Si ∈ P if

and only if they are connected in G�ν by paths of intra-cluster edges of the cluster the
part Si belongs to,

(b) for each cluster µ in T such that Vµ ∩Bν 6= ∅, all the vertices of µ in Gν are connected
to some vertex of µ in Bν by paths of intra-cluster edges of µ in G�ν , and

(c) for each cluster µ in T such that Vµ ⊆ V (Gν) \Bν , all the vertices of µ are in Gν and
are connected by paths of intra-cluster edges of µ in G�ν .

A vertex v of Gν is dominated by some part Si of P , if either v ∈ Si or v is connected to
some vertex of Si by paths of intra-cluster edges in C�ν . Note that, by Conditions a and b
of Definition 9, for each part Si of P , the set of vertices of Gν dominated by Si induces a
connected subgraph of G�ν . Also, by Condition c, cycle Iν does not form a cluster separator,
that is, a cycle of G such that the vertices of some cluster µ appear both in its interior and
in its exterior, but not in it; note that, in fact, this is a necessary condition for the existence
of a c-planar drawing of C. Thus, partition P “represents” the internal-cluster connectivity
in C�ν of the clusters whose vertices appear in Bν in a potentially positive instance. Also, P
is realizable by Cν if there exists a super c-graph C′ν(G′ν , T ′ν) of Cν that realizes P containing
no saturating edges in the interior of f∞ν and such that G′ν is planar. From Theorem 3 and
the definition of realizable partition we have the following.

I Lemma 10 (Necessity). Let ν be a non-root bag of D. Then, C is c-planar only if there
exists an admissible partition P of Bν that is realizable by Cν .

We are going to exploit the next lemma, which holds for any bond-carving decomposition.

I Lemma 11. Let ρ′ and ρ′′ be the two children of the root ρ of D. Then, Iρ′ = Iρ′′ .

Lemmas 10 and 11 allow us to derive the following useful characterization.

I Theorem 12 (Characterization). The 2-connected flat c-graph C(G, T) is c-planar if and
only if there exist admissible partitions P ′ ∈ NC(Bρ′), P ′′ ∈ NC(Bρ′′) such that:
(i) P ′ and P ′′ are realizable by Cρ′(Gρ′ , Tρ′) and by Cρ′′(Gρ′′ , Tρ′′), respectively, and
(ii) no two distinct parts Si, Sj ∈ P ∗, with P ∗ = P ′] P ′′, belong to the same cluster of T .

Proof. We first prove the only if part. The necessity of Condition i follows from Lemma 10.
For the necessity of Condition ii, suppose for a contradiction, that for any two realizable
partitions P ′ ∈ NC(Bρ′) and P ′′ ∈ NC(Bρ′′), it holds that P ∗ = P ′]P ′′ does not satisfy such
a condition. Then, there is no set of saturating edges of Cρ′ and Cρ′′ , where none of these edges
lies in the interior of f∞ρ′ and of f∞ρ′′ , respectively, that when added to C yields a c-connected
c-graph C�(G�, T �) with G� planar. Thus, by Theorem 3, C is not c-planar, a contradiction.

We now prove the if part. By Lemma 11, it holds G = Gρ′∪Gρ′′ and Iρ′ = Iρ′′ = Gρ′∩Gρ′′ .
Let C�ρ′ be a super c-graph of Cρ′ realizing P ′ and let C�ρ′′ be a super c-graph of Cρ′′ realizing
P ′′; these c-graphs exist since Condition i holds. Let C� be the super c-graph of C obtained
by augmenting C with the saturating edges of both C�ρ′ and C�ρ′′ . Note that, G� is planar.

We show that every cluster µ is connected in C�, provided that Condition ii holds. This
proves that C� is a c-connected super c-graph of C, thus by Condition iii of Theorem 3,
c-graph C is c-planar. We distinguish two cases, based on whether some vertices of µ appear
along cycle Iρ′ = Iρ′′ or not. Let B = Bρ′ = Bρ′′ .

Consider first a cluster µ containing vertices in B. By Condition b of Definition 9, we
have that every vertex in µ is dominated by at least a part of P ′ or of P ′′, i.e., they either
belong to B or they are connected by paths of intra-cluster edges in either C�ρ′ or C�ρ′′ to a

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:11

vertex in B. Since, by Condition ii of the statement, there exists only one part Sµ ∈ P ∗ that
contains vertices of cluster µ, we have that the different parts of P ′ and of P ′′ containing
vertices of µ are joined together by the vertices of µ in B. Therefore, the cluster µ is
connected in C�. Finally, consider a cluster µ such that no vertex of µ belongs to B. Then,
all the vertices of cluster µ only belong to either Cρ′ or Cρ′′ , by Condition c of Definition 9.
Suppose that µ only belongs to Cρ′ , the case when µ only belongs to Cρ′′ is analogous. Since
C�ρ′ realizes P ′, by Condition c of Definition 9, all the vertices of µ in G′ρ are connected
by paths of intra-cluster edges. Thus, cluster µ is connected in C�, since it is connected in
C�ρ′ . This concludes the proof. J

We now present our main algorithmic tool.

Algorithm 1. Let (D, γ) be a bond-carving decomposition of δ(G) of width ω. Let ν be a
non-root bag of D, we denote by Rν the set of all the admissible partitions of Bν that are
realizable by Cν . We process the bags of D bottom-up and compute the following relevant
information, for each non-root bag ν of D: 1. the set Rν , and 2. for each admissible partition
P ∈ Rν and for each part Si ∈ P , the number count(Si) of vertices of cluster µ belonging to
Gν that are dominated by Si, where µ is the cluster Si belongs to.

If ν is a leaf bag of D, then Gν = Iν consists of the vertices and edges of a single face
of G. Further, by Observation 1, graph Gν is a cycle of length at most ω. In this case,
Rν simply coincides with the set of all the admissible partitions of Bν . Therefore, we
can construct Rν by enumerating all the possible at most CAT(ω) ≤ 22ω non-crossing
partitions of Bν and by testing whether each such partition is good in O(ω) time. Further,
for each P ∈ Rν , we can compute all counters count(Si) for every Si ∈ P , in total O(ω)
time, by visiting cycle Iν .
If ν is a non-leaf non-root bag of D, we have already computed the relevant information
for the two children ν′ and ν′′ of ν. In the following way, we either detect that C does
not satisfy Condition iii of Theorem 3 or construct the relevant information for ν:

(1) Initialize Rν = ∅;
(2) For every pair of realizable admissible partitions P ′ ∈ Rν′ and P ′′ ∈ Rν′′ , perform the

following operations:
(2a) Compute P ∗ = P ′] P ′′ and compute the counters count(Si), for each Si ∈ P ∗,

from the counters of the parts in P ′ ∪ P ′′ whose union is Si.
(2b) If there exists some Si ∈ P ∗ such that Si ∩Bν = ∅ and count(Si) is smaller than

the number of vertices in the cluster Si belongs to, then reject the instance.
(2c) Compute P = P ′ P ′′ and add P to Rν .

I Remark 13. Algorithm 1 rejects the instance at step (2b), if Iµ forms a cluster separator.
This property is independent of the specific generalized union P ∗ considered at this step and
implies that no P ∗ (and, thus, no P at step (2c)) can satisfy Condition c of Definition 9.

As the total number of pairs of partitions at step (2) is at most (CAT(ω))2 and as P ∗
and P can be computed in O(ω) time, by Lemmas 7 and 8, we get the following.

I Lemma 14. For each non-root bag ν of D, Algorithm 1 computes the relevant information
for ν in O(24ω+logω) time, given the relevant information for its children.

Proof. Let ν′ and ν′′ be the two children of ν in D. We will first show the correctness of
the algorithm and then argue about the running time.

IPEC 2019

9:12 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

Let R∗ν be the set of all the admissible partitions of Bν that are realizable by Cν and let Rν
be the set of all the admissible partitions of Bν computed by Algorithm 1. We show Rν = R∗ν .

We first prove R∗ν ⊆ Rν . Let Pν be a realizable admissible partition in R∗ν . Since Pν is
realizable by Cν , there exists a super c-graph C∗ν (G∗ν , T ∗ν) of Cν that realizes Pν containing no
saturating edges in the interior of f∞ν and such that G∗ν is planar. Let C∗ν′(G∗ν′ , T ∗ν′) (resp.
C∗ν′′(G∗ν′′ , T ∗ν′′)) be the super c-graph of Cν′(Gν′ , Tν′) (resp. of Cν′′(Gν′′ , Tν′′)) obtained by
adding to Cν′ (resp. to Cν′′) all the saturating edges in G∗ν laying in the interior of the faces
of Gν′ (resp. of Gν′′) that are also faces of Gν . Clearly, c-graph C∗ν′(G∗ν′ , T ∗ν′) (resp. c-graph
C∗ν′′(G∗ν′′ , T ∗ν′′)) contains no saturating edges in the interior of f∞ν′ (resp. in the interior of
f∞ν′′), since such a face does not belong to Gν . Let P ′ and P ′′ be the admissible partitions of
Bν′ and of Bν′′ realized by C∗ν′(G∗ν′ , T ∗ν′) and by C∗ν′′(G∗ν′′ , T ∗ν′′), respectively. By hypothesis,
we have P ′ ∈ Rν′ and P ′′ ∈ Rν′′ . We show that when step (2) of Algorithm 1 considers
partitions P ′ and P ′′, it successfully adds Pν to the set Rν . It is clear by the construction of
P ′ and of P ′′ that Pν = P ′ P ′′. Therefore, we only need to show that when the algorithm
considers the pair (P ′, P ′′), it does not reject the instance at step (2b), and thus Pν is added
to Rν at step (2c). Let P ∗ = P ′] P ′′, which is constructed at step (2a) of the algorithm.
Suppose, for a contradiction, that C is rejected at step (2b). Then, there exists a part Si
of P ∗ such that Si ∩ Bν = ∅ and count(Si) is smaller than the number of vertices in the
cluster µ the part Si belongs to. Therefore, the cluster µ contains vertices that belong to
G \Gν , which implies that Pν cannot satisfy Condition c of Definition 9, a contradiction.
This concludes the proof of this direction.

We now prove Rν ⊆ R∗ν . Let P be a partition in Rν obtained from the partitions P ′ ∈ Rν′
and P ′′ ∈ Rν′′ (selected at step (2) of the algorithm). We show that P is realizable by Cν .

By the definition of realizable partition, there exists a super c-graph C∗ν′(G∗ν′ , T ∗ν′) (resp.
C∗ν′′(G∗ν′′ , T ∗ν′′)) of Cν′(Gν′ , Tν′) (resp. of Cν′′(Gν′′ , Tν′′)) that realizes P ′ (resp. P ′′) containing
no saturating edges in the interior of f∞ν′ (resp. of f∞ν′′) and such that G∗ν′ (resp. G∗ν′′) is
planar. Let C∗ν (G∗ν , T ∗ν) be the super c-graph of Cν(Gν , Tν) constructed by adding to Cν the
saturating edges in C∗ν′ and C∗ν′′ . We show that the c-graph C∗ν (G∗ν , T ∗ν) realizes P , contains
no saturating edges in the interior of f∞ν , and G∗ν is planar.

First, we have that G∗ν is planar, since G∗ν′ and G∗ν′′ are planar and do not contain
saturating edges in the interior of f∞ν′ and of f∞ν′′ , respectively. By the previous arguments,
we also have that f∞ν contains no saturating edges.

We show that Condition a of Definition 9 holds. Recall that P = P ′ P ′′. Let Si be
a part of P that also belongs to P ′ or to P ′′. Then, since C∗ν′ and C∗ν′′ realize P ′ and P ′′,
respectively, the vertices of Si are connected by paths of intra-cluster edges in C∗ν as they are
connected by paths of intra-cluster edges in either C∗ν′ or C∗ν′′ , by Condition a of Definition 9.
Otherwise, let Si be a part of P that does not belong to either P ′ or P ′′. Then, by the
definition of bubble merge, the part Si is obtained by projecting onto Bν the generalized
union P ∗ = P ′] P ′′. Thus, Si is a subset of a part S∗i of P ∗. Also, the vertices in each
of the parts of P ′ and of P ′′ contributing to the creation of S∗i are connected by paths of
intra-cluster edges in C∗ν′ and C∗ν′′ , respectively, by Condition a of Definition 9. Therefore,
we have that the connectivity of such sets implies the connectivity of the elements of Si by
paths of intra-cluster edges that connect at their shared vertices in Bν′ ∩ Bν′′ . We show
that Condition b of Definition 9 holds. Suppose, for a contradiction, that there exists some
cluster µ whose vertices appear in Bν such that there is at least a vertex of µ in Gν that is
not connected by a path of intra-cluster edges to some vertex of µ in Bν . Then, consider the
part Si ∈ P ∗ that dominates this vertex, which exists since P ′ and P ′′ are realizable by Cν′
and by Cν′′ , respectively. We have that Si ∩Bν = ∅ and that count(Si) is smaller than the

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:13

number of vertices of µ. Thus, step (2b) would reject the instance, and thus P would not
be added to Rν , a contradiction. Finally, we show that Condition c of Definition 9 holds.
Suppose, for a contradiction, that there exists some cluster µ whose vertices only belong
to V (Gν) \Bν and that there exist two vertices u and v of µ in Gν that are not connected
by a path of intra-cluster edges in G∗ν . Then, consider the part Si ∈ P ∗ that dominates u.
Observe that, Si does not dominate v. Similarly to the proof of Condition b, we have that
Si ∩Bν = ∅ and that count(Si) is smaller than the number of vertices of µ. Thus, step (2b)
would reject the instance, and thus P would not be added to Rν , a contradiction.

We conclude by analyzing the running time. Step (2a) can be performed in linear time
in the sum of the sizes of Bν′ and Bν′′ , since the generalized union P ∗ can be computed
in O(|Bν′ | + |Bν′′ |) time, by Lemma 7, and since the size of P ∗, and thus the number of
counters to be updated, is in O(|Bν′ |+ |Bν′′ |). Step (2b) can also be done in linear time by
the previous argument. Step (2c) can be performed in O(|Bν′ |+ |Bν′′ |) time, by Lemma 8.
Further, the number of pairs of realizable partitions considered at step (2) is bounded by
|NC(Bν′)| · |NC(Bν′′)|, which is bounded by 22(|Bν′ |+|Bν′′ |). Finally, |Bν′ | ≤ ω and |Bν′′ | ≤ ω.
Thus, Algorithm 1 runs in O(24ωω) = O(24ω+logω) time. J

By Lemma 14 and since D contains O(n) bags, we have the following.

I Lemma 15. Sets Rρ′ and Rρ′′ can be computed in O(24ω+logωn) time.

We obtain the next theorem by combining Lemma 15 and Theorem 12, where the
additive O(n2) factor in the running time derives from the time needed to convert a carving
decomposition of δ(G) into a bond-carving decomposition of the same width [54].

I Theorem 16. C-Planarity Testing can be solved in O(24ω+logωn+ n2) time for any
2-connected n-vertex flat c-graph C(G, T), if a carving decomposition of δ(G) of width ω is
provided.

We are finally ready to prove our main result.

Proof of Theorem 1. Let (D, γ) be a carving decomposition of δ(G) of optimal width
ω = cw(δ(G)). First, we apply Lemma 6 to C to obtain, in O(n) time, a 2-connected flat
c-graph C′(G′, T ′) equivalent to C and a corresponding carving decomposition (D′, γ′) of
width ω′ ≤ max(ω, 4). Then, we apply Theorem 16 to test whether C′ (and thus C) is
c-planar. The running time follows from the running time of Theorem 16, from the fact that
ω′ = O(ω), |V (G′)| ∈ O(n), and that a carving decomposition of δ(G) of optimal width can
be computed in O(n3) time [39, 55]. This concludes the proof of the theorem.

We remark that in the recent reduction presented by Patrignani and Cortese to convert
any non-flat c-graph C(G, T) into an equivalent independent flat c-graph C′(G′, T ′), the
carving-width of δ(G′) is within an O(h) multiplicative factor from the carving-width of δ(G),
where h is the height of T . This is due to the fact that, by [24, Lemma 10], G′ is a subdivision
of G (which implies that tw(G′) = tw(G)) and that each inter-cluster edge of G is replaced by
a path of length at most 4h−4 in G′ (which implies that `(G′) = `(G)(4h−4)). Therefore, by
[24] and by the results presented in this section, we immediately derive an FPT algorithm for
the non-flat case parameterized by h and the dual carving-width of G. In the full version [47],
we show how to drop the dependency on h, by suitably adapting the relevant concepts defined
for the flat case so that Algorithm 1 can also be applied to the non-flat case.

IPEC 2019

9:14 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

4 Graph-Width Parameters Related to the Dual Carving-Width

In this section, we discuss implications of our algorithm for instances of bounded embedded-
width and of bounded dual cut-width.

Embedded-width. A tree decomposition of an embedded graph G respects the embedding
of G if, for every face f of G, at least one bag contains all the vertices of f [14]. The embedded-
width emw(G) of G is the minimum width of any of its tree decompositions that respect
the embedding of G. For consistency with other graph-width parameters, in the original
definition of this width measure [14] the vertices of the outer face are not required to be in
some bag. Here, we adopt the variant presented in [26], where the tree decomposition must
also include a bag containing the outer face. In the full version [47], we prove the following.

I Lemma 17. Let G be an embedded graph. Then, cw(δ(G)) ≤ emw2(G) + 2emw(G).

Cut-width. Let π be a linear order of the vertex set of a graph G = (V,E). By splitting π
into two linear orders π1 and π2 such that π is the concatenation of π1 and π2, we define a cut
of π. The width of this cut is the number of edges between a vertex in π1 and a vertex in π2.
The width of π is the maximum width over all its possible cuts. Finally, the cut-width of
G is the minimum width over all the possible linear orders of V . The dual cut-width is the
cut-width of the dual of G.

The following relationship between cut-width and carving-width has been proved in [52].

I Theorem 18 (Theorem 4.3, [52]). The carving-width of G is at most twice its cut-width.

By Lemma 17 and Theorem 18, we have that single-parameter FPT algorithms also exist
with respect to the embedded-width and to the dual cut-width of the underlying graph.

5 Conclusions

In this paper, we studied the C-Planarity Testing problem for c-graphs with a prescribed
combinatorial embedding. We showed that the problem is polynomial-time solvable when the
dual carving-width of the underlying graph of the input c-graph is bounded. In particular,
this addresses a question we posed in [26], regarding the existence of notable graph-width
parameters such that the C-Planarity Testing problem is fixed-parameter tractable with
respect to a single one of them. Namely, we answer this question in the affirmative when
the parameters are the embedded-width of the underlying graph, and the carving-width and
cut-width of its planar dual.

References
1 Isolde Adler, Binh-Minh Bui-Xuan, Yuri Rabinovich, Gabriel Renault, Jan Arne Telle, and

Martin Vatshelle. On the Boolean-Width of a Graph: Structure and Applications. In
Dimitrios M. Thilikos, editor, WG 2010, volume 6410 of LNCS, pages 159–170, 2010. doi:
10.1007/978-3-642-16926-7_16.

2 Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing Weak Embeddings of
Graphs. In Artur Czumaj, editor, SODA ’18, pages 274–292. SIAM, 2018. doi:10.1137/1.
9781611975031.20.

3 Patrizio Angelini and Giordano Da Lozzo. SEFE = C-Planarity? Comput. J., 59(12):1831–1838,
2016. doi:10.1093/comjnl/bxw035.

https://doi.org/10.1007/978-3-642-16926-7_16
https://doi.org/10.1007/978-3-642-16926-7_16
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.1093/comjnl/bxw035

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:15

4 Patrizio Angelini and Giordano Da Lozzo. Clustered Planarity with Pipes. Algorithmica,
81(6):2484–2526, 2019. doi:10.1007/s00453-018-00541-w.

5 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
Planarity Testing for Embedded Planar Graphs. Algorithmica, 77(4):1022–1059, 2017. doi:
10.1007/s00453-016-0128-9.

6 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Vincenzo Roselli. Relaxing the constraints of clustered planarity. Comput. Geom.,
48(2):42–75, 2015. doi:10.1016/j.comgeo.2014.08.001.

7 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Intersection-Link Representations of Graphs. J. Graph Algorithms
Appl., 21(4):731–755, 2017. doi:10.7155/jgaa.00437.

8 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo
Roselli. The importance of being proper: (In clustered-level planarity and T-level planarity).
Theor. Comput. Sci., 571:1–9, 2015. doi:10.1016/j.tcs.2014.12.019.

9 Patrizio Angelini, Fabrizio Frati, and Michael Kaufmann. Straight-Line Rectangular Drawings
of Clustered Graphs. Discrete & Computational Geometry, 45(1):88–140, 2011. doi:10.1007/
s00454-010-9302-z.

10 Jan Christoph Athenstädt and Sabine Cornelsen. Planarity of Overlapping Clusterings
Including Unions of Two Partitions. J. Graph Algorithms Appl., 21(6):1057–1089, 2017.
doi:10.7155/jgaa.00450.

11 T. Biedl. Drawing Planar Partitions III: Two Constrained Embedding Problems. Tech. Report
RRR 13-98, Rutcor Research Report, 1998.

12 Therese C. Biedl and Martin Vatshelle. The Point-Set Embeddability Problem for Plane graphs.
Int. J. Comput. Geometry Appl., 23(4-5):357–396, 2013. doi:10.1142/S0218195913600091.

13 Thomas Bläsius and Ignaz Rutter. A new perspective on clustered planarity as a combinatorial
embedding problem. Theor. Comput. Sci., 609:306–315, 2016. doi:10.1016/j.tcs.2015.10.
011.

14 Glencora Borradaile, Jeff Erickson, Hung Le, and Robbie Weber. Embedded-width: A variant
of treewidth for plane graphs, 2017. arXiv:1703.07532.

15 Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca. Treewidth of planar graphs: connections
with duality. ENDM, 10:34–38, 2001. doi:10.1016/S1571-0653(04)00353-1.

16 Franz-Josef Brandenburg, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,
Giuseppe Liotta, and Petra Mutzel. Selected Open Problems in Graph Drawing. In Giuseppe
Liotta, editor, GD ’03, volume 2912 of LNCS, pages 515–539. Springer, 2003. doi:10.1007/
978-3-540-24595-7_55.

17 Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten Klein. Advances on
Testing C-Planarity of Embedded Flat Clustered Graphs. In Christian A. Duncan and
Antonios Symvonis, editors, GD ’14, volume 8871 of LNCS, pages 416–427. Springer, 2014.
doi:10.1007/978-3-662-45803-7_35.

18 Markus Chimani and Karsten Klein. Shrinking the Search Space for Clustered Planarity. In
Walter Didimo and Maurizio Patrignani, editors, GD ’12, volume 7704 of LNCS, pages 90–101.
Springer, 2012. doi:10.1007/978-3-642-36763-2_9.

19 Derek G. Corneil and Udi Rotics. On the Relationship Between Clique-Width and Treewidth.
SIAM J. Comput., 34(4):825–847, 2005. doi:10.1137/S0097539701385351.

20 Sabine Cornelsen and Dorothea Wagner. Completely connected clustered graphs. J. Discrete
Algorithms, 4(2):313–323, 2006. doi:10.1016/j.jda.2005.06.002.

21 Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity. In Joseph S. B.
Mitchell and Günter Rote, editors, SoCG ’05, pages 32–34. ACM, 2005. doi:10.1145/
1064092.1064093.

22 Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and
Maurizio Pizzonia. C-Planarity of C-Connected Clustered Graphs. J. Graph Algorithms Appl.,

IPEC 2019

https://doi.org/10.1007/s00453-018-00541-w
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1016/j.comgeo.2014.08.001
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1007/s00454-010-9302-z
https://doi.org/10.1007/s00454-010-9302-z
https://doi.org/10.7155/jgaa.00450
https://doi.org/10.1142/S0218195913600091
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/j.tcs.2015.10.011
http://arxiv.org/abs/1703.07532
https://doi.org/10.1016/S1571-0653(04)00353-1
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1016/j.jda.2005.06.002
https://doi.org/10.1145/1064092.1064093
https://doi.org/10.1145/1064092.1064093

9:16 C-Planarity Testing of Embedded C-Graphs with Bounded Dual Carving-Width

12(2):225–262, 2008. URL: http://jgaa.info/accepted/2008/Cortese+2008.12.2.pdf, doi:
10.7155/jgaa.00165.

23 Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia.
On embedding a cycle in a plane graph. Discrete Mathematics, 309(7):1856–1869, 2009.
doi:10.1016/j.disc.2007.12.090.

24 Pier Francesco Cortese and Maurizio Patrignani. Clustered Planarity = Flat Clustered
Planarity. In Therese C. Biedl and Andreas Kerren, editors, GD 2018, volume 11282 of LNCS,
pages 23–38. Springer, 2018. doi:10.1007/978-3-030-04414-5_2.

25 Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio Patrignani. Computing
NodeTrix Representations of Clustered Graphs. J. Graph Algorithms Appl., 22(2):139–176,
2018. doi:10.7155/jgaa.00461.

26 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta.
Subexponential-Time and FPT Algorithms for Embedded Flat Clustered Planarity. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, WG 2018, volume 11159 of
LNCS, pages 111–124. Springer, 2018. doi:10.1007/978-3-030-00256-5_10.

27 Elias Dahlhaus. A Linear Time Algorithm to Recognize Clustered Graphs and Its Parallelization.
In Claudio L. Lucchesi and Arnaldo V. Moura, editors, LATIN ’98, volume 1380 of LNCS,
pages 239–248. Springer, 1998. doi:10.1007/BFb0054325.

28 Giuseppe Di Battista, Walter Didimo, and A. Marcandalli. Planarization of Clustered Graphs.
In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, GD ’01, volume 2265 of
LNCS, pages 60–74. Springer, 2001. doi:10.1007/3-540-45848-4_5.

29 Giuseppe Di Battista and Fabrizio Frati. Efficient C-Planarity Testing for Embedded
Flat Clustered Graphs with Small Faces. J. Graph Algorithms Appl., 13(3):349–378,
2009. URL: http://jgaa.info/accepted/2009/DiBattistaFrati2009.13.3.pdf, doi:10.
7155/jgaa.00191.

30 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Overlapping Cluster Planarity.
J. Graph Algorithms Appl., 12(3):267–291, 2008. URL: http://jgaa.info/accepted/2008/
DidimoGiordanoLiotta2008.12.3.pdf, doi:10.7155/jgaa.00167.

31 Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for Clustered Graphs. In
Paul G. Spirakis, editor, ESA’95, volume 979 of LNCS, pages 213–226. Springer, 1995.
doi:10.1007/3-540-60313-1_145.

32 Michael Forster and Christian Bachmaier. Clustered Level Planarity. In Peter van Emde Boas,
Jaroslav Pokorný, Mária Bieliková, and Julius Stuller, editors, SOFSEM ’04, volume 2932 of
LNCS, pages 218–228. Springer, 2004. doi:10.1007/978-3-540-24618-3_18.

33 Radoslav Fulek and Jan Kyncl. Hanani-Tutte for Approximating Maps of Graphs. In Bettina
Speckmann and Csaba D. Tóth, editors, SoCG ’18, volume 99 of LIPIcs, pages 39:1–39:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.SoCG.2018.
39.

34 Radoslav Fulek, Jan Kyncl, Igor Malinovic, and Dömötör Pálvölgyi. Efficient c-planarity
testing algebraically. CoRR, abs/1305.4519, 2013. arXiv:1305.4519.

35 Radoslav Fulek, Jan Kyncl, Igor Malinovic, and Dömötör Pálvölgyi. Clustered Planarity
Testing Revisited. Electr. J. Comb., 22(4):P4.24, 2015. URL: http://www.combinatorics.
org/ojs/index.php/eljc/article/view/v22i4p24.

36 Radoslav Fulek and Csaba D. Tóth. Atomic Embeddability, Clustered Planarity, and Thicken-
ability. CoRR, abs/1907.13086, 2019. arXiv:1907.13086.

37 Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Graduate texts in
mathematics. Springer, 2001. doi:10.1007/978-1-4613-0163-9.

38 Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-Planarity of Extrovert
Clustered Graphs. In Patrick Healy and Nikola S. Nikolov, editors, GD ’05, volume 3843 of
LNCS, pages 211–222. Springer, 2005. doi:10.1007/11618058_20.

39 Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
Time. ACM Trans. Algorithms, 4(3):30:1–30:13, 2008. doi:10.1145/1367064.1367070.

http://jgaa.info/accepted/2008/Cortese+2008.12.2.pdf
https://doi.org/10.7155/jgaa.00165
https://doi.org/10.7155/jgaa.00165
https://doi.org/10.1016/j.disc.2007.12.090
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/3-540-45848-4_5
http://jgaa.info/accepted/2009/DiBattistaFrati2009.13.3.pdf
https://doi.org/10.7155/jgaa.00191
https://doi.org/10.7155/jgaa.00191
http://jgaa.info/accepted/2008/DidimoGiordanoLiotta2008.12.3.pdf
http://jgaa.info/accepted/2008/DidimoGiordanoLiotta2008.12.3.pdf
https://doi.org/10.7155/jgaa.00167
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-540-24618-3_18
https://doi.org/10.4230/LIPIcs.SoCG.2018.39
https://doi.org/10.4230/LIPIcs.SoCG.2018.39
http://arxiv.org/abs/1305.4519
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24
http://arxiv.org/abs/1907.13086
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1007/11618058_20
https://doi.org/10.1145/1367064.1367070

G. Da Lozzo, D. Eppstein, M.T. Goodrich, and S. Gupta 9:17

40 Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Merijam Percan, and
René Weiskircher. Advances in C-Planarity Testing of Clustered Graphs. In Stephen G.
Kobourov and Michael T. Goodrich, editors, GD ’02, volume 2528 of LNCS, pages 220–235.
Springer, 2002. doi:10.1007/3-540-36151-0_21.

41 Carsten Gutwenger, Petra Mutzel, and Marcus Schaefer. Practical Experience with Hanani-
Tutte for Testing c-Planarity. In Catherine C. McGeoch and Ulrich Meyer, editors, ALE-
NEX ’14, pages 86–97. SIAM, 2014. doi:10.1137/1.9781611973198.9.

42 Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of hierarchical planar graphs and
clustered planar graphs. J. Discrete Algorithms, 8(3):282–295, 2010. doi:10.1016/j.jda.
2009.05.003.

43 Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing two-page book embed-
ding of partitioned graphs. Theoretical Computer Science, 2016. doi:10.1016/j.tcs.2015.
12.039.

44 John E. Hopcroft and Robert Endre Tarjan. Efficient Algorithms for Graph Manipulation [H]
(Algorithm 447). Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.

45 Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered Planarity:
Embedded Clustered Graphs with Two-Component Clusters. In Ioannis G. Tollis and Maurizio
Patrignani, editors, GD ’08, volume 5417 of LNCS, pages 121–132. Springer, 2008. doi:
10.1007/978-3-642-00219-9_13.

46 Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý, and Tomás Vyskocil.
Clustered Planarity: Small Clusters in Cycles and Eulerian Graphs. J. Graph Algorithms Appl.,
13(3):379–422, 2009. URL: http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf,
doi:10.7155/jgaa.00192.

47 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-Planarity
Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width, 2019. arXiv:
1910.02057.

48 Hiroshi Nagamochi and Katsutoshi Kuroya. Drawing c-planar biconnected clustered graphs.
Discrete Applied Mathematics, 155(9):1155–1174, 2007. doi:10.1016/j.dam.2006.04.044.

49 Sang-il Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory,
57(3):239–244, 2008. doi:10.1002/jgt.20280.

50 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

51 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming for graphs on
surfaces. ACM Trans. Algorithms, 10(2):8:1–8:26, 2014. doi:10.1145/2556952.

52 Róbert Sasák. Comparing 17 graph parameters. Master’s thesis, Department of Informatics,
University of Bergen, Bergen, Norway, 2010.

53 Marcus Schaefer. Toward a Theory of Planarity: Hanani-Tutte and Planarity Variants. J.
Graph Algorithms Appl., 17(4):367–440, 2013. doi:10.7155/jgaa.00298.

54 Paul D. Seymour and Robin Thomas. Call Routing and the Ratcatcher. Combinatorica,
14(2):217–241, 1994. doi:10.1007/BF01215352.

55 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Constructive Linear Time
Algorithms for Small Cutwidth and Carving-Width. In D. T. Lee and Shang-Hua Teng,
editors, ISAAC ’00, volume 1969 of LNCS, pages 192–203. Springer, 2000. doi:10.1007/
3-540-40996-3_17.

56 Juan José Besa Vial, Giordano Da Lozzo, and Michael T. Goodrich. Computing k-Modal
Embeddings of Planar Digraphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, ESA 2019, volume 144 of LIPIcs, pages 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.17.

IPEC 2019

https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1137/1.9781611973198.9
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1016/j.tcs.2015.12.039
https://doi.org/10.1016/j.tcs.2015.12.039
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/978-3-642-00219-9_13
https://doi.org/10.1007/978-3-642-00219-9_13
http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf
https://doi.org/10.7155/jgaa.00192
http://arxiv.org/abs/1910.02057
http://arxiv.org/abs/1910.02057
https://doi.org/10.1016/j.dam.2006.04.044
https://doi.org/10.1002/jgt.20280
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1145/2556952
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1007/BF01215352
https://doi.org/10.1007/3-540-40996-3_17
https://doi.org/10.1007/3-540-40996-3_17
https://doi.org/10.4230/LIPIcs.ESA.2019.17

The Complexity of Packing Edge-Disjoint Paths
Jan Dreier
Dept. of Computer Science, RWTH Aachen University, Germany
dreier@cs.rwth-aachen.de

Janosch Fuchs
Dept. of Computer Science, RWTH Aachen University, Germany
fuchs@algo.rwth-aachen.de

Tim A. Hartmann
Dept. of Computer Science, RWTH Aachen University, Germany
hartmann@algo.rwth-aachen.de

Philipp Kuinke
Dept. of Computer Science, RWTH Aachen University, Germany
kuinke@cs.rwth-aachen.de

Peter Rossmanith
Dept. of Computer Science, RWTH Aachen University, Germany
rossmani@cs.rwth-aachen.de

Bjoern Tauer
Dept. of Computer Science, RWTH Aachen University, Germany
tauer@algo.rwth-aachen.de

Hung-Lung Wang
Computer Science and Information Engineering, National Taiwan Normal University, Taiwan
hlwang@gapps.ntnu.edu.tw

Abstract
We introduce and study the complexity of Path Packing. Given a graph G and a list of paths, the
task is to embed the paths edge-disjoint in G. This generalizes the well known Hamiltonian-Path
problem.

Since Hamiltonian Path is efficiently solvable for graphs of small treewidth, we study how
this result translates to the much more general Path Packing. On the positive side, we give an
FPT-algorithm on trees for the number of paths as parameter. Further, we give an XP-algorithm
with the combined parameters maximal degree, number of connected components and number of
nodes of degree at least three. Surprisingly the latter is an almost tight result by runtime and
parameterization. We show an ETH lower bound almost matching our runtime. Moreover, if two of
the three values are constant and one is unbounded the problem becomes NP-hard.

Further, we study restrictions to the given list of paths. On the positive side, we present an
FPT-algorithm parameterized by the sum of the lengths of the paths. Packing paths of length two is
polynomial time solvable, while packing paths of length three is NP-hard. Finally, even the spacial
case Exact Path Packing where the paths have to cover every edge in G exactly once is already
NP-hard for two paths on 4-regular graphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases parameterized complexity, embedding, packing, covering, Hamiltonian path,
unary binpacking, path-perfect graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.10

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00440.

© Jan Dreier, Janosch Fuchs, Tim A. Hartmann, Philipp Kuinke, Peter Rossmanith, Bjoern Tauer,
and Hung-Lung Wang;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2662-5303
mailto:dreier@cs.rwth-aachen.de
https://orcid.org/0000-0003-3993-222X
mailto:fuchs@algo.rwth-aachen.de
https://orcid.org/0000-0002-1028-6351
mailto:hartmann@algo.rwth-aachen.de
https://orcid.org/0000-0001-9716-6346
mailto:kuinke@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
mailto:rossmani@cs.rwth-aachen.de
mailto:tauer@algo.rwth-aachen.de
mailto:hlwang@gapps.ntnu.edu.tw
https://doi.org/10.4230/LIPIcs.IPEC.2019.10
https://arxiv.org/abs/1910.00440
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 The Complexity of Packing Edge-Disjoint Paths

1 Introduction

Packing, covering and partitioning are well researched fields in graph theory. In general, the
task is to cover a given graph G = (V, E) with or partition it into smaller substructures, or
to pack given structures into the graph. Besides that these terms are often used, they are
not well defined throughout the literature. Thus, it is important to define problems in this
field carefully and in detail.

For example, the path partition problem is a well studied problem [2, 4, 6, 12, 18, 21, 26]
which is also known as path cover problem. The task is to cover all vertices of a graph with
vertex-disjoint paths. This is equivalent to partitioning the graph into vertex-disjoint paths.
The smallest number of paths to achieve this is called the path partition number or path
cover number. Observe that G has a Hamiltonian path iff the path-partition number is one,
thus the problem is NP-complete.

An NP-complete variant of this problem is the k-path partition problem [22, 27, 19].
Here the task is to partition a graph G into paths, such that none of the path lengths exceeds
k. Observe that the 1-path-partition problem corresponds to finding a maximum matching.

Another related problem is the recognition of path-perfect graphs [5, 11, 13, 23, 29],
which we denote in this work as Path-Perfect Packing. Instead of partitioning the graph
into vertex-disjoint paths, the complete edge set must be partitioned into edge-disjoint paths
of ascending length, starting by one. This can also be understood as packing k paths of
length 1 to k into G without using an edge twice or leaving one edge uncovered.

This approach of packing smaller subgraphs into a given graph is also well researched
[28]. For example, packing edge-disjoint trees into a clique is considered [24]. Since packing
edge-disjoint and vertex-disjoint triangles is NP-hard for planar graphs, the parameterized
complexity is studied [7].

We generalize the path-perfect graph problem and ask for a given graph G and a list
of k paths P = {p1, . . . , pk} if they can be embedded into G without using the same edge
twice. Note that we define the length of a path equals its number of edges. This problem
arises naturally when restricting the path partition problem to edge-disjoint paths instead of
vertex-disjoint paths. We denote this problem as Path Packing. Let us formalize what we
mean by embedding. An embedding of a graph H into a graph G is an injective mapping
f : V (H)→ V (G) such that for every original edge (u, v) ∈ E(H) also (f(u), f(v)) ∈ E(G).
An embedding of a list of graphs H into G is an embedding of each graph H into G. Note,
that we do not ask to embed the graphs pairwise vertex-disjointly. The embeddings we
consider in this work are pairwise edge-disjoint embeddings of paths.

Path Packing
Input: A list of paths P = {p1, . . . , pk} of length l1, . . . , lk. A graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G?

The Exact Path Packing problem additionally requires that every edge is covered
exactly once.

Exact Path Packing
Input: A list of paths P = {p1, . . . , pk} of length l1, . . . , lk. A graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G such that each edge e ∈ E is
covered exactly once?

Path Packing is clearly more general than Exact Path Packing, since one can reduce
from one to the other by additionally requiring the sum of the path lengths to be equal to the
number of edges in the graph. Most of our hardness results are for Exact Path Packing,
and therefore translate to Path Packing. Our upper bounds are always regarding more the
general Path Packing.

J. Dreier et al. 10:3

Our Results

The Hamiltonian path problem is a special case of Path Packing. An even though the
Hamiltonian path problem is tractable on graphs of bounded treewidth, Path Packing
is already NP-complete on subdivided stars. Therefore, we focus on the parameterized
complexity to classify this problem on a finer scale. We will analyze the impact of various
parameters.

In Section 3, we analyze the parameterized complexity of our packing problems with
respect to the number of paths (denoted by k). On the one hand, we give an FPT algorithm
for Path Packing that solves the problem in time 2knO(1) on subcubic (i.e. degree at most
three) forests (Theorem 3). On the other hand, we show that Exact Path Packing on
graphs with treewidth two is W [1]-hard and cannot be solved in time f(k)no(k/ log k) under
ETH (Theorem 11).

In Section 4 we introduce path dependent restrictions. We show that Exact Path
Packing is NP-complete even for two paths on 4-regular graphs (Theorem 14). length i is
easy for i = 2 and NP-complete for i = 3 (Theorem 15). If we however parameterize by the
summed length of all paths Path Packing is in FPT (Theorem 16).

After parameterizing by the number of paths and their lengths, we further analyze graph
dependent parameters in Section 5. We introduce the bcd-number of a graph, which is the
maximum of the number of components, the maximal degree, and the number of vertices with
degree larger than two. We show that Path Packing can be solved in time k!k(n + k2)O(k2),
where k is the bcd-number (Theorem 20). This is complemented by showing that the problem
cannot be solved in f(k)no(k2/ log k) under ETH (Theorem 21). We further show that all
three bcd parameters are necessary: If two values are constant and one is unbounded the
problem becomes NP-hard (Theorem 1, Corollary 18, Theorem 19).

Note that, one can embed paths p1, . . . , pk as edge-disjoint subgraphs into a graph G if
and only if one can embed these paths as vertex-disjoint induced subgraphs into the linegraph
of G. Therefore, our results yield new insights for the problem of covering a graph with a
list of vertex-disjoint induced paths [17]. Especially, our hardness results for certain graph
classes transfer to hardness results on the linegraphs of these graph classes. Due to space
limitations, we omit some proofs, and refer to the full version.

2 Preliminaries

All graphs are simple (i.e. without multi-edges or self-loops). The length of a path equals its
number of edges.

3 Path Packing on Forests

Our packing problem is a generalization of the Hamiltonian path problem and therefore
NP-complete. The Hamiltonian path problem is solvable in polynomial time if the treewidth
of the input graph is bounded [9]. We show that (unlike Hamiltonian path) Exact Path
Packing is NP-complete on trees. This is done by reducing it to the following NP-complete
partitioning problem.

Multi-Way Number Partition
Input: A list of weights w1, . . . wn ∈ N encoded in unary, and an integer k ∈ N.

Question: Is there a partition of w1, . . . wn into k multi-sets S1, . . . , Sk such that∑
wi∈Sj

wi = 1
k

∑n

i=1 wi, for every 1 ≤ j ≤ k?

IPEC 2019

10:4 The Complexity of Packing Edge-Disjoint Paths

Figure 1 Packing paths of lengths 10, 8, 7, 5, 5, 3 into a subcubic tree. Although the packing
looks very loose there is no solution if we replace 3 by 4.

We reduce from Multi-Way Number Partition to prove that Exact Path Packing
is NP-hard on very simple trees.

I Theorem 1. Exact Path Packing is NP-complete on subdivided stars.

The previous reduction required a large number of paths. Therefore, in the following, we
analyze the Path Packing problem parameterized by the number of paths.

Fast subset convolution

We develop dynamic programming algorithms on subcubic trees whose running time will
be O∗(2k), where k is the number of paths that we want to pack. First we develop a naive
and not too complicated algorithm with running time O∗(3k), whose longer running time is
due to some very simple operation that occurs when we combine two dynamic programming
tables. Björklund, Husfeldt, Kaski, and Koivisto introduced a technique called fast subset
convolution that was used to speed up the computation of Steiner trees with small integer
weights [3] and also to speed up some algorithms that do dynamic programming on tree
decompositions [25]. We can use this technique to our advantage to significantly speed up
the path packing algorithm on trees. The result that we will be using is:

I Proposition 2. [3] Let N be a set of n natural numbers and f, g : N→ N two functions.
Then we can compute (f ∗ g)(S) for all S ⊆ N in time O(2nn2) if f and g can be evaluated
in constant time and where (f ∗ g)(S) =

∑
T⊂S f(T)g(S − T). Here f(S) =

∑
i∈S f(i).

I Theorem 3. We can solve Path Packing for k paths in time O∗(2k) on subcubic forests.

Proof. Let us assume that the graph is a subcubic tree T , but the proof easily generalizes to
subcubic forests. Let l1, . . . , lk be length of the paths that we want to pack into T . We can
further assume that T is a rooted tree by designating an arbitrary vertex as its root. If v is
a vertex of T then let T (v) be the subtree rooted at v.

We solve the path packing problem by dynamic programming computing a table for each
vertex in a bottom-up order. Such a table is a mapping L : V × 2[k] → [n] ∪ {−∞}. The size
of this table is O(2kn). We interpret the content of the table as follows:

L(v, P) = r with r ≥ 0 means that it is possible to pack all paths with indices in P (in
short all P -paths) into the subtree T (v) and additionally a path of length r that ends in v.

J. Dreier et al. 10:5

Figure 2 Left side: Packing paths of lengths l1 = 4, l2 = 4, l3 = 2 into T (v). L(u, {1, 2, 3}) = −∞,
but L(u, {1, 2, 3} − {1}) = l1 − 1, so L(v, {1, 2, 3}) = 0.
Right side: Now l1 = 4, l2 = 3, l3 = 2. L(u, {1, 2, 3}) = 1, so L(v, {1, 2, 3}) = 1 + 1 = 2. An
additional path of length 2 can be packed into T (v), because an additional path of length 1 can be
packed into T (u).

The special case L(v, P) = 0 means that we can pack all P -paths into T (v), but however
we pack them there is no space left to pack another path that ends in v.

If it is not possible to pack all P -paths into T (v) at all then let L(v, P) = −∞.
It is quite clear that having computed all tables enables us to find out whether (T, P) is

a yes-instance of the path packing-problem. Simply check whether L(r, {1, . . . , k}) 6= −∞.
To compute the tables for all v we distinguish three cases how to compose trees into

bigger trees: 1 v is a leaf, 2 v has one child, 3 v has at least two children.

Leaf. If v is a leaf then L(v, ∅) = 0 and L(v, P) = −∞ if P 6= ∅ because we cannot pack
any path into an empty tree (that has no edges).

One child. If v has one child u then it is also quite easy to compute L(v, P): If L(u, P) = r

with r ≥ 0, then clearly L(v, P) = r + 1. The right hand side of Figure 2 shows an example.
The more complicated possibility is L(u, P) = −∞, which means that it is completely
impossible to pack all P -paths into T (u). It might become possible to pack all P -paths
into T (v) by using the additional edge uv. If this is possible, then one path, say the ith
one with length li, uses the edge uv. Then all paths in P − {i} are packed into T (u) and
one additional path of length li − 1 that ends in u. We can check this by verifying that
L(u, P − {i}) ≥ li − 1 for some 1 ≤ i ≤ k (actually, L(u, P − {i}) ≥ li is impossible, because
then all P -paths could be packed into T (u) and L(u, P) 6= −∞). If we find such an i, then
all P -paths can be packed into T (v), but only by using the edge uv. This means that no
other path can be packed into T (v) that ends in v and therefore L(v, P) = 0. See the left
hand side of Figure 2 for an example.

L(v, P) =

L(u, P) + 1 if L(u, P) ≥ 0

0 if L(u, P) = −∞ and L(u, P − {i}) = li − 1 for some i ∈ P

−∞ otherwise

Two children. Finally, we assume that v has exactly two children u1, u2. In that case we
can construct for each of them a new tree by attaching new roots v1, v2 to T (u1) and T (u2)
and computing the L-tables for both of them. To compute the table of v it is sufficient to
compute a table for a tree that we get by glueing two trees together by identifying their
roots. We just have to glue v1 to v2.

IPEC 2019

10:6 The Complexity of Packing Edge-Disjoint Paths

Figure 3 Left side: Packing paths of lengths l1 = 5, l2 = 4, l3 = 3 into T (v). L(v1, {2}) = 1 and
L(v2, {1, 3}) = 0 imply L(v, {1, 2, 3}) ≥ 1.
Right side: Now l1 = 6, l2 = 4, l3 = 3. L(v1, {2}) + L(v2, {3}) = 1 + 5 = l1 implies L(v, {1, 2, 3}) ≥ 0.
This time we partition {1, 2, 3} into three parts. One goes to the left, one to the right, and one path
uses both subtrees.

So we can assume that we have two trees with roots v1 and v2 and a tree with root v that
we get by identifying v1 and v2 and renaming it to v. This is often called a join operation.
We have the tables for v1 and v2 and want to compute the table for v.

Clearly, L(v, P) = r with r > 0 iff some of the P -paths can be packed into T (v1) and the
others into T (v2) and the additional path with length r that ends in v can be packed into
T (v1) or T (v2). The additional path of length r that ends in v prevents any P -path from
being packed partially into T (v1) and T (v2). That is the case iff there is a bipartition of P

into P1 and P2 such that L(v1, P1), L(v2, P2) ≥ 0 and max{L(v1, P1), L(v2, P2)} = r. There
are 2|P | many subsets of P . To check all bipartitions for all these subsets P ⊆ [k] means
looking at

∑k
i=0
(

k
i

)
2i = 3k many cases. Using fast subset convolution lets us speed up the

computation to 2kkO(1) steps: Let

fi(S) =
{

1 if L(vi, S) ≥ 0
0 otherwise

gi(S) =
{

1 if L(vi, S) ≥ r

0 otherwise.

Then L(v, P) ≥ r iff (f1 ∗ g2)(P) + (g1 ∗ f2)(P) ≥ 1.
The situation is different if L(v, P) = 0. In that case both edges u1v and u2v have to

be used when packing all P -paths into T (v) because otherwise at least a path of length one
that ends in v could additionally be packed into T (v).

In such a packing one path, say the ith one with length li, uses u1v and u2v. That is
possible iff there is a bipartition of P −{i} into P1 and P2 such that L(v1, P1)+L(v2, P2) ≥ li.
Again, by using fast subset convolution we can check this in 2kkO(1) steps. J

The above proof does not work any more if we glue together two trees whose roots
have degree higher than one. For general trees the dynamic programming is much more
complicated and we will need more complicated tables.

Let T (v) be a rooted tree with root v and no restrictions on the degree of vertices (and
thus on the number of children). Let us again fix length l1, . . . , lk ∈ N of paths that we are
going to pack into a tree. We are going to identify a set of paths by a set P ⊆ [k]. We speak
of P -paths as the paths with length li for every i ∈ P .

I Definition 4. Let us fix l1, . . . , lk ∈ N, P ⊆ [k], and T be a rooted tree. T (v) is the
subtree of T with root v.
1. Let M, M ′ ⊆ N be two multisets. We say that M ′ < M if we can construct M ′ from M

by adding numbers and increasing numbers that are already in M ′.
Let M ′ �M iff M ′ 6= M and M ′ < M .
Example: {3, 3, 5, 5, 7} < {2, 3, 4, 6}, but {3, 3, 5, 5, 7} 6< {2, 3, 4, 8}.

J. Dreier et al. 10:7

Figure 4 In this tree there are nodes with more than two children and paths can “cross.” We
pack paths with lengths 13, 9, 9, 9, 7, 6. There is no solution if we replace 6 by 7.

2. Let S be a set of multisets of natural numbers. Then

K(S) = {M ∈ S | there is no M ′ ∈ S with M ′ �M }.

3. Then we define L(v, P) as a set of multisets of natural numbers as follows:
Let M ⊆ N be a multiset of natural numbers. Then M ∈ L(v, P) iff it is possible to
pack all P -paths into T (v) such that we can pack additionally all non-empty paths into
T (v) that start at v and have lengths given in M and if there is no M ′ ∈ L(v, P) with
M ′ < M .
Particularly, L(v, P) = ∅ iff it is impossible to pack all P -paths into T (v) and L(v, P) =
{∅} iff it is possible to pack all P -paths into T (v), but there is no possibility to additionally
pack a non-empty path that starts at v.

4. If M ⊆ N then maxq(M) is the multiset that consists of the q biggest elements in M or
of all of them if M contains less than q numbers, e.g., max3({5, 5, 4, 4, 3, 2, 1}) = {5, 5, 4}.

In the following let l1, . . . , lk be fixed.

I Lemma 5. Let T (v) be a rooted tree with root v such that v has one child u.
1. Assume that L(u, P) = {M1, . . . , Mm} with m ≥ 1. Define Lmax(u, P) = max(M1 ∪ · · · ∪

Mm) (where max ∅ = 0).
Then L(v, P) = {{Lmax(u, P) + 1}}.

2. Assume that L(u, P) = ∅ and there is an i ∈ {1, . . . , k} with Lmax(u, P − {i}) = li − 1.
Then L(v, P) = {∅}.

3. Otherwise L(v, P) = ∅.

Proof. We have to consider exactly two cases. The first case is that it is possible to pack all
P -paths into T (u). If this is the case, then an additional path of length r + 1 can be packed
into T (v) starting at v iff an additional path of length r can be packed into T (u) starting
at u. The latter is the case iff Lmax(u, P) = r.

The second case is that it is impossible to pack all P -paths into T (u) alone. It might still
be possible to pack them into T (v), but only if the edge uv is used. This means that there is
only space for an additional path of length zero that starts at v.

In fact, exactly one path, say the ith one, uses the edge uv. This is possible iff we can
pack all (P − {i})-paths into T (u) and being able to additionally pack a path of length at
least li − 1 into T (u) starting at u. Actually, this path cannot be longer than li − 1 because
then we would be able to pack all P -paths, which is a contradiction. J

IPEC 2019

10:8 The Complexity of Packing Edge-Disjoint Paths

I Lemma 6. Let T (v1) and T (v2) be two rooted trees with no common vertices, such that v2
has exactly one child. Let T (v) be the tree that we get by identifying v1 with v2 and renaming
it to v. Then L(v, P) = K(L1 ∪ L2) where

L1 =
⋃

P1⊆P
P2=P−P1

⋃
M1∈L(v1,P1)
M2∈L(v2,P2)

{
M1 ∪M2

}
L2 =

⋃
P1⊆P

P2=P−P1

⋃
i∈P

⋃
M1∈L(v1,P1−{i})
M2∈L(v2,P2−{i})

⋃
r1∈M1
r2∈M2

r1+r2≥li

{
(M1 − {r1}) ∪ (M2 − {r2})

}

Proof. “L(v, P) ⊇ K(L1 ∪ L2)”: If M ∈ L1 ∪ L2 then M ∈ L1 or M ∈ L2. Let us first
consider the case M ∈ L1. By the definition of L1 there are P1 ⊆ P , P2 = P − P1,
M1 ∈ L(v1, P1), and M2 ∈ L(v2, P2) such that M = M1∪M2. By induction we know that P1
can be packed into T (v1) as well as additional paths of lengths M1 starting at v1. The same
holds for P2, v2, and M2. Using this packing we actually packed P into T (v) and additional
paths of lengths M1 ∪M2 = M starting at v. By definition then M ∈ L(v, P).

The other possibility is M ∈ L2, which is a bit more complicated. If M ∈ L2, then
M = (M1−{r1})∪ (M2−{r2}), where r1 ∈M1, r2 ∈M2, r1 + r2 ≥ li, M1 ∈ L(v1, P1−{i}),
M2 ∈ L(v2, P2 − {i}), P1 ⊆ P , P2 = P − P1, and i ∈ P .

We have to show that it is possible to pack P into T (v) and additionally paths with
lengths from M starting at v. By induction we know that we can pack all (P1 − {i})-paths
into T (v1) and all (P2 −{i})-paths into T (v2). Simultaneously, we can pack additional paths
with lengths from M1 into T (v1) starting at v1 and paths with lengths from M2 into T (v2)
starting at v2. Hence, we can pack paths with lengths M = (M1 − {r1}) ∪ (M2 − {r2}) into
T (v) leaving space for a path of length r1 in T (v1) and a path of length r2 in T (v2). We can
combine these two paths into one path of length r1 + r2 ≥ li and pack one additional path of
length li into T (v). Altogether we packed P1, P2, {i} and therefore all P -paths into T (v).

“L(v, P) ⊆ K(L1 ∪ L2)”: Let M ∈ L(v, P). Then P can be packed into T (v). There are
two possibilities:

1. No path corresponding to i ∈ P lies partially in T (v1) and partially in T (v2). Then
we can split P = P1 ∪ P2 such that P1-paths are packed into T (v1) and P2-paths into T (v2).
The additional path with lengths from M are also packed into T (v1) and T (v2). Let us say
M = M1 ∪M2, where M1 is in T (v1) and M2 in T (v2). Then it is easy to see that M ∈ L1.

2. There is an i ∈ P such that all (P − {i})-paths are packed into T (v1) and T (v2), but
exactly one path with length li is packed into T (v) using edges from both T (v1) and T (v2).
Note that there can be at most one such path because v2 has only one child in T (v2). Then
all additional paths with lengths in M that start at v have to be packed into T (v1) alone
because the edge in T (v2) is not available any more. Let r1 be the length of the part of the
bridging path of length li that lies in T (v1) and r2 the length of the part in T (v2). Clearly,
r1 + r2 = li. With all these facts we can again easily verify that M ∈ L2. J

The following lemma shows that the size of the tables is bounded by a function in k and
the maximal degree. The estimate is quite pessimistic, but we are not trying to optimize
the runtime of the dynamic programming algorithm at the moment and are content with
proving fixed parameter tractability.

I Lemma 7. Let T (v) be a rooted tree and assume that vertex v has d children. Then

|L(v, P)| ≤ d2kd.

J. Dreier et al. 10:9

Proof. If v has only one child, then |L(v, P)| = 1 and the statement is true. Assume next
that T (v) has d children. Each subtree can receive at most 2k different sets of packed paths
yielding at most 2k different length of the longest path that can be additionally packed.
Therefore a set M ∈ L(v, P) can have size at most d and contain up to d numbers each chosen
from a set of size at most 2k. In total that are at most d2kd possibilities for a set M . J

I Theorem 8. Let T be a rooted tree and P a multiset of paths. In polynomial time a rooted
tree T ′ can be computed that has the following properties:
(1) P can be packed into T iff it can be packed into T ′,
(2) each node in T ′ has at most 3|P | children, and (3) T ′ is a subtree of T .

Proof. Let l1(u) be the length of the longest path in T (u) that starts in u and l2(u) be
the length of the longest path in T (u). Assume that P can be packed into T and v be an
arbitrary vertex in T . Let us fix an edge-disjoint packing of P .

Let v be an arbitrary node in T and v1, . . . , vm the children of v. Let us further assume
that v1, . . . , v3|P | contain the |P | children with biggest l1(vi) and 2|P | children with biggest
l2(vi). Ties can be arbitrarily ordered.

If m ≤ 3|P | we do nothing. Otherwise assume that P is packed into T and some path
p ∈ P uses T (vi) with i > 3|P |. There are two possibilities:

(i) p contains vi. Then p is possibly packed partially inside T (vi) and partially outside.
Let p′ be the part of p inside T (vi). Clearly, p′ starts at vi. By the pigeonhole principle
there must be some T (vk) that has not been used in the packing of P , l1(vk) ≥ l1(vi), and
k ≤ 3|P |. Then we can repack p such that it uses T (vk) instead of T (vi).

(ii) p does not contain vi and is therefore completely packed into T (vi). Again by the
pigeonhole principle we can find an appropriate T (vk) with k ≤ 3|P | and l2(vk) ≥ l2(vi). We
can repack p from T (vi) into T (vk).

Repeated repacking in these two ways leads to a packing that uses only the subtrees
T (v1), . . . , T (v3|P |). We can therefore remove all other subtrees without changing a yes-
instance into a no-instance. Applying this pruning to all vertices in T leads to a new tree T ′

that has all properties stated in the theorem. It is also clear that T ′ can be computed in
polynomial time as it is easy to find longest paths in trees. J

Combining the above results (with the base case for a leaf v: L(v, P) = {{0}} if P

contains only empty paths and L(v, P) = ∅ otherwise) we can prove the following:

I Theorem 9. Path Packing into forests parameterized by the number of paths is in FPT.

Proof. Given a tree T compute a rooted tree T ′ where each node has at most 3k children
and every P (with |P | = k) can be packed into T iff it can be packed into T ′ (Theorem 8).
Then use dynamic programming to find out whether the paths can be packed into T ′. By
Lemma 7 and 6 this only takes time f(k)|T |O(1) for some function f . J

Lower bound

While Path Packing on graphs with treewidth one is in FPT when parameterized by the
number of paths, we now show that the problem becomes hard on graphs with treewidth
two. As an intermediate step, we reduce from Unary Bin Packing [15] to show hardness
of Multi-Way Number Partition. This then leads to hardness results for Exact Path
Packing. Remember that for Multi-Way Number Partition the numbers are unary
encoded.

IPEC 2019

10:10 The Complexity of Packing Edge-Disjoint Paths

I Lemma 10. Multi-Way Number Partition parameterized by the number of sets k

is W [1]-hard. Moreover, unless ETH fails there is no algorithm that solves the problem in
f(k)No(k/ log k) time for some function f where N is the input size.

I Theorem 11. The Exact Path Packing problem parameterized by the number of paths
on graphs with treewidth two is W [1]-hard. Moreover, unless ETH fails there is no algorithm
that solves the problem in f(k) no(k/ log k) time for some function f where k is the number of
paths and n the number of vertices in the input graph.

4 Path Packing Parametrized by Path Dependent Attributes

In the previous section we solved Path Packing on forests. Since Path Packing is NP-hard
even for graphs with treewidth 2, we try to find some path dependent parameters to cope
with its difficulty. At first, we will restrict the number of paths, then we will bound the
length of each path and finally we consider the sum of the lengths of all paths.

Number of Paths

We denote the number of paths of an instance by k. We start with k = 1. Consider an
instance where the length of the single path corresponds to the number of vertices in a
complete graph G.

I Observation 12. Since Hamiltonian Path is NP-hard, also path packing for k = 1 is
NP-hard

On the other side, for k = 1 the special case of Exact Path Packing becomes easy.

I Observation 13. Exact Path Packing is solvable in polynomial time for k = 1 by
deciding if the input graph is a path of length l1.

Unfortunately, for fixed k ≥ 2 restricting the number of paths is not enough to gain a
polynomial time algorithm. This holds for Exact Path Packing and therefore also for
Path Packing.

I Theorem 14. Let k ≥ 2. Exact Path Packing with k paths is NP-complete on 4-regular
graphs.

Paths with bounded length

Observe that all hardness proofs that we have seen so far somehow involve paths of a certain
length. Thus, we analyze the complexity of Path Packing based on the length of the paths
we want to pack.

Length-i Exact Edge Packing
Input: A set of paths P = {p1, . . . , pk} of length l1 = . . . = lk = i, a graph G = (V, E).

Question: Is there an edge-disjoint embedding of P into G such that each edge e ∈ E is
covered exactly once?

Length-2 Exact Edge Packing is solvable in polynomial time by reformulating it as
a matching problem on the line graph. We show that Length-3 Exact Edge Packing is
already NP-hard via a reduction from the 3-dimensional matching problem, one of Karp’s
original 21 NP-complete problems. The 3-dimensional matching problem takes as input sets
X, Y, Z of size n and T ⊆ X × Y × Z. The question is whether there exists a set M ⊆ T of
size n such that for all (x1, y1, z1), (x2, y2, z2) ∈M , x1 6= x2, y1 6= y2, z1 6= z2. The reduction
is similar to the P2-packing reduction in [20].

J. Dreier et al. 10:11

I Theorem 15. Length-3 Exact Edge Packing is NP-hard.

Bounded sum of path lengths

The two previous results show that Path Packing is NP-hard even if the number of paths
or the maximal length of the paths is bounded by a constant. At last, we the problem is in
FPT when parameterized by the number of paths and their length. We give a randomized
FPT algorithm using color coding [8, 1] that can easily be derandomized using perfect hash
families [8].

I Theorem 16. Path Packing parameterized by the summed length of all paths is in FPT.

For packing vertex-disjoint paths similar results are known: The P2-packing problem
takes a graph G and an integer k and asks if there is a set of k vertex-disjoint P2 in G. This
problem is NP-complete [16, 20]. Fernau and Raible given FPT algorithm parameterized by
the number of paths [10].

5 Path Packing Parametrized by Graph Dependent Attributes

Earlier (Theorem 1), we showed that Exact Path Packing is NP-hard even on a single
subdivided star. So even for trees where there is only one node of degree higher than two
the problem becomes NP-hard. In this section we study further restrictions to forests and
finally identify a polynomial time solvable case. We do so by considering restrictions to
the following three parameters: number of vertices of degree at least three, the maximal
degree, and the number of connected components. For an easier notation we define this
combined parameter as the “bcd” of graph G. It is a bound on branching nodes, connected
components and maximum degree.

I Definition 17. Let G be a graph. Then bcd(G) is the minimal k ∈ N such that G has at
most k nodes of degree larger than two, at most k connected components, and a maximal
degree of at most k.

The above mentioned reduction showing NP-hardness for a subdivided star constructs a
graph with unbounded degree. What is the complexity if we limit the vertex degree to a
constant, but in turn allow multiple components? Unfortunately even for a forest of paths,
thus a maximum degree of two, the problem remains NP-hard. NP-hardness follows by
an easy adaption of the proof of Theorem 1. The constructed subdivided star has an even
number 2m of legs of length `. Instead one could also use m disjoint paths of length 2`. Thus
we can follow NP-hardness of Exact Path Packing even for forests of paths.

I Corollary 18. Exact Path Packing is NP-hard even on forests of paths.

Thus, if we drop either the degree or the number of components as parameters, the problem
becomes NP-complete, even if the remaining parameters are bounded by a constant. Thus the
remaining question is: What is the complexity if we limit the vertex degree to a constant, limit
the number of connected components to a constant, but in turn allow arbitrary many vertices
of degree at least three? We show hardness in this scenario even for the more restricted
problem of packing paths of ascending length, denoted by Path-Perfect Packing.

Path-Perfect Packing
Input: A graph G = (V, E) where |E(G)| = 1 + 2 + · · ·+ n for some n ∈ N.

Question: Does there exist an edge-disjoint embedding of paths p1, . . . , pn with lengths
`1 = 1, . . . , `n = n into G such that each edge e ∈ E is covered exactly once?

IPEC 2019

10:12 The Complexity of Packing Edge-Disjoint Paths

We show NP-hardness of this restricted problem on subdivisions of a caterpillar with
vertex degree at most eight. We reduce from the following unary version of 3-partition. This
version is slightly non-standard since we require that no numbers occur twice and relax the
condition to put exactly three elements into each partition.

Unary 3-Partition
Input: A set of integers A = {a1, . . . , a3s} ⊆ N in unary encoding.

Question: Is there a partition of A into s sets of equal sum?

Hulett et al. show that the above problem is NP-hard if we require each of the s partitions
to contain exactly three elements [14]. We get NP-hardness without the extra condition by
increasing each number in A by adding a big number (for example

∑3s
i= ai).

We sketch how to reduce from Path-Perfect Packing on caterpillars with vertex degree
at most eight to Unary 3-Partition. Note that, each partition of a Unary 3-Partition
instance must have size m = 1

s

∑3s
i=1 ai. Consider the paths {pi | 1 ≤ i ≤ m, i ∈ A} whose

length occurs in A. We translate a partition of A into an exact packing of these paths.
However, we have to account for the paths {pi | 1 ≤ i ≤ m, i /∈ A} whose length occurs not
as an integer in set A. For each of these we introduce a path where it fits in precisely, and
by an exchange argument we may assume it is packed there. Now, roughly what remains to
do is to construct a large caterpillar of low maximum degree where all these paths can be
packed in.

I Theorem 19. Path-Perfect Packing is NP-hard even for subdivided caterpillars with
vertex degree at most eight.

The maximum degree eight in the theorem above was chosen to simplify the proof. One
can show NP-hardness even for smaller maximum vertex degree.

XP-algorithm for parameter bcd(G)

We saw that if two bcd-parameters are constant and one bcd-parameter is unbounded then
Exact Path Packing is NP-complete. We further study the complexity when parameterized
by all three parameters. We give an XP-algorithm for Path Packing parametrized by
bcd(G). This means for every fixed k, there is a polynomial time algorithm for graphs with
bcd(G) ≤ k.

I Theorem 20. There is a k!k(n + k2)O(k2)-time algorithm for Path Packing with k =
bcd(G).

Proof. We give an algorithm, that given a graph G and a list P of paths p1, . . . , pk, decides
if there is an edge-disjoint embedding of p1, . . . , pk into G. To do so, we guess a partition of
G into eventually a set of vertex-disjoint paths X . Then it suffices to find an embedding of P

into such a set of vertex-disjoint paths X . The remaining problem then is just a generalized
bin-packing problem with O(k2) bins, but encoded in unary; thus solvable in time nO(k2).
Most technicality lies in guessing the vertex-disjoint paths X . First we guess a partition
into a bounded number of walks W. Later we need to partition W further resulting in
vertex-disjoint paths X .

Let V1 be the set of vertices of degree two. Let V ?
2 consist of a vertex of every connected

component that is a circle. Let V2 be the set of vertices of degree two that are not in V ?
2 , and

let V≥3 be the vertices of degree at least three including V ?
2 . This seemingly odd definition

allows us to work with walks starting and ending in V1 ∪ V≥3 that cover every edge, in

J. Dreier et al. 10:13

particular those in a circle. Because there are at most k connected components, |V ?
2 | ≤ k.

Then since there are at most k vertices of degree at least three, we have |V≥3| ≤ 2k.
Assuming a yes-instance, there is an edge-disjoint embedding of paths P into graph G.

At every vertex v ∈ V≥3 every path of P contains at most two of the incident edges of v.
Thus at every vertex v ∈ V≥3 there is a maximal matching Mv of v’s incident edges such
that no path in P contains two unmatched edges.

We consider “direct” walks between “neighboring” vertices V1 ∪ V≥3: Let Q be the set
of walks between u, v ∈ V1 ∪ V≥3 with inner vertices from V2, and further where no vertex
among V2 is repeated (though possibly u = v). We join these walks Q to a set of walks W
according to matchings Mv for v ∈ V (G). Whenever two walks w1, w2 end at some edges
uv respectively u′v, and uv is matched to u′v by Mv, then join walks w1 and w2 at edges
uv, vu′. This procedure terminates and yields a well defined set of walks W.

Note that every edge is covered by a walk Q and thus also every edge is covered by a
walk W. We further claim that every path p of P is a subsequence of edges of some walk
w ∈ W. Assuming otherwise, there are walks w1, w2 ending at edges uv and u′v. Then v is
not a leaf, and thus v ∈ V≥3. Then matching Mv matches edges uv and u′v, and thus w1, w2
had to be joined to a single walk.

Thus for a yes-instance there is at least one set of matchings Mv, v ∈ V≥3 which determines
walks W such that P may be embedded into W . An algorithm may try the possible partition
of edges into such a set of walks W as follows. Guess for each vertex v ∈ V≥3 a maximal
matching Mv of its incident edges. There are at most k high degree vertices V≥3 \ V ?

2 , each
with at most k incident edges. (Also we have a matching for V ?

2 , though since there are only
two incident edges, there is only one possible matching.) Thus the algorithm tries at most
k!k possibilities. Then combine the paths Q to walks W according to the matchings, which
is possible in polynomial time.

We claim that W has at most k2 walks. Every walk in W has two endpoints, and the
endpoints are among V1 ∪ V≥3. Clearly, at every leaf v ∈ V1 at most one path ends. Further,
there are at most k2 leaves in the input graph of ≤ k vertices of degree ≥ 3 and maximal
degree of k. If at a vertex v ∈ V≥3 two walks w1, w2 end, there are edges uv of w1 and u′v

of w2 unmatched by Mv, in contradiction to a maximal matching Mv. Thus also at every
vertex v ∈ V≥3 at most one walk ends. Then there are at most k2 + 2k endpoints of walks,
and thus there are at most b(k2 + 2k)/2c ≤ k2 walks in W.

Consider a walk w ∈ W where a vertex v occurs more than once. Recall that the
embedding of a path p ∈ P of a yes-instance is injective, thus no vertex v ∈ V (G) occurs
twice in the same path. A naive approach would be to now solve the bin-packing problem
of “weights” P and “bins” W. Then, however, a solution to the bin-packing would may
potentially translate to an embedding of a path where a vertex occurs twice. Therefore let
us guess a partition into paths without multiple occurrence of vertices, as follows.

Between two occurrences of v on walk w there must be vertex u (possibly an occurrence
of v itself) which is the endpoint of two different paths. Therefore there is a partition of
the walks W into vertex-disjoint paths X , where still paths P have an embedding into X .
We may describe this partition by “cuts” of W specified by a vertex v in the union of walks
from W. Note, that in the union of walks W, each high degree vertex v ∈ V≥3 \ V ?

2 occurs
deg(v) ≤ k times. Thus there are to up to n + k2 potential cut vertices.

We claim that at most k2 cuts C are necessary to cut the walks W into vertex-disjoint
paths X . Assume, that there is a cut vertex v ∈ C which is on an inner vertex of a path
between V1 and V≥3. Then joining its incident vertex-disjoint paths results in a vertex-disjoint
path. Thus we may assume that the cuts C are at vertices from walks of Q between vertices

IPEC 2019

10:14 The Complexity of Packing Edge-Disjoint Paths

among V≥3. Let Q≥3 be the set of paths Q with endpoints in V≥3. Consider the multi-graph
with loops on vertex set V≥3 with an edge between u, v ∈ V≥3 for every path Q≥3 with
endpoints u and v. Since |Q≥3| ≤ k and the degree of every vertex v ∈ Q≥3 is at most k,
this multi-graph has at most k2 edges. Then also there are at most k2 paths Q≥3. Consider
a set of more than k2 vertices C ⊆ V that cut Q into vertex-disjoint paths X . Then there is
a path of Q≥3 containing distinct cut vertices u, v ∈ C. Let x ∈ X be the path between u

and v. Joining them with the incident path at, say u, results in a vertex-disjoint path. Thus
cutting W at vertices C \ {u} still results in a set of vertex-disjoint paths. Therefore at most
k2 cuts of walks W are necessary to yield vertex-disjoint paths X .

Let us utilize this observation in the design of our algorithm. Guess up to k2 cuts C from
the n + k2 potential cuts. Cut the previously guessed walks W into subpaths according to
cuts C. We may force exactly k2 cut vertices by allowing C to be a multi-set containing also
leaves, whose cut has no effect. This way, we try another (n+k2)k2 possibilities of cut vertices
C. Then cut the previously guessed ≤ k2 walks X at the k2 cut positions. If the resulting set
of walks is not vertex-disjoint, discard this guess. Otherwise we obtain ≤ 2k2 vertex disjoint
paths X , since every cut increases the number of paths by one. This resembles a bin-packing
problem in unary encoding with k2 bins of different sizes and total capacity n. We may
apply standard dynamic programming technique to test in nO(k2) time whether the sizes of
the paths P fit into the bins in the sizes of X . If the paths P fit in some guessed paths X ,
then corresponding partition of the edges in G yields paths P . Thus there is an edge-disjoint
embedding of P into G. For the other direction, if the edges of G can be partitioned into paths
P , then as argued before there is a set X according to this partition and the there is a solution
to the dynamic problem. The runtime is k!k(n + k2)O(k2) · poly(n) = k!knO(k2) · poly(n)
where poly is a polynomial. J

Can we achieve a better runtime than k!knk2+O(1), in particular decrease the dependence
on k in the exponent of n? Not significantly unless ETH fails, as the following reduction
from Multi-Way Number Partition shows.

I Theorem 21. There is no algorithm that decides Path Packing in time no(k2/log k) with
k = bcd(G) unless ETH fails.

6 Conclusion

We showed that edge-disjoint packing of paths into a graph is a very hard problem. Even if
the input graph is a subdivided star or a linear forest the problem is hard. If we parameterize
the problem by the number of paths, the problem remains hard even for input graphs with
treewidth two. However, it becomes fixed parameter tractable on forests. A natural open
problem is to not embed paths, but more general graphs such as trees or cycles.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, July 1995.

doi:10.1145/210332.210337.
2 S. Rao Arikati and C. Pandu Rangan. Linear Algorithm for Optimal Path Cover Problem on

Interval Graphs. Inf. Process. Lett., 35(3):149–153, July 1990. doi:10.1016/0020-0190(90)
90064-5.

3 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: Fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67–74, 2007.
doi:10.1145/1250790.1250801.

https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/0020-0190(90)90064-5
https://doi.org/10.1016/0020-0190(90)90064-5
https://doi.org/10.1145/1250790.1250801

J. Dreier et al. 10:15

4 Maurizio A. Bonuccelli and Daniel P. Bovet. Minimum Node Disjoint Path Covering for Circular-
Arc Graphs. Inf. Process. Lett., 8(4):159–161, 1979. doi:10.1016/0020-0190(79)90011-5.

5 Weiting Cao and Peter Hamburger. Solution of fink & straight conjecture on path-perfect
complete bipartite graphs. Journal of Graph Theory, 55(2):91–111, 2007.

6 Gerard J. Chang and David Kuo. The L(2, 1)-Labeling Problem on Graphs. SIAM Journal
on Discrete Mathematics, 9(2):309–316, 1996. URL: https://epubs.siam.org/doi/ref/10.
1137/S0895480193245339.

7 Gerard Cornuéjols, David Hartvigsen, and W Pulleyblank. Packing subgraphs in a graph.
Operations Research Letters, 1(4):139–143, 1982.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

9 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

10 Henning Fernau and Daniel Raible. A parameterized perspective on packing paths of length
two. In International Conference on Combinatorial Optimization and Applications, pages
54–63. Springer, 2008.

11 John Frederick Fink and H. Joseph Straight. A note on path-perfect graphs. Discrete
Mathematics, 33(1):95–98, 1981.

12 S. E. Goodman, Stephen T. Hedetniemi, and Peter J. Slater. Advances on the Hamiltonian
Completion Problem. J. ACM, 22(3):352–360, 1975. doi:10.1145/321892.321897.

13 Peter Hamburger and Weiting Cao. Edge Disjoint Paths of Increasing Order in Complete
Bipartite Graphs. Electronic Notes in Discrete Mathematics, 22:61–67, 2005.

14 Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph realizations of degree
sequences: Maximization is easy, minimization is hard. Operations Research Letters, 36(5):594–
596, 2008. doi:10.1016/j.orl.2008.05.004.

15 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.

16 David G. Kirkpatrick and Pavol Hell. On the Completeness of a Generalized Matching Problem.
In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, pages 240–245, 1978. doi:10.1145/800133.804353.

17 Hoàng-Oanh Le, Van Bang Le, and Haiko Müller. Splitting a graph into disjoint induced paths
or cycles. Discrete Applied Mathematics, 131(1):199–212, 2003. doi:10.1016/S0166-218X(02)
00425-0.

18 Jayadev Misra and Robert Endre Tarjan. Optimal Chain Partitions of Trees. Inf. Process.
Lett., 4(1):24–26, 1975. doi:10.1016/0020-0190(75)90057-5.

19 Jerome Monnot and Sophie Toulouse. The path partition problem and related problems in
bipartite graphs. Operations Research Letters, 35(5):677–684, 2007. doi:10.1016/j.orl.2006.
12.004.

20 Sarah Pantel. Graph packing problems. Master’s thesis, Simon Fraser University, Canada,
1999.

21 R. Srikant, Ravi Sundaram, Karan Sher Singh, and C. Pandu Rangan. Optimal Path Cover
Problem on Block Graphs and Bipartite Permutation Graphs. Theor. Comput. Sci., 115(2):351–
357, 1993. doi:10.1016/0304-3975(93)90123-B.

22 George Steiner. On the k-path partition of graphs. Theoretical Computer Science, 290(3):2147–
2155, 2003. doi:10.1016/S0304-3975(02)00577-7.

23 H. Joseph Straight. Partitions of the vertex set or edge set of a graph. dissertation, Western
Michigan University, 1977.

24 H. Joseph Straight. Packing trees of different size into the complete graph. Annals of the New
York Academy of Sciences, 328(1):190–192, 1979.

25 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic Programming
on Tree Decompositions Using Generalised Fast Subset Convolution. In Proc. of the 17th

IPEC 2019

https://doi.org/10.1016/0020-0190(79)90011-5
https://epubs.siam.org/doi/ref/10.1137/S0895480193245339
https://epubs.siam.org/doi/ref/10.1137/S0895480193245339
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/321892.321897
https://doi.org/10.1016/j.orl.2008.05.004
https://doi.org/10.1145/800133.804353
https://doi.org/10.1016/S0166-218X(02)00425-0
https://doi.org/10.1016/S0166-218X(02)00425-0
https://doi.org/10.1016/0020-0190(75)90057-5
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/0304-3975(93)90123-B
https://doi.org/10.1016/S0304-3975(02)00577-7

10:16 The Complexity of Packing Edge-Disjoint Paths

Annual European Symposium on Algorithms (ESA), number 5757 in Lecture Notes in Computer
Science, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

26 Jing-Ho Yan and Gerard J. Chang. The path-partition problem in block graphs. Information
Processing Letters, 52(6):317–322, 1994. doi:10.1016/0020-0190(94)00158-8.

27 Jing-Ho Yan, Gerard J. Chang, Sandra Mitchell Hedetniemi, and Stephen T. Hedetniemi.
k-Path Partitions in Trees. Discrete Applied Mathematics, 78(1-3):227–233, 1997. doi:
10.1016/S0166-218X(97)00012-7.

28 H. P. Yap. Packing of graphs-a survey. In Annals of Discrete Mathematics, volume 38, pages
395–404. Elsevier, 1988.

29 Shmuel Zaks and Chung Laung Liu. Decomposition of graphs into trees. Technical Report
860, Department of Computer Science, University of Illinois at Urbana-Champaign, 1977.

https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1016/0020-0190(94)00158-8
https://doi.org/10.1016/S0166-218X(97)00012-7
https://doi.org/10.1016/S0166-218X(97)00012-7

Hardness of FO Model-Checking on Random
Graphs
Jan Dreier
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de/~dreier
dreier@cs.rwth-aachen.de

Peter Rossmanith
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de
rossmani@cs.rwth-aachen.de

Abstract
It is known that FO model-checking is fixed-parameter tractable on Erdős–Rényi graphs G(n, p(n))
if the edge-probability p(n) is sufficiently small [23] (p(n) = O(nε/n) for every ε > 0). A natural
question to ask is whether this result can be extended to bigger probabilities. We show that for
Erdős–Rényi graphs with vertex colors the above stated upper bound by Grohe is the best possible.

More specifically, we show that there is no FO model-checking algorithm with average FPT run
time on vertex-colored Erdős–Rényi graphs G(n, nδ/n) (0 < δ < 1) unless AW[∗] ⊆ FPT/poly. This
might be the first result where parameterized average-case intractability of a natural problem with a
natural probability distribution is linked to worst-case complexity assumptions.

We further provide hardness results for FO model-checking on other random graph models,
including G(n, 1/2) and Chung-Lu graphs, where our intractability results tightly match known
tractability results [13]. We also provide lower bounds on the size of shallow clique minors in certain
Erdős–Rényi and Chung–Lu graphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases random graphs, FO model-checking

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.11

1 Introduction

Model-checking is an important and well-investigated problem with various applications in
database theory, verification, artificial intelligence and many other areas. The input to the
model-checking problem is a structure and a logical sentence and the question is whether the
structure is a model for the sentence, i.e., if the sentence is true in the model. We consider
the FO model-checking problem on colored graphs. This means that sentences can express
(besides the common rules of first-order logic) adjacency between vertices and whether a
vertex has a given color. This problem is known to be PSPACE-complete [39]. Let G be
a graph class and L be a logic. We are interested in model-checking as a parameterized
problem, which is defined as follows:

p-MC(L,G)
Input: A graph G ∈ G and a logical sentence ϕ ∈ L

Parameter: |ϕ|
Problem: G |= ϕ?

© Jan Dreier and Peter Rossmanith;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2662-5303
https://tcs.rwth-aachen.de/~dreier
mailto:dreier@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://tcs.rwth-aachen.de
mailto:rossmani@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.IPEC.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Hardness of FO Model-Checking on Random Graphs

We denote the class of all graphs by G. Downey, Fellows, and Taylor showed that
p-MC(FO,G) is AW[∗]-complete and thus very hard on general graphs [15]. However, model-
checking becomes tractable when restricted to special graph classes. Courcelle’s theorem
states that if G is a graph class with bounded treewidth then p-MC(MSO,G) is in FPT [11].
The FO model-checking problem p-MC(FO,G) can be solved in FPT time if G has bounded
expansion [17, 38] or is nowhere-dense [25].

For a graph class G, we define Gcol to be the class of all vertex colorings of G. For most
graph classes G it makes no difference if we consider the model-checking problem on G or
Gcol because colors can be encoded by small gadgets. Given an instance (G,ϕ) with G ∈ Gcol,
for most graph classes G it is easy to construct a new instance (G′, ϕ′) of similar size with
G′ ∈ G, and G |= ϕ iff G′ |= ϕ′. In particular, if G comes from a nowhere-dense class, then
so does G′.

Average-Case Model-Checking

Average-case complexity analyzes the typical run time of algorithms on random instances
(such as random graphs) and is a well-established field of complexity theory [3]. While the
worst-case complexity of the parameterized model-checking problem is well analyzed, much
less is known about its average-case complexity, or parameterized average-case complexity in
general.

We fix a sequence of vertices (ui)i∈N and say a random graph model is a sequence G =
(Gn)n∈N, where Gn is a probability distribution over all graphs G with V (G) = {u1, . . . , un}.
The most well-known random graph model are so called Erdős–Rényi graphs [6]. The
Erdős–Rényi graph G(n, p(n)) consists of n vertices where each edge is added independently
with probability p(n). This very natural model is of great theoretical interest and has been
investigated in many ways. Other models such as the preferential attachment model [2, 5],
the Chung–Lu model [10, 9, 7], or the configuration model [32, 33] were defined to mimic
complex networks that are observed in the real world.

There exist some tractability results for the model-checking problem on random graph
models, including sparse Erdős–Rényi graphs, Chung–Lu graphs and the configuration model,
as we will see later on. We distinguish between the average-case complexity of model-checking
on uncolored graphs (p-MC(FO,G)) and colored graphs (p-MC(FO,Gcol)):

I Definition 1. We say p-MC(FO,G) can be decided on a random graph model G in expected
time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-MC(FO,G) on input
G, ϕ in time tA(G,ϕ) and for all n ∈ N, all FO-sentences ϕ, EG∼Gn

[
tA(G,ϕ)

]
≤ f(|ϕ|, n).

A function C : G → Gcol is called a c-coloring function for c ∈ N if for every G ∈ G,
C(G) is a coloring of G with up to c colors. The colorings do not need to be proper.

I Definition 2. We say p-MC(FO,Gcol) can be decided on a random graph model G in expec-
ted time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-MC(FO,Gcol)
on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C, EG∼Gn

[
tA(C(G), ϕ)

]
≤ f(|ϕ|, n).

We say p-MC(FO,Gcol) or p-MC(FO,G) can be decided in expected FPT time on a random
graph model if it can be decided in expected time f(|ϕ|)nO(1) for some function f . Clearly,
p-MC(FO,Gcol) is harder than p-MC(FO,G) on random graph models because the model-
checking algorithm has to be efficient for every possible coloring. However, all efficient
average-case model-checking algorithms so far work by placing the random graph model

J. Dreier and P. Rossmanith 11:3

with high probability in a tractable graph class (for example low degree [23], or bounded
expansion [13]) and then using well-known model-checking algorithms for such graph classes.
Thus, the algorithms work no matter how the vertices of the random graphs are colored.

The following tractability results are known: Let p(n) be a function with p(n) = O(nε/n)
for all ε > 0. Grohe showed that one can solve p-MC(FO,Gcol) on G(n, p(n)) in expected
time f(|ϕ|, δ)n1+δ for every δ > 0 [23]. Later Demaine et al. proved that p-MC(FO,Gcol) can
be solved in expected FPT linear time on Chung–Lu and configuration graphs whose degrees
follow a power law distribution with exponent α > 3 and maximal degree at most n1/α [13].

Average-Case Intractability

A natural question to ask next is: For which graphs does model-checking become intractable?
For the worst-case complexity of monotone graph classes (classes which are closed under
subgraphs) this question is settled: FO model-checking is in FPT if and only if the graph
class is nowhere-dense [25]. For non-monotone classes and especially random graph models
the question is more difficult.

Ideally, positive algorithmic results should be accompanied by lower bounds that show
that the result is the best possible. Very often such matching lower bounds are the triumphant
last step in completely answering a question that has had a long history of incremental
partial results. The best example is the theory of NP-completeness, but there are many other
nice examples from parameterized complexity: ETH-based lower bounds, non-existence of
polynomial kernels, and in the area of FO model-checking the fact that p-MC(FO,G) ∈ FPT
for some monotone somewhere-dense graph class G implies AW[∗] = FPT.

On the other hand, the situation does not look as good in the area of average-case
complexity. While we know that FO model-checking on G(n, d/n) can be decided in expected
FPT time if d is constant or grows slower than nε for every ε > 0, we do not have any lower
bounds for a larger d.

The lack of lower bounds of average-case runtimes is not restricted to random graphs
and the model-checking problem. At this point of time we still do not know techniques
to prove good lower bounds in that area. While it is certainly possible to reduce between
problems preserving bounds on the expected running time, there are virtually no results
linking average- to worst-case complexity. What we are missing in particular are results of
this kind: If we can solve parameterized problem X fast on average then some unexpected
consequence holds in the world of worst-case complexity (such as P = NP).

There has been some work on average-case complexity of parameterized problems. Foun-
toulakis, Friedrich, and Hermelin showed that parameterized clique can be decided efficiently
on Erdős–Rényi graphs with arbitrary density [18] and Friedrich and Krohmer proved the
same result for certain scale free random graphs where the degree sequence follows a power
law with exponent α > 2 [19]. However, there exist some artificial, computable distributions
for which the problem is distW[1]-complete [18], where distW[1] is an average-complexity
class, which is assumed to be hard. This means that parameterized clique cannot be decided
efficiently on average on that distribution unless every problem in distW[1] can be decided
efficiently on average. This promising result identifies distW[1] as a possible corner stone
for an average-case parameterized complexity theory. There is, however, no link between
average-case and worst-case complexity and no lower bounds for more natural probability
distributions.

Hardness results on less artificial distributions are known if one considers counting
problems instead of decision problems. Müller presented a counting problem on matrices
that is hard on average on certain uniform distributions unless W[1] ⊆ paraNP-BPFPT [35],
thereby linking parameterized average-case complexity and classical parameterized complexity.

IPEC 2019

11:4 Hardness of FO Model-Checking on Random Graphs

Our main result is a lower bound for FO model-checking on certain vertex-colored random
graph models, in particular certain Erdős–Rényi and Chung–Lu graphs. If for every coloring
function we can solve FO model-checking on such a random graph in expected FPT time, then
AW[∗] ⊆ FPT/poly, which is quite unexpected because i.a. every level of the W-hierarchy is
contained in AW[∗]. While the hardness results hold for many random graph models (see
Theorem 14) the following theorem shows three examples:

I Theorem 3. If p-MC(FO,Gcol) can be decided in expected FPT time on any of the following
random graph models, then AW[∗] ⊆ FPT/poly:

G(n, 1/2),
G(n, p(n)) with p(n) = nδ/n for some 0 < δ < 1, δ ∈ Q,
Chung–Lu graphs with exponent 2.5 ≤ α < 3, α ∈ Q.

This might be the first result where parameterized average-case hardness of a natural
problem with a natural probability distribution is linked to classical complexity assumptions.
For a more complete list of hard random graph models see Section 3.3. Our intractability
results tightly match known tractability results:

I Corollary 4. Assume that AW[∗] 6⊆ FPT/poly and let p : N → [0, 1
2] be monotone and

computable in polynomial time. Then p-MC(FO,Gcol) can be decided on Erdős–Rényi graphs
G(n, p(n)) in expected FPT time if and only if p(n) = O(nε/n) for every ε > 0.

In Theorem 3 and Corollary 4 we mention expected FPT time which is not closed under
invoking polynomial subroutines. Our hardness results also hold for more permissive measures
of parameterized tractability, similar to average polynomial run time [31], as introduced by
Levin (see Theorem 8 and 9).

The drawback of this result is the usage of colored graphs, which turns out to be
instrumental in the proof and it seems that colorings introduce a bit of worst-case behavior
into the otherwise random sampling of a graph. In the past every positive result about
model-checking on graphs worked for colored and uncolored graphs alike, but it is not clear
whether something similar is true in the world of average-case complexity. The big open
question that remains is whether we can prove a similar lower bound on uncolored random
graphs and this paper is merely trying to contribute in the building of tools to reach this
goal. A next step could be to show lower bounds under more restricted colorings.

There are examples for other lower bounds, which were shown first on colored graphs. One
example is Kreutzer’s proof that a graph class whose tree-width is not bounded, but grows at
least moderately, has no efficient MSO model-checking algorithm. One of the conditions on
the graph class was closure under colorings [29]. This lower bound complements Courcelle’s
theorem [11], which states that MSO model-checking can be done in linear time on graph
classes with bounded tree-width (with or without colors). Later Kreutzer and Tazari could
replace closure under colorings by closure under subgraphs, which is less restrictive [30].
Ganian et al. reintroduced closure under (vertex-)colorings to prove a similar result for MSO1
model-checking [22]. These examples show that lower bounds are sometimes easier to prove
in the presence of colorings.

Structural Sparsity and Average-Case Model-Checking

For monotone graph classes, model-checking is tractable if the graph class is nowhere-dense
and intractable if it is somewhere-dense [25]. For random graph models, even for sparse
random graph models, the situation is more complicated. We say a random graph model G
is asymptotically almost surely (a.a.s.) somewhere-dense if there exists a somewhere-dense

J. Dreier and P. Rossmanith 11:5

graph class H such that for n→∞, a graph sampled from Gn belongs with probability one
to H. We similarly define a.a.s. nowhere-dense. Erdős–Rényi graphs, Chung–Lu graphs, the
configuration model, and preferential attachment graphs have been classified with respect to
a.a.s. somewhere- and nowhere-density [36, 13]. However, it is important to note that a.a.s.
somewhere-density is neither necessary nor sufficient for intractability:

There exist a.a.s. somewhere-dense random graph models for which p-MC(FO,Gcol) is
fixed parameter tractable.
There exist a.a.s. nowhere-dense random graph models for which p-MC(FO,G) is not
fixed parameter tractable (under some assumptions).

We state why: On the one hand, there exist trivial dense random graph models for which
p-MC(FO,Gcol) is tractable, such as the complete graph. In an upcoming work, we want
to show that p-MC(FO,Gcol) even is decidable on the a.a.s. somewhere-dense preferential
attachment model in expected FPT time. On the other hand, Fountoulakis, Friedrich, and
Hermelin showed that under the hypothesis distW[1] 6⊆ avgFPT ∪ typFPT there exists a
random graph model H for which the parameterized clique problem is not tractable [18]. We
construct a random graph model G as follows: With probability 1/ log(n), Gn is distributed
according to Hn and with probability 1− 1/ log(n), Gn is an independent set of size n. Now
G is a.a.s. sparse. If p-MC(FO,G) could be solved on G in expected FPT time then it could
also be solved on H in expected FPT time, which contradicts our hypothesis.

Connections to Shallow Topological Clique Minors

A byproduct of our work is a polynomial lower bound on the size of subdivided cliques in
sufficiently dense random graphs, and polynomial time algorithms to find them. Let ε > 0.
Dvořák [16] and Jiang [26] showed independently (using a slightly different formulation)
that there exists a sequence (`n,ε)n∈N with limn→∞ `n,ε = ∞ and an integer cε such that
every graph G with n vertices and at least n1+ε edges contains a cε-subdivision of a clique
of size `n,ε. Jiang further showed that one can choose cε = 10/ε. Both authors did not give
a lower bound on `n,ε.

A simple application of Chernoff bounds together with this result yields that G(n, nε/n)
contains a.a.s. a cε/2-subdivided clique of size `n,ε/2 with limn→∞ `n,ε =∞. To obtain good
lower bounds for the model-checking problem we need the clique size `n,ε to be polynomial
in n. Therefore we show that G(n, nε/n) contains a.a.s. a 6/ε-subdivided clique of size
nε/5 (Lemma 15). We also show that the Chung–Lu random graph model with exponent
2.5 ≤ α < 3 contains a.a.s. a one-subdivided clique of polynomial size (Lemma 18). We
further show that these shallow clique minors can be found in polynomial time.

It is left as an open question whether ln,ε grows polynomially in n for general graphs. If
affirmative then the result is probably not easy to prove: Kostochka and Pyber showed that
a graph with n vertices and at least 4t2n1+ε edges contains a subdivision of Kt with at most
7t2 ln(t)/ε (principal and non-principal) vertices [28]. Even with such weaker requirements
the bound on t is smaller than logn and leaves an exponential gap to be filled.

Our Techniques

We use colorings and so called FO-interpretations on random graphs. An FO-interpretation
a translates a graph G into another graph G′ with the help of an FO-formula ψ(x, y): The
graph G′ contains an edge (x, y) iff G |= ψ(x, y). FO-interpretations are a standard tool in
logic and have lately been used in the context of model-checking (for example [20, 21]).

IPEC 2019

11:6 Hardness of FO Model-Checking on Random Graphs

We use FO-interpretations to establish a reduction framework. Let X and Y be two
random graph models. We say Y polynomially FO-interprets to X (X 4 Y) if an interpreta-
tion of a coloring of a graph G is nearly distributed like X assuming that G is distributed
like Y (Definition 11). We further say that X polynomially FO-interprets to G (G 4 X)
if an arbitrary graph H ∈ G can be encoded into X using colorings and interpretations
(Definition 7). In both cases, we require the interpretations to change the size of the graph
at most polynomially. We show that p-MC(FO,Gcol) is not tractable on any random graph
model X with G 4 X (Theorem 9) and that 4 propagates hardness (Lemma 12, 13), yielding
a way to prove intractability of p-MC(FO,Gcol) on random graphs by means of reductions.

Let G be a random graph model with G 4 G. Let H be a graph and ϕ an FO-sentence.
We sample a graph G from Gn for some n = |H|O(1) and use colorings and FO-interpretations
to encode H with sufficiently high probability into G. Then one can solve the model-checking
problem on H by solving it on the coloring of G instead. If p-MC(FO,Gcol) can be decided
on G in expected FPT time then one can also solve the model-checking problem on every
graph H in expected FPT time. The result is a link between worst-case and average-case
complexity.

2 Preliminaries

2.1 Graph Notation
We use common graph theory notation [14]. In this work we obtain results for undirected
colored graphs [24]. A colored graph is a tuple G = (V (G), E(G), C1(G), . . . , Cl(G)) with
Ci ⊆ V (G). We call C1(G), . . . , Cl(G) the colors of G. Vertices may have multiple colors.
We say a vertex v is colored with color Ci if v ∈ Ci. All notion for graphs extends to
colored graphs as expected. We define G to be the class of all graphs and Gcol to be the
class of all colored graphs. A coloring of an uncolored graph G is a colored graph G′ with
(V (G′), E(G′)) = G. We define the order of a graph G to be |G| = |V (G)|.

A r-subdivision1 of a graph H is a graph H ′ obtained by replacing edges with disjoint
paths of length at least 2 and at most r + 1. The principal vertices of H ′ are those vertices
which are in H. We say a graph G contains an r-subdivided induced clique of size k if an r-
subdivision of Kk is an induced subgraph of G. We say a graph G contains an one-subdivided
half-induced clique of size k if there exist k vertices v1, . . . , vk ⊆ V (G) such that for every
1 ≤ i < j ≤ k there exists a vertex wi,j ∈ V (G) with N(wi,j) ∩ {v1, . . . , vk} = {vi, vj}. We
call v1, . . . , vk the principal vertices and wi,j the bridge between vi and vj .

2.2 Probabilities and Random Graph Models
We denote probabilities by Pr[∗] and expectation by E[∗]. We consider a random graph model
to be a sequence of probability distributions. A random graph model describes for every
n ∈ N a probability distribution on graphs with n vertices. In order to speak of probability
distributions over graphs we fix a sequence of vertices (ui)i≥1 and require that a graph with n
vertices has the vertex set {u1, . . . , un}. A random graph model is a sequence G = (Gn)n∈N,
where Gn is a probability distribution over all graphs G with V (G) = {u1, . . . , un}. We write
G ∼ Gn if a graph G is is distributed as Gn. In slight abuse of notation, we sometimes treat
a probability distribution Gn as a random variable itself. For example the random variable
E(Gn) stands for E(G) with G ∼ Gn. We say a property of a random graph model holds
a.a.s. if the probability that the property holds in Gn converges to one for n→∞.

1 Usually, in an r-subdivision paths have length exactly r+ 1 but this definition is more convenient for us.

J. Dreier and P. Rossmanith 11:7

Erdős–Rényi graphs [6] with edge probability p(n) are denoted by G(n, p(n)). The Chung–
Lu model [10, 9, 7] has been proposed to generate random graphs that fit a certain degree
sequence. For a given n ∈ N let Wn = (w1, . . . , wn) be a sequence of weights. The Chung–Lu
random graph to Wn is a random graph Gn with V (Gn) = {u1, . . . , un} such that each edge
uiuj with 1 ≤ i, j ≤ n occurs in Gn independently with probability wiwj/

∑n
k=1 wk. Let

α > 2. We say G is the Chung–Lu random graph model with exponent α if for every n ∈ N,
Gn is the Chung–Lu random graph to Wn = {w1, . . . , wn} with wi = c · (n/i)1/(α−1) where c
is a constant depending on α.

We say a random graph model G is expected polynomial time samplable if there exists
a randomized algorithm which runs on input n ∈ N in expected time polynomial in n and
creates an output which is distributed like Gn. This excludes for example Erdős–Rényi graphs
where p(n) is not computable.

2.3 First-Order Logic
We consider only first-order logic over colored graphs. We interpret a colored graph G =
(V,E,C1, . . . , Cl), as a structure over the universe V with signate (E,C1, . . . , Cl). The binary
relation E expresses adjacency between vertices and the unary relations C1, . . . , Cl indicate
the colors of the vertices. Other structures can be easily converted into colored graphs. We
write ϕ(x1, . . . , xk) to indicate that a formula ϕ has free variables x1, . . . , xk. Furthermore,
|ϕ| is the number of symbols in ϕ.

An FO interpretation is a pair I = (ν(x), ψ(x, y)) of FO formulas (with one and two
free variables, respectively). For a colored graph G, this defines an uncolored graph I(G)
with V (I(G)) = {v | G |= ν(v)}, E(I(G)) = {uv | G |= ψ(u, v)}. For an FO sentence ϕ,
the interpretation I defines an FO sentence ϕI as follows: Every occurrence of E(x, y) is
replaced with ψ(x, y) ∨ ψ(y, x). Every occurrence of ∃xψ is replaced with ∃xν(x) ∧ ψ and
every occurrence of ∀xψ is replaced with ∀xν(x)→ ψ. Then G |= ϕI ⇐⇒ I(G) |= ϕ.

2.4 Parameterized Complexity
The classes paraNP-BPFPT and FPT/poly are parameterized analogues of BPP and P/poly.

I Definition 5. [34] paraNP-BPFPT is the class of parameterized problems that can be
decided by a randomized Turing machine with two-sided error 1/n (where n is the size of
the input). The run time of the Turing machine on every input of size n and parameter k
needs to be at most f(k)nO(1) for some computable function f .

I Definition 6. [12] FPT/poly is the class of all parameterized problems Q for which there
exists a parameterized problem Q′ ∈ FPT and a constant c such that for each (n, k) ∈ N×N
there exists some α(n, k) ∈ Σ∗ of size nc, with the property that for all instances 〈x, k〉 with
|x| = n, it holds that 〈x, k〉 ∈ Q if and only if 〈(x, α(|x|, k)), k〉 ∈ Q′.

The complexity class AW[∗] can be defined as the class of all parameterized problems that
can be reduced to p-MC(FO,G) by fpt-reductions and contains the whole W-hierarchy. In
summary

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆ AW[∗] ⊆ XP,

paraNP-BPFPT = FPT ⇐⇒ BPP = P (see [35]).

It is widely believed that BPP = P.

IPEC 2019

11:8 Hardness of FO Model-Checking on Random Graphs

3 Results

3.1 Hardness
In this section we define a property of random graph models (denoted by G 4 G, see
Definition 7) and then show that p-MC(FO,Gcol) is not tractable on average on random graph
models with this property. We base our results either on the assumption AW[∗] 6⊆ FPT/poly or
on AW[∗] 6⊆ paraNP-BPFPT. As discussed in Section 2.4, these are well-funded assumptions
of parameterized worst-case complexity. In the following definition we characterize those
random graph models which have enough structure such that an arbitrary graph can with
high probability be embedded using FO-interpretations and colorings.

I Definition 7. Let G be a random graph model. We say G polynomially FO-interprets
to G (short: G 4 G) if G is expected polynomial time samplable and there exists an FO
interpretation I, a polynomial p, a constant c and a randomized algorithm B which gets
as input G,H ∈ G with |G| = p(|H|) and runs in polynomial time in |H|. Either the
algorithm fails and B(G,H) is a special failure symbol ⊥ or B(G,H) is a coloring of G with
I(B(G,H)) = H. Furthermore for every H, Pr(B(Gp(|H|), H) 6= ⊥) ≥ 1/|H|c.

Our notion of tractability (as used in the following two theorems) is similar to the well-
known notion of average polynomial time (for example [3, Definition 3]): Let D = {Dn}n∈N
be a sequence of distributions. A deterministic algorithm with run time t(x) on input x runs
in average polynomial time on D if there exists an ε > 0 and a polynomial p such that for every
n and t, Prx∼Dn

[t(x) ≥ t] ≤ p(n)/tε. Average polynomial time is closed under polynomial
subroutines and implies polynomial expected time. We show that if one can solve the
model-checking problem with adversary colorings efficiently then AW[∗] ⊆ paraNP-BPFPT.

I Theorem 8. Let G be a random graph model with G 4 G. If there exists a function f , a
polynomial p, an ε > 0 and a deterministic algorithm A which decides p-MC(FO,Gcol) on
input G, ϕ in time tA(G,ϕ) such that for all n, t ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C it holds that

Pr
[
tA
(
C(Gn), ϕ

)
≥ t
]
≤ f(|ϕ|)p(n)/tε,

then AW[∗] ⊆ paraNP-BPFPT. Moreover, then there exists a randomized algorithm which
gets as input a graph H ∈ G and a FO-sentence ϕ and returns whether G |= ϕ or ⊥, whereas
⊥ is returned with probability at most 1/2. The algorithm always runs in time g(|ϕ|)|H|O(1)

for some function g and uses only |H|O(1) random bits.

Proof. It is known that p-MC(FO,G) is AW[∗]-complete [15]. We assume G 4 G with
interpretation I, polynomial q and algorithm B. Let H be a graph with |H| = n and ϕ be a
FO-sentence. Consider the following procedure: We sample a graph G with G ∼ Gq(n). We
then compute B(G,H), which is either a coloring of G or ⊥. If B(G,H) = ⊥, we return ⊥.
If not then I(B(G,H)) = H. This means H |= ϕ ⇐⇒ B(G,H) |= ϕI . In this case, we use
A to compute whether B(G,H) |= ϕI .

Let us analyze this procedure: Since Pr(B(Gq(n), H) 6= ⊥) ≥ 1/nc for some constant
c, the probability that the procedure returns ⊥ is at most 1 − 1/nc. Let C be a |ϕI |-
coloring function such that for every graph G′ ∈ G, C(G′) is a coloring of G′ with |ϕI |
colors maximizing tA(C(G′), ϕI). We can assume that A immediately returns ⊥ on a
malformed input ⊥, thus tA(B(G,H), ϕI) ≤ tA(C(G), ϕI). Therefore for every t ∈ N,
Pr
[
tA(B(H,Gq(n)), ϕI) ≥ t

]
≤ Pr

[
tA(C(Gq(n)), ϕI) ≥ t

]
. Let g(|ϕ|) = f(|ϕI |)1/ε. By our

J. Dreier and P. Rossmanith 11:9

assumption, we have Pr
[
tA(C(Gq(n)), ϕI) ≥ g(|ϕ|)t

]
≤ p(q(n))/tε. Thus, for every t ∈ N, A

does not terminate on (B(G,H), ϕI) after g(|ϕ|)t steps with probability at most p(q(n))/tε.
We choose t = nO(1) such that p(q(n))/tε ≤ 1/4nc, run A for g(|ϕI |)t steps, and then abort
it. The probability that it was aborted is at most 1/4nc. The graph G ∼ Gq(n) is sampled in
expected polynomial time. We also abort the sampling procedure after nO(1) steps such that
the probability that it was aborted is at most 1/4nc. In total, the procedure was aborted
with probability at most 1/2nc and returns ⊥ with probability at most 1− 1/nc, leaving a
probability of at least 1/2nc to not be aborted and to not return ⊥. Therefore, we compute
whether H |= ϕ with probability at least 1/2nc and always run in FPT time. We repeat this
nO(1) times to amplify the probability. Altogether we needed randomness to sample from Gn
and to run B for a polynomial number of steps, which results in the usage of polynomially
many random bits. J

Adleman’s theorem states that BPP ⊆ P/poly [1, Theorem 7.17]. The following proof is
very similar to its proof, thus we are brief.

I Theorem 9. Let G be a random graph model with G 4 G. If there exists a function f , a
polynomial p, an ε > 0 and a deterministic algorithm A which decides p-MC(FO,Gcol) on
input G, ϕ in time tA(G,ϕ) such that for all n, t ∈ N, all FO-sentences ϕ and all |ϕ|-coloring
functions C

Pr
[
tA
(
C(Gn), ϕ

)
≥ t
]
≤ f(|ϕ|)p(n)/tε,

then AW[∗] ⊆ FPT/poly.

Proof. It is known that p-MC(FO,G) is AW[∗]-complete [15]. If we assume that the
preconditions of this theorem are fulfilled then by Theorem 8 there is a randomized algorithm
that can decide for a graph G ∈ G with |G| = n and FO-sentence ϕ whether G |= ϕ in FPT
time with probability at least 1/2 and that returns ⊥ otherwise. Moreover, that algorithm
uses only nO(1) random bits.

We can run that algorithm n3 times and the probability that we get at least once the
answer to G |= ϕ is then at least 1− 2−n3 . There are at most 2n2 graphs with a fixed vertex
set of size n. For each of these at most 2n2 possible input graphs G there is a fraction of at
most 2−n3 of possible random bit strings that cause the amplified algorithm to fail on G.
The total fraction of random bit strings that cause the algorithm to fail on at least one G
is then at most 2−n3 · 2n2

< 1 and there must be at least one choice of random bits that
causes the algorithm to give the right answer on every colored graph G of order n. Feeding
the randomized algorithm this fixed string of bits instead of using true random bits yields a
deterministic FPT algorithm that needs for each n an advice string of polynomial length,
which places the problem in FPT/poly. J

A simple application of the Markov bound yields the following more compact statement.

I Corollary 10. Let G be a random graph model with G 4 G. If p-MC(FO,Gcol) can be
solved on G in expected FPT time then AW[∗] ⊆ FPT/poly.

3.2 Reductions
In this section we use colorings and FO-interpretations to define reductions between random
graph models (Definition 11) and show that these reductions are transitive and propagate
hardness (Lemma 12 and 13). For two random graph models X and Y we say Y polynomially
FO-interprets to X (X 4 Y) if an interpretation of a coloring of a graph G is nearly
distributed like X, assuming G is distributed like Y . This section is a technical necessity,
but contains no surprising results.

IPEC 2019

11:10 Hardness of FO Model-Checking on Random Graphs

I Definition 11. Let X and Y be random graph models. We say Y polynomially FO-
interprets to X (X 4 Y) if Y is expected polynomial time samplable and there exists an
interpretation I, a polynomial p, a constant c and a randomized algorithm C which gets
as input an uncolored graph G, runs in polynomial time in |G| and returns C(G). Either
the algorithm fails and C(G) equals a special failure symbol ⊥ or C(G) is a coloring of G.
Furthermore for every x in the support of Xn, PrG∼Yp(n) [I(C(G)) = x] ≥ PrG∼Xn [G = x]/nc.

I Lemma 12. Let X and Y be random graph models. If G 4 X and X 4 Y then G 4 Y .

Proof. Assume X 4 Y with algorithm C1, interpretation I1, polynomial p1 and constant
c1. and G 4 X with algorithm B2, interpretation I2, polynomial p2 and constant c2. Let I
be the interpretation obtained by applying I1 and then I2. By Definition 11, Y is expected
polynomial time samplable. It is sufficient to construct a randomized algorithm B which gets
as input G,H ∈ G with |G| = p2(p1(|H|)) and B(G,H) is either ⊥ or a coloring of G with
I(B(G,H)) = H, and for every H ∈ G, PrG∼Yp1(p2(|H|))(B(G,H) 6= ⊥) ≥ 1/|H|c for some c.

This algorithm proceeds as follows: At first, we compute C1(G). If G′ = I1(C1(G)) is ⊥ or
no graph of order p2(n) we return ⊥. Then we compute B2(G′, H). Again, if B2(G′, H) = ⊥
we return ⊥. With at least polynomial probability no ⊥ was returned, since

PrG∼Yp1(p2(|H|)) [B2(G′, H) 6= ⊥] =
∑
G′

PrG∼Yp1(p2(|H|)) [I1(C1(G)) = G′, B2(G′, H) 6= ⊥]

≥ PrG′∼Xp2(|H|) [B2(G′, H) 6= ⊥]/p2(|H|)c1 ≥ 1/(p2(|H|)c1 |H|c2) ≥ 1/|H|c,

for some constant c. If no ⊥ was returned, we know that I2(B2(I1(C1(G)), H)) = H. This
means H can be obtained from G by first putting colors on it via C1, then interpreting it via
I1, then again putting colors on it via B2 and again interpreting it via I2. The same result
can be obtained by putting all colors directly on G and then applying I1 and I2. Let G∗ be
the coloring of G which contains the colors of C(G) and the lifted colors of B2(G′, H). The
algorithm returns B(G,H) = G∗. Then I(G∗) = I2(I1(G∗)) = H. J

With the same techniques as in the lemma before one can show that 4 is transitive. Since
the proof is straightforward, we leave it out.

I Lemma 13. Let X, Y , and Z be random graph models. If X 4 Y and Y 4 Z then X 4 Z.

3.3 Hard Random Graph Models

In this section we prove intractability of p-MC(FO,Gcol) for certain random graph models.
As a side result, we obtain polynomial lower bounds on the size of shallow clique minors in
Erdős–Rényi graphs (Lemma 15) and Chung–Lu graphs (Lemma 18). The main results are
summarized in the following theorem.

I Theorem 14. The following list of random graph models polynomially FO-interpret to G

(for 0 < ε < 1):
(i) every Erdős–Rényi random graph model G(n, p(n)) with nε/n ≤ p(n) ≤ 1− nε/n that

is expected polynomial time samplable,
(ii) every Chung–Lu random graph model with exponent α ∈ Q with 2.5 ≤ α < 3,
(iii) every expected polynomial time samplable random graph model G such that in Gn

every edge is independent and has an individual probability p with nε/n ≤ p ≤ 1/nε.

J. Dreier and P. Rossmanith 11:11

Proof. The second and third case correspond to Lemma 19 and16 respectively. For the
first case, the interval [nε/n, 1 − nε/n] can be broken into three parts: [nε/n, n−1/2],
[n−1/2, 1− n−1/2], [1− n−1/2, 1− nε/n]. The first interval corresponds to Lemma 16. The
third interval can be reduced to the first interval using the complement graph. The missing
region is filled by Lemma 17. J

I Lemma 15. Let ε > 0. Let G be a random graph model such that in Gn every edge is
independent and has an individual probability p with nε/n ≤ p ≤ 1/nε. There exists a
deterministic polynomial time algorithm which gets a graph with n vertices and either returns
⊥ or an induced 6/ε-subdivided clique of size bnε/5c. If the input is distributed according to
G then a.a.s. the algorithm does not return ⊥.

Proof. Let n ∈ N and k = bnε/5c. We fix k principal vertices v1, . . . , vk. Each edge in Gn
occurs with probability at least nε/n. Thus, the expected degree of each principal vertex
is at least nε = Θ(k5). The degree of a vertex is a sum of independent Bernoulli variables.
According to the Chernoff Bound, a.a.s., each principal vertex has degree at least k2. We
assume that this is the case. This means, there are k2 distinct nodes wij (1 ≤ i, j ≤ k) such
that wij is adjacent to vi.

We choose k2 disjoint subsets Si,j (1 ≤ i, j ≤ k) of size N = dn/k3e such that Si,j
contains wji and wij but none of the vertices v1, . . . , vk. Each subgraph Gn[Si,j] can be
interpreted as a random graph of order N where edges have independent probability at least
n/nε = Θ(N/Nε/3). It is known that the diameter of a graph G(n, p(n)) is a.a.s. at most
dlog(n)/ log(np(n))e [8, Theorem 2] (also [27, 4, 37]). By the argument above, Gn[Si,j] a.a.s.
has diameter at most dlog(N)/ log(Nε/3)e = d3/εe ≤ 4/ε. While not explicitly mentioned in
the references, this holds with sufficiently high probability to guarantee that that a.a.s. each
subgraph Gn[Si,j] (1 ≤ i, j ≤ k) has diameter at most 4/ε. We again assume that this is the
case. Then for each pair of vertices wji , wij we compute a path pi,j in Si,j of length at most
4/ε connecting them. All paths pi,j are disjoint. Therefore, the principal vertices v1, . . . , vj
together with the paths pi,j span a 4/ε+ 2-subdivided clique.

At last, we need to show that this subdivided clique is a.a.s. an induced subdivided clique.
The subdivided clique consists of at most O(k2) vertices. Thus, there is a set F of at most
O(k4) = O(nε4/5) possible edges whose presence would mean that the subdivided clique is
no induced subdivided clique. Let A be the event that the degree of all principal vertices is
at least k2 and that each subgraph Gn[Si,j] (1 ≤ i, j ≤ k) has diameter at most 4/ε. Now we
need to show that with high probability no edge from F is present, assuming that A holds.
Earlier, we showed that A holds a.a.s. Thus, there exists n0 such that for n ≥ n0, P [A] ≥ 1/2.
For every event B and n ≥ n0 holds Pr[B̄ | A] ≤ Pr[B̄]/Pr[A] ≤ 2Pr[B̄]. Thus if a.a.s. no
edge from F is present, then also a.a.s. no edge from F is present under the assumption that
A holds. Each edge occurs with probability at most n−ε. Thus, the probability that none of
these edges in F is present is at least

(
1− n−ε

)O(nε4/5) which converges to one. J

I Lemma 16. Let ε > 0. Let G be an expected polynomial time samplable random graph
model such that in Gn every edge is independent and has an individual probability p with
nε/n ≤ p ≤ 1/nε. Then G 4 G.

Proof. LetH be a graph with |H| = n andG ∼ Gdn5/εe. We use the algorithm from Lemma 15
on G to a.a.s. compute an induced 6/ε-subdivided clique of size n. If the algorithm from
Lemma 15 returns ⊥, we set B(G,H) = ⊥, which a.a.s. never happens. Otherwise, we
proceed as follows: Let v1, . . . , vn be the principal vertices of the induced clique and let pi,j
(1 ≤ i < j ≤ k) be the disjoint paths of length at most 6/ε connecting vi and vj . Each

IPEC 2019

11:12 Hardness of FO Model-Checking on Random Graphs

path pi,j is adjacent to exactly two principal vertices and no other path. The final output
B(G,H) is constructed by adding colors C1 and C2 to G: We define C1 = {v1, . . . , vn} and
C2 =

⋃
ij∈E(H) V (pmin(i,j),max(i,j)). Now i and j are adjacent in H if and only if vi and vj

have a connecting path of length at most 6/ε in G which is colored completely with C2.
Let further I = (ν(x), ψ(x, y)) be the interpretation such that ν(x) = C1(x) and ψ(x, y)

is the formula which checks if x and y have a connecting path of length at most 6/ε which is
colored completely with C2. The length of ψ(x, y) depends on ε, which is a constant. Now if
B(G,H) 6= ⊥ then B(G,H) is a coloring of G with I(B(G,H)) = H and the probability of
B(G,H) = ⊥ is sufficiently low. Therefore G 4 G. J

I Lemma 17. Let G(n, p(n)) be an expected polynomial time samplable Erdős–Rényi random
graph model with n−1/2 ≤ p(n) ≤ 1− n−1/2. Then G 4 G(n, p(n)).

Proof. By Lemma 16 and Lemma 12, it is sufficient to prove G(n, b
√
nc/n) 4 G(n, p(n)).

We assume n > 10. Let m = n14. Let G be the input graph with G ∼ G(m, p(m)). We
shall construct a randomized polynomial time algorithm C and an interpretation I such that
I(C(G)) behaves similar to G(n, b

√
nc/n). For sets N ⊆ V (G) and vertices u, v ∈ V (G) \N

with u 6= v we say u and v have the same N -neighborhood if NG(u) ∩ N = NG(v) ∩ N .
Since G ∼ G(m, p(m)), the probability that u and v have the same N -neighborhood equals
cN (m) :=

(
p(m)2 + (1 − p(m))2)|N |. We compute the minimal value k ∈ N such that

1/n4 ≤
(
p(m)2 + (1− p(m))2)k ≤ 1/n3. Clearly, k exists and is computable in polynomial

time. Furthermore, one can easily show that k ≤ m2/3.
We fix three sets X,Y, Z ⊆ V (G) with X = {v1, . . . , vn}, |Y | = |Z| = k. This yields

1/n4 ≤ cY (m), cZ(m) ≤ 1/n3. We further fix
(
n
2
)
subsets Si,j ⊆ V (G) for 1 ≤ i < j ≤ n with

|Si,j | = n11. Since n+ k +
(
n
2
)
n11 ≤ m, we can assume all these subsets to be disjoint.

If there exist two vertices vi and vj with 1 ≤ i 6= j ≤ n which have the same Y -
neighborhood or the same Z-neighborhood we return ⊥. The probability that this happens
is, by the union bound, at most

(
n
2
)
(cY (m) + cZ(m)) ≤ 1/n. Furthermore, if there exists

1 ≤ i < j ≤ n such that there is no vertex in Si,j which has the same Y -neighborhood as vi
and the same Z-neighborhood as vj , we return ⊥. For fixed i, j, the probability that there is
no vertex in Si,j which has the same Y -neighborhood as vi and the same Z-neighborhood as
vj is at most (1− cY (m)cZ(m))|Si,j | ≤ (1− 1/n8)n11 ≤ 1/n3. Thus, by the union bound, ⊥
is returned with probability at most

(
n
2
)
/n3 ≤ 1/n. In total, ⊥ is a.a.s. never returned.

If the algorithm did not return ⊥, we know that the Y - and Z-neighborhoods of v1, . . . , vn
are distinct and for all 1 ≤ i < j ≤ n there exists a vertex si,j which has the same Y -
neighborhood as vi and the same Z-neighborhood as vj . We construct a set W which
represents the edge set of a random graph G(n, b

√
nc/n) by adding each vertex si,j for

1 ≤ i < j ≤ k independently with probability b
√
nc/n to W . Let the final output C(G)

be the graph G augmented with colors X,Y, Z,W . Let further I = (ν(x), ψ(x, y)) be the
interpretation where ν(x) = X(x) and ψ(a, b) is the FO formula which checks if there exists
a vertex w ∈W which has the same Y -neighborhood as a and the same Z-neighborhood as
b. Now vi and vj with i < j are adjacent in I(C(G)) if and only if si,j ∈ W , which occurs
with probability b

√
nc/n. Therefore under the condition that C(G) 6= ⊥ we have I(C(G)) ∼

G(n, b
√
nc/n). Since a.a.s. I(C(G)) 6= ⊥, we have for every x in the support of G(n, b

√
nc/n)

and n sufficiently large, PrG∼G(m,p(m))[I(C(G)) = x] ≥ PrG∼G(n,b
√
nc/n)[G = x]/2. This

means G(n, b
√
nc/n) 4 G(n, p(n)). J

The threshold 2.5 < α in the following lemma has been chosen to ease the calculations
and can be considerably improved.

J. Dreier and P. Rossmanith 11:13

I Lemma 18. Let G be a Chung–Lu random graph model with exponent 2.5 ≤ α < 3. There
exists an ε > 0 such Gn contains a.a.s. a one-subdivided half-induced clique with principal
vertices u1, . . . , udnεe.

Proof. Let n ∈ N and V (Gn) = {u1, . . . , un}. By definition [10], the probability of an edge
uiuj in Gn is wiwj/

∑n
k=1 wk, where wk = Θ(n/k)1/(α−1). One can easily verify that for

α > 2,
∑n
k=1 wk = Θ(n). We choose ε = 1/(α− 1)− 1/2 and get

Pr[uiuj ∈ E(Gn)] = wiwj∑n
k=1 wk

= (n/i)1/(α−1)(n/j)1/(α−1)

Θ(n) = Θ(n2ε(ij)−ε−1/2).

Since 2.5 ≤ α < 3, we have 0 < ε ≤ 1/6. Let k = dnε/2e. We fix a, b ≤ k. For n/2 ≤ x ≤ n
let p(x) be the probability that ux is a bridge between ua and ub. Then

p(x) = Ω
(
n2ε(xa)−ε−1/2n2ε(xb)−ε−1/2) k∏

c=1

(
1−O(n2ε(xc)−ε−1/2)

)
=

Ω(k−2ε−1n2ε−1)
(

1 − O(nε−1/2)
)k

= Ω(k−2n2ε−1) = Ω(nε−1).

The probability that none of the vertices udn/2e, . . . , un are a bridge between ua and ub is at
most

n∏
x=dn/2e

(
1− p(x)

)
=
(

1−Θ(nε−1)
)Θ(n)

= e−Θ(nε).

By the union bound, Gn contains no one-subdivided half-induced clique with principal vertices
u1, . . . , vk with probability at most ke−Θ(nε). Since k = dnε/2e, this converges to zero. J

I Lemma 19. Let G be a Chung–Lu random graph model with exponent 2.5 ≤ α < 3, α ∈ Q.
Then G 4 G.

Proof. The proof is very similar to that of Lemma 16, therefore we merely sketch it. Since
α ∈ Q, we know that G is expected polynomial time samplable (see [1, Lemma 7.14]). Given
a graph G ∼ Gn, by Lemma 18, the first dnεe vertices of G a.a.s. are the principal vertices
of a one-subdivided half-induced clique. If it exists, one can easily find the bridges of said
clique in polynomial time. We color the principal vertices with color C1 and a subset of the
bridges with color C2. We define an FO-interpretation which selects the principal vertices
as nodes and connects them if they are joined by a bridge with color C2. By choosing C2
accordingly, we can construct an arbitrary graph of order dnεe. J

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge

University Press, 2009.
2 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
3 Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in

Theoretical Computer Science, 2(1):1–106, 2006.
4 Béla Bollobás. The diameter of random graphs. Transactions of the American Mathematical

Society, 267(1):41–52, 1981.
5 Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The Degree Sequence of

a Scale-free Random Graph Process. Random Structures & Algorithms, 18(3):279–290, May
2001.

IPEC 2019

11:14 Hardness of FO Model-Checking on Random Graphs

6 B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
7 Fan Chung, Fan RK Chung, Fan Chung Graham, Linyuan Lu, Kian Fan Chung, et al. Complex

graphs and networks, volume 107. American Math. Soc., 2006.
8 Fan Chung and Linyuan Lu. The diameter of sparse random graphs. Advances in Applied

Mathematics, 26(4):257–279, 2001.
9 Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected

Degree Sequences. Annals of Combinatorics, 6(2):125–145, 2002.
10 Fan Chung and Linyuan Lu. The average distances in random graphs with given expected

degrees. Proc. of the National Academy of Sciences, 99(25):15879–15882, 2002.
11 Bruno Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of Finite

Graphs. Information and Computation, 85(1):12–75, 1990.
12 Ronald de Haan. An Overview of Non-Uniform Parameterized Complexity. Electronic

Colloquium on Computational Complexity (ECCC), 22:130, 2015.
13 E. D. Demaine, F. Reidl, P. Rossmanith, F. Sánchez Villaamil, S. Sikdar, and B. D. Sullivan.

Structural Sparsity of Complex Networks: Random Graph Models and Linear Algorithms.
CoRR, abs/1406.2587, 2014. To appear in JCSS. URL: http://arxiv.org/abs/1406.2587,
arXiv:1406.2587.

14 R. Diestel. Graph Theory. Springer, Heidelberg, 2010.
15 Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The Parameterized Complexity

of Relational Database Queries and an Improved Characterization of W[1]. In First Conference
of the Centre for Discrete Mathematics and Theoretical Computer Science, DMTCS 1996,
Auckland, New Zealand, December, 9-13, 1996, pages 194–213, 1996.

16 Z. Dvořák. Asymptotical Structure of Combinatorial Objects. PhD thesis, Charles University,
Faculty of Mathematics and Physics, 2007.

17 Zdenek Dvořak, Daniel Král, and Robin Thomas. Deciding First-Order Properties for Sparse
Graphs. In Proceedings of the 51st Conference on Foundations of Computer Science, pages
133–142, 2010.

18 Nikolaos Fountoulakis, Tobias Friedrich, and Danny Hermelin. On the Average-Case Complexity
of Parameterized Clique. Theoretical Computer Science, 576:18–29, 2015.

19 Tobias Friedrich and Anton Krohmer. Parameterized Clique on Inhomogeneous Random
Graphs. Discrete Applied Mathematics, 184:130–138, 2015.

20 Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, and M. S. Ramanujan. A
New Perspective on FO Model Checking of Dense Graph Classes. CoRR, abs/1805.01823,
2018. arXiv:1805.01823.

21 Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. arXiv preprint arXiv:1810.02389, 2018.

22 Robert Ganian, Petr Hlinený, Alexander Langer, Jan Obdrzálek, Peter Rossmanith, and
Somnath Sikdar. Lower bounds on the complexity of MSO1-model checking. J. Comput. Syst.
Sci., 80(1):180–194, 2014.

23 Martin Grohe. Generalized model-checking problems for first-order logic. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 12–26. Springer, 2001.

24 Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357–422, 2008.
25 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of

Nowhere Dense Graphs. JACM, 64(3):17, 2017.
26 Tao Jiang. Compact topological minors in graphs. Journal of Graph Theory, 67(2):139–152,

2011.
27 Victor Klee and David Larman. Diameters of random graphs. Canadian Journal of Mathematics,

33(3):618–640, 1981.
28 A. Kostochka and L. Pyber. Small topological complete subgraphs of “dense” graphs. Com-

binatorica, 8:83–86, 1988.

http://arxiv.org/abs/1406.2587
http://arxiv.org/abs/1406.2587
http://arxiv.org/abs/1805.01823

J. Dreier and P. Rossmanith 11:15

29 Stephan Kreutzer. On the Parameterized Intractability of Monadic Second-Order Logic.
Logical Methods in Computer Science, 8(1), 2012.

30 Stephan Kreutzer and Siamak Tazari. Lower Bounds for the Complexity of Monadic Second-
Order Logic. In Proceedings of the 22nd Symposium on Logic in Computer Science, pages
189–198. IEEE Computer Society, 2010.

31 Leonid A Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286,
1986.

32 M. Molloy and B. A. Reed. A Critical Point for Random Graphs with a Given Degree Sequence.
Random Structures & Algorithms, 6(2/3):161–180, 1995.

33 M. Molloy and B. A. Reed. The Size of the Giant Component of a Random Graph with a
Given Degree Sequence. Combin., Probab. Comput., 7(3):295–305, 1998.

34 Juan Andrés Montoya and Moritz Müller. Parameterized random complexity. Theory of
Computing Systems, 52(2):221–270, 2013.

35 Moritz Müller. Parameterized Randomization. PhD thesis, Albert-Ludwigs-Universität
Freiburg, 2008.

36 Jaroslav Nešetřil, Patrice Ossona de Mendez, and David R Wood. Characterisations and
examples of graph classes with bounded expansion. European Journal of Combinatorics,
33(3):350–373, 2012.

37 Oliver Riordan and Nicholas Wormald. The diameter of sparse random graphs. Combinatorics,
Probability and Computing, 19(5-6):835–926, 2010.

38 Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over Databases
with Local Bounded Expansion. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 68. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

39 Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory. PhD thesis,
Dept. of Electrical Engineering, MIT, 1974.

IPEC 2019

Computing the Largest Bond of a Graph
Gabriel L. Duarte
Fluminense Federal University, Rio de Janeiro, Brazil
gabrield@id.uff.br

Daniel Lokshtanov
University of California Santa Barbara, CA, USA
daniello@ucsb.edu

Lehilton L. C. Pedrosa
University of Campinas, São Paulo, Brazil
lehilton@ic.unicamp.br

Rafael C. S. Schouery
University of Campinas, São Paulo, Brazil
rafael@ic.unicamp.br

Uéverton S. Souza1

Fluminense Federal University, Rio de Janeiro, Brazil
ueverton@ic.uff.br

Abstract
A bond of a graph G is an inclusion-wise minimal disconnecting set of G, i.e., bonds are cut-sets that
determine cuts [S, V \ S] of G such that G[S] and G[V \ S] are both connected. Given s, t ∈ V (G),
an st-bond of G is a bond whose removal disconnects s and t. Contrasting with the large number of
studies related to maximum cuts, there are very few results regarding the largest bond of general
graphs. In this paper, we aim to reduce this gap on the complexity of computing the largest
bond and the largest st-bond of a graph. Although cuts and bonds are similar, we remark that
computing the largest bond of a graph tends to be harder than computing its maximum cut. We
show that Largest Bond remains NP-hard even for planar bipartite graphs, and it does not admit
a constant-factor approximation algorithm, unless P = NP. We also show that Largest Bond
and Largest st-Bond on graphs of clique-width w cannot be solved in time f(w)× no(w) unless
the Exponential Time Hypothesis fails, but they can be solved in time f(w)× nO(w). In addition,
we show that both problems are fixed-parameter tractable when parameterized by the size of the
solution, but they do not admit polynomial kernels unless NP ⊆ coNP/poly.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Parameterized complexity and exact algorithms

Keywords and phrases bond, cut, maximum cut, connected cut, FPT, treewidth, clique-width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.12

Related Version A full version of the paper is available at http://arxiv.org/abs/1910.01071.

Funding Supported by Grant 2015/11937-9, São Paulo Research Foundation (FAPESP) and by Grant
E-26/203.272/2017, Rio de Janeiro Research Foundation (FAPERJ) and by Grant 308689/2017-8,
425340/2016-3, 313026/2017-3, 422829/2018-8, 303726/2017-2, National Council for Scientific and
Technological Development (CNPq).

Acknowledgements We thank the organizers of WoPOCA 2017 for the opportunity to bring together
some of the co-authors of this paper.

1 corresponding author

© Gabriel L. Duarte, Daniel Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and
Uéverton S. Souza;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabrield@id.uff.br
mailto:daniello@ucsb.edu
https://orcid.org/0000-0003-1001-082X
mailto:lehilton@ic.unicamp.br
https://orcid.org/0000-0002-0472-4810
mailto:rafael@ic.unicamp.br
https://orcid.org/0000-0002-5320-9209
mailto:ueverton@ic.uff.br
https://doi.org/10.4230/LIPIcs.IPEC.2019.12
http://arxiv.org/abs/1910.01071
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Computing the Largest Bond of a Graph

1 Introduction

Let G = (V,E) be a simple, connected, undirected graph. A disconnecting set of G is
a set of edges F ⊆ E(G) whose removal disconnects G. The edge-connectivity of G is
κ′(G) = min{|F | : F is a disconnecting set of G}. A cut [S, T] of G is a partition of V into
two subsets S and T = V \ S. The cut-set ∂(S) of a cut [S, T] is the set of edges that
have one endpoint in S and the other endpoint in T ; these edges are said to cross the cut.
In a connected graph, each cut-set determines a unique cut. Note that every cut-set is a
disconnecting set, but the converse is not true. An inclusion-wise minimal disconnecting
set of a graph is called a bond. It is easy to see that every bond is a cut-set, but there are
cut-sets that are not bonds. More precisely, a nonempty set of edges F of G is a bond if
and only if F determines a cut [S, T] of G such that G[S] and G[T] are both connected.
Let s, t ∈ V (G). An st-bond of G is a bond whose removal disconnects s and t.

In this paper, we are interested in the complexity aspects of the following problem.

Largest Bond
Instance: A graph G = (V,E); a positive integer k.
Question: Is there a proper subset S ⊂ V (G) such that G[S] and G[V \S] are connected
and |∂(S)| ≥ k?

We also consider Largest st-Bond, where given a graph G = (V,E), vertices s, t ∈ V (G),
and a positive integer k, we are asked whether G has an st-bond of size at least k.

A minimum (maximum) cut of a graph G is a cut with cut-set of minimum (maximum)
size. Every minimum cut is a bond, thus a minimum bond is also a minimum cut of G,
and it can be found in polynomial time using the classical Edmonds–Karp algorithm [11].
Besides that, minimum st-bonds are well-known structures, since they are precisely the
st-cuts involved in the Gomory-Hu trees [20].

Regarding bonds on planar graphs, a folklore theorem states that if G is a connected
planar graph, then a set of edges is a cycle in G if and only if it corresponds to a bond in
the dual graph of G [18]. Note that each cycle separates the faces of G into the faces in the
interior of the cycle and the faces of the exterior of the cycle, and the duals of the cycle
edges are exactly the edges that cross from the interior to the exterior [28]. Consequently,
the girth of a planar graph equals the edge connectivity of its dual [4].

Although cuts and bonds are similar, computing the largest bond of a graph seems to
be harder than computing its maximum cut. Maximum Cut is NP-hard in general [16],
but becomes polynomial for planar graphs [21]. On the other hand, finding a longest cycle
in a planar graph is NP-hard, implying that finding a largest bond of a planar multigraph
(or of a simple edge-weighted planar graph) is NP-hard. In addition, it is well-known
that if a simple planar graph is 3-vertex-connected, then its dual is a simple planar graph.
In 1976, Garey, Johnson, and Tarjan [17] proved that the problem of establishing whether
a 3-vertex-connected planar graph is Hamiltonian is NP-complete, thus, as also noted by
Haglin and Venkatesan [22], finding the largest bond of a simple planar graph is also NP-hard,
contrasting with the polynomial-time solvability of Maximum Cut on planar graphs.

From the point of view of parameterized complexity, it is well known that Maximum
Cut can be solved in FPT time when parametrized by the size of the solution [25], and since
every graph has a cut with at least half the edges [12], it follows that it has a linear kernel.
Concerning approximation algorithms, a 1/2-approximation algorithm can be obtained
by randomly partitioning the set vertices into two parts, which induces a cut-set whose
expected size is at least half of the number of edges [26]. The best-known result is the
seminal work of Goemans and Williamson [19], who gave a 0.878-approximation based on

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:3

semidefinite programming. This has the best approximation factor unless the Unique Games
Conjecture fails [24]. To the best of our knowledge, there is no algorithmic study regarding
the parameterized complexity of computing the largest bond of a graph as well as the
approximability of the problem.

A closely related problem is the Connected Max Cut [23], which asks for a cut [S, T]
of a given a graph G such that G[S] is connected, and that the cut-set ∂(S) has size at
least k. Observe that a bond induces a feasible solution of Connected Max Cut, but not
the other way around, since G[T] may be disconnected. Indeed, the size of a largest bond
can be arbitrarily smaller than the size of the maximum connected cut; take, e.g., a star
with n leaves. For Connected Max Cut on general graphs, there exists a Ω(1/ logn)-
approximation [15], where n is the number of vertices. Also, there is a constant-factor
approximation with factor 1/2 for graphs of bounded treewidth [31], and a polynomial-time
approximation scheme for graphs of bounded genus [23].

Recently, Saurabh and Zehavi [30] considered a generalization of Connected Max Cut,
named Multi-Node Hub. In this problem, given numbers l and k, the objective is to find a
cut [S, T] of G such that G[S] is connected, |S| = l and |∂(S)| ≥ k. They observed that the
problem is W [1]-hard when parameterized on l, and gave the first parameterized algorithm
for the problem with respect to the parameter k. We remark that the W [1]-hardness also
holds for Largest Bond parameterized by |S|.

Since every nonempty bond determines a cut [S, T] such that G[S] and G[T] are both
connected, every bond of G has size at most |E(G)| − |V (G)|+ 2. A graph G has a bond
of size |E(G)| − |V (G)|+ 2 if and only if V (G) can be partitioned into two parts such that
each part induces a tree. Such graphs are known as Yutsis graphs. The set of planar Yutsis
graphs is exactly the dual class of Hamiltonian planar graphs. According to Aldred, Van
Dyck, Brinkmann, Fack, and McKay [1], cubic Yutsis graphs appear in the quantum theory
of angular momenta as a graphical representation of general recoupling coefficients. They
can be manipulated following certain rules in order to generate the so-called summation
formulae for the general recoupling coefficient (see [2, 10, 32]).

There are very few results about the largest bond size in general graphs. In 2008, Aldred,
Van Dyck, Brinkmann, Fack, and McKay [1] showed that if a Yutsis graph is regular with
degree 3, the partition of the vertex set from the largest bond will result in two sets of equal
size. In 2015, Ding, Dziobiak and Wu [9] proved that any simple 3-connected graph G will
have a largest bond with size at least 2

17
√

logn, where n = |V (G)|. In 2017, Flynn [13]
verified the conjecture that any simple 3-connected graph G has a largest bond with size at
least Ω(nlog3 2) for a variety of graph classes including planar graphs.

In this paper, we complement the state of the art on the problem of computing the largest
bond of a graph. Preliminarily, we observe that while Maximum Cut is trivial for bipartite
graphs, Largest Bond remains NP-hard for such a class of graphs, and we also present
a general reduction that allows us to observe that Largest Bond is NP-hard for several
classes for which Maximum Cut is NP-hard. Using this framework, we are able to show that
Largest Bond on graphs of clique-width w cannot be solved in time f(w)× no(w) unless
the ETH fails. Moreover, we show that Largest Bond does not admit a constant-factor
approximation algorithm, unless P = NP, and thus is asymptotically harder to approximate
than Maximum Cut.

As for positive results, the main contributions of this work concern the parameterized
complexity of Largest Bond. Using win/win approaches, we consider the strategy of
preprocessing the input in order to bound the treewidth of the resulting instance. After that,
by presenting a dynamic programming algorithm for Largest Bond parameterized by the

IPEC 2019

12:4 Computing the Largest Bond of a Graph

treewidth, we show that the problem is fixed-parameter tractable when parameterized by the
size of the solution. Finally, we remark that Largest Bond and Largest st-Bond do not
admit polynomial kernels, unless NP ⊆ coNP/poly. Due to space, some proofs were omitted.

2 Intractability results

In this section, we discuss aspects of the hardness of computing the largest bond. Notice that
Largest Bond is Turing reducible to Largest st-Bond. Therefore, the results presented
in this section also holds for Largest st-Bond.

Although Maximum Cut is trivial for bipartite graphs, we first observe that the same
does not apply to compute the largest bond. Since a connected planar graph is Eulerian if
and only if its dual graph is bipartite; subdivision of edges does not increase the size of the
largest bond; and to decide whether a 4-regular planar graph has a Hamiltonian cycle is
NP-complete [29]. The following holds.

I Theorem 1. Largest Bond is NP-complete for planar bipartite graphs.

I Theorem 2. Let G be a simple bipartite graph and ` ∈ N. To determine the largest bond
∂(S) of G with |S| = ` is W [1]-hard with respect to `.

Next, we present a general framework for reducibility from Maximum Cut to Largest
Bond, by defining a special graph operator ψ such that Maximum Cut on a graph class F
is reducible to Largest Bond on the image of F via ψ. An interesting particular case
occurs when F is closed under ψ (for instance, chordal graphs are closed under ψ).

I Definition 3. Let G be a graph and let n = V (G). The graph ψ(G) is constructed as
follows: (i) create n disjoint copies G1, G2, . . . , Gn of G; (ii) add vertices va and vb; (iii)
add an edge between va and vb; (iv) add all possible edges between V (G1 ∪ G2 ∪ . . . ∪ Gn)
and {va, vb}.

I Definition 4. A set of graphs G is closed under operator ψ if whenever G ∈ G, then
ψ(G) ∈ G.

From the fact that a graph G has a cut [S, V (G) \ S] of size k if and only if ψ(G) has a
bond ∂(S′) of size at least nk + n2 + 1, the following theorem holds.

I Theorem 5. Largest Bond is NP-complete for any graph class G such that: G is closed
under operator ψ; and MaxCut is NP-complete for graphs in G.

I Corollary 6. Largest Bond is NP-complete for the following classes: chordal graphs;
co-comparability graphs; P5-free graphs.

2.1 Algorithmic lower bound for clique-width parameterization
In the ’90s, Courcelle, Makowsky, and Rotics [6] proved that all problems expressible in
MS1-logic are fixed-parameter tractable when parameterized by the clique-width of a graph
and the logical expression size. The applicability of this meta-theorem has made clique-width
become one of the most studied parameters in parameterized complexity. However, although
several problems are MS1-expressible, this is not the case with Maximum Cut.

In 2014, Fomin, Golovach, Lokshtanov and Saurabh [14] showed that Maximum Cut
on a graph of clique-width w cannot be solved in time f(w)× no(w) for any function f of w
unless Exponential Time Hypothesis (ETH) fails. Using operator ψ, we are able to extend
this result to Largest Bond.

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:5

I Lemma 7. Largest Bond on graphs of clique-width w cannot be solved in time f(w)×
no(w) unless the ETH fails.

Proof. Maximum Cut cannot be solved in time f(w)× no(w) on graphs of clique-width w,
unless Exponential Time Hypothesis (ETH) fails [14]. Therefore, by the polynomial-time
reduction presented in Theorem 5, it is enough to show that the clique-width of ψ(G) is
upper bounded by a linear function of the clique-width of G.

If G has clique-width w, then the disjoint union H1 = G1 ⊕ G2 ⊕ . . . ⊕ Gn has clique-
width w. Suppose that all vertices in H1 have label 1. Now, let H2 be the graph isomorphic
to a K2 such that V (H) = {va, vb}, and va, vb are labeled with 2. In order to construct ψ(G)
from H1⊕H2 it is enough to apply the join η(1, 2). Thus, ψ(G) has clique-width equals w. J

2.2 Inapproximability
While the maximum cut of a graph has at least a constant fraction of the edges, the size
of the largest bond can be arbitrarily smaller than the number of edges; take, e.g., a cycle
on n edges, for which a largest bond has size 2. This discrepancy is also reflected on the
approximability of the problems. Indeed, we show that Largest Bond is strictly harder to
approximate than Maximum Cut. To simplify the presentation, we consider a weighted
version of the problem in which edges are allowed to have weights 0 or 1; the hardness results
will follow for the unweighted case as well. In the Binary Weighted Largest Bond,
the input is given by a connected weighted graph H with weights w : E(H)→ {0, 1}. The
objective is to find a bond whose total weight is maximum.

Let G be a graph on n vertices and whose maximum cut has size k. Next, we define
the G-edge embedding operator ξG. Given a connected weighted graph H, the weighted
graph ξG(H) is constructed by replacing each edge {u, v} ∈ E(H) with weight 1 by a copy
of G, denoted by Guv, whose edges have weight 1, and, for each vertex t of Guv, new
edges {u, t} and {v, t}, both with weight 0.

We can also apply the G-edge embedding operation on the graph ξG(H), then on
ξG(ξG(H)), and so on. In what follows, for an integer h ≥ 0, denote by ξhG(H) the graph
resulting from the operation that receives a graph H and applies ξG successively h times.
Notice that ξhG(H) can be constructed in O(|V (G)|h+1) time. For some j, 0 ≤ j ≤ h− 1,
observe that an edge {u, v} ∈ E(ξjG(H)) will be replaced by a series of vertices added in
iterations j + 1, j + 2, . . . , h. These vertices will be called the descendants of {u, v}, and will
be denoted by Vuv.

Let K2 be the graph composed of a single edge {u, v}, and consider the problem of finding
a bond of ξG(K2) with maximum weight. Since edges connecting u or v have weight 0, one
can assume that u and v are in different sides of the bond, and the problem reduces to finding
a maximum cut of G. In other words, the operator ξG embeds an instance G of Maximum
Cut into an edge {u, v} of K2.

This suggests the following strategy to solve an instance of Maximum Cut. For some
constant integer h ≥ 1, calculate H = ξhG(K2), and obtain a bond F of H with maximum
weight. Note that, to solve H, one must solve embedded instances of Maximum Cut in
multiple levels simultaneously. For a level j, 1 ≤ j ≤ h− 1, each edge {u, v} ∈ E(ξjG(K2))
with weight 1 will be replaced by a graph Guv which is isomorphic to G. In Lemma 9 below,
we argue that F is such that either V (Guv) ∪ {u, v} are all in the same side of the cut,
or u and v are in distinct sides. In the latter case, the edges of F that separate u and v will
induce a cut of G.

IPEC 2019

12:6 Computing the Largest Bond of a Graph

In the remaining of this section, we consider a constant integer h ≥ 0. Then, we define
Hj = ξjG(K2) for every j, 0 ≤ j ≤ h, and H = Hh. Also, we write [S, T] to denote the cut
induced by a bond F of H.

I Definition 8. Let F be a bond of H with cut [S, T]. We say that an edge {u, v} ∈ E(Hj)
with weight 1 is nice for F if either
|{u, v} ∩ S| = 1, or
({u, v} ∪ Vuv) ⊆ S, or
({u, v} ∪ Vuv) ⊆ T .

Also, we say that F is nice if, for every j, 0 ≤ j ≤ h− 1, and every edge {u, v} ∈ E(Hj)
with weight 1, {u, v} is nice for F .

I Lemma 9. There is a polynomial-time algorithm that receives a bond F , and finds a nice
bond F ′ such that w(F ′) = w(F).

In the following, assume that F is a nice bond with cut [S, T]. Consider a level j,
0 ≤ j ≤ h, and an edge {u, v} ∈ E(Hj) with weight 1 such that |{u, v} ∩ S| = 1. If j < h,
then we define Fuv to be the subset of edges in F which are incident with some vertex of Vuv;
if j = h, then we define Fuv = {{u, v}}. Note that, because F is nice, if |{u, v} ∩ S| 6= 1,
then no edge of F is incident with Vuv.

Suppose now that |{u, v} ∩ S| = 1 for some edge {u, v} ∈ E(Hj) with weight 1 and
0 ≤ j ≤ h− 1. In this case, F induces a cut-set of Guv. Namely, define Ŝuv := S ∩ V (Guv)
and T̂uv := T ∩ V (Guv) and let F̂uv be the cut-set of Guv corresponding to cut [Ŝuv, T̂uv].

Observe that for distinct edges {u, v} and {s, t}, it is possible that |F̂uv| 6= |F̂st|. We will
consider bonds F for which all induced cut-sets F̂uv have the same size.

I Definition 10. Let ` be a positive integer. A bond F of H with cut [S, T] is said to be
`-uniform if, (i) F is nice, and (ii) for every j, 0 ≤ j ≤ h− 1, and every edge {u, v} ∈ E(Hj)
with weight 1 such that |{u, v} ∩ S}| = 1, |F̂uv| = `.

An `-uniform bond induces a cut-set of G of size `.

I Lemma 11. Suppose F is an `-uniform bond of H. One can find in polynomial time a
cut-set L of G with |L| = `.

Proof. Let u, v be the vertices of K2 to which ξG was applied. Since F is `-uniform, |F̂uv| = `.
Note that F̂uv induces a cut-set of size ` on G. J

In the opposite direction, a cut of G induces an `-uniform bond of H.

I Lemma 12. Suppose L is a cut-set of G with |L| = `. One can find in polynomial time an
`-uniform bond F of H with w(F) = `h.

Proof. For each j ≥ 0, we construct a bond F j of Hj . For j = 0, let F 0 be the set containing
the unique edge of H0 = K2. Suppose now that we already constructed a bond F j−1

of Hj−1. For each edge {u, v} ∈ F j−1, let Luv be the set of edges of Guv corresponding
to L. Define F j := ∪{u,v}∈F j−1Luv. One can verify that indeed F j is a bond of Hj , and
that w(Fj) = |L| × w(Fj−1) = `j . J

I Lemma 13. There is a polynomial-time algorithm that receives a bond F of H, and finds
an `-uniform bond F ′ of H such that w(F ′) = `h ≥ w(F).

I Lemma 14. Let F ∗ be a bond of H with maximum weight. Then w(F ∗) = kh.

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:7

Proof. We assume that F ∗ is `-uniform such that w(F ∗) = `h for some `; if this is not the
case, then use Lemma 13.

Since F ∗ is `-uniform, using Lemma 12 one obtains a cut-set L of G with size `, then ` ≤ k,
and thus w(F ∗) ≤ kh.

Conversely, let L be a cut-set of G with size k. Using Lemma 12 for L, we obtain a
bond F of H with weight kh, and thus w(F ∗) ≥ kh. J

I Lemma 15. If there exists a constant-factor approximation algorithm for Weighted
Largest Bond, then P = NP.

Proof. Consider a graph G whose maximum cut has size k. Construct graph H and obtain
a bond F of H using an α-approximation, for some constant 0 < α < 1. Using the algorithm
of Lemma 13, obtain an `-uniform bond F ′ of H such that w(F ′) = `h ≥ w(F). Using
Lemma 14 and the fact that F ′ is an α-approximation, `h ≥ α× kh. Using Lemma 11, one
can obtain a cut-set L of G with size ` ≥ α 1

h k.
For any constant ε, 0 < ε < 1, we can set h = dlog1−ε αe, such that the cut-set L has size

at least ` ≥ (1− ε)k. Since Maximum Cut is APX-hard, this implies P = NP. J

I Theorem 16. If there exists a constant-factor approximation algorithm for Largest
Bond, then P = NP.

Proof. We show that if there exists an α-approximation algorithm for Largest Bond,
for constant 0 < α < 1, then there is an α/2-approximation algorithm for the Binary
Weighted Largest Bond, so the theorem will follow from Lemma 15.

Let H be a weighted graph whose edge weights are all 0 or 1. Let m be the number of
edges with weight 0, and let l be the weight of a bond of H with maximum weight. Assume
l ≥ 2/α, as otherwise, one can find an optimal solution in polynomial time by enumerating
sets of up to 2/α edges.

Construct an unweighted graph G as follows. Start with a copy of H and, for each edge
{u, v} ∈ E(H) with weight 1, replace {u, v} ∈ E(G) by m parallel edges. Finally, to obtain
a simple graph, subdivide each edge of G. If F is a bond of G, then one can construct a
bond F ′ of H by undoing the subdivision and removing the parallel edges. Each edge of F ′
has weight 1, with exception of at most m edges. Thus, w(F ′) ≥ (|F | −m)/m.

Observe that an optimal bond of H induces a bond of G with size at least ml. Thus, if F
is an α-approximation for G, then |F | ≥ αml and therefore

w(F ′) ≥ αml −m
m

= αl − 1 ≥ αl − αl/2 = αl/2.

We conclude that F ′ is an α/2-approximation for H. J

3 Algorithmic upper bounds for clique-width parameterization

Lemma 7 shows that Largest Bond on graphs of clique-width w cannot be solved in time
f(w)× no(w) unless the ETH fails. Now, we show that given an expression tree of width at
most w, Largest Bond can be solved in f(w)× nO(w) time.

An expression tree T is irredundant if for any join node η(i, j), the vertices labeled by i
and j are not adjacent in the graph associated with its child. It was shown by Courcelle
and Olariu [7] that every expression tree T of G can be transformed into an irredundant
expression tree T of the same width in time linear in the size of T . Therefore, without loss
of generality, we can assume that T is irredundant.

IPEC 2019

12:8 Computing the Largest Bond of a Graph

Our algorithm is based on dynamic programming over the expression tree of the input
graph. We first describe what we store in the tables corresponding to the nodes in the
expression tree.

Given a w-labeled graph G, two connected components of G has the same type if they
have the same set of labels. Thus, a w-labeled graph G has at most 2w−1 types of connected
components.

Now, for every nodeX` of T , denote by GX`
the w-labeled graph associated with this node,

and let L1(X`), . . . , Lw(X`) be the sets of vertices of GX`
labeled with 1, . . . , w, respectively.

We define a table where each entry is of the form c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1],
such that: 0 ≤ si ≤ |Li(X`)| for 1 ≤ i ≤ w; 0 ≤ r ≤ |E(GX`

)|; 0 ≤ ei ≤ min{2, |Li(X`)|} for
1 ≤ i ≤ 2w − 1; and 0 ≤ di ≤ min{2, |Li(X`)|} for 1 ≤ i ≤ 2w − 1.

Each entry of the table represents whether there is a partition V1, V2 of V (GX`
) such

that: |V1 ∩Li(GX`
)| = si; the cut-set of [V1, V2] has size at least r; GX`

[V1] has ei connected
components of type i; GX`

[V2] has di connected components of type i, where ei = 2 means
that GX`

[V1] has at least two connected components of type i. The same holds for di.
Notice that this table contains f(w)× nO(w) entries. If X` is the root node of T (that is,

G = GX`
), then the size of the largest bond of G is equal to the maximum value of r for

which the table for X` contains a valid entry (true value), such that there are j and k such
that ei = 0, ej = 1 for 1 ≤ i, j ≤ 2w−1, i 6= j; and di = 0, dk = 1 for 1 ≤ i, k ≤ 2w−1, i 6= k.

It is easy to see that we store enough information to compute a largest bond. Note that a
w-labeled graph is connected if and only if it has exactly one type of connected components
and exactly one component of such a type.

Now we provide the details of how to construct and update such tables. The construction
for introduce nodes of T is straightforward.

Relabel node: Suppose that X` is a relabel node ρ(i, j), and let X`′ be the child of X`.
Then the table for X` contains a valid entry c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] if and
only if the table for X`′ contains an entry c[`′, s′1, ..., s′w, r, e′1, ..., e′2w−1, d

′
1, ..., d

′
2w−1] = true,

where: si = 0; sj = s′i + s′j ; sp = s′p for 1 ≤ p ≤ w, p 6= i, j; ep = e′p for any type that contain
neither i nor j; ep = 0 for any type that contains i; and for any type ep that contains j, it
holds that ep = min{2, e′p + e′q + e′r} where e′q represent the set of labels (Cp \ {j}) ∪ {i}, e′r
represent the set of labels Cp ∪ {i}, and Cp is the set of labels associated to p. The same
holds for d1, ..., d2w−1.

Union node: Suppose that X` is a union node with children X`′ and X`′′ . It holds that
c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] equals true if and only if there are valid entries
c[`′, s′1, ..., s′w, r′, e′1, ..., e′2w−1, d

′
1, ..., d

′
2w−1] and c[`′′, s′′1 , ..., s′′w, r′′, e′′1 , ..., e′′2w−1, d

′′
1 , ..., d

′′
2w−1],

having: si = s′i+s′′i for 1 ≤ i ≤ w; r′+r′′ ≥ r; ek = min{2, e′k+e′′k}, and dk = min{2, d′k+d′′k}
for 1 ≤ k ≤ 2w − 1.

Join node: Finally, let X` be a join node η(i, j) with the child X`′ . Remind that since
the expression tree is irredundant then the vertices labeled by i and j are not adjacent in
the graph GX`′ . Therefore, the entry c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] equals true
if and only if there is a valid entry c[`′, s1, ..., sw, r

′, e′1, ..., e
′
2w−1, d

′
1, ..., d

′
2w−1] where

r′ + si × (|Lj(X`′)| − sj) + sj × (|Li(X`′)| − si) ≥ r,

and ep = e′p, case p is associated to a type that contains neither i nor j; ep = 1, case p is
associated to C`′i,j \ {i}, where C`

′

i,j is the set of labels obtained by the union of the types
of GX`′ with some connected component having either label i or label j; ep = 0, otherwise.
The same holds for d1, ..., d2w−1.

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:9

The correctness of the algorithm follows from the description of the procedure. Since for
each `, there are O((n+ 1)w ×m× (32w−1)2) entries, the running time of the algorithm is
f(w)×nO(w). This algorithm together with Lemma 7 concludes the proof of the Theorem 17.

I Theorem 17. Largest Bond cannot be solved in time f(w)× no(w) unless ETH fails,
where w is the clique-width of the input graph. Moreover, given an expression tree of width
at most w, Largest Bond can be solved in time f(w)× nO(w).

In order to extend this result to Largest st-Bond, it is enough to observe that given a
tree expression T of G with width w, it is easy to construct a tree expression T ′ with width
equals w + 2, where no vertex of V (G) has the same label than either s or t. Let w + 1
be the label of s, and let w + 2 be the label of t. By fixing, for each `, sw+1 = |Lw+1(X`)|
and sw+2 = 0, one can solve Largest st-Bond in time f(w)× nO(w).

4 Bounding the treewidth of G

In the remainder of this paper we deal with our main problems: Largest Bond and
Largest st-Bond parameterized by the size of the solution (k). Inspired by the principle
of preprocessing the input to obtain a kernel, we consider the strategy of preprocessing the
input in order to bound the treewidth of the resulting instance.

We start our analysis with Largest Bond.

I Definition 18. A graph H is called a minor of a graph G if H can be formed from G by
deleting edges, deleting vertices, and by contracting edges. For each vertex v of H, the set of
vertices of G that are contracted into v is called a branch set of H.

I Lemma 19. Let G be a simple connected undirected graph, and k be a positive integer. If
G contains K2,k as a minor then G has a bond of size at least k.

Proof. Let H be a minor of G isomorphic to K2,k. Since G is connected and each branch
set of H induces a connected subgraph of G, from H it is easy to construct a bond of G of
size at least k. J

Combined with Lemma 19, the following results show that, without loss of generality, our
study on k-bonds can be reduced to graphs of treewidth O(k).

I Lemma 20. [3] Every graph G = (V,E) contains K2,k as a minor or has treewidth at
most 2k − 2.

I Lemma 21. [3] There is a polynomial-time algorithm that either concludes that the input
graph G contains K2,k as a minor, or outputs a tree-decomposition of G of width at most
2k − 2.

From Lemma 19 and Lemma 21 it follows that there is a polynomial-time algorithm
that either concludes that the input graph G has a bond of size at least k, or outputs a
tree-decomposition of G of width at most 2k − 2.

4.1 The st-bond case
Let S ⊆ V (G) and let ∂(S) be a bond of a connected graph G. Recall that a block is a
2-vertex-connected subgraph of G which is inclusion-wise maximal, and a block-cut tree of
G is a tree whose vertices represent the blocks and the cut vertices of G, and there is an
edge in the block-cut tree for each pair of a block and a cut vertex that belongs to that

IPEC 2019

12:10 Computing the Largest Bond of a Graph

block. Then, ∂(S) intersects at most one block of G. More precisely, for any two distinct
blocks B1 and B2 of G, if S ∩ V (B1) 6= ∅ and S ∩ V (B1) 6= V (B1), then either V (B2) ⊆ S,
or V (B2) ⊆ V \ S. Indeed, if this is not the case, then either G[S] or G[V \ S] would be
disconnected. Thus, to solve Largest st-Bond, it is enough to consider, individually, each
block on the path between s and t in the block-cut tree of G. Also, if a block is composed of
a single edge, then it is a bridge in G, which is not a solution for the problem unless k = 1.
Thus, we may assume without loss of generality that G is 2-vertex-connected.

I Lemma 22. Let G be a 2-vertex-connected graph. For all v ∈ V (G) \ {s, t}, there is an
sv-path and a tv-path which are internally disjoint.

I Lemma 23. Let G be a 2-vertex-connected graph. If G contains K2,2k as a minor, then
there exists S ⊆ V (G) such that ∂(S) is a bond of size at least k.

Proof. Let G be a graph containing a K2,2k as a minor. If k = 1, the statement holds
trivially, thus assume k ≥ 2. Also, since G is connected, one can assume that this minor
was obtained by contracting or removing edges only, and thus its branch sets contain all
vertices of G. Let A and B be the branch sets corresponding to first side of K2,2k, and let
X1, X2, . . . , X2k be the remaining branch sets.

First, suppose that s and t are in distinct branch sets. If this is the case, then there exist
distinct indices a, b ∈ {1, . . . , 2k} such that s ∈ A ∪Xa and t ∈ B ∪Xb. Now observe that
G[A ∪Xa] and G[B ∪Xb] are connected, which implies an st-bond with at least 2k − 1 ≥ k
edges. Now, suppose that s and t are in the same branch set. In this case, one can assume
without loss of generality that s, t ∈ A ∪X2k.

Define U = A ∪ X2k and Q = V (G) \ U . Observe that G[U] and G[Q] are connected.
Consider an arbitrary vertex v in the set Q. Since G is 2-vertex-connected, Lemma 22 implies
that there exist an sv-path Ps and a tv-path Pt which are internally disjoint. Let P ′s and P ′t
be maximal prefixes of Ps and Pt, respectively, whose vertices are contained in U .

We partition the set U into parts Us and Ut such that G[Us] and G[Ut] are connected.
Since G[U] is connected, there exists a tree T spanning U . Direct all edges of T towards s
and partition U as follows. Every vertex in P ′s belongs to Us and every vertex in P ′t belongs
to Ut. For a vertex u /∈ V (P ′s∪P ′t), let w be the first ancestor of u (accordingly to T) which is
in P ′s ∪ P ′t . Notice that w is well-defined since u ∈ V (T) and the root of T is s ∈ V (P ′s ∪ P ′t).
Then u belongs to Us if w ∈ V (P ′s), and u belongs to Ut if w ∈ V (P ′t).

Observe that that there are at least 2k − 1 edges between U and Q, and thus there are
at least k edges between Us and Q, or between Ut and Q. Assume the former holds, as the
other case is analogous. It follows that G[Us] and G[Ut ∪ Q] are connected and induce a
bond of G with at least k edges. J

Lemma 21 and Lemma 23 imply that there is an algorithm that either concludes that the
input graph G has a bond of size at least k, or outputs a tree-decomposition of an equivalent
instance G′ of width O(k).

I Corollary 24. Given a graph G, vertices s, t ∈ V (G), and an integer k, there exists a
polynomial-time algorithm that either concludes that G has an st-bond of size at least k or
outputs a subgraph G′ of G together with a tree decomposition of G′ of width equals O(k),
such that G′ has an st-bond of size at least k if and only if G has an st-bond of size at least k.

Proof. Find a block-cut tree of G in linear time [5], and let Bs and Bt be the blocks of G
that contain s and t, respectively. Remove each block that is not in the path from Bs to Bt
in the block-cut tree of G. Let G′ be the remaining graph. For each block B of G′, consider

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:11

the vertices s′ and t′ of B which are nearest to s and t, respectively. Using Lemmas 21 and 23
one can in polynomial time either conclude that B has an s′t′-bond, in which case G is a
yes-instance, or compute a tree decomposition of B with width at most O(k).

Now, construct a tree decomposition of G′ as follows. Start with the union of the tree
decompositions of all blocks of G′. Next, create a bag {u} for each cut vertex u of G′. Finally,
for each cut vertex u and any bag corresponding to a block B connected through u, add an
edge between {u} and one bag of the tree decomposition of B containing u. Note that this
defines a tree decomposition of G′ and that each bag has at most O(k) vertices. J

Note that since k-bonds are solutions for Connected Max Cut, the results presented
in this section naturally apply to such a problem as well.

5 Taking the treewidth as parameter

In the following, given a tree decomposition T , we denote by ` one node of T and by X`

the vertices contained in the bag of `. We assume w.l.o.g that T is a extended version of
a nice tree decomposition (see [8]), that is, we assume that there is a special root node r
such that X` = ∅ and all edges of the tree are directed towards r and each node ` has one
of the following five types: Leaf ; Introduce vertex; Introduce edge; Forget vertex; and Join.
Moreover, define G` to be the subgraph of G which contains only vertices and edges that
have been introduced in ` or in a descendant of `.

The number of partitions of a set of k elements is the k-th Bell number, which we denote
by B(k) (B(k) ≤ k! [27]).

I Theorem 25. Given a nice tree decomposition of G with width tw, one can find a bond of
maximum size in time 2O(tw log tw) × n where n is the number of vertices of G.

Proof. Let ∂G(U) be a bond of G, and [U, V \ U] be the cut defined by such a bond. Set
S`U = U ∩X`. The removal of ∂G(U) partitions G`[U] into a set C`U of connected components,
and G`[V \ U] into a set C`V \U of connected components. Note that C`U and C`V \U define
partitions of S`U and X` \ S`U , denoted by ρ`1 and ρ`2 respectively, where the intersection of
each connected component of C`U with S`U corresponds to one part of ρ`1. The same holds
for C`V \U with respect to X` \ S`U and ρ`2.

We define a table for which an entry c[`, S, ρ1, ρ2] is the size of a largest cut-set (partial
solution) of the subgraph G`, where S is the subset of X` to the left part of the bond, X` \S
is the subset to the right part, and ρ1, ρ2 are the partitions of S and X` \S representing, after
the removal of the partial solution, the intersection with the connected components to the left
and to the right, respectively. If there is no such a partial solution then c[`, S, ρ1, ρ2] = −∞.

For the case that S is empty, two special cases may occur: either U ∩ V (G`) = ∅, in
which case there are no connected components in C`U , and thus ρ1 = ∅; or C`U has only one
connected component which does not intersect X`, i.e., ρ1 = {∅}, this case means that the
connected component in C`U was completely forgotten. Analogously, we may have ρ2 = ∅
and ρ2 = {∅}. Note that we do not need to consider the case {∅} (ρi since it would imply
in a disconnected solution. The largest bond of a connected graph G corresponds to the root
entry c[r, ∅, {∅}, {∅}].

To describe a dynamic programming algorithm, we only need to present the recurrence
relation for each node type.

IPEC 2019

12:12 Computing the Largest Bond of a Graph

Leaf: In this case, X` = ∅. There are a few combinations for ρ1 and ρ2: either ρ1 = ∅, or
ρ1 = {∅}, and either ρ2 = ∅, or ρ2 = {∅}. Since for this case G` is empty, there can be no
connected components, so having ρ1 = ∅ and ρ2 = ∅ is the only feasible choice.

c[`, S, ρ1, ρ2] =
{

0 if S = ∅, ρ1 = ∅ and ρ2 = ∅,
−∞ otherwise.

Introduce vertex: We have only two possibilities in this case, either v is an isolated vertex
to the left (v ∈ S) or it is an isolated vertex to the right (v /∈ S). Thus, a partial solution on
` induces a partial solution on `′, excluding v from its part.

c[`, S, ρ1, ρ2] =

c[`′, S \ {v}, ρ1 \ {{v}}, ρ2] if {v} ∈ ρ1,

c[`′, S, ρ1, ρ2 \ {{v}}] if {v} ∈ ρ2,

−∞ if {v} /∈ ρ1 ∪ ρ2.

Introduce edge: In this case, either the edge {u, v} that is being inserted is incident with
one vertex of each side, or the two endpoints are at the same side. In the former case,
a solution on ` corresponds to a solution on `′ with the same partitions, but with value
increased. In the latter case, edge {u, v} may connect two connected components of a partial
solution on `′.

c[`, S, ρ1, ρ2] =

c[`′, S, ρ1, ρ2] + 1 if u ∈ S and v /∈ S or u /∈ S and v ∈ S,
maxρ′1{c[`

′, S, ρ′1, ρ2]} if u ∈ S and v ∈ S,
maxρ′2{c[`

′, S, ρ1, ρ
′
2]} if u /∈ S and v /∈ S.

Here, ρ′1 spans over all refinements of ρ1 such that the union of the parts containing u and v
results in the partition ρ1. The same holds for ρ′2.

Forget vertex: In this case, either the forgotten vertex v is in the left side of the partial
solution induced on `, or is in the right side. Thus, v must be in the connected component
which contains some part of ρ1, or some part of ρ2. We select the possibility that maximizes
the value

c[`, S, ρ1, ρ2] = maxρ′1,ρ′2{c[`
′, S ∪ {v}, ρ′1, ρ2], c[`′, S, ρ1, ρ

′
2]}.

Here, ρ′1 spans over all partitions obtained from ρ1 by adding v in some part of ρ1 (if ρ1 = {∅}
then ρ′1 = {v}). The same holds for ρ′2.

Join: This node represents the join of two subgraphs G`′ and G`′′ and X` = X`′ = X`′′ .
By counting the bond edges contained in G`′ and in G`′′ , each edge is counted at least once,
but edges in X` are counted twice. Thus

c[`, S, ρ1, ρ2] = max{c[`′, S, ρ′1, ρ′2] + c[`′, S, ρ′′1 , ρ′′2]} − |{{u, v} ∈ E, u ∈ S, v ∈ X` \ S}|.

In this case, we must find the best combination between the two children. Namely, for
i ∈ {1, 2}, we consider combinations of ρ′i with ρ′′i which merge into ρi. If ρi = {∅} then
either ρ′i = {∅} and ρ′′i = ∅; or ρ′i = ∅ and ρ′′i = {∅}. Also, if ρi = ∅ then ρ′i = ∅ and ρ′′i = ∅.

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:13

The running time of the dynamic programming algorithm can be estimated as follows.
The number of nodes in the decomposition is O(tw×n) [8]. For each node `, the parameters ρ1
and ρ2 induce a partition of X`; the number of partitions of X` is given by the corresponding
Bell number, B(|X`|) ≤ B(tw + 1). Each such a partition ρ corresponds to a number of
choice of parameter S that corresponds to a subset of the parts of ρ; thus the number of
choices for S is not larger than 2|ρ| ≤ 2|X`| ≤ 2tw+1. Therefore, we conclude that the table
size is at most O(B(tw+ 1)×2tw× tw×n). Since each entry can be computed in 2O(tw log tw)

time, the total complexity is 2O(tw log tw) × n. The correctness of the recursive formulas is
straightforward. J

The reason for the 2O(tw log tw) dependence on treewidth is because we enumerate all
partitions of a bag to check connectivity. However, one can obtain single exponential-
time dependence by modifying the presented algorithm using techniques based on Gauss
elimination, as described in [8, Chapter 11] for Steiner Tree.

I Theorem 26. Largest st-Bond is fixed-parameter tractable when parameterized by
treewidth.

Proof. The solution of Largest st-Bond can be found by a dynamic programming as
presented in Theorem 25 where we add s and t in all the nodes and we fix s ∈ S and t /∈ S. J

Finally, the following holds.

I Corollary 27. Largest Bond and Largest st-Bond are fixed-parameter tractable when
parameterized by the size of the solution, k.

Proof. Follows from Lemma 19, Lemma 21, Corollary 24, Theorem 25 and Theorem 26. J

6 Infeasibility of polynomial kernels

An or-composition for Largest Bond parameterized by k can be done from the disjoint
union of ` inputs, by selecting exactly one vertex of each input graph and contracting them
into a single vertex. Now, let (G1, k, s1, t1), (G2, k, s2, t2), . . . , (G`, k, s`, t`) be ` instances
of Largest st-Bond parameterized by k. An or-composition for Largest st-Bond
parameterized by k can be done from the disjoint union of G1, G2, . . . , G`, by contracting
ti, si+1 into a single vertex, 1 ≤ i ≤ `− 1, and setting s = s1 and t = t`.

I Theorem 28. Largest Bond and Largest st-Bond do not admit polynomial kernel
unless NP ⊆ coNP/poly.

References
1 Robert E. L. Aldred, Dries V. Dyck, Gunnar Brinkmann, Veerle Fack, and Brendan D McKay.

Graph structural properties of non-Yutsis graphs allowing fast recognition. Discrete Applied
Mathematics, 157(2):377–386, 2009.

2 Lawrence Christian Biedenharn and James D Louck. The Racah-Wigner algebra in quantum
theory. Addison-Wesley, 1981.

3 Hans L Bodlaender, Jan Van Leeuwen, Richard Tan, and Dimitrios M Thilikos. On interval
routing schemes and treewidth. Information and Computation, 139(1):92–109, 1997.

4 Jung Jin Cho, Yong Chen, and Yu Ding. On the (co)girth of a connected matroid. Discrete
Applied Mathematics, 155(18):2456–2470, 2007.

5 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms. MIT
Press, 2001. URL: https://books.google.co.in/books?id=NLngYyWFl_YC.

IPEC 2019

https://books.google.co.in/books?id=NLngYyWFl_YC

12:14 Computing the Largest Bond of a Graph

6 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

7 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

8 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

9 Guoli Ding, Stan Dziobiak, and Haidong Wu. Large-or-Minors in 3-Connected Graphs. Journal
of Graph Theory, 82(2):207–217, 2016.

10 Dries V. Dyck and Veerle Fack. On the reduction of Yutsis graphs. Discrete Mathematics,
307(11):1506–1515, 2007. The Fourth Caracow Conference on Graph Theory.

11 Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems. J. ACM, 19(2):248–264, April 1972.

12 Paul Erdös. On some extremal problems in graph theory. Israel Journal of Mathematics,
3(2):113–116, 1965.

13 Melissa Flynn. The Largest Bond in 3-Connected Graphs. PhD thesis, The University of
Mississippi, 2017.

14 Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM Journal on Computing,
43(5):1541–1563, 2014.

15 Rajiv Gandhi, Mohammad T. Hajiaghayi, Guy Kortsarz, Manish Purohit, and Kanthi Sarpat-
war. On maximum leaf trees and connections to connected maximum cut problems. Information
Processing Letters, 129:31–34, 2018.

16 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

17 Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The Planar Hamiltonian Circuit
Problem is NP-Complete. SIAM Journal on Computing, 5(4):704–714, 1976.

18 Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Graduate texts in
mathematics. Springer, 2001.

19 Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-
imum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM, 42(6):1115–
1145, 1995.

20 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

21 F. Hadlock. Finding a Maximum Cut of a Planar Graph in Polynomial Time. SIAM Journal
on Computing, 4(3):221–225, 1975.

22 D. J. Haglin and S. M. Venkatesan. Approximation and intractability results for the maximum
cut problem and its variants. IEEE Transactions on Computers, 40(1):110–113, January 1991.
doi:10.1109/12.67327.

23 Mohammad Taghi Hajiaghayi, Guy Kortsarz, Robert MacDavid, Manish Purohit, and Kanthi
Sarpatwar. Approximation Algorithms for Connected Maximum Cut and Related Problems.
In In Proceedings of the 23rd European Symposium on Algorithms, pages 693–704, 2015.

24 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal Inapproximability Results for
MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37(1):319–357, 2007.

25 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: MaxSat
and MaxCut. Journal of Algorithms, 31(2):335–354, 1999.

26 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

27 Andrew M Odlyzko. Asymptotic enumeration methods. Handbook of combinatorics,
2(1063):1229, 1995.

28 James G. Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

https://doi.org/10.1109/12.67327

G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza 12:15

29 Christophe Picouleau. Complexity of the hamiltonian cycle in regular graph problem. Theor-
etical Computer Science, 131(2):463–473, 1994.

30 Saket Saurabh and Meirav Zehavi. Parameterized Complexity of Multi-Node Hubs. In 13th
International Symposium on Parameterized and Exact Computation (IPEC 2018), pages
8:1–8:14, 2019.

31 Xiangkun Shen, Jon Lee, and Viswanath Nagarajan. Approximating graph-constrained
max-cut. Mathematical Programming, 172(1):35–58, November 2018.

32 A. P. Yutsis, V. V. Vanagas, and I. B. Levinson. Mathematical apparatus of the theory of
angular momentum. Israel program for scientific translations, 1962.

IPEC 2019

Parameterized Algorithms for Maximum Cut with
Connectivity Constraints
Hiroshi Eto
Kyushu University, Fukuoka, Japan
h-eto@econ.kyushu-u.ac.jp

Tesshu Hanaka
Chuo University, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

Yasuaki Kobayashi
Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

Yusuke Kobayashi
Kyoto University, Kyoto, Japan
yusuke@kurims.kyoto-u.ac.jp

Abstract
We study two variants of Maximum Cut, which we call Connected Maximum Cut and Maximum
Minimal Cut, in this paper. In these problems, given an unweighted graph, the goal is to compute
a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-
complete even on planar graphs whereas Maximum Cut on planar graphs is solvable in polynomial
time. We first show that these problems are NP-complete even on planar bipartite graphs and
split graphs. Then we give parameterized algorithms using graph parameters such as clique-width,
tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution
size.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Maximum cut, Parameterized algorithm, NP-hardness, Graph parameter

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.13

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.03389.

Acknowledgements We thank Akitoshi Kawamura and Yukiko Yamauchi for giving an opportunity
to discuss in the Open Problem Seminar at Kyushu University. This work is partially supported
by JST CREST JPMJCR1401 and JSPS KAKENHI Grant Numbers JP17H01788, JP18H06469,
JP16K16010, JP17K19960, and JP18H05291.

1 Introduction

Maximum Cut is one of the most fundamental problems in theoretical computer science.
Given a graph and an integer k, the problem asks for a subset of vertices such that the
number of edges having exactly one endpoint in the subset is at least k. This problem was
shown to be NP-hard in Karp’s seminal work [34]. To overcome this intractability, a lot of
researches have been done from various view points, such as approximation algorithms [25],
fixed-parameter tractability [40], and special graph classes [7, 9, 20, 28, 29, 37].

In this paper, we study two variants of Maximum Cut, called Connected Maximum
Cut and Maximum Minimal Cut. A cut (S, V \ S) is connected if the subgraph of G
induced by S is connected. Given a graph G = (V,E) and an integer k, Connected
Maximum Cut is the problem to determine whether there is a connected cut (S, V \ S) of
size at least k . This problem is defined in [30] and known to be NP-complete even on planar
graphs [31] whereas Maximum Cut on planar graphs is solvable in polynomial time [29, 37].

© Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, and Yusuke Kobayashi;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h-eto@econ.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:hanaka.91t@g.chuo-u.ac.jp
mailto:kobayashi@iip.ist.i.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:yusuke@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.IPEC.2019.13
https://arxiv.org/abs/1908.03389
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

Table 1 The summary of the computational complexity of Maximum Cut and its variants. MC,
CMC, and MMC stand for Maximum Cut, Connected Maximum Cut, and Maximum Minimal
Cut.

Graph Class Parameter kernel
Split Bipartite Planar cw tw tc k k

MC NP-c P P nO(cw) 2tw 2tc 1.2418k O(k)
[7] [trivial] [29, 37] [22] [7] [23] [40] [30, 36]

CMC NP-c NP-c NP-c nO(cw) 3tw 22tc+tc 9k No
[Th. 5] [Th. 3] [31] [Th. 17] [Th. 12] [Th. 18] [Th. 22] [Th. 24]

MMC NP-c NP-c NP-c nO(cw) 4tw 2tc32tc
2O(k2) No

[Th. 6] [Th. 4] [30] [Th. 17] [Th. 11] [Th. 19] [Th. 21] [Th. 24]

Suppose G is connected. We say that a cut (S, V \S) of G is minimal if there is no another
cut of G whose cutset properly contains the cutset of (S, V \S), where the cutset of a cut is the
set of edges between different parts. We can also define minimal cuts for disconnected graphs
(See Section 2). Maximum Minimal Cut is the following problem: given a graph G = (V,E)
and an integer k, determine the existence of a minimal cut (S, V \ S) of size at least k. This
type of problems, finding a maximum minimal (or minimum maximal) solution on graphs
such as Maximum Minimal Vertex Cover [8, 46], Maximum Minimal Dominating
Set [1], Maximum Minimal Edge Cover [35], Maximum Minimal Separator [32],
Minimum Maximal matching [24, 45], and Minimum Maximal Independent Set [18],
has been long studied.

As a well-known fact, a cut (S, V \ S) is minimal if and only if both subgraphs induced
by S and V \ S are connected when the graph is connected [19]. Therefore, a minimal cut
is regarded as a two-sided connected cut, while a connected cut is a one-side connected
cut1. Haglin and Venkatean [30] showed that deciding if the input graph has a two-sided
connected cut (i.e., a minimal cut) of size at least k is NP-complete even on triconnected
cubic planar graphs. This was shown by the fact that for any two-sided connected cut on a
connected planar graph G, the cutset corresponds to a cycle on the dual graph of G and vise
versa. Hence, the problem is equivalent to the longest cycle problem on planar graphs [30].
Recently, Chaourar proved that Maximum Minimal Cut can be solved in polynomial time
on series parallel graphs and graphs without K5 \ e as a minor in [12, 13].

Even though there are many important applications of Connected Maximum Cut
and Maximum Minimal Cut such as image segmentation [44], forest planning [11], and
computing a market splitting for electricity markets [26], the known results are much fewer
than those for Maximum Cut due to the difficult nature of simultaneously maximizing its
size and handling the connectivity of a cut.

1.1 Our contribution
Our contribution is summarized in Table 1. We prove that both Connected Maximum Cut
and Maximum Minimal Cut are NP-complete even on planar bipartite graphs. Interestingly,
although Maximum Cut can be solved in polynomial time on planar graphs [29, 37] and

1 In [12, 13, 30], the authors used the term “connected cut” for two-sided connected cut. In this paper,
however, we use “minimal cut” for two-sided connected cut and “connected cut” for one-sided connected
cut for distinction.

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:3

bipartite graphs, both problems are intractable even on the intersection of these tractable
classes. We also show that the problems are NP-complete on split graphs.

To tackle to this difficulty, we study both problems from the perspective of the parame-
terized complexity. We give O∗(twO(tw))-time algorithms for both problems2, where tw is
the tree-width of the input graph. Moreover, we can improve the running time using the
rank-based approach [3] to O∗(ctw) for some constant c and using the Cut & Count technique
[17] to O∗(3tw) for Connected Maximum Cut and O∗(4tw) for Maximum Minimal cut
with randomization. Let us note that our result generalizes the polynomial time algorithms
for Maximum Minimal Cut on series parallel graphs and graphs without K5 \ e as a minor
due to Chaourar [12, 13] since such graphs are tree-width bounded [42].

Based on these algorithms, we give O∗(2kO(1))-time algorithms for both problems. For
Connected Maximum Cut, we also give a randomized O∗(9k)-time algorithm. As for
polynomial kernelization, we can observe that Connected Maximum Cut and Maximum
Minimal Cut admit no polynomial kernel when parameterized by solution size k under a
reasonable complexity assumption (see, Theorem 24).

We also consider different structural graph parameters. We design XP-algorithms for
both problems when parameterized by clique-width cw. Also, we give O∗(22tc+tc)-time and
O∗(2tc32tc)-time FPT algorithms for Connected Maximum Cut and Maximum Minimal
Cut, respectively, where tc is the minimum size of a twin-cover of the input graph.

1.2 Related work
Maximum Cut is a classical graph optimization problem and there are many applications
in practice. The problem is known to be NP-complete even on split graphs, tripartite graphs,
co-bipartite graphs, undirected path graphs [7], unit disc graphs [20], and total graphs [28].
On the other hand, it is solvable in polynomial time on bipartite graphs, planar graphs
[29, 37], line graphs [28], and proper interval graphs [9]. For the optimization version of
Maximum Cut, there is a 0.878-approximation algorithm using semidefinite programming
[25]. As for parameterized complexity, Maximum Cut is FPT [40] and has a linear kernel
[30, 36] when parameterized by the solution size k. Moreover, the problem is FPT when
parameterized by tree-width [7] and twin-cover number [23]. Fomin et al. [22] proved that
Maximum Cut is W[1]-hard but XP when parameterized by clique-width.

Connected Maximum Cut was proposed in [30]. The problem is a connected variant
of Maximum Cut as with Connected Dominating Set [27] and Connected Vertex
Cover [15]. Hajiaghayi et al. [31] showed that the problem is NP-complete even on planar
graphs whereas it is solvable in polynomial time on bounded treewidth graphs. For the
optimization version of Connected Maximum Cut, they proposed a polynomial time
approximation scheme (PTAS) on planar graphs and more generally on bounded genus
graphs and an Ω(1/ logn)-approximation algorithm on general graphs.

Maximum Minimal Cut was considered in [30] and shown to be NP-complete on planar
graphs. Recently, Chaourar proved that the problem can be solved in polynomial time on
series parallel graphs [12] and graphs without K5 \ e as a minor [13].

As another related problem, Multi-Node Hubs was proposed by Saurabh and Zehavi
[43]: Given a graph G = (V,E) and two integers k, p, determine whether there is a connected
cut of size at least k such that the size of the connected part is exactly p. They proved that
Multi-Node Hubs is W[1]-hard with respect to p, but solvable in time O∗(22O(k)). As
an immediate corollary of their result, we can solve Connected Maximum Cut in time
O∗(22O(k)) by solving Multi-Node Hubs for each 0 ≤ p ≤ n.

2 The O∗(·) notation suppresses polynomial factors in the input size.

IPEC 2019

13:4 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

clique-width

tree-width

path-width

vertex cover

XP
FPT

twin-cover

Figure 1 Graph parameters and the parameterized complexity of Maximum Cut, Connected
Maximum Cut, and Maximum Minimal Cut. Connections between two parameters imply the
above one is bounded by some function in the below one.

I Proposition 1 ([43]). Connected Maximum Cut can be solved in time O∗(22O(k)).

In this paper, we improve the running time in Proposition 1 by giving an O∗(2O(k))-time
algorithm for Connected Maximum Cut in Section 4.4.

2 Preliminaries

In this paper, we use the standard graph notations. Let G = (V,E) be an undirected graph.
For V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. We denote the open
neighbourhood of v by N(v) and the closed neighbourhood by N [v].

A cut of G is a pair (S, V \ S) for some subset S ⊆ V . Note that we allow S (and V \ S)
to be empty. For simplicity, we sometimes denote a cut (S, V \ S) by (S1, S2) where S1 = S

and S2 = V \ S. If the second part V \ S of a cut is clear from the context, we may simply
denote (S, V \ S) by S. The cutset of S, denoted by δ(S), is the set of cut edges between
S and V \ S. The size of a cut is defined as the number of edges in its cutset (i.e., |δ(S)|).
A cut S is connected if the subgraph induced by S is connected. We say that a cutset is
minimal if there is no non-empty proper cutset of it. A cut is minimal if its cutset is minimal.
It is well known that for every minimal cut S, G[S] and G[V \ S] are connected when G is
connected [19]. If G has two or more connected component, every cutset of a minimal cut
of G corresponds to a minimal cutset of its connected component. Therefore, throughout
the paper, except in Theorem 24, we assume the input graph G is connected. Let p be a
predicate. We define the function [p] as follows: if p is true, then [p] = 1, otherwise [p] = 0.

2.1 Graph parameters
In this paper, we use the following graph parameters: clique-width cw(G), tree-width tw(G),
path-width pw(G), twin-cover number tc(G), and vertex cover number vc(G). The definitions
of them can be found in [14, 16, 23]. For clique-width, tree-width, path-width, twin-cover
number, and vertex cover number, the following relations hold.

I Proposition 2 ([6, 14, 23]). For any graph G, the following inequalities hold: cw(G) ≤
2tw(G)+1 + 1, cw(G) ≤ pw(G) + 1, tw(G) ≤ pw(G) ≤ vc(G), cw(G) ≤ 2tc(G) + tc(G), and
tc(G) ≤ vc(G).

From Proposition 2, we can illustrate the parameterized complexity of Maximum Cut, Con-
nected Maximum Cut, and Maximum Minimal Cut associated with graph parameters
in Figure 1.

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:5

3 Computational Complexity on Graph Classes

In this section, we prove that Connected Maximum Cut and Maximum Minimal Cut
are NP-complete on planar bipartite graphs and split graphs.

3.1 Planar bipartite graphs
I Theorem 3. Connected Maximum Cut is NP-complete on planar bipartite graphs.

I Theorem 4. Maximum Minimal Cut is NP-complete on planar bipartite subcubic graphs.

Proof. We give a reduction from Maximum Minimal Cut on planar cubic graphs, which is
known to be NP-complete [30]. Given a connected planar cubic graph G = (V,E), we split
each edge e = {u,w} ∈ E by a vertex ve, that is, we introduce a new vertex ve and replace
e by {u, ve} and {w, ve}. Let VE = {ve | e ∈ E} and G′ = (V ∪ VE , E

′) the reduced graph.
Since we split each edge by a vertex and G is a planar cubic graph, G′ is not only planar but
also bipartite and subcubic. In the following, we show that there is a minimal cut of size at
least k in G if and only if so is in G′. We can assume that k > 2.

Let (S1, S2) be a minimal cut of G. We construct a cut (S′1, S′2) of G′ with Si ⊆ S′i for
i = 1, 2. For each edge e ∈ E, we add ve to S′2 if both endpoints of e are contained in S2,
and otherwise add ve to S′1. Recall that a cut is minimal if and only if both sides of the cut
induce connected subgraphs. We claim that both G′[S′1] and G′[S′2] are connected. To see
this, consider vertices u, v ∈ S1. As G[S1] is connected, there is a path between u and v in
G[S1]. By the construction of S′1, every vertex of the path is in S′1 and for every edge e in the
path, we have ve ∈ S′1. Therefore, there is a path between u and v in G′[S′1]. Moreover, for
every ve ∈ S′1, at least one endpoint of e is in S′1. Hence, G′[S′1] is connected. Symmetrically,
we can conclude that G′[S′2] is connected. Moreover, for each e = {u,w} with u ∈ S′1 and
w ∈ S′2, {ve, w} is a cut edge in G′. Therefore, (S′1, S′2) is a minimal cut of size at least k.

Conversely, we are given a minimal cut (S′1, S′2) of size k. We let Si = S′1 ∩ V for i = 1, 2.
For each e = {u, v}, we can observe that ve ∈ S′i if u,w ∈ S′i due to the connectivity of S′i
and k > 2. This means that an edge {u, ve} (or {w, ve}) contributes to the cut if and only if
exactly one of u and w is contained in S′1 (and hence S1), that is, the edge e contributes to
the cut (S1, S2) in G. Therefore, the size of the cut (S1, S2) is at least k. Moreover, u and v
are connected by a path through ve in G′[S′i] if and only if u and v are contained in Si and
adjacent to each other in G[Si]. Hence, G[Si] is connected for each i = 1, 2, and the theorem
follows. J

3.2 Split graphs
I Theorem 5. Connected Maximum Cut is NP-complete on split graphs.

Proof. We reduce the following problem called Exact 3-cover, which is known to be
NP-complete: Given a set X = {x1, x2, . . . , x3n} and a family F = {F1, F2, . . . , Fm}, where
each Fi = {xi1 , xi2 , xi3} has three elements of X, the objective is to find a subfamily F ′ ⊆ F
such that every element in X is contained in exactly one of the subsets F ′. By making some
copies of 3-element sets if necessary, we may assume that |{F ∈ F | x ∈ F}| ≥ 3(n+ 2) for
each x ∈ X, which implies that m is sufficiently large compared to n.

Given an instance of Exact 3-cover with |{F ∈ F | x ∈ F}| ≥ 3(n + 2) for each
x ∈ X, we construct an instance of Connected Maximum Cut in a split graph as
follows. We introduce m vertices u1, u2, . . . , um, where each ui corresponds to Fi, and
introduce m − 2n vertices um+1, um+2, . . . , u2(m−n). Let U := {u1, u2, . . . , u2(m−n)}. For

IPEC 2019

13:6 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

．．． ．．． ．．．．．．

Figure 2 An instance of Connected Maximum Cut on split graphs reduced from
an instance of Exact 3-cover where X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} and F =
{{x1, x2, x3}, {x1, x3, x4}, {x2, x4, x5}, {x5, x8, x9}, {x3, x6, x7}, {x6, x7, x8}, {x7, x8, x9}, {x6, x8, x9},
{x4, x8, x9}, {x2, x7, x9}}.

i = m+ 1,m+ 2, . . . , 2(m− n), introduce a vertex set Yi of size M , where M is a sufficiently
large integer compared to n (e.g. M = 3n+1). Now, we construct a graph G = (U∪X∪Y,E),
where Y :=

⋃
m+1≤i≤m−2n Yi, EU := {{u, u′} | u, u′ ∈ U, u 6= u′}, EX := {{ui, xj} | 1 ≤

i ≤ m, 1 ≤ j ≤ 3n, xj ∈ Fi}, EY := {{ui, y} | m + 1 ≤ i ≤ 2(m − n), y ∈ Yi}, and
E := EU ∪ EX ∪ EY . Then, G is a split graph in which U induces a clique and X ∪ Y is an
independent set. We now show the following claim.

B Claim. The original instance of Exact 3-cover has a solution if and only if the obtained
graph G has a connected cut of size at least (m− n)2 + 3m− 3n+ (m− 2n)M .

Proof. Suppose that the original instance of Exact 3-cover has a solution F ′. Then
S := {ui | Fi ∈ F ′} ∪ {ui | m+ 1 ≤ i ≤ 2(m− n)} ∪X is a desired connected cut, because
|δ(S)∩EU | = (m−n)2, |δ(S)∩EX | =

∑m
i=1 |Fi|−|X| = 3m−3n, and |δ(S)∩EY | = (m−2n)M .

Conversely, suppose that the obtained instance of Connected Maximum Cut has
a connected cut S such that |δ(S)| ≥ (m − n)2 + 3m − 3n + (m − 2n)M . Since |δ(S) ∩
EU | ≤ (m − n)2, |δ(S) ∩ EX | ≤ 3m, and |δ(S) ∩ EY | ≤ |S ∩ {um+1, . . . , u2(m−n)}| · M ,
we obtain |S ∩ {um+1, . . . , u2(m−n)}| = m − 2n, that is, {um+1, . . . , u2(m−n)} ⊆ S. Let
t = |S ∩ {u1, . . . , um}|, X0 = {x ∈ X | N(x)∩ S = ∅} the vertices in X that has no neighbor
in S, Xall = {x ∈ X | N(x) ⊆ S} the vertices in X whose neighbor is entirely included in S,
and Xpart = X \ (X0 ∪Xall) all the other vertices in X. Recall that every element in X is
contained in at least 3(n+2) subsets of F . Then, since |δ(S)∩EU | = (m−t)(m−2n+t) = (m−
n)2−(t−n)2, |δ(S)∩EX | ≤ |EX |−|Xpart|−|δ(X0)| ≤ 3m−(3n−|Xall|−|X0|)−3(n+2)|X0|,
|δ(S) ∩ EY | ≤ (m− 2n)M , and |δ(S)| ≥ (m− n)2 + 3m− 3n+ (m− 2n)M , we obtain

|Xall| − (3n+ 5)|X0| − (t− n)2 ≥ 0. (1)

By counting the number of edges between S ∩ {u1, u2, . . . , um} and X, we obtain 3t ≥
|δ(Xall)| ≥ 3(n + 2)|Xall|, which shows that t ≥ (n + 2)|Xall|. If |Xall| ≥ 1, then t ≥
(n+ 2)|Xall| ≥ n+ 2|Xall|, and hence |Xall| − 3(n+ 5)|X0| − (t−n)2 ≤ |Xall| − (2|Xall|)2 < 0,
which contradicts (1). Thus, we obtain |Xall| = 0, and hence we have t = n and X0 = ∅
by (1). Therefore, F ′ := {Fi | 1 ≤ i ∈ m, ui ∈ S} satisfies that |F ′| = n and

⋃
F∈F ′ F = X.

This shows that F ′ is a solution of the original instance of Exact 3-cover. C

This shows that Exact 3-cover is reduced to Connected Maximum Cut in split
graphs, which completes the proof. J

I Theorem 6. Maximum Minimal Cut is NP-complete on split graphs.

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:7

4 Parameterized Complexity

4.1 Tree-width
In this section, we give FPT algorithms for Connected Maximum Cut and Maximum
Minimal Cut parameterized by tree-width. In particular, we design O∗(ctw)-time algorithms
where c is some constant.

4.1.1 O∗(twO(tw))-algorithm
We design an O∗(twO(tw))-algorithm for Maximum Minimal Cut. To do this, we consider
a slightly different problem, called Maximum Minimal s-t Cut: Given a graph G = (V,E),
an integer k and two vertices s, t ∈ V , determine whether there is a cut (S1, S2) of size at
least k in G such that s ∈ S1, t ∈ S2 and (S1, S2) is minimal, that is, both G[S1] and G[S2]
are connected. If we can solve Maximum Minimal s-t Cut in time O∗(twO(tw)), we can
also solve Maximum Minimal Cut in the same running time up to a polynomial factor in
n since it suffices to compute Maximum Minimal s-t Cut for each pair of s and t.

Our algorithm is based on standard dynamic programming on a tree decomposition. This
algorithm outputs a maximum minimal cut (S1, S2). Basically, the algorithm is almost the
same as an O∗(2tw)-algorithm for Max Cut in [7] except for keeping the connectivity of
a cut. In other words, for each vertex, we label either 1 or 2, which represent a vertex is
assigned to S1 or S2. To keep track of the connectivity, for each bag Xi, we consider two
partitions S1 and S2 of S1 ∩Xi and S2 ∩Xi, respectively.

I Theorem 7. Given a tree decomposition of width tw of G, Maximum Minimal Cut and
Maximum Minimal s-t Cut can be solved in time O∗(twO(tw)).

The algorithm in Theorem 7 is applicable to Connected Maximum s-t Cut and
Connected Maximum Cut as well.

I Theorem 8. Give a tree decomposition of width tw, Connected Maximum s-t Cut and
Connected Maximum Cut are solvable in time O∗(twO(tw)).

The dynamic programming algorithms in Theorems 7, 8 can be seen as ones for connectivity
problems such as finding a Hamiltonian cycle, a feedback vertex set, and a Steiner tree. For
such problems, we can improve the running time twO(tw) to 2O(tw) using two techniques
called the rank-based approach due to Bodlaender et al. [3] and the cut & count technique
due to Cygan et al. [17]. In the next two subsections, we improve the running time of the
algorithms described in this section using these techniques.

4.1.2 Rank-based approach
In this subsection, we provide faster 2O(tw)-time deterministic algorithms parameterized by
tree-width. To show this, we use the rank-based approach proposed by Bodlaender et al.
[3]. The key idea of the rank-based approach is to keep track of small representative sets of
size 2O(tw) that capture partial solutions of an optimal solution instead of twO(tw) partitions.
Indeed, we can compute small representative sets within the claimed running time using
reduce algorithm [3].

I Theorem 9. Given a tree decomposition of width tw, there are O∗((1 + 2ω+1)tw)-time
deterministic algorithms for Connected Maximum s-t Cut and Connected Maximum
Cut.

IPEC 2019

13:8 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

I Theorem 10. Given a tree decomposition of width tw, there are O∗(2(ω+2)tw)-time deter-
ministic algorithms for Maximum Minimal s-t Cut and Maximum Minimal Cut.

4.1.3 Cut & Count
In this subsection, we design much faster randomized algorithms by using Cut & Count,
which is the framework for solving the connectivity problems faster [17]. In Cut & Count,
we count the number of relaxed solutions modulo 2 on a tree decomposition and determine
whether there exists a connected solution by cancellation tricks.

I Theorem 11. Given a tree decomposition of width tw, there is a Monte-Carlo algorithm
that solves Maximum Minimal Cut and Maximum Minimal s-t Cut in time O∗(4tw). It
cannot give false positives and may give false negatives with probability at most 1/2.

I Theorem 12. Given a tree decomposition of width tw, there is a Monte-Carlo algorithm
that solves Connected Maximum Cut and Connected Maximum s-t Cut in time
O∗(3tw). It cannot give false positives and may give false negatives with probability at most
1/2.

4.2 Clique-width
In this section, we design XP algorithms for both Connected Maximum Cut and Maximum
Minimal Cut when parameterized by clique-width. The algorithms are analogous to the
dynamic programming algorithm for Maximum Cut given by Fomin et al. [22], but we need
to carefully control the connectivity information in partial solutions.

Suppose that the clique-width of G is w. Then, G can be constructed by the four
operations: creation, disjoint union, joining, and relabeling (see e.g., [14]). This construction
naturally defines a tree expressing a sequence of operations. This tree is called a w-expression
tree of G and used for describing dynamic programming algorithms for many problems
based on clique-width. Here, we rather use a different graph parameter and its associated
decomposition closely related to clique-width. We believe that this decomposition is more
suitable to describe our dynamic programming.

I Definition 13. Let X ⊆ V (G). We say that M ⊆ X is a twin-set of X if for any
v ∈ V (G) \X, either M ⊆ N(v) or M ∩N(v) = ∅ holds. A twin-set M is called a twin-class
of X if it is maximal subject to being a twin-set of X. X can be partitioned into twin-classes
of X.

I Definition 14. Let w be an integer. We say that X ⊆ V (G) is a w-module of G if X can
be partitioned into w twin-classes {X1, X2, . . . , Xw}. A decomposition tree of G is a pair
of a rooted binary tree T and a bijection φ from the set of leaves of T to V (G). For each
node v of T , we denote by Lv the set of leaves, each of which is either v or a descendant of
v. The width of a decomposition tree (T, φ) of G is the minimum w such that for every node
v in T , the set

⋃
l∈Lv

φ(l) is a wv-module of G with wv ≤ w. The module-width of G is the
minimum t such that there is a decomposition tree of G of width w.

Rao [41] proved that clique-width and module-width are linearly related to each other.
Let cw(G) and mw(G) be the clique-width and the module-width of G, respectively. We
note that a similar terminology “modular-width” has been used in many researches, but
module-width used in this paper is different from it.

I Theorem 15 ([41]). For every graph G, mw(G) ≤ cw(G) ≤ 2mw(G).

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:9

Moreover, given a w-expression tree of G, we can in time O(n2) compute a decomposition
tree (T, φ) of G of width at most w and wv ≤ w twin-classes of

⋃
l∈Lv

φ(l) for each node v in
T [10].

Fix a decomposition tree (T, f) of G whose width is w. Our dynamic programming
algorithm runs over the nodes of the decomposition tree in a bottom-up manner. For
each node v in T , we let {Xv

1 , X
v
2 , . . . , X

v
wv
} be the twin-classes of

⋃
l∈Lv

φ(l). From now
on, we abuse the notation to denote

⋃
l∈Lv

φ(l) simply by Lv. A tuple of 4wv integers
t = (p1, p1, p2, p2, . . . , pwv , pwv

, c1, c1, c2, c2, . . . , cwv , cwv) is valid for v if it holds that 0 ≤
pi, pi ≤ |Xv

i | with pi + pi = |Xv
i | and ci, ci ∈ {0, 1} for each 1 ≤ i ≤ wv. For a valid tuple t

for v, we say that a cut (S,Lv \ S) of G[Lv] is t-legitimate if for each 1 ≤ i ≤ wv, it satisfies
the following conditions:

pi = |S ∩Xv
i |,

pi = |(Lv \ S) ∩Xv
i |,

G[S ∩Xv
i] is connected if ci = 1, and

G[(Lv \ S) ∩Xv
i] is connected if ci = 1.

The size of a t-legitimate cut is defined accordingly. In this section, we allow each side of a
cut to be empty and the empty graph is considered to be connected. Our algorithm computes
the value mc(v, t) that is the maximum size of a t-legitimate cut for each valid tuple t and
for each node v in the decomposition tree.

Leaves (Base step):

For each valid tuple t for a leaf v, mc(v, t) = 0. Note that there is only one twin-class
Xv

1 = {v} for v in this case.

Internal nodes (Induction step):

Let v be an internal node of T and let a and b be the children of v in T . Consider twin-classes
X v = {Xv

1 , X
v
2 , . . . , X

v
wv
}, X a = {Xa

1 , X
a
2 , . . . , X

a
wa
}, and X b = {Xb

1, X
b
2, . . . , X

b
wb
} of Lv,

La, and Lb, respectively. Note that X a ∪ X b is a partition of Lv.

I Observation 1. X v is a partition of Lv coarser than X a ∪ X b.

To see this, consider an arbitrary twin-class Xa
i of La. By the definition of twin-sets, for

every z ∈ V (G)\La, either Xa
i ⊆ N(z) or Xa

i ∩N(z) = ∅ holds. Since V (G)\Lv ⊆ V (G)\La,
Xa

i is also a twin-set of Lv, which implies Xa
i is included in some twin-class Xv

j of Lv. This
argument indeed holds for twin-classes of Lb. Therefore, we have the above observation.

The intuition of our recurrence is as follows. By Observation 1, every twin-class of Lv

can be obtained by merging some twin-classes of La and of Lb. This means that every
tv-legitimate cut of G[Lv] for a valid tuple tv for v can be obtained from some ta-legitimate
cut and tb-legitimate cut for valid tuples for a and b, respectively. Moreover, for every pair
of twin-classes Xa

i of La and Xb
j of Lb, either there are no edges between them or every

vertex in Xa
i is adjacent to every vertex in Xb

j as Xa
i is a twin-set of Lv. Therefore, the

number of edges in the cutset of a cut (S,Lv \ S) between Xa
i and Xb

j depends only on
the cardinality of Xa

i ∩ S and Xb
j ∩ S rather than actual cuts (S ∩Xa

i , (La \ S) ∩Xa
i) and

(S ∩Xb
i , (Lb \ S) ∩Xb

i).
Now, we formally describe this idea. Let Xv be a twin-class of Lv. We denote by Ia(Xv)

(resp. Ib(Xv)) the set of indices i such that Xa
i (resp. Xb

i) is included in Xv and by X a(Xv)
(resp. X b(Xv)) the set {Xa

i : i ∈ Ia(Xv)} (resp. {Xb
i : i ∈ Ib(Xv)}). For Xa ∈ X a(Xv) and

Xb ∈ X a(Xv), we say that Xa is adjacent to Xb if every vertex in Xa is adjacent to every

IPEC 2019

13:10 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

vertex in Xb and otherwise Xa is not adjacent to Xb. This adjacency relation naturally
defines a bipartite graph whose vertex set is X a(Xv) ∪ X b(Xv). We say that a subset of
twin-classes of X a(Xv)∪X b(Xv) is non-trivially connected if it induces a connected bipartite
graph with at least twin-classes. Let S ⊆ Xv. To make G[S] (and G[Xv \ S]) connected, the
following observation is useful.

I Observation 2. Suppose S ⊆ Xv has a non-empty intersection with at least two twin-
classes of X a(Xv) ∪ X b(Xv). Then, G[S] is connected if and only if the twin-classes having
a non-empty intersection with S are non-trivially connected.

This observation immediately follows from the fact that every vertex in a twin-class is
adjacent to every vertex in an adjacent twin-class and is not adjacent to every vertex in a
non-adjacent twin-class.

Let tv = (pv
1, p

v
1, . . . , p

v
wv
, pv

wv
, cv

1, c
v
2, . . . , c

v
wv
, cv

wv
) be a valid tuple for v. For notational

convenience, we use pv to denote (pv
1, p

v
1, . . . , p

v
wv
, pv

wv
) and cv to denote (cv

1, c
v
2, . . . , c

v
wv
, cv

wv
)

for each node v in T . For valid tuples ta = (pa, ca) for a and tb = (pb, cb) for b, we say that
tv is consistent with the pair (ta, tb) if for each 1 ≤ i ≤ wv,
C1 pv

i =
∑

j∈Ia(Xv
i

) p
a
j +

∑
j∈Ib(Xv

i
) p

b
j ;

C2 pv
i =

∑
j∈Ia(Xv

i
) p

a
j +

∑
j∈Ib(Xv

i
) p

b
j ;

C3 if cv
i = 1, either (1) {Xa

j : j ∈ Ia(Xv), pa
j > 0}∪{Xb

j : j ∈ Ib(Xv), pb
j > 0} is non-trivially

connected or (2) exactly one of {ps
j : s ∈ {a, b}, 1 ≤ j ≤ ws} is positive, say ps

j , and
cs

j = 1;
C4 if cv

i = 1, either (1) {Xa
j : j ∈ Ia(Xv), pa

j > 0}∪{Xb
j : j ∈ Ib(Xv), pb

j > 0} is non-trivially
connected or (2) exactly one of {ps

j : s ∈ {a, b}, 1 ≤ j ≤ ws} is positive, say ps
j , and

cs
j = 1.

I Lemma 16.

mc(v, tv) = max
ta,tb

mc(a, ta) + mc(b, tb) +
∑

Xa
i ∈X

a,Xb
j∈X

b

Xa
i ,Xb

j :adjacent

(pa
i p

b
j + pb

jp
a
i)

 ,

where the maximum is taken over all consistent pairs (ta, tb).

Proof. We first show that the left-hand side is at most the right-hand side. Suppose
(S,Lv \ S) be a tv-legitimate cut of G[Lv] whose size is equal to mc(v, tv). Let Sa = S ∩ La

and Sb = S ∩ Lb. We claim that (Sa, La \ Sa) is a ta-legitimate cut of G[La] for some valid
tuple ta for a. This is obvious since we set pa

i = |Sa ∩Xa
i |, pa

i = |(La \ Sa) ∩Xa
i |, ca

i = 1 if
G[Sa ∩Xa

i] is connected, and ca
i = 1 if G[(La \ Sa) ∩Xa

i] is connected, which yields a valid
tuple ta for a. We also conclude that (Sb, Lb \Sb) is a tb-legitimate cut of G[Lb] for some valid
tuple tb for b. Moreover, the number of cut edges between twin-class Xa

i of La and twin-class
Xb

j of Lb is |Sa ∩Xa
i | · |(Lb \ Sb)∩Xb

j |+ |Sb ∩Xb
j | · |(Lb \ Sa)∩Xa

i | = pa
i p

b
j + pb

jp
a
i if Xa

i and
Xb

j is adjacent, zero otherwise. Therefore, the left-hand side is at most the right-hand side.
To show the converse direction, suppose (Sa, La \ Sa) is a ta-legitimate cut of G[La] and

(Sb, Lb \Sb) is a tb-legitimate cut of G[Lb], where tv is consistent with (ta, tb) and the sizes of
the cuts are mc(a, ta) and mc(b, tb), respectively. We claim that (Sa ∪ Sb, Lv \ (Sa ∪ Sb)) is a
tv-legitimate cut of G[Lv]. Since tv is consistent with (ta, tb), for each 1 ≤ i ≤ wv, we have
pv

i =
∑

j∈Ia(Xv
i

) p
a
j +

∑
j∈Ib(Xv

i
) p

b
j =

∑
1≤j≤wa

|Sa∩Xi
v|+

∑
1≤j≤wb

|Sb∩Xi
v| = |(Sa∪Sb)∩Xi

v|.
Symmetrically, we have pi = |(Lv \ (Sa ∪ Sb)) ∩ Xv

i |. If cv
i = 1, by condition C3 of the

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:11

consistency, either (1) {Xa
j : j ∈ Ia(Xv), pa

j > 0} ∪ {Xb
j : j ∈ Ib(Xv), pb

j > 0} is non-trivially
connected or (2) exactly one of {ps

j : s ∈ {a, b}, 1 ≤ j ≤ ws} is positive, say ps
j , and cs

j = 1.
If (1) holds, by Observation 2, G[(Sa ∩ Sb) ∩ Xi

v] is connected. Otherwise, as cs
j = 1,

G[Ss ∩Xi
v] = G[(Sa ∪ Sb) ∩Xv

i] is also connected. By a symmetric argument, we conclude
that G[(Lv \ (Sa∪Sb))∩Xi

v] is connected if cv
i = 1. Therefore the cut (Sa∪Sb, Lv \ (Sa∪Sb))

is tv-legitimate. Since the cut edges between two twin-classes of La is counted by mc(a, ta)
and those between two twin-classes of Lv is counted by mc(b, tb). Similar to the forward
direction, the number of cut edges between a twin-class of La and a twin-class of Lb can be
counted by the third term in the right-hand side of the equality. Hence, the left-hand side is
at least right-hand side. J

I Theorem 17. Connected Maximum Cut and Maximum Minimal Cut can be computed
in time nO(w) provided that a w-expression tree of G is given as input.

Proof. From a w-expression tree of G, we can obtain a decomposition tree (T, φ) of width at
most w in O(n2) time using Rao’s algorithm [41]. Based on this decomposition, we evaluate
the recurrence in Lemma 16 in a bottom-up manner. The number of valid tuples for each
node of T is at most 4wnw. For each internal node v and for each valid tuple tv for v, we can
compute mc(v, tv) in (4wnw)2nO(1) time. Overall, the running time of our algorithm is nO(w).
Let r be the root of T . For Connected Maximum Cut, by the definition of legitimate cuts,
we should take the maximum value among mc(r, (i, n− i, 1, j)) for 1 ≤ i < n and j ∈ {0, 1}.
Note that as Lv has only one twin-class, the length of valid tuples is exactly four. For
Maximum Minimal Cut, we should take the maximum value among mc(r, (i, n− i, 1, 1))
for 1 ≤ i < n. J

Since there is an algorithm that, given a graph G and an integer k, either conclude
that the clique-width of G is more than k or find a (2k−1 − 1)-expression tree of G in time
O(n3) [33, 39, 38], Maximum Minimal Cut and Connected Maximum Cut are XP
parameterized by the clique-width of the input graph.

4.3 Twin-cover
Maximum Cut is FPT when parameterized by twin-cover number [23]. In this section, we
show that Connected Maximum Cut and Maximum Minimal Cut are also FPT when
parameterized by twin-cover number.

I Theorem 18. Connected Maximum Cut can be solved in time O∗(22tc+tc).

Proof. We first compute a minimum twin-cover X of G = (V,E) in time O∗(1.2738tc) [23].
Now, we have a twin-cover X of size tc. Recall that G[V \ X] consists of vertex disjoint
cliques and for each u, v ∈ Z in a clique Z of G[V \X], N(u) ∩X = N(v) ∩X.

We iterate over all possible subsets X ′ of X and compute the size of a maximum cut
(S, V \ S) of G with S ∩X = X ′.

If X ′ = ∅, exactly one of the cliques of G[V \X] intersects S as G[S] is connected. Thus,
we can compute a maximum cut by finding a maximum cut for each clique of G[V \ X],
which can be done in polynomial time.

Suppose otherwise that X ′ 6= ∅. We define a type of each clique Z of G[V \X]. The type
of Z, denoted by T (Z), is N(Z) ∩X. Note that there are at most 2tc − 1 types of cliques in
G[V \X].

For each type of cliques, we guess that S has an intersection with this type of cliques.
There are at most 22tc−1 possible combinations of types of cliques. Let T be the set of types

IPEC 2019

13:12 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

in G[V \X]. For each guess T ′ ⊆ T , we try to find a maximum cut (S, V \ S) such that
G[S] is connected, S ∩X = X ′, for each T ∈ T ′, at least one of the cliques of type T has an
intersection with S, and for each T /∈ T ′, every clique of type T has no intersection with
S. We can easily check if G[S] will be connected as S contains a vertex of a clique of type
T ∈ T ′. Consider a clique Z of type T (Z) = X ′′ ⊆ X. Since every vertex in Z has the
same neighborhood in X, we can determine the number of cut edges incident to Z from the
cardinality of S∩Z. More specifically, if |S∩Z| = p, the number of cut edges incident to Z is
equal to p(|Z| − p) + p|X ′′ ∩ (X \X ′)|+ (|Z| − p)|X ′′ ∩X ′|. Moreover, we can independently
maximize the number of cut edges incident to Z for each clique Z of G[V \X].

Overall, for each X ′ ⊆ X and for each set of types T ′, we can compute a maximum
connected cut with respect to X ′ and T ′ in polynomial time. Therefore, the total running
time is bounded by O∗(22tc+tc). J

I Theorem 19. Maximum Minimal Cut can be solved in time O∗(2tc32tc).

4.4 Solution size
In this section, we give FPT algorithms parameterized by the solution size for Connected
Maximum Cut and Maximum Minimal Cut. To show this, we use the following theorem.

I Theorem 20 ([2]). The Cartesian product Ck × K2 of a k-circuit with K2 is called a
k-prism. If G contains no k-prism as a minor, tw(G) = O(k2).

Then we have the following theorem.

I Theorem 21. Connected Maximum Cut and Maximum Minimal Cut can be solved
in time O∗(2O(k2)) where k is the solution size.

Proof. We first determine whether the tree-width of G is O(k2) in time O∗(2O(k)) by using the
algorithm in [5]. If tw(G) = O(k2), the algorithm in [5] outputs a tree decomposition of width
O(k2). Thus, we apply the dynamic programming algorithms based on tree decompositions
described in Section 4.1, and the running time is O∗(2O(k2)). Otherwise, we can conclude
that G has a minimal cut (and also a connected cut) of size at least k. To see this, consider
a k-prism minor of G. Then, we take k “middle edges” corresponding to K2 in the k-prism
minor and add some edges to make these edges form a cutset of some minimal cut of G. The
size of such a cut is at least k and hence G has a minimal cut and a connected cut of size at
least k. J

For Connected Maximum Cut, we can further improve the running time by giving an
O∗(9k)-time algorithm.

In [21], Fellows et al. proposed a “Win/Win” algorithm that outputs in linear time either
a spanning tree of G having at least k leaves, or a path decomposition of G of width at most
2k. If G has such a spanning tree, we can construct a cut (S, V \ S) of size at least k by
taking the internal vertices of the tree for S. Clearly, G[S] is connected, and hence we are
done in this case. Otherwise, we have a path decomposition of width at most 2k. Thus,
we can compute Connected Maximum Cut on such a path decomposition by using an
O∗(3tw)-algorithm in Section 4.1.

I Theorem 22. There is a Monte-Carlo algorithm that solves Connected Maximum Cut
in time O∗(9k). It cannot give false positives and may give false negatives with probability at
most 1/2.

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:13

Also, using the rank-based algorithm in Theorem 9, we obtain an O∗(38.2k)-time deterministic
algorithm for Connected Maximum Cut. Note that our rank-based algorithm in Theorem 9
runs in time O∗((1 + 2ω)pw) on a path decomposition and (1 + 2ω)2 < 38.2, where ω < 2.3727
is the exponent of matrix multiplication.

I Theorem 23. There is an O∗(38.2k)-time deterministic algorithm for Connected Max-
imum Cut.

As for kernelization, it is not hard to see that Connected Maximum Cut and Maximum
Minimal Cut do not admit a polynomial kernelization unless NP ⊆ coNP/poly since both
problems are trivially OR-compositional [4]; at least one of graphs G1, G2, . . . Gt have a
connected/minimal cut of size at least k if and only if their disjoint union G1 ∪G2 ∪ · · · ∪Gt

has.

I Theorem 24. Unless NP ⊆ coNP/poly, Maximum Minimal Cut and Connected
Maximum Cut admit no polynomial kernel parameterized by the solution size.

5 Conclusion and Remark

In this paper, we studied two variants of Max Cut, called Connected Maximum Cut
and Maximum Minimal Cut. We showed that both problems are NP-complete even
on planar bipartite graphs and split graphs. For the parameterized complexity, we gave
FPT algorithms parameterized by tree-width, twin-cover number, and the solution size,
respectively. Moreover, we designed XP-algorithms parameterized by clique-width.

Finally, we mention our problems on weighted graphs. It is not hard to see that
Connected Maximum Cut and Maximum Minimal Cut remain to be FPT with respect
to tree-width. However, our results with respect to clique-width and twin-cover number would
not be extended to weighted graphs since both problems are NP-hard on 0-1 edge-weighted
complete graphs.

References
1 C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K.-M. Klein, M. Lampis, M. Liedloff,

J. Monnot, and V. T. Paschos. The many facets of upper domination. Theoretical Computer
Science, 717:2–25, 2018.

2 E. Birmelé, J. A. Bondy, and B. A. Reed. Brambles, Prisms and Grids, pages 37–44. Birkhäuser
Basel, Basel, 2007.

3 H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential
time algorithms for connectivity problems parameterized by treewidth. Information and
Computation, 243:86–111, 2015.

4 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.

5 H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on Computing, 45(2):317–378,
2016.

6 H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating Treewidth,
Pathwidth, Frontsize, and Shortest Elimination Tree. Journal of Algorithms, 18(2):238–255,
1995.

7 H. L. Bodlaender and K. Jansen. On the Complexity of the Maximum Cut Problem. Nordic
Journal of Computing, 7(1):14–31, 2000.

8 N. Boria, F. D. Croce, and V. T. Paschos. On the max min vertex cover problem. Discrete
Applied Mathematics, 196:62–71, 2015.

IPEC 2019

13:14 Parameterized Algorithms for Maximum Cut with Connectivity Constraints

9 A. Boyacı, T. Ekim, and M. Shalom. A polynomial-time algorithm for the maximum cardinality
cut problem in proper interval graphs. Information Processing Letters, 121:29–33, 2017.

10 B.-M. Bui-Xuan, O. Suchý, J. A. Telle, and M. Vatshelle. Feedback vertex set on graphs of
low clique-width. European Journal of Combinatorics, 34(3):666–679, 2013.

11 R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub. Imposing
Connectivity Constraints in Forest Planning Models. Operations Research, 61(4):824–836,
2013.

12 B. Chaourar. A Linear Time Algorithm for a Variant of the MAX CUT Problem in Series
Parallel Graphs. Advances in Operations Research, pages 1267108:1–1267108:4, 2017.

13 B. Chaourar. Connected max cut is polynomial for graphs without K5 \ e as a minor. CoRR,
abs/1903.12641, 2019.

14 B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101(1):77–114, 2000.

15 M. Cygan. Deterministic Parameterized Connected Vertex Cover. In SWAT 2012, pages
95–106, 2012.

16 M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer International Publishing, 2015.

17 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk.
Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. In
FOCS 2011, pages 150–159, 2011.

18 M. Demange. A Note on the Approximation of a Minimum-Weight Maximal Independent Set.
Computational Optimization and Applications, 14(1):157–169, 1999.

19 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

20 J. Díaz and M. Kamiński. MAX-CUT and MAX-BISECTION are NP-hard on unit disk
graphs. Theoretical Computer Science, 377(1):271–276, 2007.

21 M. R. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. Rosamond, and S. Saurabh. The
Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number. Theory
of Computing Systems, 45(4):822–848, 2009.

22 F. V. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh. Almost Optimal Lower Bounds for
Problems Parameterized by Clique-Width. SIAM Journal on Computing, 43(5):1541–1563,
2014.

23 R. Ganian. Improving Vertex Cover as a Graph Parameter. Discrete Mathematics and
Theoretical Computer Science, 17(2):77–100, 2015.

24 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

25 M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM,
42(6):1115–1145, 1995.

26 V. Grimm, T. Kleinert, F. Liers, M. Schmidt, and G. Zöttl. Optimal price zones of electricity
markets: a mixed-integer multilevel model and global solution approaches. Optimization
Methods and Software, 34(2):406–436, 2019.

27 S. Guha and S. Khuller. Approximation Algorithms for Connected Dominating Sets. Algorith-
mica, 20(4):374–387, 1998.

28 V. Guruswami. Maximum cut on line and total graphs. Discrete Applied Mathematics,
92(2):217–221, 1999.

29 F. Hadlock. Finding a Maximum Cut of a Planar Graph in Polynomial Time. SIAM Journal
on Computing, 4(3):221–225, 1975.

30 D. J. Haglin and S. M. Venkatesan. Approximation and intractability results for the maximum
cut problem and its variants. IEEE Transactions on Computers, 40(1):110–113, 1991.

H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi 13:15

31 M. T. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, and K. Sarpatwar. Approximation
Algorithms for Connected Maximum Cut and Related Problems. In ESA 2015, pages 693–704,
2015.

32 T. Hanaka, H. L. Bodlaender, T. C. van der Zanden, and H. Ono. On the Maximum Weight
Minimal Separator. In TAMC 2017, pages 304–318, 2017.

33 P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-Decompositions. SIAM
Journal on Computing, 38(3):1012–1032, 2008.

34 R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston,
MA, 1972.

35 K. Khoshkhah, M. K. Ghadikolaei, J. Monnot, and F. Sikora. Weighted Upper Edge Cover:
Complexity and Approximability. In WALCOM 2019, pages 235–247, 2019.

36 M. Mahajan and V. Raman. Parameterizing above Guaranteed Values: MaxSat and MaxCut.
Journal of Algorithms, 31(2):335–354, 1999.

37 G. I. Orlova and Y. G. Dorfman. Finding the maximal cut in a graph. Engineering Cyvernetics,
10(3):502–506, 1972.

38 S. Oum. Approximating Rank-width and Clique-width Quickly. ACM Transactions on
Algorithms, 5(1):10:1–10:20, 2008.

39 S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Combina-
torial Theory, Series B, 96(4):514–528, 2006.

40 V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for two “edge”
problems: MAXCUT and MAXDAG. Information Processing Letters, 104(2):65–72, 2007.

41 M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics,
308(24):6157–6165, 2008.

42 N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986.

43 S. Saurabh and M. Zehavi. Parameterized Complexity of Multi-Node Hubs. In IPEC 2018,
volume 115, pages 8:1–8:14, 2019.

44 S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with
connectivity priors. In CVPR 2008, pages 1–8, 2008.

45 M. Yannakakis and F. Gavril. Edge Dominating Sets in Graphs. SIAM Journal on Applied
Mathematics, 38(3):364–372, 1980.

46 M. Zehavi. Maximum Minimal Vertex Cover Parameterized by Vertex Cover. SIAM Journal
on Discrete Mathematics, 31(4):2440–2456, 2017.

IPEC 2019

Multistage Vertex Cover
Till Fluschnik
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
till.fluschnik@tu-berlin.de

Rolf Niedermeier
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Valentin Rohm
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
valentinl.rohm@campus.tu-berlin.de

Philipp Zschoche
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
zschoche@tu-berlin.de

Abstract
Covering all edges of a graph by a small number of vertices, this is the NP-hard Vertex Cover
problem, is among the most fundamental algorithmic tasks. Following a recent trend in studying
dynamic and temporal graphs, we initiate the study of Multistage Vertex Cover. Herein, having
a series of graphs with same vertex set but over time changing edge sets (known as temporal graph
consisting of time layers), the goal is to find for each layer of the temporal graph a small vertex cover
and to guarantee that the two vertex cover sets between two subsequent layers differ not too much
(specified by a given parameter). We show that, different from classic Vertex Cover and some
other dynamic or temporal variants of it, Multistage Vertex Cover is computationally hard
even in fairly restricted settings. On the positive side, however, we also spot several fixed-parameter
tractability results based on some of the most natural parameterizations.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases NP-hardness, dynamic graph problems, temporal graphs, time-evolving
networks, W[1]-hardness, fixed-parameter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.14

Related Version A full version of the paper: https://arxiv.org/abs/1906.00659.

Funding Till Fluschnik: Supported by the DFG, project TORE (NI 369/18).

1 Introduction

Vertex Cover (VC) asks, given an undirected graph G and an integer k ≥ 0, whether at
most k vertices can be deleted from G such that the remaining graph contains no edge. VC
is NP-hard and it is a formative problem of algorithmics and combinatorial optimization.
We study a time-dependent, “multistage” version, namely a variant of VC on temporal
graphs. A temporal graph G is a tuple (V, E , τ) consisting of a set V of vertices, a discrete
time-horizon τ , and a set of temporal edges E ⊆ (V2) × {1, . . . , τ}. Equivalently, a temporal
graph G can be seen as a vector (G1, . . . , Gτ) of static graphs (layers), where each graph is
defined over the same vertex set V . Then, our specific goal is to find a small vertex cover Si
for each layer Gi such that the sizes of the symmetric differences Si △ Si+1 between the
vertex covers Si and Si+1 of every two consecutive layers Gi and Gi+1 are small. Formally,
we thus introduce and study the following problem.

© Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2203-4386
mailto:till.fluschnik@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
mailto:rolf.niedermeier@tu-berlin.de
mailto:valentinl.rohm@campus.tu-berlin.de
https://orcid.org/0000-0001-9846-0600
mailto:zschoche@tu-berlin.de
https://doi.org/10.4230/LIPIcs.IPEC.2019.14
https://arxiv.org/abs/1906.00659
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Multistage Vertex Cover

Multistage Vertex Cover (MSVC)
Input: A temporal graph G = (V, E , τ) and two integers k ∈ N, ` ∈ N0.
Question: Is there a sequence S = (S1, . . . , Sτ) such that

(i) for all i ∈ {1, . . . , τ}, it holds that Si ⊆ V is a size-at-most-k vertex cover
for Gi, and

(ii) for all i ∈ {1, . . . , τ − 1}, it holds that ∣Si△ Si+1∣ ≤ `?

Throughout this paper we assume that 0 < k < ∣V ∣ because otherwise we have a trivial
instance. In our model, we follow the recently proposed multistage [4, 16, 5, 11] view on
classical optimization problems on temporal graphs.

In general, the motivation behind a multistage variant of a classical problem such as
Vertex cover is that the environment changes over time (here reflected by the changing
edge sets in the temporal graph) and a corresponding adaptation of the current solution
comes with a cost. In this spirit, the parameter ` in the definition of MSVC allows to
model that only moderate changes concerning the solution vertex set may be wanted when
moving from one layer to the subsequent one. Indeed, in this sense ` can be interpreted as a
parameter measuring the degree of (non-)conservation [17, 1].

It is immediate that MSVC is NP-hard as it generalizes Vertex Cover (τ = 1). We
will study its parameterized complexity regarding the problem-specific parameters k, τ , `,
and some of their combinations, as well as restrictions to temporal graph classes [13].

Related Work. The literature on vertex covering is extremely rich, even when focusing on
parameterized complexity studies. Indeed, Vertex Cover (VC) can be seen as “drosophila”
of parameterized algorithmics. Thus, we only consider VC studies closely related to our
setting. First, we mention in passing that VC is studied in dynamic graphs [19, 3] and
graph stream models [6]. More importantly for us, Akrida et al. [2] studied a variant of VC
on temporal graphs. Their model significantly differs from ours: They want an edge to be
covered at least once over every time window of some given size ∆. That is, they define
a temporal vertex cover as a set S ⊆ V × {1, . . . , τ} such that, for every time window of
size ∆ and for each edge e = {v, w} appearing in a layer contained in the time window, it
holds that (v, t) ∈ S or (w, t) ∈ S for some t in the time window with (e, t) ∈ E . For their
model, they ask whether such an S of small cardinality exists. Note that if ∆ > 1, then for
some t ∈ {1, . . . , τ} the set St ∶= {v ∣ (v, t) ∈ S} is not necessarily a vertex cover of layer Gt.
For ∆ = 1, each St must be a vertex cover of Gt. However, in Akrida et al.’s model the size
of each St as well as the size of the symmetric difference between each St and St+1 may
strongly vary. They provide several hardness results and algorithms (mostly referring to
approximation or exact algorithms, but not to parameterized complexity studies).

A second related line of research, not directly referring to temporal graphs though, studies
reconfiguration problems which arise when we wish to find a step-by-step transformation
between two feasible solutions of a problem such that all intermediate results are feasible
solutions as well [18, 15]. Mouawad et al. [22, 21] studied, among other reconfiguration
problems, Vertex Cover Reconfiguration which takes as input a graph G, two vertex
covers S and T of size at most k each, and an integer τ . The goal is to determine whether
there is a sequence (S = S1, . . . , Sτ = T) such that each St is a vertex cover of size at most k.
The essential difference to our model is that from one “sequence element” to the next only
one vertex may be changed and that the input graph does not change over time. Indeed,
there is an easy reduction of this model to ours while the opposite direction is unlikely to
hold. This is substantiated by the fact that Mouawad et al. [22] showed that Vertex Cover
Reconfiguration is fixed-parameter tractable when parameterized by vertex cover size k
while we show W[1]-hardness for the corresponding case of MSVC.

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:3

Table 1 Overview on our results. The column headings describe the restrictions on the input
and each row corresponds to a parameter. p-NP-hard, PK, and NoPK abbreviate para-NP-hard,
polynomial problem kernel, and no problem kernel of polynomial size unless coNP ⊆ NP/poly.
† (Obs. 2.5)

general layers tree layers one-edge layers
0 ≤ ` < 2k ` ≥ 2k 0 ≤ ` < 2k 0 ≤ ` < 2

NP-hard NP-hard (Thm. 3.1(i)) NP-hard (Thm. 3.1(ii))

τ p-NP-hard (Thm. 3.1) p-NP-hard (Thm. 3.1) FPT, PK (Obs. 5.8)
k XP, W[1]-h., FPT†, NoPK XP, W[1]-h. open, NoPK

(Thm. 4.1) (Thm. 5.1) (Thm. 4.1) (Thm. 5.1)
k + τ FPT, PK (Thm. 5.5) FPT, PK (Thm. 5.5) FPT, PK (Thm. 5.5)

Finally, there is also a close relation to the research on dynamic parameterized problems [1,
20]. Krithika et al. [20] studied Dynamic Vertex Cover where one is given two graphs
on the same vertex set and a vertex cover for one of them together with the guarantee that
the cardinality of the symmetric difference between the two edge sets is upper-bounded by
a parameter d. The task then is to find a vertex cover for the second graph that is “close
enough” (measured by a second parameter) to the vertex cover of the first graph. They show
fixed-parameter tractability and a linear kernel with respect to d.

Our Contributions. Our results, focusing on the three perhaps most natural parameters, are
summarized in Table 1.1 We highlight a few specific results. Multistage Vertex Cover
remains NP-hard even if every layer consists of only one edge; clearly, the corresponding
hardness reduction then exploits an unbounded number τ of time layers. If one only has two
layers, however, one of them being a tree and the other being a path, then again Multistage
Vertex Cover already becomes NP-hard. MSVC parameterized by solution size k is fixed-
parameter tractable if ` ≥ 2k, but becomes W[1]-hard if ` < 2k. Considering the tractability
results for Dynamic Vertex Cover [20] and Vertex Cover Reconfiguration [22],
this hardness is surprising and is our most technical result. Furthermore, in the former case
(parameterization by k with ` ≥ 2k) MSVC does not admit a problem kernel of polynomial
size unless coNP ⊆ NP/poly. If one considers the combined parameter k + τ , however, then
besides fixed-parameter tractability in all cases we also obtain polynomial-sized kernels.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respectively. For
two sets A and B, we denote by A△B ∶= (A \B) ∪ (B \A) the symmetric difference of A
and B, and by A ⊎ B the disjoint union of A and B. We use basic notation from graph
theory [8] and parameterized algorithmics [7].

Temporal Graphs. A temporal graph G is a tuple (V, E , τ) consisting of the set of vertices V ,
the set of temporal edges E , and a discrete time-horizon τ . A temporal edge e is an element
in (V2)×{1, . . . , τ}. Equivalently, a temporal graph G is a vector of static graphs (G1, . . . , Gτ),

1 Several details and proofs (marked with ⋆) are deferred to the full version of the paper: https:
//arxiv.org/abs/1906.00659.

IPEC 2019

https://arxiv.org/abs/1906.00659
https://arxiv.org/abs/1906.00659

14:4 Multistage Vertex Cover

where each graph is defined over the same vertex set V . We also denote by V (G), E(G),
and τ(G) the set of vertices, the set of temporal edges, and the discrete time-horizon of G,
respectively. The underlying graph G↓ = G↓(G) of a temporal graph G is the static graph
with vertex set V (G) and edge set {e ∣ ∃t ∈ {1, . . . , τ(G)} ∶ (e, t) ∈ E}.

General Observations on MSVC. We state some simple but useful observations on MSVC
and its relation to Vertex Cover.

I Observation 2.1 (⋆). Every instance (G, k, `) of MSVC with k ≥ ∑τ(G)
i=1 ∣E(Gi)∣ is a

yes-instance.

I Observation 2.2 (⋆). Let (G, k, `) be an instance of MSVC. If (G, k, `) is a yes-instance,
then there is a solution S = (S1, . . . , Sτ) such that ∣S1∣ = k and k − 1 ≤ ∣Si∣ ≤ k for all
i ∈ {1, . . . , τ}.

I Observation 2.3 (⋆). There is an algorithm that maps any instance (G, k) of Vertex
Cover in τ ⋅ ∣V (G)∣O(1) time to an equivalent instance (G, k, `) of MSVC with ` = 0,
where G is a sequence of any τ subgraphs of G such that the underlying graph is G.

I Observation 2.4 (⋆). There is a polynomial-time algorithm that maps any instance (G, k, `)
of MSVC with ` = 0 to an equivalent instance (G↓(G), k) of Vertex Cover.

I Observation 2.5 (⋆). An instance (G, k, `) of MSVC with ` ≥ 2k and G = (G1, . . . , Gτ)
can be decided by deciding each instance of the set {(Gi, k) ∣ 1 ≤ i ≤ τ} of Vertex
Cover-instances.

3 Hardness On Restricted Inputs

MSVC is NP-hard as it generalizes Vertex Cover (τ = 1). In this section we prove that
MSVC remains NP-hard on very restricted inputs.

I Theorem 3.1. Multistage Vertex Cover is NP-hard even if
(i) τ = 2, ` = 0, and the first layer is a path and the second layer is a tree, or
(ii) every layer contains only one edge and ` = 1.

I Remark 3.2. Theorem 3.1(i) is tight regarding τ since Vertex Cover (i.e., MSVC with
τ = 1) on trees is solvable in polynomial time. Theorem 3.1(ii) is tight regarding `, because
in the case of ` /= 1 either Observation 2.3 or Observation 2.5 is applicable.
Vertex Cover remains NP-complete on cubic Hamiltonian graphs when a Hamiltonian
cycle is additionally given in the input [12]—we refer to this problem as Hamiltonian Cubic
Vertex Cover (HCVC). To prove Theorem 3.1(i), we give a polynomial-time many-one
reduction from HCVC to MSVC with two layers, one being a path, the other being a tree.

I Proposition 3.3 (⋆). There is a polynomial-time algorithm that maps any instance (G =

(V,E), k, C) of HCVC to an equivalent instance (G, k′, `′) of MSVC with τ = 2 and the
first layer G1 being a path and second layer G2 being a tree.

In order to prove Theorem 3.1(ii), we give a polynomial-time many-one reduction from
Vertex Cover to MSVC.

I Proposition 3.4 (⋆). There is a polynomial-time algorithm that maps any instance (G =

(V,E), k) of Vertex Cover to an equivalent instance (G, k′, `′) of MSVC where `′ = 1
and every layer Gi contains only one edge.

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:5

4 Parameter Vertex Cover Size

In this section, we study the parameter size k of the vertex cover of each layer for MSVC.
Vertex Cover and Vertex Cover Reconfiguration [22] when parameterized by the
vertex cover size are fixed-parameter tractable. We prove that this is no longer true for
MSVC (unless FPT = W[1]).

I Theorem 4.1. Multistage Vertex Cover parameterized by k is in XP and W[1]-hard.

We first show the XP-algorithm (Section 4.1) and then prove W[1]-hardness (Section 4.2).

4.1 An XP-Algorithm
In this section, we prove the following.

I Proposition 4.2. Every instance (G, k, `) of Multistage Vertex Cover can be decided
in O(τ(G) ⋅ ∣V (G)∣2k+1) time.

In a nutshell, we first consider for each layer all subsets of vertices of size at most k that
form a vertex cover. Second, we find a sequence of vertex covers for all layers such that the
sizes of the symmetric differences for every two consecutive solutions is at most `. We show
that the second step can be solved via computing a directed source-sink path in a helper
graph that we call configuration graph.

I Definition 4.3. Given a temporal graph G, the (k, `)-configuration graph of G is the
graph D = (V = V1 ⊎⋯⊎ Vτ ⊎ {s, t}, A, γ) equipped with a function γ ∶ V → {V ′

⊆ V (G) ∣
∣V ′∣ ≤ k} such that
(i) for every i ∈ {1, . . . , τ(G)}, it holds true that S is a vertex cover of Gi of size at most k

if and only if there is a vertex v ∈ Vi with γ(v) = S,
(ii) there is an arc from v to w, v, w ∈ V , if and only if v ∈ Vi, w ∈ Vi+1, and ∣γ(v)△

γ(w)∣ ≤ `, and
(iii) there is an arc (s, v) for all v ∈ V1 and an arc (v, t) for all v ∈ Vτ .
Note that Mouawad et al. [22] used a similar configuration graph to show fixed-parameter
tractability of Vertex Cover Reconfiguration parameterized by the vertex cover size k.
In the multistage setting the configuration graph is too large for fixed-parameter tractability
regarding k. However, we show an XP-algorithm regarding k to construct the configuration
graph.

I Lemma 4.4 (⋆). The (k, `)-configuration graph of a temporal graph G with n vertices and
time horizon τ
(i) can be constructed in O(τ ⋅ n2k+1) time, and
(ii) contains at most τ ⋅ 2nk + 2 vertices and (τ − 1)n2k + 2nk arcs.

I Lemma 4.5 (⋆). MSVC-instance (G, k, `) is a yes-instance if and only if there is an s-t
path in the (k, `)-configuration graph D of G.

We are ready to prove Proposition 4.2.

Proof of Proposition 4.2. First, compute the configuration graph D of the instance (G =
(V, E , τ), k, `) of Multistage Vertex Cover in O(τ ⋅ ∣V ∣2k+1) time (Lemma 4.4(i)). Then,
find an s-t path in D with a breadth-first search in O(τ ⋅ ∣V ∣2k) time (Lemma 4.4(ii)). If
an s-t path is found, then return yes, otherwise return no (Lemma 4.5). J

IPEC 2019

14:6 Multistage Vertex Cover

u v

w

e1

e2e3 ↝
c1 c3 c5 c7

c2 c4 c6

u
1
1
⋮

u
1
K

u
2
1

⋮

u
2
K

e1

u v

e2

v w

e3

u w

Figure 1 Illustration of Construction 1 on an example graph (left-hand side) and the first seven
layers of the obtained graph (right-hand side). Star-shapes illustrate star graphs with k′ + 1 leaves.
Dashed vertical lines separate layers.

I Remark 4.6. The reason why the algorithm behind Proposition 4.2 is only an XP-algorithm
and not an FPT-algorithm regarding k for Multistage Vertex Cover is because we do
not have a better upper bound on the number of vertices in the (k, `)-configuration graph
for G than O(τ(G) ⋅ ∣V (G)∣k). This is due to the fact that we check for each subset of V (G)
of size k or k − 1 whether it is a vertex cover in some layer.

This changes if we consider Minimal Multistage Vertex Cover where we additionally
demand the i-th set in the solution to be a minimal vertex cover for the layer Gi. Here,
we can enumerate for each layer Gi all minimal vertex covers of size at most k (and hence
all candidates for the i-th set of the solution) with the folklore search-tree algorithm for
vertex cover. This leads to O(2kτ(G)) many vertices in the (k, `)-configuration graph
(for Minimal Multistage Vertex Cover) and thus to fixed-parameter tractability of
Minimal Multistage Vertex Cover parameterized by the vertex cover size k.

However, as we show next it is not likely (unless FPT=W[1]) that one can substantially
improve the algorithm behind Proposition 4.2.

4.2 Parameterized Intractability
In this section we show that MSVC is W[1]-hard when parameterized by k. This hardness
result is established by the following parameterized reduction from the W[1]-complete [9]
Clique problem, where, given an undirected graph G and a positive integer k, the question
is whether G contains a clique of size k (that is, k vertices that are pairwise adjacent).

I Proposition 4.7. There is an algorithm that maps any instance (G, k) of Clique in
polynomial time to an equivalent instance (G, k′, `) of MSVC with k′ = 2(k2) + k + 1, ` = 2,
and each layer of G being a tree.

The proof of Proposition 4.7 is deferred to the end of this section. It is a reduction from
Clique where we construct an instance of MSVC from an instance of Clique as follows
(see Figure 1 for an illustrative example).

I Construction 1. Let (G = (V,E), k) be an instance of Clique with m = ∣E∣ and
E = {e1, . . . , em}. Let

K = (k2), k
′
= 2K + k + 1, and κ = K + k + 3.

We construct a temporal graph G = (V ′
, E , τ) as follows. Let V ′ be initially V ∪ E (note

that E simultaneously describes the edge set of G and a vertex subset of G). We add the

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:7

following vertex sets

U
t
= {utj ∣ j ∈ {1, . . . ,K}}, t ∈ {1, . . . , κ + 1} and C = {c1, . . . , c2mκ+1}.

Let E be initially empty. We extend the set V ′ and define E through the τ = 2mκ + 1 layers
we construct in the following.
(1) In each layer Gi with i being odd, make ci the center of a star with k′ + 1 leaves.
(2) In each layer G2mj+1, j ∈ {0, . . . , κ}, make each vertex in U

j+1 the center of a star
with k′ + 1 leaves.

(3) For each j ∈ {0, . . . , κ − 1}, in each layer G2mj+i with i ∈ {1, . . . , 2m + 1}, make uj+1
x

adjacent to uj+2
x for each x ∈ {1, . . . ,K}.

(4) For each i being even, add the edge {ci, ci+1} to Gi and to Gi+1.
(5) For each j ∈ {0, . . . , κ − 1}, for each i ∈ {1, . . . ,m}, in G2mj+2i, make cj2m+2i adjacent

with ei = {v, w}, v, and w.
This finishes the construction of G. ⌟

The construction essentially repeats the same gadget (which we call phase) κ times where
the layer 2m ⋅ i + 1 is simultaneously last layer of phase i and the first layer of phase i + 1.
In the beginning of phase i, a solution must contain the vertices of U i. The idea now is that
during phase i one has to exchange the vertices of U i with the vertices of U i+1.

It is not difficult to see that the instance in Construction 1 can be computed in polynomial
time. Hence, it remains to prove the equivalence stated in Proposition 4.7. We prepare the
proofs of the forward and the backward direction in Sections 4.2.1 and 4.2.2, respectively.

I Remark 4.8. We can turn the instance (G, k′, `) computed by Construction 1 into an
equivalent instance (G ′, k′′, `) where each layer is a tree as follows. Set k′′ = k′ + 1. Add a
vertex x to G. In each layer of G, make x a star with k′′ + 1 vertices and connect x with
exactly one vertex of each connected component. Note that in every solution x is contained
in a vertex cover for each layer in G ′.

4.2.1 Forward direction
The forward direction of Proposition 4.7 is—in a nutshell—as follows: If V ′ ∪E ′ with V ′

⊆ V

and E
′
⊆ E correspond to the vertex set and edge set of a clique of size k, then there

are K layers in each phase covered by V ′ ∪ E ′. Hence, having K layers where no vertices
from C have to be exchanged, in each phase t we can exchange all vertices from U

t to U t+1.
Starting with set S1 = U

1 ∪ V ′ ∪ E ′ ∪ {c1} then yields a solution.

I Lemma 4.9 (⋆). Let (G, k) be an instance of Clique and (G, k′, `) be the instance of
Multistage Vertex Cover resulting from Construction 1. If (G, k) is a yes-instance,
then (G, k′, `) is a yes-instance.

4.2.2 Backward direction
In this section we prepare the proof of the backward direction for the proof of Proposition 4.7.
We first show that if an instance of Multistage Vertex Cover computed by Construction 1
is a yes-instance, then it is safe to assume that neither two vertices are deleted from
nor added to a vertex cover in a consecutive step (we refer to these solutions as smooth,
see Definition 4.11). Moreover, a vertex from C is only exchanged with another vertex from C

and, at any time, there is exactly one vertex from C contained in the solution (similarly to the
constructed solution in Lemma 4.9). We call these solutions one-centered (Definition 4.13).

IPEC 2019

14:8 Multistage Vertex Cover

We then prove that there must be a phase t for any one-centered solution that is deleting
at least (k2) times a vertex from “past” sets Ut′ , t

′
≤ t. This at hand, we prove that such a

phase witnesses a clique of size k.
That a solution needs to contain at least one vertex from C at any time follows immediately

from the fact that there is either an edge between two vertices in C or there is a vertex in C
which is the center of a star with k′ + 1 leaves.

I Observation 4.10. Let (G, k′, `) from Construction 1 be a yes-instance. Then for each
solution (S1, . . . , Sτ) it holds true that ∣Si ∩ C∣ ≥ 1 for all i ∈ {1, . . . , τ(G)}.

In the remainder of this section we denote the vertices which are removed from the
set Si−1 and added to the next set Si in a solution S = (. . . , Si−1, Si, . . .) by

Si−1 � Si ∶= (Si−1 \ Si, Si \ Si−1).

If Si−1 \ Si or Si \ Si−1 have size one, then we will omit the brackets of the singleton.

I Definition 4.11. A solution S = (S1, . . . , Sτ) for (G, k′, `) from Construction 1 is smooth
if for all i ∈ {2, . . . , τ} we have ∣Si−1 \ Si∣ ≤ 1 and ∣Si−1 \ Si∣ ≤ 1.

I Observation 4.12. Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ).

Proof. By Observation 2.1, we know that there is a solution S = (S1, . . . , Sτ) such that
∣S1∣ = k

′ and k′ − 1 ≤ ∣Si∣ ≤ k
′ for all i ∈ {1, . . . , τ}. Hence, for all i ∈ {2, . . . , τ} it holds

true that ∣∣Si∣− ∣Si−1∣∣ ≤ 1. It follows that ∣Si−1 \Si∣ ≤ 1 and ∣Si−1 \Si∣ ≤ 1, and thus, S is
a smooth solution. J

Our goal is to prove the existence of the following type of solutions.

I Definition 4.13. A smooth solution S = (S1, . . . , Sτ) for (G, k′, `) from Construction 1 is
one-centered if
(i) for all i ∈ {1, . . . , τ} we have ∣Si ∩ C∣ = 1, and
(ii) for all i ∈ {2, . . . , τ} and Si−1 � Si = (a, b) we have that a ∈ C⇔ b ∈ C.

We now show that in the output instance of Construction 1, there are solutions (if there
is any) where c1 ∈ C is the only vertex from C in the first set of the solution.

I Lemma 4.14 (⋆). Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ) such that S1 ∩ C = {c1}.

Next, we show that there are solutions such that whenever we remove a vertex in C from
the vertex cover, then we simultaneously add another vertex from C to the vertex cover.
Formally, we prove the following.

I Lemma 4.15 (⋆). Let (G, k′, `) from Construction 1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ) such that S1 ∩ C = {c1} and for all i with Si−1 � Si = (a, c)
and c ∈ C we also have a ∈ C.

Combining Observation 4.10 and Lemma 4.15, we can assume that given a yes-instance,
there is a solution which is one-centered.

I Corollary 4.16. Let (G, k′, `) from Construction 1 be a yes-instance. Then, there is a
solution S which is one-centered.

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:9

Table 2 Note that εi − εi−1 = ∣F ti ∣ − ∣F ti−1∣ − (∣Y ti ∣ − ∣Y ti−1∣) − (f ti − f ti−1).

S
t
i−1 � S

t
i ∣F ti ∣ − ∣F ti−1∣ −(∣Y ti ∣ − ∣Y ti−1∣) −(f ti − f ti−1) εi − εi−1

(u, b) b ∈ E ∈ {−1, 0} ∈ {0, 1} 1 ∈ {0, 1, 2}
b ∈ Ûκ+1 ∈ {−1, 0} 1 0 ∈ {0, 1}
b ∈ V , b = ∅ ∈ {−1, 0} 1 1 ∈ {1, 2}

(a, u) a ∈ E 0 ∈ {1, 2} -1 ∈ {0, 1}
a ∈ V , a = ∅ 0 1 -1 0

(a, v) a ∈ E 0 ∈ {1, 2} 0 ∈ {1, 2}
a ∈ V , a = ∅ 0 1 0 1

(a, e) a ∈ V 0 1 0 1
a ∈ E, a = ∅ 0 ∈ {0, 1} 0 ∈ {0, 1}

In the remainder of this section, for each t ∈ {1, . . . , κ+ 1} let the union of U i for all i ≤ t
be denoted by

Ût = ⋃t
i=1 U

i
.

We introduce further notation regarding a one-centered solution S ∶= (S1
1 , . . . , S

1
2m+1 =

S
2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) for (G, k′, `). Here, Sti is the i-th set of phase t and thus

the (2m(t − 1) + i)-th set of S. We define the sets

Y
t
i ∶= {ej ∈ Sti ∩ E ∣ 2j ≥ i} and F

t
i ∶= {j > i ∣ Stj−1 � S

t
j = (u, b) with u ∈ Ût}.

Set Y ti is the set of vertices ej from E in S
t
i such that the corresponding layer for ej in

phase t is not before the layer with index i in phase t. Set F ti is the set of indices greater
than i of layers from G in phase t where a vertex from Ût is not carried over to the next
layer’s vertex cover. We now show that there is a phase t where ∣F t1∣ ≥ K.

I Lemma 4.17 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance. Then, there is a t ∈ {1, . . . , κ}
such that ∣F t1∣ ≥ K.

In the remainder of this section the value

f
t
i ∶= ∣Sti ∩ Ûκ+1∣ −K

describes the number of vertices in Ûκ+1 which we could remove from S
t
i such that Sti is

still a vertex cover for G2m(t−1)+i (the i-th layer of phase t). Observe that f ti ≥ 0 for all
i ∈ {1, . . . , 2m + 1} and t ∈ {1, . . . , κ}, because we need in each layer exactly K vertices
from Ûκ+1 in the vertex cover.

We now derive an invariant which must be true in each phase.

I Lemma 4.18 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance. Then, for all t ∈ {1, . . . , κ}
and i ∈ {1, . . . , 2m + 1}, it holds true that ∣F ti ∣ − ∣Y ti ∣ ≤ f ti .

Proof. Define εi = ∣F ti ∣− ∣Y ti ∣− f ti for all i ∈ {1, . . . , 2m+ 1}. We show that εi− εi−1 ≥ 0 for
all i ∈ {1, . . . , 2m + 1}. Since S is one-centered, in Table 2 all relevant tuples for Sti−1 � S

t
i

are shown.

IPEC 2019

14:10 Multistage Vertex Cover

Now assume towards a contradiction that there is a j ∈ {1, . . . , 2m + 1} such that εj > 0.
Since εi−εi−1 ≥ 0 for all i ∈ {1, . . . , 2m+1}, we have that ε2m+1 > 0 ⟺ ∣F t2m+1∣−∣Y t2m+1∣ >
f
t
2m+1. By definition, we have that ∣F t2m+1∣ = 0 and ∣Y t2m+1∣ = 0 Moreover, since S is a
solution and each vertex cover needs at least K vertices from Ûτ , we have that f t2m+1 ≥ 0. It
follows that 0 = ∣F t2m+1∣ − ∣Y t2m+1∣ > f t2m+1 ≥ 0, yielding a contradiction. J

Next, we prove that in a phase t with ∣F t1∣ ≥ K, there are at most k vertices from V

contained in the union of the vertex covers of phase t.

I Lemma 4.19 (⋆). Let S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) be a one-centered

solution to (G, k′, `) from Construction 1 being a yes-instance, and let t ∈ {1, . . . , κ} be such
that ∣F t1∣ ≥ K. Then, ∣⋃2m+1

i=1 S
t
i ∩ V ∣ ≤ k.

Proof. From Lemma 4.18, we know that ∣Y t1 ∣ ≥ K − f t1. Let ∣Y t1 ∣ = K − f t1 + λ for some
λ ∈ N0, and εi = ∣F ti ∣ − ∣Y ti ∣ − f ti , for all i ∈ {1, . . . , 2m + 1}.

We now show that there are at most λ layers where we exchange a vertex currently in the
vertex cover with a vertex in V . Let i ∈ {2, . . . , 2m+1} such that Sti−1�S

t
i = (a, v) with v ∈ V .

From Table 2 (recall that one-centered solutions are smooth), we know that εi ≥ εi−1 + 1.
Assume towards a contradiction that there are λ + 1 many of these exchanges. Then,

there is a j ∈ {1, . . . , 2m + 1} such that

εj ≥ ε1 + λ + 1 = ∣F t1∣ − ∣Y t1 ∣ − f t1 + λ + 1 ≥ K − (K − f
t
1 + λ) − f t1 + λ + 1 ≥ 1

⟺ ∣F tj ∣ − ∣Y tj ∣ > f tj .

This contradicts the invariant of Lemma 4.18.
In the beginning of phase t, we have at most k − λ vertices from V in the vertex cover,

because ∣St1 ∩ V ∣ ≤ K + k − ∣Y t1 ∣ − f t1 = K + k − (K − f t1 + λ) − f t1 = k − λ. Since there are
at most λ many exchanges Sti−1 � S

t
i = (a, v) where v ∈ V and i ∈ {2, . . . , 2m+ 1}, we know

that the vertex set ⋃2m+1
i=1 S

t
i ∩ V is of size at most k. J

4.2.3 Proof of Proposition 4.7

Proof of Proposition 4.7. Let (G, k) be an instance of Clique and (G, k′, `) be the instance
of MSVC resulting from Construction 1. Observe that Construction 1 runs in polynomial
time. We prove that (G, k) is a yes-instance of Clique if and only if (G, k′, `) is a yes-
instance of MSVC.

(⇒) It follows from Lemma 4.9 that (G, k′, `) is a yes-instance if (G, k) is a yes-instance.
(⇐) Let (G, k′, `) be a yes-instance. From Corollary 4.16 it follows that there is a

one-centered solution S = (S1
1 , . . . , S

1
2m+1 = S

2
1 , . . . , . . . , S

κ
1 , . . . , S

κ
2m+1) for (G, k′, `). By

Lemma 4.17, there is a t ∈ {1, . . . , κ} such that ∣F t1∣ ≥ K = (k2). By Lemma 4.19, we know
that ∣⋃2m+1

i=1 S
t
i ∩V ∣ ≤ k. Now we identify the clique of size k in G. Since ∣F t1∣ ≥ K, we know

that, by Construction 1, at least K layers are covered by vertices in V ∪E ∪ Ûκ+1 ∪ {ct2j+1 ∣
j ∈ {1, . . . ,m}} in phase t. Note that each of these layers corresponds to an edge e = {v, w}
in G and that we need in particular the vertices v and w in the vertex cover. Since we have
at most k vertices in ⋃2m+1

i=1 S
t
i ∩ V , these vertices induce a clique of size k in G.

Finally, following Remark 4.8, we can turn each layer into a tree preserving equivalence.
The W[1]-hardness of Clique [9] regarding k and that k′ ∈ O(k2) then finish the proof. J

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:11

5 On Efficient Data Reduction

In this section, we study the possibility of effective data reduction for MSVC when parame-
terized by k, τ , and k + τ , that is, the possible existence of problem kernels of polynomial
size. We prove that unless coNP ⊆ NP/poly, MSVC admits no problem kernel of size
polynomial in k (Section 5.1). Yet, when combining k and τ , we prove a problem kernel of
size O(k2

τ) (Section 5.2). Moreover, we prove a problem kernel of size 5τ when each layer
consists of only one edge (Section 5.3). Recall that MSVC is para-NP-hard regarding τ even
if each layer is a tree.

5.1 No problem kernel of size polynomial in k
We prove that if
(i) each layer consists only of one edge and ` = 1, or
(ii) if each layer is planar and ` ≥ 2k,
then MSVC admits no kernel of size polynomial in k unless coNP ⊆ NP/ poly. Recall that
MSVC parameterized by k is fixed-parameter tractable in case of (i) (see Observation 2.5),
while we left open whether it also holds true in case (ii).

I Theorem 5.1. Unless coNP ⊆ NP/ poly, MSVC admits no polynomial kernel when
parameterized by k, even if
(i) each layer consists of one edge and ` = 1, or if
(ii) each layer is planar and ` ≥ 2k.

We prove Theorem 5.1 using AND-compositions.

I Definition 5.2. An AND-composition for a parameterized problem L is an algorithm
that given p instances (x1, k), . . . , (xp, k) of L, computes in time polynomial in ∑p

i=1 ∣xi∣ an
instance (y, k′) of L such that
(i) (y, k′) ∈ L if and only if (xi, k) ∈ L for all i ∈ {1, . . . , p}, and
(ii) k′ is polynomially upper-bounded in k.

Drucker [10] showed that if a parameterized problem whose unparameterized version is
NP-hard admits an AND-composition, then coNP ⊆ NP/poly. Note that coNP ⊆ NP/poly
implies a collapse of the polynomial-time hierarchy to its third level [23]. In the proof of
Theorem 5.1(i), we use the following.

I Construction 2. Let (G1 = (V, E1, τ1), k, `), . . . , (Gp = (V, Ep, τp), k, `) be p instances of
MSVC where each layer consists of one edge and ` = 1. We construct an instance (G =

(V, E , τ), k, `) of MSVC as follows. Denote by (Gi1, . . . , Giτi
) the sequence of layers of Gi.

Initially, let G be the temporal graph with layer sequence ((Gij)1≤j≤τi
)1≤i≤p. Next, for

each i ∈ {1, . . . , p − 1}, insert between G
i
τi

and G
i+1
1 the sequence (Hi

1, H
i
2, . . . ,H

i
2k) =

(Giτi
, G

i+1
1 , . . . , G

i+1
1). This finishes the construction. Note that τ = 2k(p − 1) +∑p

i=1 τi. ⌟

Construction 2 gives an AND-composition used in the proof of Theorem 5.1(i).

I Proposition 5.3 (⋆). MSVC where each layer consists of one edge and ` = 1 AND-
composes into itself parameterized by k.

Turning a set of input instances of Vertex Cover on planar graphs (this is equivalent
to MSVC with one layer which is a planar graph) into a sequence gives an AND-composition
used in the proof of Theorem 5.1(ii).

IPEC 2019

14:12 Multistage Vertex Cover

G1
u v

G2
u v

G3
u v

G4
u v

G
′
1
u v

wu wv

G
′
2
u v

wu wv

G
′
3
u v

wu wv

G
′
4
u v

wu wv

Figure 2 Illustration of Reduction Rule 2, exemplified for two vertices u, v and k = 5. The
vertices wv, wu (gray squares) are introduced by the application of Reduction Rule 2.

I Proposition 5.4 (⋆). MSVC with one layer being a planar graph AND-composes into
MSVC parameterized by k with ` ≥ 2k and each layer being planar.

Proof of Theorem 5.1. Using Drucker’s result for AND-copositions [10], Propositions 5.3
and 5.4 prove Theorem 5.1(i) and (ii), respectively. Recall that MSVC where each layer
consists of one edge (Theorem 3.1) and Vertex Cover on planar graphs [14] are NP-
hard. J

5.2 A problem kernel of size O(k2
τ)

MSVC remains NP-hard for τ = 2, even if each layer is a tree (Theorem 3.1). Moreover,
MSVC does not admit a problem kernel of size polynomial in k, even if each layer consists of
one edge (Theorem 5.1). Yet, when combining both parameters we obtain a problem kernel
of cubic size.

I Theorem 5.5. There is an algorithm that maps any instance (G = (V, E , τ), k, `) of MSVC
in time O(∣V ∣2

τ) to an instance (G ′, k, `) of MSVC with at most 2k2
τ vertices and k2

τ tem-
poral edges.

To prove Theorem 5.5, we apply three polynomial-time data reduction rules. These
reduction rules can be understood as temporal variants of the folklore reduction rules for
Vertex Cover. Our first reduction rule is immediate.

I Reduction Rule 1 (Isolated vertices). If there is some vertex v ∈ V such that e ∩ v = ∅
for all e ∈ E(G↓), then delete v.

For Vertex Cover when asking for a vertex cover of size q, there is the well-known
reduction rule dealing with high-degree vertices: If there is a vertex v of degree larger than q,
then delete v and its incident edges and decrease q by one. For MSVC a high-degree vertex
can only appear in some layers, and hence deleting this vertex is in general not correct.
However, there is a temporal variant of the high-degree rule as follows.

I Reduction Rule 2 (High degree). If there exists a vertex v such that there is an inclusion-
maximal subset J ⊆ {1, . . . , τ} such that degGi

(v) > k for all i ∈ J , then add a vertex wv
to V and for each i ∈ J , remove all edges incident to v in Gi, and add the edge {v, wv}.

See Figure 2 for an illustration. We now show how Reduction Rule 2 can be applied and
that it does not turn a yes-instance into a no-instance or vice versa.

I Lemma 5.6 (⋆). Reduction Rule 2 is correct and exhaustively applicable in O(∣V ∣2
τ) time.

T. Fluschnik, R. Niedermeier, V. Rohm, and P. Zschoche 14:13

Similarly as in the reduction rules for Vertex Cover, we now count the number of
edges in each layer: If more than k2 edges are contained in one layer, then no set of k vertices
each of degree at most k can cover more than k2 edges.

I Reduction Rule 3 (no-instance). If none of Reduction Rules 1 and 2 is applicable and
there is a layer with more than k2 edges, then output a trivial no-instance.

We are ready to prove that when none of the Reduction Rules 1 to 3 can be applied, then
the instance contains “few” vertices and temporal edges.

I Lemma 5.7 (⋆). Let (G, k, `) be an instance of MSVC such that none of Reduction Rules 1
to 3 is applicable. Then G consists of at most 2k2

τ(G) vertices and k2
τ(G) temporal edges.

We are ready to prove the main result of this section.

Proof of Theorem 5.5. Apply Reduction Rules 1 to 3 exhaustively in O(∣V ∣2
τ) time to

obtain an equivalent instance (G ′, k, `). Due to Lemma 5.7, G ′ consists of at most 2k2
τ

vertices and at most k2
τ temporal edges. J

5.3 A problem kernel of size 5τ
MSVC when each layer is a tree does not admit a problem kernel of any size in τ unless P = NP.
Yet, when each layer consists of only one edge, then each instance of MSVC contains at most τ
edges and, hence, at most 2τ non-isolated vertices. Thus, MSVC admits a straight-forward
problem kernel of size linear in τ .

I Observation 5.8. Let (G = (V, E , τ), k, `) be an instance of MSVC where each layer
consists of one edge. Then we can compute in O(∣V ∣ ⋅ τ) time an instance (G ′, k, `) of size
at most 5τ .

Proof. Observe that we can immediately output a trivial yes-instance if k ≥ τ (Observa-
tion 2.1) or ` ≥ 2 (Observation 2.5). Hence, assume that k ≤ τ−1 and ` ≤ 1. Apply Reduction
Rule 1 exhaustively on (G, k, `) to obtain (G ′, k, `). Since there are τ edges in G, there are at
most 2τ vertices in G ′. It follows that the encoding length of (G ′, k, `) is at most 5τ . J

6 Conclusion

We introduced Multistage Vertex Cover, proved it to be NP-hard even on restricted
inputs, and studied its parameterized complexity regarding the natural parameters k, `, and τ
(each given as input). We leave open whether MSVC parameterized by k is fixed-parameter
tractable when each layer consists of only one edge (see Table 1). Moreover, it is open
whether MSVC remains NP-hard on two layers each being a path (that is, strengthening
Theorem 3.1(i)).

References
1 Faisal N. Abu-Khzam, Judith Egan, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw.

On the parameterized complexity of dynamic problems. Theor. Comput. Sci., 607:426–434,
2015.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal
Vertex Cover with a Sliding Time Window. In Proc. of 45th ICALP, volume 107 of LIPIcs,
pages 148:1–148:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

IPEC 2019

14:14 Multistage Vertex Cover

3 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic Parameterized
Problems and Algorithms. In Proc. of 44th ICALP, volume 80 of LIPIcs, pages 41:1–41:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

4 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage
Matchings. In Proc. of 16th SWAT, volume 101 of LIPIcs, pages 7:1–7:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

5 Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage Knapsack. In Proc. of
44th MFCS, volume 138 of LIPIcs, pages 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

6 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via Sampling with
Applications to Finding Matchings and Related Problems in Dynamic Graph Streams. In
Proc. of 27th SODA, pages 1326–1344. SIAM, 2016.

7 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Reinhard Diestel. Graph Theory, volume 173 of GTM. Springer, 5th edition, 2016.
9 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999.
10 Andrew Drucker. New Limits to Classical and Quantum Instance Compression. SIAM J.

Comput., 44(5):1443–1479, 2015.
11 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility Location in Evolving Metrics.

In Proc. of 41st ICALP, volume 8573 of LNCS, pages 459–470. Springer, 2014.
12 Herbert Fleischner, Gert Sabidussi, and Vladimir I. Sarvanov. Maximum independent sets in

3- and 4-regular Hamiltonian graphs. Discrete Math., 310(20):2742–2749, 2010.
13 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.

Temporal Graph Classes: A View Through Temporal Separators. Theor. Comput. Sci., 2019.
In press.

14 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-Complete
Graph Problems. Theor. Comput. Sci., 1(3):237–267, 1976.

15 Parikshit Gopalan, Phokion G Kolaitis, Elitza Maneva, and Christos H Papadimitriou. The
connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput., 38(6):2330–2355, 2009.

16 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing Bases: Multistage Optimization
for Matroids and Matchings. In Proc. of 41st ICALP, volume 8572 of LNCS, pages 563–575.
Springer, 2014.

17 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theor. Comput. Sci., 494:86–98, 2013.

18 Takehiro Ito, Erik D Demaine, Nicholas JA Harvey, Christos H Papadimitriou, Martha Sideri,
Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12-14):1054–1065, 2011.

19 Yoichi Iwata and Keigo Oka. Fast Dynamic Graph Algorithms for Parameterized Problems.
In Proc. of 12th SWAT, volume 8503 of LNCS, pages 241–252. Springer, 2014.

20 R. Krithika, Abhishek Sahu, and Prafullkumar Tale. Dynamic Parameterized Problems.
Algorithmica, 80(9):2637–2655, 2018.

21 Amer Mouawad, Naomi Nishimura, Venkatesh Raman, and Sebastian Siebertz. Vertex cover
reconfiguration and beyond. Algorithms, 11(2):20, 2018.

22 Amer E Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.
On the parameterized complexity of reconfiguration problems. Algorithmica, 78(1):274–297,
2017.

23 Chee-Keng Yap. Some Consequences of Non-Uniform Conditions on Uniform Classes. Theor.
Comput. Sci., 26:287–300, 1983.

Parameterized Complexity of Edge-Coloured and
Signed Graph Homomorphism Problems
Florent Foucaud
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2, France
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

Hervé Hocquard
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

Dimitri Lajou
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

Valia Mitsou
Université Paris-Diderot, IRIF, CNRS, 75205, Paris, France

Théo Pierron
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
DIMEA, Masaryk University, 60200 Brno, Czech republic

Abstract
We study the complexity of graph modification problems with respect to homomorphism-based
colouring properties of edge-coloured graphs. A homomorphism from an edge-coloured graph G to an
edge-coloured graph H is a vertex-mapping from G to H that preserves adjacencies and edge-colours.
We consider the property of having a homomorphism to a fixed edge-coloured graph H, which
generalises the classic vertex-colourability property. The question we are interested in is the following:
given an edge-coloured graph G, can we perform k graph operations so that the resulting graph
admits a homomorphism to H? The operations we consider are vertex-deletion, edge-deletion and
switching (an operation that permutes the colours of the edges incident to a given vertex). Switching
plays an important role in the theory of signed graphs, that are 2-edge-coloured graphs whose colours
are the signs + and −. We denote the corresponding problems (parameterized by k) by Vertex
Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. These
problems generalise the extensively studied H-Colouring problem (where one has to decide if an
input graph admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that
H-Colouring already captures the complexity of all fixed-target Constraint Satisfaction Problems.

Our main focus is on the case where H is an edge-coloured graph of order at most 2, a case
that is already interesting since it includes standard problems such as Vertex Cover, Odd Cycle
Transversal and Edge Bipartization. For such a graph H, we give a PTime/NP-complete com-
plexity dichotomy for all three Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring
and Switching-H-Colouring problems. Then, we address their parameterized complexity. We
show that all Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring problems for
such H are FPT. This is in contrast with the fact that already for some H of order 3, unless PTime
= NP, none of the three considered problems is in XP, since 3-Colouring is NP-complete. We show
that the situation is different for Switching-H-Colouring: there are three 2-edge-coloured graphs
H of order 2 for which Switching-H-Colouring is W[1]-hard, and assuming the ETH, admits no
algorithm in time f(k)no(k) for inputs of size n and for any computable function f . For the other
cases, Switching-H-Colouring is FPT.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Graph homomorphism, Graph modification, Edge-coloured graph, Signed
graph

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.15

© Florent Foucaud, Hervé Hocquard, Dimitri Lajou, Valia Mitsou, and Théo Pierron;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.IPEC.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Complexity of Edge-Coloured and Signed Graph Homomorphism

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.01099.

Funding This research was financed by the ANR project HOSIGRA (ANR-17-CE40-0022) and the
IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).

1 Introduction

Graph colouring problems such as k-Colouring are among the most fundamental problems
in algorithmic graph theory. ProblemH-Colouring is a homomorphism-based generalisation
of k-Colouring that is extensively studied [8, 14, 18, 25]. Considering a fixed graph H,
in H-Colouring one asks whether an input graph G admits a homomorphism (an edge-
preserving vertex-mapping) to H. k-Colouring is the same problem as Kk-Colouring,
where Kk is the complete graph of order k (the order of a graph is its number of vertices).

We will consider parameterized variants of H-Colouring where H is an edge-coloured
graph. We say that a graph is t-edge-coloured if its edges are coloured with at most t colours.
We allow loops and multiple edges, but multiple edges of the same colour are irrelevant in H.
We sometimes give actual colour names to the colours: red, blue, green. For 2-edge-coloured
graphs, we will use red and blue as the two edge colours. A standard uncoloured graph can
be seen as 1-edge-coloured. For two edge-coloured graphs G and H, a homomorphism from
G to H is a vertex-mapping ϕ : V (G)→ V (H) such that, if xy is an edge of colour i in G,
then ϕ(x)ϕ(y) is an edge of colour i in H. Whenever such a ϕ exists, we say that G maps to
H, and we write G ec−→ H.

The H-Colouring problems are well-studied, see for example [1, 2, 3, 4, 5]. They are
special cases of Constraint Satisfaction Problems (CSPs). A large set of CSPs can be modeled
by homomorphisms of general relational structures to a fixed relational structure H [14].
The corresponding decision problem is noted H-CSP. When H has only binary relations, H
can be seen as an edge-coloured graph (a relation corresponds to the set of edges of a given
colour) and H-CSP is exactly H-Colouring. The complexity of H-CSP has been the
subject of intensive research in the last decades, since Feder and Vardi conjectured in [14] that
H-CSP is either PTime or NP-complete – a statement that became known as the Dichotomy
Conjecture. The latter conjecture was recently solved in [7, 30] independently; the criterion
for H-CSP to be in PTime is based on certain algebraic properties of H. Nevertheless,
determining whether a structure H satisfies this criterion is not an easy task (even for targets
as simple as oriented trees [8]). Thus, the study of more simple and elegant complexity
classifications for relevant special cases is of high importance.

The complexity of H-Colouring when H is uncoloured is well-understood: it is in
PTime if H contains a loop or is bipartite; otherwise it is NP-complete [18]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-coloured
graph, it was proved that the class of H-Colouring problems captures the difficulty of the
whole class of H-CSP problems [5], and thus the dichotomy classification for this class of
problems is expected to be much more intricate.

Our goal is to study generalisations of H-Colouring problems for edge-coloured graphs
by enhancing them as modification problems. In this setting, given a graph property P and a
graph operation π, the graph modification problem for P and π asks whether an input graph
G can be made to satisfy property P after applying operation π a given number k of times.
This is a classic setting studied extensively both in the realms of classical and parameterized
complexity, see for example [9, 22, 23, 28]. In this context, the most studied graph operations
are vertex deletion (VD) and edge-deletion (ED), see the seminal papers [23, 28].

https://arxiv.org/abs/1910.01099

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:3

For a fixed graph H, let P(H) denote the property of admitting a homomorphism to H.
Certain standard computational problems can be stated as graph modification problems to
P(H). For example, Vertex Cover is the graph modification problem for property P(K1)
and operation VD. Similarly, Odd Cycle Transversal and Edge Bipartization are
the graph modification problems for P(K2) and VD, and P(K2) and ED, respectively.

When considering edge-coloured graphs with only two edge-colours, another operation of
interest is switching: to switch at a vertex v is to change the colour of all edges incident with
v. (Note that a loop does not change its colour under switching.) This operation is of prime
importance in the context of signed graphs. A signed graph is a 2-edge-coloured graph in
which the two colours are denoted by signs (+ and −). A graph is called balanced if it can
be switched to be all-positive. The concepts of signed graphs, balance and switching, were
introduced and developed in [17, 29] and have many interesting applications, in particular in
social networks and biological dynamical systems (see [19] and the references therein).

The switching operation plays an important role in the study of homomorphisms of signed
graphs, a concept defined in [26] which has many connections to deep questions in structural
graph theory. In their definition, before mapping the vertices, one may perform any number
of switchings. (Note that when switching at a set S of vertices of a signed graph G, the order
does not matter: ultimately, only the edges between S and its complement V (G) \ S change
their sign.) The algorithmic complexity of this problem was studied in [5, 6, 16]. Herein,
we will consider edge-coloured graph modification problems for property P(H) (for fixed
edge-coloured graphs H) and for graph operations VD, ED and SW.

A parameterized problem is a decision problem with a parameter of the input. It is fixed
parameter tractable (FPT) if for any input I with parameter value k, it can be solved in
time O(f(k)|I|c) for a computable function f and integer c. It is in the class XP if it can be
solved in time |I|g(k) for a computable function g. It is W[1]-hard if all problems in the class
W[1] can be reduced in FPT time to it. For more details, see the books [11, 12]. Let us now
formally define the problems of interest to us (the parameter is always k).

Vertex Deletion-(resp. Edge Deletion)-H-Colouring Parameter: k.
Input: An edge-coloured graph G, an integer k.
Question: Is there a set S of k vertices (resp. edges) of G such that (G− S) ec−→ H?

Switching-H-Colouring Parameter: k.
Input: A 2-edge-coloured graph G, an integer k.
Question: Is there a set S of k vertices of G such that the 2-edge-coloured graph G′
obtained from G by switching at every vertex of S satisfies G′ ec−→ H?
In the study of the three above problems, one may assume that H is a core (that is, H

does not have a homomorphism to a proper subgraph of itself). Indeed, it is well-known that
for any subgraph H ′ of H with H ec−→ H ′, we have G ec−→ H if and only if G ec−→ H ′ [3].

Of course, whenever H-Colouring is NP-complete, all three above problems are NP-
complete, even when k = 0, and so they are not in XP (unless PTime = NP). This is for
example the case when H is a monochromatic triangle: then we have 3-Colouring. Thus,
from the point of view of parameterized complexity, it is of primary interest to consider these
problems for edge-coloured graphs H such that H-Colouring is in PTime. (In that case
a simple brute-force algorithm iterating over all k-subsets of vertices of G implies that the
three problems are in XP.) For classic graphs, the only cores H for which H-Colouring
is in PTime are the three connected graphs with at most one edge (a single vertex with
no edge, a single vertex with a loop, two vertices joined by an edge), so in that case the
interest of these problems is limited. However, for many interesting families of edge-coloured

IPEC 2019

15:4 Complexity of Edge-Coloured and Signed Graph Homomorphism

graphs H, the problem H-Colouring is in PTime, and the class of such graphs H is not
very well-understood, see [2, 3, 4]. Even when H is a 2-edge-coloured cycle, tree or complete
graph, there are infinitely many H with H-Colouring NP-complete and infinitely many H
where it is in PTime [2].

Recall that when H is a single vertex with no loop, Vertex Deletion-H-Colouring
is exactly Vertex Cover. If H has a single edge, Vertex Deletion-H-Colouring and
Edge Deletion-H-Colouring are Odd Cycle Transversal and Edge Bipartization,
respectively. For H consisting of a single (blue) loop, Switching-H-Colouring for
k = |V (G)| consists in checking whether the given 2-edge-coloured graph G is balanced (a
problem that is in PTime [5]). More generally, Switching-H-Colouring for 2-edge-coloured
graphs H and k = |V (G)| is exactly the problem Signed H-Colouring studied in [5, 6, 16].

Related work. Several works address the parameterized complexity of graph colouring
problems. In [25], the vertex-deletion variant of H-List-Colouring is studied. Graph
modification problems for Colouring in specific graph classes and for operations VD and
ED are considered, for example in [10] (bipartite graphs, split graphs) and [27] (comparability
graphs). Graph colouring problems parameterized by structural parameters are considered
in [20]. Algorithmic problems relative to the operation of Seidel switching have been
considered. Given a (classic) graph G, the Seidel switching operation performed at a vertex
exchanges all adjacencies and non-adjacencies of v. This can be seen as performing a switching
operation in a 2-edge-coloured complete graph, where blue edges are the actual edges of G,
and red edges are its non-edges. In [13, 21], the complexity of graph modification problems
with respect to the Seidel switching operation and the property of being a member of certain
graph classes has been studied. Our work on Switching-H-Colouring problems can be
seen as a variation of these problems, generalised to arbitrary 2-edge-coloured graphs.

Our results. We study the classic and parameterized complexities of the three problems
Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-
Colouring. Our focus is on t-edge-coloured graphs H of order at most 2 with t an integer
(t = 2 for Switching-H-Colouring). Despite having just two vertices, H-Colouring for
such H is interesting and nontrivial; it is proved to be in PTime by two different nontrivial
methods, see [1, 4]. Thus, the three considered problems are in XP for such H. (Recall that
for suitable 1-edge-coloured graphs H of order 1 or 2, Vertex Deletion-H-Colouring and
Edge Deletion-H-Colouring include Vertex Cover and Odd Cycle Transversal.)

We completely classify the classical complexity of Vertex Deletion-H-Colouring
when H is a t-edge-coloured graph of arbitrary order: it is either trivially in PTime or
NP-complete. It turns out that all Vertex Deletion-H-Colouring problems are FPT
when H has order at most 2. To prove this, we extend a method from [4] and reduce the
problem to an FPT variant of 2-Sat.

For Edge Deletion-H-Colouring, a classical complexity dichotomy seems more
difficult to obtain, as there are nontrivial PTime cases. We perform such a classification when
H is a t-edge-coloured graph of order at most 2. Similar 2-Sat-based arguments as for Vertex
Deletion-H-Colouring give a FPT algorithm for Edge Deletion-H-Colouring when
H has order at most 2.

For Switching-H-Colouring when H is a 2-edge-coloured graph, the classical dicho-
tomy is again more difficult to obtain. We perform such a classification by using some
characteristics of the switch operation and by giving some reductions to well-known NP-
complete problems. In contrast to the two previous cases for the parameterized complexity,
we show that for three graphs H of order 2, Switching-H-Colouring is already W[1]-hard

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:5

Table 1 Overview of our main results, sorted by problem and by type of classification.

Problem Vertex-Del.-H-Col. Edge-Del.-H-Col. Switching-H-Col.

P vs NP Dichotomy for
all graphs (Cor. 7)

Dichotomy when
|V (H)| ≤ 2 (Th. 8)

Dichotomy when
|V (H)| ≤ 2 (Th. 9)

FPT vs W-hard
when |V (H)| ≤ 2 All FPT (Th. 12) All FPT (Th. 12) Dichotomy (Th. 13 and 14)

(and cannot be solved in time f(k)|G|o(k) for any function f , assuming the ETH1). For all
other 2-edge-coloured graphs of order 2, we prove that Switching-H-Colouring is FPT.
Table 1 presents a brief overview of our results.

Our paper is structured as follows. In Section 2, we state some definitions and make some
preliminary observations in relation with the literature. In Section 3, we study the classical
complexity of the three considered problems. We address their parameterized complexity in
Section 4. Finally, we conclude in Section 5.

2 Preliminaries and known results

2.1 Some known complexity dichotomies
Recall that whenever H-Colouring is NP-complete, Vertex Deletion-H-Colouring,
Edge Deletion-H-Colouring and Switching-H-Colouring are NP-complete (even for
k = 0), and thus are not in XP, unless PTime = NP. For example, this is the case when H is a
monochromatic triangle. When Signed H-Colouring (this is Switching-H-Colouring
for k = |V (G)|, see [5]) is NP-complete, then Switching-H-Colouring is NP-complete
(but could still be in XP or FPT).

On the other hand, when H-Colouring is in PTime, all three problems are in XP
for parameter k (by a brute-force algorithm iterating over all k-subsets of vertices of G,
performing the operation on these k vertices, and then solving H-Colouring):

I Proposition 1. Let H be an edge-coloured graph such that H-Colouring is in PTime.
Then, Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-
H-Colouring can be solved in time |G|O(k).

When k = 0 and H is 1-coloured, we have the following classic theorem.

I Theorem 2 (Hell and Nešetřil [18]). Let H be a 1-edge-coloured graph. H-Colouring is in
PTime if the core of H has at most one edge (H is bipartite or has a loop), and NP-complete
otherwise.

There is no analogue of Theorem 2 for edge-coloured graphs. In fact, it is proved in [5] that
a dichotomy classification for H-Colouring restricted to 2-edge-coloured H would imply a
dichotomy for all fixed-target CSP problems. Thus, no simple combinatorial classification is
expected to exist. In fact, even for trees, cycles or complete graphs, such classifications are
not easy to come by [2]. However, some classifications exist for certain classes of graphs H,
such as those of order at most 2 [1, 4] or paths [3].

1 The Exponential Time Hypothesis, ETH, postulates that 3-SAT cannot be solved in time 2o(n)(n + m)c,
where n and m are the input’s number of variables and clauses, and c is any integer [24].

IPEC 2019

15:6 Complexity of Edge-Coloured and Signed Graph Homomorphism

For Switching-H-Colouring with k = |V (G)|, (that is, Signed H-Colouring), we
have the following (where the switching core of a 2-edge-coloured graph is a notion of core
where an arbitrary number of switchings can be performed before the self-mapping):

I Theorem 3 (Brewster et al. [5, 6]). Let H be a signed graph. Signed H-Colouring is
in PTime if the switching core of H has at most two edges, and NP-complete otherwise.

Note that 2-edge-coloured graphs where the switching core has at most two edges either
have one vertex (with zero loop, one loop or two loops of different colours), or two vertices
(with either one edge or two parallel edges of different colours joining them) [5]. (If there
are two vertices joined by one edge and a loop at one of the vertices, we can switch at the
non-loop vertex if necessary to obtain one edge-colour, and then retract the whole graph to
the loop-vertex, so this is not a core.)

2.2 Homomorphism dualities and FPT time
For a t-edge-coloured graph H, we say that H has the duality property if there is a set F(H)
of t-edge-coloured graphs such that, for any t-edge-coloured graph G, G ec−→ H if and only
if no graph F of F(H) satisfies F ec−→ G. If F(H) is finite, we say that H has the finite
duality property. If checking whether any graph F in F(H) satisfies F ec−→ G (for an input
edge-coloured graph G) is in PTime, we say that H has the polynomial duality property. This
is in particular the case when F(H) is finite. For such H, H-Colouring is in PTime. This
topic is explored in detail for edge-coloured graphs in [1]. By a simple bounded search tree
argument, we get the following:

I Proposition 4. Let H be an edge-coloured graph with the finite duality property. Then,
Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-
Colouring are FPT.

Proof. First, we search for all appearances of homomorphic images of graphs in F(H)
(there are at most f(F(H)) such images for some exponential function f), which we call
obstructions. This takes time at most f(F(H))nmv , where mv = max{|V (F)|, F ∈ F(H)}.
Then, we need to get rid of each obstruction. For Vertex Deletion-H-Colouring (resp.
Edge Deletion-H-Colouring), we need to delete at least one vertex (resp. edge) in
each obstruction, thus we can branch on all mv (resp. m2

v) possibilities. For Switching-
H-Colouring, we need to switch at least one of the vertices of the obstruction (but then
update the list of obstructions, as we may have created a new one). In all cases, this gives a
search tree of height k and degree bounded by a function of F(H), which is FPT. J

3 PTime/NP-complete complexity dichotomies

In this section, we prove some results about the classical complexity of Vertex Deletion-
H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. We first
adapt a general method from [23] to show that Vertex Deletion-H-Colouring is either
trivial, or NP-complete in Section 3.1.

For Edge Deletion-H-Colouring and Switching-H-Colouring, we cannot use
this technique (in fact there exist nontrivial PTime cases). Thus, we turn our attention
to edge-coloured graphs of order 2 (note that for every edge-coloured graph H of order
at most 2, H-Colouring is in PTime [1, 4]). Recall that Switching-H-Colouring is
defined only on 2-edge-coloured graphs, so our focus is on this case (but for Edge Deletion-
H-Colouring our results hold for any number of colours). In Section 3.2, we prove a

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:7

dichotomy result for graphs of order at most 2 for the Edge Deletion-H-Colouring
problem. The Switching-H-Colouring problem is treated in Section 3.3, where we also
prove a dichotomy result.

The twelve 2-edge-coloured graphs of order at most 2 that are cores (up to symmetries
of the colours) are depicted in Figure 1. The two colours are red (dashed edges) and blue
(solid edges). We use the terminology of [1]: for α ∈ {−, r, b, rb}, the 2-edge-coloured graph
H1
α is the graph of order 1 with no loop, a red loop, a blue loop, and both kinds of loops,

respectively. Similarly, for α ∈ {−, r, b, rb} and β, γ ∈ {−, r, b}, the graph H2α
β,γ denotes the

graph of order 2 with vertex set {0, 1}. The string α indicates the presence of an edge between
0 and 1: no edge, a red edge, a blue edge and both edges for −, r, b and rb, respectively.
Similarly, β and γ denote the presence of a loop at vertices 0 and 1, respectively (− for no
loop, r for a red loop, b for a blue loop).

H1
rb H1

b H1
− H2−

r,b

H2b
−,− H2b

r,b H2b
r,− H2b

r,r

H2rb
−,− H2rb

r,b H2rb
r,− H2rb

r,r

Figure 1 The twelve 2-edge-coloured cores of order at most 2 considered in this paper.

3.1 Dichotomy for Vertex Deletion-H-Colouring

Graph modification problems for operations VD and ED have been studied extensively. For
a graph property P , we denote by Vertex Deletion-P the graph modification problem for
property P and operation VD. Lewis and Yannakakis [23] defined a non-trivial property P
on graphs as a property true for infinitely many graphs and false for infinitely many graphs.
They showed the following general result:

I Theorem 5 (Lewis and Yannakakis [23]). The Vertex Deletion-P problem for nontrivial
graph-properties P that are hereditary on induced subgraphs is NP-hard.

By modifying the proof of Theorem 5, we can prove the two following results (the proof
is omitted due to space restrictions and is included in the full version of the manuscript).

I Theorem 6. Let P be a nontrivial property of loopless edge-coloured graphs that is hereditary
for induced subgraphs and true for all independent sets. Then, Vertex Deletion-P is
NP-hard.

For a t-edge-coloured graph, the only case where the property of mapping to H is trivial
(in this case, always true) is when H has a vertex with all t kinds of loops attached (in which
case the core of H is that vertex). Thus we obtain the following dichotomy.

I Corollary 7. Let H be a t-edge-coloured graph. Vertex Deletion-H-Colouring is in
PTime if H contains a vertex having all t kinds of loops, and NP-complete otherwise.

IPEC 2019

15:8 Complexity of Edge-Coloured and Signed Graph Homomorphism

3.2 Dichotomy for Edge Deletion-H-Colouring when H has order 2

No analogue of Theorem 5 for operation ED exists nor is expected to exist [28]. We thus
restrict our attention to the case of edge-coloured graphs H of order at most 2. For this case
we classify the complexity of Edge Deletion-H-Colouring. Since multiple edges of the
same colour are irrelevant, if H has order 2, for each edge-colour there are three possible
edges.

I Theorem 8. Let H be an edge-coloured core of order at most 2. If each colour of H
contains only loops or contains all three possible edges, then Edge Deletion-H-Colouring
is in PTime; otherwise it is NP-complete.

Proof. The NP-completeness proofs are by reductions from Vertex Cover, based on
vertex- and edge-gadgets constructed using obstructions to the corresponding homomorphisms
from [1]. They are available in the full version of the manuscript. We now present the PTime
part.

First note that if colour i has all three possible edges in H, we can simply ignore this
colour by removing it from H and G without decreasing the parameter, as it does not provide
any constraint on the homomorphisms.

We can therefore suppose that H contains only loops. If two colours induce the same
subgraph of H, then we can identify these two colours in both G and H as they give the
same constraints.

If G has colours that H does not have, then remove each edge with this colour and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colours as H. We are left
with only a few cases, as H is a core (there is no vertex whose set of loops is included in the
set of loops of the other).

H has a single loop. Then, G ec−→ H as G has the same colours as H.
H contains two non-incident loops with different colours and two non-incident loops of a
third colour. Up to symmetry, suppose that H has one blue loop and one green loop on
the first vertex and has one red loop and one green loop on the second vertex. We will
reduce to the problem where we have removed the green loops. We construct G′ from
G by replacing each green edge by a blue edge and a red edge. We claim that Edge
Deletion-H-Colouring with parameter k and input G is true if and only if Edge
Deletion-H2−

r,b -Colouring with parameter k plus the number of green edges of G on
input G′ is true. (See full version of the article for details.) Using this method we can
reduce the problem to Edge Deletion-H2−

r,b -Colouring, which is our last case.
H contains two non-incident loops with different colours; then H = H2−

r,b . Indeed if
there were any other kind of loop, then we would be in the previous case or we could
identify two colours. Note that a 2-edge-coloured graph maps to H2−

r,b if and only if it has
no red edge incident to a blue edge. Thus, solving Edge Deletion-H2−

r,b -Colouring
amounts to splitting G into disconnecting red and blue connected components. This can
be done by constructing the following bipartite graph: put a vertex for each edge of G;
two are adjacent if the corresponding edges in G are adjacent and of different colours.
Solving Edge Deletion-H2−

r,b -Colouring is the same as solving Vertex Cover on
this bipartite graph, which is PTime.

There is no other case as otherwise the set of loops of one vertex would be included in the
set of loops of the other. J

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:9

3.3 Dichotomy for Switching-H-Colouring when H has order 2

I Theorem 9. Let H be a 2-edge-coloured graph from Figure 1. If H is one of H2b
r,b, H2b

r,−,
H2rb
r,b , H2rb

r,− or H2rb
r,r , then Switching-H-Colouring is NP-complete. Otherwise, it is in

PTime.

Proof. We begin with the PTime cases.
Every 2-edge-coloured graph maps to H1

rb, thus Switching-H1
rb-Colouring is trivially

in PTime.
No graph with an edge can be mapped to H1

− (regardless of switchings).
For H1

b , we need to test if the graph can be switched to an all-blue graph in less than
k switchings. There are only two sets of switchings that achieve this signature (one is
the complement of the other). It is in PTime to test if the graph can be switched to
an all-blue graph (see [5, Proposition 2.1]). Doing that also gives us one of the two
switching sets; we then need to check if its size is at most k or at least |V (G)| − k. So,
Switching-H1

b -Colouring is in PTime.
For H2−

r,b , we just apply the algorithm for H1
b and H1

r to each connected component, one
of the two must accept for each of them.
For H2br

−,−, a graph G is a YES-instance if and only if G (without considering edge-colours)
is bipartite, which is PTime testable.
For H2b

−,− a graph G is a YES-instance if and only if it is bipartite and maps to H1
b . We

just need to check the two properties, which are both PTime.
For H2b

r,r, a graph G maps to H2b
r,r if and only if it has no cycles with an odd number of

blue edges [1]. This property is preserved under the switching operation. Thus, switching
the graph does not impact the nature of the instance. It is thus in PTime (we can test
with k = 0) since H2b

r,r-Colouring is in PTime [1, 4].

We now consider the NP-complete cases. For every H, Switching-H-Colouring clearly
lies in NP. NP-hardness follows from the above-stated Theorem 3 (proved in [5, 6]) in all
but one case: indeed, the switching cores of H2b

r,b, H2rb
r,b , H2rb

r,− and H2rb
r,r have at least three

edges, and thus when H is one of these, Switching-H-Colouring is NP-complete (even
with k = |V (G)|).

The last case is H2b
r,−. We give a reduction from Vertex Cover to Switching-H2b

r,−-
Colouring. Given instance G of Vertex Cover, we construct an all-red copy G′ of G,
and we attach to each vertex v of G a blue edge vv′, with a red loop on v′ (see Figure 2).

u v w

u′ v′ w′

G . . .

Figure 2 Reduction from Vertex Cover to Switching-H2b
r,−-Colouring.

Denote by x the vertex of H2b
r,− with a loop, and by y the other one. Assume that G has

a vertex cover C of size at most k. Denote by G′′ the graph obtained from G′ by switching
at the vertices of C. We map every vertex v′ to x, every vertex of C to x and the remaining
ones to y. Since C is a vertex cover, each red edge of G′′ is either a loop on some vertex v′, an
edge vv′ with v ∈ C or an edge uv with u, v ∈ C. In each case, both endpoints are mapped
on x. The blue edges of G′′ are then either vv′ with v /∈ C or uv with u ∈ C and v /∈ C. In
both cases, the two endpoints are mapped to different vertices of H2b

r,−; thus, G′′
ec−→ H2b

r,−.

IPEC 2019

15:10 Complexity of Edge-Coloured and Signed Graph Homomorphism

Conversely, assume that we can switch G′ at vertices from a set S such that the resulting
graph G′′ maps to H2b

r,−. Let C be the set of vertices v of G such that v or v′ lies in S. Note
that C has size at most |S|. We claim that C is a vertex cover of G. Assume that there is
an edge uv in G with u, v /∈ C. By construction, u, u′, v, v′ /∈ S, so uu′, vv′ are blue in G′′,
and uv is red. Thus, u, v have to be mapped to x, and u′, v′ to y, a contradiction since u′
has a incident red loop in G′′. Therefore C is a vertex cover of G. J

4 Parameterized complexity results

4.1 Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring
For many edge-coloured graphs H of order at most 2, we can show that Vertex Deletion-
H-Colouring and Edge Deletion-H-Colouring are FPT by giving ad-hoc reductions
to Vertex Cover, Odd Cycle Transversal or a combination of both. However, a more
powerful method is to generalise a technique from [4] used to prove that H-Colouring is in
PTime by reduction to 2-Sat (see also [2]):

I Theorem 10 (Brewster et al. [4]). Let H be an edge-coloured graph of order at most 2.
Then, for each instance G of H-Colouring, there exists a PTime computable 2-Sat formula
F (G) that is satisfiable if and only if G ec−→ H. Thus, H-Colouring is in PTime.

The formula F (G) from Theorem 10 contains a variable xv for each vertex v of G, and
for each edge uv, a set of clauses that depends on H. The idea is to see the two vertices of
H as “true” and “false”, and for each edge uv of a certain colour, to express the possible
assignments of xu and xv based on the edges of that colour that are present in H.

We will show how to generalise this idea to Vertex Deletion-H-Colouring and Edge
Deletion-H-Colouring. We will need the following parameterized variant of 2-Sat:

Variable Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k.
Question: Is there a set of k variables that can be deleted from F (together with the
clauses containing them) so that the resulting formula is satisfiable?

Variable Deletion Almost 2-Sat and another similar variant, Clause Deletion
Almost 2-Sat (where instead of k variables, k clauses may be deleted), are known to be
FPT (see [11, Chapter 3.4]). We need to introduce a more general variant, that we call
Group Deletion Almost 2-Sat, defined as follows.

Group Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k, and a partition of the clauses of F
into groups such that each group has a variable which is present in all of its clauses.
Question: Is there a set of k groups of clauses that can be deleted from F so that the
resulting formula is satisfiable?
By a generalisation of [11, Exercise 3.21] for Clause Deletion Almost 2-Sat, we

obtain the following complexity result for Group Deletion Almost 2-Sat. Its proof is
included in the full version of the paper.

I Proposition 11. Group Deletion Almost 2-Sat is FPT.

We are now able to prove the following theorem.

I Theorem 12. For every edge-coloured graph H of order at most 2, Vertex Deletion-
H-Colouring and Edge Deletion-H-Colouring are FPT.

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:11

Proof. For an instance G, k of Vertex Deletion-H-Colouring or Edge Deletion-H-
Colouring, we consider the formula F (G) from Theorem 10 (see [4]). In F (G), to each
vertex of G corresponds a variable xv. Deleting v from G when mapping G to H has the same
effect as deleting xv when satisfying F (G). Thus, this is an FPT reduction from Vertex
Deletion-H-Colouring to Variable Deletion Almost 2-Sat.

Moreover, each edge uv of G corresponds to one or two clauses of F (G). This naturally
defines the groups of Group Deletion Almost 2-Sat by grouping the clauses corresponding
to the same edge. Removing an edge is equivalent to remove its corresponding group. To
finish, we have to make sure that we can have one variable common to all the clauses of each
group. This is the case in the reduction in [4] for every case except when Ei(H) (the set
of edges of colour i in H) is just a loop. Assume without loss of generality that the loop is
on vertex 1 (the other loop can be treated the same way). Suppose uv has colour i in G;
then uv must be mapped to the loop on vertex 1. The original reduction added the clauses
(xu)(xv); we modify this part and add instead the clauses (c+ xu)(c+ xv)(c) where c is a
new variable. This is now a valid and equivalent instance of Group Deletion Almost
2-Sat, which is FPT by Proposition 11. J

4.2 Switching-H-Colouring: FPT cases
We now consider the parameterized complexity of Switching-H-Colouring. By Theorem 9,
there are five 2-edge-coloured graphs H of order at most 2 with Switching-H-Colouring
NP-complete. We first show that two of them are FPT:

I Theorem 13. Switching-H2b
r,b-Colouring and Switching-H2b

r,−-Colouring are FPT.

Proof. The graph H2b
r,b has the finite duality property by [1], which implies FPT time for

Switching-H2b
r,b-Colouring by a simple bounded search tree algorithm (Proposition 4).

For the graph H2b
r,−, the duality set F(H) discovered in [1] is composed of paths of the

form RB2p−1R (where R is a red edge, B a blue edge and p ≥ 1 is an integer) and of cycles
with an odd number of blue edges. As seen before, if the graph G has such a cycle then
switching will not remove it, thus we can reject.

If the graph has a RB2p−1R path and is a positive instance, then we claim that we need
to switch one of the four vertices of the red edges. Indeed, if we switch only at the vertices
inside the blue path (those not incident with one of the red edges) then the parity of the
number of blue edges will not change and we will still have some maximal odd blue subpath,
the two edges next to the extremities being red. Thus we would still have a RB2q−1R path.

Thus, since we need to switch at one of these four vertices, we branch on this configuration
using the classic bounded search tree technique. This is an FPT algorithm. J

4.3 Switching-H-Colouring: W[1]-hard cases
The remaining cases, H2rb

r,b , H2rb
r,− and H2rb

r,r , yield W[1]-hard Switching-H-Colouring
problems, even for input graphs of large girth (recall that the girth of a graph is the smallest
length of one of its cycles, and by the girth of an edge-coloured graph we mean the girth of
its underlying uncoloured graph):

I Theorem 14. Let x ∈ {r, b,−}. Then for any integer q ≥ 3, the problem Switching-
H2br
r,x -Colouring is W[1]-hard, even for graphs G′ with girth at least q. Under the same

conditions, Switching-H2br
r,x -Colouring cannot be solved in time f(k)|G|o(k) for any

function f , assuming the ETH.

IPEC 2019

15:12 Complexity of Edge-Coloured and Signed Graph Homomorphism

We will prove Theorem 14 by three reductions from Multicoloured Independent
Set, which is W[1]-complete [15]:

Multicoloured Independent Set Parameter: k.
Input: A graph G, an integer k and a partition of V (G) into k sets V1,. . . ,Vk.
Question: Is there a set S of exactly k vertices of G, such that each Vi contains exactly
one element of S, that forms an independent set of G?
Our three reductions (one for each possible choice of x) follow the same pattern. In

Section 4.3.1, we describe this idea, together with the required properties of the gadgets. In
Sections 4.3.2, 4.3.3 and 4.3.4, we show how to construct the gadgets. Since the reduction
preserves the parameter and is actually polynomial, the ETH-based lower bound follows.

4.3.1 Generic reduction
Let (G, k) be an instance of Multicoloured Independent Set, and denote by V1, . . . , Vk
the partition of G. We begin by replacing each Vi by a partition gadget Gi. This gadget must
have |Vi| special vertices, in order to associate a vertex of Gi to each vertex of Vi. Moreover,
Gi must satisfy the following:
(P 1) We do not have Gi

ec−→ H2rb
r,x .

(P 2) If we switch Gi at exactly one vertex v, then the obtained graph maps to H2rb
r,x (without

switching) if and only if v is one of the special vertices of Gi.
(P 3) Gi has girth at least q.

Let uv be an edge of G. Recall that u and v can be seen as vertices of G′. We then add
an edge gadget Guv between u and v. This gadget must satisfy the following:
(E1) Let H be the graph obtained from Guv by switching at a subset S of {u, v}. Then,

H
ec−→ H2rb

r,x if S 6= {u, v}.
(E2) Assume that u ∈ Vi and v ∈ Vj and let H be the graph obtained from Guv ∪Gi ∪Gj

by switching u and v. Then, we do not have H ec−→ H2rb
r,x .

(E3) Ge has girth at least q.
(E4) In Ge, u and v are at distance at least q.

Let G′ be the graph obtained from G by replacing each Vi by a partition gadget Gi, and
each edge uv by an edge gadget Guv such that for every u ∈ Vi and v such that uv is an edge,
we identify the special vertex u in Gi with the special vertex u in Guv. (Note in particular
that every vertex of G is present in G′.)

We say that a set S of vertices of G is valid if, when seen in G′, it contains at most one
special vertex in each edge gadget. We need a last condition about G′:
(SP) If, after switching a valid set in G′, the obtained graph does not map to H2rb

r,x , then
this is because a partition gadget or an edge gadget does not map to H2rb

r,x (that is, each
minimal obstruction is entirely contained in an edge gadget or a partition gadget).

With this Property (SP), we can prove that (G, k) 7→ (G′, k) is a valid reduction.

I Proposition 15. (G′, k) is a positive instance of Switching-H2rb
r,x -Colouring if and

only if (G, k) is a positive instance of Multicoloured Independent Set.

Proof. Assume we can switch at most k vertices of G′ such that the obtained graph maps
to H2rb

r,x . Let S be the set of those vertices. We claim that S is a valid set of G′. First note
that, due to (P1), S must contain at least one vertex in each Vi. This enforces |S| = k, thus
S contains exactly one vertex vi in each Vi. By (P2), each of these vi has to be one of the
special vertices of Gi. This means that S contains only vertices that are present in G.

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:13

We claim that S induces an independent set in G. Assume by contradiction that there is
an edge uv in G with u, v ∈ S. Then, by construction, there is an edge gadget whose special
vertices are u and v, such that the edge gadget and the two partition gadgets associated
with u and v map to H2rb

r,x when we switch only at u and v, contradicting (E2). (Note that
S does not contain any other vertex of the edge gadget nor any other vertex of the partition
gadgets.) Therefore, G has an independent set of size k containing exactly one vertex in each
set Vi.

Conversely, assume that G has an independent set S intersecting each Vi at one vertex.
Then, we denote byH the graph obtained by switching all vertices of S in G′. By construction,
this is a valid set, hence by (SP) every obstruction for mapping to H2rb

r,x in H is actually
contained in some gadget. However, it cannot be contained in a partition gadget due to (P2),
nor in an edge gadget due to (E1). Therefore, we have H ec−→ H2rb

r,x . J

Observe moreover that, due to (P3), (E3) and (E4), G′ has girth at least q. Thus to
prove Theorem 14 it suffices to construct the gadgets.

4.3.2 Gadgets for H2rb
r,r

x0
x1 x2

x3

(a) Partition gadget for Vi = {x0, x1, x2, x3}.

u v

(b) Edge gadget for uv.

Figure 3 Partition and edge gadgets in the H2rb
r,r -reduction when q = 3.

We now describe the gadgets for Switching-H2rb
r,r -Colouring. Note that for every

graph G, we have G ec−→ H2rb
r,r if and only if it does not contain an all-blue odd cycle.

The partition gadget Gi is an all-blue cycle of length 2q if q and |Vi| have the same parity
(resp. 2q + 2 if they do not have the same parity) with a chord of order |Vi| between two
antipodal vertices. The special vertices are those on the chord (see Figure 3a).

Property (P3) directly follows from the construction. Moreover, since Gi contains an
all-blue odd cycle, we have (P1). If we switch Gi at exactly one vertex, then either this
vertex is a special vertex and the obtained graph does not have any all-blue odd cycle (and
thus maps to H2rb

r,r), or it is not a special vertex and there is still an all-blue odd cycle.
Therefore, property (P2) also holds.

We now consider the edge gadget. It is formed by an all-blue odd cycle of length 2q + 1
where two vertices u, v at distance q have been switched (see Figure 3b). These vertices are
the special vertices of the gadget. By construction, properties (E3) and (E4) hold. Moreover,
consider a set S ⊂ {u, v}. The only way for switching the vertices of S to yield a graph
containing an all-blue odd cycle is to switch both u and v. This proves (E1). If we switch at
both special vertices then we do not have Guv

ec−→ H2rb
r,r , which implies (E2).

It remains to prove Property (SP). Let S be a valid set, and let H be the graph obtained
from G′ when switching all vertices of S. Assume that H contains an all-blue odd cycle.
Since S is valid set, at most one vertex has been switched in each edge gadget. Therefore, no
all-blue odd cycle of H can contain an edge from an edge gadget. It is thus contained in
some partition gadget, ensuring that (SP) holds.

IPEC 2019

15:14 Complexity of Edge-Coloured and Signed Graph Homomorphism

u v

Figure 4 The edge gadget for uv in the H2rb
r,−-reduction when q = 6.

4.3.3 Gadgets for H2rb
r,−

We now describe the gadgets for Switching-H2rb
r,−-Colouring. Note that for every graph

G, we have G ec−→ H2rb
r,− if and only if it does not contain a bad walk, i.e. a walk v0, v1, . . . ,

v2j , v0, v2j+2, . . . , v2p−1, v0 such that all edges v2iv2i+1 are blue [1].
The partition gadget Gi is the same as in the previous case (see Figure 3a).
The edge gadget is an odd path of length at least q, whose edges are all blue except for

the two first and two last ones (see Figure 4).
The proofs of validity for this case can be found in the full version of the paper.

4.3.4 Gadgets for H2rb
r,b

x0 x3x1 x2

(a) Partition gadget for Vi = {x0, x1, x2, x3}.

u v

x

(b) Edge gadget for uv. The vertex x is where
the two alternating cycles were identified.

Figure 5 Partition and edge gadgets in the H2rb
r,b -reduction when q = 3.

We now describe the gadgets for Switching-H2rb
r,b -Colouring. Note that for every

graph G, we have G ec−→ H2rb
r,b if and only if it does not contain another type of bad walks, i.e.

an alternating walk v0, v1, . . . , v2j , v0, v2j+2, . . . , v2p−1, v0 for some integers j and p [1].
The partition gadget Gi is defined by gluing two obstructions with large girth along a

path of length |Vi| (see Figure 5a). More precisely, consider an alternating odd cycle C of
size |Vi| + q (or |Vi| + q + 1). Note that C contains a vertex u adjacent to two red edges.
We attach an alternating odd cycle C ′ of length q (or q + 1) to u, such that the edges of C ′
adjacent to u are blue. To obtain Gi, we take two copies of this obstruction, and glue their
respective largest cycle along a path of length |Vi|. The vertices of this path are the special
vertices of Gi.

The edge gadget is formed by identifying the vertices with monochromatic neighbourhood
of two alternating odd cycles of length 2q + 1, in such a way that the common vertex has
two blue edges in one cycle and two red edges in the other one. To obtain the edge gadget,
we switch this graph at two vertices u, v in the same cycle, at distance q from each other
(see Figure 5b).

The proofs of validity for this case can be found in the full version of the paper.

5 Conclusion and perspectives

We have introduced Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring
and Switching-H-Colouring and characterised their complexity for some small H. The
full complexity landscape still needs to be determined. We have fully classified the classic

F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron 15:15

complexity of Vertex Deletion-H-Colouring problems. It remains to do the same for
Edge Deletion-H-Colouring and Switching-H-Colouring.

We proved that both Vertex Deletion-H-Colouring and Edge Deletion-H-
Colouring are FPT when H has order at most 2. However, if H has order 3, for example if
H is a monochromatic triangle, we obtain 3-Colouring, which is not in XP. Switching-H-
Colouring seems particularly interesting, since we obtained an FPT/W[1]-hard dichotomy
when H has order at most 2 (in which case the problem is always in XP). But again for some
H of order 3, Switching-H-Colouring is not in XP. It would be very interesting to obtain
FPT/W[1]/XP trichotomies for Vertex Deletion-H-Colouring, Edge Deletion-H-
Colouring and Switching-H-Colouring.

Finally, we note that it could be interesting to study analogues of Vertex Deletion-H-
Colouring and Edge Deletion-H-Colouring for arbitrary fixed-template CSP problems.
Up to our knowledge this has not been done.

References
1 Z. Bawar, R. C. Brewster, and D. A. Marcotte. Homomorphism duality in edge-coloured

graphs. Annales des sciences mathématiques du Québec, 29(1):21–34, 2005.
2 R. C. Brewster. Vertex colourings of edge-coloured graphs. PhD thesis, Simon Fraser University,

Canada, 1993.
3 R. C. Brewster. The complexity of colouring symmetric relational systems. Discrete Applied

Mathematics, 49(1):95–105, 1994.
4 R. C. Brewster, R. Dedić, F. Huard, and J. Queen. The recognition of bound quivers using

edge-coloured homomorphisms. Discrete Mathematics, 297:13–25, 2005.
5 R. C. Brewster, F. Foucaud, P. Hell, and R. Naserasr. The complexity of signed and edge-

coloured graph homomorphisms. Discrete Mathematics, 340(2):223–235, 2017.
6 R. C. Brewster and M. H. Siggers. A complexity dichotomy for signed H-colouring. Discrete

Mathematics, 341(10):2768–2773, 2018.
7 A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In IEEE Computer Society, pages

319–330, FOCS 2017, 2017. Proceedings of the 58th IEEE Annual Symposium on Foundations
of Computer Science.

8 J. Bulín. On the complexity of H-coloring for special oriented trees. European Journal of
Combinatorics, 69:54–75, 2018.

9 L. Cai. Fixed parameter tractability of graph modification problem for hereditary properties.
Information Processing Letters, 58:171–176, 1996.

10 L. Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics, 127:415–
429, 2003.

11 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

12 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
13 A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity issues in switching of

graphs. In Lecture Notes in Computer Science, pages 59–70, Proceedings of the International
Workshop on Theory and Application of Graph Transformations, TAGT’98, 1764, 2000.

14 T. Feder and M. Y. Vardi. The computational structure of monotone monadic snp and
constraint satisfaction: a study through datalog and group theory. SIAM Journal on Computing,
28(1):57–104, 1998.

15 M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameterized complexity
of multiple-interval graph problems. Theoretical Computer Science, 40(1):53–61, 2009.

16 F. Foucaud and R. Naserasr. The complexity of homomorphisms of signed graphs and signed
constraint satisfaction. In Lecture Notes in Computer Science, pages 526–537, Proceedings of
the 11th Latin American Symposium on Theoretical Informatics 2014, LATIN’14. 8392, 2014.

IPEC 2019

15:16 Complexity of Edge-Coloured and Signed Graph Homomorphism

17 F. Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal,
2(2):143–146, 1953-1954.

18 P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory
Series B, 48(1):92–110, 1990.

19 F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for signed graph
balancing. Journal of Combinatorial Optimization, 20(4):335–360, 2010.

20 L. Jaffke and B. M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In Lecture Notes in Computer Science, pages 345–356, Proceedings of the
10th International Conference on Algorithms and Complexity, CIAC’17. 10236, 2017.

21 E. Jelínková, O. Suchý, P. Hliněný, and J. Kratochvíl. Parameterized problems related to
Seidel’s switching. Discrete Mathematics and Theoretical Computer Science, 13(2):19–42, 2011.

22 S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hereditary
properties. Theoretical Computer Science, 289(2):997–1008, 2002.

23 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

24 D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time
hypothesis. Bulletin of the EATCS, 105:41–71, 2011.

25 D. Marx. Parameterized coloring problems on chordal graphs. Theoretical Computer Science,
351(3):407–424, 2006.

26 R. Naserasr, E. Rollová, and É. Sopena. Homomorphisms of signed graphs. Journal of Graph
Theory, 79(3):178–212, 2015.

27 Y. Takenaga and K. Higashide. Vertex coloring of comparability +ke and −ke graphs. In
Lecture Notes in Computer Science, pages 102–112, Proceedings of the 32nd International
Worksop on Graph-Theoretic Concepts in Computer Science, WG’06. 4271, 2006.

28 M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309, 1981.
29 T. Zaslavsky. Signed graphs. Discrete Applied Mathematics, 4(1):47–74, 1982.
30 D. Zhuk. A proof of CSP dichotomy conjecture. In IEEE Computer Society, pages 331–342,

FOCS 2017, 2017. Proceedings of the 58th IEEE Annual Symposium on Foundations of
Computer Science.

On the Fine-Grained Complexity of Least Weight
Subsequence in Multitrees and Bounded
Treewidth DAGs
Jiawei Gao1

University of California, San Diego, CA, USA
jiawei@cs.ucsd.edu

Abstract
This paper introduces a new technique that generalizes previously known fine-grained reductions
from linear structures to graphs. Least Weight Subsequence (LWS) [30] is a class of highly sequential
optimization problems with form F (j) = mini<j [F (i) + ci,j] . They can be solved in quadratic
time using dynamic programming, but it is not known whether these problems can be solved faster
than n2−o(1) time. Surprisingly, each such problem is subquadratic time reducible to a highly
parallel, non-dynamic programming problem [36]. In other words, if a “static” problem is faster
than quadratic time, so is an LWS problem. For many instances of LWS, the sequential versions are
equivalent to their static versions by subquadratic time reductions. The previous result applies to
LWS on linear structures, and this paper extends this result to LWS on paths in sparse graphs, the
Least Weight Subpath (LWSP) problems. When the graph is a multitree (i.e. a DAG where any pair
of vertices can have at most one path) or when the graph is a DAG whose underlying undirected
graph has constant treewidth, we show that LWSP on this graph is still subquadratically reducible
to their corresponding static problems. For many instances, the graph versions are still equivalent
to their static versions.

Moreover, this paper shows that if we can decide a property of form ∃x∃yP (x, y) in subquadratic
time, where P is a quickly checkable property on a pair of elements, then on these classes of graphs,
we can also in subquadratic time decide whether there exists a pair x, y in the transitive closure of
the graph that also satisfy P (x, y).

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases fine-grained complexity, dynamic programming, graph reachability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.16

Related Version A full version of the paper is available on ECCC : https://eccc.weizmann.ac.
il/report/2019/045/.

Funding Work supported by a Simons Investigator Award from the Simons Foundation.

Acknowledgements I sincerely thank Russell Impagliazzo for his guidance and advice on this paper.
I would like to thank Marco Carmosino and Jessica Sorrell for helpful comments. Also I would like
to thank the anonymous reviewers for comments on an earlier version of this paper.

1 Introduction

1.1 Extending one-dimensional dynamic programming to graphs
Least Weight Subsequence (LWS) [30] is a type of dynamic programming problems: select a
set of elements from a linearly ordered set so that the total cost incurred by the adjacent
pairs of selected elements is optimized. It is defined as follows: Given elements x0, . . . , xn,

1 Now at Google.

© Jiawei Gao;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jiawei@cs.ucsd.edu
https://doi.org/10.4230/LIPIcs.IPEC.2019.16
https://eccc.weizmann.ac.il/report/2019/045/
https://eccc.weizmann.ac.il/report/2019/045/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

and an n× n matrix C of costs ci,j for all pairs of indices i < j, compute F on all elements,
defined by

F (j) =
{

0, for j = 1
min0≤i<j [F (i) + ci,j], for j = 2, . . . , n

F (j) is the optimal cost value from the first element up to the j-th element. We use the
notation LWSC to define the LWS problem with cost matrix C. The Airplane Refueling
problem [30] is a well known example of LWS: Given the locations of airports on a line,
find a subset of the airports for an airplane to add fuel, that minimizes the total cost. The
cost of flying from the i-th to the j-th airport without stopping is defined by ci,j . Other
LWS examples include finding a longest chain satisfying a certain property, such as Longest
Increasing Subsequence [25] and Longest Subset Chain [36]; breaking a linear structure
into blocks, such as Pretty Printing [34]; variations of Subset Sum such as special versions
of the Coin Change problem and the Knapsack problem[36]. These problems have O(n2)
time algorithms using dynamic programming, and in many special cases it can be improved:
when the cost satisfies the quadrangle inequality or some other properties, there are near
linear time algorithms [50, 46, 26]. But for the general LWS, it is not known whether these
problems can be solved faster than n2−o(1) time.

A general approach to understanding the fine-grained complexity of these problems was
initiated in [36]. Many LWS problems have succinct representations of ci,j . Usually C is
defined implicitly by the data associated to each element, and the size of the data on each
element is relatively small compared to n. Taking problems defined in [36] as examples,
in LowRankLWS, ci,j = 〈µi, σj〉, where µi and σj are boolean vectors of length d � n

associated to each element that are given by the input. The ChainLWS problem has costs
c1, . . . , cn defined by a boolean relation P so that ci,j equals cj if P (i, j) is true, and ∞
otherwise. P is computable by data associated to element i and element j. (For example, in
LongestSubsetChain, P (i, j) is true iff set Si is contained in set Sj , where Si and Sj are sets
associated to elements i and j respectively.) So the goal of the problem becomes finding a
longest chain of elements so that adjacent elements that are to be selected satisfy property
P . When C can be represented succinctly, we can ask whether there exist subquadratic time
algorithms for these problems, or try to find subquadratic time reductions between problems.
[36] showed that in many LWSC problems where C can be succinctly described in the input,
the problem is subquadratic time reducible to a corresponding problem, which is called a
StaticLWSC problem. The problem StaticLWSC is: given elements x1, . . . , xn, a cost matrix C,
and values F (i) on all i ∈ {1, . . . , n/2}, compute F (j) = mini∈{n/2+1,...,n}[F (i) + ci,j] for all
j ∈ {n+ 1, . . . , 2n}. It is a parallel, batch version (with many values of j rather than a single
one) of the LWS update rule applied sequentially one index at a time in the standard DP
algorithm. The reduction from LWSC to StaticLWSC implies that a highly sequential problem
can be reducible to a highly parallel one. If a StaticLWSC problem can be solved faster
than quadratic time, so can the corresponding LWSC problem. Apart from one-directional
reductions from general LWSC to StaticLWSC , [36] also proved subquadratic time equivalence
between some concrete problems (LowRankLWS is equivalent to MinInnerProduct, NestedBoxes
is equivalent to VectorDomination, LongestSubsetChain is equivalent to OrthogonalVectors, and
ChainLWS, which is a generalization of NestedBoxes and LongestSubsetChain, is equivalent to
Selection, a generalization of VectorDomination and OrthogonalVectors).

Some of the LWS problems can be naturally extended from lines to graphs. For example,
on a road map, we wish to find a path for a vehicle, along which we wish to find a sequence
of cities where the vehicle can rest and add fuel so that the total cost is minimized. The cost

J. Gao 16:3

of traveling between cities x and y without stopping is defined by cost cx,y. Connections
between cities could be a general graph, not just a line. Works about algorithms for special
LWS problems on special classes of graphs include [11, 43, 24, 38].

Using a similar approach as [36], this paper extends the Least Weight Subsequence
problems to the Least Weight Subpath (LWSPC) problem whose objective is to find a least
weight subsequence on a path of a given DAG G = (V,E). Let there be a set V0 containing
vertices that can be the starting point of a subsequence in a path. The optimum value on
each vertex is defined by:

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0

where u v means v is reachable from u. The goal of LWSPC is to compute F (v) for
all vertices v ∈ V . Examples of LWSPC problems will be given in Appendix B. LWSPC
can be solved in time O(|V | · |E|) by doing reversed depth/breadth first search from each
vertex, and update the F value on the vertex accordingly. It is not known whether it has
faster algorithms, even for Longest Increasing Subsequence, which is an LWSC instance
solvable in O(n logn) time on linear structures. If C is succinctly describable in similar
ways as LowRankLWS, NestedBoxes,SubsetChain or ChainLWS, we wish to study if there are
subquadratic time algorithms or subquadratic time reductions between problems.

For the cost matrix C, we consider that every vertex has some additional data so that
cx,y can be computed by the data contained in x and y. Let the size of additional data
associated to each vertex v be its weighted size w(v). The weight of a vertex can be defined
in different ways according to the problems. For example, in LowRankLWS, the weighted size
of an element can be defined as the dimension of its associated vector; and in SubsetChain,
the weighted size of an element is the size of its corresponding subset. We use m = |E| as the
number of graph edges. Let n be the number of vertices. We study the case where the graph
is sparse, i.e. m = n1+o(1). Let the total weighted size of all vertices be N . For LWSC and
other problems without graphs, we use N as the input size. For LWSPC and other problems
on graphs, we use M = max(m,N) as the size of the input.

In this paper we will see that if we can improve the algorithm for StaticLWSC to N2−o(1),
then on some classes of graphs we can solve LWSPC faster than M2−o(1) time.

1.2 Fine-grained complexity preliminaries
Fine-grained complexity studies the exact-time reductions between problems, and the com-
pleteness of problems in classes under exact-time reductions. These reductions have estab-
lished conditional lower bounds for many interesting problems. The Orthogonal Vectors
problem (OV) is a well-studied problem solvable in quadratic time. If the Strong Exponential
Time Hypothesis (SETH) [31, 32] is true, then OV does not have truly subquadratic time
algorithms [47]. The problem OV is defined as follows: Given n boolean vectors of dimension
d = ω(logn), and decide whether there is a pair of vectors whose inner product is zero. The
best algorithm is in time n2−Ω(1/ log(d/ logn)) [7, 23]. The Moderate-dimension OV conjecture
(MDOVC) states that for all ε > 0, there are no O(n2−εpoly(d)) time algorithms that solve
OV with vector dimension d. If this conjecture is true, then many interesting problems
would get lower bounds, including dynamic programming problems such as Longest Common
Subsequence [2, 20], Edit Distance [14, 5], Fréchet distance [18, 21, 22], Local Alignment [9],
CFG Parsing and RNA Folding [1], Regular Expression Matching [15, 19] , and also many
graph problems [42, 8, 16]. There are also conditional hardness results about graph problems
based on the hardness of All Pair Shortest Path [49, 4, 10, 39] and 3SUM [6, 35].

IPEC 2019

16:4 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

The fine-grained reduction was introduced in [49], which can preserve polynomial saving
factors in the running time between problems. The statements for fine-grained complexity
are usually like this: if there is some ε2 > 0 such that problem Π2 of input size n is in
TIME((T2(n))1−ε2), then problem Π1 of input size n is in TIME((T1(n))1−ε1) for some ε1. If
T1 and T2 are both O(n2) then this reduction is called a subquadratic reduction. Furthermore,
the exact-complexity reduction is a more strict version that can preserve sub-polynomial
savings factors between problems. We use (Π1, T1(n)) ≤EC (Π2, T2(n)) to denote that there
is a reduction from problem Π1 to problem Π2 so that if problem Π2 is in TIME(T2(n)), then
problem Π1 is in TIME(T1(n)).

1.3 Introducing reachability to first-order model checking

Similar to extending LWSC to paths in graphs, introducing transitive closure to first-order
logic also which makes parallel problems become sequential. The first-order property (or
first-order model checking) problem is to decide whether an input structure satisfies a fixed
first-order logic formula ϕ. Although model checking for input formulas is PSPACE-complete
[44, 45], when ϕ is fixed by the problem, it is solvable in polynomial time. We consider
the class of problems where each problem is the model checking for a fixed formula ϕ.
The sparse version of OV [27] is one of these problems, defined by the formula ∃u∃v∀i ∈
[d](¬One(u, i)∨(¬One(v, i))), where relation One(u, i) is true iff the i-th coordinate of vector
u is one.

If ϕ has k quantifiers (k ≥ 2), then on input structures of n elements and m tuples of
relations, it can be solved in time O(nk−2m) [28]. On dense graphs where k ≥ 9, it can
be solved in time O(nk−3+ω), where ω is the matrix multiplication exponent [48]. Here
we study the case where the input structure is sparse, i.e.m = n1+o(1), and ask whether
a three-quantifier first-order formula can be model checked in time faster than m2−o(1).
The first-order property conjecture (FOPC) states that there exists integer k ≥ 2, so that
first-order model checking for (k + 1)-quantifier formulas cannot be solved in time O(mk−ε)
for any ε > 0. This conjecture is equivalent to MDOVC, since OV is proven to be a complete
problem in the class of first-order model checking problems; in other words, any model
checking problem of 3 quantifier formulas on sparse graphs is subquadratic time reducible to
OV [28]. This means from improved algorithms for OV we can get improved algorithms for
first-order model checking.

The first-order property problems are highly parallelizable. If we introduce the transitive
closure (TC) operation on the relations, then these problems will become sequential. The
transitive closure of a binary relation E can be considered as the reachability relation by
edges of E in a graph. In a sparse structure, the TC of a relation may be dense. So it
can be considered as a dense relation succinctly described in the input. In finite model
theory, adding transitive closure significantly adds to the expressive power of first-order
logic (First discovered by Fagin in 1974 according to [37], and then re-discovered by [12].)
In fine-grained complexity, adding arbitrary transitive closure operations on the formulas
strictly increases the hardness of the model checking problem. More precisely, [27] shows
that SETH on constant depth circuits, which is a weaker conjecture than the SETH (which
concerns k-CNF-SAT), implies the model checking for two-quantifier first-order formulas
with transitive closure operations cannot be solved in time O(m2−ε) for any ε > 0. This
means this problem may stay hard even if the SETH on k-CNF-SAT is refuted.

However, we will see that for a class of three-quantifier formulas with transitive closure,
model checking is no harder than OV under subquadratic time reductions.

We define problem SelectionP to be the decision problem for whether an input structure
satisfies (∃x ∈ X)(∃y ∈ Y)P (x, y). P (x, y) is a fixed property specified by the problem that

J. Gao 16:5

can be decided in time O(w(x) + w(y)), where weighted size w(x) is the size of additional
data on element x. For example, OV is SelectionP where P (x, y) iff x and y are a pair of
orthogonal vectors. In this case w(x) is defined as the length of vector x. (If we work on the
sparse version of OV, the weighted size w(x) is defined by the Hamming weight of x.)

On a directed graph G = (V,E), we define PathP to be the problem of deciding whether
(∃x ∈ V)(∃y ∈ V)[TCE(x, y) ∧ P (x, y)], where TCE is the transitive closure of relation E
and P (x, y) is a property on x, y fixed by the problem. That is, whether there exist two
vertices x,y not only satisfying property P but also y is reachable from x by edges in E. We
will give an example of PathP in Appendix B. Also, we define ListPathP to be the problem
of listing all x ∈ V such that (∃y ∈ V)[TCE(x, y) ∧ P (x, y)].

Considering the model checking problems, we let PathFO3 and ListPathFO3 denote the
class of PathP and ListPathP such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z), where ψ is
a quantifier-free formula in first-order logic. Later we will see that problems in PathFO3 and
ListPathFO3 are no harder than OV. In these model checking problems, the weighted size of
an element is the number of tuples in the input structure that the element is contained in.

Trivially, SelectionP on input size (N1, N2) can be decided in time O(N1N2), where N1
is the total weighted size of elements in X, and N2 is the total weighted size of elements
in Y . PathP and ListPathP on input size M and total vertex weighted size N are solvable
time O(MN) by depth/breadth first search from each vertex, where M is defined to be the
maximum of N and the number of edges m. This paper will show that on some graphs, if
SelectionP is in truly subquadratic time, so is PathP and ListPathP . Interestingly, by applying
the same reduction techniques from PathP to SelectionP , we can get a similar reduction from
a dynamic programming problem on a graph to a static problem.

1.4 Main results
This paper works on two classes of graphs, both having some similarities to trees. The first
class is where the graph G is a multitree. A multitree is a directed acyclic graph where the
set of vertices reachable from any vertex form a tree. Or equivalently a DAG is a multitree if
and only if on all pairs of vertices u, v, there is at most one path from u to v. In different
contexts, multitrees are also called strongly unambiguous graphs, mangroves or diamond-free
posets [29]. These graphs can be used to model computational paths in nondeterministic
algorithms where there is at most one path connecting any two states [13]. The butterfly
network, which is a widely-used model of the network topology in parallel computing, is an
example of multitrees. We also work on multitrees of strongly connected component, which
is a graph that when each strongly connected components are replaced by a single vertex,
the graph becomes a multitree.

The second class of graphs is when we treat G as undirected by replacing all directed
edges by undirected edges, the underlying graph has constant treewidth. Treewidth [40, 41]
is an important parameter of graphs that describes how similar they are to trees. 2 On these
classes of graphs, we have the following theorems.

I Theorem 1 (Reductions between decision problems.). Let t(M) ≥ 2Ω(
√

logM), and let the
graph G = (V,E) satisfy one of the following conditions:

G is a multitree, or
G is a multitree of strongly connected components, or
The underlying undirected graph of G has constant treewidth,

2 Here we consider the undirected treewidth, where both the graph and the decomposition tree are
undirected. It is different from directed treewidth defined for directed graphs by [33].

IPEC 2019

16:6 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

then, the following statements are true:
If SelectionP is in time N1N2/t(min(N1, N2)), then PathP is in time M2/t(polyM).3
If PathP is in time M2/t(M), then ListPathP is in time M2/t(polyM).
When P (x, y) is of form ∃zψ(x, y, z) or ∀zψ(x, y, z) where ψ is a quantifier-free first-order
formula, SelectionP is in time N1N2/t(min(N1, N2)) iff PathP is in time M2/t(polyM)
iff ListPathP is in time M2/t(polyM).

This theorem implies that OV is hard for classes PathFO3 and ListPathFO3 . By the
improved algorithm for OV [7, 23], we get improved algorithms for PathFO3 and ListPathFO3 :

I Corollary 2 (Improved algorithms.). Let the graph G be a multitree, or multitree of strongly
connected components, or a DAG whose underlying undirected graph has constant treewidth.
Then PathFO3 and ListPathFO3 are in time M2/2Ω(

√
logM).

Next, we consider the dynamic programming problems. If the cost matrix C in LWSPC
is succinctly describable, we get the following reduction from LWSPC to StaticLWSC .

I Theorem 3 (Reductions between optimization problems.). On a multitree graph, or a DAG
whose underlying undirected graph has constant treewidth, let t(N) ≥ 2Ω(

√
logN), then,

1. if StaticLWSC of input size N is in time N2/t(N), then LWSPC on input size M is in
time M2/t(poly(M)).

2. if LWSPC is in time M2/t(M), then LWSC is in time N2/t(poly(N)).

If there is a reduction from a concrete StaticLWSC problem to its corresponding LWSC prob-
lem (e.g. there are reductions from MinInnerProduct to LowRankLWS, from VectorDomination
to NestedBoxes and from OV to LongestSubsetChain [36]), then the corresponding LWSC ,
StaticLWSC and LWSPC problems are subquadratic-time equivalent. From the algorithm for
OV [23] and SparseOV [28], we get improved algorithm for problem LongestSubsetChain:

I Corollary 4 (Improved algorithm). On a multitree or a DAG whose underlying undirected
graph has constant treewidth, LongestSubsetChain is in time M2/2Ω(

√
logM).

The reduction uses a technique that decomposes multitrees into sub-structures where it
is easy to decide whether vertices are reachable. So we also get reachability oracles using
subquadratic space, that can answer reachability queries in sublinear time.

I Theorem 5 (Reachability oracle). On a multitree of strongly connected components, there
exists a reachability oracle with subquadratic preprocessing time and space that has sublinear
query time. On a multitree, the preprocessing time and space is O(m5/3), and the query time
is O(m2/3).

1.5 Organization
In Section 2 we prove the first part of Theorem 1, by reduction from PathP to SelectionP
on multitrees. The case for bounded treewidth DAGs will be presented in the full version.
Section 3 proves Theorem 3 by presenting a reduction from LWSPC to StaticLWSC , and the
proof of correctness will be in the full version. Section 4 discusses about open problems.

3 This reduction also applies to optimization versions of these two problems. Let PathF be a problem to
compute minx,y∈V,x y F (x, y) and SelectionF be a problem to compute minx∈X,y∈Y F (x, y), where F
is a function on x, y, instead of a boolean property. Then the same technique gives us a reduction from
PathF to SelectionF .

J. Gao 16:7

Appendix A lists the definitions of problems, and Appendix B shows some concrete problems
as examples.

Due to space restrictions, several proofs had to be deferred to the full version, including
the rest of Theorem 1, the subquadratic equivalence of SelectionP , PathP and ListPathP when
P is a first-order property, and the reachability oracle for multitrees.

2 From sequential problems to parallel problems, on multitrees

We will prove the first part of Theorem 1 by showing that if t(M) ≥ 2Ω(
√

logM), then
(PathP ,M2/t(polyM)) ≤EC (SelectionP , N1N2/t(min(N1, N2))). This section gives the re-
duction for multitrees and multitrees of strongly connected components. For constant
treewidth graphs, the reduction will be shown in the full version.

2.1 The recursive algorithm

The algorithm uses a divide-and-conquer strategy. We will consider each strongly connected
component as a single vertex, whose weighted size equals the total weighted size of the
component. In the following algorithm, whenever querying SelectionP or exhaustively
enumerating pairs of reachable vertices and testing P on them, we can extract all the vertices
from a strongly connected component. Thus we will be working on a multitree, instead of
a multitree of strongly connected components. Testing P on a pair of vertices (or strongly
connected components) of total weighted sizes N1, N2 is in time O(N1N2).

Let CutPathP be a variation of PathP . It is the property testing problem for (∃x ∈
S)(∃y ∈ T)[TCE(x, y) ∧ ϕ(x, y)], where (S, T) is a cut in the graph, such that all the edges
between S and T are directed from S to T . CutPathP on input size M and total vertex
weighted size N can be solved in time O(MN) if P (x, y) is decidable in time O(w(x) +w(y)):
start from each vertex and do depth/breadth first search, and on each pair of reachable
vertices decide if P is satisfied.

I Lemma 6. For t(M) ≥ 2Ω(
√

logM), if SelectionP (N,N) is in time N2/t(N) and
CutPathP (M) is in time M2/t(M), then PathP (M) is in time M2/t(poly(M)).

Proof. Let γ be a constant satisfying 0 < γ ≤ 1/4. Let TΠ(M) be the running time of
problem Π on a structure of total weighted size M . We show that there exists a constant
c where 0 < c < 1 so that if TPathP

(M ′) is at most M ′2/t(M ′c) for all M ′ < M , then
TPathP

(M) ≤ M2/t(M c). We run the recursive algorithm as shown in Algorithm 1. The
intuition is to divide the graph into a cut S, T , recursively compute PathP on S and T , and
deal with paths from S to T .

It would be good if the difference of total weighted sizes between S and T is at most Mγ .
Otherwise, it means by the topological order, there is a vertex of weighted size at least Mγ

in the middle, adding it to either S or T would make the size difference between S and T
exceed Mγ . In this case, we use letter x to denote the vertex. We will deal with x separately.
We temporarily set aside the time of recursively running SelectionP on x (when x is shrunk
from a strongly connected component) in all the recursive calls, and consider the rest of the
running time.

IPEC 2019

16:8 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 1 PathP (G) on a DAG

// Reducing PathP to SelectionP and CutPathP
1 if G has only one vertex then return false.
2 Let M be the weighted size of the problem.
3 Topological sort all vertices.
4 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
5 if |S| − |T | > Mγ then
6 Let x be the last vertex added to S. Remove x from S.
7 Run PathP on the subgraph induced by S.
8 Run CutPathP (S, T).
9 if x exists then

10 Run CutPathP (S, x).
11 If x is originally a strongly connected component, run SelectionP on it.
12 Run CutPathP (x, T)
13 Run PathP on the subgraph induced by T .
14 if any one of the above three calls returns true then return true.

Let MS and MT be the sizes of sets S and T respectively. Without loss of generality,
assume MS ≥MT , and let ∆ = MS −MT , which is at most Mγ . Then we have

TPathP
(M) = TPathP

(MS) + TPathP
(MT) + 3TCutPathP

(M) +O(M)
= TPathP

(MT + ∆) + TPathP
(MT) + 3TCutPathP

(M) +O(M)
≤ 2TPathP

(M/2 + ∆) + 3TCutPathP
(M) +O(M)

= 2(M/2 + ∆)2/t((M/2 + ∆)c) + 3M2/t(M) +O(M).

Because t(M) < M and is monotonically growing, The term 3M2/t(M) +O(M) is bounded
by 4M2/t(M) ≤ 16(M/2)2/t(M) ≤ 16(M/2 + ∆)2/t((M/2 + ∆)c). Thus the above formula
is bounded 18(M/2 + ∆)2/t((M/2 + ∆)c). By picking small enough constant γ and c, this
sum is less than M2/t(M c).

For the time of running SelectionP on x where x is originally a strongly connected
component, we consider all recursive calls of PathP . Let the size of each such x be Mi. The
total time would be

∑
iM

2
i /t(Mi) < (

∑
iM

2
i)/t(Mγ). Because

∑
iMi ≤M , the sum is at

most M2/t(Mγ), a value subquadratic to M , with M being the input size of the outermost
call of PathP . J

2.2 A special case that can be exhaustively searched
The following lemma shows that if no vertex has both a lot of ancestors and a lot of
descendants, then the total number of reachable pairs of vertices is subquadratic to m. This
lemma holds for any DAG, not just for multitrees. We will use this lemma in the next
subsection to show that in a subgraph where all vertices have few ancestors and descendants,
we can test property P on all pairs of reachable vertices by brute force. Actually, we will use
a weighted version of this lemma, which will be proved in the full version.

I Lemma 7. If in a DAG G = (V,E) of m edges, every vertex has either at most n1
ancestors or at most n2 descendants, then there are at most (m · n1 · n2) pairs of vertices s, t
such that s can reach t.

J. Gao 16:9

In a DAG G = (V,E) of m edges, let S, T be two disjoint sets of vertices where edges
between S and T only direct from S to T . If every vertex has either at most n1 ancestors in
S or at most n2 descendants in T , then there are at most (m · n1 · n2) pairs of vertices s ∈ S
and t ∈ T such that s can reach t.

Proof. We define the ancestors of an edge e ∈ E to be the ancestors (or ancestors in S) of
its incoming vertex, and its descendants to be the descendants (or descendants in T) of its
outgoing vertex. Let the number of its ancestors and descendants be denoted by anc(e) and
des(e) respectively.

For each edge e, it belongs to exactly one of the following three types:
Type A: If anc(e) ≤ n1 but des(e) > n2, then let count(e) be anc(e).
Type B: If des(e) ≤ n2 but anc(e) > n1, then let count(e) be des(e).
Type C: If anc(e) ≤ n1 and des(e) ≤ n2, then let count(e) be anc(e) · des(e).∑
e∈E count(e) ≤ m · n1 · n2 because the count value on each edge is bounded by n1 · n2. We

will prove that this value upper bounds the number of reachable pairs of vertices.
For each pair of reachable vertices (u, v) (or (u, v) s.t.u ∈ S and v ∈ T), let (e1, . . . , ep)

be the path from u to v. Along the path, anc does not decrease, and dec does not increase.
A path belongs to exactly one of the following three types:
Type a: Along the path anc(e1) ≤ anc(e2) ≤ · · · ≤ anc(ep) ≤ n1, and des(e1) ≥ des(e2) ≥
· · · ≥ des(ep) > n2. That is, all the edges are Type A.

Type b: Along the path des(ep) ≤ des(ep−1) ≤ · · · ≤ des(e1) ≤ n2, and anc(ep) ≥
anc(ep−1) ≥ · · · ≥ anc(e1) > n1. That is, all the edges are Type B.

Type c: Along the path there is some edge ei so that anc(ei) ≤ n1 and des(ei) ≤ n2. That
is, it has at least one Type C edge.

There will not be other cases, for otherwise if a Type A edge directly connects to a Type B
edge without a Type C edge in the middle, then the vertex joining these two edges would
have more than n1 ancestors and more than n2 descendants.

If a path from u to v is Type a, then its last edge ep is Type A. If it is Type b, then its
first edge e1 is Type B. If it is Type c, then there is some edge ei in the path that is Type C.
This means:
1. For each Type A edge e, count(e) is at least the number of all Type a pairs (u, v) whose

path has e as its last edge.
2. For each Type B edge e, count(e) is at least the number of all Type b pairs (u, v) whose

path has e as its first edge.
3. For each Type C edge e, count(e) is at least the number of all Type c pairs (u, v) whose

path contains e.
Therefore each path is counted at least once by the count(e) of some edge e. J

2.3 Subroutine: reachability across a cut
Now we will show the reduction from CutPathP to SelectionP . The high level idea of CutPathP
is that we think of the reachability relation on S × T as an |S| × |T | boolean matrix whose
one-entries correspond to reachable pairs of vertices. If we could partition the matrix into
all-one combinatorial rectangles, then we can decide all entries within these rectangles by a
query to SelectionP , because in the same rectangle, all pairs are reachable.

B Claim 8. Consider the reachability matrix of on sets S and T . Let MS and MT be the
sizes of S and T . If there is a way to partition the matrix into non-overlapping combinatorial
rectangles (S1, T1), . . . , (Sk, Tk) of sizes (r1, c1), . . . , (rk, ck), and if there is some t so that
computing each subproblem of size (ri, ci) takes time ri · ci/t(min(ri, ci)), and all ri ≥ `, and
all ci ≥ ` for a threshold value `, then all the computation takes total time O(MS ·MT /t(`)).

IPEC 2019

16:10 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 2 CutPathP (S, T) on a multitree

1 Compute the total weighted size of ancestors anc(v) and descendants des(v) for all
vertices.

2 Insert all vertices with at least Mα ancestors and Mα descendants into linked list L.
3 while there exists a vertex v ∈ L do

// we call v a pivot vertex
4 Let A be the set of ancestors of v in S.
5 Let B be the set of descendants of v in T .
6 Add v to A if v ∈ S, otherwise add v to B.
7 Run SelectionP on (A,B). If it returns true then return true.
8 for each a ∈ A do
9 let des(a) = des(a)− |B|.

10 if des(a) < Mα and a ∈ L then remove a from L.
11 for each b ∈ B do
12 let anc(b) = anc(b)− |A|.
13 if anc(b) < Mα and b ∈ L then remove b from L.
14 Remove v from the graph.
15 for each edge (s, t) crossing the cut(S, T) do
16 Let A be the set of ancestors of s (including s) in S.
17 Let B be the set of descendants of t (including t) in T .
18 On all pairs of vertices (a, b) where a ∈ A, b ∈ B, check property P . If P is true

on any pair of (a, b) then return true.

Proof. Let the minimum of all ri be rmin and the minimum of all ci be cmin. Then the
factor of time saved for computing each combinatorial rectangle is at least t(min(rmin, cmin)),
greater than t(`). So the time spent on all rectangles is at most O((

∑t
i=1 ci)(

∑t
i=1 ri)/t(`)),

also we have (
∑t
i=1 ci)(

∑t
i=1 ri) ≤MS ·MT because the rectangles are contained inside the

matrix of size MS ·MT and they do not overlap. So the total time is O(MS ·MT /t(`)). C

The algorithm CutPathP (S, T) is shown in Algorithm 2. It tries to cover the one-entries
of the reachability matrix by combinatorial rectangles as many as possible. Finally, for the
one-entries not covered, we go through them by exhaustive search, which takes less than
quadratic time.

In the beginning, we can compute the total weighted size of ancestors (or descendants) of
all vertices in the DAG in O(M) time by going through all vertices by topological order (or
reversed topological order).

In each query to SelectionP (A,B), all vertices in A can reach all vertices in B, because
they all go through v. For any pair of reachable vertices s ∈ S, t ∈ T , if they go through
any pivot vertex, then the pair is queried to SelectionP . Otherwise it is left to the end, and
checked by exhaustive search on all pairs of reachable vertices.

The calls to SelectionP correspond to non-overlapping all-one combinatorial rectangles
in the reachability matrix. This is because the graph G is a multitree. For each call to
SelectionP , the rectangle size is at least Mα×Mα. Thus the total time for all the SelectionP
calls is O(M2/t(Mα)) by Claim 8.

Each time we remove a pivot vertex v, there will be no more paths from set A to set B,
for otherwise there would be two distinct paths connecting the same pair of vertices. Thus,

J. Gao 16:11

removing a v decreases the total number of weighted-pairs4 of reachable vertices by at least
Mα ×Mα. There are M ×M weighted-pairs of vertices, so the total weight (and thus the
total number) of pivot vertices like v is at most (M ×M)/(Mα ×Mα) = M2−2α.

Each time we find a pivot vertex v, we update the total weighted size of descendants for all
its ancestors, and update the total weighted size of ancestors for all its descendants. Because
it has at least Mα ancestors and Mα descendants, the value decrease on each affected vertex
is at least Mα. So each vertex has decreased its ancestors/descendants values for at most
M/Mα = M1−α times. In other words, each vertex can be an ancestor/descendant of at
most M1−α pivot vertices. The total time to deal with all ancestors/descendants of all pivot
vertices in the while loop is in O(M ·M1−α) = O(M2−α).

Finally, after the while loop, there are no vertices with both more than Mα ancestors
and Mα descendants. In this case, by a weighted version of Lemma 7 (See the full version),
the number of weighted-pairs of reachable vertices is bounded by M ·Mα ·Mα = M1+2α.
So the total time to deal with these paths is O(M1+2α).

Thus the total running time is O(M2/t(Mα) +M2−α +M1+2α). By choosing α and γ
to be appropriate constants, we get subquadratic running time.

If t(M) = M ε, then by choosing α = 1/(2 + ε), we get running time M2−ε/(2+ε).

3 Application to Least Weight Subpath

In this section we will prove Theorem 3. The reduction from LWSPC to StaticLWSC uses the
same structure as the reduction from PathP to SelectionP in the proof of Theorem 1 shown
in Section 2. Because in LWSP we only consider DAGs, there are no strongly connected
components in the graph.

Process LWSPC(G,F0) computes values of F on initial values F0 defined on all vertices of
G. On a given LWSPC problem, we will reduce it to an asymmetric variation of StaticLWSC .
Process StaticLWSC(A,B, FA) computes all the values of function FB defined on domain B,
given all the values of FA defined on domain A, such that FB(b) = mina∈A[FA(s) + ca,b].
Let NA and NB be the total weighted size of A and B respectively. It is easy to see that
if StaticLWSC on |NA| = |NB | is in time N2

A/t(NA), then StaticLWSC on general A,B is in
time O(NA ·NB/t(min(NA, NB))).

We also define process CutLWSPC(S, T, FS), which computes all the values of FT defined
on domain T , given all the values of FS on domain S, where FT (t) = mins∈S,s t[FS(s)+cs,t].

The reduction algorithm is adapted from the reduction from PathP to SelectionP . LWSPC
is analogous to PathP , StaticLWSC is analogous to SelectionP , and CutLWSPC is analogous
to CutPathP . In PathP , we divide the graph into two halves, recursively call PathP on the
subgraphs, and use CutPathP to deal with paths from one side of the graph to the other side.
Similarly in LWSPC , we divide the graph into two halves, recursively compute function F
on the source side of the graph, then based on these values we call CutPathP to compute
the initial values of function F on the sink side of the graph, and finally we recursively call
LWSPC on the sink side of the graph. In CutPathP , we first identify large all-one rectangles
in the reachability matrix, and then use SelectionP to solve them, and finally we go through
all reachable pairs of vertices that are not covered by these rectangles. Similarly, in LWSPC ,
we will use the similar method to identify large all-one rectangles in the reachability matrix
and use StaticLWSC to solve them, and finally we go through all reachable pairs of vertices
and update F on each of them.

4 The number of weighted-pairs is defined to be the sum of w(u) · w(v) for all pairs of reachable vertices
u v.

IPEC 2019

16:12 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

Algorithm 3 LWSPC(G = (V, E, V0), F0) on a DAG

1 if G has only one vertex v then
2 if v ∈ V0 then
3 return min(0, F0(v)).
4 return F0 on v.
5 Let M be the weighted size of the problem.
6 Topological sort all vertices.
7 Keep adding vertices to S by topological order, until the total weighted size of S

exceeds M/2. Let the rest of vertices be T .
8 if |S| − |T | > Mγ then
9 Let x be the last vertex added to S. Remove x from S.

10 Compute F on domain S, by F ← LWSPC(GS , F0), where GS is the subgraph of G
induced by S.

11 Let FT ← CutLWSPC(S, T, F).
12 For each vertex t ∈ T , let F0(t)← min(F0(t), FT (t)).
13 if x exists then
14 Compute Fx ← CutLWSPC(S, x, F) for vertex x.
15 Compute F on vertex x by F (x)← min(F0(x), Fx(x)).
16 Let F ′T ← CutLWSPC(x, T, F).
17 For each vertex t ∈ T , let F0(t)← min(F0(t), F ′T (t)).
18 Compute F on domain T , by F ← LWSPC(GT , F0), where GT is the subgraph of G

induced by T .
19 return F on domain V .

The algorithm LWSPC is similar as PathP (Algorithm 1), and is defined in Algorithm 3.
Initially, we let F (v) ← 0 for all v ∈ V0, and let F (v) ← +∞ for all v /∈ V0. We run
LWSPC(G,F0) on the whole graph.

The algorithm CutLWSPC(S, T, FS) is adapted from CutPathP (Algorithm 2), with the
following changes:
1. In the beginning, FT (t) is initialized to ∞ for all t ∈ T .
2. Each query to SelectionP (A,B) in CutPathP is replaced by

a. Compute FB on domain B by StaticLWSC(A,B, FS).
b. For each vertex b in B, let FT (b) be the minimum of the original FT (b) and FB(b).

3. Whenever processing a pair of vertices s, t such that s is can reach t in either the
preprocessing phase or the final exhaustive search phase, we let FT (t)← FS(s) + cs,t if
FS(s) + cs,t < FT (t).

4. In the end, the process returns FT , the target function on domain T .

The proof of correctness will be shown in the full version. The time complexity of this
reduction algorithm follows from the argument of Section 2.

4 Open problems

One open problem is to study PathP and LWSPC on general DAGs. Also, we would like to
consider the case where the graph is not sparse, where we can use O(MN) as the baseline
time complexity instead of O(M2).

J. Gao 16:13

It would also be desirable to study the fine-grained complexity of the DAG versions of
other quadratic time solvable dynamic programming problems, e.g. the Longest Common
Subsequence problem.

References

1 Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained
complexity of analyzing compressed data: Quantifying improvements over decompress-and-
solve. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on,
pages 192–203. IEEE, 2017.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower
bounds for subset sum and bicriteria path. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 41–57. SIAM, 2019.

4 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms, pages 1681–1697. SIAM, 2014.

5 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a
lower bound made. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 375–388. ACM, 2016.

6 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In
International Colloquium on Automata, Languages, and Programming, pages 1–12. Springer,
2013.

7 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method
to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 218–230. SIAM, 2015.

8 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed
parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages 377–391.
SIAM, 2016.

9 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-
ment of sequences. In International Colloquium on Automata, Languages, and Programming,
pages 39–51. Springer, 2014.

10 Udit Agarwal and Vijaya Ramachandran. Fine-grained Complexity for Sparse Graphs. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, pages 239–252, New York, NY, USA, 2018. ACM. doi:10.1145/3188745.3188888.

11 Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weight k-link
path in graphs with the concave Monge property and applications. Discrete & Computational
Geometry, 12(3):263–280, 1994.

12 Alfred V Aho and Jeffrey D Ullman. Universality of data retrieval languages. In Proceedings of
the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
110–119. ACM, 1979.

13 Eric Allender and Klaus-Jörn Lange. StUSP ACE(log n) ⊆ DSP ACE(log2 n/ log log n). In
International Symposium on Algorithms and Computation, pages 193–202. Springer, 1996.

14 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 51–58. ACM, 2015.

IPEC 2019

https://doi.org/10.1145/3188745.3188888

16:14 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

15 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
457–466. IEEE, 2016.

16 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 267–280. ACM,
2018.

17 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305–1317, 1996.

18 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In Foundations of Computer Science (FOCS), 2014 IEEE
55th Annual Symposium on, pages 661–670. IEEE, 2014.

19 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 307–318. IEEE, 2017.

20 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

21 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(01n02):85–119, 2017.

22 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2015.

23 Timothy M Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and More:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1246–1255. SIAM, 2016.

24 S.C. Chen, J.Y. Wu, G.S. Huang, and R.C.T. Lee. Finding a Longest Increasing Subsequence
on a Galled Tree. In the 28th Workshop on Combinatorial Mathematics and Computation
Theory, Penghu, Taiwan, 2011.

25 Michael L Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

26 Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional dynamic pro-
gramming. Information Processing Letters, 33(6):309–311, 1990. doi:10.1016/0020-0190(90)
90215-J.

27 Jiawei Gao and Russell Impagliazzo. The Fine-Grained Complexity of Strengthenings of
First-Order Logic. Electronic Colloquium on Computational Complexity (ECCC), 26:9, 2019.
URL: https://eccc.weizmann.ac.il/report/2019/009.

28 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
First-order Properties on Sparse Structures with Algorithmic Applications. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages
2162–2181, 2017.

29 Jerrold R Griggs, Wei-Tian Li, and Linyuan Lu. Diamond-free families. Journal of Combinat-
orial Theory, Series A, 119(2):310–322, 2012.

30 Daniel S Hirschberg and Lawrence L Larmore. The least weight subsequence problem. SIAM
Journal on Computing, 16(4):628–638, 1987.

31 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

32 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

33 Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. Directed tree-width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

https://doi.org/10.1016/0020-0190(90)90215-J
https://doi.org/10.1016/0020-0190(90)90215-J
https://eccc.weizmann.ac.il/report/2019/009

J. Gao 16:15

34 Donald E Knuth and Michael F Plass. Breaking paragraphs into lines. Software: Practice and
Experience, 11(11):1119–1184, 1981.

35 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 1272–1287. SIAM, 2016.

36 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained Com-
plexity of One-Dimensional Dynamic Programming. In 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:15, 2017.

37 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
38 Guan-Yu Lin, Jia jie Liu, and Yue-Li Wang. Finding a Longest Increasing Subsequence

from the Paths in a Complete Bipartite Graph. In Proceedings of the 29th Workshop on
Combinatorial Mathematics and Computation Theory, 2012.

39 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1236–1252. Society for Industrial and Applied
Mathematics, 2018.

40 Neil Robertson and Paul D Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984.

41 Neil Robertson and P.D Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

42 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 515–524. ACM, 2013.

43 Baruch Schieber. Computing a minimum weightk-link path in graphs with the concave monge
property. Journal of Algorithms, 29(2):204–222, 1998.

44 Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic.
PhD thesis, Massachusetts Institute of Technology, 1974.

45 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.

46 Robert Wilber. The concave least-weight subsequence problem revisited. Journal of Algorithms,
9(3):418–425, 1988.

47 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

48 Ryan Williams. Faster decision of first-order graph properties. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
page 80. ACM, 2014.

49 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pages 645–654. IEEE, 2010.

50 F Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 429–435. ACM, 1980.

A List of problem definitions and class definitions

Here we list the main problems studied in this paper.
LWSC : Given elements x1, . . . , xn and value F (0) = 0, compute F (j) = min0≤i<j [F (i)+ci,j]

for all j ∈ {1, . . . , n}.
StaticLWSC : Given elements x1, . . . , x2n and values of F (i) on all i ∈ {1, . . . , n}, compute

F (j) = mini∈{1,...,n}[F (i) + ci,j] for all j ∈ {n+ 1, . . . , 2n}.

IPEC 2019

https://doi.org/10.1016/0196-6774(86)90023-4

16:16 On the Fine-Grained Complexity of LWS in Multitrees and Bounded Treewidth DAGs

LWSPC : Given graph G = (V,E) and starting vertex set V0 ⊆ V , compute on each v ∈ V ,
the value of F (v), where

F (v) =
{

min(0,minu v[F (u) + cu,v]), for v ∈ V0

minu v[F (u) + cu,v], for v /∈ v0

CutLWSPC : On DAG G with a cut (S, T) where edges are only directed from S to T , given
the values of function FS on S, for all t ∈ T compute FT (t) = mins∈S,s t[FS(s) + cs,t].

SelectionP : On two sets X,Y , decide whether (∃x ∈ X)(∃y ∈ Y)P (x, y).
PathP : On graph G = (V,E), decide whether (∃x ∈ V)(∃y ∈ V)[TCE(x, y) ∧ P (x, y)].
ListPathP : On graph G = (V,E), for all x ∈ V , decide whether (∃y ∈ V)[TCE(x, y) ∧

P (x, y)].
CutPathP : On graph G = (V,E) with cut (S, T) where edges only direct from S to T , decide

whether (∃x ∈ S)(∃y ∈ T)[TCE(x, y) ∧ P (x, y)].
PathFO3 : class of PathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z), where

ψ is a quantifier-free logical formula.
ListPathFO3 : class of ListPathP problems such that P is of form ∃zψ(x, y, z) or ∀zψ(x, y, z),

where ψ is a quantifier-free logical formula.

B Problem examples

We give a list of problems that can be considered as instances of LWSPC or PathP .

Trip Planning (LWSP version of Airplane Refueling) On a DAG where vertices represent
cities and edges are roads, we wish to find a path for a vehicle, along which we wish
to find a sequence of cities where the vehicle can rest and add fuel so that the cost is
minimized. The cost of traveling between cities x and y is defined by cost cx,y. cx,y
can be defined in multiple ways, e.g. cx,y is cost(y) if dist(x, y) ≤ M and ∞ otherwise.
dist(x, y) is the distance between x, y that can be computed by the positions of x, y. M
is the maximal distance the vehicle can travel without resting. cost(y) is the cost for
resting at position y.

Longest Subset Chain on graphs (LWSP version of Longest Subset Chain) On a DAG
where each vertex corresponds to a set, we want to find a longest chain in a path
of the graph such that each set is a subset of its successor. Here cx,y is −1 if Sx is a
subset of Sy, and ∞ otherwise.

Multi-currency Coin Change (LWSP version of Coin Change) Consider there are two dif-
ferent currencies, so there are two sets of coins. We need to find a way to get value
V1 for currency #1 and value V2 for currency #2, so that the total weight of coins is
minimized. Each pair of values v1 ∈ {0, . . . , V1} and v2 ∈ {0, . . . , V2} can be considered
as a vertex. We connect vertex (v1, v2) to (v′1, v′2) iff v′1 = v1 + 1 or v′2 = v′2 + 1. The
whole graph is a grid, and we wish to find a subsequence of a path from (0, 0) to (V1, V2)
so that the cost is minimized. The cost is defined by C(v1,v2),(v′

1,v2) = w1,v′
1−v1 and

C(v1,v2),(v1,v′
2) = w2,v′

2−v2 , where wi,j is the weight of a coin of value j from currency #i.
Pretty Printing with alternative expressions (LWSP version of Pretty Printing) The

Pretty Printing problem is to break a paragraph into lines, so that each line have
roughly the same length. If a line is too long or too short, then there is some cost
depending on the line length. The goal of the problem is to minimize the cost.
For some text, it is hard to print prettily. For example, if there are long formulas in the
text, then sometimes its line gets too wide, but if we move the formula into the next
line, the original line has too few words. One solution for this issue is to use alternate

J. Gao 16:17

wording for the sentence, to rephrase a part of a sentence to its synonym. These sentences
have different lengths, and formulas in some of them will be displayed better than others.
These different ways can be considered as different paths in a graph, and we wish to find
one sentence that has the minimal Pretty Printing cost.

A PathP instance Say we have a set of words, and we want to find a word chain (a chain of
words so that the last letter of the previous word is the same as the first letter of the
next word) so that the first word and the last word satisfy some properties, e.g. they do
not have similar meanings, they have the same length, they don’t have the same letters
on the same positions, etc. Each word corresponds to a vertex in the graph. For words
that can be consecutive in a word chain, we add an edge to the words.

IPEC 2019

Resolving Infeasibility of Linear Systems:
A Parameterized Approach
Alexander Göke
Universität Bonn, Bonn, Germany
Technische Universität Hamburg, Hamburg, Germany
alexander.goeke@uni-bonn.de

Lydia Mirabel Mendoza Cadena
Eötvös Loránd University, Budapest, Hungary
lmmendoza@ciencias.unam.mx

Matthias Mnich
Universität Bonn, Bonn, Germany
Technische Universität Hamburg, Hamburg, Germany
mmnich@uni-bonn.de

Abstract
Deciding feasibility of large systems of linear equations and inequalities is one of the most fundamental
algorithmic tasks. However, due to inaccuracies of the data or modeling errors, in practical
applications one often faces linear systems that are infeasible.

Extensive theoretical and practical methods have been proposed for post-infeasibility analysis of
linear systems. This generally amounts to detecting a feasibility blocker of small size k, which is
a set of equations and inequalities whose removal or perturbation from the large system of size m

yields a feasible system. This motivates a parameterized approach towards post-infeasibility analysis,
where we aim to find a feasibility blocker of size at most k in fixed-parameter time f(k) ·mO(1).

On the one hand, we establish parameterized intractability (W[1]-hardness) results even in
very restricted settings. On the other hand, we develop fixed-parameter algorithms parameterized
by the number of perturbed inequalities and the number of positive/negative right-hand sides.
Our algorithms capture the case of Directed Feedback Arc Set, a fundamental parameterized
problem whose fixed-parameter tractability was shown by Chen et al. (STOC 2008).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Infeasible subsystems, linear programming, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.17

Funding Alexander Göke: Supported by DAAD with funds of the Bundes-
ministerium für Bildung und Forschung (BMBF) and by DFG project MN 59/1-1.
Matthias Mnich: Supported by DAAD with funds of the Bundesministerium
für Bildung und Forschung (BMBF) and by DFG project MN 59/4-1.

Acknowledgements We thank an anonymous reviewer of an earlier version for a suggestion on run
time improvements.

1 Introduction

Solving systems of linear equations and inequalities constitutes an algorithmic task of
fundamental importance. The data that is used in these systems though may be subject
to inaccuracies and uncertainties, and therefore may lead to systems which are infeasible.
Another source of infeasibility may be modeling errors, or simply incompatibility of constraints.
Infeasibility itself allows for little conclusions; for a large system of millions of inequalities,
infeasibility may stem from a very small subset of data. A natural question is therefore to

© Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.goeke@uni-bonn.de
mailto:lmmendoza@ciencias.unam.mx
https://orcid.org/0000-0002-4721-5354
mailto:mmnich@uni-bonn.de
https://doi.org/10.4230/LIPIcs.IPEC.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Resolving Infeasibility of Linear Systems

detect the smallest number of changes which must be made to a given system in order to
make it feasible. The analysis of infeasible linear systems has been extensively investigated [1,
2, 4, 11, 12, 13, 28, 31]; we refer to the book by Chinneck [13] for an overview.

Formally, the Minimum Feasibility Blocker (MinFB) problem takes as input a
system S of linear inequalities Ax ≤ b and asks for a smallest subset I such that S \ I
is feasible. As I “blocks” the feasibility of S, we refer to I as a feasibility blocker ; we
avoid calling I a “solution”, to avoid confusion with the solution of the linear system S \ I.
Further note that instead of removing the set I of inequalities, we can equivalently perturb
the right-hand sides bI of the inequalities in I; that is, we can increase the b-values of
inequalities in I to a value such that the perturbed system becomes feasible. Of course,
when talking about feasibility, we have to specify over which field, and our choice here is
the field Q. Over this field, MinFB is NP-hard [33]; as the feasibility of a linear system
can be tested in polynomial time (e.g., by the ellipsoid method [24]) the MinFB problem
is NP-complete. Thus, there is a simple XP-algorithm testing every possible feasibility
blocker of size at most k. Due to its importance, the MinFB problem has been thoroughly
investigated from several different viewpoints, including approximation algorithms [1, 28],
polyhedral combinatorics [31], heuristics [11], mixed-integer programming [15], and hardness
of approximation [2].

Here we take a new perspective on the MinFB problem, based on parameterized com-
plexity. In parameterized complexity, the problem input of size n is additionally equipped
with one or more integer parameters k and one measures the problem complexity in terms of
both n and k. The goal is to solve such instances by fixed-parameter algorithms, which run
in time f(k) · nO(1) for some computable function f . The motivation is that fixed-parameter
algorithms can be practical for small parameter values k even for inputs of large size n,
provided that the function f exhibits moderate growth. This contrasts them with algorithms
that require time nf(k), which cannot presumed to be practical for large input sizes n. To
show that such impractical run times are best possible, a common approach is to show the
problem to be W[1]-hard; a standard hypothesis in parameterized complexity is that no
W[1]-hard problem admits a fixed-parameter algorithm. For background on parameterized
complexity, we refer to the book by Cygan et al. [18].

For the MinFB problem, arguably the most natural parameter is the minimum size k of
a feasibility blocker I. The motivation for this choice of parameter is that in applications,
we are interested in small feasibility blockers I; e.g., Chakravarti [9] argues that a feasibility
blocker “with too large a cardinality may be hard to comprehend and may not be very useful
for post-infeasibility analysis.” Guillemot [25] explicitly posed the question of resolving the
parameterized complexity of MinFB; he conjectured that the problem is fixed-parameter
tractable parameterized by the size of a minimum feasibility blocker for matrices with at
most 2 non-zero entries per row.

Another motivation for our approach comes from the fact that MinFB captures one of the
most important problems in parameterized complexity, namely Directed Feedback Arc
Set (DFAS): given a digraph G, decide if G admits a directed feedback arc set of size at
most k, which is a set F such that G−F is an acyclic digraph (DAG). It was a long-standing
open question whether DFAS admits a fixed-parameter algorithm parameterized by the size k
of the smallest directed feedback arc set, until Chen et al. [10] gave an algorithm with run
time 4kk!nO(1). The currently fastest algorithm for DFAS runs in time 4kk!k · O(n+m), and
is due to Lokshtanov et al. [29]. It is not difficult to give a parameter-preserving reduction
from DFAS to MinFB: for every arc (u, v) of the digraph G that serves as input to DFAS we
add the inequality xu − xv ≤ −1 to the linear system Ax ≤ b. Directed feedback arc sets F

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:3

of G are then mapped to feasibility blockers of the same size by removing the constraints
corresponding to arcs in F , and vice-versa. Note that the constraint matrix A arising this
way is totally unimodular, and each row has exactly two non-zero entries, one +1 and one −1.
Totally unimodular matrices A whose every row has at most two non-zero entries, one +1
and one −1, are known as difference constraints; testing feasibility of systems of difference
constraints has been investigated extensively [32, 35] due to their practical relevance most
notably in temporal reasoning. It is therefore interesting to know whether the more general
MinFB problem also admits a fixed-parameter algorithm for parameter k, even for special
cases like totally unimodular matrices A (where testing feasibility is easy).

Another case of interest for MinFB is when the constraint matrix A has bounded
treewidth, where the treewidth of A is defined as the treewidth of the bipartite graph that
originates from assigning one vertex to every row and every column of A and connecting
any two vertices by an edge whose corresponding entry in A is non-zero. Fomin et al. [21]
gave a fast algorithm for MinFB with constraint matrices of bounded treewidth for the
setting k = 0, i.e. checking for feasibility without deleting any constraints. At the same time,
Bonamy et al. [8] showed that DFAS – a special case of MinFB – is fixed-parameter tractable
parameterized by the treewidth of the underlying undirected graph of the input digraph1.
So the questions arise whether Fomin et al.’s algorithm can be extended to arbitrary values
of k, or whether Bonamy et al.’s algorithm can be extended from DFAS to MinFB.

One of the main currently unresolved questions around DFAS is whether it admits a
polynomial compression. That is, one seeks an algorithm that, given any directed graph G
and integer k, in polynomial time computes an instance I of a decision problem Π whose
size is bounded by some polynomial p(k), such that G admits a feedback arc set of size at
most k if and only if I is a “yes”-instance of Π. The question for a polynomial compression
has been stated numerous times as an open problem [5, 19, 17, 30]; from the algorithms by
Chen et al. [10] and Lokshtanov et al. [29] only an exponential bound on the size of I follows.
On the other hand, parameterized complexity provides tools such as cross-composition to
rule out the existence of such polynomials p(k) modulo the non-collapse of the polynomial
hierarchy; we refer to Bodlaender et al. [6] for background. Given the elusiveness of this
problem, we approach the (non-)existence of polynomial compression for DFAS from the
angle of the more general MinFB problem.

1.1 Our results
We first show that the MinFB problem is strictly more general than DFAS, even for totally
unimodular matrices, assuming that FPT 6= W[1].

I Theorem 1. The MinFB problem is W[1]-hard parameterized by the minimum size k of a
feasibility blocker, even for difference constraints and right-hand sides b ∈ {±1}m.

Theorem 1 therefore disproves (assuming FPT 6= W[1]) the conjecture of Guillemot [25]
that finding the minimum number of unsatisfied equations or inequalities is fixed-parameter
tractable for linear systems with at most two variables per equation or inequality.

Given this strong parameterized intractability result, we resort to identifying tractable
fragments (or classes of instances) of MinFB. In particular, we look for algorithms which

1 The algorithm of Bonamy et al. [8] is stated for the vertex deletion problem, but it can be modified to
work for DFAS as well. Note that the standard reduction from DFAS to the vertex deletion problem
which preserves the solution size does not necessarily result in a digraph whose underlying undirected
graph has bounded treewidth even if the DFAS instance has this property.

IPEC 2019

17:4 Resolving Infeasibility of Linear Systems

solve fragments of MinFB which capture the fundamental DFAS problem. As relevant
parameters, we identify the number b+ of positive entries in the right-hand side vector b, as
well as the number b− of negative entries in b. This choice comes from the fact that the case
of b+ = 0 generalizes the DFAS problem, whereas the case of b− = 0 is always feasible as the
all-0 vector is a trivial solution for a system of the form Ax ≤ b.

Our positive algorithmic results for these parameters are as follows:

I Theorem 2. There is an algorithm that solves MinFB for systems S of m difference
constraints over n variables and right-hand sides b ∈ {±1}m in time 2O(k3+b++k log b+) ·nO(1).

I Theorem 3. There is an algorithm that solves MinFB for systems S of m difference
constraints over n variables and right-hand sides b ∈ {±1}m in time (k + 1)(b−)k+1O(nm).

Armed with these fixed-parameter algorithms for parameters k + b+ and k + b−, it is
time to consider the question of polynomial compressions for those tractable fragments of
MinFB. Such polynomial compression would be particularly interesting, as it could be a
step towards obtaining a polynomial compression for DFAS (where b+ = 0); so a polynomial
compression for MinFB for parameter k or k + b+, even for node-arc incidence matrices,
would imply a polynomial compression for DFAS (as the reduction from DFAS to MinFB
does not increase the parameter).

Interestingly, we can actually rule out a polynomial compression for MinFB parameterized
by k + b−:

I Theorem 4. Assuming NP 6⊆ coNP/poly, MinFB does not admit a polynomial compression
when parameterized by k + b− even for systems A of difference constraints and right-hand
sides b ∈ {±1}m.

The most intriguing open question arising from this result is whether our hardness result can
be strengthened to rule out a polynomial compression for MinFB parameterized by k + b+.

As mentioned, Fomin et al. [21] give an algorithm that solves MinFB for constraint
matrices of bounded treewidth for k = 0. And Bonamy et al. [8] give an algorithm that solves
the special case of MinFB known as DFAS for constraint matrices of bounded treewidth.
Here we show that, somewhat surprisingly, MinFB is NP-hard even for constraint matrices
of constant pathwidth (which are a subclass of matrices with constant treewidth).

I Theorem 5. The MinFB problem is NP-hard even for constraint matrices of pathwidth 6.

Due to space constraints, proofs of statements marked by (?) are deferred to the full
version of this paper.

1.2 Related work
In fundamental work, Arora, Babai, Stern and Sweedyk [2] considered the problem of
removing a smallest set of equations to make a given system of linear equations feasible
over Q. They gave strong inapproximability results, showing that finding any constant-
factor approximation is NP-hard. Berman and Karpinski [4] gave the first (randomized)
polynomial-time algorithm with sublinear approximation ratio for this problem.

Giannopolous, Knauer and Rote [22] considered the “dual” of MinFB from a parameter-
ized point of view: namely, in MaxFS we ask for a largest subsystem of an n-dimensional
linear system S which is feasible over Q. They showed that deciding whether a feasible
subsystem of at least ` inequalities in S exists is W[1]-hard parameterized by n + `, even
when S consists of equations only.

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:5

For systems of equations over finite fields, finding minimum feasibility blockers has been
considered from a parameterized perspective. In particular, over the binary field F2, Crowston
et al. [16] prove W[1]-hardness even if each equation has exactly three variables and every
variable appears in exactly three equations; they further give a fixed-parameter algorithm
for the case where each equation has at most two variables.

2 Preliminaries

Throughout, we work with finite and loop-less directed graphs G, whose vertex set we denote
by V (G) and arc set by A(G). For a vertex v ∈ V (G), denote by δ−(v) the incoming arcs of v,
i.e., arcs of the form (w, v) for some w ∈ V (G). Likewise, denote by δ+(v) the outgoing arcs
of v. A walk W in G is a sequence of vertices W = (v0, v1, . . . , v`) such that (vi, vi+1) ∈ A(G)
for i = 0, . . . , `−1. We call ` the length of the walk. A walk is closed if v0 = v`. If all vertices
are distinct we call the walk a path, if all except v0 and v` are distinct we call it a cycle. For
two walks W,R where the last vertex of W equals the first vertex of R, let W ◦ R be the
concatenation of W and R, which is the sequence of all vertices in W followed by all vertices
in R except the first. Our directed graphs G often come with arc weights w : A(G)→ Q; the
weight of a cycle C in G is then equal to the sum of its arc weights. In that spirit, we call a
cycle negative (non-negative, positive) if its weight is negative (non-negative, positive). A
shortest path or cycle is a path or cycle of minimum length. Note that “shortest” does not
refer to the weight of a cycle.

For our hardness results we will use two different kinds of hardness. The first one is
W[1]-hardness which under the standard assumption W[1] 6= FPT implies that there is no
fixed-parameter tractable algorithm for problems of this type. The other hardness considers
compression: A polynomial compression of a language L into a language Q is a polynomial-
time computable mapping Φ : Σ∗ × N→ Σ∗, Φ((x, k)) 7→ y such that ((x, k) ∈ L⇔ y ∈ Q)
and |y| ≤ kO(1) for all (x, k) ∈ Σ∗ × N. Many natural parameterized problems do not admit
polynomial compressions, under the hypothesis that NP (coNP/poly.

Both types of hardness can be transferred to other problems by “polynomial parameter
transformations”, which were first proposed by Bodlaender et al. [7].

I Definition 6. Let Σ be an alphabet. A polynomial parameter transformation (PPT) from a
parameterized problem Π ⊆ Σ∗ ×N to a parameterized problem Π′ ⊆ Σ∗ ×N is a polynomial-
time computable mapping Φ : Σ∗ × N → Σ∗ × N, (x, k) 7→ (x′, k′), such that k′ = kO(1),
and (x, k) ∈ Π ⇔ (x′, k′) ∈ Π′ for all (x, k) ∈ Σ∗ × N. Two parameterized problems are
parameter-equivalent if there are PPTs in both directions and the transformations additionally
fulfil that k′ = k.

Note that polynomial parameter transformations are transitive. Further, a PPT from Π
to Π′ together with a polynomial compression for Π′ yields a polynomial compression for Π.
This can be used to rule out polynomial compressions:

I Proposition 7 ([27]). Let Π,Π′ be parameterized problems. If there is a polynomial
parameter transformation from Π to Π′ and Π admits no polynomial compression, then
neither does Π′.

Next, we formally define the MinFB problem. Here and throughout the rest of the paper,
we denote by ai,• the ith row of the matrix A.

IPEC 2019

17:6 Resolving Infeasibility of Linear Systems

Minimum Feasibility Blocker (MinFB) Parameter: k
Input: A coefficient matrix A ∈ Qm×n, a right-hand side vector b ∈ Qm and an integer k.
Task: Find a set I ⊆ {1, . . . ,m} of size at most k such that (ai,• · x ≤ bi)i∈{1,...,m}\I

is feasible for some x ∈ Qn.

By multiplying rows of A and the corresponding entries of b with (−1) the MinFB
problem also covers in a parameter equivalent way the case where some inequalities are of
the type ai,•x ≥ bi if there is no sign restriction on the entries of A and b.

Furthermore, equations of the form ai,• · x = bi can be written as the two inequalities
ai,• · x ≤ bi and −ai,• · x ≤ −bi (equivalent to ai,• · x ≥ bi). In a feasible solution x∗ ignoring
such an equation, at most one of the above inequalities is violated. Thus, the MinFB
problem with equations can be reduced to the formulation of the MinFB as formulated above
without changing the parameter. Conversely though, MinFB as presented above in general
cannot be expressed by the MinFB problem having only equations. However, if we allow
additionally inequalities with only one variable or require all variables to be non-negative,
those are representable by adding slack variables and (if necessary) splitting variables into
two non-negative parts x+

i and x−i .
For a graph H, a tree decomposition (path decompostion) is a pair (T,B) where T is a

tree (path) and B a collection of bags Bv ⊆ V (H), each bag corresponding to some node
v ∈ V (T). The bags have the property that for any edge of H both its endpoints appear in
some common bag in B, and for each vertex v ∈ V (H) the bags containing v form a subtree
of T . The width of (T,B) is defined as the largest bag size of B minus one. The treewidth
(pathwidth) of H is the minimum width over all tree (path) decompositions of H.

3 Parameterized Intractability of Minimum Feasibility Blocker

In this section we show W[1]-hardness of the MinFB problem by giving a reduction from the
Bounded Edge Directed (s, t)-Cut problem. This problem takes as input a digraph G,
vertices s, t, and integers k, ` ∈ N, and asks for a set X ⊆ E(G) of size at most k such that
G − X contains no s-t-paths of length at most `. Golovach and Thilikos [23] proved its
parameterized intractability for parameter k:

I Proposition 8 ([23]). Bounded Edge Directed (s, t)-Cut is W[1]-hard when paramet-
erized in k even for the special case where G is a DAG.

The Bounded Edge Directed (s, t)-Cut was also considered by Fluschnik et al. [20].
They showed that Bounded Edge Directed (s, t)-Cut does not admit a kernel of size
polynomial in k and `, assuming NP 6⊆ coNP/poly, even for acyclic input digraphs. In fact,
their construction allows for a stronger result, ruling out a polynomial compression:

I Proposition 9 ([20]). Assuming NP 6⊆ coNP/poly, Bounded Edge Directed (s, t)-Cut
does not admit a polynomial compression in k + ` even when G is a DAG.

To get to the MinFB problem, we first consider as an intermediate step the Directed
Small Cycle Transversal problem: given a directed graph G and integers k, `, the task
is to find a set X ⊆ E(G) of size at most k such that G−X contains no cycles of length at
most `. Fluschnik et al. [20] showed that Directed Small Cycle Transversal does not
admit a kernel of size polynomial in k and `, unless NP ⊆ coNP/poly. Again their result can
be strengthened to not admitting a polynomial compression. They further observed that

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:7

Directed Small Cycle Tranversal admits a simple branching algorithm that runs in
time O(`k · n · (n+m)). Here we argue that a dependence on both parameters k and ` is
necessary for fixed-parameter tractability:

I Lemma 10. There is a polynomial parameter transformation from Bounded Edge
Directed (s, t)-Cut in DAGs with parameter k (parameter `, parameter k+`) to Directed
Small Cycle Transversal with parameter k (resp. `, resp. k + `).

This even holds if Directed Small Cycle Transversal is restricted to instances
where there are vertices s, t ∈ V (G) such that all cycles of G consist of an s-t-path and an
arc of the form (t, s).

Proof. Let (G, s, t, k, `) be a Bounded Edge Directed (s, t)-Cut instance where G is a
DAG. As G is a DAG, it admits a topological ordering v1, . . . , v|V (G)| of its vertices, so that
there are no arcs (vi, vj) for j < i. Without loss of generality, let v1 = s and v|V (G)| = t, as
vertices before s or after t in a topological ordering are never part of any s-t-path.

We now create a digraph G′ from G by adding k + 1 parallel arcs a1, . . . , ak+1 from t

to s. Then every cycle in G′ consists of an s-t-path and an arc ai, as G was acyclic. Set
`′ = `+ 1. Then (G′, k, `′) is an instance of Directed Small Cycle Transversal. The
above transformation can be done in polynomial time and the parameter increases by at
most one (depending on whether ` is part of the parameter).

It remains to show that (G′, k, `′) is a “yes”-instance of Directed Small Cycle
Transversal if and only if (G, s, t, k, `) is a “yes”-instance of Bounded Edge Directed
(s, t)-Cut.

For the forward direction, let X ′ be a solution to (G′, k, `′). Consider X = X ′ \
{a1, . . . , ak+1}. For sake of contradiction, suppose that G − X contains an s-t-path P

of length at most `. As |X ′| ≤ k, it can not contain all arcs ai. Without loss of generality,
a1 6∈ X ′. Then P followed by a1 is a cycle in G′ − X ′ of length at most ` + 1 = `′ – a
contradiction to X ′ being a solution to (G′, k, `′).

For the reverse direction, let X be a solution to (G, s, t, k, `). Then X is also a solution to
(G′, k, `′) by the following argument. Suppose, for sake of contradiction, that G′−X contains
a cycle C of length at most `′. By the structure of G′, C consists of an s-t-path P in G−X
and an arc ai. Then |P | = |C| − 1 ≤ `, contradicting that X is a solution to (G, k, `). J

Now we introduce another cycle deletion problem, this time on arc-weighted digraphs.

Negative Directed Feedback Arc Set (Negative DFAS) Parameter: k
Input: A digraph G, a weight function w : A(G)→ Q and an integer k.
Task: Find a set X ⊆ A(G) of size at most k such that G−X has no negative cycles.

I Lemma 11. There is a PPT from Directed Small Cycle Transversal on instances
where every cycle uses an arc of type (t, s) when parameterized by k (by k + `) to Negative
DFAS parameterized by k (resp. k + w−, where w− is the number of arcs with negative
weight); this even holds in the case where w : A(G)→ {±1}.

Proof. We start with a Directed Small Cycle Transversal instance (G, k, `) as
described in the lemma. Let a1, . . . , ap be the arcs of the form (t, s). For any p ≥ k + 1
there is always an arc which survives the deletion of some arc set of at most k elements.
So we can assume p ≤ k + 1 as deleting superfluous arcs does not change the solution. Set
A+1 = A(G) \ {a1, . . . , ap}. Now replace the ai by mutually disjoint (except for s and t)

IPEC 2019

17:8 Resolving Infeasibility of Linear Systems

paths Pi of length `. Call the resulting directed graph G′ and let A−1 = ∪p
i=1A(Pi). Finally,

define w(a) = 1 for a ∈ A+1 and w(a) = −1 for a ∈ A−1. As A(G′) = A−1] A+1, the
function w : A(G′)→ {−1,+1} is well defined.

The instance (G′, w, k) has the required form. Also the transformation can be made in
polynomial time. As k remains unchanged and w− = |A−1| = ` · p ≤ ` · (k + 1) is bounded
by a polynomial in k + `, the parameter restrictions of PPTs are fulfilled. It remains to
prove that (G′, w, k) is a “yes”-instance of Negative DFAS if and only if (G, k, `) is a
“yes”-instance of Directed Small Cycle Transversal.

For the forward direction, let X ′ be a solution of (G′, w, k). Let X be the set where every
arc of X ′ which is part of some Pi is replaced by ai (and duplicates are removed). Clearly,
|X| ≤ |X ′| ≤ k. Suppose there is a cycle C of length at most ` in G−X. Then C contains a
unique arc aj . Let C ′ be the cycle in G′ resulting from the replacement of aj by Pj in C.
Then C ′ is also in G′ −X ′ by choice of X and contains at most `− 1 arcs in A+1 and ` arcs
in A−1. This yields the contradiction w(C ′) = |A(C ′)∩A+1|−|A(C ′)∩A−1| ≤ `−1−` = −1.

For the reverse direction, let X be a solution of (G, k, `). Let X ′ the set X where every
arc ai is replaced by the first arc of Pi. By definition of G′, X ′ ⊆ A(G′) and |X ′| = |X| ≤ k
holds. Now suppose there is a cycle C ′ in G′ − X ′ with w(C ′) < 0. As the paths Pi are
mutually disjoint (except the end vertices) every inner vertex of each Pi has in-degree and
out-degree one. Thus, if there is an arc of some Pi inside C ′ the whole path Pi is. Replace
each such Pi by ai to obtain a cycle C. By construction of G′ and X ′, this cycle C is in G−X.
Each cycle in G and therefore also C contains exactly one arc of type ai. Therefore, C ′
contains exactly one path Pi and from 0 > w(C ′) = |A(C ′) ∩ A+1| − |A(C ′) ∩ A−1| =
|A(C ′) ∩ A+1| − ` we get that |A(C ′) ∩ A+1| < `. As |A(C ′) ∩ A+1| is integral we can
sharpen the bound to |A(C ′) ∩A+1| ≤ `− 1. By A(C) = (A(C ′) ∩A+1)] {ai}, we get that
|A(C)| = |A(C ′) ∩A+1|+ 1 ≤ ` – a contradiction. J

I Theorem 12. The Negative DFAS problem and the MinFB problem for difference
constraints are parameter-equivalent. Additionally, the equivalence can be constructed such
that there is a one-to-one correspondence between constraints and arc weights with ba = w(a).

Proof. Let (G,w, k) be a Negative DFAS problem instance, and let n = |V (G)| and
m = |A(G)|. Fix an arbitrary order v1, . . . , vn of the vertices of G and α1, . . . , αm of the
arcs of G. As matrix A we take the incidence matrix of G which is defined as matrix
A = (ai,j) ∈ Rm×n with entries ai,j = +1 for αi ∈ δ−(vj), ai,j = −1 for αi ∈ δ+(vj), and
ai,j = 0 otherwise. Furthermore, let bi = w(αi). The resulting tuple (A, b, k) is an instance
of the MinFB problem with A being a matrix of difference constraints.

The construction is bijective by the following reverse construction: Define a directed
graph on n vertices v1, . . . , vn, then for every constraint ai,• · x ≤ bi add an arc as follows:
Let j− be the unique index with ai,j− = −1, and let j+ be the unique index with ai,j+ = +1.
Add an arc α = (vj+ , vj−) with weight w(α) = bi to the current digraph. Let G be the
resulting digraph after all arcs are added. Then (G,w, k) is the constructed Negative
DFAS instance. It is easy to verify that this indeed reverses the first construction.

Now we want to compare solutions of both problems. Intuitively, deleted constraints and
arcs have an one to one correspondence, but we will formally prove the equivalence here.

For this we need the notion of “feasible potentials”. A feasible potential (with respect
to G and w) is a function π : V (G) → Q such that, for every arc a = (x, y) ∈ A(G), the
following inequality holds: w(a)− π(x) + π(y) ≥ 0. It is well-known that a weighted digraph
has a feasible potential if and only if it has no cycle of negative weight (see, for example, the
book of Schrijver [34, Theorem 8.2]).

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:9

In the following, for each X ⊆ A(G) denote by XI the corresponding indices of the
constraints and vice-versa. Then the following equivalences hold:

(G−X,w) contains no negative cycles with respect to w.
⇔ (G−X,w) has a feasible potential π : V (G)→ Q.
⇔ There is some π : V (G)→ Q such that π(u) ≤ π(v) +w(α) for all α = (u, v) ∈ A(G) \X.
⇔ There is some x ∈ QV (G) such that xu − xv ≤ w(α) for all α = (u, v) ∈ A(G) \X.
⇔ There is some x ∈ Qn such that ai,• · x ≤ bi for all i ∈ {1, . . . ,m} \XI .
Furthermore, as X and XI have the same cardinality, the last statement is equivalent to the
statement that X is a solution to (G,w, k) if and only if XI is a solution to (A, b, k). J

Concatenating all reductions above, we obtain the following corollary:

I Corollary 13. There is a PPT from Bounded Edge Directed (s, t)-Cut parameterized
by k (in k + `) to MinFB parameterized by k (in k + b−). This even holds for instances of
MinFB where A is a system of difference constraints and b ∈ {±1}m.

This corollary yields our two hardness results:

Proof of Theorem 1. With Proposition 7 we can use the W[1]-hardness of Bounded Edge
Directed (s, t)-Cut from Proposition 8 and the PPT from Corollary 13 to get the W[1]-
hardness of MinFB. Also the structure of the instance follows from this. J

Proof of Theorem 4. This follows by combining Proposition 9 and Corollary 13 with the
help of Proposition 7. The structure of the MinFB instance follows as in Theorem 1. J

4 Fixed-parameter Algorithms for Systems of Difference Constraints

In this section we develop fixed-parameter algorithm for MinFB for constraint matrices A
of difference constraints and right-hand sides b ∈ {±1}m. Our first algorithm takes as
parameters the number k of constraints that must be deleted from A to make the system
feasible and the number w− of negative entries in the b-vector; our second algorithm takes as
parameters k and the number w+ of positive entries in b. The naming convention for w+, w−
stems from Theorem 12 and the 1-to-1 correspondence between b and w.

Recall that the DFAS problem corresponds to the case when w+ = 0, as in this case
all arcs have negative weight. In fact, our algorithm makes oracle calls to an algorithm for
the more general problem Subset DFAS, in which we are given a digraph G, an arc set
U ⊆ A(G) and an integer k, and seek a set X ⊆ A(G) of at most k arcs that intersects each
cycle containing some arc of U . The Subset DFAS problem was shown to be fixed-parameter
tractable for parameter k by Chitnis et al. [14].

I Proposition 14 ([14]). Subset DFAS is solvable in time 2O(k3) · nO(1).

For both algorithms we need a subroutine finding a shortest negative cycle C in a given
digraph. Recall that shortest is defined in terms of number of arcs. Negative cycles can be
found with the Moore-Bellman-Ford algorithm (cf. Bang-Jensen and Gutin [3, Sect. 2.3.4]),
which runs in time O(nm). That algorithm can be modified to find a shortest negative cycle
of length at most ` in time O(`nm); such modification is well-known or at least an easy
exercise.

I Lemma 15 (?). There is an algorithm that, given a digraph G, arc weights w : A(G)→ Q
and an integer ` ∈ N, in time O(`nm) either finds a shortest negative cycle C of length at
most ` in G, or decides that none exists.

IPEC 2019

17:10 Resolving Infeasibility of Linear Systems

Algorithm 1 SimpleNegativeCycleDeletion.

Input :A digraph G, arc weights w : A(G)→ Q and k ∈ N.
Output :A set S ⊆ A(G) of at most k arcs such that G− S has no negative cycles

or false if no such set exists.
1 for every k−, k+ ∈ Z≥0 with k− + k+ = k do
2 for every subset S− of w−1(−1) ⊆ A(G) with |S−| = k− do
3 S0 = S−.
4 while G− S0 contains a negative cycle C and |S0| ≤ k do
5 Branch on adding an arc a ∈ A(C) with w(a) = 1 to S0.
6 if |S0| ≤ k then
7 return S0.
8 return false.

4.1 Few negative right-hand sides
We are now ready to give our fixed-parameter algorithm for MinFB for constraint matrices A
of difference constraints and right-hand sides b ∈ {±1}m, parameterized by the size k of the
deletion set and the number b− of negative entries in b. For the rest of this subsection we will
use Theorem 12 and only work on the Negative DFAS problem with w : A(G)→ {±1}.
We give a simple algorithm for the Negative DFAS problem with w : A(G) → {±1},
parameterized by k and b−. Pseudocode of the algorithm can be found in Algorithm 1. The
algorithm first guesses the negative arcs in the solution and then recursively branches on the
positive arcs of a negative cycle (as long as such a cycle exists). The algorithm keeps track
of the already deleted arcs in the set S0.

I Lemma 16. Algorithm 1 is correct and runs in time (k + 1)wk+1
− O(nm).

Proof. The algorithm works in three steps: The first for loop guesses how many of the
deleted arcs have weight −1 with the variable k−. The second for loop then iterates over
every (k−)-element subset of these arcs. The last procedure then tries to fix the negative
cycle by only deleting arcs of weight +1.

As we enumerate all choices of k− and the subsets of negative arcs we only need to argue
correctness for the last procedure. The procedure only returns a value other than “false” if
this value is a solution. So we only need to argue that if there is a solution we will find it.
So let S be a solution and S0 contain all k− arcs of weight −1 in S. We get S0 by correct
guessing of the for loops. If S0 = S, then |S0| ≤ k and the graph G − S0 will contain no
negative cycle, so we correctly return S0. Otherwise, there is a negative cycle C in G− S0.
By choice of S0 there must be an arc a ∈ A(C)∩S with weight +1. Branching on all possible
choices in line 5, one of the branches must have found the right arc and added it to S0. Thus,
in each recursive call we find an additional element of S until S0 = S.

For the runtime, the first main observation to be made is that any negative cycle C
has length at most 2w− − 1. Furthermore, at most w− − 1 arcs of it can have weight +1.
Therefore, we can check by Lemma 15 for the existence of a negative cycle in time O(w−nm)
and iterate over all arcs with weight +1 in a cycle in time O(w−). As S0’s size increases by
one with each branching and we stop (correctly) if |S0| > k at most k − k− recursive calls
are made by the branching. Thus, the runtime of the inner branching procedure for fixed S−
is at most (w−)k−k−+1O(nm). The inner for loop enumerates, for a fixed value of k−, at
most wk−

− sets S−. This for loop is executed k+ 1 many times by the outer for loop. So the
algorithm runs in time (k + 1)wk−

− · (w−)k−k−+1O(nm) = (k + 1)(w−)k+1O(nm). J

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:11

Proof of Theorem 3. By Theorem 12 we can construct, in polynomial time, an instance of
Negative DFAS that has the same parameters k+w−, and such that the original instances
is a “yes”-instance if and only if the constructed instance is. Lemma 16 then allows us to
solve this instance in the claimed time. J

4.2 Few positive right-hand sides
In the second part of this section we will study Negative DFAS with weight functions
w : A(G)→ {±1} when parameterized by k and w+. The main observation for our algorithm
is made in the following lemma:

I Lemma 17 (?). Let G be a digraph with arc weights w : A(G) → {±1}. Then either G
has a negative cycle of length at most 2(w+)2 + 2w+, or every negative cycle C has some arc
a ∈ A(C) that lies only on negative cycles of G.

This lemma forms the basis of our algorithm, Algorithm 2. First, the algorithm checks
for negative cycles with up to 2(w+)2 + 2w+ arcs. It then guesses the arc contained in a
solution like in our first algorithm, Algorithm 1. Afterwards, we are left with a digraph
without small cycles. We now identify the set U of arcs which are not part of a non-negative
cycle. Then, for any solution S to Negative DFAS, G − S may not contain a cycle on
which an arc of U lies, as such a cycle would be negative by definition of U . Likewise, any
negative cycle in G has some arc in U by the previous lemma. Thus, it remains to solve an
instance of Subset DFAS for input (G,U, k).

Algorithm 2 NegativeCycleDeletion.

Input :A digraph G with arc weights w : A(G)→ Q and k ∈ N.
Output :A set S ⊆ A(G) of at most k arcs such that G− S has no negative cycle, or

false if no such set exists.
1 if k < 0 then
2 return false.
3 if there is some negative cycle C of length at most 2(w+)2 + 2w+ in G then
4 Branch on deleting an arc of C and try to solve with k − 1.
5 else
6 Identify the set U of all arcs which do not lie on a non-negative cycle.
7 return SubsetDirectedFeedbackArcSet (G,U, k).

Before we can prove correctness and runtime we have to show how we can detect the set U
of all arcs which lie only on negative cycles. We first argue that this problem is NP-hard even
for weights w : A(G)→ {±1}. To this end, we provide a reduction from the Hamiltonian
s-t-Path problem, which for a digraph H and vertices s, t ∈ V (H) asks for an s-t-path
in H visiting each vertex of H exactly once. Its NP-hardness was shown by Karp [26]. The
reduction works as follows: Take the original digraph H and two vertices s, t ∈ V (H) which
we want to test for the existence of an Hamiltonian path starting in s and ending in t. Add
a path P of length n− 1 from t to s to the graph. Assign weight +1 to each arc of H, and
weight −1 to each arc of P . Then an arc of P lies on a cycle of non-negative length if and
only if there is an Hamiltonian s-t-path in H.

However, for this construction of weights w we have w+ ∈ Ω(n). We will now show that
the task is indeed fixed-parameter tractable when parameterized by w+. For that, the main
observation is that every non-negative cycle has length at most 2w+. We now consider the

IPEC 2019

17:12 Resolving Infeasibility of Linear Systems

Weighted `-Path problem: given a digraph G with arc weights w : A(G)→ Q and numbers
W ∈ Q, ` ∈ N, the task is to find a path of length exactly ` and weight at least W in G.
Zehavi [36] gave a fast algorithm for Weighted `-Path, based on color-coding techniques.

I Proposition 18 ([36]). Weighted `-Path can be solved in time 2O(`) · O(m logn) on
digraphs with n vertices and m arcs.

So given an arc a = (s, t) one can enumerate all path sizes ` from 1 to 2w+ − 1 and ask
whether there is a t-s-path of length ` of weight at least −w(a). This way one can detect a
non-negative cycle containing a.

I Corollary 19. Let G be a digraph, let w : A(G)→ {±1} and (s, t) ∈ A(G). Then one can
detect in time 2O(w+) ·m logn if a = (s, t) is part of some non-negative cycle C.

Finally, to argue the correctness and runtime of Algorithm 2, we prove the following:

I Lemma 20 (?). Algorithm 2 is correct and runs in time 2O(k3+w++k log w+) · nO(1).

Proof of Theorem 2. By Theorem 12 we can construct, in polynomial time, an instance
of Negative DFAS that has the same parameters k + w−, and such that the original
instances is a “yes”-instance if and only if the constructed instance is. Lemma 20 then
allows us to solve this instance in the claimed time. Regarding the run time, note that
m ≤ (k + 1)n2 ∈ 2O(log k) · nO(1). J

5 NP-Hardness for Incidence Matrices of Constant Pathwidth

In this section we show that MinFB is NP-hard even for constraint matrices A whose
pathwidth is bounded by 6. By this we mean that the non-parameterized variant of MinFB
(where k is part of the input) is NP-hard. To this end, we reduce Partition to Negative
DFAS in digraphs whose underlying undirected graph has pathwidth at most 6. Recall
that Partition is the problem of finding, in a set A = {a1, . . . , an} of positive integers, a
subset A′ so that

∑
ai∈A′ ai =

∑
ai∈A\A′ ai or decide that no such set exists. Equivalently,

let A =
∑n

i=1 ai and reformulate the Partition problem as that of finding a subset A′ such
that A′ and A \ A′ each sum up to A

2 . Karp [26] showed that Partition is NP-complete.
Starting from an instance A = {a1, . . . , an} ∈ Nn of Partition, we now construct a

Negative DFAS instance consisting of a digraph G with arc weights w : A(G)→ Z and
some k ∈ N. Afterwards, we argue why (G,w, k) has a solution if and only if A has one.

For every number ai ∈ A construct a gadget Gi as follows (see Fig. 1): Let V (i) =
{s(j)

i , x
(j)
i , y

(j)
i , z

(j)
i , t

(j)
i | j = 0, 1} be the vertex set of Gi. We have three different kinds of

arcs forming the arc set: the first arc set A(i)
1 = {(x(j)

i , y
(j)
i), (y(j)

i , z
(j)
i) | j = 0, 1} contains

the arcs we will consider for deletion later. The arc weight of all arcs a ∈ A(i)
1 is 0.

The second arc set A(i)
2 = {(z(j)

i , x
(j)
i), (y(j)

i , x
(1−j)
i), (z(j)

i , y
(1−j)
i)) | j = 0, 1} enforces the

deletion of arcs form the first arc set by inducing negative cycles. Also, these arcs are the
only arcs between vertices with different superscripts. The weight of each arc a ∈ A(i)

2 is −1.
Finally, the arcs A(i)

3 = {(s(j)
i , x

(j)
i), (s(j)

i , y
(j)
i), (y(j)

i , t
(j)
i), (z(j)

i , t
(j)
i) | j = 0, 1} connect

the vertices s(j)
i and t(j)

i to the rest of the graph. The arc weights are as follows:

w
(

(s(j)
i , x

(j)
i)
)

= 0, w
(

(s(j)
i , y

(j)
i)
)

= A+ 1 + ai,

w
(

(z(j)
i , t

(j)
i)
)

= 0, w
(

(y(j)
i , t

(j)
i)
)

= A+ 1 .

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:13

s
(0)
i t

(0)
i

x
(0)
i y

(0)
i z

(0)
i

x
(1)
i y

(1)
i z

(1)
i

s
(1)
i t

(1)
i

0

C + ai

0

C

0

-1

0

-1

0

-1

0

C

-1

00
C + ai

-1

-1

s
(0)
i t

(0)
i

x
(0)
i y

(0)
i z

(0)
i

x
(1)
i y

(1)
i z

(1)
i

s
(1)
i t

(1)
i

0

C + ai

0

C

0

-1

0

-1

0

-1

0

C

-1

00
C + ai

-1

-1

Figure 1 The gadget graph Gi (left) and paths through Gi after removal of a solution S
(p)
i

(right).

The whole gadget Gi is then defined as (V (i), A
(i)
1 ∪A

(i)
2 ∪A

(i)
3). The proof of soundness

of the reduction and the path decomposition of G of width 6 is omitted from this version of
the paper due to space constraints.

Overall, we get that Negative DFAS is NP-hard in graphs of pathwidth 6. Applying
Theorem 12 to this result completes the proof of Theorem 5.

6 Discussion

We considered the fundamental MinFB problem from the perspective of parameterized
complexity. Our results include a general parameterized intractability result (W[1]-hardness)
even for totally unimodular matrices and parameter solution size, as well as fixed-parameter
algorithms for totally unimodular matrices when the additional parameter of number of
positive/negative right-hand sides is taken into account. It would be interesting to know
whether the run times of our algorithms can be improved to 2O(k) · nO(1).

We also ruled out the existence of a polynomial compression for combined parameter
k + w+, assuming that coNP 6⊆ NP/poly. It remains a challenging open problem whether
DFAS admits a polynomial compression for parameter k, and whether our perspective from
the more general MinFB problem can help with that.

References
1 Edoardo Amaldi and Viggo Kann. On the approximability of minimizing nonzero variables or

unsatisfied relations in linear systems. Theoret. Comput. Sci., 209(1-2):237–260, 1998.
2 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate

optima in lattices, codes, and systems of linear equations. J. Comput. System Sci., 54(2, part
2):317–331, 1997.

3 Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

4 Piotr Berman and Marek Karpinski. Approximating Minimum Unsatisfiability of Linear
Equations. In Proc. SODA 2002, pages 514–516, 2002.

5 Hans L. Bodlaender, Fedor V. Fomin, and Saket Saurabh. Open problems from 2010
Workshop on Kernels, 2010. URL: http://fpt.wdfiles.com/local--files/open-problems/
open-problems.pdf.

IPEC 2019

http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf
http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf

17:14 Resolving Infeasibility of Linear Systems

6 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization Lower Bounds by
Cross-Composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

7 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theoret. Comput. Sci., 412(35):4570–4578, 2011.

8 Marthe Bonamy, Łukasz Kowalik, Jesper Nederlof, Michał Pilipczuk, Arkadiusz Socała, and
Marcin Wrochna. On Directed Feedback Vertex Set Parameterized by Treewidth. In Proc.
WG 2018, pages 65–78, 2018.

9 Nilotpal Chakravarti. Some results concerning post-infeasibility analysis. European J. Oper.
Res., 73(1):139–143, 1994.

10 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):Art. 21, 19, 2008.

11 John W. Chinneck. An effective polynomial-time heuristic for the minimum-cardinality IIS
set-covering problem. Ann. Math. Artif. Intell., 17(1):127–144, 1996.

12 John W. Chinneck. Finding a Useful Subset of Constraints for Analysis in an Infeasible Linear
Program. INFORMS J. Comput., 9(2):164–174, 1997.

13 John W. Chinneck. Feasibility and infeasibility in optimization: algorithms and computational
methods, volume 118 of International Series in Operations Research & Management Science.
Springer, New York, 2008.

14 Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Dániel Marx. Directed subset
feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms, 11(4):Art. 28, 28,
2015.

15 Gianni Codato and Matteo Fischetti. Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res., 54(4):756–766, 2006.

16 Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. Parameterized complexity of
satisfying almost all linear equations over F2. Theory Comput. Syst., 52(4):719–728, 2013.

17 Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Open Problems collected
for the 2014 School on Parameterized Complexity in Bȩdlewo, Poland, 2014. URL: http:
//fptschool.mimuw.edu.pl/opl.pdf.

18 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

19 Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. Open problems from 2013 Workshop
on Kernels, 2013. URL: http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

20 Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for
Kernelization Lower Bounds, With an Application to Length-Bounded Cut Problems. In Proc.
ICALP 2016, volume 55 of Leibniz Int. Proc. Informatics, pages 25:1–25:14, 2016.

21 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, MichaŁPilipczuk, and Marcin Wrochna.
Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low
Treewidth. ACM Trans. Algorithms, 14(3):34:1–34:45, 2018.

22 Panos Giannopoulos, Christian Knauer, and Günter Rote. The parameterized complexity of
some geometric problems in unbounded dimension. In Proc. IWPEC 2009, volume 5917 of
Lecture Notes Comput. Sci., pages 198–209. 2009.

23 Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optim., 8(1):72–86, 2011.

24 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993.

25 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optim., 8(1):61–71, 2011.

26 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations (Proc. Sympos., IBM, Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 85–103. Plenum, New York, 1972.

http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf

A. Göke, L.M. Mendoza Cadena, and M. Mnich 17:15

27 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. Discrete Optim., 10(3):193–199, 2013.

28 Neele Leithäuser, Sven O. Krumke, and Maximilian Merkert. Approximating infeasible 2VPI-
systems. In Proc. WG 2012, volume 7551 of Lecture Notes Comput. Sci., pages 225–236.
2012.

29 Daniel Lokshtanov, M. S. Ramanuajn, and Saket Saurabh. When Recursion is Better Than
Iteration: A Linear-time Algorithm for Acyclicity with Few Error Vertices. In Proc. SODA
2018, pages 1916–1933, 2018.

30 Matthias Mnich and Erik Jan van Leeuwen. Polynomial kernels for deletion to classes of
acyclic digraphs. Discrete Optim., 25:48–76, 2017.

31 Marc E. Pfetsch. Branch-and-cut for the maximum feasible subsystem problem. SIAM J.
Optim., 19(1):21–38, 2008.

32 G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller. Solving Systems of Difference
Constraints Incrementally. Algorithmica, 23(3):261–275, 1999.

33 Jayaram K. Sankaran. A note on resolving infeasibility in linear programs by constraint
relaxation. Oper. Res. Lett., 13(1):19–20, 1993.

34 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

35 K. Subramani and Piotr Wojciechowski. A Combinatorial Certifying Algorithm for Linear
Feasibility in UTVPI Constraints. Algorithmica, 78(1):166–208, 2017.

36 Meirav Zehavi. Mixing color coding-related techniques. In Proc. ESA 2015, volume 9294 of
Lecture Notes Comput. Sci., pages 1037–1049. 2015.

IPEC 2019

Clustering to Given Connectivities
Petr A. Golovach
Department of Informatics, University of Bergen, Norway
petr.golovach@uib.no

Dimitrios M. Thilikos
AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France
sedthilk@thilikos.info

Abstract
We define a general variant of the graph clustering problem where the criterion of density for the
clusters is (high) connectivity. In Clustering to Given Connectivities, we are given an n-vertex
graph G, an integer k, and a sequence Λ = ⟨λ1, . . . , λt⟩ of positive integers and we ask whether it
is possible to remove at most k edges from G such that the resulting connected components are
exactly t and their corresponding edge connectivities are lower-bounded by the numbers in Λ. We
prove that this problem, parameterized by k, is fixed parameter tractable, i.e., can be solved by
an f(k) ⋅ nO(1)-step algorithm, for some function f that depends only on the parameter k. Our
algorithm uses the recursive understanding technique that is especially adapted so to deal with the
fact that we do not impose any restriction to the connectivity demands in Λ.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases graph clustering, edge connectivity, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.18

Related Version A full version of the paper is available at https://arxiv.org/abs/1803.09483.

Funding Petr A. Golovach: Supported by the Research Council of Norway via the projects CLASSIS
and MULTIVAL. Supported by the Research Council of Norway and the French Ministry of Europe
and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.
Dimitrios M. Thilikos: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA
(ANR-17-CE23-0010). Supported by the Research Council of Norway and the French Ministry of
Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

1 Introduction

Clustering deals with grouping the elements of a data set based on some similarity measure
between them. As a general computational procedure, clustering is fundamental in several
scientific fields including machine learning, information retrieval, bioinformatics, data com-
pression, and pattern recognition (see [7, 68,70]). In many such applications, data sets are
organized and/or represented by graphs that naturally express relations between entities.
A graph clustering problem asks for a partition of the vertices of a graph into vertex sets,
called clusters, so that each cluster enjoys some desirable characteristics of “density” or
“good interconnectivity”, while having few edges between the clusters (see [12, 63] for related
surveys).

Parameterizations of graph clustering problems. As a general problem on graphs, graph
clustering has many variants. Most of them depend on the density criterion that is imposed
on the clusters and, in most of the cases, they are NP-complete. However, in many real-world
instances, one may expect that the number of edges between clusters is much smaller than
the size of the graph. This initiated the research for parameterized algorithms for graph
clustering problems. Here the aim is to investigate when the problem is FPT (Fixed Parameter

© Petr A. Golovach and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2619-2990
mailto:petr.golovach@uib.no
https://orcid.org/0000-0003-0470-1800
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.IPEC.2019.18
https://arxiv.org/abs/1803.09483
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Clustering to Given Connectivities

Tractable), when parameterized by the number k of edges between clusters, i.e. it admits a
f(k) ⋅ nO(1) step algorithm, also called FPT-algorithm (see [21,27,30,59] for textbooks on
parameterized algorithms and the corresponding parameterized complexity class hierarchy).
More general parameterizations may also involve k edit operations to the desired cluster
property.

In the most strict sense, one may demand that all vertices in a cluster are pair-wise
connected, i.e., they form a clique. This corresponds to the Cluster Deletion problem and
its more general version Cluster Editing where we ask for the minimum edge additions
or deletions that can transform a graph to a collection of cliques. Cluster Editing was
introduced by Ben-Dor, Shamir, and Yakhini in [6] in the context of computational biology
and, independently, by Bansal, Blum, and Chawla [5] motivated by machine learning problems
related to document clustering (see also [65]). Algorithmic research on these problems and
their variants is extensive, see [1–3,28,35,65]. Moreover their standard parameterizations
are FPT and there is a long list of improvements on the running times of the corresponding
FPT-algorithms [10,11,13,14,17,18,29,39,41,62].

In most practical cases, in a good clustering, it is not necessary that clusters induce cliques.
This gives rise to several difference measures of density or connectivity. In this direction,
Heggernes et al., in [46], introduced the (p, q)-Cluster Graph Recognition problem
where clusters are cliques that may miss at most p edges (also called γ-quasi cliques) [60,61]).
This problem was generalized in [56], where, given a function µ and a parameter p, each
cluster C should satisfy µ(C) ≤ p, and was proved to be FTP for several instantiations of µ.
In [47], Hüffner et al. introduced the Highly Connected Deletion problem, where each
cluster C should induce a highly connected graph (i.e., have edge connectivity bigger than
∣C∣/2 – see also [45,48]) and proved that this problem is FPT. Algorithmic improvements and
variants of this problem where recently studied by Bliznets and Karpov in [9]. In [42], Guo
et al. studied the problems s-Defective Clique Editing, Average-s-Plex Delection,
and µ-Clique Deletion where each cluster S is demanded to be a clique missing s edges, a
graph of average degree at least ∣C∣ − s, or a graph with average density s, respectively (the
two first variants are FPT, while this is not expected for the last one). In [64] clusters are of
diameter at most s (s-clubs), in [4,43,58,67] every vertex of a cluster should have an edge to
all but at most s − 1 other vertices of it (s-plexes). In [32], Fomin et al. considered the case
where the number of clusters to be obtained is exactly p and proved that this version is also
in FPT. Other Parameterizations of Cluster Editing where introduced and shown to be
FPT in [8, 15,25,53,69]).

Our results. Here we adopt connectivity as a general density criterion for the clusters
(following the line of [9, 48]). We study a general variant of graph clustering where we
prespecify both the number of clusters (as done in [32]) but also the connectivities of the
graphs induced by them. Actually we consider the edge weighted version of the problem
where the weighted edge connectivity λw(G) of an edge weighted graph G is defined as the
minimum weight of an edge cut (see Section 2 for formal definitions).

Input: A weighted graph G with an edge weight function w∶E(G) → N, a t-tuple Λ =

⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt, and a
nonnegative integer k.

Task: Decide whether there is a set F ⊆ E(G) with w(F) ≤ k such that G − F has t
connected components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t}.

Clustering to Given Weighted Connectivities (CGWC)

(It is convenient to allow λi = +∞, because we assume that the (weighted) connectivity of
the single-vertex graph is +∞.)

P.A. Golovach and D.M. Thilikos 18:3

The above problem can be seen as a generalization of the well-known t-Cut problem,
asking for a partition of a graph into exactly t nonempty components such that the total
number of edges between the components is at most k. Indeed, this problem is CGWC for
unit weights and λ1 = . . . = λt = 1. As it was observed by Goldschmidt and Hochbaum in [36],
t-Cut is NP-hard if t is a part of the input. This immediately implies the NP-hardness of
CGWC. Therefore, we are interested in the parameterized complexity of the problem. The
main results of Goldschmidt and Hochbaum [36] is that t-Cut can be solved in time O(nt

2

),
that is, the problem is polynomial for any fixed t. In other words, t-Cut belongs in the
parameterized complexity class XP when parameterized by t. This results was shown to
be tight in the sense that we cannot expect an FPT algorithm for this problem unless the
basic conjectures of the Parameterized Complexity theory fail by Downey et al. who proved
in [26] that the problem is W[1]-hard when parameterized by t. The situation changes if we
parameterize the problem by k. By the celebrated result of Kawarabayashi and Thorup [49],
t-Cut is FPT when parameterized by k.

In this paper, we prove that CGWC is FPT when parameterized by k. For our proofs we
follow the recursive understanding technique introduced by Chitnis et al. [19] (see also [40])
combined with the random separation technique introduced by Cai, Chan and Chan in [16].
Already in [19], Chitnis et al. demonstrated that this technique is a powerful tool for the
design of FPT-algorithms for various cut problems. This technique was further developed
by Cygan et al. in [23] for proving that the Minimum Bisection problem is FPT (see
also [33, 37, 52, 57] for other recent applications of this technique on the design of FPT-
algorithms). Nevertheless, we stress that for CGWC the application for the recursive
understanding technique becomes quite nonstandard and demands additional work due to the
fact that neither t nor the connectivity constraints λ1, . . . , λt are restricted by any constant or
any function of the parameter k (we stress that the general meta-algorithmic framework of [57]
is not directly applicable to our problem and in the conclusion section (Section 5) we provide
some discussion on how to tackle this). Towards dealing with the diverse connectivities,
we deal with special annotated/weighted versions of the problem and introduce adequate
connectivity mimicking encodings in order to make recursive understanding possible.

Paper organization. Due to space constraints, we only give high level descriptions of our
results. In Section 2, we give definitions that are used throughout the paper. In Section 3,
we sketch our algorithm for the basic case where the input graph is connected. For this, we
introduce all concepts and results that support the applicability of the recursive understanding
technique. We stress that, at this point, the connectivity assumption is important as this
makes it easier to control the diverse connectivities of the clusters. In Section 4, we briefly
explain how we deal with the general non-connected case. The algorithm in the general case
is based on a series of observations on the way connectivities are distributed in the connected
components of G. In Section 5, we briefly discuss alternative approaches for CGWC and
further directions of research. The details and complete proofs could be found in the full
version of the paper [38].

2 Preliminaries

We consider finite undirected simple graphs. We use n to denote the number of vertices and
m the number of edges of the considered graphs unless it creates confusion. For disjoint
subsets A,B ⊆ V (G), E(A,B) denotes the set of edges with one end-vertex in A and the
second in B. A set of edges S ⊆ E(G) of a connected graph G is an (edge) separator if G−S

IPEC 2019

18:4 Clustering to Given Connectivities

is disconnected. For two disjoint subsets A,B ⊆ V (G), S ⊆ E(G) is an (A,B)-separator
if G − S has no (u, v)-path with u ∈ A and v ∈ B. Recall (see, e.g., [24]) that if S is an
inclusion minimal (A,B)-separator, then S = E(A′, B′) for some partition (A′, B′) of V (G)
with A ⊆ A

′ and B ⊆ B
′.

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G) with
∣S∣ ≤ k − 1, G − S is connected, that is, G has no separator of size at most k − 1. Since we
consider only edge connectivity, whenever we say that a graph G is k-connected, we mean
that G is edge k-connected. Similarly, whenever we mention a separator, we mean an edge
separator.

For technical reasons, it is convenient for us to work with edge weighted graphs. Let G
be a graph and let w∶E(G)→ N be an (edge) weight function. Whenever we say that G is a
weighted graph, it is assumed that an edge weight function is given and we use w to denote
weights throughout the paper. For a set of edges S, w(S) = ∑e∈S w(e).

For disjoint subsets A,B ⊆ V (G), wG(A,B) = w(E(A,B)). We say that G is weight
k-connected if for every S ⊆ E(G) with w(S) ≤ k − 1, G − S is connected. We denote
by λ

w(G) the weighted connectivity of G, that is, the maximum value of k such that G
is weight k-connected; we assume that every graph is weight 0-connected and for the
single-vertex graph G, λw(G) = +∞. For disjoint subsets A,B ⊆ V (G), λw

G(A,B) =

min{w(S) ∣ S is an (A,B)-separator}. We say that an (A,B)-separator S is minimum if
w(S) = λ

w
G(A,B). For two vertices u, v ∈ V (G), λw(u, v) = λ

w({u}, {v}) and we assume
that λw(u, u) = +∞. Similarly, for a set A and a vertex v, we write λw

G(A, v) instead of
λ

w
G(A, {v}). Clearly, λw(G) = min{λw

G(u, v) ∣ u, v ∈ V (G)}. We can omit the subscript if it
does not create confusion.

Let U ⊆ V (G). We say that the weighted graph G′ is obtained from G by the weighted
contraction of U if it is constructed as follows: we delete the vertices of U and replace the set
by a single vertex u that is made adjacent to every v ∈ V (G) \ U adjacent to a vertex of U
and the weight of uv is defined as ∑xv∈E(G), x∈U w(xv). Note that we do not require G[U]
be connected. For an edge uv, the weighted contraction of uv is the weighted contraction of
the set {u, v}.

3 Clustering to Given Weighted Connectivities for connected graphs

In this section we show that CGWC is FPT when parameterized by k if the input graph is
connected. We prove the following theorem that is used as the main building block for the
general case.

I Theorem 1. There exist some computable function f ∶ N→ N, such that CGWC can be
solved in time f(k) ⋅ nO(1) if the input graph is connected.

The remaining part of the section contains the sketch of the proof of this theorem. In
Subsection 3.1 we give some additional definitions and state auxiliary results. Then in
Subsection 3.2 we sketch the proof itself.

3.1 Auxiliary results
To solve CGWC for connected graphs, we use the recursive understanding technique intro-
duced by Chitnis et al. in [19]. Therefore, we need notions that are specific to this technique
and some results established by Chitnis et al. [19]. Note that we adapt the definitions and
the statements of the results for the case of edge weighted graphs.

P.A. Golovach and D.M. Thilikos 18:5

Weighted good edge separations. Let G be a connected weighted graph with an edge
weight function w∶E(G)→ N. Let also p and q be positive integers. A partition (A,B) of
V (G) is called a (q, p)-good edge separation if

∣A∣ > q and ∣B∣ > q,
w(A,B) ≤ p,
G[A] and G[B] are connected.

It is said thatG is (q, p)-unbreakable if for any partition (A,B) of V (G) such that w(A,B) ≤ p,
it holds that ∣A∣ ≤ q or ∣B∣ ≤ q.

We use the following variant of Lemma 7 of [19] that is more convenient for our purposes.
For the unweighted case, this variant was stated in [31].

I Lemma 2. There exists a deterministic algorithm that, given a weighted connected graph
G along with positive integers p and q, in time 2O(min{p,q} log(p+q)) ⋅ n3 logn either finds a
(q, p)-good edge separation or correctly concludes that G is (pq, p)-unbreakable.

Mimicking connectivities by cut reductions. Let r be a nonnegative integer. A pair (G,x),
where G is a graph and x = ⟨x1, . . . , xr⟩ is an r-tuple of distinct vertices of G is called
an r-boundaried graph or simply a boundaried graph. Respectively, x = ⟨x1, . . . , xr⟩ is a
boundary. Note that a boundary is an ordered set. Hence, two r-boundaried graphs that
differ only by the order of the vertices in theirs boundaries are distinct. Still, we can treat
x as a set when the ordering is irrelevant. Observe also that a boundary could be empty.
Slightly abusing notation, we may say that G is a (r-) boundaried graph assuming that a
boundary is given. We say that (G,x) is a properly boundaried graph if the vertices of x are
pairwise nonadjacent and each component of G contains at least one vertex of x.

Two r-boundaried weighted graphs (G1,x
(1)) and (G2,x

(2)), where x(h)
= ⟨x(h)

1 , . . . , x
(h)
r ⟩

for h = 1, 2, are isomorphic if there is an isomorphism of G1 to G2 that maps each x(1)
i to

x
(2)
i for i ∈ {1, . . . , r} and each edge is mapped to an edge of the same weight.
Let (G1,x

(1)) and (G2,x
(2)) be r-boundaried graphs with x(h)

= ⟨x(h)
1 , . . . , x

(h)
r ⟩ for

h = 1, 2, and assume that (G2,x
(2)) is a properly boundaried graph. We define the boundary

sum (G1,x
(1))⊕b (G2,x

(2)) (or simply G1⊕bG2) as the (non-boundaried) graph obtained by
taking disjoint copies of G1 and G2 and identifying x(1)

i and x(2)
i for each i ∈ {1, . . . , r}. Note

that the definition is not symmetric as we require that (G2,x
(2)) is a properly boundaried

graph and we have no such a restriction for x(1)
1 , . . . , x

(1)
r .

Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq) be two partitions of a set Z. We define the
product X×Y of X and Y as the partition of Z obtained from {Xi∩Yj ∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}
by the deletion of empty sets. For partitions X1

, . . . ,Xr of Z, we denote their consecutive
product as ∏r

i=1 Xi.
Let (H,x) be a connected properly r-boundaried weighted graph. Let p be a positive

integer or +∞. Slightly abusing notation we consider here x as a set. We construct the
partition Z of V (H) as follows. For X ⊆ x, denote X = x \X.

For all distinct pairs {X,X} for nonempty X ⊂ x, find a minimum weight (X,X)-
separator SX = E(Y 1

X , Y
2
X) where (Y 1

X , Y
2
X) is a partition of V (H), X ⊆ Y

1
X and X ⊆ Y

2
X .

For every v ∈ V (H) \ x, find a minimum weight (x, {v})-separator S(v). Find v
∗
∈

V (H)\x such that w(S(v∗)) = min{w(S(v)) ∣ v ∈ V (H)\x} and let S(v∗) = E(Y 1
x , Y

2
x)

where (Y 1
x , Y

2
x) is a partition of V (H) and x ⊆ Y 1

x .

IPEC 2019

18:6 Clustering to Given Connectivities

Construct the following partition of V (H):

Z = (Z1, . . . , Zh) = (∏
distinct {X,X}

∅≠X⊂x

(Y 1
X , Y

2
X)) × (Y 1

x , Y
2

x) × ({x1}, . . . , {xr}, V (H) \ x). (1)

We construct H ′ by performing the weighted contraction of the sets of Z. Then for each
edge uv of H ′ with w(uv) > p, we set w(uv) = p, that is, we truncate the weights by p.
Notice that because the partition ({x1}, . . . , {xr}, V (H) \ x) is participating the product
defining Z, we have that {x} ∈ Z for each x ∈ x, that is, the elements of the boundary
are not contracted, and this is the only purpose of this partition in (1). We say that H ′ is
obtained from (H,x) by the cut reduction with respect to p. Note that H ′ is not unique as
the construction depends on the choice of separators. It could be observed that we construct
a mimicking network representing cuts of H [44, 50] (see also [51]).

We extend this definition for disconnected graphs. Let (H,x) be a properly r-boundaried
weighted graph and let p be a positive integer or +∞. Denote by H1, . . . ,Hs the components
of H and let xi = x ∩ V (Hi) for i ∈ {1, . . . , s}. Consider the boundaried graphs (H ′

i,x
i)

obtained from (Hi,x) by cut reduction with respect to p for i ∈ {1, . . . , s}. We say that
(H ′

,x), that is obtained by taking the union of (H ′
i,x

i) for i ∈ {1, . . . , s}, is obtained by the
cut reduction with respect to p.

The crucial property of H ′ is that it keeps the separators of H that are essential for the
connectivity.

I Lemma 3. Let (H,x) be a properly r-boundaried weighted graph, and let p ∈ N∪{+∞} and
t ∈ N. Let also (F,y) be an r-boundaried weighted graph, and let G = (F,y)⊕b (H,x). Then
for an r-boundaried weighted graph H ′ obtained from H by the cut reduction with respect to p
and t positive integers λ1, . . . , λt ≤ p it holds that G has exactly t components and they have
the connectivities λ1, . . . , λt respectively if and only if the same holds for G′ = (F,y)⊕b(H ′

,x),
that is, G′ has t components and they have the connectivities λ1, . . . , λt respectively.

It is also important to observe that it holds that ∣V (H ′)∣ ≤ 22r−1

+ r, that is, the size of
an r-boundaried weighted graph obtained by cut reduction is bounded by a function of r.

For positive integers r and s, we define Hr,s as the family of all pairwise nonisomorphic
properly r-boundaried weighted graphs (G,x) with at most 22r−1

+ r vertices where the
weights of edges are in {1, . . . , s} and for every component C of G with V (C) \ x ≠ ∅, there
is a vertex v ∈ V (C) \ x such that λw(x, v) ≤ s. We also formally define H0,s as the set

containing the empty graph. Note that ∣Hr,s∣ ≤ (s + 1)(
22r−1

+r
2) and Hr,s can be constructed

in time 222O(r)
log s.

Variants of CGWC. To apply the recursive understanding technique, we also have to solve a
special variant of CGWC tailored for recursion. To define it, we first introduce the following
variant of the problem. The difference is that a solution should be chosen from a given subset
of edges.

Input: A weighted graph G with an edge weight function w∶E(G) → N, L ⊆ E(G), a
t-tuple Λ = ⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt,
and a nonnegative integer k.

Task: Decide whether there is a set F ⊆ L with w(F) ≤ k such that G−F has t connected
components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t}.

Annotated CGWC

P.A. Golovach and D.M. Thilikos 18:7

Clearly, if L = E(G), then Annotated CGWC is CGWC. Let (G,w,L,Λ, k) be an
instance of Annotated CGWC. We say that F ⊆ L with w(F) ≤ k such that G − F has t
connected components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t} is a solution for
the instance.

Now we define Border A-CGWC.

Input: A weighted r-boundaried connected graph (G,x) with an edge weight function
w∶E(G) → N, L ⊆ E(G), a t-tuple Λ = ⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for
i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt, and a nonnegative integer k such that r ≤ 4k and
k ≥ t − 1.

Task: For each weighted properly r-boundaried graph (H,y) ∈ Hr,2k and each Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ, find the minimum 0 ≤ k̂ ≤ k such that ((G,x)⊕b (H,y), w, L, Λ̂, k̂)
is a yes-instance of Annotated CGWC and output a solution F for this instance
or output ∅ if k̂ does not exist.

Border A-CGWC

Slightly abusing notation, we use w to denote the weights of edges of G and H. Notice
that Border A-CGWC is neither decision nor optimization problem, and its solution is a
list of subsets of L. Observe also that a solution of Border A-CGWC is not necessarily
unique. Still, for any two solutions, that is, lists L1 and L2 of subsets of L, the following holds:
for each weighted properly r-boundaried graph (H,y) ∈ Hr,2k and each Λ̂ = ⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ,
the lists L1 and L2 contain the sets of the same weight. To solve Annotated CGWC, it is
sufficient to solve Border A-CGWC for r = 0. If the output contains nonempty set for
Λ̂ = Λ, we have a yes-instance of Annotated CGWC. If the output contains empty set
for this Λ̂, we should verify additionally whether ∅ is a solution, that is, whether Λ = {λ1}
and λw(G) ≥ λ1. To apply the recursive understanding technique, we first solve Border
A-CGWC for (q, 2k)-unbreakable graphs for some appropriate value of q and then use this
result for the general case of Border A-CGWC.

Restricted BFS subgraphs. Let G be a graph, u ∈ V (G), and let r be a positive integer.
We construct the subgraph Br(u) using a modified breadth-first search algorithm. Recall that
in the standard breadth-first search algorithm (see, e.g., [20]) starting from u, we first label
u by `(u) = 0 and put u into a queue Q. Then we iterate as follows: if Q is nonempty, then
take the first vertex x in the queue and for every nonlabeled neighbor y, assign `(y) = `(x)+1
and put y into Q. We start in the same way by assigning u the label `(u) = 0 and putting u
into Q. Then while Q is nonempty and the first element x has the label `(x) ≤ r − 1, we
consider arbitrary chosen min{r, dG(x)} vertices y ∈ NG(x), assign to unlabeled vertices
y the label `(y) = `(x) + 1 and put them into Q. The graph Br(u) is the subgraph of G
induced by the labeled vertices v with `(v) ≤ r. We say that Br(x) is an r-restricted BFS
subgraph of G. Note that such a subgraph is not unique.

3.2 Sketch of the proof of Theorem 1
First, we construct an algorithm for Border A-CGWC for connected (q, 2k)-unbreakable
graphs. The crucial step is to solve Annotated CGWC.

I Lemma 4. Annotated CGWC can be solved and a solution can be found (if exists) in
time 2O(q(q+k) log(q+k)) ⋅ nO(1) for connected (q, 2k)-unbreakable graphs.

IPEC 2019

18:8 Clustering to Given Connectivities

Sketch of the proof. Let (G,w,L,Λ, k) be an instance of Annotated CGWC where G
is a connected (q, 2k)-unbreakable graph. Let also Λ = ⟨λ1, . . . , λt⟩, λ1 ≤ . . . ≤ λt. Clearly,
the problem is easy if t = 1 and the problem is trivial if t > k + 1, because a connected
graph G can be separated into at most k + 1 components by at most k edge deletions. Let
2 ≤ t ≤ k + 1. If ∣V (G)∣ ≤ 3q, we solve Annotated CGWC using brute force. From now
we assume that ∣V (G)∣ > 3q.

Suppose that (G,w,L,Λ, k) is a yes-instance of Annotated CGWC and let F ⊆ L be
a solution. Let G1, . . . , Gt be the components of G − F and λw(Gi) ≥ λi for i ∈ {1, . . . , t}.
Using that G is a (q, 2k)-unbreakable graph, we show that there is a component Gi with at
least q+ 1 vertices and the total number of vertices in the other components is at most q. We
say that Gi is a big components and call the other components small. For each i ∈ {1, . . . , t},
we verify whether there is a solution F where λi is the connectivity constraint for the big
component of G − F .

Assume that λi > k. We show that in this case V (Gi) is an inclusion maximal set of
vertices X of G with the property that for every two vertices u, v ∈ X, λw

G(u, v) ≥ k + 1. We
use this to find the big component and then find other clusters by brute force.

From now we assume that λi ≤ k. To deal with this case we apply the random separation
technique introduces by Cai, Chan and Chan in [16]. To avoid dealing with randomized
algorithms, we use the Lemma 1 of [19]. Assume again that (G,w,L,Λ, k) is a yes-instance
of Annotated CGWC, F ⊆ L is a solution, and G1, . . . , Gt are the components of G − F
where Gi is the big component. Let A = ⋃j∈{1,...,t}\{i} V (Gj). Recall that ∣A∣ ≤ q. Let
also X ⊆ V (Gi) be the set of vertices of Gi that have neighbors in A. Note that ∣X∣ ≤ k.
For each u ∈ X, we consider a (q + λi)-restricted BFS subgraph B(u) = Bq+λi

(u) of Gi.
Let B = ⋃u∈X V (B(u)). We have that ∣V (B(u))∣ = 2O((q+k) log(q+k)) since λi ≤ k. Hence,
∣B∣ = 2O((q+k) log(q+k)). Note also that ∣B∣ ≥ q + 1. We say that a set S ⊆ V (G) is (A,B)-
good or, simply, good if B ⊆ S and A∩ S = ∅. By Lemma 1 of [19], we can construct in time
2O(q(q+k) log(q+k)) ⋅n logn a family S of at most 2O(q(q+k) log(q+k)) ⋅ logn subsets of V (G) such
that if (G,w,L,Λ, k) is a yes-instance and A and B exist for some solution, then S contains
an (A,B)-good set.

We construct such a family S, and for each S ∈ S, we look for F ⊆ L such that the
following holds:
(i) w(F) ≤ k,
(ii) G − F has t components G1, . . . , Gt such that each Gj is weight λj-connected and

∣V (Gi)∣ > q, and
(iii) S ⊆ V (Gi).

We describe the algorithm that produces the YES answer if S is good and, moreover, if
the algorithm outputs YES, then (G,w,L,Λ, k) is a yes-instance of Annotated CGWC.
Note that the algorithm can output the false NO answer if S is not a good set. Nevertheless,
because for an yes-instance of Annotated CGWC, we always have a good set S ∈ S, we
have that (G,w,L,Λ, k) is a yes-instance if and only if the algorithm outputs YES for at
least one S ∈ S.

The algorithm uses the following property of (A,B)-good sets.

⊳ Claim (A). If S is an (A,B)-good set, then for each component H of G − S, either
V (H) ⊆ V (Gi) or V (H) ∩ V (Gi) = ∅.

We apply a number of reduction rules that either increase the set S or conclude that S is
not good and stop. Each rule increasing S is applied exhaustively. For each rule, we show

P.A. Golovach and D.M. Thilikos 18:9

that it is safe in the sense that if we increase S, then if the original S was good, then the
obtained set is good as well, and if we conclude that the original S is not good, then this is a
correct conclusion and, therefore, we can return NO and stop. We underline that whenever
we return NO in the rules, this means that we discard the current choice of S.

Due to the size of B, we get the following rule.

I Reduction Rule 3.1. If ∣S∣ ≤ q, then return NO and stop.

Denote by H1, . . . ,Hs the components of G − S. Applying Claim A we obtain the next
rules.

I Reduction Rule 3.2. For every j ∈ {1, . . . , s}, if E(V (Hj), S) \ L ≠ ∅ or w(V (Hj), S) ≥
k + 1 or ∣V (Hj)∣ > q, then set S = S ∪ V (Hj).
I Reduction Rule 3.3. If there is u ∈ S adjacent to a vertex of Hj for some j ∈ {1, . . . , s}
and there is a connected set Z ⊆ S such that a) u ∈ Z, b) ∣Z∣ ≤ q, c) w(Z, S \ Z) ≤ λi − 1,
then set S = S ∪ V (Hj).

To apply the last rule, we use the result of Fomin and Villanger [34] that allows to list
all the sets Z satisfying a)–c) in time 2O(k log(q+k)) ⋅ n because λi ≤ k. We apply Reduction
Rule 3.3 recomputing the components of G − S after each modification of S. Then we again
use the result of Fomin and Villanger [34] to apply the next rule.

I Reduction Rule 3.4. If there is a connected set Z ⊆ S such that ∣Z∣ ≤ q and w(Z, V (G) \
Z) ≤ λi − 1, then set return NO and stop.

Assume that we do not stop while executing Reduction Rule 3.4. We use the flowing
claim to identify the components of G−S whose vertices, definitely, are not in the big cluster.

⊳ Claim (B). If S is an (A,B)-good set, then if for a component H of G − S, there is
v ∈ V (H) such that λw(v, S) < λi, then V (H) ∩ V (Gi) = ∅.

Let H1, . . . ,Hs be the components of G − S. We set

I = {j ∈ {1, . . . , s} ∣ there is v ∈ V (Hj) such that w(v, S) < λi}.

I Reduction Rule 3.5. If ∣⋃j∈I V (Hj)∣ > q or w(⋃j∈I V (Hj), S) > k, then return NO and
stop.

⊳ Claim (C). For any J ⊆ {1, . . . , s} such that I ⊆ J and w(⋃j∈J V (Hj), S) ≤ k, the graph
G
′
= G −⋃j∈J V (Hj) is weight λi-connected.

By applying Reduction Rules 3.1–3.5, we either increase S or stop. Now we have to find
an F ⊆ L such that (i)–(iii) are fulfilled and, by applying Claims A and B, we impose two
additional constraints:
(iv) for every j ∈ {1, . . . , s} \ I, either V (Hj) ⊆ V (Gi) or V (Hj) ∩ V (Gi) = ∅,
(v) for every j ∈ I, V (Hj) ∩ V (Gi) = ∅.
Note that by Claim C, we automatically obtain that λw(Gi) ≥ λi if (i), (iii)-(v) are

fulfilled. Also because of Reduction Rule 3.1, we have that ∣V (Gi)∣ > q if (iii) holds. Hence,
we can replace (ii) by the relaxed condition:
(ii) G−F has t componentsG1, . . . , Gt such thatGj is weight λj-connected for j ∈ {1, . . . , t},

j ≠ i.
We find F , if such a set exists, by a dynamic programming algorithm that sorts the vertices
of G − S staring with the components with indices in I. J

IPEC 2019

18:10 Clustering to Given Connectivities

Using Lemma 4, we construct the algorithm for Border A-CGWC for connected
(q, 2k)-unbreakable graphs.

I Lemma 5. Border A-CGWC can be solved in time 2q
322O(k)

⋅ nO(1) for connected
(q, 2k)-unbreakable graphs.

Now we construct an algorithm for Border A-CGWC and this result implies Theorem 1.

I Lemma 6. Border A-CGWC can be solved in time f(k) ⋅ nO(1).

Sketch of the proof. We construct a recursive algorithm for Border A-CGWC. Let
(G,x, w, L,Λ, k) be an instance of Border A-CGWC. Recall that (G,x) is an r-boundaried
connected graph and r ≤ k. Recall also that Λ contains at most k + 1 elements.

We define the constants p and q that are used throughout the proof as follows:

p = 2k2k+1(2k + 1)
(224k−1

+4k
2)

+ 4k and q = 22p−1

+ p. (2)

We are going to use q as a part of the unbreakability threshold.
We apply Lemma 2 and in time 2O(k log(q+k)) ⋅ n3 logn either find a (q, 2k)-good edge

separation (A,B) of G or conclude that G is (2kq, 2k)-unbreakable.
If G is (2kq, 2k)-unbreakable, we apply Lemma 5 and solve the problem in time 2q

322O(k)

⋅
n
O(1). Assume from now that we are given a (q, 2k)-good edge separation (A,B) of G.
Since ∣x∣ ≤ 4k and the vertices of x are separated between A and B, either A or B

contains at most 2k vertices of x. Assume without loss of generality that ∣A ∩ x∣ ≤ 2k. Let
T be the set of end-vertices of the edges of E(A,B) in A. Clearly, ∣T ∣ ≤ 2k. We form a new
r̂-tuple x̂ = ⟨x̂1, . . . , x̂r̂⟩ of vertices A from the vertices of (A∩ x)∪ T ; note that r̂ ≤ 4k. We
consider Ĝ = G[A] as the x̂-boundaried graph. We set L̂ = L ∩ E(Ĝ). This way, we obtain
the instance (Ĝ, x̂, w, L̂,Λ, k) of Border A-CGWC.

Now we solve Border A-CGWC for (Ĝ, x̂, w, L̂,Λ, k).
If ∣V (Ĝ)∣ ≤ 2q, we can simply use brute force. If ∣V (Ĝ)∣ > 2q, we recursively solve

Border A-CGWC for (Ĝ, x̂, w, L̂,Λ, k) by calling our algorithm for the instance that has
lesser size, because ∣V (Ĝ)∣ ≤ ∣V (G)∣ − q.

By solving Border A-CGWC for (Ĝ, x̂, L̂,Λ, k), we obtain a list L of sets where each
element is either ∅ or F ⊆ L̂ that is a solution for the corresponding instance of Annotated
CGWC for some (H,y) ∈ Hr̂,2k, Λ̂ ⊆ Λ and k̂ ≤ k. Denote by M the union of all the sets in
L. Clearly, M ⊆ L̂.

We define L∗ = (L \ L̂) ∪M . Since M ⊆ L̂, L∗ ⊆ L. We show that the instances
(G,x, w, L,Λ, k) and (G,x, w, L∗,Λ, k) are essentially equivalent by proving the following
claim by making use of Lemma 3.

⊳ Claim (A). For every weighted properly r-boundaried graph (H,y) ∈ Hr,2k, every Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ and every nonnegative integer k̂ ≤ k, ((G,x)⊕b (H,y), w, L, Λ̂, k̂) is a yes-
instance of Annotated CGWC if and only if ((G,x)⊕b(H,y), w, L∗, Λ̂, k̂) is a yes-instance
of Annotated CGWC.

By Claim A we obtain that every solution of (G,x, w, L∗,Λ, k) is a solution of
(G,x, w, L,Λ, k), and there is a solution of (G,x, w, L,Λ, k) that is a solution of
(G,x, w, L∗,Λ, k). Therefore, it is sufficient for us to solve (G,x, w, L∗,Λ, k).

Let Z ⊆ A be the set of end-vertices of the edges of M and the vertices of x̂. Because

r̂ ≤ 4k, Hr̂,2k ≤ (2k + 1)
(224k−1

+4k
2)

. Since t ≤ k + 1, there are at most 2k+1 subtuples Λ̂ of Λ.

P.A. Golovach and D.M. Thilikos 18:11

For each (H, y) ∈ Hr̂,2k and Λ̂ ⊆ Λ, the solution L of Border A-CGWC for (Ĝ, x̂, L̂,Λ, k)
contains a set F of size at most k. This implies that

∣M∣ ≤ k2k+1(2k + 1)
(224k−1

+4k
2)

.

Because ∣x̂∣ ≤ 4k, we obtain that

∣Z∣ ≤ 2∣M∣ + 4k ≤ 2k2k+1(2k + 1)
(224k−1

+4k
2)

+ 4k = p (3)

for p defined in (2).
Let U = A \Z. We define Q = G−U . Let also R be the graph with the vertex set A and

the edge set E(G[A]) \ E(G[Z]). We order the vertices of Z arbitrarily and consider Z to
be ∣Z∣-tuple of the vertices of Q and R. Observe that (R,Z) is a properly ∣Z∣-boundaried
graph as G[A] is connected. Since V (F) ∩ V (R) = Z, we have that G = (Q,Z)⊕b (R,Z).
Let (R∗, Z) be the boundaried graph obtained from (R,Z) by the cut reduction with respect
to +∞. We define G∗ = (Q,Z)⊕b (R∗, Z). Note that L∗ ⊆ E(Q) ⊆ E(G∗). We show that
we can replace G by G∗ in the considered instance (G,x, w, L∗,Λ, k) of Border A-CGWC
by making use of Lemma 3.

⊳ Claim (B). For every weighted properly r-boundaried graph (H,y) ∈ Hr,2k, every Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ and every nonnegative integer k̂ ≤ k, a set F ⊆ L
∗ is a solution for

the instance ((G,x) ⊕b (H,y), w, L∗, Λ̂, k̂) if and only if F is a solution for ((G∗,x) ⊕b
(H,y), w, L∗, Λ̂, k̂).

By Claim B, to solve Border A-CGWC for (G,x, w, L∗,Λ, k), it is sufficient to solve the
problem for (G∗,x, w, L∗,Λ, k). Observe that ∣V (G∗)∣ = ∣B∣ + ∣V (R∗)∣. Because (R∗, Z)
is obtained by the cut reduction, we can show that ∣V (R∗)∣ ≤ 22∣Z∣−1

+ ∣Z∣. Using (3), we
have that

∣V (R∗)∣ ≤ 22p−1

+ p = q

for q defined in (2). Recall that ∣A∣ > q since (A,B) is a (q, 2k)-good edge separation of G.
Therefore,

∣V (G∗)∣ = ∣B∣ + ∣V (R∗)∣ ≤ ∣B∣ + q < ∣A∣ + ∣B∣ = ∣V (G)∣.

We use this and solve Border A-CGWC for (G∗,x, w, L∗,Λ, k) recursively by applying
our recursive algorithm for the instance with the input graph of smaller size. J

4 The algorithm for Clustering to Given Weighted Connectivities

In this section we extend the result obtained in Section 3 and show that CGWC is FPT
when parameterized by k even if the input graph is disconnected. Let α = ⟨α1, . . . , αt⟩ where
αi ∈ N∪{+∞} for i ∈ {1, . . . , t} and α1 ≤ . . . ≤ αt. We call the variate of α the set of distinct
elements of α and denote it by var(α). Let also β = ⟨β1, . . . , βt⟩ where βi ∈ N ∪ {+∞} for
i ∈ {1, . . . , s} and β1 ≤ . . . ≤ βt. We write α ⪯ β if αi ≤ βi for i ∈ {1, . . . , t}.

I Theorem 7. CGWC can be solved in time f(k) ⋅ nO(1).

IPEC 2019

18:12 Clustering to Given Connectivities

Sketch of the proof. Let (G,w,Λ, k) be an instance CGWC, Λ = ⟨λ1, . . . , λt⟩.
We find the components of G and compute their weighted connectivities using the

algorithm of Stoer and Wagner [66] for finding minimum cuts. Assume that G1, . . . , Gs are
the components of G and λ

w(G1) ≤ . . . ≤ λ
w(Gs). If s > t, then (G,w,Λ, k) is a trivial

no-instance. If s < t − k, then (G,w,Λ, k) is no-instance, because by deleting at most
k edges it is possible to obtain at most k additional components. In all these cases we
return the corresponding answer and stop. From now we assume that t − k ≤ s < t. We
exhaustively apply the following reduction rule based on the observation that a component
of high connectivity cannot be split.

I Reduction Rule 4.1. If there is i ∈ {1, . . . , s} such that λw(Gi) > k, then find the
maximum j ∈ {1, . . . , t} such that λw(Gi) ≥ λj and set G = G − V (Gi) and Λ = Λ \ {λj}.

To simplify notations, assume that G with its components G1, . . . , Gs and Λ = ⟨λ1, . . . , λt⟩
is obtained from the original input by the exhaustive application of Reduction Rule 4.1.
Note that we still have that t − k ≤ s < t. It may happen that s = 0, that is, G became
empty after the application of the rule. In this case (G,w,Λ, k) is a trivial no-instance, and
we return NO and stop. Assume that s ≥ 1. Observe that we obtain that λw(Gi) ≤ k for
i ∈ {1, . . . , s}, because Reduction Rule 4.1 cannot be applied any more. If ∣var(Λ)∣ > 3k,
then it could be shown that we have a no-instance of the problem. Respectively, we return
NO and stop. Assume that ∣var(Λ)∣ ≤ 3k, that is, the variety of Λ is bounded. We use this to
construct the FPT Turing reduction of the problem to the special case when λw(C) = λ ≤ k
for every component C of the input graph G. For this special case, we solve CGWC by
constructing the FPT Turing reduction of CGWC based on Theorem 1 to the Minimum
Cost Matching problem that then can be solved in polynomial time by, e.g, the Hungarian
method [54,55]. J

5 Conclusion

We proved that Clustering to Given Connectivities is FPT when parameterized by k.
We obtained this result by making use of the recursive understanding technique [19]. The
drawback of this approach is that the dependence of the running time on the parameter
is huge and it seems unlikely that using the same approach one could avoid towers of the
exponents similar to the function in Theorem 7. In particular, we do not see how to avoid
using mimicking networks (see [44,50] for the definitions and lower and upper bounds for the
size of such networks) whose sizes are double-exponential in the number of terminals.

It can be observed that if we wish to prove just the existence of a (non-constructive) FPT-
algorithm for CGWC, we can use a slightly different approach based on the meta-algorithmic
result of Lokshtanov et al. [57] which applies to problems that can be expressed in Counting
Monadic Second Order Logic (CMSOL).

I Proposition 8 ([57]). Let ψ be a CMSOL sentence. For all c ∈ N, there exists s ∈ N such
that if there exists an algorithm that decides whether G ⊧ ψ on (s, c)-unbreakable graphs in
time f(∣ψ∣) ⋅ nO(1) then there exists an algorithm that decides whether G ⊧ ψ on general
graphs in time f(∣ψ∣) ⋅ nO(1).

We can use Proposition 8 to obtain a weaker version of Theorem 1 where the function f is
not any more computable. Notice that we cannot express in CMSOL the connectivity lower
bounds imposed by the t-tuple Λ = ⟨λ1, . . . , λt⟩ directly, because the values of λi are not
bounded by any function of the parameter k. Hence, we have to go around of this issue. Let

P.A. Golovach and D.M. Thilikos 18:13

I = (G,w,Λ, k) be an instance of CGWC. We consider a partition S = {S1, . . . , Sq} of V (G)
such that two vertices x, y belong in the same set if and only λw(x, y) ≥ k+ 1. Clearly, S can
be computed in polynomial time. A key observation is that if λw(G[Si]) ≥ k + 1, then either
G[Si] is one of the clusters of a solution or G[Si] is a part of a cluster of a solution whose
weighted edge connectivity is at most k. For each i ∈ {1, . . . , q} where λw(G[Si]) ≥ k + 1,
we contract all vertices in Si to a single vertex and, in the contracted graph G′, we assign
to this new vertex a weight equal to λw(G[Si]). We also assign the weight +∞ to the
rest of the vertices of G′. Recall now that when G is connected, Λ = ⟨λ1, . . . , λt⟩ has at
most k + 1 different values for a yes-instance and for each i ∈ {1, . . . , t} we set up a set Ri
that contains all vertices of G′ that have weight at least λi. We now consider the structure
α = (G′, R1, . . . , Rt) and a generalization of the connected version of CGWC where the input
has a structure α instead of a connected graph and where, in the question of the new problem,
we additionally demand that V (Gi) ⊆ Ri, i ∈ {1, . . . , t} and also we ask λw(Gi) ≥ λi only
when λi ≤ k, while we demand that ∣V (Gi)∣ = 1 when λi ≥ k + 1. We call this new problem
Generalized-CGWC and we observe that I = (G,w,Λ, k) is a yes-instance of CGWC if
and only if I ′ = ((G′, R1, . . . , Rt),w,Λ, k) is a yes-instance of Generalized-CGWC . It is
now possible to verify that Generalized-CGWC can be expressed using CMSOL for every
fixed value of k and given Λ as there are no unbounded connectivities to encode. To apply
Proposition 8, we have to solve Generalized-CGWC on unbreakable graphs and this can
be done similarly to the proof of Lemma 4. Therefore, we can derive the existence of an
FPT-algorithm for CGWC on connected graphs and further extend this to general graphs
using the reduction of Section 4.

We would like to underline that due to the plug-in of Proposition 8, the alternative
approach provided by the above discussion does not provide any computable function bounding
the parametric dependence of the running time. Under the light of such an alternative, the
algorithm described in Section 3 appears to be “less huge” that it might appear by first sight.
This is the main reason why we chose to use a more direct approach in our results. In fact
Lemma 6 may be seen as a “constructive detour” to Proposition 8.

The natural question would be to ask whether we can get a better running time using
different techniques. This question is interesting even for some special cases of CGC when
the connectivity constraints are bounded by a constant or are the same for all components.
From the other side, it is natural to ask about lower bounds on the running time. For an
FPT parameterized problem, it is natural to ask whether it admits a polynomial kernel.
We observe that it is unlikely that CGWC has a polynomial kernel even if there are no
weights and the maximum connectivity constraint is one, because it was shown by Cygan et
al. in [22] that already t-Cut parameterized by the solution size k has no polynomial kernel
unless NP ⊆ coNP /poly. Another direction of research is to consider vertex connectivities
instead of edge connectivities.

References

1 Nir Ailon, Moses Charikar, and Alantha Newman. Proofs of Conjectures in “Aggregating
Inconsistent Information: Ranking and Clustering”. Technical Report TR-719-05, Department
of Computer Science, Princeton University, USA, 2005.

2 Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic forms on
graphs. Inventiones mathematicae, 163(3):499–522, March 2006.

3 Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, and Muli Safra. On Non-Approximability
for Quadratic Programs. In 46th Annual IEEE Symposium on Foundations of Computer

IPEC 2019

18:14 Clustering to Given Connectivities

Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 206–215,
2005.

4 Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. Clique Relaxations in Social
Network Analysis: The Maximum k-Plex Problem. Operations Research, 59(1):133–142, 2011.
doi:10.1287/opre.1100.0851.

5 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation Clustering. Machine Learning,
56(1):89–113, July 2004.

6 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering Gene Expression Patterns. Journal
of Computational Biology, 6(3/4):281–297, 1999.

7 Pavel Berkhin. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional
Data - Recent Advances in Clustering, pages 25–71. Springer, 2006.

8 Nadja Betzler, Jiong Guo, Christian Komusiewicz, and Rolf Niedermeier. Average parameter-
ization and partial kernelization for computing medians. Journal of Computer and System
Sciences, 77(4):774–789, 2011.

9 Ivan Bliznets and Nikolay Karpov. Parameterized Algorithms for Partitioning Graphs into
Highly Connected Clusters. In 42nd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 6:1–6:14,
2017.

10 S. Böcker, S. Briesemeister, Q.B.A. Bui, and A. Truss. Going weighted: Parameterized
algorithms for cluster editing. Theoretical Computer Science, 410(52):5467–5480, 2009.

11 Sebastian Böcker. A golden ratio parameterized algorithm for Cluster Editing. Journal of
Discrete Algorithms, 16:79–89, 2012. Selected papers from the 22nd International Workshop
on Combinatorial Algorithms (IWOCA 2011). doi:10.1016/j.jda.2012.04.005.

12 Sebastian Böcker and Jan Baumbach. Cluster Editing. In Paola Bonizzoni, Vasco Brattka,
and Benedikt Löwe, editors, The Nature of Computation. Logic, Algorithms, Applications,
pages 33–44, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

13 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. A Fixed-
Parameter Approach for Weighted Cluster Editing. In Proceedings of the 6th Asia-Pacific
Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan, pages 211–220,
2008.

14 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster
editing. Information Processing Letters, 111(14):717–721, 2011.

15 Hans L. Bodlaender, Michael R. Fellows, Pinar Heggernes, Federico Mancini, Charis Papado-
poulos, and Frances Rosamond. Clustering with partial information. Theoretical Computer
Science, 411(7):1202–1211, 2010.

16 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random Separation: A New Method for
Solving Fixed-Cardinality Optimization Problems. In IWPEC, volume 4169 of Lecture Notes
in Computer Science, pages 239–250. Springer, 2006. doi:10.1007/11847250_22.

17 Yixin Cao and Jianer Chen. Cluster Editing: Kernelization Based on Edge Cuts. Algorithmica,
64(1):152–169, September 2012.

18 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012. JCSS Knowledge Representation and Reasoning.
doi:10.1016/j.jcss.2011.04.001.

19 Rajesh Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT Algorithms for Cut Problems Using Randomized Contractions.
SIAM J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

20 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

21 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

https://doi.org/10.1287/opre.1100.0851
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/11847250_22
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1137/15M1032077
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

P.A. Golovach and D.M. Thilikos 18:15

22 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström.
Clique Cover and Graph Separation: New Incompressibility Results. TOCT, 6(2):6:1–6:19,
2014.

23 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed parameter tractable. In STOC 2014, pages 323–332. ACM, 2014.
doi:10.1145/2591796.2591852.

24 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

25 Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias Weller. On the paramet-
erized complexity of consensus clustering. Theor. Comput. Sci., 542:71–82, 2014.

26 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto, and Frances A.
Rosamond. Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related
Problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003. doi:10.1016/S1571-0661(04)
81014-4.

27 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

28 Jubin Edachery, Arunabha Sen, and Franz J. Brandenburg. Graph Clustering Using Distance-k
Cliques. In Jan Kratochvíyl, editor, Graph Drawing, pages 98–106, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

29 Michael Fellows, Michael Langston, Frances Rosamond, and Peter Shaw. Efficient Parameter-
ized Preprocessing for Cluster Editing. In Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors,
Fundamentals of Computation Theory, 2007.

30 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

31 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Spanning Circuits
in Regular Matroids. CoRR, abs/1607.05516, 2016. arXiv:1607.05516.

32 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters.
J. Comput. Syst. Sci., 80(7):1430–1447, 2014.

33 Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1419–1432, 2017.

34 Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Combinatorica, 32(3):289–308, 2012. doi:10.1007/s00493-012-2536-z.

35 Ioannis Giotis and Venkatesan Guruswami. Correlation Clustering with a Fixed Number
of Clusters. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 1167–1176, Philadelphia, PA, USA, 2006. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.1109686.

36 Olivier Goldschmidt and Dorit S. Hochbaum. A Polynomial Algorithm for the k-cut Problem
for Fixed k. Math. Oper. Res., 19(1):24–37, 1994. doi:10.1287/moor.19.1.24.

37 Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Montealegre. Finding
Connected Secluded Subgraphs. CoRR, abs/1710.10979, 2017. To appear in IPEC 2017.
arXiv:1710.10979.

38 Petr A. Golovach and Dimitrios M. Thilikos. Clustering to Given Connectivities. CoRR,
abs/1803.09483, 2018.

39 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-Modeled Data Clustering:
Exact Algorithms for Clique Generation. Theory of Computing Systems, 38(4):373–392, July
2005.

40 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, (STOC 2011), pages 479–488, 2011. doi:10.1145/1993636.1993700.

IPEC 2019

https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1016/S1571-0661(04)81014-4
https://doi.org/10.1016/S1571-0661(04)81014-4
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1607.05516
https://doi.org/10.1007/s00493-012-2536-z
http://dl.acm.org/citation.cfm?id=1109557.1109686
https://doi.org/10.1287/moor.19.1.24
http://arxiv.org/abs/1710.10979
https://doi.org/10.1145/1993636.1993700

18:16 Clustering to Given Connectivities

41 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

42 Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, and Johannes Uhlmann. Editing Graphs
into Disjoint Unions of Dense Clusters. Algorithmica, 61(4):949–970, 2011.

43 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A More Relaxed
Model for Graph-Based Data Clustering: s-Plex Cluster Editing. SIAM J. Discrete Math.,
24(4):1662–1683, 2010. doi:10.1137/090767285.

44 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Characterizing
Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth. J.
Comput. Syst. Sci., 57(3):366–375, 1998. doi:10.1006/jcss.1998.1592.

45 Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Inf.
Process. Lett., 76(4-6):175–181, 2000.

46 Pinar Heggernes, Daniel Lokshtanov, Jesper Nederlof, Christophe Paul, and Jan Arne Telle.
Generalized Graph Clustering: Recognizing (p, q)-Cluster Graphs. In Graph Theoretic Concepts
in Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece, June
28-30, 2010 Revised Papers, pages 171–183, 2010.

47 Falk Hüffner, Christian Komusiewicz, Adrian Liebtrau, and Rolf Niedermeier. Partitioning Bio-
logical Networks into Highly Connected Clusters with Maximum Edge Coverage. IEEE/ACM
Trans. Comput. Biology Bioinform., 11(3):455–467, 2014.

48 Falk Hüffner, Christian Komusiewicz, and Manuel Sorge. Finding Highly Connected Subgraphs.
In SOFSEM 2015: Theory and Practice of Computer Science - 41st International Conference
on Current Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech
Republic, January 24-29, 2015. Proceedings, pages 254–265, 2015.

49 Ken-ichi Kawarabayashi and Mikkel Thorup. The Minimum k-way Cut of Bounded Size is
Fixed-Parameter Tractable. In FOCS 2011, pages 160–169. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.53.

50 Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Inf. Process. Lett., 114(7):365–371, 2014. doi:10.1016/j.ipl.2014.02.011.

51 Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Information Processing Letters, 114(7):365–371, 2014.

52 Eun Jung Kim, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Parameterized
algorithms for min-max multiway cut and list digraph homomorphism. J. Comput. Syst. Sci.,
86:191–206, 2017.

53 Christian Komusiewicz and Johannes Uhlmann. Alternative Parameterizations for Cluster
Editing. In SOFSEM 2011: Theory and Practice of Computer Science - 37th Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 22-28, 2011. Proceedings, pages 344–355, 2011.

54 H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist. Quart.,
2:83–97, 1955. doi:10.1002/nav.3800020109.

55 H. W. Kuhn. Variants of the Hungarian method for assignment problems. Naval Res. Logist.
Quart., 3:253–258 (1957), 1956. doi:10.1002/nav.3800030404.

56 Daniel Lokshtanov and Dániel Marx. Clustering with Local Restrictions. Inf. Comput.,
222:278–292, January 2013.

57 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
Model Checking to Highly Connected Graphs. In ICALP 2018, volume 107 of LIPIcs, pages
135:1–135:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

58 Hannes Moser, Rolf Niedermeier, and Manuel Sorge. Exact combinatorial algorithms and
experiments for finding maximum k-plexes. J. Comb. Optim., 24(3):347–373, 2012. doi:
10.1007/s10878-011-9391-5.

59 Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1137/090767285
https://doi.org/10.1006/jcss.1998.1592
https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.1016/j.ipl.2014.02.011
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800030404
https://doi.org/10.1007/s10878-011-9391-5
https://doi.org/10.1007/s10878-011-9391-5

P.A. Golovach and D.M. Thilikos 18:17

60 Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski. On the
maximum quasi-clique problem. Discrete Applied Mathematics, 161(1):244–257, 2013. doi:
10.1016/j.dam.2012.07.019.

61 Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models in network
analysis. European Journal of Operational Research, 226(1):9–18, 2013. doi:10.1016/j.ejor.
2012.10.021.

62 Fábio Protti, Maise Dantas da Silva, and Jayme Luiz Szwarcfiter. Applying Modular De-
composition to Parameterized Cluster Editing Problems. Theory of Computing Systems,
44(1):91–104, January 2009.

63 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

64 Shahram Shahinpour and Sergiy Butenko. Distance-Based Clique Relaxations in Networks:
s-Clique and s-Club. In Boris I. Goldengorin, Valery A. Kalyagin, and Panos M. Pardalos,
editors, Models, Algorithms, and Technologies for Network Analysis, pages 149–174, New York,
NY, 2013. Springer New York.

65 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Appl. Math., 144(1–2):173–182, 2004. doi:10.1016/j.dam.2004.01.007.

66 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997. doi:10.1145/263867.263872.

67 René van Bevern, Hannes Moser, and Rolf Niedermeier. Approximation and Tidying - A
Problem Kernel for s-Plex Cluster Vertex Deletion. Algorithmica, 62(3-4):930–950, 2012.

68 Ka-Chun Wong. A Short Survey on Data Clustering Algorithms. CoRR, abs/1511.09123,
2015. arXiv:1511.09123.

69 Bang Ye Wu and Jia-Fen Chen. Balancing a Complete Signed Graph by Editing Edges and
Deleting Nodes. In Ruay-Shiung Chang, Lakhmi C. Jain, and Sheng-Lung Peng, editors,
Advances in Intelligent Systems and Applications - Volume 1, pages 79–88, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

70 Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of Clustering Algorithms. Annals
of Data Science, 2(2):165–193, June 2015.

IPEC 2019

https://doi.org/10.1016/j.dam.2012.07.019
https://doi.org/10.1016/j.dam.2012.07.019
https://doi.org/10.1016/j.ejor.2012.10.021
https://doi.org/10.1016/j.ejor.2012.10.021
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1145/263867.263872
http://arxiv.org/abs/1511.09123

Finding Cuts of Bounded Degree: Complexity,
FPT and Exact Algorithms, and Kernelization
Guilherme C. M. Gomes
Universidade Federal de Minas Gerais, Departamento de Ciência da Computação,
Belo Horizonte, Brazil
LIRMM, Université de Montpellier, Montpellier, France
gcm.gomes@dcc.ufmg.br

Ignasi Sau
CNRS, LIRMM, Université de Montpellier, Montpellier, France
ignasi.sau@lirmm.fr

Abstract
A matching cut is a partition of the vertex set of a graph into two sets A and B such that each vertex
has at most one neighbor in the other side of the cut. The Matching Cut problem asks whether a
graph has a matching cut, and has been intensively studied in the literature. Motivated by a question
posed by Komusiewicz et al. [IPEC 2018], we introduce a natural generalization of this problem,
which we call d-Cut: for a positive integer d, a d-cut is a bipartition of the vertex set of a graph into
two sets A and B such that each vertex has at most d neighbors across the cut. We generalize (and
in some cases, improve) a number of results for the Matching Cut problem. Namely, we begin
with an NP-hardness reduction for d-Cut on (2d + 2)-regular graphs and a polynomial algorithm for
graphs of maximum degree at most d + 2. The degree bound in the hardness result is unlikely to be
improved, as it would disprove a long-standing conjecture in the context of internal partitions. We
then give FPT algorithms for several parameters: the maximum number of edges crossing the cut,
treewidth, distance to cluster, and distance to co-cluster. In particular, the treewidth algorithm
improves upon the running time of the best known algorithm for Matching Cut. Our main
technical contribution, building on the techniques of Komusiewicz et al. [IPEC 2018], is a polynomial
kernel for d-Cut for every positive integer d, parameterized by the distance to a cluster graph. We
also rule out the existence of polynomial kernels when parameterizing simultaneously by the number
of edges crossing the cut, the treewidth, and the maximum degree. Finally, we provide an exact
exponential algorithm slightly faster than the naive brute force approach running in time O∗(2n).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Matchings and factors

Keywords and phrases matching cut, bounded degree cut, parameterized complexity, FPT algorithm,
polynomial kernel, distance to cluster

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.19

Related Version The full version of this article is permanently available at https://arxiv.org/
abs/1905.03134.

Funding Guilherme C. M. Gomes: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) - Finance Code 001.
Ignasi Sau: Projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010).

1 Introduction

A cut of a graph G = (V,E) is a bipartition of its vertex set V (G) into two non-empty sets,
denoted by (A,B). The set of all edges with one endpoint in A and the other in B is the
edge cut, or the set of crossing edges, of (A,B). A matching cut is a (possibly empty) edge
cut that is a matching, that is, such that its edges are pairwise vertex-disjoint. Equivalently,

© Guilherme C. M. Gomes and Ignasi Sau;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5164-1460
mailto:gcm.gomes@dcc.ufmg.br
https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr
https://doi.org/10.4230/LIPIcs.IPEC.2019.19
https://arxiv.org/abs/1905.03134
https://arxiv.org/abs/1905.03134
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Finding Cuts of Bounded Degree

(A,B) is a matching cut of G if and only if every vertex is incident to at most one crossing
edge of (A,B) [7, 15], that is, it has at most one neighbor across the cut.

Motivated by an open question posed by Komusiewicz et al. [18] during the presentation
of their article, we investigate a natural generalization that arises from this alternative
definition, which we call d-cut. Namely, for a positive integer d ≥ 1, a d-cut is a a cut (A,B)
such that each vertex has at most d neighbors across the partition, that is, every vertex in
A has at most d neighbors in B, and vice-versa. Note that a 1-cut is a matching cut. As
expected, not every graph admits a d-cut, and the d-Cut problem is the problem of deciding,
for a fixed integer d ≥ 1, whether or not an input graph G has a d-cut.

When d = 1, we refer to the problem as Matching Cut. Graphs with no matching
cut first appeared in Graham’s manuscript [15] under the name of indecomposable graphs,
presenting some examples and properties of decomposable and indecomposable graphs, leaving
their recognition as an open problem. In answer to Graham’s question, Chvátal [7] proved
that the problem is NP-hard for graphs of maximum degree at least four and polynomially
solvable for graphs of maximum degree at most three; in fact, as shown by Moshi [24], every
graph of maximum degree three and at least eight vertices has a matching cut.

Chvátal’s results spurred a lot of research on the complexity of the problem [1,5,18–21,25].
In particular, Bonsma [5] showed that Matching Cut remains NP-hard for planar graphs
of maximum degree four and for planar graphs of girth five; Le and Randerath [21] gave
an NP-hardness reduction for bipartite graphs of maximum degree four; Le and Le [20]
proved that Matching Cut is NP-hard for graphs of diameter at least three, and presented
a polynomial-time algorithm for graphs of diameter at most two. Beyond planar graphs,
Bonsma’s work [5] also proves that the matching cut property is expressible in monadic
second order logic and, by Courcelle’s Theorem [8], it follows that Matching Cut is FPT
when parameterized by the treewidth of the input graph; he concludes with a proof that the
problem admits a polynomial-time algorithm for graphs of bounded cliquewidth.

Kratsch and Le [19] noted that Chvátal’s original reduction also shows that, unless the
Exponential Time Hypothesis [16] (ETH) fails1, there is no algorithm solving Matching
Cut in time 2o(n) on n-vertex input graphs. Also in [19], the authors provide a first
branching algorithm, running2 in time O∗

(
2n/2), a single-exponential FPT algorithm when

parameterized by the vertex cover number τ(G), and an algorithm generalizing the polynomial
cases of line graphs [24] and claw-free graphs [5]. Kratsch and Le [19] also asked for the
existence a single-exponential algorithm parameterized by treewidth. In response, Aravind et
al. [1] provided a O∗

(
12tw(G)) algorithm for Matching Cut using nice tree decompositions,

along with FPT algorithms for other structural parameters, namely neighborhood diversity,
twin-cover, and distance to split graph.

The natural parameter – the number of edges crossing the cut – has also been considered.
Indeed, Marx et al. [23] tackled the Stable Cutset problem, to which Matching Cut can
be easily reduced via the line graph, and through a breakthrough technique showed that this
problem is FPT when parameterized by the maximum size of the stable cutset. Recently,
Komusiewicz et al. [18] improved on the results of Kratsch and Le [19], providing an exact
exponential algorithm for Matching Cut running in time O∗(1.3803n), as well as FPT
algorithms parameterized by the distance to a cluster graph and the distance to a co-cluster
graph, which improve the algorithm parameterized by the vertex cover number, since both
parameters are easily seen to be smaller than the vertex cover number. For the distance

1 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [16] for more details.
2 The O∗(·) notation suppresses factors that are bounded by a polynomial in the input size.

G.C.M. Gomes and I. Sau 19:3

to cluster parameter, they also presented a quadratic kernel; while for a combination of
treewidth, maximum degree, and number of crossing edges, they showed that no polynomial
kernel exists unless NP ⊆ coNP/poly.

A problem closely related to d-Cut is that of Internal Partition, first studied by
Thomassen [28]. In this problem, we seek a bipartition of the vertices of an input graph such
that every vertex has at least as many neighbors in its own part as in the other part. Such a
partition is called an internal partition. Usually, the problem is posed in a more general form:
given functions a, b : V (G)→ Z+, we seek a bipartition (A,B) of V (G) such that every v ∈ A
satisfies degA(v) ≥ a(v) and every u ∈ B satisfies degB(u) ≥ b(u), where degA(v) denotes the
number of neighbors of v in the set A. Such a partition is called an (a, b)-internal partition.
Originally, Thomassen asked in [28] whether for any pair of positive integers s, t, a graph
G with δ(G) ≥ s+ t+ 1 has a vertex bipartition (A,B) with δ(G[A]) ≥ s and δ(G[B]) ≥ t,
where δ(H) is the minimum degree of H. Stiebitz [27] answered that, in fact, for any graph
G and any pair of functions a, b : V (G)→ Z+ satisfying deg(v) ≥ a(v) + b(v) + 1 for every
v ∈ V (G), G has an (a, b)-internal partition; see [17,22] for follow-up results. It is conjectured
that, for every positive integer r, there exists some constant nr for which every r-regular
graph with more than nr vertices has an internal partition [2, 10] (the conjecture for r even
appeared first in [26]). The cases r ∈ {3, 4} have been settled by Shafique and Dutton [26];
the case r = 6 has been verified by Ban and Linial [2]. This latter result implies that every
6-regular graph of sufficiently large size has a 3-cut.

Our results. We aim at generalizing several of the previously reported results for Matching
Cut. First, we show in Section 2, by using a reduction inspired by Chvátal’s [7], that for
every d ≥ 1, d-Cut is NP-hard even when restricted to (2d + 2)-regular graphs and that,
if ∆(G) ≤ d + 2 (the maximum degree of G) finding a d-cut can be done in polynomial
time. The degree bound in the NP-hardness result is unlikely to be improved: if we had an
NP-hardness result for d-Cut restricted to (2d+ 1)-regular graphs, this would disprove the
conjecture about the existence of internal partitions on r-regular graphs [2, 10,26] for r odd,
unless P = NP. We conclude the section by giving a simple exact exponential algorithm
that, for every d ≥ 1, runs in time O∗(cn

d) for some constant cd < 2, hence improving over
the trivial brute-force algorithm running in time O∗(2n).

We then proceed to analyze the problem in terms of its parameterized complexity.
Section 3 begins with a proof, using the treewidth reduction technique of Marx et al. [23],
that d-Cut is FPT parameterized by the maximum number of edges crossing the cut.
Afterwards, we present a dynamic programming algorithm for d-Cut parameterized by
treewidth running in time O∗

(
2tw(G)(d+ 1)2tw(G)); in particular, for d = 1 this algorithm

runs in time O∗
(
8tw(G)) and improves the one given by Aravind et al. [1] for Matching

Cut, which runs in O∗
(
12tw(G)) time. By employing the cross-composition framework of

Bodlaender et al. [4] and using a reduction similar to the one in [18], we show that, unless
NP ⊆ coNP/poly, there is no polynomial kernel for d-Cut parameterized simultaneously by
the number of crossing edges, the maximum degree, and the treewidth of the input graph. We
then present a polynomial kernel and an FPT algorithm when parameterizing by the distance
to cluster, denoted by dc(G). This polynomial kernel is our main technical contribution, and
it is strongly inspired by the technique presented by Komusiewicz et al. [18] for Matching
Cut. Finally, we give an FPT algorithm parameterized by the distance to co-cluster, denoted
by dc(G). These results imply the existence of a polynomial kernel for d-Cut parameterized
by the vertex cover number τ(G). We present in Section 4 our concluding remarks and some
open questions.

IPEC 2019

19:4 Finding Cuts of Bounded Degree

We use standard notation from graph theory and parameterized complexity; see [9,11–13]
for any undefined terminology. Due to space limitations, the proofs of the results marked
with ‘(?)’ can be found in the full version of this article, permanently available at https:
//arxiv.org/abs/1905.03134. Some basic preliminaries can also be found there.

1.1 Preliminaries
We use standard graph-theoretic notation, and we consider simple undirected graphs without
loops or multiple edges; see [11] for any undefined terminology. When the graph is clear from
the context, the degree (that is, the number of neighbors) of a vertex v is denoted by deg(v),
and the number of neighbors of a vertex v in a set A ⊆ V (G) is denoted by degA(v). The
minimum degree, the maximum degree, the line graph, and the vertex cover number of a
graph G are denoted by δ(G), ∆(G), L(G), and τ(G), respectively. For a positive integer
k ≥ 1, we denote by [k] the set containing every integer i such that 1 ≤ i ≤ k.

We refer the reader to [9, 12] for basic background on parameterized complexity, and we
recall here only some basic definitions. A parameterized problem is a language L ⊆ Σ∗ × N.
For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A parameterized problem is
fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|c.

A fundamental concept in parameterized complexity is that of kernelization; see [13] for
a recent book on the topic. A kernelization algorithm, or just kernel, for a parameterized
problem Π takes an instance (x, k) of the problem and, in time polynomial in |x|+k, outputs
an instance (x′, k′) such that |x′|, k′ 6 g(k) for some function g, and (x, k) ∈ Π if and only if
(x′, k′) ∈ Π. The function g is called the size of the kernel and may be viewed as a measure
of the “compressibility” of a problem using polynomial-time preprocessing rules. A kernel
is called polynomial (resp. quadratic, linear) if the function g(k) is a polynomial (resp.
quadratic, linear) function in k. A breakthrough result of Bodlaender et al. [3] gave the
first framework for proving that certain parameterized problems do not admit polynomial
kernels, by establishing so-called composition algorithms. Together with a result of Fortnow
and Santhanam [14] this allows to exclude polynomial kernels under the assumption that
NP * coNP/poly, otherwise implying a collapse of the polynomial hierarchy to its third
level [29].

2 NP-hardness, polynomial cases, and exact exponential algorithm

In this section we focus on the classical complexity of the d-Cut problem, and on exact
exponential algorithms.

Chvátal [7] proved that Matching Cut is NP-hard for graphs of maximum degree at
least four. In the next theorem, whose proof is inspired by the reduction of Chvátal [7] from
3-Uniform Hypergraph Bicoloring, we prove the NP-hardness of d-cut for (2d+ 2)-
regular graphs. In particular, for d = 1 it implies the NP-hardness of Matching Cut for
4-regular graphs, which is a strengthening of Chvátal’s [7] hardness proof.

I Theorem 1 (?). For every integer d ≥ 1, d-cut is NP-hard even when restricted to
(2d+ 2)-regular graphs.

The graphs constructed by Theorem 1 are neither planar nor bipartite, but they are
regular, a result that we were unable to find in the literature for Matching Cut. Note that
every planar graph has a d-cut for every d ≥ 5, so only the cases d ∈ {2, 3, 4} remain open,

https://arxiv.org/abs/1905.03134
https://arxiv.org/abs/1905.03134

G.C.M. Gomes and I. Sau 19:5

as the case d = 1 is known to be NP-hard [5]. Concerning graphs of bounded diameter, Le
and Le [20] prove the NP-hardness of Matching Cut for graphs of diameter at least three
by reducing Matching Cut to itself. It can be easily seen that the same construction given
by Le and Le [20], but reducing d-Cut to itself, also proves the NP-hardness of d-Cut for
every d ≥ 1.

I Corollary 2. For every integer d ≥ 1, d-Cut is NP-hard for graphs of diameter at least
three.

We leave as an open problem to determine whether there exists a polynomial-time
algorithm for d-Cut for graphs of diameter at most two for every d ≥ 2, as it is the case for
d = 1 [20].

We now turn to cases that can be solved in polynomial time. Our next result is a natural
generalization of Chvátal’s algorithm [7] for Matching Cut on graphs of maximum degree
three.

I Theorem 3 (?). For any graph G and integer d ≥ 1 such that ∆(G) ≤ d + 2, it can be
decided in polynomial time if G has a d-cut. Moreover, for d = 1 any graph G with ∆(G) ≤ 3
and |V (G)| ≥ 8 has a matching cut, for d = 2 any graph G with ∆(G) ≤ 4 and |V (G)| ≥ 6
has a 2-cut, and for d ≥ 3 any graph G with ∆(G) ≤ d+ 2 has a d-cut.

Theorems 1 and 3 present a “quasi-dichotomy” for d-cut on graphs of bounded maximum
degree. Specifically, for ∆(G) ∈ {d+ 3, . . . , 2d+ 1}, the complexity of the problem remains
unknown. However, we believe that most, if not all, of these open cases can be solved in
polynomial time; see the discussion in Section 4.

To conclude this section, we present a simple exact exponential algorithm which, for every
d ≥ 1, runs in time O∗(cn

d) for some constant cd < 2. For the case d = 1, the currently known
algorithms [18, 19] exploit structures that appear to get out of control when d increases, and
so has a better running time than the one described below.

I Theorem 4 (?). For every fixed integer d ≥ 1 and n-vertex graph G, there is an algorithm
that solves d-Cut in time O∗((cd)n), for some constant 1 < cd < 2.

3 Parameterized algorithms and kernelization

In this section we focus on the parameterized complexity of d-Cut. More precisely, in
Section 3.1 we consider as the parameter the number of edges crossing the cut and in
Section 3.2 the distance to cluster (in particular, we provide a quadratic kernel). The FPT
algorithms parameterized by treewidth and the distance to co-cluster can be found in the
full version of the paper.

Before proceeding, we introduce the notion of monochromatic sets.

I Definition 5. A set of vertices X ⊆ V (G) is said to be monochromatic if, for any d-
cut (A,B) of G, X ⊆ A or X ⊆ B. A subgraph H of G is monochromatic if V (H) is
monochromatic.

3.1 Crossing edges
In this section we consider as the parameter the maximum number of edges crossing the cut.
In a nutshell, our approach is to use as a black box one of the algorithms presented by Marx
et al. [23] for a class of separation problems. Their fundamental problem is G-MinCut, for a
fixed class of graphs G, which we state formally, along with their main result, below.

IPEC 2019

19:6 Finding Cuts of Bounded Degree

G-MinCut
Instance: A graph G, vertices s, t, and an integer k.
Parameter: The integer k.
Question: Is there an induced subgraph H of G with at most k vertices such that H ∈ G
and H is an s− t separator?

I Theorem 6 (Theorem 3.1 in [23]). If G is a decidable and hereditary graph class, G-MinCut
is FPT.

To be able to apply Theorem 6, we first need to specify a graph class to which, on the line
graph, our separators correspond. We must also be careful to guarantee that the removal of a
separator in the line graph leaves non-empty components in the input graph. To accomplish
the latter, for each v ∈ V (G), we add a private clique of size 2d adjacent only to it, choose
one arbitrary vertex v′ in each of them. The algorithm asks, for each pair v′, u′, whether
or not a “special” separator of the appropriate size between v′ and u′ exists. We assume
henceforth that these private cliques have been added to the input graph G. For each integer
d ≥ 1, we define the graph class Gd as follows.

I Definition 7. A graph H belongs to Gd if and only if its maximum clique size is at most d.

Note that Gd is clearly decidable and hereditary for every integer d ≥ 1.

I Lemma 8 (?). G has a d-cut separating v′ and u′ if and only if the line graph of G has a
vertex separator belonging to Gd that separates ev and eu, where ev corresponds to the edge
vv′ ∈ E(G) and eu to the edge uu′ ∈ E(G).

I Theorem 9. For every d ≥ 1, there is an FPT algorithm for d-Cut parameterized by k,
the maximum number of edges crossing the cut.

Proof. For each pair of vertices s, t ∈ V (G) that do not belong to the private cliques, our
goal is to find a subset of vertices S ⊆ V (L(G)) of size at most k that separates s and t such
that L(G)[S] ∈ Gd. This is precisely what is provided by Theorem 6, and the correctness of
this approach is guaranteed by Lemma 8. Since we perform a quadratic number of calls to
the algorithm given by Theorem 6, our algorithm still runs in FPT time. J

As to the running time of the FPT algorithm given by Theorem 9, the treewidth reduction
technique of [23] relies on the construction of a monadic second order logic (MSOL) expression
and Courcelle’s Theorem [8] to guarantee fixed-parameter tractability, and therefore it is
hard to provide an explicit running time in terms of k.

3.2 Kernelization and distance to cluster
The proof of the following theorem consists of a simple generalization to every d ≥ 1 of the
construction given by Komusiewicz et al. [18] for d = 1.

I Theorem 10. For any fixed d ≥ 1, d-Cut does not admit a polynomial kernel when
simultaneously parameterized by k, ∆, and tw(G), unless NP ⊆ coNP/poly.

Proof. We show that the problem cross-composes into itself. Start with t instances G1, . . . , Gt

of d-Cut. First, pick an arbitrary vertex vi ∈ V (Gi), for each i ∈ [t]. Second, for i ∈ [t− 1],
add a copy of K2d, call it K(i), every edge between vi and K(i), and every edge between
K(i) and vi+1. This concludes the construction of G, which for d = 1 coincides with that
presented by Komusiewicz et al. [18].

G.C.M. Gomes and I. Sau 19:7

Suppose that (A,B) is a d-cut of some Gi and that vi ∈ A. Note that (V (G) \B,B) is
a d-cut of G since the only edges in the cut are those between A and B. For the converse,
take some d-cut (A,B) of G and note that every vertex in the set {vt}

⋃
i∈[t−1]{vi} ∪K(i)

is contained in the same side of the partition, say A. Since B 6= ∅, there is some i such
that B ∩ V (Gi) 6= ∅, which implies that there is some i (possibly more than one) such that
(A ∩ V (Gi), B ∩ V (Gi)) must be a d-cut of Gi.

That the treewidth, maximum degree, and number of edges crossing the partition are
bounded by n, the maximum number of vertices of the graphs Gi, is a trivial observation. J

We now proceed to show that d-Cut admits a polynomial kernel when parameterizing
by the distance to cluster parameter, denoted by dc. A cluster graph is a graph such that
every connected component is a clique; the distance to cluster of a graph G is the minimum
number of vertices we must remove from G to obtain a cluster graph. Our results are heavily
inspired by the work of Komusiewicz et al. [18]. Indeed, most of our reduction rules are
natural generalizations of theirs. However, we need some extra observations and rules that
only apply for d ≥ 2, such as Rule 8.

We denote by U = {U1, . . . , Ut} a set of vertices such that G− U is a cluster graph, and
each Ui is called a monochromatic part or monochromatic set of U , and we will maintain the
invariant that these sets are indeed monochromatic. Initially, we set each Ui as a singleton.
In order to simplify the analysis of our instance, for each Ui of size at least two, we will
have a private clique of size 2d adjacent to every vertex of Ui, which we call Xi. The merge
operation between Ui and Uj is the following modification: delete Xi ∪Xj , set Ui as Ui ∪Uj ,
Uj as empty, and add a new clique of size 2d, Xi,j , which is adjacent to every element of the
new Ui. We say that an operation is safe if the resulting instance is a YES instance if and
only if the original instance was.

I Observation 1. If Ui ∪ Uj is monochromatic, merging Ui and Uj is safe.

It is worth mentioning that the second case of the following rule is not needed in the
corresponding rule in [18]; we need it here to prove the safeness of Rules 7 and 8.

I Reduction Rule 1. Suppose that G− U has some cluster C such that
1. (C, V (G) \ C) is a d-cut, or
2. |C| ≤ 2d and there is C ′ ⊆ C such that (C ′, V (G) \ C ′) is a d-cut.
Then output YES.

After applying Rule 1, for every cluster C, C has some vertex with at least d+1 neighbors
in U , or there is some vertex of U with at least d+ 1 neighbors in C. Moreover, note that no
cluster C with at least 2d+ 1 vertices can be partitioned in such a way that one side of the
cut is composed only by a proper subset of vertices of C, i.e., C is monochromatic

The following definition is a natural generalization of the definition of the set N2 given
by Komusiewicz et al. [18]. Essentially, it enumerates some of the cases where a vertex, or set
of vertices, is monochromatic, based on its relationship with U . However, there is a crucial
difference that keeps us from achieving equivalent bounds both in terms of running time and
size of the kernel, and which makes the analysis and some of the rules more complicated
than in [18]. Namely, for a vertex to be forced into a particular side of the cut, it must have
at least d+ 1 neighbors in that side; moreover, a vertex of U being adjacent to 2d vertices of
a cluster C implies that C is monochromatic. Only if d = 1, i.e., when we are dealing with
matching cuts, the equality d+ 1 = 2d holds. This gap between d+ 1 and 2d is the main
difference between our kernelization algorithm for general d and the one shown in [18] for
Matching Cut, and the main source of the differing complexities we obtain. In particular,

IPEC 2019

19:8 Finding Cuts of Bounded Degree

for d = 1 the fourth case of the following definition is a particular case of the third one,
but this is not true anymore for d ≥ 2. Figure 1 illustrates the set of vertices introduced in
Definition 11.

I Definition 11. For a monochromatic part Ui ⊆ U , let N2d(Ui) be the set of vertices
v ∈ V (G) \ U for which at least one of the following holds:

1. v has at least d+ 1 neighbors in Ui.
2. v is in a cluster C of size at least 2d+ 1 in G− U such that there is some vertex of C

with at least d+ 1 neighbors in Ui.
3. v is in a cluster C of G− U and some vertex in Ui has 2d neighbors in C.
4. v is in a cluster C of G − U of size at least 2d + 1 and some vertex in Ui has d + 1

neighbors in C.

Ui

Figure 1 The four cases that define membership in N2d(Ui) for d = 2, from left to right.

I Observation 2. For every monochromatic part Ui, Ui ∪N2d(Ui) is monochromatic.

The next rules aim to increase the size of monochromatic sets. In particular, Rule 2
translates the transitivity of the monochromatic property, while Rule 3 identifies a case where
merging the monochromatic sets is inevitable.

I Reduction Rule 2. If N2d(Ui) ∩N2d(Uj) 6= ∅, merge Ui and Uj.

I Reduction Rule 3. If there there is a set of 2d+ 1 vertices L ⊆ V (G) with two common
neighbors u, u′ such that u ∈ Ui and u′ ∈ Uj, merge Ui and Uj.

Proof of safeness of Rule 3. Suppose that in some d-cut (A,B), u ∈ A and u′ ∈ B, this
implies that at most d elements of L are in A and at most d are in B, which is impossible
since |L| = 2d+ 1. J

We say that a cluster is small if it has at most 2d vertices, and big otherwise. Moreover,
a vertex in a cluster is ambiguous if it has neighbors in more than one Ui. A cluster is
ambiguous if it has an ambiguous vertex, and fixed if it is contained in some N2d(Ui).

I Observation 3. If G is reduced by Rule 1, every big cluster is ambiguous or fixed.

Proof. Since Rule 1 cannot be applied, every cluster C has either one vertex v with at least
d+ 1 neighbors in U or there is some vertex of a set Ui with d+ 1 neighbors in C. In the
latter case, by applying the fourth case in the definition of N2d(Ui), we conclude that C
is fixed. In the former case, either v has d+ 1 neighbors in the same Ui, in which case C
is fixed, or its neighborhood is spread across multiple monochromatic sets, and so v and,
consequently, C are ambiguous. J

G.C.M. Gomes and I. Sau 19:9

Our next goal is to bound the number of vertices outside of U .

I Reduction Rule 4. If there are two clusters C1, C2 contained in some N2d(Ui), then add
every edge between C1 and C2.

Proof of safeness of Rule 4. It follows directly from the fact that adding edges between
vertices of a monochromatic set preserves the existence of a d-cut. J

The next lemma follows from the pigeonhole principle and exhaustive application of
Rule 4.

I Lemma 12. If G has been reduced by Rules 1 through 4, then G has O(|U |) fixed clusters.

I Reduction Rule 5. If there is some cluster C with at least 2d+ 2 vertices such that there
is some v ∈ C with no neighbors in U , remove v from G.

Proof of safeness of Rule 5. That G has a d-cut if and only if G − v has a d-cut follows
directly from the hypothesis that C is monochromatic in G and the fact that |C \{v}| ≥ 2d+1
implies that C \ {v} is monochromatic in G− v. J

By Rule 5, we now have the additional property that, if C has more than 2d+ 1 vertices,
all of them have at least one neighbor in U . The next rule provides a uniform structure
between a big cluster C and the sets Ui such that C ⊆ N2d(Ui).

I Reduction Rule 6. If a cluster C has at least 2d+ 1 elements and there is some Ui such
that C ⊆ N2d(Ui), remove all edges between C and Ui, choose u ∈ Ui, {v1, . . . , vd+1} ⊆ C

and add the edges {uvi}i∈[d+1] to G.

Proof of safeness of Rule 6. Let G′ be the graph obtained after the operation is applied. If
G has some d-cut (A,B), since Ui ∪N2d(Ui) is monochromatic, no edge between Ui and C
crosses the cut, so (A,B) is also a d-cut of G′. For the converse, take a d-cut (A′, B′) of G′.
Since C has at least 2d+ 1 vertices and there is some u ∈ Ui such that |N(u) ∩ C| = d+ 1,
C ∈ N2d(Ui) in G′. Therefore, no edge between C and Ui crosses the cut and (A′, B′) is also
a d-cut of G. J

We have now effectively bounded the number of vertices in big clusters by a polynomial
in U , as shown below.

I Lemma 13. If G has been reduced by Rules 1 through 6, then G has O
(
d|U |2

)
ambiguous

vertices and O
(
d|U |2

)
big clusters, each with O(d|U |) vertices.

Proof. To show the bound on the number of ambiguous vertices, take any two vertices
u ∈ Ui, u′ ∈ Uj . Since we have

(|U |
2
)
such pairs, if we had at least (2d+ 1)

(|U |
2
)
ambiguous

vertices, by the pigeonhole principle, there would certainly be 2d+ 1 vertices in V \ U that
are adjacent to one pair, say u and u′. This, however, contradicts the hypothesis that Rule 3
has been applied, and so we have O

(
d|U |2

)
ambiguous vertices.

The above discussion, along with Lemma 12 and Observation 3, imply that the number
of big clusters is O

(
d|U |2

)
. For the bound on their sizes, take some cluster C with at least

2d+ 2 vertices. Due to the application of Rule 5, every vertex of C has at least one neighbor
in U . Moreover, there is at most one Ui such that C ⊆ N2d(Ui), otherwise we would be able
to apply Rule 2.

Suppose first that there is such a set Ui. By Rule 6, there is only one u ∈ Ui that has
neighbors in C; in particular, it has d+1 neighbors. Now, every v ∈ Uj , for every j 6= i, has at

IPEC 2019

19:10 Finding Cuts of Bounded Degree

most d neighbors in C, otherwise C ⊆ N2d(Uj) and Rule 2 would have been applied. Therefore,
we conclude that C has at most (d+ 1) +

∑
v∈U\Ui

|N(u) ∩ C| ≤ (d+ 1) + d|U | ∈ O(d|U |)
vertices.

Finally, suppose that there is no Ui such that C ⊆ N2d(Ui). A similar analysis from
the previous case can be performed: every u ∈ Ui has at most d neighbors in C, otherwise
C ⊆ N2d(Ui) and we conclude that C has at most

∑
v∈U |N(u) ∩ C| ≤ d|U | ∈ O(d|U |)

vertices. J

We are now left only with an unbounded number of small clusters. A cluster C is simple
if it is not ambiguous, that is, if for each v ∈ C, v has neighbors in a single Ui. Otherwise, C
is ambiguous and, because of Lemma 13, there are at most O

(
d|U |2

)
such clusters. For a

simple cluster C and a vertex v ∈ C, we denote by U(v) the monochromatic part of U to
which v is adjacent.

I Reduction Rule 7. If C is a simple cluster with at most d+ 1 vertices, remove C from G.

Proof of safeness of Rule 7. Let G′ = G−C. Suppose G has a d-cut (A,B) and note that
A * C and B * C since Rule 1 does not apply. This implies that (A \ C,B \ C) is a valid
d-cut of G′. For the converse, take a d-cut (A′, B′) of G′, define CA = {v ∈ C | U(v) ⊆ A},
and define CB similarly; we claim that (A′ ∪ CA, B

′ ∪ CB) is a d-cut of G. To see that this
is the case, note that each vertex of CA (resp. CB) has at most d edges to CB (resp. CA)
and, since C is simple, CA (resp. CB) has no other edges to B′ (resp. A′). J

After applying the previous rule, every cluster C not yet analyzed has size d+2 ≤ |C| ≤ 2d
which, in the case of the Matching Cut problem, where d = 1, is empty. To deal with
these clusters, given a d-cut (A,B), we say that a vertex v is in its natural assignment if
v ∪ U(v) is in the same side of the cut; otherwise the vertex is in its unnatural assignment.
Similarly, a cluster is unnaturally assigned if it has an unnaturally assigned vertex, otherwise
it is naturally assigned.

I Observation 4. Let C be the set of all simple clusters with at least d+ 2 and no more than
2d vertices, and (A,B) a partition of V (G). If there are d|U |+ 1 edges uv, v ∈ C ∈ C and
u ∈ U , such that uv is crossing the partition, then (A,B) is not a d-cut.

Proof. Since there are d|U |+ 1 edges crossing the partition between C and U , there must be
at least one u ∈ U with d+ 1 neighbors in the other set of the partition. J

I Corollary 14. In any d-cut of G, there are at most d|U | unnaturally assigned vertices.

Our next lemma limits how many clusters in C relate in a similar way to U ; we say that
two simple clusters C1, C2 have the same pattern if they have the same size s and there is
a total ordering of C1 and another of C2 such that, for every i ∈ [s], v1

i ∈ C1 and v2
i ∈ C2

satisfy U(v1
i) = U(v2

i). Essentially, clusters that have the same pattern have neighbors
in exactly the same monochromatic sets of U and the same multiplicity in terms of how
many of their vertices are adjacent to a same monochromatic set Ui. Note that the actual
neighborhoods in the sets Ui’s do not matter in order for two clusters to have the same
pattern. Figure 2 gives an example of a maximal set of unnaturally assigned clusters; that is,
any other cluster with the same pattern as the one presented must be naturally assigned,
otherwise some vertex of U will violate the d-cut property. As shown by the following Lemma,
we may discard clusters that must be naturally assigned, as we can easily extend the kernel’s
d-cut, if it exists, to include them.

G.C.M. Gomes and I. Sau 19:11

U2

U1

Figure 2 Example for d = 4 of a maximal set of unnaturally assigned clusters. Squared (resp.
circled) vertices would be assigned to A (resp. B).

I Lemma 15. Let C∗ ⊆ C be a subfamily of simple clusters, all with the same pattern, with
|C∗| > d|U |+ 1. Let C be some cluster of C∗, and G′ = G− C. Then G has a d-cut if and
only if G′ has a d-cut.

Proof. Since by Rule 1 no subset of a small cluster is alone in a side of a partition and,
consequently, U intersects both sides of the partition, if G has a d-cut, so does G′.

For the converse, let (A′, B′) be a d-cut of G′. First, by Corollary 14, we know that at
least one of the clusters of C∗ \ {C}, say Cn, is naturally assigned. Since all the clusters in
C∗ have the same pattern, this guarantees that any of the vertices of a naturally assigned
cluster cannot have more than d neighbors in the other side of the partition.

Let (A,B) be the bipartition of V (G) obtained from (A′, B′) such that u ∈ C is in A
(resp. B) if and only if U(u) ⊆ A (resp. U(u) ⊆ B); that is, C is naturally assigned. Define
CA = C ∩A and CB = C ∩B. Because |C| = |Cn| and both belong to C∗, we know that for
every u ∈ CA, it holds that |N(u) ∩ CB | ≤ d; moreover, note that N(u) ∩ (B \ C) = ∅. A
symmetric analysis applies to every u ∈ CB . This implies that no vertex of C has additional
neighbors in the other side of the partition outside of its own cluster and, therefore, (A,B)
is a d-cut of G. J

The safeness of our last rule follows directly from Lemma 15.

I Reduction Rule 8. If there is some pattern such that the number of simple clusters with
that pattern is at least d|U |+ 2, delete all but d|U |+ 1 of them.

I Lemma 16. After exhaustive application of Rules 1 through 8, G has O
(
d|U |2d

)
small

clusters and O
(
d2|U |2d+1) vertices in these clusters.

Proof. By Rule 7, no small cluster with less than d+ 2 vertices remains in G. Now, for the
remaining sizes, for each d + 2 ≤ s ≤ 2d, and each pattern of size s, by Rule 8 we know
that the number of clusters with s vertices that have the same pattern is at most d|U |+ 1.
Since we have at most |U | possibilities for each of the s vertices of a cluster, we end up with
O(|U |s) possible patterns for clusters of size s. Summing all of them up, we get that we have
O
(
|U |2d

)
patterns in total, and since each one has at most d|U |+ 1 clusters of size at most

2d, we get that we have at most O
(
d2|U |2d+1) vertices in those clusters. J

IPEC 2019

19:12 Finding Cuts of Bounded Degree

The exhaustive application of all the above rules and their accompanying lemmas are
enough to show that indeed, there is a polynomial kernel for d-Cut when parameterized by
distance to cluster.

I Theorem 17. When parameterized by distance to cluster dc(G), d-Cut admits a polynomial
kernel with O

(
d2 · dc(G)2d+1) vertices that can be computed in O

(
d4 · dc(G)2d+1(n+m)

)
time.

Proof. The algorithm begins by finding a set U such that G− U is a cluster graph. Note
that |U | ≤ 3dc(G) since a graph is a cluster graph if and only if it has no induced path on
three vertices: while there is some P3 in G, we know that at least one its vertices must be
removed, but since we don’t know which one, we remove all three; thus, U can be found in
O(dc(G)(n+m)) time. After the exhaustive application of Rules 1 through 8, by Lemma 13,
V (G) \ U has at most O

(
d2 · dc(G)3) vertices in clusters of size at least 2d+ 1. By Rule 7,

G has no simple cluster of size at most d+ 1. Ambiguous clusters of size at most 2d, again
by Lemma 13, also comprise only O

(
d2 · dc(G)2) vertices of G. Finally, for simple clusters of

size between d+ 2 and 2d, Lemmas 15 and 16 guarantee that there are O
(
d2 · dc(G)2d+1)

vertices in small clusters and, consequently, this many vertices in G.
As to the running time, first, computing and maintaining N2d(Ui) takes O(d · dc(G)n)

time. Rule 1 is applied only at the beginning of the kernelization, and runs in O
(
22dd(n+m)

)
time. Rules 2 and 3 can both be verified in O

(
d · dc(G)2(n+m)

)
time, since we are just

updating N2d(Ui) and performing merge operations. Both are performed only O
(
dc(G)2)

times, because we only have this many pairs of monochromatic parts. The straightforward
application of Rule 4 would yield a running time of O

(
n2). However, we can ignore edges

that are interior to clusters and only maintain which vertices belong together; this effectively
allows us to perform this rule in O(n) time, which, along with its O(n) possible applications,
yields a total running time of O

(
n2) for this rule. Note that, when outputting the instance

itself, we must write the edges explicitly; this does not change the final complexity of the
algorithm, as each of the O

(
dc(G)2d+1) clusters has O(d · dc(G)) vertices. Rule 5 is directly

applied in O(n) time; indeed, all of its applications can be performed in a single pass. Rule 6
is also easily applied in O(n+m) time. Moreover, it is only applied O(dc(G)) times, since,
by Lemma 13, the number of fixed clusters is linear in dc(G); furthermore, we may be able
to reapply Rule 6 directly to the resulting cluster, at no additional complexity cost. The
analysis for Rule 7 follows the same argument as for Rule 5. Finally, Rule 8 is the bottleneck
of our kernel, since it must check each of the possible O

(
dc(G)2d

)
patterns, spending O(n)

time for each of them. Each pattern is only inspected once because the number of clusters
in a pattern can no longer achieve the necessary bound for the rule to be applied once the
excessive clusters are removed. J

In the next theorems, we provide FPT algorithms for d-Cut parameterized by distance
to cluster and distance to co-cluster, respectively. Both are based on dynamic programming,
with the first being considerably simpler than the one given by Komusiewicz et al. [18] for
d = 1, which applies four reduction rules and encodes the problem in a 2-SAT formula.
However, for d = 1 our algorithm is slower, namely O∗

(
4dc(G)) compared to O∗

(
2dc(G)).

Observe that the minimum distance to cluster and co-cluster sets can be computed in time
1.92dc(G) · O

(
n2) and 1.92dc(G) · O

(
n2), respectively [6]. Thus, in the proofs of Theorems 18

and 19, we can safely assume that we have these sets at hand.

I Theorem 18 (?). For every integer d ≥ 1, there is an algorithm that solves d-Cut in time
O
(
4d(d+ 1)dc(G)2dc(G)dc(G)n2).

G.C.M. Gomes and I. Sau 19:13

I Theorem 19 (?). For every integer d ≥ 1, there is an algorithm solving d-Cut in time
O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2).
Using Theorems 18 and 19, and the relation τ(G) ≥ max{dc(G), dc(G)} [18], we obtain

the following corollary.

I Corollary 20. For every d ≥ 1, d-Cut parameterized by vertex cover is in FPT.

4 Concluding remarks

We presented a series of algorithms and complexity results; many questions, however, remain
open. For instance, all of our algorithms have an exponential dependency on d on their
running times. While we believe that such a dependency is an intrinsic property of d-cut,
we have no proof for this claim. Similarly, the existence of a uniform polynomial kernel
parameterized by the distance to cluster, i.e., a kernel whose degree does not depend on d,
remains an interesting open question.

Also in terms of running time, we expect the constants in the base of the exact exponential
algorithm to be improvable. However, exploring small structures that yield non-marginal
gains as branching rules, as done by Komusiewicz et al. [18] for d = 1 does not seem a viable
approach, as the number of such structures appears to rapidly grow along with d.

The distance to cluster kernel is hindered by the existence of clusters of size between
d+ 2 and 2d, an obstacle that is not present in the Matching Cut problem. Aside from the
extremal argument presented, we know of no way of dealing with them. We conjecture that
it should be possible to reduce the total kernel size from O

(
d2dc(G)2d+1) to O(d2dc(G)2d

)
,

matching the size of the smallest known kernel for Matching Cut [18].
We also leave open to close the gap between the polynomial and NP-hard cases in terms

of maximum degree. We showed that, if ∆(G) ≤ d + 2 the problem is easily solvable in
polynomial time, while for graphs with ∆(G) ≥ 2d+ 2, it is NP-hard. But what about the
gap d+ 3 ≤ ∆(G) ≤ 2d+ 1? After some effort, we were unable to settle any of these cases. In
particular, we are interested in 2-Cut, which has a single open case: ∆(G) = 5. After some
weeks of computation, we found no graph with more than 18 vertices and maximum degree
five that had no 2-cut, in agreement with the computational findings of Ban and Linial [2].
Interestingly, all graphs on 18 vertices without a 2-cut are either 5-regular or have a single
pair of vertices of degree 4, which are actually adjacent. In both cases, the graph is maximal
in the sense that we cannot add edges to it while maintaining the degree constraints. We
recall the initial discussion about Internal Partition; closing the gap between the known
cases for d-Cut would yield significant advancements on the former problem.

Finally, the smallest d for which G admits a d-cut may be an interesting additional
parameter to be considered when more traditional parameters, such as treewidth, fail to
provide FPT algorithms by themselves. Unfortunately, by Theorem 1, computing this
parameter is not even in XP, but, as we have shown, it can be computed in FPT time under
many different parameterizations.

References
1 N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On Structural

Parameterizations of the Matching Cut Problem. In Proc. of the 11th International Conference
on Combinatorial Optimization and Applications (COCOA), volume 10628 of LNCS, pages
475–482, 2017.

IPEC 2019

19:14 Finding Cuts of Bounded Degree

2 Amir Ban and Nati Linial. Internal partitions of regular graphs. Journal of Graph Theory,
83(1):5–18, 2016.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009.

4 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-Composition: A New
Technique for Kernelization Lower Bounds. In Proc. of the 28th International Symposium on
Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs, pages 165–176, 2011.

5 Paul S. Bonsma. The complexity of the matching-cut problem for planar graphs and other
graph classes. Journal of Graph Theory, 62(2):109–126, 2009.

6 Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching
algorithm for cluster vertex deletion. Theory of Computing Systems, 58(2):357–376, 2016.

7 Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984.
8 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite

graphs. Information and computation, 85(1):12–75, 1990.
9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
10 Matt DeVos. http://www.openproblemgarden.org/op/friendly_partitions, 2009.
11 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 4th edition, 2010.
12 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
13 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory

of Parameterized Preprocessing. Cambridge University Press, 2019.
14 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs

for NP. Journal of Computer and System Sciences, 77(1):91–106, 2011.
15 Ron L Graham. On primitive graphs and optimal vertex assignments. Annals of the New

York academy of sciences, 175(1):170–186, 1970.
16 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001.
17 Atsushi Kaneko. On decomposition of triangle-free graphs under degree constraints. Journal

of Graph Theory, 27(1):7–9, 1998.
18 Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching Cut: Kernelization,

Single-Exponential Time FPT, and Exact Exponential Algorithms. In Proc. of the 13th
International Symposium on Parameterized and Exact Computation (IPEC), volume 115 of
LIPIcs, pages 19:1–19:13, 2018.

19 Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theoretical
Computer Science, 609:328–335, 2016.

20 Hoàng-Oanh Le and Van Bang Le. On the Complexity of Matching Cut in Graphs of Fixed
Diameter. In Proc. of the 27th International Symposium on Algorithms and Computation
(ISAAC), volume 64 of LIPIcs, pages 50:1–50:12, 2016.

21 Van Bang Le and Bert Randerath. On stable cutsets in line graphs. Theoretical Computer
Science, 301(1-3):463–475, 2003.

22 Jie Ma and Tianchi Yang. Decomposing C4-free graphs under degree constraints. Journal of
Graph Theory, 90(1):13–23, 2019.

23 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Treewidth Reduction for Constrained
Separation and Bipartization Problems. In Proc. of the 27th International Symposium on
Theoretical Aspects of Computer Science, (STACS), volume 5 of LIPIcs, pages 561–572, 2010.

24 Augustine M Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):527–536,
1989.

25 Maurizio Patrignani and Maurizio Pizzonia. The complexity of the matching-cut problem. In
Proc. of the 27th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), volume 2204 of LNCS, pages 284–295, 2001.

G.C.M. Gomes and I. Sau 19:15

26 Khurram H. Shafique and Ronald D. Dutton. On satisfactory partitioning of graphs. Congressus
Numerantium, pages 183–194, 2002.

27 Michael Stiebitz. Decomposing graphs under degree constraints. Journal of Graph Theory,
23(3):321–324, 1996.

28 Carsten Thomassen. Graph decomposition with constraints on the connectivity and minimum
degree. Journal of Graph Theory, 7(2):165–167, 1983.

29 Chee-Keng Yap. Some Consequences of Non-Uniform Conditions on Uniform Classes. Theor-
etical Computer Science, 26:287–300, 1983.

IPEC 2019

Finding Linear Arrangements of Hypergraphs with
Bounded Cutwidth in Linear Time
Thekla Hamm
Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract
Cutwidth is a fundamental graph layout parameter. It generalises to hypergraphs in a natural way
and has been studied in a wide range of contexts. For graphs it is known that for a fixed constant k

there is a linear time algorithm that for any given G, decides whether G has cutwidth at most k

and, in the case of a positive answer, outputs a corresponding linear arrangement. We show that
such an algorithm also exists for hypergraphs.

2012 ACM Subject Classification Mathematics of computing → Permutations and combinations;
Mathematics of computing → Hypergraphs; Theory of computation → Dynamic graph algorithms

Keywords and phrases Fixed parameter linear, Path decomposition, Hypergraph

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.20

Funding Supported by the Austrian Science Fund (FWF, Project P31336 and Project W1255-N23).

1 Overview

For a hypergraph H and an enumeration of its vertices V (H), also referred to as linear
arrangement, the cutwidth is the smallest integer k such that for every position i between 1
and |V (H)| − 1 there are at most k hyperedges with one endpoint among the first i and the
other among the last |V (H)| − i vertices of the arrangement. Finding orderings with small
cutwidth for hypergraphs naturally occurs directly in various applications, probably the most
classical one being VLSI design [6]. Also, there are problems for which a vertex ordering
with small cutwidth can be used to obtain a provably good processing order for heuristic
approaches, such as SAT [15]. We want to emphasise that a model using hypergraphs, as
opposed to graphs, is necessary in these scenarios among others, as graphs do not capture all
dependencies correctly.

If one wants to find an ordering with smallest possible cutwidth, this is the classical
Minimum Cut Linear Arrangement Problem which is known to be NP-hard, even
on graphs with maximum vertex degree 3 [7]. However, if one considers a bound k on the
maximum allowed cutwidth as a parameter, one can decide in linear time if a linear ordering
of a hypergraph is possible such that the bound is not exceeded [14]. The known proof is
non-constructive in the sense that it does not infer a way to construct such a linear ordering
in linear time. The asymptotically fastest constructive algorithm given in literature [8] is not
even FPT (fixed parameter tractable) as the runtime complexity lies in O(nk2+3k+3) where
n is the number of vertices of the given hypergraph.

This Work. We give a linear time constructive algorithm.
A key observation is that the fixed bound also bounds the pathwidth of the incidence

graph of the hypergraph. This allows to compute a path decomposition of the incidence
graph in linear time using the result of Bodlaender [1], and then to dynamically compute a
solution along the path decomposition. This approach has been successfully applied to a
number of problems. An overview of the general method for the slightly more general notion
of tree decompositions, as well as some examples for classical problems for which it was used,
can be found e.g. in [3, Chapter 7]. In particular, the method has also been used to give a

© Thekla Hamm;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.IPEC.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

linear time algorithm for the problem we consider restricted to graphs [11]. We extend the
crucial ideas of this algorithm.

We will construct a linear ordering by successively inserting vertices into it as long as
the cutwidth bound is satisfied and successively take into consideration more and more of
the hyperedges when checking whether the cutwidth bound is satisfied. It is reasonable
that if one takes this approach, after a vertex and all its incident hyperedges have been
completely processed the position of this vertex is no longer interesting as it has no further
impact on yet to be processed vertices and hyperedges. Similarly if a hyperedge and all
its vertices have been processed the hyperedge will not play a role when extending the
incomplete linear ordering. The first statement can be strengthened using the fact that
only the positions of the outermost vertices of each hyperedge are necessary to compute the
cutwidth of a linear ordering: After a vertex has been processed and the positions of the
left- and rightmost vertices with respect to the incomplete linear ordering of each incident
hyperedge are known, the vertex will not play a role when extending the incomplete linear
ordering. A path decomposition of the incidence graph implies some order of processing the
vertices and hyperedges such that no more than width-of-the-decomposition-many vertices
and hyperedges are relevant in the way described above at the same time.

Structure. We start by giving a formal definition of our problem and an overview over
previous research in Section 2. In Section 3, we introduce the pathwidth of the incidence
graph of a hypergraph, and prove that a bound on the cutwidth induces a bound on it. We
also work to obtain a path decomposition that has convenient structural properties for our
dynamic programming approach. Section 4 is dedicated to problem specific arguments: In
Section 4.1 we prove that it is sufficient to consider linear arrangements that are constructed
in a certain way along the path decomposition. The idea is the same that was used for graphs
[11]. It utilises the notion of so called typical sequences. Using the results of the previous
sections, we formulate a dynamic program that works on path decompositions of incidence
graphs and allows us to present our main result in Section 4.2. In Section 5 we indicate a
possibility to lift the algorithm to a more general setting.

2 Formal Introduction and Preliminary Observations

We start with a hypergraph H = (V,E). That is V is some finite set and E contains subsets
of vertices, possibly with multiplicities, i.e. we allow parallel hyperedges.

I Definition 1. A linear arrangement of a hypergraph H is a bijection ϕ : V (H) ↔
{1, . . . , |V (H)|}. The cutwidth of a linear arrangement ϕ at position i ∈ N is defined
as cw(ϕ, i) = |{e ∈ E(H) | ∃v, w ∈ e ϕ(v) ≤ i < ϕ(w)}|. The cutwidth of a linear
arrangement ϕ is defined as cw(ϕ) = max

i∈N
cw(ϕ, i). The cutwidth of a hypergraph H is

defined as cw(H) = min
ϕ linear

arrangement of H

cw(ϕ).

If one is interested in the cutwidth of hypergraphs, one can neglect all hyperedges inH that
contain less than two vertices, as such hyperedges do not contribute to the cutwidth of any
linear arrangement of H. From now on we will assume that ∀e ∈ E(H), |e| ≥ 2 for our input
hypergraph H and refer to this assumption as hyperedge cardinality assumption. Note
that any hypergraph H ′ can be transformed to satisfy this condition in time in O(|E(H ′)|)
by deleting all hyperedges that are too small.

T. Hamm 20:3

k-Cutwidth Bounded Linear Arrangement (k-CWLA)
Instance Hypergraph H = (V, E) such that ∀e ∈ E(H) |e| ≥ 2

Task Find a linear arrangement ϕ of H with cw(ϕ) ≤ k

or decide that cw(H) > k.

We present a linear time algorithm, running in time in O(|V (H)|) that solves k-CWLA.
If one drops the condition on the hyperedge cardinalities, this directly implies an algorithm
that runs in time in O(|E(H)|+ |V (H)|).

2.1 Known Results
The best algorithm given in literature for k-CWLA runs in time in O(|V (H)|k2+3k+3) [8]
and relies on complicated dynamic programming on a linear arrangement which is iteratively
extended. There is an FPT-algorithm for constructing path decompositions of polymatroids
with bounded width. Concretely:

I Theorem 2 ([4]). Let F be a fixed finite field. Given n subspaces of Fr for some r and a
parameter k, in time in O(rm2 + n3), we can either find an enumeration V1, V2, . . . , Vn of
the subspaces, such that dim((V1 + . . .+Vi)∩ (Vi+1 + . . .+Vn)) ≤ k for all i ∈ {1, . . . , n− 1},
or decide that no such enumeration exists, where each Vi is given by its spanning set of di
vectors and m =

∑n
i=1 di.

One can write k-CWLA in a way that this theorem is applicable by setting F = E(H) and
the subspaces to be the |V (H)| subspaces spanned by the hyperedges incident to each of
the vertices of H. Then one obtains a O(|E(H)|5 + |V (H)|3) (or O(|E(H)|3 + |V (H)|3)
using the same observations as we do in Section 2.2) algorithm to solve k-CWLA. Thus this
approach yields a runtime which is not linear in the size of the hypergraph. Also, as it is not
specifically adapted to the problem at hand but rather general, if one wants to understand
the algorithmic details, it is comparatively complicated and probably impractical. We also
remark that the algorithm presented in this paper, leaves scope for extending to a more
general setting (see Section 5).

The corresponding decision problem to k-CWLA however, i.e. deciding if the cutwidth
of a hypergraph is smaller than k without outputting a corresponding linear arrangement, is
known to be solvable in time in O(|V (H)|+ |E(H)|). This was proved in [14]. The given
algorithm is non-constructive and uses an adaptation of the analogue of the Myhill-Nerode
theorem for coloured graphs to work on the incidence graph of hypergraphs. If one restricts
the problem to hypergraph instances for which the hyperedge cardinality assumption holds,
as we do, one can use the same observations that we will make in Section 2.2 to obtain
an algorithm that runs in O(|V (H)|). In [13] van Bevern restates the open problem of
constructing a linear arrangement with k-bounded cutwidth if possible in linear time and
points out the importance of such an algorithm for practical purposes. It is also worth noting
that the comparatively heavy machinery used to obtain the decision result leads to a high
dependency of the complexity on k, and obstructs combinatorial properties of a solution.

For k-CWLA restricted to graphs a linear time algorithm is known [11]. Our algorithm
for hypergraphs uses and extends the crucial ideas of this algorithm.

2.2 The Vertex Degree Property
I Lemma 3. Let H satisfy the hyperedge cardinality assumption. If for any v ∈ V (H) we
have that |{e ∈ E(H) | v ∈ e}| > 2k then cw(H) > k.

IPEC 2019

20:4 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

Lemma 3 motivates considering the vertex degree property of a hypergraph H which H
satisfies if ∀v ∈ V (H) |{e ∈ E(H) | v ∈ e}| ≤ 2k. Obviously, if H satisfies the vertex degree
property, |E(H)| ∈ O(|V (H)|).

When claiming runtime in O(|V (H)|), we need to make clear how we assume H to be
given as input. Note that in general the analogue of an incidence matrix for hypergraphs does
not allow to check the vertex degree property in linear time. However a natural analogue
of an adjacency list for hypergraphs, in which we list for each vertex the hyperedges it is
incident to, can easily be seen to allow the following:
I Remark 4.

Checking if H satisfies the vertex degree property in time in O(|V (H)|),
and if H satisfies the vertex degree property, checking the membership of a given vertex
in a given hyperedge in constant time.

3 Path Decompositions of Incidence Graphs

The cutwidth of a hypergraph relates to the pathwidth of its incidence graph, in two ways:
Firstly this parameter is bounded by the cutwidth and secondly its boundedness allows the
decomposition of the hypergraph given as instance in a way that is useful for our algorithm.
We will elaborate on the properties that make the decomposition useful in Section 4 and for
now focus on the definition of the parameter, proving the fact that it is bounded by cutwidth
and showing that there is a decomposition of our hypergraph with certain properties.

I Definition 5. The incidence graph GI(H) of H is given by
V (GI(H)) = {vu | u ∈ V (H)} ∪̇ {ve | e ∈ E(H)} and E(GI(H)) = {{vu, ve} | u ∈ e}.

For a thorough description of our algorithm, we need the following technical statement
that allows us to transform our input into easily accessible information about the incidence
graph in linear time. The proof is not difficult.

I Lemma 6. Let H be a hypergraph that has the vertex degree property. The following can
be computed in time in O(|V (H)|) from our representation of H:

The representation of GI(H) by its adjacency list;
for each x ∈ V (GI(H)), type(x) ∈ {‘vertex’, ‘hyperedge’} with

type(x) =
{
‘vertex’ if x ∈ {vu ∈ GI(H) | u ∈ V (H)}
‘hyperedge’ if x ∈ {ve ∈ GI(H) | e ∈ E(H)}

; and

for each x ∈ {vu ∈ V (GI(H)) | u ∈ V (H)} a lookup table for the corresponding u ∈ V (H).

The following definition was introduced by Robertson and Seymour [10]. It is a special-
isation of the notion of tree decomposition and treewidth. Both have been studied in various
contexts, one being as foundation for dynamic parameterised algorithms [3, Chapter 7].

I Definition 7. A path decomposition of a graph G = (V,E) is a sequence (X1, . . . , Xs)
with Xi ⊆ V (G) such that
(i) ∀e ∈ E(G) ∃ 1 ≤ i ≤ s such that e ⊆ Xi; and
(ii) ∀v ∈ V (G) ∃ 1 ≤ i ≤ j ≤ s such that v ∈ Xk ⇔ i ≤ k ≤ j.

The width of a path decomposition (X1, . . . , Xs) is defined as width((X1, . . . , Xs)) =
max

1≤i≤s
|Xi| − 1. The pathwidth of a graph G is defined as minimum width of a path decom-

position of G, i.e. pw(G) = min
(X1,...,Xs)

path decomposition of G

width((X1, . . . , Xs)). The Xi are called the

bags of the path decomposition.

T. Hamm 20:5

I Theorem 8. Let H satisfy the hyperedge cardinality assumption. If cw(H) ≤ k then
pw(GI(H)) ≤ k.

Proof. Let ϕ be a linear arrangement of H with cw(ϕ) ≤ k and define for i = 1, . . . , |V (H)|
X2i−1 = {ve | ∃v, w ∈ e ϕ(v) < i ≤ ϕ(w)} ∪ {vϕ−1(i)} and
X2i = {ve | ∃v, w ∈ e ϕ(v) ≤ i < ϕ(w)} ∪ {vϕ−1(i)}.

It is easy to verify that this defines a path decomposition of GI(H) with width at most k. J

The boundedness of pathwidth in connection with the following well-known result will allow
us to find a path decomposition of the incidence graph with bounded width in linear time.

I Theorem 9 ([1]). Given some graph G, it can be decided in time in O(|V (G)|) if pw(G) ≤ k
and if this is the case a path decomposition (X1, . . . , Xs) of G with width at most k and
s ∈ O(|V (G)|) can be computed in time in O(|V (G)|).

The remainder of this section is dedicated to transforming the path decomposition we
obtain from Theorem 9 into a more convenient form. The first step is standard.

I Definition 10. A path decomposition (X1, . . . , Xs) is nice if for all 1 ≤ i ≤ s it holds that
|Xi4Xi−1| = 1. (We artificially set X0 = ∅.) Then for every Xi one of the following holds:
|Xi \ Xi−1| = 1, then call Xi introduce bag. We say x with {x} = Xi \ Xi−1 is
introduced.
|Xi−1 \Xi| = 1, then call Xi forget bag. We say x with {x} = Xi−1 \Xi is forgotten.

I Lemma 11 ([2]). A path decomposition (X1, . . . , Xs) of a graph G can be transformed into
a nice path decomposition (X ′1, . . . , X ′s′) of G in time in O(s · width((X1, . . . , Xs))) without
increasing the width and with s′ ∈ O(s · width((X1, . . . , Xs))).

The fact that we also need to handle hyperedges leads to some additional technicalities.
For this reason we will want to use a nice path decomposition with an additional restriction,
which we call extra niceness, in our dynamic program.

I Definition 12. A path decomposition (X1, . . . , Xs) of an incidence graph GI(H) is extra
nice if it is nice and for all e ∈ E(H) there is some u ∈ e such that vu appears in the path
decomposition before ve, i.e. ∀e ∈ E(H) min

vu∈Xi
u∈e

i < min
ve∈Xi

i.

Just like path decompositions can be efficiently be transformed into nice path decomposi-
tions, it is easy to modify nice path decompositions of an incidence graph to obtain extra
nice path decompositions efficiently.

I Lemma 13. Let H satisfy the hyperedge cardinality assumption and have the vertex degree
property. A nice path decomposition (X1, . . . , Xs) of GI(H) can be transformed into an
extra nice path decomposition (X ′1, . . . , X ′s) of GI(H) in time in O(s · width((X1, . . . , Xs))2)
without increasing the width.

The results of this section applied in series prove the following theorem:

I Theorem 14. Given a hypergraph H that satisfies the hyperedge cardinality assumption
and has the vertex degree property it can be decided in time in O(|V (H)|) if pw(GI(H)) ≤ k
and, if this is the case, an extra nice path decomposition (X1, . . . , Xs) of GI(H) with width
at most k and s ∈ O(|V (H)|) can be computed in time in O(|V (H)|).

After the observations in this section we may assume to have an extra nice path decom-
position (X1, . . . , Xs) of GI(H) with s ∈ O(|V (H)|) and width((X1, . . . , Xs)) ≤ k.

IPEC 2019

20:6 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

4 A Linear Time Algorithm for k-CWLA

Using our path decomposition we will dynamically construct a linear arrangement with
bounded cutwidth, working on hypergraphs Hi that grow along the path decomposition and
are contained in H in a certain sense.

I Definition 15. For a hypergraph H and some W ⊆ V (H) and F ⊆ E(H) the trimmed
subhypergraph of H induced by W and F is defined as H[W,F] with vertex set
V (H[W,F]) = W and hyperedge set E(H[W,F]) = {e ∩ W | e ∈ F}. We call a hyper-
graph H ′ trimmed subhypergraph of H if there are W ⊆ V (H) and F ⊆ E(H) such that
H ′ = H[W,F].

I Definition 16. For a linear arrangement ϕ of H = (V,E) and some H ′ = (V ′, E′)
trimmed subhypergraph of H define the restriction of ϕ to H ′ ϕ|H′ to be the unique linear
arrangement of H ′ such that ∀v, w ∈ V (H ′) ϕ(v) ≤ ϕ(w)⇔ ϕ|H′ (v) ≤ ϕ|H′ (w).
Correspondingly, if ψ is a linear arrangement of H = (V,E) and ϕ is the restriction of ψ
to some H ′ = (V ′, E′) where V ′ ⊆ V and E′ = {e ∩ V ′ | e ∈ E′′} where E′′ ⊆ E, then ψ is
an extension of ϕ. For a vertex v ∈ V (H) \ V (H ′) and 1 ≤ p < |V (H ′)|, we say that v is
inserted into position p of ϕ by ψ, if ψ(v) ∈ {ψ(ϕ−1(p)), . . . , ψ(ϕ−1(p+ 1))}, and that v is
inserted into position 0 os ϕ by ψ if ψ(v) < ψ(ϕ−1(1)), and into position |V (H ′)| of ϕ by ψ
if ψ(v) > ψ(ϕ−1(|V (H ′)|)).

I Remark 17. Note that restrictions are indeed well-defined as a linear arrangement of V (H)
infers a unique linear arrangement of any subset of V (H).

We are interested specifically in the following trimmed subhypergraphs of H, along which we
will later iteratively extend our linear arrangement.

I Definition 18. For 1 ≤ i ≤ s define
Hi = H[{u ∈ V (H) | vu ∈

⋃
1≤j≤iXj}, {e ∈ E(H) | ve ∈

⋃
1≤j≤iXj}], and H0 = (∅, ∅).

Assume to be at stage 1 ≤ i ≤ s when traversing the path decomposition, and let ϕ be a
linear arrangement of Hi that we want to extend. The vertices of H that are represented in
Xi, as well as the outermost vertices of (possibly trimmed) hyperedges that are represented
in Xi, are of particular interest. This is due to the fact that, by the properties of a path
decomposition, these are the vertices that may be important in a certain sense, when updating
information about ϕ to extensions that include parts of the hypergraph that are still to
be encountered. We formalise this intuition in the following definition and characterising
remark.

I Definition 19. We say a vertex v ∈ V (Hi) is unimportant after ϕ if
all hyperedges of H, incident to v are considered in E(Hi), i.e. ∀e ∈ E(H) v ∈ e ⇒
e ∩ V (Hi) ∈ E(Hi); and
no hyperedge of H, containing vertices from V (Hi), as well as V (H) \ V (Hi), has any v
as left- or rightmost vertex in ϕ, i.e.
∀e ∈ E(H) e ∩ V (Hi) 6= ∅ ∧ e ∩

(
V (H) \ V (Hi)

)
6= ∅

⇒ argmin
w∈e∩V (Hi)

ϕ(w) 6= v ∧ argmax
w∈e∩V (Hi)

ϕ(w) 6= v.

Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. The set of vertices distinguished by
ϕ is the set {u ∈ V (H) | vu ∈ Xi} ∪ { argmin

u∈e∩V (Hi)
ϕ(u), argmax

u∈e∩V (Hi)
ϕ(u) | ve ∈ Xi}.

T. Hamm 20:7

I Remark 20. Note that by the properties of a path decomposition in particular all vertices in
V (Hi) \ {u ∈ V (H) | vu ∈ Xi} ∪ { argmin

u∈e∩V (Hi)
ϕ(u), argmax

u∈e∩V (Hi)
ϕ(u) | ve ∈ Xi} are unimportant

after ϕ, i.e. all vertices that are not distinguished by ϕ, are unimportant after ϕ.
The properties in the definition of unimportantness are what we will exploit to identify

linear arrangements that we have need to consider at a certain stage, in terms of whether or
not they allow an extension to a complete linear arrangement of H with cutwidth at most
k. In this way we will be able to restrict ourselves to considering at most constantly many
(w.r.t. the size of the hypergraph) linear arrangements at each stage. We give the details in
Section 4.1 and use these results in Section 4.2 to give a linear time algorithm for k-CWLA.

4.1 Identifying Partial Linear Arrangements
We use the same idea as in [11] to give a condition under which two linear arrangements of Hi

for some i ∈ {1, . . . , s} either can both, or can both not be extended to a linear arrangement
of H satisfying the cutwidth bound. More specifically we consider the relative order of
distinguished vertices in such linear arrangements and where exactly, vertices that are yet to
be encountered may be inserted. In certain cases we will be able to shift vertices that are not
distinguished and are strewn between vertices distinguished by ϕ between two distinguished
vertices that are consecutive w.r.t. ϕ without increasing the cutwidth.

I Lemma 21. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Assume there are p and
q ∈ N such that
(i) cw(ϕ, p) = min0≤j≤q cw(ϕ, p+ j) and cw(ϕ, p+ q) = max0≤j≤q cw(ϕ, p+ j); and
(ii) ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after ϕ.

Let ψ be a linear arrangement of H that extends ϕ. Obtain ψ′ from ψ by shifting for each
1 ≤ j̄ ≤ q the vertices from in between ϕ−1(p+ j̄) and ϕ−1(p+ j̄ + 1) to in between ϕ−1(p)
and ϕ−1(p+1) and otherwise maintaining the same relative ordering as given by ψ. Formally
the described ψ′ is defined by:

ψ′(v) =

ψ(v)− j̄ if ψ(ϕ−1(p+ j̄)) < ψ(v) < ψ(ϕ−1(p+ j̄ + 1))

for some 1 ≤ j̄ ≤ q
ψ(ϕ−1(p+ q + 1))− (q + 1− j̄) if v = ϕ−1(p+ j̄) for some 1 ≤ j̄ ≤ q
ψ(v) otherwise

Then cw(ψ′) ≤ cw(ψ).

I Remark 22. See Figure 1 for an illustration of how ϕ, ψ and ψ′ relate.

Proof. Note that if j /∈ {ψ(ϕ−1(p+ 1)), . . . , ψ(ϕ−1(p+ q + 1))− 1} by construction of ψ′ it
holds that ∀v ∈ V (H) ψ(v) ≤ j ⇔ ψ′(v) ≤ j. So for all such j we have cw(ψ, j) = cw(ψ′, j).
It remains to consider positions between ψ(ϕ−1(p + 1)) and ψ(ϕ−1(p + q + 1)) − 1. For
j′ ∈ {ψ(ϕ−1(p+1)), . . . , ψ(ϕ−1(p+2))−1} we will find j ∈ N such that cw(ψ′, j′) ≤ cw(ψ, j).
We distinguish two cases according to the cases considered in the definition of the value of
ψ′ at ψ′−1(j′):
Case 1: ψ(ϕ−1(p+ j̄)) < ψ(ψ′−1(j′)) < ψ(ϕ−1(p+ j̄ + 1)) for some 1 ≤ j̄ ≤ q .

One can set j = ψ(ψ′−1(j′))(= j′ + j̄) (see Figure 1, red), and use the fact that
ϕ−1(p+1), . . . , ϕ−1(p+q) are unimportant after ϕ, and the fact that cw(ϕ, p) ≤ cw(ϕ, p+j̄)
to show cw(ψ′, j′) ≤ cw(ψ, j).

Case 2: ψ′−1(j′) = ϕ−1(p+ j̄) for some 1 ≤ j̄ ≤ q. One can set j = ψ(ϕ−1(p+q)) (see
Figure 1, blue), and use the fact that ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after
ϕ, and the fact that cw(ϕ, p+ j̄) ≤ cw(ϕ, p+ q) to show cw(ψ′, j′) ≤ cw(ψ, j). J

IPEC 2019

20:8 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

ϕ . . .
ϕ−1(p) ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1) ϕ−1(p+ q)

. . .

j jψ . . .
ϕ−1(p) ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1) ϕ−1(p+ q)

. . .

j′ j′ψ′ . . .
ϕ−1(p)

. . .
ϕ−1(p+ q)ϕ−1(p+ 1)

. . .
ϕ−1(p+ q − 1)

. . .

Figure 1 Illustrations of the situation in Lemma 21 and its proof – vertices in V (Hi) are filled,
exemplary positions at which cutwidths are compared in Case 1 red and Case 2 blue.

One can show an analogous result for the smallest cutwidth being at the largest position:

I Lemma 23. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Assume there are p and
q ∈ N such that
(i) cw(ϕ, p+ q) = min0≤j≤q cw(ϕ, p+ j) and cw(ϕ, p) = max0≤j≤q cw(ϕ, p+ j); and
(ii) ϕ−1(p+ 1), . . . , ϕ−1(p+ q) are unimportant after ϕ.

Let ψ be a linear arrangement of H that extends ϕ. Obtain ψ′ from ψ by shifting for each
0 ≤ j̄ ≤ q − 1 the vertices from in between ϕ−1(p + j̄) and ϕ−1(p + j̄ + 1) to in between
ϕ−1(p+ q) and ϕ−1(p+ q+ 1) and otherwise maintaining the same relative ordering as given
by ψ. Then cw(ψ′) ≤ cw(ψ).

Lemma 21 and Lemma 23 yield:

I Lemma 24. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi.
1. If p ∈ {1, . . . , |V (Hi)| − 1} is a position, ϕ−1(p+ 1) is not a vertex distinguished by ϕ,

and cw(ϕ, p) = cw(ϕ, p+ 1), then there is a linear arrangement ψ′ of H that extends ϕ
such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and no vertex is inserted into position p+ 1 of ϕ

by ψ′.
2. If q ≥ 2 and p ∈ {1, . . . , |V (Hi)|−1− q} is a position, for all 1 ≤ j ≤ q, ϕ−1(p+ j) is not

a vertex distinguished by ϕ, and min0≤j≤q cw(ϕ, p+j) = cw(ϕ, p) and max0≤j≤q cw(ϕ, p+
j) = cw(ϕ, p+ q) or vice versa, then there is a linear arrangement ψ′ of H that extends ϕ
such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and no vertex is inserted into any of the positions

p+ 1, . . . , p+ q − 1 of ϕ by ψ′.

Proof. Apply Lemma 21 or Lemma 23 to ψ and the relevant positions, where ψ is any linear
arrangement of H that extends ϕ and achieves minimal cutwidth among these. J

This immediately relates to so called typical sequences. Such sequences were introduced
and studied in [2] (and implicitly in [5]) where it was shown that there are boundedly many
as well as that they have bounded length. These bounds will be important for us later on.

I Definition 25. For a sequence of natural numbers n1 . . . nt its typical sequence,
τ (n1 . . . nt), arises from n1 . . . nt by performing the following operations until neither of
them is applicable anymore:

Removing consecutive repetitions of entries; or
removing subsequences ni2 . . . niu−1 , with u ≥ 3
and min1≤j≤u nij = ni1 and max1≤j≤u nij = niu or vice versa.

A sequence of natural numbers is typical if it is the typical sequence of some sequence.

T. Hamm 20:9

Note that for a sequence n1 . . . nt, its typical sequence can be computed by going through
the sequence repeatedly and performing the two operations until no longer possible. As the
operations necessarily shorten the sequence, this can be done in time in O(t2).

I Lemma 26 ([2, Lemma 3.5]). There are no more than 8
3 22k different typical sequences

whose entries are bounded by k.

I Lemma 27 ([2, Lemma 3.3(ii)]). A typical sequence whose entries are bounded by k has
length at most 2k − 1.

By iterating Lemma 21 and Lemma 23 and making the additional observation that we
never shift vertices into a position of ϕ whose cutwidth is removed in the typical sequences
of the cutwidths between distinguished vertces, we can refine Lemma 24 to:

I Lemma 28. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Then there is a linear
arrangement ψ′ of H that extends ϕ such that cw(ψ′) = min

ψ extension of
ϕ to H

cw(ψ), and for q ≥ 1 and

a position p ∈ {1, . . . , |V (Hi)| − 1− q} such that ϕ−1(p) and ϕ−1(p+ q+ 1) are distinguished
by ϕ, all ϕ−1(p+ j) are not distinguished by ϕ, no vertex is inserted into any position p′ of
ϕ such that cw(ϕ, p′) is removed in τ(cw(ϕ, p) . . . cw(ϕ, p+ q)) by ψ′.

I Definition 29. For a linear arrangement ϕ of Hi with 1 ≤ i ≤ s, p ∈ {1, . . . , |V (Hi)| − 1}
is a typical insertion position of ϕ, if it is a position into which an extension of ϕ
to H as described in Lemma 28 inserts vertices. 0 and |Vi| are always typical inser-
tion positions of ϕ. I.e. p is a typical insertion position of ϕ if p is not removed in
τ(cw(ϕ, max

p′≤p∧ϕ−1(p′) is
distinguished by ϕ

p′) . . . cw(ϕ, min
p′>p∧ϕ−1(p′) is
distinguished by ϕ

p′)). We define insertion-typical lin-

ear arrangements inductively: The empty linear arrangement of H0 is insertion-typical. for
1 ≤ i+ 1 ≤ s, a linear arrangement is a insertion-typical linear arrangement of Hi+1 if it
arises from an insertion-typical linear arrangement of Hi by insertion of the at most one
introduced vertex into a typical insertion position of this linear arrangement.

I Remark 30. Let 1 ≤ i ≤ s and ϕ be a linear arrangement of Hi. Because, by definition,
there is always a maximum value entry of n1 . . . nt in τ(n1 . . . nt), there is a typical
insertion position p ∈ {1, . . . , |V (Hi)| − 1} such that cw(ϕ) = cw(ϕ, p).
I Remark 31. An insertion-typical linear arrangement with cutsidth at most k has at most
(2k − 1)2 ∈ O(k2) typical insertion positions. This follows from the fact that at most 2k
vertices are distinguished by a linear arrangement between every two consecutive of which, by
Lemma 27, the cutwidths at typical insertion positions form a sequence of length ≤ 2k − 1.
I Remark 32. Let 1 ≤ i ≤ s and ϕ be an insertion-typical linear arrangement of Hi with a
typical insertion position p of ϕ. Then p′ = max{q ∈ {0, . . . , |V (Hi−1)| | ϕ(ϕ|−1

Hi−1
(q)) ≤ p}

is a typical insertion position of ϕ|Hi−1
. Otherwise, assume cw(ϕ|Hi−1

, p′) to be removed in
the typical sequence of the cutwidths among which the cutwidth at p′ is considered. Because
vertices in V (Hi) \ V (Hi−1) are only inserted into typical insertion positions of ϕ|Hi−1

by
ϕ, and hyperedges that are considered in Hi but not in Hi−1 only contain vertices that are
distinguished by ϕ|Hi−1

, the cutwidth increase is uniform for the cutwidths among which
the cutwidth at p′ is considered when moving from ϕ|Hi−1

to ϕ. This contradicts p being a
typical insertion position of ϕ.

I Theorem 33. If cw(H) ≤ k, then there is an insertion-typical linear arrangement ψ of H
such that cw(ϕ) ≤ k.

IPEC 2019

20:10 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

Proof. Let ψ witness cw(H) ≤ k. ψ|H0
is trivially insertion-typical. By applying Lemma 28

to ψ|H0
and ψ we can modify ψ in a way that ψ|H1

is insertion-typical while maintaining the
same restriction to H0 and the cutwidth bound of k. (This first step is somewhat pathological,
since no actual modification is needed.)
Similarly we can use Lemma 28 on the restriction of this modified ψ to H1 and this modified ψ
to obtain a ψ with an insertion-typical restriction to H2 while maintaining the same restriction
to H1, and hence also to H0, and the cutwidth bound of k. Iterating this procedure up to s
proved the statement. J

4.2 The Dynamic Programming Procedure
Theorem 33 allows us to consider only insertion-typical linear arrangements along the
path decomposition. In the following, we describe a dynamic program to construct linear
arrangements of the trimmed subhypergraphs induced by the extra nice path decomposition
while enforcing a bound of k on their cutwidth. As is usual for algorithms processing path
decompositions, we first define our records (i.e. the information stored about each partial
solution), what they look like for the initial (empty) stage and how to infer a complete
solution from the record at the last stage. Then we describe how to update these records
when encountering introduce- and forget bags respectively.

The records. For 1 ≤ i ≤ s our record consists of the following for each insertion-typical
linear arrangement ϕ of Hi with cutwidth at most k:

The working information, which is the weak order <ϕ on {u ∈ V (H) | vu ∈ Xi} ∪
{(e, left), (e, right) | e ∈ E(H)∧ ve ∈ Xi} and the cutwidths of ϕ at each typical insertion
position, that is given in the following way:

for v, w ∈ {u ∈ V (H) | vu ∈ Xi}, v <ϕ w, iff ϕ(v) < ϕ(w);
for v ∈ {u ∈ V (H) | vu ∈ Xi}, v <ϕ (e, left), iff ϕ(v) < minw∈e∩V (Hi) ϕ(w) (analog-
ously for (e, right) and maxw∈e∩V (Hi) ϕ(w));
for v ∈ {u ∈ V (H) | vu ∈ Xi} and a typical insertion position p ∈ {1, . . . , |V (Hi)| − 1},
v <ϕ cw(ϕ, p), iff ϕ(v) < p;
for (e, left) and a typical insertion position p ∈ {1, . . . , |V (Hi)| − 1}, v <ϕ cw(ϕ, p), iff
minw∈e∩V (Hi) ϕ(w) < p (analogously for (e, right) and maxw∈e∩V (Hi) ϕ(w)); and
for typical insertion positions p and q, cw(ϕ, p) <ϕ cw(ϕ, q), iff p < q.

The solution information, which in turn consists of
a map pos : (cw(ϕ, p))p a typical insertion position of ϕ → {0, . . . , |V (Hi)|}, that associates
each cutwidth value which is stored in the working information to the typical insertion
position at which it is attained;
a pointer prec to the entry in the record at the preceding stage, that corresponds to
ϕ|Hi−1

;
and, if Xi introduces vu for some u ∈ V (H), the solution information also specifies
ins ∈ {0, . . . , |V (Hi−1)|} to be cw(ϕ|Hi−1

, p) where p is the typical insertion position of
ϕ|Hi−1

which u is inserted into by ϕ.

Then the initial record (for i = 0) is given by a single cutwidth value 0 as working information,
and the single cutwidth value 0 in the working information is mapped to position 1 by pos.
If the record at stage s is empty then there is no insertion-typical linear arrangement of
Hs = H with cutwidth at most k. In this case we output that no linear arrangement of
H satisfying cutwidth bound k exists. By Theorem 33 this means cw(H) > k. Otherwise
there is an entry in the record at stage s which corresponds to an insertion-typical linear

T. Hamm 20:11

arrangement of H with (using Remark 30) cutwidth at most k, hence in particular a solution
to k-CWLA. We can retrace this linear arrangement using the solution information: Starting
the entry in the record at stage i, iteratively traverse the entries corresponding to the
restriction at the preceding stage by using the prec-pointers in every step. Concurrently save
all encountered ins in reverse order. By definition, the j-th element of the resulting sequence
π = π1 . . . π|V (H)| describes the position of the vertex u ∈ V (H) such that vu is the j-th of
{vw | w ∈ V (H)} that is introduced in our path decomposition, relative to the j − 1 first
such vertices. This allows us to reconstruct the linear arrangement, e.g. as a linked list of
vertices of H, representing the order in which it enumerates V (H): For j = 1, . . . , |V (H)|
Set the j-th introduced vertex to be between the πj-th and (πj + 1)-th element of the list
constructed so far. As inserting into a linked list, takes constant time, the construction runs
in time linear in the number of bags of the path decomposition, which in turn is linear in the
size of the incidence graph because it is nice.

In the following we describe how to update records when encountering introduce- and
forget bags respectively. Proofs for correctness can be given by technical, but straightforward
inductions on the stage, using the properties of a nice path decomposition and Remarks 30
and 32. It is also easy to check, using the bound from Remark 31 that the runtime of each
of the given procedures lies in O(k3).

Introduce bag. Let 1 ≤ i ≤ s, assume to have the record for stage i and that Xi+1 is a bag
that introduces v ∈ GI(H). We do a case distinction on the type of v:

v = vw for some w ∈ V (H). A insertion-typical linear arrangement of Hi+1 arises from an
insertion-typical linear arrangement of Hi by inserting w into a typical insertion position
of that linear arrangement. By induction hypothesis, there is an entry in the record at
stage i for such a linear arrangement ϕ which also contains all cutwidths at typical insertion
positions of ϕ in form of the dom(<ϕ) \ V (Hi). So, for every entry of the record at stage i
which corresponds to some ϕ, and for each element c ∈ dom(<ϕ) \ V (Hi), create an entry
of the record at stage i + 1 that corresponds to the linear arrangement ϕ′ arising from ϕ

by inserting w into position pos(c) of ϕ. The working- and solution information for this
entry can be obtained in the following way: Obviously prec points to the entry for ϕ and
ins = pos(c).
Define <ϕ′ on dom(<ϕ) \ {c} ∪ {cleft, cright, w} by setting x <ϕ′ y whenever x, y ∈ dom(<ϕ)
and x <ϕ y; x <ϕ′ y if x ∈ {cleft, cright, w}, y ∈ dom(<ϕ) and c <ϕ y; and cleft <ϕ′ w <ϕ′

cright. – Intuitively, in this way we fix the correct relative position of w in ϕ. The position
corresponding to c is split up by the insertion of w into that position.
For every e ∈ {f ∈ E(H) | vf ∈ Xi+1}(= {f ∈ E(H) | vf ∈ Xi}), if w ∈ e and w <ϕ′ (e, left),
increment every cutwidth value d with w <ϕ′ d <ϕ′ (e, left) by one, and set (e, left) <ϕ′ x iff
w <ϕ′ x(, i.e. ‘(e, left) =ϕ′ w’). Similarly, if w ∈ e and (e, right) <ϕ′ w, we increment every
cutwidth value d with (e, right) <ϕ′ d <ϕ′ w by one , and set (e, right) <ϕ′ x iff w <ϕ′ x(, i.e.
‘(e, right) =ϕ′ w’). – Intuitively, in this way we increment the cutwidth values at positions at
which a hyperedge contributes to the cutwidth value only after taking w into account. If, at
any point, we surpass k by these incrementations, we abort and do not add the entry to the
record, as it corresponds to a linear arrangement violating the cutwidth bound.
For every d ∈ dom(<ϕ′) \ V (Hi+1) \ {cleft, cright}, pos remains the same, if d <ϕ′ cleft, and is
increased by one otherwise. We also set pos(cleft) to be the evaluation of the old pos of c and
pos(cright) = pos(cleft) + 1. – Intuitively this means we shift the positions in a way to make
space for the newly split position, that was created by the insertion of w.
Finally, note that after these modifications our information might include cutwidths at
positions that are no longer typical insertion positions (e.g. because the cutwidth values
around a position changed). To amend this, we can apply the typical sequence operator τ to

IPEC 2019

20:12 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

sequences of cutwidth values that are between the remaining elements of dom(<ϕ′) ∩ ({u ∈
V (H) | vu ∈ Xi} ∪ {(e, left), (e, right) | e ∈ E(H) ∧ ve ∈ Xi}) and delete the cutwidths
removed by this operation from the domains of <ϕ′ and pos. C

v = ve for some e ∈ E(H). An insertion-typical linear arrangement of Hi+1 is by definition
also an insertion-typical linear arrangement of Hi. So, for every entry of the record at
stage i which corresponds to some ϕ we create an entry of the record at stage i + 1 also
corresponding to ϕ. We need to adapt the working- and solution information to take e into
account in the cutwidths of ϕ: Let prec point to the entry corresponding to ϕ in the record
at stage i. Because of the extra niceness of our path decomposition there is at least one
vertex of e represented in Xi+1. Let v be the <ϕ-minimal, and v′ to be the <ϕ-maximal
w ∈ e ∩ {w ∈ V (H) | vw ∈ Xi+1} (v = v′ is possible). Set (e, left) <ϕ′ x iff v <ϕ′ x(, i.e.
‘(e, left) =ϕ′ v’) and set (e, right) <ϕ′ x iff v′ <ϕ′ x(, i.e. ‘(e, right) =ϕ′ v

′’). – Intuitively, we
find the outermost vertices of e and set the markers (e, left) and (e, right) correspondingly.
Leave <ϕ and pos unchanged.
Increment all cutwidth values c ∈ dom(<ϕ′) with (e, left) <ϕ′ c <ϕ′ (e, right) by one. –
Intuitively this corresponds to counting e in all cutwidth values, to which it contributes when
it is considered. If we surpass k as a cutwidth value by these incrementations, we abort and
do not add the entry to the record, as it corresponds to a linear arrangement violating the
cutwidth bound. Because this incrementation actually only changes the cutwidth values
uniformly for a sequence of cutwidths between distinguished vertices, the typical insertion
positions remain unchanged by the consideration of e. C

Forget bag. Let 1 ≤ i ≤ s, assume to have the record for stage i and that Xi+1 is a bag that
forgets v ∈ GI(H). By definition, in this situation, an insertion-typical linear arrangement
of Hi+1 is also an insertion-typical linear arrangement of Hi. Moreover the cutwidth values
of any such linear arrangement do not change when moving from Hi to Hi+1. Thus, we
only have to remove elements from the domain of <ϕ after forgetting v and make exactly
the same amends described in the last paragraph of the case of a bag introducing vw with
w ∈ V (H), because the removal of certain distinguished vertices might lead to fewer typical
insertion positions. For the first step, we remove w from the domain of <ϕ, if v = vw, and
remove (e, left) and (e, right) from the domain of <ϕ, if v = ve.

As presented, the dynamic program solves k-CWLA, given a path decomposition of
width at most k, in time in O(|V (H)| · b · k4), where b is a bound on the largest number
of insertion-typical linear arrangements with cutwidth at most k at a stage. However, at
closer inspection, we realise that during the dynamic program solution information is only
used to update solution information, and never working information. What is more, solution
information is never used to check the cutwidth bound, i.e. to exclude potential linear
arrangements, but solely to reconstruct a solution, after a successful traversal of the path
decomposition. This implies that actually two insertion-typical linear arrangements with
cutwidth at most k can be either both or both not be extended to such a linear arrangement
of H if they imply the same solution information. Thus during the algorithm, we only need
to add an entry to a record at stage i, if there is no entry with the same solution information
already. With this additional argument the runtime of the algorithm lies in O(|V (H)| ·w ·k3),
where w is the number of possibilities for working information of an insertion-typical linear
arrangement with cutwidth at most k. We can bound w by (2k)! ·(8

3 22k)2k−1 using Lemma 26
and the bounded width of the path decomposition.

T. Hamm 20:13

Thus we obtain a linear time algorithm for k-CWLA, by first checking the vertex degree
property, in case of a positive answer computing an extra nice tree decomposition and, in
case of success applying the described dynamic program, and outputting cw(H) > k if any
stage fails.

I Theorem 34. k-CWLA can be solved in time in O(|V (H)|) and O∗(2O(k2)).

5 Future Work – Using a Tree Decomposition of the Incidence Graph

One can show that the cutwidth of a hypergraph is equal to the product of its maximum
vertex degree and the pathwidth of its incidence graph. Hence our algorithm immediately
infers an algorithm for solving the Minimum Cut Linear Arrangement Problem in
FPT-time parameterised by the maximum vertex degree and the pathwidth of its incidence
graph. Reductions in literature show that dropping the restriction on the incidence pathwidth
results in NP-hardness [9, Corollary 2.10], and can easily be modified to show the same for
dropping the restriction on the maximum vertex degree [9, slight modification of the proof of
Lemma 2.4]. (It is not difficult to see that graphs of bounded path- or treewidth also have
bounded incidence path- or treewidth respectively.) In this sense, the algorithm is tight.

However the natural question arises, whether incidence pathwidth can be generalised to
incidence treewidth. This has been successfully achieved for the analogous algorithm for
k-CWLA restricted to graphs [12], and also seems possible for hypergraphs. The idea is,
to extend the given dynamic program to also be able to handle tree decompositions of the
incidence graph, by specifying the behaviour at join bags. In this situation partial linear
arrangements for each trimmed subhypergraph corresponding to a bag immediately below the
join bag have to “interleave”. The number of possibilities for them to do so, is linear in the size
of the hypergraph, however we can argue as in Section 4.1 that only interleaving at typical
insertion positions of the respective partial linear arrangements needs to be considered.

References

1 Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM Journal on Computing, 25:1305–1317, December 1996. doi:10.1137/
S0097539793251219.

2 Hans L. Bodlaender and Ton Kloks. Efficient and Constructive Algorithms for the Pathwidth
and Treewidth of Graphs. Journal of Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.
1996.0049.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

4 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of
matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1695–1704, 2016.
doi:10.1137/1.9781611974331.ch116.

5 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite con-
gruence. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez Artalejo, editors,
Automata, Languages and Programming, pages 532–543, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

6 Fillia Makedon and Ivan Hal Sudborough. On Minimizing Width in Linear Layouts. Discrete
Appl. Math., 23(3):243–265, June 1989. doi:10.1016/0166-218X(89)90016-4.

IPEC 2019

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1137/1.9781611974331.ch116
https://doi.org/10.1016/0166-218X(89)90016-4

20:14 Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

7 Fillia S. Makedon, Christos H. Papadimitriou, and Ivan H. Sudborough. Topological bandwidth.
In Giorgio Ausiello and Marco Protasi, editors, CAAP’83, pages 317–331, Berlin, Heidelberg,
1983. Springer Berlin Heidelberg.

8 Zevi Miller and Ivan Hal Sudborough. A Polynomial Algorithm for Recognizing Bounded
Cutwidth in Hypergraphs. Mathematical Systems Theory, 24(1):11–40, 1991. doi:10.1007/
BF02090388.

9 Burkhard Monien and Ivan Hal Sudborough. Min Cut is NP-Complete for Edge Weighted
Treees. Theor. Comput. Sci., 58:209–229, 1988.

10 Neil Robertson and P.D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinat-
orial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

11 Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.
12.001.

12 Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005. doi:
10.1016/j.jalgor.2004.12.003.

13 René van Bevern. Fixed-parameter linear-time algorithms for NP-hard graph and hypergraph
problems arising in industrial applications. PhD thesis, Berlin Institute of Technology, 2014.
URL: http://d-nb.info/1058974750.

14 René van Bevern, Rodney G. Downey, Michael R. Fellows, Serge Gaspers, and Frances A.
Rosamond. Myhill-Nerode Methods for Hypergraphs. Algorithmica, 73(4):696–729, December
2015. doi:10.1007/s00453-015-9977-x.

15 Dong Wang, Edmund M. Clarke, Yunshan Zhu, and James H. Kukula. Using cutwidth to
improve symbolic simulation and Boolean satisfiability. In Proceedings of the Sixth IEEE
International High-Level Design Validation and Test Workshop 2001, Monterey, California,
USA, November 7-9, 2001, pages 165–170, 2001. doi:10.1109/HLDVT.2001.972824.

https://doi.org/10.1007/BF02090388
https://doi.org/10.1007/BF02090388
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.003
https://doi.org/10.1016/j.jalgor.2004.12.003
http://d-nb.info/1058974750
https://doi.org/10.1007/s00453-015-9977-x
https://doi.org/10.1109/HLDVT.2001.972824

The Independent Set Problem Is FPT for
Even-Hole-Free Graphs
Edin Husić
Department of Mathematics, LSE, Houghton Street, London, WC2A 2AE, United Kingdom
e.husic@lse.ac.uk

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Institut Universitaire de France, Paris, France
stephan.thomasse@ens-lyon.fr

Nicolas Trotignon
Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, LIP, F-69342,
Lyon Cedex 07, France
nicolas.trotignon@ens-lyon.fr

Abstract
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a
cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the
complexity of computing a maximum independent set (MIS) is a long-standing open question in
even-hole-free graphs. From the hardness point of view, MIS is W[1]-hard in the class of graphs
without induced 4-cycle (when parameterized by the solution size). Halfway of these, we show in
this paper that MIS is FPT when parameterized by the solution size in the class of even-hole-free
graphs. The main idea is to apply twice the well-known technique of augmenting graphs to extend
some initial independent set.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases independent set, FPT algorithm, even-hole-free graph, augmenting graph

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.21

Funding The second and third named authors are partially supported by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-
11-IDEX-0007) operated by the French National Research Agency (ANR).

Acknowledgements The majority of paper was prepared while the first named author was a student
at ENS de Lyon.

1 Introduction

Given a (finite, simple, undirected) graph G = (V,E) we say that a subset of vertices I ⊆ V
is independent if every two vertices in I are non-adjacent. The maximum independent set
problem is the problem of finding an independent set of maximum cardinality in a given
graph G. This problem is NP-hard even for planar graphs of degree at most three [5], unit
disk graphs [3], and C4-free graphs [1]. , To see that the independent set problem is NP-hard
in the class of C4-free graphs, one can use the following observation by Poljak [10]. Namely,
α(G′) = α(G) + 1 where the graph G′ is obtained from G by replacing a single edge with a
P4 (i.e., subdividing it twice). By replacing every edge with a P4 we obtain a graph that has
girth at least nine, and thus MIS is NP-hard for C4-free graphs. Similarly, MIS is NP-hard
for the class of graphs with girth at least l, where l ∈ N is fixed.

On the contrary, when the input is restricted to some particular class of graphs the
problem can be solved efficiently. Examples of such classes are bipartite graphs [8], chordal

© Edin Husić, Stéphan Thomassé, and Nicolas Trotignon;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.husic@lse.ac.uk
mailto:stephan.thomasse@ens-lyon.fr
mailto:nicolas.trotignon@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.IPEC.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

graphs [6] and claw-free graphs [9, 11]. The maximum independent set problem is also
polynomially solvable when the input is restricted to the class of perfect graphs using the
ellipsoid method [7], but it remains an open question to find a combinatorial algorithm1 in
this case. In fact, we do not even have a combinatorial FPT algorithm for the maximum
independent set problem on perfect graphs.

Closely related to the class of perfect graphs is the class of even-hole-free graphs. The class
of even-hole-free graphs was introduced as a class structurally similar to the class of Berge
graphs. We say that a graph is Berge if and only if it is odd-hole-free and odd-antihole-free,
i.e., {C5, C7, C7, C9, C9, . . . }-free2. The similarity follows from the fact that by forbidding
C4, we also forbid all antiholes on at least 6 vertices. Hence, an even-hole-free graph does not
contain an antihole on at least 6 vertices, i.e., it is {C4, C6, C6, C7, C8, C8 . . . }-free. It should
be noted that techniques obtained in the study of even-hole-free graphs were successfully
used in the proof of the Strong Perfect Graph Theorem. A decomposition theorem, an
algorithm for the maximum weighted clique problem and several other polynomial algorithms
for classical problems in subclasses of even-hole-free graphs can be found in survey [12].

We denote by α(G) the maximum cardinality of an independent set in a graph G. In this
paper we consider a parameterized version of the problem, that is we consider the following
decision problem.

Independent Set:
Input: A graph G.

Parameter: k.
Output: true if α(G) ≥ k and false otherwise.

We say that a problem is fixed parameter tractable (FPT) parameterized by the solution
size k, if there is an algorithm running in time O(f(k)nc) for some function f and some
constant c. More generally, a problem is fixed parameter tractable with respect to the
parameter k (e.g. solution size, tree-width, ...) if for any instance of size n, it can be solved
in time O(f(k)nc) for some fixed c. Usually, we consider whether a problem is FPT if the
problem is already known to be NP-hard. In that case, the function f is not in any way
bounded by a polynomial. In other words, for fixed parameter tractable problems, the
difficulty is not in the input size, but rather in the size of the solution (parameter). In
general, the Independent Set problem is not fixed-parameter tractable (parameterized
by the size of solution) unless W[1]=FPT or informally, we believe that there is no FPT
algorithm for the problem [4]. Recently, it has been shown that MIS is W[1]-hard for C4-free
graphs [2]. Even stronger, the same paper proves that MIS is W[1]-hard in any family of
graphs defined by finitely many forbidden induced holes.

While the exact complexity of the maximum independent set problem is still open for the
class of even-hole-free graphs, we present a step forward by showing that there is an FPT
algorithm for the problem.

Main idea

Our algorithm is based on the augmentation technique. More precisely, in order to compute
a solution of size k + 1, we compute disjoint solutions of size k. The main property we use
is that the union of two independent sets in an even-hole-free graph induces a forest. The

1 The term combinatorial algorithm is used for an algorithm that does not rely on the ellipsoid method.
2 Berge graphs are exactly perfect graphs by the Strong Perfect Graph Theorem.

E. Husić, S. Thomassé, and N. Trotignon 21:3

key-point of our algorithm is that if W,X are disjoint solutions of size k, and Y is some
(unknown) solution of size k + 1, then the two trees induced by X ∪ Y and W ∪ Y are very
constrained. This leads to a reduction to the chordal graph case, where MIS is tractable by
dynamic programming.

Preliminaries

We consider finite, simple and undirected graphs. For a graph G = (V,E) we write uv ∈ E
for an edge {u, v} ∈ E(G), in this case u and v are adjacent. For a vertex v ∈ V (G) we
denote by NG(v) = {u ∈ V : uv ∈ E} the neighborhood of v and for W ⊆ V , we define
NG(W) = ∪w∈WNG(w) \W . We drop the subscript when it is clear from the context. Let
S ⊆ V . We say that S is complete to W if every vertex in S is adjacent to every vertex in W .
The induced subgraph G[W] is defined as the graph H = (W,E ∩

(
W
2
)
) where

(
W
2
)
is the set

of all unordered pairs in W . For a set A we denote by A2 the set of all ordered pairs with
elements in A. The graph G[V \W] is denoted G \W and when W = {w} we write G \ w.
A subset of vertices is called a clique if all the vertices are pairwise adjacent. A chordless
cycle on at least four vertices is called a hole. A hole is even (resp. odd) if it contains an
even (resp. odd) number of vertices. A path is a graph obtained by deleting one vertex of
a chordless cycle. A path with endvertices u, v is called a u, v-path. Given a path Z and
two of its vertices v, u we denote by vZu the smallest subpath of Z containing v and u. An
in-arborescence is an orientation of a tree in which every vertex apart one (the root) has
outdegree one.

2 Reduction steps and augmenting graphs

Our main goal is to show that the following problem is FPT.

Independent Set in Even-Hole-Free Graphs (ISEHF):
Input: An even-hole-free graph G.

Parameter: k.
Output: An independent set of size k if α(G) ≥ k and false otherwise.

We define a simpler version of the ISEHF problem where we know more about the
structure of G. Later, we show that it suffices to find an FPT algorithm for the simpler
version.

Transversal Independent Set in Even-Hole-Free Graphs (TISEHF):
Input: An even-hole-free graph G and a partition of V (G) into cliques X1, . . . , Xk.

Parameter: k.
Output: An independent set of size k if α(G) ≥ k and false otherwise.

Note that in TISEHF, an independent set of size k must intersect every clique on exactly
one vertex, i.e., it must traverse all cliques.

I Lemma 1. The ISEHF problem is FPT if and only if the TISEHF problem is FPT.

Proof. Note that the only if implication is obvious, so we assume that we already have an
FPT algorithm A for TISEHF, and provide one for ISEHF. We claim that it suffices to
exhibit an algorithm B running in time g(k)nc which takes as input the pair (G, k) and either
outputs an independent set of size k or a cover of V (G) by 2k−1 − 1 cliques. Indeed, one

IPEC 2019

21:4 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

then just has to apply algorithm A to every possible choice of k disjoint cliques induced by
the 2k−1 − 1 cliques which are output by B. We describe B inductively on k: If k = 2, then
G is either a clique, or contains two non-adjacent vertices x, y. When k > 2, we compute two
non-adjacent vertices x, y (or return the clique G). We now apply B to the graph induced by
the set X of non-neighbors of x: we either get an independent set of size k − 1 (in which
case we are done by adding x) or cover X by 2k−2 − 1 cliques. We apply similarly B to the
set Y of non-neighbors of y. Note that X ∪ Y covers all vertices of G except the common
neighbors N of x and y. Since G is C4-free, N is a clique, and therefore we have constructed
a cover of V (G) by 2(2k−2 − 1) + 1 cliques. J

We turn to our main result. In the rest of this section we further reduce the problem to a
graph together with two particular trees. Section 3 defines the notion of bi-trees and shows
how two trees interact under certain conditions. Then, in Section 4, we prove that bi-trees
arising from even-hole-free graphs satisfy these conditions and conclude the algorithm.

I Theorem 2. The TISEHF problem is FPT.

Proof. We assume that we have already shown that there is an algorithm A which solves
TISEHF(G, j) in time O(f(j)n3) for every j ≤ k. Our goal is to extend this by showing
that f(k + 1) exists. Our input is a partition of G into cliques X1, . . . , Xk, Xk+1 (which
we call parts) and we aim to either find an independent set intersecting all parts or show
that none exists. In what follows, we assume that an independent set Y = {y1, . . . , yk, yk+1}
intersecting all parts exists, and whenever a future argument will end up with a contradiction,
this will always be a contradiction to the existence of Y , and thus our output will implicitly
be false.

The first step is to apply A to X1, . . . , Xk to compute an independent set W =
{w1, . . . , wk}. If it happens that W ∩ Y 6= ∅, we guess which wi belongs to Y and run
A on the k remaining parts in which we have deleted all neighbors of wi. This costs k calls
to TISEHF(G, k) which is in our budget. So we may assume that W is disjoint from Y , and
even stronger that no vertex of W belongs to an independent set of size k + 1, since one of
the previous k calls would have detected it. Moreover, since there is no even hole, W ∪ Y
induces a forest T1. Note that no vertex of W is isolated in T1 since the parts are cliques.
Note also that T1 cannot have a leaf wi in W , since wi would belong to an independent set
of size k + 1 by exchanging it with yi. Thus every vertex of W has degree at least two in T1.
Since the number of edges of T1 is at most 2k, we have that every vertex of W has degree 2
and T1 is a tree.

As there is only h(k) possible choices for the structure of T1, we call h(k) branches of
computations for each of these choices of T1. This means that in each call, we only keep the
vertices of the parts Xi which corresponds to the possible neighborhoods of vertices of W .
For instance, in the call corresponding to a tree T1 in which w1 is adjacent to y1 and y2, we
delete all neighbors of w1 in parts X3, . . . , Xk+1 and delete all non-neighbors of w1 in X2
(no further cleaning is needed in X1 since it is a clique). Therefore, we assume that every
vertex of W is complete to exactly two parts (including its own) and non-adjacent to others.
Moreover, we define a white tree on vertex set {1, . . . , k + 1} by having an edge between i
and j if there exists a vertex w of W which is complete to Xi and Xj . We will refer to this
vertex w as wi,j . In what follows, we do not consider anymore that the vertices of W belong
to the parts Xj and rather see them as external vertices of our problem. Thus, since we are
free to rename the parts, we can assume that k + 1 is a leaf of the white tree.

This is the crucial point of the algorithm, we have obtained a more structured input,
but unfortunately we could not directly take advantage of it to conclude the main theorem.

E. Husić, S. Thomassé, and N. Trotignon 21:5

Instead, we apply again algorithm A to X1, . . . , Xk to compute a second independent set
X = {x1, . . . , xk} (if such an X does not exist, we thus return false as Y cannot exist).
As done previously, we may assume that X is disjoint from Y , the tree T2 spanned by
X ∪ Y can also be guessed, and the degrees of vertices of X in T2 is two (see Figure 1,
down-left). We now interpret T2 in a slightly different way: we root T2 at yk+1 and orient
all the edges toward the root. By doing so, every edge {xi, yi} gives the arc yixi while the
unique neighbor yr(i) of xi, which is different from yi, gives the arc xiyr(i). We now further
clean the parts Xj as follows: for every xi, we delete all neighbors of xi in Xj for j 6= i, r(i),
and we delete all non-neighbors of xi in Xr(i). We now have two trees which endow our
parts: the white tree and the red in-arborescence defined on vertex set {1, . . . , k + 1} by the
arc set {ir(i) : i = 1, . . . , k}. Our tool is now ready: the correlation between these two trees
will provide an O(k · n3) time algorithm to compute Y , or show that Y does not exist. We
now turn to a special section devoted to bi-trees, i.e., trees defined on the same set of vertices
under some structural constraints.

3 Bi-trees

Let V be a set of vertices. A bi-tree is a triple T = (V,A,E) where E ⊆
(

V
2
)
is a set of edges

such that (V,E) is a tree and A ⊆ V 2 is a set of arcs such that (V,A) is an in-arborescence.
For convenience, we view edges of (V,E) as white edges, and arcs of (V,A) as red arcs.

A separation of a bi-tree is a triple (v,X, Y) such that:
V is partitioned into nonempty sets {v}, X and Y ,
no white edge has an end in X and an end in Y , and
no red arc has an end in X and an end in Y .

When the sets X and Y are clear from the context, we will simply say that v is a
separation. Note that if (v,X, Y) is a separation of a bi-tree (V,E,A), then (X ∪ {v}, A ∩
(X ∪ {v})2, E ∩

(
X∪{v}

2
)
) is the bi-tree induced by T \ Y . Observe that if the root is not in

X, then T \ Y is rooted at v.
Let T = (V,A,E) be a bi-tree and a, b, v be three distinct vertices of V . Let Pab be a

white path from a to b, of length one or two. Let Pav be a directed red path, from a to v, of
length at least one. Let Pbv be a directed red path, from b to v, of length at least one. We
suppose that the three paths are internally vertex disjoint (meaning that if a vertex is in
at least two of the paths, then it must be a, b or v). Three such paths are said to form an
obstruction directed to v.

Let T = (V,A,E) be a bi-tree and a, b, c, d be four distinct vertices of V . Let Pab be a
white path from a to b, Pbc be a red path which is directed from b to c or from c to b, Pcd be
a white path from c to d and Pda be a red path which is directed from d to a or from a to
d. Suppose that at least one of Pab, Pcd has length exactly one and that the four paths are
internally vertex disjoint. Four such paths are said to form an alternating obstruction.

A bi-path is a bi-tree T = (V,A,E) on at least two vertices with an ordering v1, . . . , vn of
V and an integer t such that:

A = {v1v2, . . . , vn−1vn},
v1vn ∈ E,
1 ≤ t ≤ n− 1,
if t ≥ 2, then {v1v2, . . . , v1vt} ⊆ E, and
if t ≤ n− 2, then {vt+1vn, . . . , vn−1vn} ⊆ E.

IPEC 2019

21:6 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

I Lemma 3. A bi-tree T = (V,A,E) on at least two vertices, with no separation, no directed
obstruction and no alternating obstruction is a bi-path.

Proof. Case 1 : (V,A) contains some vertex with in-degree at least 2.
We choose such a vertex v as close as possible to the root r of (V,A). Since (V,A) is an

in-arborescence, (V,A) \ v has at least m ≥ 2 in-components A1, . . . , Am and possibly one
out-component B. By the choice of v, every vertex of B has in-degree exactly 1. Therefore
(B ∪ {v}, A ∩ (B ∪ {v})2) is a directed red path from v to r, that we call Z. We now state
and prove two claims.

B Claim 4. For any 1 ≤ i < j ≤ m, there is no white edge with one end in Ai and one end
in Aj .

Proof. Indeed, such an edge would yield an obstruction directed to v. C

B Claim 5. For every 1 ≤ i ≤ m, there exists a white edge with one end in Ai and one end
in B (so, in particular, B exists).

Proof. For otherwise, Claim 4 implies that (v,Ai, V \ (Ai ∪ {v}) is a separation. C

Let P = v, . . . , z be the shortest white path such that z ∈ B where all internal vertices of
P are in A1 ∪ · · · ∪Am (P has possibly length 1). By Claim 4, P contains vertices from at
most one component, say possibly A2, among A1, . . . , Am. By Claim 5, there exists a vertex
x ∈ A1 with a white neighbor w in B. Let Q be the directed red path from x to v.

If w is an internal vertex of vZz then the edge xw, the directed path wZz, the path P ,
and the directed path Q form an alternating obstruction. If w is a vertex of zZr different
from z, then the edge xw, the directed path zZw, the path P , and the directed path Q form
an alternating obstruction. If follows that w = z.

If P has length greater than 1, then in particular z has a white neighbor y in A2. Now,
the white path xzy and the in-components A1 and A2 yield an obstruction directed to v. So,
P has length 1. Consider, by Claim 5, a vertex y′ in A2 with a neighbor in B. The previous
argument, with A1 and A2 interchanged, shows that y′ is adjacent to z (just as we proved
that x is adjacent to z). Again, the white path xzy′ and the red in-components A1 and A2
yield an obstruction directed to v.

Case 2 : Every vertex in (V,A) has in-degree at most 1.
Since (V,A) is an in-arborescence, it follows that (V,A) is a directed path. Hence, there

exists an ordering v1, . . . , vn of the vertices of T such that A = {v1v2, . . . , vn−1vn}.
Suppose that there exists a white edge vivj with 1 < i < j < n. Then

there exists a white edge vi′vk between {v1, . . . , vi−1} and {vi+1, . . . , vn} for otherwise
(vi, {v1, . . . , vi−1}, {vi+1, . . . , vn}) is a separation. If k < j there is an alternating obstruction,
and also if k > j. It follows that k = j. We proved that there exists a white edge vi′vj ,
with i′ < i. By a symmetric argument, we can prove that there exists j′ > j and a white
edge vivj′ . Now, the white edges vi′vj , vivj′ and the red paths vi′ . . . vi and vj . . . vj′ form
an alternating obstruction.

Thus there is no white edge vivj with 1 < i < j < n. Hence, every white edge is incident
to v1 or to vn. If there exist two white edges v1vj and vivn with 1 < i < j < n, there is an
alternating obstruction, again a contradiction. Hence, if we define t as the greatest integer in
{2, . . . , n− 1} such that v1 is adjacent to vt in (V,E) (with t = 1 if v1 has no white neighbor
among v2, . . . , vn−1), we have that vn has no white neighbor among {v2, . . . , vt−1}. Since
every vertex has a white neighbor, it follows that v1 is white-complete (complete in (V,E))

E. Husić, S. Thomassé, and N. Trotignon 21:7

to {v2, . . . , vt} (when t ≥ 2). For the same reason, vn is white-complete to {vt+1, . . . , vn−1}
(when t ≤ n− 2).

If t > 1 and vtvn is a white edge, then (vt, {v1, . . . , vt−1}, {vt+1, . . . , vn}) is a separation.
So, if t > 1 then v1vn is a white edge, and also if t = 1. J

Given two bi-trees T1, T2 and a vertex v of T1, we denote by (T1, v, T2) the bi-tree obtained
by gluing T2 at v on T1, i.e., by identifying the root of T2 with v. A bi-spider is a bi-tree
which is obtained by iteratively gluing bi-paths at the root vertex (see Figure 1, right; a
bi-spider is induced by the set {1, 3, 4, 7, 5}). Alternatively, a bi-spider is a bi-tree with no
directed obstruction and no alternating obstruction, which is either a bi-path or has only the
root as a separation vertex.

Let T be a bi-tree with no directed obstruction and no alternating obstruction. Note that
the previous lemma asserts that T can be obtained by iteratively gluing bi-paths. Indeed, a
separation v which is chosen as far as possible from the root must isolate a bi-path.

Consider a vertex v of a bi-tree T . Since T can be obtained by iteratively gluing bi-paths,
if v is not a separation then it is a vertex in T which is not used in gluing. Thus, the following
property holds for T : every vertex v which is not the root is either a separation vertex, a
leaf of the white tree, or a leaf of the red in-arborescence. We use it to obtain the following
result:

I Corollary 6. A bi-tree T = (V,A,E) on at least two vertices, with no directed obstruction
and no alternating obstruction is either a bi-spider, or admits a separation (v,X, Y) such
that
(a) T \ Y is a bi-spider,
(b) v is either a leaf of the red in-arborescence induced by T \X or a leaf of the white tree

induced by T \X.

Proof. If T = (V,A,E) is not a bi-spider, it has a separation (v,X, Y) distinct from the
root, and we assume that among all choices, v is chosen as far as possible from the root r
of the red in-arborescence. W.l.o.g., we assume that Y contains r. Then T \ Y is a bi-tree
rooted at v which can only admit v as a separation. Hence, T \ Y is a bi-spider. Assume
moreover that Y is chosen minimum by inclusion for this property (equivalently, T \ Y is a
maximum bi-spider rooted at v). We claim that v is not a separation in bi-tree T \X. If v is
a separation in T \X isolating a bi-path, then we have a contradiction to the minimality of
Y . If v is a separation not isolating a bi-path, then we have a contradiction to the choice of
v. Hence, T \X is a bi-tree in which v is not a separation. Since v is not the root either, it
follows that v is a white leaf or a red leaf in T \X. J

I Note 7. A separation isolating a bi-spider with the properties (a) and (b) can be found
efficiently. In particular, we find a separation (v,X, Y) isolating a path and then take the
maximal (inclusion-wise) set X such that T \ Y is still a bi-spider.

4 The end of the proof

We now resume our proof of Theorem 2 as follows. Lemma 8 shows that the bi-trees arising
from even-hole-free graphs do not have the obstructions. Hence, we can use the results from
Section 3 where we proved that a bi-tree is either a bi-spider or has a separation isolating
a bi-spider. Lemma 9 gives an algorithm for the problem when the underlying bi-tree is a
bi-spider. When the bi-tree is obtained by gluing bi-spiders, Lemma 13 proves that combining
the partial solutions for each of the bi-spiders produces a valid solution.

IPEC 2019

21:8 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

X1 X2

X4 X5 X6

X7 X8

X3

x3
x4

x1

x2

x6

x7

x5

w3,4

w5,7

w5,8

w5,6

w2,5
w1,5

w4,5

3 4 5 6

7 8

1 2

3

4
5 6

7

8

1
2

x3 x4

x1

x2

x6

x7

x5

w3,4

w5,7
w5,8

w5,6

w2,5w1,5

w4,5

1

5

5

4 3 7

2 6 8

y1 y2

y6

y4y3

y7 y8

y5

5

Figure 1 Up-left: Graph G. Down-left: Set of yi’s. Up-right: White tree. Middle-right: Red
in-arborescence. Down-right: Decomposition of bi-tree into bi-paths.

Let us recall the hypothesis of Theorem 2 (see Figure 1):
1. The set of vertices of G is partitioned into k + 1 cliques X1, . . . , Xk+1 and an additional

set W consisting of k vertices wa1b1 , . . . , wakbk
.

2. Every waibi
is completely joined to the two parts Xai

and Xbi
and has no neighbor in

the other parts.
3. The set of pairs E = {{ai, bi} : i = 1, . . . , k}, seen as edges on the vertex set V =
{1, . . . , k + 1}, forms a white tree in which k + 1 is a leaf.

4. Every Xi, with 1 ≤ i ≤ k contains a particular vertex xi.
5. The set {x1, . . . , xk} is an independent set.
6. For every vertex xi, there is some r(i) 6= i such that xi is completely joined to Xr(i) \xr(i)

(which is just Xr(i) when r(i) = k + 1).
7. The vertex xi is non-adjacent to every vertex of Xj , when j 6= i or j 6= r(i).
8. The set of ordered pairs A = {(i, r(i)) : i = 1, . . . , k}, seen as arcs on the vertex set

V = {1, . . . , k + 1}, forms a red in-arborescence rooted at k + 1.

We then have a bi-tree T = (V,E,A) on the vertex set V = {1, . . . , k + 1}. Furthermore,
we want to decide if every part Xi, with 1 ≤ i ≤ k+ 1 contains a particular vertex yi distinct
from xi and such that the set of these yi’s forms an independent set.

I Lemma 8. If G has no even holes and a set Y exists, then T = (V,E,A) has no directed
obstruction and no alternating obstruction.

Proof. Let us assume that we have a directed obstruction, i.e., we have three distinct vertices
a, b, v of V , a white path Pab from a to b of length one or two, a directed red path Pav of the
form a = a0, a1, . . . , ar = v, and a directed red path Pbv of the form b = b0, b1, . . . , bs = v.

E. Husić, S. Thomassé, and N. Trotignon 21:9

xj1

wj1,j3

wj1,k+1

wj1,j2

yj1 yj2 yj3 yjsj−1

wjsj−1,k+1

xj2 xj3 xjsj−1

wk+1,i1

yi1

xi1
yi2xi2

wi2,i1

xisi−1
yisi−1

wk+1,isi−1

Figure 2 An example for Lemma 9.

Our goal is to exhibit an even hole in G. The path Pab is either ab or acb and corresponds in G
to the path P1 which is either xa, wab, xb or xa, wac, yc, wcb, xb. The path corresponding to Pav

is P2 = xa0 , ya1 , xa1 , . . . , yar and the path corresponding to Pbv is P3 = xb0 , yb1 , xb1 , . . . , ybs .
Note that C = P1 ∪P2 ∪P3 is an even length cycle. Moreover, since each xi in C is complete
to only one class Xj apart from its own, there is no chord in C, a contradiction.

Let us assume that we have an alternating obstruction on four distinct vertices a, b, c, d
of V . Two cases arise depending of the direction of the two red paths. When their directions
are the same, we have a white path Pab from a to b, a red path Pbc directed from b to
c, a white path Pcd from c to d, and a red path Pad directed from a to d. By definition
of alternating obstruction the four paths are internally vertex disjoint. Assuming that
Pab is of the form a = a0, a1, . . . , ar = b, we consider in G the corresponding path P1 =
xa0 , wa0a1 , ya1 , wa1a2 , ya2 , wa2a3 , . . . , xar . Assuming that Pbc is of the form b = b0, b1, . . . , bs =
c, we consider in G the corresponding path P2 = xb0 , yb1 , xb1 , . . . , ybs

. Assuming that Pad

is of the form a = d0, d1, . . . , du = d, we consider in G the corresponding path P3 =
xd0 , yd1 , xd1 , . . . , ydu

. Finally, if Pcd is of the form c = c0, c1, . . . , cv = d, we consider in G
the corresponding path P4 = yc0 , wc0c1 , yc1 , wc1c2 , yc2 , . . . , ycv .

When the red paths are in the opposite direction; we have a white path Pab from a to
b, a red path Pbc directed from b to c, a white path Pcd from c to d and a red path Pda

directed from d to a. Again, the four paths are internally vertex disjoint. Assuming that
Pab is of the form a = a0, a1, . . . , ar = b, we consider in G the corresponding path P1 =
ya0 , wa0a1 , ya1 , wa1a2 , ya2 , wa2a3 , . . . , xar

. Assuming that Pbc is of the form b = b0, b1, . . . , bs =
c, we consider in G the corresponding path P2 = xb0 , yb1 , xb1 , . . . , ybs

. Assuming that Pda

is of the form d = d0, d1, . . . , du = a, we consider in G the corresponding path P3 =
xd0 , yd1 , xd1 , . . . , ydu

. Finally, if Pcd is of the form c = c0, c1, . . . , cv = d, we consider in G
the corresponding path P4 = yc0 , wc0c1 , yc1 , wc1c2 , yc2 , . . . , xcv .

Note that both P1, P4 are even length paths, and P2, P3 are odd length. Consequently
C = P1 ∪ P2 ∪ P3 ∪ P4 is an even length cycle. Moreover, no chord can arise so C is an even
hole, a contradiction. J

By Corollary 6, the bi-tree T = (V,E,A) is either a bi-spider, or has a separation i

isolating a bi-spider. We first conclude in the case of bi-spiders.

I Lemma 9. If T is a bi-spider then there is an O(n3) time algorithm which computes Y or
shows that Y does not exist.

Proof. Recall that a bi-spider is a graph obtained by iteratively gluing bi-paths at the
root vertex. Denote with T1, . . . , Tl the bi-paths glued at the root vertex k + 1 to obtain
T . Moreover, assume that the in-arborescence Tj is a directed path j1, . . . , jsj

= k + 1 for
1 ≤ j ≤ l. Since each Tj is a bi-path, there is a vertex wj1,jsj

and for some value tj ∈
{2, . . . , sj} (if any) we have the vertices {wj1,j2 , . . . , wj1,jtj

} and {wjtj +1,jsj
, . . . , wjsj−1,jsj

}
(see Figure 2).

IPEC 2019

21:10 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

We decide if Y exists in two phases. First, for every 1 ≤ j ≤ l we find the set Yj1 of all
vertices yj1 which are contained in an independent set of size tj intersecting Xj1 , . . . , Xjtj

.
(Intuitively, Yj1 is the of vertices which can be extended to an independent set traversing
Xj1 , . . . , Xjtj

, i.e., all the parts that have a common white neighbor with yj1 except Xk+1.)
Clearly, if Yj1 is empty for some j then the set Y does not exist.

Secondly, we find the set Yk+1 of vertices yk+1 which are contained in an independent set
of size k−

∑l
j=1 tj intersecting Yj1 and Xjtj +1 , . . . Xjsj−1 for all 1 ≤ j ≤ l. (Intuitively, Yk+1

is the set of vertices which can be extended to an independent set traversing all the parts
that have a common white neighbor with yk+1.) Again, if Yk+1 is empty then the set Y does
not exists.

We first assume that we have the sets Yj1 ’s and Yk+1 and show how to conclude the
lemma in this case. Later, we show that the sets are easy to find. Let yk+1 ∈ Yk+1 and let
J = {yk+1} ∪l

j=1 {yj1} ∪l
j=1 {yjtj +1 , . . . , yjsj−1} be an independent set of size k −

∑l
j=1 tj

intersecting all Yj1 and Xjtj +1 , . . . Xjsj−1 . For each 1 ≤ j ≤ l, denote with Ij = {yj1 , . . . , yjtj
}

an independent set which contains yj1 and intersects Xj1 , . . . , Xjtj
. Observe that the set

Y = J ∪l
j=1 Ij intersects each part of the graph. It suffices to prove the following claim.

B Claim 10. J ∪l
j=1 Ij is also an independent set.

Proof. For the sake of contradiction suppose otherwise. We consider two cases. Either there
is an edge with one end in J and the other end in Ij for some j, or there is an edge with
ends in Ij and Ii for some 1 ≤ i < j ≤ l. Let us deal with them respectively.

The mentioned edge is of the form yjp
yiq

where p ≤ tj and ti < q (possibly j = i) by
definition of Ij and J . Choose smallest such p. Observe that p 6= 1 since yj1 is a vertex of
both J and Ij . If iq 6= k + 1 then

yjp
, xjp−1 , . . . , yj2 , xj1 , wj1,jsj

(= wj1,k+1), yk+1, wk+1,iq
(= wisi

,iq
), yiq

is a cycle of even length. Moreover, the cycle is induced by the choice of p and since
{yj2 , . . . , yjp

} is an independent set, a contradiction. An analogous situation arises if iq = k+1.
Now, we deal with the second case where there is an edge yjp

yiq
where p ≤ tj , q ≤ ti

and j 6= i. Choose largest such q. It might happen that p = 1 or q = 1, but not both since
yj1 , yi1 ∈ J . Without loss of generality, p 6= 1. Then

yjp , xjp−1 , . . . , yj2 , xj1 , wj1,jsj
(= wj1,k+1), yk+1, xisi−1 , yisi−1 , . . . , xiq , yiq

is an even cycle. By the previous case there is no edge between yk+1 and Ij ∪ Ii Moreover,
by the choice of q, we deduce that the even cycle is induced, a contradiction. C

It remains to show how to find the sets Yj1 ’s and Yk+1. For the rest of the proof we only
use the white tree. Observe that it suffices to prove the following (by setting p = j1 for all j
and then p = k + 1).

B Claim 11. Let yp ∈ Xp and let G′ be the graph induced by Xi such that pi is an edge in
the bi-tree T . Remove neighbors of yp in G′. Then G′ is chordal.

Proof. For a contradiction, assume that H is an odd hole in G′. Each part of G′ is a clique
and, thus, contains at most two vertices of H. Therefore, there exist an induced path on
three vertices ya, yb, yc of H, with ya, yb, yc in different parts Xa, Xb, Xc. By construction
there are vertices wp,a, wp,b and wp,c. Then yp, wp,a, ya, yb, yc, wp,c induces an even hole in
G, a contradiction. Since G is even-hole-free so is G′. Hence G′ is hole-free. C

E. Husić, S. Thomassé, and N. Trotignon 21:11

Now, for each j, we can check if yj1 is in Yj1 by finding a maximum independent set
in G′ = G[∪tj

i=2Xi] \ N(yj1). The latter can be done in O(n2) since G′ is chordal [6].
Then, we can check if yk+1 is in Yk+1 by finding a maximum independent set in G′ =
G[∪j{Yj1 ∪

sj−1
i=tj+1 Xi}] \N(yk+1). This can be done in O(n2) since G′ is chordal. The overall

running time follows since each part is used exactly once in some G′. J

In fact, the previous algorithm gives a stronger result:

I Corollary 12. When T is a bi-spider, there is an O(n3) time algorithm which computes
all vertices yk+1 which belong to an independent set of size k + 1.

We now deal with the case when i is a separation isolating a bi-spider. By Corollary 6
bi-tree T admits a separation (i, B,C) isolating a bi-spider T \ C such that i is either a red
leaf or a white leaf in T \B. Recall that the vertex k + 1 is a leaf of the white tree, hence,
as a separation, i is not equal to k + 1. In particular, the vertex xi exists. Moreover, since
T \C is a bi-spider it follows that k+ 1 ∈ C. As before, assuming the set Y exists, we obtain
the following lemma.

I Lemma 13. There is no edge from some yj with j ∈ B \ i to some vertex u ∈ Xs with
s ∈ C.

Proof. We denote by r the root of T . As argued above r ∈ C (r = k + 1). For the sake of
contradiction suppose that there is an an edge yju.

Let us consider bi-spider T \ C. There is a red path j = j0, . . . , ja = i in (V,A) which
can be turned into an induced path P0 = yj0 , xj0 , yj1 , xj1 , . . . , yja , xja in G from yj to xi

with odd length. There is also a white path j = b0, . . . , bd = i in (V,E) which can be turned
into an induced path P1 = yb0 , wb0b1 , yb1 , wb1b2 , . . . , xbd

in G from yj to xi with even length.
Now, in order to conclude the lemma it suffices to find a u, xi path P such that P.P0 and
P.P1 induce cycles. Then, since P0 and P1 are of different parity a contradiction arises. In
the rest of the proof we show how to find P .

First, observe that since T \C contains a white subtree, u is non-adjacent to yi or to any
yq where q ∈ B and q 6= j since it would yield an even hole (there is an even path between
any two different vertices yp, yq). Hence, u is adjacent to yj and non-adjacent to all other
vertices in P0 and P1.

By Corollary 6, i is either a red leaf or a white leaf in T \B. We consider two cases.
Case 1: i is a red leaf. Then there is a (an undirected) red path i = i0, . . . , is = s in

T \B, which can be turned into an induced path P = xi0 , yi1 , xi1 , . . . , xis−1,u in G from xi

to u. By construction, this path is induced. Moreover, since i is a red leaf in T \B it follows
that yi1 6= yi. Therefore, both P.P0 and P.P1 induce cycles, i.e., there is no chord with one
end in P and the other in P0 or P1.

Note that the same argument holds whenever the red path i = i0, . . . , is = s does not
contain yi. Hence, the only remaining case is when i is on the red directed path from s to r
in T \B. Denote with Q the directed red sr path in T \B.

Case 2: i is a white leaf and i ∈ Q. Let Q′ = iQr be subpath of Q starting at i and
ending at r. Since i is not a separation of T \ B, there exists a white path s = s0, . . . , st

connecting s and Q′. Moreover, the path does not contain i. We choose the shortest such
s,Q′ path. This path can be turned into an induced path P2 = u,ws0,s1 , ys1 , . . . , wst−1,st

, yst

in G with endpoints u and yst
. By the above yi 6∈ P2 and also no vertex wi,. is used in P2.

Consider the directed path iQst (= iQ′st). Denote it as i = i0, i1, . . . , il = st. It can be
turned into an induced path P3 = xi0 , yi1 , . . . yil

in G with endpoints xi and yst
. Then P2.P3

IPEC 2019

21:12 The Independent Set Problem Is FPT for Even-Hole-Free Graphs

is a u, xi path in G. The concatenation P2.P3 might not be an induced path, but we can
shorten it to obtain an induced uxi path P in G. Now, it can be checked that P.P0 and P.P1
induce cycles since P does not use yi or any of the vertices wi,.. J

We are now ready to show that there is an O(k · n3) time algorithm which computes Y
when T = (V,E,A) is a bi-tree. If T is a bi-spider, we are done by Lemma 9. Otherwise, by
Corollary 6, there is a separation (i, B,C) which isolates a bi-spider T \ C. By Lemma 13,
one can delete all vertices yj ∈ Xj for j ∈ B \ i with a neighbor u ∈ Xk for k /∈ B, and
this reduction is sound since no candidate yj can have such an edge. Now, by Corollary 12,
one can compute in O(n3) time the set X ′i ⊆ Xi of vertices, each of which extends, in the
bi-spider T \ C, to an independent set of size |B|. From the bi-spider T \ C, we only keep
these vertices X ′i. Observe that the number of parts has now decreased by at least one. We
repeat this process until we either construct X ′k+1 or conclude that this set is empty. If
X ′k+1 6= ∅, then we can reconstruct the set Y . The total time is O(k · n3). J

References
1 VE Alekseev. The effect of local constraints on the complexity of determination of the graph

independence number. Combinatorial-algebraic methods in applied mathematics, pages 3–13,
1982.

2 Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant.
Parameterized Complexity of Independent Set in H-Free Graphs. In Christophe Paul and Michal
Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages
17:1–17:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

4 Rodney G. Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

5 Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman
New York, 2002.

6 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

7 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

8 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973.

9 George J Minty. On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Series B, 28(3):284–304, 1980.

10 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

11 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile. Discrete Mathematics, 29(1):53–76, 1980.

12 Kristina Vušković. Even-hole-free graphs: a survey. Applicable Analysis and Discrete Mathem-
atics, pages 219–240, 2010.

Improved Analysis of Highest-Degree Branching
for Feedback Vertex Set
Yoichi Iwata
National Institute of Informatics, Tokyo, Japan
yiwata@nii.ac.jp

Yusuke Kobayashi
Kyoto University, Kyoto, Japan
yusuke@kurims.kyoto-u.ac.jp

Abstract
Recent empirical evaluations of exact algorithms for Feedback Vertex Set have demonstrated
the efficiency of a highest-degree branching algorithm with a degree-based pruning heuristic. In
this paper, we prove that this empirically fast algorithm runs in O(3.460kn) time, where k is the
solution size. This improves the previous best O(3.619kn)-time deterministic algorithm obtained by
Kociumaka and Pilipczuk (Inf. Process. Lett., 2014).

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Feedback Vertex Set, Branch and bound, Measure and conquer

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.22

Funding Yoichi Iwata: Supported by JSPS KAKENHI Grant Number JP17K12643.
Yusuke Kobayashi: Supported by JSPS KAKENHI Grants Number JP16K16010, 17K19960, and
18H05291.

Acknowledgements We would like to thank Yixin Cao for valuable discussions and thank organizers
of PACE challenge 2016 for motivating us to study FVS.

1 Introduction

Feedback Vertex Set (FVS) is a problem of finding the minimum-size vertex deletion set
to make the input graph a forest, which is one of the Karp’s 21 NP-complete problems [18]. It
is known that this problem is fixed-parameter tractable (FPT) parameterized by the solution
size k [2, 10]; i.e., we can find a deletion set of size k in O∗(f(k))1 time for some function
f . FVS is one of the most comprehensively studied problems in the field of parameterized
algorithms, and various FPT algorithms using different approaches have been developed,
including short-cycle branching [11], highest-degree branching [4], iterative-compression
branching [5,6,20], LP-guided branching [16,17], cut-and-count dynamic programming [7],
and random sampling [1].

The current fastest deterministic FPT algorithm for FVS is a branching algorithm
combined with the iterative compression technique [20] which runs in O∗(3.619k) time. When
allowing randomization, the current fastest one is a cut-and-count dynamic programming
algorithm [7] which runs in O∗(3k) time. In this paper, we give a faster deterministic algorithm
which runs in O∗(3.460k) time. As explained below, this study is strongly motivated by

1 The O∗(·) notation hides factors polynomial in n. Note that for FVS, any O(f(k)nO(1))-time FPT
algorithms can be improved to O(f(k)kO(1) + kO(1)n) time by applying a linear-time polynomial-size
kernel [15] as a preprocess. We can therefore focus only on the f(k) factor when comparing the running
time.

© Yoichi Iwata and Yusuke Kobayashi;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 22; pp. 22:1–22:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yiwata@nii.ac.jp
mailto:yusuke@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.IPEC.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

Parameterized Algorithms and Computational Experiments (PACE) challenge and its follow-
up empirical evaluation by Kiljan and Pilipczuk [19]. Instead of designing a new theoretically
fast algorithm, we analyze the theoretical worst-case running time of an empirically fast
algorithm that has been developed through the PACE challenge and the empirical evaluation,
and we show that this algorithm is not only empirically fast but also theoretically fast.

PACE challenge is an annual programming challenge started in 2016. Due to the
importance of FVS in the field, FVS was selected as the subject of track B in the first
PACE challenge [9]. Although in theoretical studies, the current fastest algorithm is the
randomized cut-and-count dynamic programming, the result of the challenge suggests that
branching is the best choice in practice. This is not so surprising; because the theoretical
analysis of branching algorithms is difficult, the proved upper bound of the running time is
not so tight, and moreover, the worst-case instances for branching algorithms are usually
very rare in practice.

Among seven submissions to the PACE challenge, top six submissions used branching
algorithms; the first used an LP-guided branching; the second and third used branching
on highest-degree vertices; the fourth and sixth used branching combined with iterative
compression; and the fifth used branching on short cycles. In the branching algorithms, we
recursively solve the problem by picking a vertex v and branching into two cases: deleting v
(the case when v is contained in the solution) or making v undeletable (the case when v is
not contained in the solution). Because a forest has average degree less than one, in order to
obtain a solution of size k, the graph must contain k high-degree deletable vertices. Based
on this observation, in addition to the pruning by the LP lower bound, the first-place solver
by Imanishi and Iwata [14] used the following degree-based pruning heuristic:

I Lemma 1 ([14]). Given a graph G = (V,E) and a set of undeletable vertices F ⊆ V , let
v1, v2, . . . be the vertices of V \ F in the non-decreasing order of the degrees d(vi) in G. If
k ≤ |V \ F | and |E| −

∑k
i=1 d(vi) ≥ |V | − k holds, there is no feedback vertex set S ⊆ V \ F

of size k.

The follow-up empirical evaluation [19] shows that the use of the degree-based pruning is
much more important than the choice of branching rules. By combining with the degree-based
pruning, the performances of the LP-guided branching [16], the highest-degree branching [4],
and the iterative-compression branching [20], are all significantly improved, and among
them, the highest-degree branching slightly outperforms the others. Cao [4] showed that
one can stop the highest-degree branching at depth 3k by using a degree-based argument,
and therefore the running time is O(8k). On the other hand, the theoretically proved
running time of other branching algorithms (without the degree-based pruning) are O∗(4k)
for the LP-guided branching [16] and O∗(3.619k) for the iterative-compression branching [20].
These affairs motivated us to refine the analysis of the highest-degree branching with the
degree-based pruning.

In our analysis, instead of bounding the depth of the search tree as Cao [4] did, we design
a new measure to bound the size of the search tree. The measure is initially at most k and
we show that the measure drops by some amount for each branching. In contrast to the
standard analysis of branching algorithms, our measure has a negative term and thus can
have negative values; however, we show that we can immediately apply the degree-based
pruning for all such cases. A simple analysis already leads to an O∗(4k)-time upper bound
which significantly improves the O∗(8k)-time upper bound obtained by Cao [4]. We then
apply the computer-aided measure-and-conquer analysis [12] and improve the upper bound
to O∗(3.460k).

Y. Iwata and Y. Kobayashi 22:3

Algorithm 1 Highest-degree branching algorithm with a degree-based pruning.

1: if k < 0 then return No.
2: if G is a forest then return Yes.
3: Apply reduction rules 1–6.
4: Apply the degree-based pruning.
5: Apply the highest-degree branching.

1.1 Organization
Section 2 describes the highest-degree branching algorithm with the degree-based pruning.
In Section 3, we analyze the running time of the algorithm. We first give a simple analysis
in Section 3.1 and then give a computer-aided measure-and-conquer analysis in Section 3.2.
While the correctness of the simple analysis can be easily checked, we need to verify thousands
of inequalities to check the correctness of the measure-and-conquer analysis. The source code
of a program to verify the inequalities is available at https://github.com/wata-orz/FVS_
analysis.

2 Algorithm

Because our algorithm may introduce multiple edges connecting the same pair of vertices, we
deal with multi-graphs. Note that a double edge is also considered as a cycle. Let G = (V,E)
be a multi-graph. We define the degree d(u) of vertex u as the total multiplicity of edges
incident to u. For subset U ⊆ V , G[U] = (U,E[U]) denotes the induced subgraph, where
E[U] is the subset of E whose two endpoints are in U . For U ⊆ V , the contraction of U into
a new vertex u is the following operation. We first introduce a new vertex u. For each edge
vw ∈ E with v ∈ U and w 6∈ U , we insert an edge uw of the same multiplicity (if uw has
been already inserted, its multiplicity is increased by the multiplicity of vw). Finally, we
delete U and its incident edges from the graph. Note that the contraction does not change
degrees of vertices in V \ U .

Algorithm 1 describes our algorithm. An input to our branching algorithm is a tuple
(G,F, k) consisting of a multi-graph G = (V,E), a set of undeletable vertices F ⊆ V such
that G[F] forms a forest, and an integer k. Our task is to find a subset of vertices S ⊆ V \F
such that |S| ≤ k and G[V \ S] contains no cycles. For convenience, we use D to denote
maxv∈V \F d(v) when G and F are clear from the context (when using D, V \ F is ensured
to be non-empty). If k < 0, we return No, and if G is a forest, we return Yes. Otherwise, we
apply reduction rules, the degree-based pruning rule, and the highest-degree branching rule.
In the following, we give details of each rule with proof of correctness.

Our algorithm uses exactly the same set of reduction rules used in the empirical evaluation
by Kiljan and Pilipczuk [19] listed below in the given order (i.e., rule i is applied only when
none of the rules j with j < i are applicable). Recall that D denotes maxv∈V \F d(v).

I Reduction Rule 1. If there exists a vertex u of degree at most one, delete u.

I Reduction Rule 2. If there exists a vertex u 6∈ F such that G[F ∪ {u}] contains a cycle,
delete u and decrease k by one.

I Reduction Rule 3. If there exists a vertex u of degree two, add an edge connecting the
two neighbors of u, and then delete u.

IPEC 2019

https://github.com/wata-orz/FVS_analysis
https://github.com/wata-orz/FVS_analysis

22:4 Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

I Reduction Rule 4. If there exists an edge e of multiplicity more than two, reduce its
multiplicity to two.

I Reduction Rule 5. If there exists a vertex u 6∈ F incident to a double edge uw with
d(w) ≤ 3, delete u and decrease k by one.

I Reduction Rule 6. If D ≤ 3, solve the problem in polynomial time by a reduction to the
linear (co-graphic) matroid parity [5, 20].

Note that, in reduction rules 1 and 3, the vertex u might be in F , and in such a case, the
reductions also delete u from F . The first four reduction rules are standard and have been
used in branching FPT algorithms [4–6,11,20], the random sampling FPT algorithm [1], and
also polynomial kernels [3, 15] for FVS. Reduction rule 5 was used in the Imanishi–Iwata
solver [14] and the empirical evaluation [19], and its correctness can be proved as follows.
Because there is a double edge uw, any feedback vertex set must contain at least one of u and
w. Because w has at most one edge other than the double edge uw, every cycle containing w
also contains u. Therefore, there always exists a minimum feedback vertex set containing
u. Reduction rule 6 was introduced by Cao, Chen, and Liu[5] and then was simplified by
Kociumaka and Pilipczuk [20].

I Lemma 2. After applying the reductions, the following conditions hold.
1. G has minimum degree at least three.
2. No double edges are incident to F .
3. D ≥ 4.
4. For any vertex v 6∈ F , G− v has minimum degree at least two.

Proof. The first three conditions clearly hold. We show the fourth condition. Suppose that
in G− v, a vertex u has degree at most one. Because u has degree at least three in G, the
set of incident edges to u in G must be a double-edge uv and a single-edge uw for another
vertex w. If u 6∈ F , we can apply reduction rule 5, which is a contradiction. If u ∈ F , the
double edge uv is incident to F in G, which is also a contradiction. Therefore, when no
reductions are applicable, G− v contains no such vertex u. J

If none of the reductions are applicable, we apply the following pruning rule.

I Pruning Rule. If kD <
∑
v∈F (d(v)− 2), return NO.

The correctness of the pruning rule follows from the following lemma.

I Lemma 3. If the minimum degree of G is at least two and kD <
∑
v∈F (d(v)− 2) holds,

there is no feedback vertex set S ⊆ V \ F of size at most k.

Proof. Suppose that there is a feedback vertex set S ⊆ V \ F of size at most k. We have

kD −
∑
v∈F

(d(v)− 2) ≥
∑
v∈S

d(v)−
∑

v∈V \S

(d(v)− 2)

=
∑
v∈S

d(v)−
∑

v∈V \S

d(v) + 2|V \ S|

= 2|E[S]| − 2|E[V \ S]|+ 2|V \ S|
≥ −2|E[V \ S]|+ 2|V \ S|.

Because G− S is a forest, this must be non-negative. J

Y. Iwata and Y. Kobayashi 22:5

Note that this pruning is different from the degree-based pruning (Lemma 1) used in the
Imanishi–Iwata solver [14] and the empirical evaluation [19]; however, as the following lemma
shows, this pruning is applicable only if the original degree-based pruning is applicable.
Therefore, we can use the same analysis against the original degree-based pruning. We use
this weaker version because it is sufficient for our analysis. We leave whether the stronger
version helps further improve the analysis as future work.

I Lemma 4. For a subset F ⊆ V , let v1, v2, . . . be the vertices of V \F in the non-increasing
order of the degrees d(vi) in G. If k ≤ |V \ F | and the minimum degree of G is at least two,
kd(v1) <

∑
v∈F (d(v)− 2) implies |E| −

∑k
i=1 d(vi) ≥ |V | − k.

Proof. Let X = {v1, . . . , vk} and assume that kd(v1) <
∑
v∈F (d(v)− 2) holds. We have

2
(
|V | − k − |E|+

∑
v∈X

d(v)
)

=
∑
v∈X

d(v)−
(

2|E| −
∑
v∈X

d(v)− 2(|V | − k)
)

=
∑
v∈X

d(v)−
∑

v∈V \X

(d(v)− 2)

≤ kd(v1)−
∑
v∈F

(d(v)− 2) < 0. J

Finally, when none of the reduction rules nor the pruning rule are applicable, we apply
the highest-degree branching rule.

I Branching Rule. Pick a vertex u ∈ V \ F of the highest degree D. Let U be the set of
neighbors of u that are contained in F and let G′ be the graph obtained by contracting U∪{u}
into a new vertex u′. We branch into two cases: (G− u, F, k − 1) and (G′, F − U + u′, k).

We pick a vertex u ∈ V \ F of the highest degree D and branch into two cases: whether
u is contained in the solution or not. In the former case, we delete u and decrease k by one,
and in the latter case, we make u undeletable by inserting it into F . Because no feedback
vertex set S ⊆ V \ F can delete edges inside F , if u has neighbors U in F , we can safely
contract U ∪ {u}. We use the contraction for simplicity of analysis; instead of using the
number of connected components of G[F], we can simply use |F |. Note that, by using an
additional reduction rule, we can ensure that F forms an independent set; however, we do
not use it because our analysis do not require such a strong condition.

I Proposition 5. Algorithm 1 correctly solves FVS.

3 Analysis

For parameters 0 ≤ α ≤ 1 and (βd)∞d=0 satisfying 0 = β0 = β1 = β2 ≤ β3 ≤ β4 ≤ · · · , we
define

µ(G,F, k) := k − α

D

∑
v∈F

(d(v)− 2) +
∑
v∈F

βd(v).

Initially, the algorithm is called with F = ∅, and we have µ(G, ∅, k) = k.

I Lemma 6. If none of the reduction rules 1–6 nor the pruning rule are applicable for an
input (G,F, k), then µ(G,F, k) ≥ 0 holds.

IPEC 2019

22:6 Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

Proof. If the pruning is not applicable, we have kD ≥
∑
v∈F (d(v)− 2). Hence we have

µ(G,F, k) = (1− α)k + α

D

(
kD −

∑
v∈F

(d(v)− 2)
)

+
∑
v∈F

βd(v) ≥ 0. J

We now show that applying the reduction rules does not increase µ. We can easily see
that D never increases by the reduction but may decrease; however, because such decrease
leads to a smaller µ, we can analyze as if D is not changed by the reduction.

From condition 4 in Lemma 2 and the fact that contraction does not change degrees,
the graph immediately after branching has minimum degree at least two. Hence, we apply
reduction rule 1 only after applying reduction rules 2 or 5 (or against the initial instance, in
which case, µ does not increase because F remains empty).

I Lemma 7. Reduction rules 2 or 5, together with the subsequent applications of reduction
rule 1, do not increase µ.

Proof. For convenience of analysis, when a vertex of degree one is generated, we immediately
put it into F . This does not affect the behavior of the algorithm because all such vertices
will be deleted by reduction rule 1.

We first show that applying reduction rule 1 does not increase µ. When d(u) = 0, we
have µ(G − u, F − u, k) = µ(G,F, k) − α

D . When d(u) = 1, let v be the neighbor of u. If
v ∈ F , we have µ(G− u, F − u, k) = µ(G,F, k) + βd(v)−1 − βd(v) ≤ µ(G,F, k). If v 6∈ F and
d(v) ≥ 3, we have µ(G − u, F − u, k) = µ(G,F, k) − α

D . If v 6∈ F and d(v) = 2, deleting u
puts v into F , and hence we have µ(G− u, F − u+ v, k) = µ(G,F, k).

We next show that applying reduction rules 2 or 5 does not increase µ. Let P be the set
of vertices in V \ (F ∪ {u}) whose degree in G− u is one. Let q be the number (i.e., the total
multiplicity) of edges between u and F . Because P is a subset of neighbors of u, we have
|P |+ q ≤ d(u) ≤ D. Then, we have µ(G− u, F ∪ P, k − 1) ≤ µ(G,F, k)− 1 + α

D (|P |+ q) ≤
µ(G,F, k)− 1 + α ≤ µ(G,F, k). J

Because reduction rule 3 deletes a vertex of degree two and does not change the degrees of
other vertices, it does not change µ. Because reduction rule 4 is applied only when reduction
rule 2 cannot be applied, it does not change the degrees of vertices in F , and therefore it
does not change µ.

Finally, we analyze the branching rule. Because contraction does not change degrees
of other vertices, D never increases by the branching but may decrease. As we did in the
analysis of the reduction rules, we analyze as if D does not change by the branching. Recall
that U is the set of neighbors of u that are contained in F . Let f := |U | and d := {d1, . . . , df}
be the multiset of degrees of vertices in U . The degree of u′ is d′ := D +

∑f
i=1(di − 2). In

the former case of the branching, we have

∆1(D,d) := µ(G,F, k)− µ(G− u, F, k − 1)

= 1− f α
D

+
f∑
i=1

(βdi
− βdi−1).

Y. Iwata and Y. Kobayashi 22:7

In the latter case, we have

∆2(D,d) := µ(G,F, k)− µ(G′, F − U + u′, k)

= − α
D

(
f∑
i=1

(di − 2)− (d′ − 2)
)

+
f∑
i=1

βdi
− βd′

= α− 2 α
D

+
f∑
i=1

βdi
− βd′ .

Now, we can prove the running time of the algorithm by induction on the height of the
search tree as follows. Suppose that the number of leaves in the search tree is bounded by
cµ(G,F,k) for some c > 1 when the height is at most h. After the branching, we can bound
the total number of leaves by cµ(G,F,k)−∆1(D,d) + cµ(G,F,k)−∆2(D,d). Hence, in the induction
step for h+ 1, we need to show the inequality

cµ(G,F,k)−∆1(D,d) + cµ(G,F,k)−∆2(D,d) ≤ cµ(G,F,k),

which is equivalent to

c−∆1(D,d) + c−∆2(D,d) ≤ 1.

Therefore, if c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds for any (D,d) for some c > 1, the running
time of the algorithm is bounded by O∗(ck). We now optimize the parameters to minimize c.

The design of our measure

We have reached to our measure by the following three steps.

Step 1. Let gap := kD−
∑
v∈F (d(v)−2), i.e., the distance to the application of the pruning

rule. By analyzing the branching rule, we observe that deleting u decreases k but may not
decrease gap, while making u undeletable does not change k but decreases gap. Hence, by
taking the convex combination (1−α) · k+α · 1

Dgap, we can ensure that the measure always
decreases. The coefficient 1

D is for bounding the measure by k.

Step 2. We observe that deleting u decreases gap if u has neighbors not in F . When u has
more than two neighbors in F , making u undeletable decreases the size |F |. Because |F |
cannot be negative, the worst-case (when all the neighbors of u are contained in F) cannot
occur frequently. Hence, by taking |F | into the measure, we can improve the analysis. This
corresponds to the simple analysis presented in Section 3.1.

Step 3. We observe that applying reduction rule 3 against a vertex in F does not change
gap but decreases |F |. Deleting u in the branching rule decreases the degree of its neighbors,
and if a neighbor is in F , such a decrease leads to a future application of reduction rule 3.
Hence, by using the sum of weights

∑
v∈F βd(v) depending on the degree instead of the size

|F | =
∑
v∈F 1, we can improve the analysis. This corresponds to the computer-aided analysis

presented in Section 3.2.

IPEC 2019

22:8 Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

3.1 Simple Analysis
As a simple analysis whose correctness can be easily checked, we use α = log4

8
3 ≈ 0.7075,

βd = 1
2 log4

3
2 ≈ 0.1462 for all d ≥ 3, and c = 4. Note that, when applying the branching

rule, D ≥ 4 holds from Lemma 2. For these parameters, we have

c−∆1(D,d) ≤ 4−1+ f
D log4

8
3 = 1

4 ·
(

8
3

) f
D

≤ 1
4 min

(
8
3 ,
(

8
3

) f
4
)
,

c−∆2(D,d) = 4(2
D−1) log4

8
3 +(1−f) 1

2 log4
3
2 ≤

(
3
8

) 1
2

·
(

3
2

) 1−f
2

.

We now show that c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds by the following case analysis.

c−∆1(D,d) + c−∆2(D,d) ≤

1
4 +

(
3
8

) 1
2

·
(

3
2

) 1
2

= 1 (f = 0),

1
4 ·
(

8
3

) 1
4

+
(

3
8

) 1
2

< 0.932 (f = 1),

1
4 ·
(

8
3

) 2
4

+
(

3
8

) 1
2

·
(

2
3

) 1
2

< 0.909 (f = 2),

1
4 ·
(

8
3

) 3
4

+
(

3
8

) 1
2

· 2
3 < 0.930 (f = 3),

1
4 ·

8
3 +

(
3
8

) 1
2

·
(

2
3

) 3
2

= 1 (f ≥ 4).

I Theorem 8. Algorithm 1 solves FVS in O∗(4k) time.

3.2 Measure-and-Conquer Analysis
We use the parameters α = 0.922863, β shown in Table 1, and c = 3.460. These values are
obtained by solving a convex optimization problem to minimize c under the constraints of
c−∆1(D,d) +c−∆2(D,d) ≤ 1 for any (D,d). For details of computer-aided measure-and-conquer
analysis and how to solve it as a convex optimization problem, see [13, Chapter 2]. For
d ≥ dmax := 30, we fix βd = βdmax . This is for bounding the number of vectors d we need
to consider. The running time for solving the convex optimization problem depends on the
choice of dmax, and we chose dmax := 30 because increasing it to 50 did not improve the
analysis, and when increasing it to 60, the optimization did not finish within an hour.

I Lemma 9. c−∆1(D,d) + c−∆2(D,d) ≤ 1 holds for any (D,d) with D ≥ 4.

Proof. Suppose that dj ≥ 32 holds for some j. Because βd = β30 for all d ≥ 30 and because
d′ = D +

∑
i(di − 2) ≥ D + (dj − 2) ≥ 31 holds, decreasing dj by one does not change

∆1(D,d) nor ∆2(D,d). Therefore, we can focus on the case of di ≤ 31 for all i. We now
show that the inequality holds by induction on D. When D = 4, we can verify that

c−∆1(4,d) + c−∆2(4,d) ≤ 1 (∀d) (1)

holds by naively enumerating all the possible configurations of d. Assume that, for a fixed
D, the inequality holds for any (D − 1,d). We show that the inequality also holds for any
(D,d).

Y. Iwata and Y. Kobayashi 22:9

Table 1 The values of β.

d βd

1 0.000000
2 0.000000
3 0.114038
4 0.186479
5 0.238143
6 0.277239
7 0.308030
8 0.332974
9 0.353536
10 0.370540

d βd

11 0.384771
12 0.396884
13 0.408715
14 0.418855
15 0.427643
16 0.435333
17 0.442118
18 0.448149
19 0.453544
20 0.458401

d βd

21 0.462794
22 0.466788
23 0.470435
24 0.473778
25 0.476853
26 0.479691
27 0.482320
28 0.484760
29 0.487032
≥ 30 0.489153

When f < D, we have

∆1(D,d) ≥ ∆1(D − 1,d)

and

∆2(D,d) = ∆2(D − 1,d)− 2 α
D
− βd′ + 2 α

D − 1 + βd′−1,

where d′ = D+
∑f
i=1(di−2). When d′ > 31, we have ∆2(D,d) = ∆2(D−1,d)−2 αD+2 α

D−1 ≥
∆2(D − 1,d). When d′ ≤ 31, we can verify that our parameters satisfy

−2 α
D
− βd′ + 2 α

D − 1 + βd′−1 ≥ 0 (∀(D, d′) with 5 ≤ D ≤ d′ ≤ 31). (2)

Therefore, we have ∆2(D,d) ≥ ∆2(D − 1,d). This shows that

c−∆1(D,d) + c−∆2(D,d) ≤ c−∆1(D−1,d) + c−∆2(D−1,d) ≤ 1.

When f = D, let d′ := {d1, . . . , df−1}. We have

∆1(D,d) = ∆1(D − 1,d′) + βdf
− βdf−1 ≥ ∆1(D − 1,d′)

and

∆2(D,d) = ∆2(D − 1,d′)− 2 α
D

+ 2 α

D − 1 + βdf
− βd′ + βd′−df +2

≥ ∆2(D − 1,d′) + βdf
− βd′ + βd′−df +2,

where d′ = D +
∑f
i=1(di − 2). When d′ > 31, we have βdf

− βd′ + βd′−df +2 ≥ βdf
− β31 +

β31−df +2, and hence such a case can be reduced to the case when d′ = 31. Because we can
verify that our parameters satisfy

βdf
− βd′ + βd′−df +2 ≥ 0 (∀(d′, df) with 3 ≤ df < d′ ≤ 31), (3)

we have ∆2(D,d) ≥ ∆2(D − 1,d′). This shows that

c−∆1(D,d) + c−∆2(D,d) ≤ c−∆1(D−1,d′) + c−∆2(D−1,d′) ≤ 1. J

I Theorem 10. Algorithm 1 solves FVS in O∗(3.460k) time.

IPEC 2019

22:10 Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

4 Conclusion

In this paper, we give the theoretical analysis to the empirically fast branching algorithm for
FVS. The proved running time is the current fastest among deterministic algorithms. We
conclude the paper by giving two open problems.

First, we do not think that our analysis is tight. Can we significantly improve the
analysis? Especially, we are interested in whether we can achieve O∗(4k) time without
using the reduction to the linear matroid parity to solve subcubic instances. When allowing
randomization, a simple random sampling algorithm runs in O∗(4k) time [1]. This random
sampling algorithm also uses a degree-based argument but does not use the subcubic solver.
Without the subcubic solver (i.e., D ≥ 3 instead of D ≥ 4), our analysis gives only O∗(4.59k).
If this can be improved to O∗(4k), using the subcubic solver will further improve the running
time.

Second, the proved running time is still far from actual running time against real-world
instances. In this paper, we used the standard parameter of the solution size. Can we prove
that the algorithm runs in FPT time for some parameter that is smaller in real-world instances.
For example, Vertex Cover and Multiway Cut are known to be FPT parameterized by
the gap between the solution size and LP lower bounds [8, 21].

References
1 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized Algorithms for the Loop

Cutset Problem. J. Artif. Intell. Res., 12:219–234, 2000. doi:10.1613/jair.638.
2 Hans L. Bodlaender. On Disjoint Cycles. Int. J. Found. Comput. Sci., 5(1):59–68, 1994.

doi:10.1142/S0129054194000049.
3 Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac,

and Frances A. Rosamond. The Undirected Feedback Vertex Set Problem Has a Poly(k)
Kernel. In IWPEC 2006, pages 192–202, 2006. doi:10.1007/11847250_18.

4 Yixin Cao. A Naive Algorithm for Feedback Vertex Set. In SOSA 2018, pages 1:1–1:9, 2018.
doi:10.4230/OASIcs.SOSA.2018.1.

5 Yixin Cao, Jianer Chen, and Yang Liu. On Feedback Vertex Set: New Measure and New
Structures. Algorithmica, 73(1):63–86, 2015. doi:10.1007/s00453-014-9904-6.

6 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

7 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in
Single Exponential Time. In FOCS 2011, pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

8 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3:1–3:11, 2013. doi:10.1145/
2462896.2462899.

9 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The First Parameterized Algorithms and Computational Experiments
Challenge. In IPEC 2016, pages 30:1–30:9, 2016. doi:10.4230/LIPIcs.IPEC.2016.30.

10 Rodney G. Downey and Michael R. Fellows. Fixed Parameter Tractability and Completeness.
In Complexity Theory: Current Research, pages 191–225, 1992.

11 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

12 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009. doi:10.1145/1552285.1552286.

https://doi.org/10.1613/jair.638
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1007/11847250_18
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/1552285.1552286

Y. Iwata and Y. Kobayashi 22:11

13 Serge Gaspers. Exponential Time Algorithms - Structures, Measures, and Bounds. VDM,
2010.

14 Kensuke Imanishi and Yoichi Iwata. Feedback Vertex Set solver, 2016. Entry to PACE
challenge 2016. URL: http://github.com/wata-orz/fvs.

15 Yoichi Iwata. Linear-Time Kernelization for Feedback Vertex Set. In ICALP 2017, pages
68:1–68:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.68.

16 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching and
FPT Algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

17 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/All CSPs, Half-Integral A-Path
Packing, and Linear-Time FPT Algorithms. In FOCS 2018, pages 462–473, 2018. doi:
10.1109/FOCS.2018.00051.

18 Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations 1972, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.

19 Krzysztof Kiljan and Marcin Pilipczuk. Experimental Evaluation of Parameterized Algorithms
for Feedback Vertex Set. In SEA 2018, pages 12:1–12:12, 2018. doi:10.4230/LIPIcs.SEA.
2018.12.

20 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feedback Vertex Set. Inf.
Process. Lett., 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

21 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster Parameterized Algorithms Using Linear Programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

IPEC 2019

http://github.com/wata-orz/fvs
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1145/2566616

Subexponential-Time Algorithms for Finding
Large Induced Sparse Subgraphs
Jana Novotná
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
janca@kam.mff.cuni.cz

Karolina Okrasa
Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
k.okrasa@mini.pw.edu.pl

Michał Pilipczuk
Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Paweł Rzążewski
Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
p.rzazewski@mini.pw.edu.pl

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Bartosz Walczak
Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract
Let C and D be hereditary graph classes. Consider the following problem: given a graph G ∈ D,
find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We
prove that it can be solved in 2o(n) time, where n is the number of vertices of G, if the following
conditions are satisfied:

the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices;
the graphs in D admit balanced separators of size governed by their density, e.g., O(∆) or
O(

√
m), where ∆ and m denote the maximum degree and the number of edges, respectively; and

the considered problem admits a single-exponential fixed-parameter algorithm when parameter-
ized by the treewidth of the input graph.

This leads, for example, to the following corollaries for specific classes C and D:
a largest induced forest in a Pt-free graph can be found in 2Õ(n2/3) time, for every fixed t; and
a largest induced planar graph in a string graph can be found in 2Õ(n3/4) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Problems, reductions and completeness

Keywords and phrases subexponential algorithm, feedback vertex set, Pt-free graphs, string graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.23

Funding Jana Novotná: Supported by student grants GAUK 1277018, SVV-2017-260452.
Michał Pilipczuk: This work is a part of project TOTAL that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 677651).
Paweł Rzążewski: Partially supported by Polish National Science Centre grant no.
2018/31/D/ST6/00062.
Bartosz Walczak: Partially supported by Polish National Science Centre grant no.
2015/17/B/ST6/01873.

© Jana Novotná, Karolina Okrasa, Michał Pilipczuk, Paweł Rzążewski, Erik Jan van Leeuwen, and
Bartosz Walczak;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 23; pp. 23:1–23:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:janca@kam.mff.cuni.cz
mailto:k.okrasa@mini.pw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7696-3848
mailto:p.rzazewski@mini.pw.edu.pl
mailto:e.j.vanleeuwen@uu.nl
mailto:walczak@tcs.uj.edu.pl
https://doi.org/10.4230/LIPIcs.IPEC.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Subexponential Algorithms Finding Large Sparse Subgraphs

Acknowledgements The results presented in this paper were obtained during the Parameterized
Algorithms Retreat of the algorithms group of the University of Warsaw (PARUW), held in Karpacz
in February 2019. This Retreat was financed by the project CUTACOMBS, which has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 714704).

1 Introduction

Many optimization problems in graphs can be expressed as follows: given a graph G, find a
largest vertex set A such that G[A], the subgraph of G induced by A, satisfies some property.
Examples include Independent Set (the property of being edgeless), Feedback Vertex
Set (the property of being acyclic), and Planarization (the property of being planar). Here,
Feedback Vertex Set and Planarization are customarily phrased in the complementary
form that asks for minimizing the complement of A: given G, find a smallest vertex set X
such that G−X has the desired property. While all problems considered in this paper can be
viewed in these two ways, for the sake of clarity we focus on the maximization formulation.

Formally, we shall consider the following Max Induced C-Subgraph problem. Fix a
graph class C that is hereditary, that is, closed under taking induced subgraphs. Then, given
a graph G, the goal is to find a largest vertex subset A such that G[A] ∈ C. Our focus is on
exact algorithms for this problem with running time expressed in terms of n, the number of
vertices of G. Clearly, as long as the graphs from C can be recognized in polynomial time,
the problem can be solved in 2n · nO(1) time by brute-force; we are interested in non-trivial
improvements over this approach.

The complexity of Max Induced C-Subgraph was studied as early as in 1980 by Lewis
and Yannakakis [19], who proved that when the graph class C does not contain all graphs,
the problem is NP-hard. Recently, Komusiewicz [17] inspected the reduction of Lewis and
Yannakakis and concluded that under the Exponential Time Hypothesis (ETH) one can even
exclude the existence of subexponential-time algorithms for the problem, that is, ones with
running time 2o(n). While the result of Komusiewicz [17] excludes significant improvements
in the running time, there is still room for improvement in the base of the exponent. Indeed,
for various classes of graphs C, algorithms with running time O((2− ε)n) for some ε > 0 are
known; see e.g. [3, 12, 13, 14, 21] and the references therein.

Another direction, which is of main interest to us, is to impose more conditions on the
input graphs G in the hope of obtaining faster algorithms for restricted cases. Formally, we
fix another hereditary graph class D and consider Max Induced C-Subgraph where the
input graph G is additionally required to belong to D.

In this line of research, the class C of edgeless graphs, which corresponds to the classical
Max Independent Set (MIS) problem, has been extensively studied. Suppose D is the class
of H-free graphs, that is, graphs that exclude some fixed graph H as an induced subgraph.
As observed by Alekseev [1], the problem is NP-hard on H-free graphs unless H is a path
or a subdivision of the claw (K1,3); the reduction of [1] actually excludes the existence of a
subexponential-time algorithm under ETH in these cases. On the positive side, the maximal
classes for which polynomial-time algorithms are known are the P6-free graphs [15] and the
fork-free graphs [20]. It would be consistent with our knowledge if MIS was polynomial-time
solvable on H-free graphs whenever H is a path or a subdivision of the claw.

It turns out that if we only aim at subexponential-time instead of polynomial-time
algorithms, many more tractability results can be obtained for MIS, and usually they are also

J. Novotná et al. 23:3

much simpler conceptually. Bacsó et al. [2] showed that MIS can be solved in 2O(
√
tn logn)

time on Pt-free graphs, for every t ∈ N. Very recently, Chudnovsky et al. [8] reported a
2O(
√
n logn)-time algorithm on long-hole-free graphs, which are graphs that exclude every

cycle of length at least 5 as an induced subgraph.
In the light of the results above, it is natural to ask whether structural assumptions on

the class D from which the input is drawn, like e.g. Pt-freeness, can help in the design of
subexponential-time algorithms for other maximum induced subgraph problems, beyond C
being the class of edgeless graphs. This is precisely the question we investigate in this work.

Our contribution. We identify three properties that together provide a way to solve the
Max Induced C-Subgraph problem on graphs from D in subexponential time, where C
and D are hereditary graph classes. They are as follows:

The class C should consist of sparse graphs. To be specific, let us assume that every
n-vertex graph from C has O(n) edges.
The class D may contain dense graphs, but they should admit balanced separators whose
size is somehow governed by the density. To be specific, let us assume that every graph
from D with maximum degree ∆ has a balanced separator of size O(∆), or that every
graph from D with m edges has a balanced separator of size O(

√
m).

The Max Induced C-Subgraph problem on graphs from D can be solved in 2Õ(w) ·nO(1)

time, where w is the treewidth of the input graph. Here, notation Õ(·) hides polylogar-
ithmic factors.

We show that if these conditions are simultaneously satisfied, then the Max Induced
C-Subgraph problem on graphs from D can be solved in 2Õ(n2/3) time in the presence of
balanced separators of size O(∆) and in 2Õ(n3/4) time for balanced separators of size O(

√
m).

The precise statement and proof of this result can be found in Section 2.
The conditions on C look natural and are satisfied by various specific classes of interest,

like forests (corresponding to Feedback Vertex Set) and planar graphs (corresponding to
Planarization). On the other hand, the condition on D looks more puzzling. However,
there are certain non-sparse classes of graphs where the existence of such balanced separators
has been established. For instance, balanced separators of size O(∆) are known to exist
in Pt-free graphs for any fixed t ∈ N [2], and in long-hole-free graphs [8]. The existence of
balanced separators of size O(

√
m) is known for string graphs, which are intersection graphs

of arc-connected subsets of the plane, and more generally for intersection graphs of connected
subgraphs in any proper minor-closed class [18]. All these observations yield a number of
concrete corollaries to our main result, which are gathered in Section 3. In Section 4, we
discuss some lower bounds: we show that if C is the class of forests (corresponding to the
Feedback Vertex Set problem) and D is characterized by a single excluded induced
subgraph, then under the Exponential Time Hypothesis one cannot hope for subexponential-
time algorithms in greater generality than provided by our main result.

2 Main result

We use standard graph notation. We assume the reader’s familiarity with treewidth. We
recall some notation for tree decompositions in Section 5, where it is actually needed.

For a graph G, a set S ⊆ V (G) is a balanced separator if every connected component of
G− S has at most 2

3 |V (G)| vertices. It is known that small balanced separators can be used
to construct tree decompositions of small width, as made explicit in the following lemma.

I Lemma 1 ([11]). If every subgraph of a graph G has a balanced separator of size at most
k, then the treewidth of G is O(k).

IPEC 2019

23:4 Subexponential Algorithms Finding Large Sparse Subgraphs

Now, we are ready to state and prove our main result.

I Theorem 2. Let C and D be classes of graphs that satisfy the following conditions:
(P1) Every n-vertex graph from C has O(n) edges.
(P2) The class D is closed under taking induced subgraphs.
(P3) Given a graph G ∈ D with n vertices and treewidth w, one can find a largest set

A ⊆ V (G) such that G[A] ∈ C in 2Õ(w) · nO(1) time.
Furthermore, let the class D satisfy one of the following conditions:
(P4a) Every graph in D with maximum degree ∆ has a balanced separator of size O(∆), or
(P4b) Every graph in D with n vertices and maximum degree ∆ has a balanced separator of

size O(
√
n∆).

Then, given an n-vertex graph G ∈ D, one can find a largest set A ⊆ V (G) such that
G[A] ∈ C in time
(1) 2Õ(n2/3), if D satisfies (P4a), or
(2) 2Õ(n3/4), if D satisfies (P4b).

Proof. Let a constant τ be defined as follows, depending on which of the two conditions is
satisfied by D:

τ =
{

1/3 if D satisfies (P4a),
1/4 if D satisfies (P4b).

We devise a branching algorithm that finds a largest set A ⊆ V (G) such that G[A] ∈ C in
2Õ(n1−τ) time. This matches the complexity bounds from the statement of the theorem.

Let G ∈ D be the input graph and n be the number of its vertices. Consider a fixed solution
A, that is, a largest set A ⊆ V (G) such that G[A] ∈ C. Let A′ ⊆ A be the set of vertices of
degree greater than nτ in G[A]. By property (P1), we have |A′| = O(n/nτ) = O(n1−τ).

The algorithm guesses the set A′ exhaustively, by trying all subsets of V (G) of the
appropriate sizes O(n1−τ), which results in nO(n1−τ) = 2Õ(n1−τ) branches. Fix one such
branch and assume, for the purpose of further description of the algorithm, that it corresponds
to the true set A′ (i.e., the one obtained from the fixed solution A). Let G′ = G−A′.

Suppose that G′ contains a vertex v of degree at least n2τ . If v ∈ A, then v has degree
at most nτ in G[A] (since v /∈ A′). The algorithm further guesses that v /∈ A and discards
v (one branch), or it guesses that v ∈ A and discards all but at most nτ neighbors of v in
G′ (at most nnτ branches). In the latter case, we do not fix the assumption that v or any
particular neighbor of v belongs to A, so that the vertices that have survived this step can
still be discarded in subsequent branching steps.

The step described above is repeated exhaustively. The overall number of branches
generated in this way can be bounded as follows, where k = |V (G′)|:

F (k) 6 F (k − 1) + nn
τ

· F (k − (n2τ − nτ))
6 F (k − 2) + nn

τ

· F (k − (n2τ − nτ)) + nn
τ

· F (k − (n2τ − nτ))
6 . . . 6 F (k − (n2τ − nτ)) + (n2τ − nτ) · nn

τ

· F (k − (n2τ − nτ))
= (n2τ − nτ + 1) · nn

τ

· F (k − (n2τ − nτ))

6
(

(n2τ − nτ + 1) · nn
τ
)k/(n2τ−nτ)

6
(

(n2τ − nτ + 1) · nn
τ
)n/(n2τ−nτ)

= nO(n1+τ−2τ) = 2Õ(n1−τ).

J. Novotná et al. 23:5

Once the branching step can no longer be applied, we obtain an induced subgraph G′′ of
G′ of maximum degree less than n2τ . In the branch where all the choices have been made
correctly (i.e., according to the fixed solution A), G′′ still contains all vertices from A \A′.

By property (P2), we have G′′ ∈ D. Thus G′′ satisfies either (P4a) or (P4b), which means
that G′′ has a balanced separator of size O(n2/3) in the former case or O(

√
n · n1/2) = O(n3/4)

in the latter case. In both cases, the size of the separator is O(n1−τ). Moreover, by the same
argument, balanced separators of that size also exist in every subgraph of G′′. Therefore,
by Lemma 1, we conclude that G′′ has treewidth O(n1−τ). Since |A′| 6 O(n1−τ), it follows
that the graph G[V (G′′) ∪A′] also has treewidth O(n1−τ).

We know that G[V (G′′) ∪A′] ∈ D and, in the branch where all choices have been made
correctly, this graph contains the entire maximum-size solution A. Now, we apply the
procedure assumed in (P3) to the graph G[V (G′′) ∪ A′] and observe that in the correct
branch it finds some maximum-size solution (possibly different from A). Let us point out
that in this step it is not sufficient to consider only the graph G′′, as the vertices from A′

introduce some additional constraints on the solution we are looking for.
For the time complexity, the algorithm considers 2Õ(n1−τ) branches and in each of them

it executes the procedure assumed in (P3) in 2Õ(n1−τ) time, which gives the total running
time of 2Õ(n1−τ). J

I Remark 3. The condition (P1) in the statement of Theorem 2 can be relaxed to “every
n-vertex graph from C has O(n2−ε) edges, for some constant ε > 0”. Then, we can follow
the same approach with the following modification: we choose τ = 1− 2

3ε in case of (P4a)
and τ = 1 − 3

4ε in case of (P4b), and replace the threshold for branching on high-degree
vertices from n2τ to n2τ+ε−1. This way, we obtain algorithms with running time 2Õ(n1−ε/3)

for property (P4a) and 2Õ(n1−ε/4) for property (P4b). This running time is subexponential
for every ε > 0.

One can also imagine unifying properties (P4a) and (P4b) into the existence of a balanced
separator of size O(nα∆β), for some constants α, β. However, then, one needs to be careful
when choosing τ so that it belongs to the interval [0, 1]. As we did not find concrete examples
of interesting graph classes D for which this approach would yield non-trivial results and
which would not satisfy either (P4a) or (P4b), we refrain from discussing further details here.

3 Corollaries

In this section, we discuss possible classes C and D which satisfy the conditions of Theorem 2.
For some choices of C, we obtain well-studied computational problems:
1. for matchings, we obtain Max Induced Matching,
2. for forests, we obtain Max Induced Forest, also known as Feedback Vertex Set,
3. for graphs of maximum degree d, where d is fixed, we obtain Max Induced Degree-d

Subgraph,
4. for planar graphs, we obtain Max Induced Planar Subgraph, also known as Planar-

ization,
5. for graphs embeddable in Σ, where the surface Σ is fixed, we obtain Max Induced

Σ-Embeddable Subgraph,
6. for graphs of degeneracy at most d, where d is fixed, we obtain Max Induced d-

Degenerate Subgraph.
It is clear that all these classes satisfy property 1 of Theorem 2.

Given a graph of treewidth w, its tree decomposition of width at most 4w + 3 can be
computed in 2O(w) · n2 time (see e.g. [9, Section 7.6]). Therefore, for the purpose of verifying
property 3, we can assume that a tree decomposition of width O(w) is additionally provided

IPEC 2019

23:6 Subexponential Algorithms Finding Large Sparse Subgraphs

on input. While 2Õ(w) · nO(1)-time algorithms are quite straightforward and well known for
the first two problems on the list, this is not necessarily the case for the others. For Max
Induced Degree-d Subgraph, an algorithm with running time 2O(w) · nO(1) can be easily
derived from the meta-theorem of Pilipczuk [22]. Algorithms for Max Induced Planar
Subgraph and, more generally, Max Induced Σ-Embeddable Subgraph, were provided
by Kociumaka and Pilipczuk [16]. Finally, we give a suitable algorithm for Max Induced
d-Degenerate Subgraph in Lemma 8 in Section 5.

It may be tempting to consider, as C, the graphs with no even cycle C2k (not necessarily
induced), for some fixed integer k > 2. This is because such graphs have O(n2−Ω(1/k))
edges [5], and thus they satisfy the generalization of property 1 mentioned in Remark 3 for
ε = Ω(1/k). However, for these classes, property 3 turns out to be problematic: for any fixed
` > 5, there is no algorithm for a minimum set of vertices hitting all (non-induced) copies of
C` in a graph with treewidth w with running time 2o(w2) · nO(1) unless the ETH fails [22]
(this bound appears to be essentially tight, as the problem can be solved in 2Õ(w2) · nO(1)

time [10]). It is unclear whether the additional assumption that the input graph belongs to
some class D, considered here, can help.

Now, let us consider classes D. Examples of classes satisfying property a in Theorem 2
come from forbidding some induced subgraphs. Bacsó et al. [2] proved that Pt-free graphs
with maximum degree ∆ have treewidth O(∆ · t). Very recently, Chudnovsky et al. [8]
observed that long-hole-free graphs, that is, graphs with no induced cycles of length at least
5, also have balanced separators of size O(∆).

An example of a class satisfying property b is the class of string graphs – intersection
graphs of arc-connected subsets of the plane. Lee [18] showed that they admit balanced
separators of size O(

√
m), where m is the number of edges. In fact, he proved a more general

result that ifM is a class of graphs excluding a fixed graph as a minor, then intersection
graphs of connected subgraphs of graphs fromM admit balanced separators of size O(

√
m).

String graphs are precisely the intersection graphs of connected subgraphs of planar graphs.
Summing up, we obtain the following.

I Corollary 4. Each of the following problems can be solved in 2Õ(n2/3) time on Pt-free
graphs (for every fixed t) and in long-hole-free graphs, and in 2Õ(n3/4) time on string graphs:
1. Max Induced Matching,
2. Max Induced Forest,
3. Max Induced Degree-d Subgraph, for every fixed d ∈ N,
4. Max Induced Planar Subgraph,
5. Max Induced Σ-Embeddable Subgraph, for every fixed surface Σ,
6. Max Induced d-Degenerate Subgraph, for every fixed d ∈ N.

We note that subexponential-time algorithms for Max Induced Matching and Max
Induced Forest on string graphs were already known [6], even with a better running time
than provided above. As we have argued, in Corollary 4, we can replace string graphs with
intersection graphs of connected subgraphs of graphs from M, where M is any class of
graphs excluding a fixed graph as a minor; this is because the result of Lee [18] holds in that
generality.

4 Max Induced Forest in H-free graphs

Our original motivation was the Max Induced Forest problem. In the previous section,
we discussed a subexponential-time algorithm solving it on Pt-free graphs. We now show
that as long as the considered class of inputs D is characterized by a single excluded induced

J. Novotná et al. 23:7

subgraph, that is, we investigate Max Induced Forest on H-free graphs for a fixed
graph H, we cannot hope for more positive results. Namely, it turns out that if H is not a
linear forest (i.e., a collection of vertex-disjoint paths), the problem is unlikely to admit a
polynomial-time or even a subexponential-time algorithm on H-free graphs. Specifically, we
obtain the following dichotomy.

I Theorem 5. Let H be a fixed graph.
1. If H is a linear forest, then the Max Induced Forest problem can be solved in 2Õ(n2/3)

time on H-free graphs with n vertices.
2. Otherwise, on H-free graphs, the Max Induced Forest problem is NP-complete and

cannot be solved in 2o(n) time unless the ETH fails.

Theorem 5 1 follows from Corollary 4, because every linear forest is an induced subgraph
of some path. Statement 2 follows from a combination of arguments already existing in the
literature. However, since the proof is simple, we include it for the sake of completeness.

We prove Theorem 5 2 in two steps. First, we consider graphs H that contain a cycle
or two branch vertices, that is, vertices of degree at least 3. In this case, we can apply the
standard argument of subdividing every edge a suitable number of times, cf. [7, Theorem 3].

I Lemma 6. Let H be a fixed graph that either contains a cycle or has a connected component
with at least two branch vertices. Then Max Induced Forest is NP-complete on H-free
graphs. Moreover, there is no algorithm solving Max Induced Forest in 2o(n) time for
n-vertex H-free graphs unless the ETH fails.

Proof. We reduce from Max Induced Forest in graphs with maximum degree 6; it is
known that this problem is NP-complete and has no subexponential-time algorithm assuming
ETH [9]. Let G be a graph with n vertices and maximum degree 6. Let G∗ be the graph
obtained from G by subdividing every edge |V (H)|+ 1 times. It is straightforward to observe
that G has an induced forest on n − k vertices if and only if G∗ has an induced forest on
|G∗| − k vertices. Moreover, the number of vertices in G∗ is linear in n.

Finally, we show that G∗ is H-free. First, observe that if H contains a cycle, then H
cannot be a subgraph of G∗, as the girth of G∗ is greater than |V (H)|+ 1. On the other
hand, the distance between any two branch vertices in G∗ is at least |V (H)| + 1, so G∗
does not contain H as a subgraph in case H has two branch vertices in the same connected
component. J

By Lemma 6, the only graphs H for which we might hope for a polynomial-time or even
a subexponential-time algorithm for Max Induced Forest on H-free graphs are collections
of disjoint subdivided stars. To resolve this case, we will show that the problem remains hard
for line graphs. Recall that the line graph L(G) of a graph G is the graph whose vertices
are the edges of G and where the adjacency relation corresponds to the relation of having a
common endpoint in G.

Actually, Chiarelli et al. [7] reported that the hardness of Max Induced Forest on line
graphs was observed by Speckenmeyer in his PhD thesis [23]. However, we were unable to
find this result there. Therefore, we provide the easy proof, which boils down to essentially
the same argument as in [7, Theorem 5].

I Lemma 7. Max Induced Forest is NP-complete on line graphs. Moreover, there is no
algorithm solving Max Induced Forest in 2o(n) time for n-vertex line graphs unless the
ETH fails.

IPEC 2019

23:8 Subexponential Algorithms Finding Large Sparse Subgraphs

Proof. We reduce from the Hamiltonian Path problem, which is NP-complete and has no
subexponential-time algorithm, even if the input graph has linearly many edges [9]. Let G
be a graph, which is the input instance of Hamiltonian Path.

First, note that any induced forest in L(G) corresponds to a collection of vertex-disjoint
paths in G. More formally, consider a set E′ ⊆ E(G), such that L(G)[E′] is a forest. We
claim that the subgraph G′ = (V (G), E′) of G is a collection of vertex-disjoint paths. Suppose
not. This means that G′ contains a vertex v of degree at least 3 or a cycle C. In the former
case, the edges incident to v in G′ form a clique in L(G)[E′]. In the latter case, the edges of
the cycle C form a cycle in L(G)[E′]. In either case, we get a contradiction to the assumption
that L(G)[E′] is a forest.

We claim that G has a Hamiltonian path if and only if L(G) has an induced forest on n−1
vertices. Indeed, the n− 1 edges of a Hamiltonian path in G induce a path (in particular,
a forest) in L(G). For the converse, suppose that L(G) has an induced forest on at least
n− 1 vertices. By the observation above, this induced forest corresponds to a collection of
vertex-disjoint paths in G with at least n − 1 edges in total. This is only possible if this
collection consists of a single path of length n− 1, that is, a Hamiltonian path in G.

Finally, observe that the number of vertices of L(G) is equal to the number of edges of G,
which is linear in the number of vertices of G. J

Recall that line graphs are claw-free, that is, they contain no induced copy of K1,3. Thus
Lemma 7 implies that if H contains any star with at least 3 leaves, then Max Induced
Forest remains NP-complete and has no subexponential-time algorithm on H-free graphs
unless ETH fails. Theorem 5 2 follows from combining Lemma 6 and Lemma 7.

5 Largest induced degenerate subgraph in low-treewidth graphs

This section is devoted to the proof of the following result, which we used in Section 3.

I Lemma 8. For every fixed d ∈ N, there is an algorithm for Max Induced d-Degenerate
Subgraph with running time 2O(w logw) · n, where w is the treewidth of the input graph and
n is the number of its vertices.

Preliminaries on tree decompositions. First, we introduce some notation and terminology.
A tree decomposition of a graph G is a tree T together with a mapping β(·) that assigns a
bag β(x) to each node x of T in such a way that the following conditions hold:
(T1) for each u ∈ V (G), the set of nodes x with u ∈ β(x) induces a connected non-empty

subtree of T ; and
(T2) for each uv ∈ E(G), there exists a node x such that {u, v} ⊆ β(x).
The width of a tree decomposition (T, β) is maxx∈V (T) |β(x)| − 1, and the treewidth of a
graph G is the minimum width of a tree decomposition of G.

Henceforth, all tree decompositions will be rooted: the underlying tree T has a prescribed
root vertex r. This gives rise a natural ancestor-descendant relation: we write x � y if x is
an ancestor of y (where possibly x = y). Then, for a node x of T , we define the component
at x as

α(x) =
(⋃
y�x

β(y)
)
\ β(x).

It easily follows from (T1) and (T2) that then N(α(x)) ⊆ β(x) for every node x.
A nice tree decomposition is a normalized form of a rooted tree decomposition in which

every node is of one of the following four kinds.

J. Novotná et al. 23:9

Leaf node: a node x with no children and with β(x) = ∅.
Introduce node: a node x with one child y such that β(x) = β(y)∪{u} for some vertex
u /∈ β(y).
Forget node: a node x with one child y such that β(x) = β(y) \ {u} for some vertex
u ∈ β(y).
Join node: a node x with two children y and z such that β(x) = β(y) = β(z).

Moreover, we require that the root r of the nice tree decomposition satisfies β(r) = ∅.
It is known that any given tree decomposition (T, β) of width k of an n-vertex graph

G can be transformed in kO(1) · max(n, |V (T)|) time into a nice tree decomposition of G
of width at most as large, see [9, Lemma 7.4]. Moreover, given an n-vertex graph G of
treewidth w, a tree decomposition of G of width at most 5w+ 4 can be computed in 2O(w) ·n
time [4], and this tree decomposition has at most n nodes. By combining these two results,
for the proof of Lemma 8, we can assume that the input graph G is supplied with a nice
tree decomposition (T, β) of width k 6 5w + 4, where w = tw(G). From now on, our goal is
to design a suitable dynamic programming algorithm working on this decomposition with
running time 2O(k log k) · n = 2O(w logw) · n.

Dynamic programming states. The main idea behind our dynamic programming algorithm
is to view the notion of degeneracy via vertex orderings, as expressed in the following fact.

I Lemma 9 (Folklore). A graph H is d-degenerate if and only if there is a linear ordering σ
of vertices of H such that every vertex of H has at most d neighbors that are smaller in σ.

Hence, the problem considered in Lemma 8 can be restated as follows: find a largest set
A ⊆ V (G) that admits a linear ordering σ in which every vertex of A has at most d neighbors
in G[A] that are smaller in σ. Intuitively, our dynamic programming will therefore keep track
of the intersection of the bag with A, the restriction of σ to this intersection; and how many
smaller neighbors of each vertex from this intersection have been already forgotten.

We now proceed with formal details. For a node x of T , a set X ⊆ β(x), a linear ordering
σ of X, and a function f : X → {0, . . . , d}, we define Φx[X,σ, f] ∈ N as follows. The value
Φx[X,σ, f] is the maximum size of a set Y ⊆ α(x) such that X ∪ Y admits a linear ordering
τ with the following properties: τ restricted to X is equal to σ and for every a ∈ X, there are
at most f(a) vertices b ∈ Y that are adjacent to a and smaller than a in τ . Note that other
neighbors of a that belong to X are not taken into consideration when verifying the quota
imposed by f(a). Note also that such a set Y always exists, as Y = ∅ satisfies the criteria.

For a fixed node x, the total number of triples (X,σ, f) as above is at most

2k+1 · (k + 1)! · (d+ 1)k+1 6 2O(k log k).

Hence, we now show how to compute the values Φx[X,σ, f] in a bottom-up manner, so that
the values for a node x are computed based on the values for the children of x in 2O(k log k)

time. The answer to the problem corresponds to the value Φr[∅, ∅, ∅], where r is the root
of T . While Φr[∅, ∅, ∅] is just the size of a largest feasible solution, an actual solution can be
recovered from the dynamic programming tables using standard methods within the same
complexity: for every computed value Φx[X,σ, f], we store the way this value was obtained,
and then we trace back the solution from Φr[∅, ∅, ∅] in a top-down manner.

Transitions. It remains to provide recursive formulas for the values of Φx[·, ·, ·]. We only
present the formulas, while the verification of their correctness, which follows easily from the
definition of Φx[·, ·, ·], is left to the reader. As usual, we distinguish cases depending on the
type of x.

IPEC 2019

23:10 Subexponential Algorithms Finding Large Sparse Subgraphs

Leaf node x. Then we have only one value:

Φx[∅, ∅, ∅] = 0.

Introduce node x with child y such that β(x) = β(y) ∪ {u}. Then

Φx[X,σ, f] =
{

Φy[X,σ, f] if u /∈ X;
Φy[X \ {u}, σ|X\{u}, f |X\{u}] if u ∈ X.

Forget node x with child y such that β(x) = β(y) \ {u}. Then we have

Φx[X,σ, f] = max
(

Φy[X,σ, f], 1 + max
(σ′,f ′)∈S(X,σ,f)

Φy[X ∪ {u}, σ′, f ′]
)
,

where S(X,σ, f) is the set comprising the pairs (σ′, f ′) satisfying the following:
σ′ is a vertex ordering of X ∪ {u} whose restriction to X is equal to σ; and
f ′ : X ∪ {u} → {0, . . . , d} is such that for all a ∈ X that are adjacent to u and larger
than u in σ′, we have f ′(a) 6 f(a)− 1, and for all other a ∈ X, we have f ′(a) 6 f(a).
Moreover, we require that f ′(u) 6 d− `, where ` is the number of vertices a ∈ X that
are adjacent to u and smaller than u in σ′.

Join node x with children y and z. Then

Φx[X,σ, f] = max
fy+fz6f

Φy[X,σ, fy] + Φz[X,σ, fz],

where fy + fz 6 f means that fy(a) + fz(a) 6 f(a) for each a ∈ X.

It is straightforward to see that using the formulas above, each value Φx[X,σ, f] can be
computed in 2O(k log k) time based on the values computed for the children of x. This
completes the proof of Lemma 8.

References
1 Vladimir E. Alekseev. The effect of local constraints on the complexity of determination of

the graph independence number. Combinatorial-algebraic methods in applied mathematics,
pages 3–13, 1982. (in Russian).

2 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-Time Algorithms for Maximum Independent Set in Pt-Free and
Broom-Free Graphs. Algorithmica, 81(2):421–438, 2019.

3 Ivan Bliznets, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Largest Chordal
and Interval Subgraphs Faster than 2n. Algorithmica, 76(2):569–594, 2016. doi:10.1007/
s00453-015-0054-2.

4 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

5 John Adrian Bondy and Miklós Simonovits. Cycles of even length in graphs. J. Combin.
Theory Ser. B, 16(2):97–105, 1974.

6 Édouard Bonnet and Paweł Rzążewski. Optimality Program in Segment and String Graphs.
Algorithmica, 81(7):3047–3073, 2019. doi:10.1007/s00453-019-00568-7.

7 Nina Chiarelli, Tatiana Romina Hartinger, Matthew Johnson, Martin Milanič, and Daniël
Paulusma. Minimum connected transversals in graphs: New hardness results and tractable
cases using the price of connectivity. Theor. Comput. Sci., 705:75–83, 2018. doi:10.1016/j.
tcs.2017.09.033.

https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00453-019-00568-7
https://doi.org/10.1016/j.tcs.2017.09.033
https://doi.org/10.1016/j.tcs.2017.09.033

J. Novotná et al. 23:11

8 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. On the
Maximum Weight Independent Set Problem in graphs without induced cycles of length at
least five. CoRR, abs/1903.04761, 2019. arXiv:1903.04761.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Inf. Comput., 256:62–82, 2017. doi:10.1016/j.
ic.2017.04.009.

11 Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. J. Combin.
Theory Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

12 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. In STOC 2016, pages 764–775. ACM, 2016.

13 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Exact Algorithm for the Maximum
Induced Planar Subgraph Problem. In ESA 2011, volume 6942 of LNCS, pages 287–298.
Springer, 2011.

14 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large Induced Subgraphs via Triangula-
tions and CMSO. SIAM J. Comput., 44(1):54–87, 2015.

15 Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In SODA 2019, pages
1257–1271. SIAM, 2019.

16 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
CoRR, abs/1706.04065, 2017. arXiv:1706.04065.

17 Christian Komusiewicz. Tight Running Time Lower Bounds for Vertex Deletion Problems.
ACM Trans. on Comput. Theory (TOCT), 10(2):6:1–6:18, 2018.

18 James R. Lee. Separators in Region Intersection Graphs. In ITCS 2017, volume 67 of LIPIcs,
pages 1:1–1:8. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2017.

19 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

20 Vadim V. Lozin and Martin Milanič. A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008.

21 Marcin Pilipczuk and Michał Pilipczuk. Finding a Maximum Induced Degenerate Subgraph
Faster Than 2n. In IPEC 2012, volume 7535 of LNCS, pages 3–12. Springer, 2012.

22 Michał Pilipczuk. Problems Parameterized by Treewidth Tractable in Single Exponential
Time: A Logical Approach. In MFCS 2011, volume 6907, pages 520–531. Springer, 2011.

23 Ewald Speckenmeyer. Untersuchungen zum Feedback Vertex Set Problem in ungerichteten
Graphen. PhD thesis, Universität Paderborn, 1983. In German.

IPEC 2019

http://arxiv.org/abs/1903.04761
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1016/j.jctb.2018.12.007
http://arxiv.org/abs/1706.04065
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4

Beating Treewidth for Average-Case Subgraph
Isomorphism
Gregory Rosenthal
University of Toronto, Canada
http://www.cs.toronto.edu/~rosenthal/
rosenthal@cs.toronto.edu

Abstract
For any fixed graph G, the subgraph isomorphism problem asks whether an n-vertex input graph has
a subgraph isomorphic to G. A well-known algorithm of Alon, Yuster and Zwick (1995) efficiently
reduces this to the “colored” version of the problem, denoted G-SUB, and then solves G-SUB in
time O(ntw(G)+1) where tw(G) is the treewidth of G. Marx (2010) conjectured that G-SUB requires
time Ω(nconst·tw(G)) and, assuming the Exponential Time Hypothesis, proved a lower bound of
Ω(nconst·emb(G)) for a certain graph parameter emb(G) = Ω(tw(G)/ log tw(G)). With respect to the
size of AC0 circuits solving G-SUB, Li, Razborov and Rossman (2017) proved an unconditional
average-case lower bound of Ω(nκ(G)) for a different graph parameter κ(G) = Ω(tw(G)/ log tw(G)).

Our contributions are as follows. First, we show that emb(G) is at most O(κ(G)) for all graphs
G. Next, we show that κ(G) can be asymptotically less than tw(G); for example, if G is a hypercube
then κ(G) is Θ

(
tw(G)

/√
log tw(G)

)
. Finally, we construct AC0 circuits of size O(nκ(G)+const)

that solve G-SUB in the average case, on a variety of product distributions. This improves an
O(n2κ(G)+const) upper bound of Li et al., and shows that the average-case complexity of G-SUB is
no(tw(G)) for certain families of graphs G such as hypercubes.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Fixed parameter tractability; Mathematics of computing → Graph algorithms

Keywords and phrases subgraph isomorphism, average-case complexity, AC0, circuit complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.24

Related Version The full paper is available at https://arxiv.org/abs/1902.06380.

Funding Gregory Rosenthal: NSERC (PGS D)

Acknowledgements Thanks to Benjamin Rossman for introducing me to this topic, and for having
many helpful discussions about the research and about drafts of this paper. Thanks to Henry Yuen
for providing feedback on a draft of this paper as well. Part of this work was done while the author
was visiting the Simons Institute for the Theory of Computing.

1 Introduction

The subgraph isomorphism problem asks, given graphs X and G, whether X has a subgraph
isomorphic to G. In the “colored” or “partitioned” version of the problem, each vertex of the
larger graph X comes with a “color” from the vertex set of G, and we ask whether X has a
subgraph that is isomorphic to G with respect to this coloring. We denote the uncolored and
colored subgraph isomorphism problems by G-SUBuncol(X) and G-SUB(X) respectively.

Subgraph isomorphism is NP-complete (e.g. if G is a clique or Hamiltonian cycle), so
research has focused on algorithms for a variety of special cases in the context of parameterized
complexity, surveyed in [12]. If G is a fixed graph on k vertices then G-SUBuncol is solvable
in time O(nk) by brute force, where (here and throughout this section) n is the order of the
input graph. The color-coding algorithm of Alon, Yuster and Zwick [2] improves on this by
efficiently reducing G-SUBuncol to G-SUB and solving the latter in time O(ntw(G)+1), where
tw(G) is the treewidth of the fixed graph G.

© Gregory Rosenthal;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5099-9882
http://www.cs.toronto.edu/~rosenthal/
mailto:rosenthal@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.IPEC.2019.24
https://arxiv.org/abs/1902.06380
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Beating Treewidth

The exponent tw(G)+1 can sometimes be improved using fast matrix multiplication [14, 5],
but no significantly faster algorithm is known for either the colored or uncolored subgraph
isomorphism problem. The following was conjectured in [11]:

I Conjecture 1.1. There is no class G of graphs with unbounded treewidth, no algorithm A
that on inputs G and X solves G-SUB(X), and no function f such that if G is in G then A
runs in time f(G)no(tw(G)).

Marx [11] came close to proving Conjecture 1.1 assuming the Exponential Time Hypothesis
(ETH) [9], which is the hypothesis that solving 3SAT on n variables requires 2Ω(n) time. We
state his result in terms of a parameter emb(G) (short for “embedding”) which we will define
in Section 4:

I Theorem 1.2 ([11]). If there is a class G of graphs with unbounded treewidth, an algorithm
A that on inputs G and X solves G-SUB(X), and a function f such that if G is in G then A
runs in time f(G)no(emb(G)), then ETH is false.

Marx [11] proved that emb(G) is Ω(tw(G)/ log tw(G)), so Theorem 1.2 comes within
a logarithmic factor in the exponent of proving Conjecture 1.1. Our main result is a
counterexample to an average-case analogue of Conjecture 1.1, in a sense that will be made
precise in Section 3. Moreover, our result holds on circuits of depth depending only on G.

Li, Razborov and Rossman [10] proved that for fixed G, the average-case AC0 complexity
of G-SUB is between nκ(G)−o(1) and n2κ(G)+c, where κ(G) is a graph property defined in
Section 3 and c is an absolute constant.1 We tighten this gap, answering an open problem
posed in [10]:

I Theorem 1.3. There is a constant c > 0 such that for any fixed graph G, the average-case
AC0 complexity of G-SUB is at most nκ(G)+c.

We observe that a similar result holds easily on Turing machines, using as a subroutine
the sort-merge join algorithm from relational algebra. This involves sorting, which cannot be
done in AC0 [7], so our circuit instead uses hashing that relies on concentration of measure
for subgraphs of random graphs.

It was also proved in [10] that κ(G) is between Ω(tw(G)/ log tw(G)) and tw(G) + 1, from
which it follows that the worst-case complexity of G-SUB on bounded-depth circuits is at
least nΩ(tw(G)/ log tw(G)). The question was posed in [10] of whether κ(G) is Θ(tw(G)); an
affirmative answer would have implied that Conjecture 1.1 holds on bounded-depth circuits.

Our main result is a separation of κ from treewidth. The Hamming graph Kd
q has vertex

set {1, . . . , q}d and edges between every two vertices that differ in exactly one coordinate. It
is already known that Kd

q has treewidth Θ
(
qd
/√

d
)
[4]. We prove the following:

I Theorem 1.4. κ
(
Kd
q

)
is Θ(qd/d).

Thus, if G is the hypercube graph Kd
2 for example, then κ(G) is Θ

(
tw(G)

/√
log tw(G)

)
.

It follows that an average-case analogue of Conjecture 1.1 is false if G is taken to be the set
of all hypercubes. We also prove the following (for arbitrary graphs G):

I Theorem 1.5. emb(G) is O(κ(G)).

1 In [10], the parameter κ(G) was called κcol(G).

G. Rosenthal 24:3

Because of Theorem 1.5, even if our upper bound generalizes to the worst case, it is still
consistent with current knowledge (in particular Theorem 1.2) that ETH is true. Another
consequence of Theorem 1.5 is that the lower bound from Theorem 1.2 holds unconditionally
in AC0.

It follows from Theorems 1.4 and 1.5 that if G is a hypercube then emb(G) ≤ O(κ(G)) =
o(tw(G)), so proving that Conjecture 1.1 holds under ETH cannot be done by proving that
emb(G) is Θ(tw(G)). In fact, this conclusion was already known: Alon and Marx [1] proved
that if G is a 3-regular expander then emb(G) is Θ(tw(G)/ log tw(G)). It was proved in
[10] that if G is a 3-regular expander then κ(G) is Θ(tw(G)), which makes our separation
of κ from treewidth more surprising. On the other hand, we will see that Theorem 1.5 is
asymptotically tight in the case of Hamming graphs.

We can make a similar statement regarding AC0. Amano [3] observed that the color-
coding algorithm for G-SUB can be implemented by AC0 circuits of size O(ntw(G)+1) for
fixed G. Our separation of κ from treewidth implies that if Conjecture 1.1 holds in AC0,
then this cannot be proved using average-case complexity as defined here and in [10].

The paper is organized as follows. In Section 2 we introduce some notation and definitions.
In Section 3 we define the average-case problem and κ(G), and give an Õ(nκ(G))-time
algorithm for the average-case problem. In Section 4 we define emb(G) and prove that
emb(G) is O(κ(G)). In Section 5 we prove that κ

(
Kd
q

)
is Θ(qd/d), and obtain as a corollary

that emb
(
Kd
q

)
is Θ(qd/d) as well. We also summarize the proof of Chandran and Kavitha [4]

that tw
(
Kd
q

)
is Θ

(
qd
/√

d
)
. In Section 6 we prove our AC0 upper bound.

2 Preliminaries

It will be convenient to define Õ(f(n)) = f(n) logO(1) n. (This differs from the standard
notation when f(n) = no(1).) Let [k] = {1, . . . , k} for k ∈ N.

We use boldface to denote random variables. The indicator variable 1{E} equals 1
if the event E occurs and 0 otherwise. Expected value is denoted E[·]. An event occurs
asymptotically almost surely (a.a.s.) if it occurs with probability 1− o(1) as n goes to infinity.

2.1 Graphs
All graphs we consider are simple and undirected, and may have isolated vertices. If G is a
graph then let V (G) and E(G) denote its vertex and edge sets, with respective cardinalities
v(G) and e(G). If u and v are adjacent vertices then we denote the edge connecting them
by uv or vu. A graph H is a subgraph of G, denoted H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G).

I Definition 2.1 (Colored subgraph isomorphism problem). For graphs G and X, where X
comes with a coloring χ : V (X) → V (G), the problem G-SUB(X) asks whether X has a
subgraph G′ such that χ (restricted to V (G′)) is an isomorphism from G′ to G. (Note that
G′ is not required to be an induced subgraph of X.)

For U ⊆ V (G) let G[U] be the induced subgraph of G on U , and more generally
let G[U1, . . . , Uk] = G[U1 ∪ · · · ∪ Uk]. Let G − U = G[V (G) − U], and for H ⊆ G let
G−H = G− V (H).

When the parent graph G is clear in context, let deg(u) be the degree of a vertex u, and
for disjoint S, T ⊆ V (G) let e(S, T) be the number of edges between S and T . Similarly, for
vertex-disjoint graphs A and B let e(A,B) = e(V (A), V (B)).

IPEC 2019

24:4 Beating Treewidth

Let G ∩H be the graph with vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H), and
define G ∪H similarly. Note that G ∩H may have isolated vertices even if G and H do not.
If A ⊆ B are graphs then let [A,B] = {H | A ⊆ H ⊆ B}, and let (A,B] be the same interval
without A, etc.

We denote by Kk the complete graph on k vertices, also called the k-clique. The graph
Kd
q has vertex set [q]d, and two vertices are adjacent if and only if they differ in exactly one

coordinate. Such graphs are called Hamming graphs. A special case is the d-dimensional
hypercube Qd = Kd

2 ; we will use {0, 1}d for its vertex set.
Finally, let ER (n, p) be the Erdős-Rényi graph on n vertices in which each possible edge

exists independently with probability p.

3 The Average-Case Problem and the Parameter κ(G)

3.1 Threshold Random Graphs
First we will define threshold weightings, which assign weights to the vertices and edges of a
graph subject to certain constraints. Then we will define a family of random graphs for each
threshold weighting. The content in this subsection is essentially all from [10].

I Definition 3.1. A threshold weighting on a graph G is a pair (α, β) ∈ [0, 1]V (G)× [0, 2]E(G)

with the following property. For H ⊆ G let α(H) =
∑
u∈V (H) α(u) and β(H) =

∑
e∈E(H) β(e),

and let ∆(H) = α(H)− β(H). Then, ∆(H) ≥ 0 for all H ⊆ G, and ∆(G) = 0. Let θ(G) be
the set of threshold weightings on G.

We will often denote ∆ = (α, β) in a slight abuse of notation. (Since ∆(u) = α(u) if u
is a single vertex, the pair (α, β) is uniquely determined by ∆.) The requirement that α be
nonnegative is redundant because it’s a special case of the requirement that ∆ be nonnegative.
The requirement that β ≤ 2 is also redundant because for every edge uv,

0 ≤ ∆(uv) = α(u) + α(v)− β(uv) ≤ 2− β(uv).

A trivial example is (α, β) = (0, 0), i.e. all vertices and edges have a weight of zero. The
following example is more general:

I Example 3.2 (Markov Chains). Let M ∈ RV (G)×V (G)
≥0 be a column stochastic matrix

(meaning each column sums to 1) such that if Mu,v 6= 0 then either u = v or uv ∈ E(G). Let
α(u) = 1−Mu,u for all u, and β(uv) = Mu,v +Mv,u for all uv ∈ E(G). Then for all H ⊆ G,

∆(H) =
∑

v∈V (H)
uv∈E(G)−E(H)

Mu,v ≥ 0, (1)

with equality if H = G. In fact, in the full paper we prove that every threshold weighting is
equivalent to at least one Markov Chain.

The following threshold weighting will be especially important, and can be thought of as
representing a uniform random walk on G:

I Definition 3.3. If G lacks isolated vertices then let ∆o = (1, βo) ∈ θ(G) be the threshold
weighting generated in Example 3.2 when Mu,v = 1{uv ∈ E(G)}/ deg(v). That is, ∆o =
(α, β), where α(u) = 1 for all u and β(uv) = 1/ deg(u) + 1/deg(v) for all u 6= v. If G is
d-regular then this simplifies to ∆o = (1, βo) = (1, 2/d).

Now we define threshold random graphs:

G. Rosenthal 24:5

I Definition 3.4. For ∆ = (α, β) ∈ θ(G) let X∆,n be the graph with vertices ui for u ∈ V (G)
and i ∈ [nα(u)], and for uv ∈ E(G), each edge uivj independently with probability n−β(uv).
The graph X∆,n comes with the coloring to G defined by ui 7→ u.

For H ⊆ G and X in the support of X∆,n, let SubX(H) be the set of subgraphs H ′ ⊆ X
such that the aforementioned coloring (restricted to V (H ′)) is an isomorphism from H ′ to
H. We say that such a graph H ′ is “H-colored”. Note that SubX(H) can be identified with a
subset of

∏
u∈V (H)[nα(u)].

I Lemma 3.5. If ∆ ∈ θ(G) and H ⊆ G then E[|SubX∆,n
(H)|] = n∆(H)(1± o(1)).

Proof. Let (α, β) = ∆. The set SubX∆,n
(H) contains each of its nα(H) possible elements

with probability n−β(H), so the result follows from linearity of expectation. (The 1± o(1)
accounts for having to round nα(·) to an integer.) J

Lemma 3.5 motivates the requirements that ∆ be nonnegative everywhere and that
∆(G) = 0. Recall that the problem G-SUB(X) asks whether SubX(G) is the empty set. Since
∆(G) is required to be zero, it follows that SubX∆,n

(G) has (approximately) one element on
average, and the probability that SubX∆,n

(G) is empty is known to be bounded away from 0
and 1 as n goes to infinity [10].

3.2 The Parameter κ(G) and an Algorithm for the Average Case
We now define κ(G):

I Definition 3.6 ([10]). Let G be a graph with no isolated vertices. Let Seq(G) be the set
of union sequences, meaning sequences (H1, . . . ,Hk) of distinct subgraphs of G such that
Hk = G and each Hi is either an edge or the union of two previous graphs in the sequence. For
∆ ∈ θ(G) let κ∆(G) = minS∈Seq(G) maxH∈S ∆(H). Finally, let κ(G) = max∆∈θ(G) κ∆(G).

To simplify the exposition, whenever we refer to κ(G), the graph G is implicitly assumed
to lack isolated vertices. It was proved in [10] that for any fixed G, constant-depth circuits
solving G-SUB(X∆,n) a.a.s. require size at least nκ∆(G)−o(1) and at most n2κ∆(G)+c (where
c is an absolute constant). The results about average-case complexity described in Section 1
are with respect to a ∆ such that κ∆(G) = κ(G).

I Theorem 3.7. The problem G-SUB(X∆,n) can be solved in time Õ(nκ∆(G)) ≤ Õ(nκ(G))
a.a.s. for any fixed G.

Proof. First we prove a weaker upper bound of Õ(n2κ∆(G)), in a manner analogous to the
circuit from [10], and then we describe a modification (on Turing machines) that removes
the factor of 2 from the exponent. In Section 6 we will remove the factor of 2 in AC0 using a
different approach.

Let S be a union sequence such that κ∆(G) = maxH∈S ∆(H). For any H ∈ S, by
Lemma 3.5 and Markov’s Inequality, P

(
|SubX∆,n

(H)| > n∆(H) logn
)
≤ 1/ logn. (We will

obtain a tighter bound of P (|SubX∆,n
(H)| > Õ(n∆(H))) ≤ n−ω(1) in Section 6.1.) By a union

bound it follows that if X ∼ X∆,n then maxH∈S |SubX(H)| ≤ Õ(nκ∆(G)) a.a.s. Assume this
condition holds for X. For each successive H in S, compute SubX(H) as follows. If H is a
single edge then this is trivial. Otherwise H = A ∪B for some previous A,B ∈ S, in which
case SubX(H) is the set of A∪B such that A ∈ SubX(A),B ∈ SubX(B) and the projections
of A and B onto [n]V (A∩B) are equal. Therefore SubX(H) can be computed by brute force
in time Õ(|SubX(A)| · |SubX(B)|) ≤ Õ(n2κ∆(G)). Finally, check whether SubX(G) is empty.

IPEC 2019

24:6 Beating Treewidth

We can save a quadratic factor by computing SubX(H) from SubX(A) and SubX(B)
as follows. (This is a case of the sort-merge join algorithm for computing the natural join
of two relations, as defined in database theory [20].) Fix an efficiently computable total
order on [n]V (A∩B), e.g. interpret elements of [n]V (A∩B) as v(A∩B)-digit base-n numbers in
increasing order, and then define a partial order on [n]V (A) ∪ [n]V (B) by first projecting onto
[n]V (A∩B). Sort SubX(A) and SubX(B) in nondecreasing order, and for convenience add
the symbol ⊥ to the end of both sorted lists. Let A and B be the first elements of SubX(A)
and SubX(B) respectively, and initialize an empty accumulator (which will ultimately equal
SubX(H)). While A 6=⊥ and B 6=⊥, do the following. If A < B then let A be the next
element of SubX(A). If B < A then let B be the next element of SubX(B). Otherwise, let
B′ = B, and while B′ 6=⊥ and the projections of A and B′ onto [n]V (A∩B) are equal, add
A ∪ B′ to the accumulator and let B′ be the next element of SubX(B). Then (once the
procedure involving B′ has finished) let A be the next element of SubX(A).

Sorting SubX(A) and SubX(B) takes Õ(|SubX(A)|+ |SubX(B)|) comparisons, and then
computing SubX(H) takes Õ(|SubX(A)|+ |SubX(B)|+ |SubX(H)|) ≤ Õ(nκ∆(G)) time. J

We will use the following graph-theoretic properties of κ(G):

I Theorem 3.8 ([10]2). Let G be a graph with no isolated vertices.
(i) There exists ∆ = (1, β) ∈ θ(G) (meaning ∆(u) = 1 for all vertices u) such that

κ(G) = κ∆(G).
(ii) κ(G) ≥ v(G)h(G)/(3 maxu∈V (G) deg(u)), where h(G) is the edge expansion of G.
(iii) If G is a minor of some graph H then κ(G) ≤ κ(H).

The following was observed in [10] as well:

I Corollary 3.9. If G is a bounded-degree expander then κ(G) is Θ(v(G)).

Proof. Theorem 3.8(ii) implies that κ(G) is Ω(v(G)). Recall from Section 1 that κ(G) ≤
tw(G) + 1 [10], and it is well known that tw(G) + 1 ≤ v(G). J

4 The Parameter emb(G) and Proof that emb(G) is O(κ(G))

Recall that emb(G) is significant because of its role in Marx’s ETH-hardness result for G-SUB,
namely Theorem 1.2.

I Definition 4.1 (emb(G)). Let G(q) be the graph formed by replacing each vertex of G
with a q-clique, i.e. it has vertices ui for all u ∈ V (G) and i ∈ [q], and edges uivj for all
ui 6= vj such that either u = v or uv ∈ E(G). Let emb(G) be the supremum of all r > 0 for
which there exists m0 = m0(G, r) such that if H is any graph with m ≥ m0 edges and no
isolated vertices, then H is a minor of G(dm/re), and furthermore a minor mapping from H

to G(dm/re) can be computed in time f(G)mO(1) for some function f .

Although the requirement that such a minor mapping be efficiently computable is crucial
in Theorem 1.2, none of the other results about emb(G) that we reference or derive depend on
this requirement, so we may safely ignore it going forward. The following example illustrates
Definition 4.1:

2 Specifically, Corollary 4.2, Theorem 4.9, and Theorem 5.1 of [10] correspond to Theorems 3.8(i) to 3.8(iii)
respectively.

G. Rosenthal 24:7

I Example 4.2 (emb(Kk) [11]). Since K(dm/re)
k = Kkdm/re, any graph H with m edges is a

minor of K(dm/re)
k if and only if v(H) ≤ kdm/re. If H has no isolated vertices then H could

have up to 2m vertices, so 2m ≤ kdm/re. Therefore emb(Kk) = k/2: it is sufficient for 2m
to be at most km/r (i.e. r ≤ k/2), and no r > k/2 satisfies 2m ≤ kdm/re for arbitrarily
large m.

I Remark. The name emb(G) comes from the fact that Marx [11] called a minor mapping
from H to G(q) an “embedding of depth q” from H into G. Marx [11] used the notation
G(q), but the parameter emb(G) is new in the current paper, all results about emb(G) in
[11, 1] having been stated in terms of embeddings of some depth.

The following is used in our proof that emb(G) is O(κ(G)):

I Lemma 4.3. κ
(
G(q)) ≤ qmax(κ(G), 2).

Proof Sketch. Given a threshold weighting ∆ on G(q), collapsing each cluster of q vertices
to a single “mega-vertex” induces a threshold weighting ∆′ on G. Let S be an optimal union
sequence for G with respect to ∆′, and project S back onto G(q). J

Now we prove that emb(G) is O(κ(G)) (Theorem 1.5), using an argument similar to the
proof by Marx [11] that emb(G) is O(tw(G)):

Proof. Let r > 0, and assume there exists an arbitrarily large 3-regular expander H that’s a
minor of G(de(H)/re). Then by Corollary 3.9, Theorem 3.8(iii), and Lemma 4.3,

e(H) = Θ(v(H)) = Θ(κ(H)) ≤ O
(
κ
(
G(de(H)/re)

))
≤ O (κ(G)e(H)/r) ,

so r must be O(κ(G)). J

In [10] the question was posed of whether Theorem 1.2 holds with κ(G) in place of
emb(G). By Theorem 1.5 this would be a stronger bound, which makes the question even
more interesting. This problem is open even in the case of 3-regular expanders: recall from
Section 1 that if G is a 3-regular expander then emb(G) is Θ(tw(G)/ log tw(G)) and κ(G) is
Θ(tw(G)) [1, 10].

The fact that κ(G) is Ω(emb(G)) gives an alternate proof, besides the one in [10], that
κ(G) is Ω(tw(G)/ log tw(G)).

5 Separating κ from Treewidth

In Section 5.1 we prove that κ(Kk) = k/4 +O(1), which is a special case of the more general
result that κ

(
Kd
q

)
= Θ(qd/d). We obtain tighter multiplicative constants in the case d = 1,

and it provides an opportunity to illustrate the main ideas of our proof in a simpler setting,
but when reading the full paper it may be skipped without penalty. In Section 5.2 we prove
that κ

(
Kd
q

)
is O(qd/d) when q is even, which is sufficient to separate κ from treewidth.

Again, this case is cleaner than the general case and conveys most of the intuition behind it.
In an appendix in the full paper we prove that κ

(
Kd
q

)
is O(qd/d) for all q. In Section 5.3

we prove that κ
(
Kd
q

)
is Ω(qd/d) in two different ways, completing the proof that κ

(
Kd
q

)
is

Θ(qd/d) (Theorem 1.4), and we obtain as a corollary that emb
(
Kd
q

)
is Θ(qd/d) as well. In

Section 5.4 we summarize the proof of Chandran and Kavitha [4] that tw
(
Kd
q

)
is Θ

(
qd
/√

d
)
.

IPEC 2019

24:8 Beating Treewidth

5.1 Proof that κ(Kk) = k/4 + O(1)
I Remark. It was already observed in [10] that κ(Kk) is Θ(k).

Rossman [16] proved that κ∆o(Kk) ≥ k/4, so it suffices to prove the upper bound. By
Theorem 3.8(i) it suffices to prove that κ∆(Kk) ≤ k/4 +O(1) for an arbitrary ∆ = (1, β) ∈
θ(G). First we construct a sequence U1 ⊆ · · · ⊆ Uk = V (Kk) such that Ui is an i-element
subset of V (Kk), and β(Kk[Ui]) ≥ βo(Kk[Ui]) for all i. The set Uk = V (Kk) satisfies this
requirement because β(Kk) and βo(Kk) are both equal to k. Given Ui, let Ui−1 be an
(i − 1)-element subset of Ui chosen uniformly at random. Each pair of elements in Ui is
included in Ui−1 with the same probability pi (= 1 − 2/i), so it follows from linearity of
expectation that

E[β(Kk[Ui−1])] =
∑

e∈E(Kk[Ui])

β(e)pi = piβ(Kk[Ui]) ≥ pi βo(Kk[Ui]) = E[βo(Kk[Ui−1])].

Therefore there exists a fixed Ui−1 such that β(Kk[Ui−1]) ≥ βo(Kk[Ui−1]).
We construct a union sequence S for Kk as follows. Start by enumerating the edges,

and then for i from 1 to k − 1, append (Kk[Ui] ∪ e1,Kk[Ui] ∪ e1 ∪ e2, . . . ,Kk[Ui+1]), where
e1, e2, . . . are the edges between Ui and Ui+1 − Ui. Then,

max
H∈S

∆(H) ≤ max
i

∆(Kk[Ui]) + 1 ≤ max
i

∆o(Kk[Ui]) + 1.

As observed in [16], it follows from Equation (1) that ∆o(Kk[Ui]) = i(k − i)/k, which is at
most k/4 (when i = k/2). Therefore κ∆(Kk) ≤ k/4 + 1.

5.2 Proof that κ
(
Kd
q

)
is O(qd/d) if q is Even

First we reduce this to the case q = 2. The graph Kd
q is a subgraph of Q((q/2)d)

d (recall
Definition 4.1), as explained in the full paper. By Theorem 3.8(iii) and Lemma 4.3, if κ(Qd)
is O(2d/d) then

κ
(
Kd
q

)
≤ κ

(
Q

((q/2)d)
d

)
≤ O

((q
2

)d
κ(Qd)

)
≤ O

((q
2

)d 2d

d

)
= O(qd/d).

Now we prove that κ(Qd) is O(2d/d), following some brief definitions and a high-level
overview of the argument. Fix d. We identify each u ∈ {0, 1}d with

∑d−1
i=0 ui2i. For

0 ≤ a ≤ 2d let G(a) = Qd[0, . . . , a − 1]. Recall that ∆o = (1, βo) = (1, 2/d) is a threshold
weighting on Qd (Definition 3.3). Let µ = max0≤a≤2d ∆o(G(a)).

I Remark. The intuition behind µ is as follows. The reader may note that κ∆o(Qd) ≤ µ+ 1,
by reasoning analogous to that in Section 5.1. That is, for each vertex u of Qd in increasing
lexicographic order, add to an accumulator all edges uv for which v < u.

There is another union sequence captured by µ as well. If a subgraph B ⊆ Qd isomorphic
to Qk for some k, then since Qk is isomorphic to G(2k) (and βo is uniform) it follows that
∆o(B) ≤ µ. Consider a depth-d binary tree in which each node at depth k is a subgraph of
Qd isomorphic to Qd−k (in particular, the root is Qd and the leaves are vertices), and each
interior node is the union of its two children along with some additional edges corresponding
to a coordinate cut. This tree describes a union sequence S for Qd: recursively obtain the
graphs L and R corresponding to the children of Qd, and then take L ∪ R and add the
missing edges. Note that maxH∈S ∆o(H) = 2 max0≤k≤d ∆o(G(2k)) ≤ 2µ.

G. Rosenthal 24:9

Analogous to Section 5.1, the upper bound is obtained by comparing κ∆(Qd) to µ for each
∆, and bounding µ. For this purpose we will consider the two union sequences mentioned
above, as well as hybrids of them.

In the full paper we prove that κ(Qd) is O(µ). It follows from Equation (1) that
µ = maxa ∆o(G(a)) = maxa e(G(a), Qd − G(a))/d, and in the full paper we prove that
maxa e(G(a), Qd −G(a)) is O(2d).

5.3 Proof that κ
(
Kd
q

)
is Ω(qd/d) and emb

(
Kd
q

)
is Θ(qd/d)

Alon and Marx [1, Theorem 4.3] proved that emb
(
Kd
q

)
is Ω(qd/d), and it follows from

Theorem 1.5 that emb
(
Kd
q

)
≤ O

(
κ
(
Kd
q

))
≤ O(qd/d). Therefore emb

(
Kd
q

)
is Θ(qd/d).

It is implicit in the above argument that κ
(
Kd
q

)
≥ Ω

(
emb

(
Kd
q

))
≥ Ω(qd/d). In the full

paper we present a second proof that κ
(
Kd
q

)
is Ω(qd/d), using Theorem 3.8(ii).

5.4 Proof that tw
(
Kd
q

)
is Θ

(
qd/

√
d
)
, Summarized

(See [4] for the full proof.) The proof that tw
(
Kd
q

)
is O

(
qd
/√

d
)
reduces to the case q = 2

by reasoning analogous to that in the beginning of Section 5.2. For k ∈ [d] let Uk be the set
of vertices of Qd with exactly k or k− 1 ones. The path (U1, . . . , Ud) is a tree decomposition
of Qd with width approximately 2

(
d
d/2
)
, and by Stirling’s approximation this is Θ

(
2d
/√

d
)
.3

For a graph G let φ(G) be the minimum over all U ⊆ V (G), v(G)/4 ≤ |U | ≤ v(G)/2
of the number of vertices in V (G) − U with at least one neighbor in U . From a result of
Robertson and Seymour [15] it follows that tw(G) ≥ φ(G)−1, and from a result of Harper [6]
it follows that φ

(
Kd
q

)
is Ω

(
qd
/√

d
)
. (Also note the parallels between tw(G) ≥ φ(G) − 1

and Theorem 3.8(ii); interestingly, we’ve sign that both are tight to within a constant factor
in the case of Kd

q .)

6 AC0 Upper Bound

An AC0 circuit is a constant-depth circuit with polynomially many unbounded-fanin AND
and OR gates and NOT gates. Fix a graph G and threshold weighting ∆ ∈ θ(G) for the
remainder of this section. We prove the following, which is a more precise statement of
Theorem 1.3:

I Theorem 6.1. There exists a constant-depth circuit with nκ∆(G)+c wires that solves
G-SUB(X∆,n) with probability 1− nω(1), where c > 0 is an absolute constant.

Since in any circuit the number of gates is at most one plus the number of wires, the circuit
from Theorem 6.1 has size nκ∆(G)+O(1) ≤ nκ(G)+O(1). (In this discussion, all ±O(1) terms
in an exponent are independent of G.) For comparison, it was proved in [10] (building on a
line of previous work [16, 3, 17, 13]) that the average-case AC0 complexity of G-SUB(X∆,n)
is between nκ∆(G)−o(1) and n2κ∆(G)+O(1). Another related result, regarding the uncolored k-
clique problem, is that the average-case AC0 complexity of Kk-SUBuncol

(
ER

(
n, n−2/(k−1)))

is at most nk/4+O(1) [3, 18] (= nκ(Kk)±O(1) by Section 5.1). See [19] for a survey of the
average-case circuit complexity of subgraph isomorphism more generally.

3 Compared to the tree decomposition from [4], this one is a simpler variant whose width is larger by up
to a constant factor.

IPEC 2019

24:10 Beating Treewidth

IDefinition 6.2. Let X be in the support of X∆,n, and let U ⊆ G be an arbitrary graph (which
we think of as a “universe”). Let Subn(U) be the set of all possible elements of SubX∆,n

(U);
note that this can be identified with

∏
v∈V (U)[nα(v)]. If A ⊆ U and A ∈ Subn(A) then let A

extend to U in X if there exists a graph U ∈ SubX(U) (called a U -extension of A) such that
A ⊆ U . (In context, X or X will be implicit.) Equivalently, A could be required to be in
SubX(A) rather than Subn(A) in the latter definition.

Let ∆∗U (A) = minA⊆H⊆U ∆(H). Let X be good if for all graphs U ⊆ G and A ⊆ U , and
for all A ∈ Subn(A) and vertices v ∈ V (U)−V (A), there are Õ

(
n∆∗U (A∪v)−∆∗U (A)) values of

i ∈ [nα(v)] such that A ∪ vi extends to U . (Recall our unconventional definition of Õ(·) from
Section 2, e.g. Õ(1) denotes logO(1) n.) Finally, let an event occur with high probability
(w.h.p.) if it occurs with probability 1− n−ω(1).

We prove the following:

I Theorem 6.3. The graph X∆,n is good w.h.p.

Observe that this is a substantially stronger concentration bound than the application of
Markov’s Inequality in the proof of Theorem 3.7. In Section 6.1 we prove Theorem 6.3, and
then in Section 6.2 we use this result to prove Theorem 6.1.

6.1 Proof of Theorem 6.3
First we derive some algebraic properties of the threshold weighting ∆.

I Lemma 6.4. If A,B ⊆ G then ∆(A) + ∆(B) = ∆(A ∩B) + ∆(A ∪B).

Proof. Each vertex or edge in one (resp. two) of A and B is also in one (resp. two) of A ∩B
and A ∪B. J

I Definition 6.5. For A ⊆ U ⊆ G let ΓU (A) =
⋂
{H ∈ [A,U] | ∆(H) = ∆∗U (A)}, and let A

be a U -base if ∆(A) = ∆∗U (A).

Throughout this subsection, U will be an arbitrary subgraph of G unless additional
structure is imposed on it, and missing subscripts on ∆∗ and Γ default to U .

I Lemma 6.6. If A ⊆ U then ∆(Γ(A)) = ∆∗(A) and A ⊆ Γ(A).

Proof. It suffices to show that the set S = {H ∈ [A,U] | ∆(H) = ∆∗(A)} is closed under
intersection. Let B,C ∈ S. By the definition of S, Lemma 6.4, and the fact that A ⊆ B ∪C,

2∆∗(A) = ∆(B) + ∆(C) = ∆(B ∩ C) + ∆(B ∪ C) ≥ ∆(B ∩ C) + ∆∗(A),

so ∆(B∩C) ≤ ∆∗(A). On the other hand, ∆(B∩C) ≥ ∆∗(A) because A ⊆ B∩C. Therefore
∆(B ∩ C) = ∆∗(A), so B ∩ C ∈ S. J

The proofs of the following two lemmas are of a similar flavor, and are included in the
full paper.

I Lemma 6.7. If A ⊆ Γ(A) ⊆ U ′ ⊆ U then Γ(A) is a U ′-base.

I Lemma 6.8. If A ⊆ B ⊆ U then Γ(A) ⊆ Γ(B).

We now analyze the concentration of X∆,n, making liberal use of the fact that if nO(1)

events occur with uniformly high probability then their conjunction also occurs w.h.p. by a
union bound. For the rest of this subsection, “extensions” are with respect to an implicit
X ≡ X∆,n.

G. Rosenthal 24:11

I Lemma 6.9. If A ⊆ U and ΓU (A) = U (i.e. ∆(H) > ∆(U) for all H ∈ [A,U)) then the
number of U -extensions of any A ∈ Subn(A) is Õ(1) w.h.p.

(The above conditions are equivalent because, by the definition of Γ(A), we have Γ(A) = U

if and only if U is the unique H ∈ [A,U] that minimizes ∆(H).)

Proof Sketch. Here we prove the weaker claim that the lemma holds with “a.a.s.” in place
of “w.h.p.” There are nα(U)−α(A) possible U -extensions of A, each of which occurs with
probability n−β(U)+β(A), soA has n∆(U)−∆(A) U -extensions in expection. Since ∆(U) < ∆(A)
by assumption, the result follows from Markov’s Inequality. J

I Lemma 6.10. If A is a U -base then any A ∈ Subn(A) has Õ(n∆(U)−∆(A)) U -extensions
w.h.p.

Proof Sketch. Again, if we replace “w.h.p.” with “a.a.s.” then the claim follows immediately
from Markov’s Inequality. A similar lower bound is also proved in an appendix in the full
paper. J

Now we prove that X∆,n is good w.h.p.:

Proof of Theorem 6.3. Let A ⊆ U , A ∈ Subn(A) and v ∈ V (U)−V (A). By a union bound
it suffices to prove that w.h.p. there are Õ(n∆∗(A∪v)−∆∗(A)) values of i such that A ∪ vi
extends to U . The number of such i is at most the number of i such that A ∪ vi extends to
Γ(A ∪ v), which is at most the number of Γ(A ∪ v)-extensions of A. Since Γ(A) ⊆ Γ(A ∪ v)
(Lemma 6.8), this equals the sum over all γ ∈ {Γ(A)-extensions of A} of the number Eγ of
Γ(A ∪ v)-extensions of γ.

It follows from Lemma 6.9 that A has Õ(1) extensions to Γ(A) w.h.p. (To see this, note
that if A ⊆ H ⊂ Γ(A) then ∆(H) ≥ ∆∗(A) = ∆(Γ(A)) (Lemma 6.6), and if ∆(H) = ∆∗(A)
then it follows from the definition of Γ(A) that Γ(A) ⊆ H, a contradiction.) Since Γ(A) is a
Γ(A∪v)-base (Lemma 6.7), it follows from Lemma 6.10 that any Eγ is Õ(n∆(Γ(A∪v))−∆(Γ(A)))
w.h.p. (= Õ(n∆∗(A∪v)−∆∗(A)) by Lemma 6.6). J

6.2 The Circuit
If D is a data structure then let |D| denote the number of bits used to represent it according
to whatever schema we describe. When there is a null element we represent it by the all-zeros
string.

Proof of Theorem 6.1. Since X∆,n is good w.h.p. (Theorem 6.3) it suffices to prove the
existence of a (small, constant-depth) circuit C such that PX∼X∆,n

(C(X) = G-SUB(X) |
X is good) = 1− nω(1). By Yao’s Principle [21] it suffices to prove the existence of a (small,
constant-depth) random circuit C such that P (C(X) = G-SUB(X)) = 1 − n−ω(1) for any
fixed good X.

The following result is essentially implicit in [10] (as is the argument above) and helps
keep the random circuit small:

I Lemma 6.11 (Random Hashing). Let S be a set containing a null element, and assume all
elements of S are represented using the same number of bits. Let l = l(n) and m = m(n)
be polynomially-bounded functions of n. Then there exists a random, constant-depth circuit
C : Sl → SÕ(m) such that if A is an array of l values in S, of which all but at most m are
null, then C has at most |A|no(1) gates and |A|Õ(l/m) wires, and w.h.p. the multiset of
non-null elements of C(A) is the same as that of A.

IPEC 2019

24:12 Beating Treewidth

We remark that Lemma 6.11 will only be called with l ≤ Õ(n).

Proof Sketch. The proof uses a Chernoff bound and a result from [8]. J

Given H ⊆ G and an ordering π = (π1, . . . , πv(H)) of V (H), let δi = ∆∗H(π1∪ · · ·∪πi) for
0 ≤ i ≤ v(H), and let φi = δi+1 − δi for 0 ≤ i < v(H). (In context H and π will be implicit.)

I Lemma 6.12. 0 ≤ φi ≤ 1 for all i.

Proof. Clearly δi ≤ δi+1. Let A ⊆ G such that π1, . . . , πi ∈ V (A) and ∆(A) = δi. Then
δi+1 ≤ ∆(A ∪ πi+1) ≤ ∆(A) + α(πi+1) ≤ δi + 1. J

Let T = T (H,π) be a depth-v(H) tree (i.e. the root has depth 0 and the leaves have
depth v(H)) in which each node at depth i < v(H) has nφi logci n children, where ci is a
sufficiently large constant. Each non-root node N has a partial label L(N) ∈ {null} ∪ [n],
and N ’s (complete) label is the sequence of partial labels along the path from the root to
N . A label is considered null if it includes any null partial labels. It is required that no two
nodes share a non-null label, and there exists a node labeled with (l1, . . . , li) if and only if4
{π1

l1
, . . . , πili} extends to H.
Let S be an immediate subtree of T (resp. of a node N), denoted S ∈ T (resp. S ∈ N),

if S’s root is a child of T ’s root (resp. of N). Any subtree is considered to have the same
(partial) label as its root.

If the underlying tree structure of T (that is, everything except the partial labels) is
implicit, then we can represent T by an array of values in {null}∪ [n], indexed by the vertices
of T . Each of these values can be associated with a bit string in a natural way. We will
consider circuits that compute T according to this representation.

I Lemma 6.13. |T | is Õ(n∆(H)).

Proof. δ0 = ∆(∅) = 0 and δv(H) = ∆∗H(V (H)) = ∆(H). It takes Õ(1) bits to store an
element of [n]V (H), and each φi is nonnegative (Lemma 6.12), so

|T | = Õ

v(H)−1∏
i=0

nφi

 = Õ

(
n
∑v(H)−1

i=0
φi

)
= Õ

(
nδv(H)−δ0

)
= Õ

(
n∆(H)

)
. J

I Lemma 6.14. For all H ⊆ G there exists a random, constant-depth circuit with Õ(n∆(H)+2)
wires, independent of X, that computes T (H,π′) from T (H,π) w.h.p.

Proof Sketch. Assume that π and π′ differ only in positions d and d + 1. (The general
case can be reduced to at most

(
v(H)

2
)
copies of this circuit in succession.) Define δ′i and φ′i

analogously to δi and φi, but with respect to π′ rather than π. Clearly δi = δ′i for i 6= d, so
φi = φ′i for i /∈ {d− 1, d}.

For each depth-(d−1) node N of T (H,π), in parallel, do the following. For τ ∈ N, j ∈ [n]
let Aτj be (if this exists) the subtree rooted at a child of τ whose partial label is j. After
updating the partial labels at what will become the new depth-d and depth-(d+ 1) nodes,
hash the number of columns of A down to Õ(nφ

′
d−1) (using Lemma 6.11), and hash each

remaining column down to a set of Õ(nφ′d) elements. The remaining columns are the new
immediate subtrees of N , and the remaining elements in each column are now the immediate
subtrees of that column. J

4 Recall that (πj)lj is a πj-colored vertex in X.

G. Rosenthal 24:13

For e ∈ E(G) we can construct T (e) in a similar manner, as explained in the full paper.

I Lemma 6.15. For all H,H ′ ⊆ G there exists a random, constant-depth circuit, independent
of X, with Õ(nmax(∆(H),∆(H′))+2) wires, that computes T (H ∪ H ′, π̂) from T (H,π) and
T (H ′, π′) w.h.p. for some π̂.

Proof Sketch. Let T = T (H,π) and T ′ = T (H ′, π′). By Lemma 6.14 we can assume
without loss of generality that {π1, . . . , πv(H∩H′)} = V (H ∩H ′) = V (H) ∩ V (H ′), and that
πk = π′k = π̂k for k ∈ [v(H ∩H ′)]. Define φ′ and φ̂ with respect to (H ′, π′) and (H ∪H ′, π̂)
respectively.

Let ψi = min(φi, φ′i). For 0 ≤ d ≤ v(H ∩ H ′) let Sd be a depth-d tree in which each
node at depth i < d (including i = 0) has Õ(nψi) children. Each node of Sd has a (partial)
label defined the same way as in T , such that no two nodes share a non-null label, and
{π1

l1
, . . . , πili} extends to both H and H ′ (but not necessarily to H ∪H ′) if and only if some

node is labeled with l. Each leaf of Sd with a non-null label l is associated with the pair
(τ, τ ′) of subtrees of T and T ′ respectively whose labels are also l.

The tree S0 is the single node (T, T ′), and we can compute Sd+1 from Sd as explained in
the full paper. Let S = Sv(H∩H′). For d from v(H ∩H ′) − 1 down to 0, for each depth-d
node N in S, hash (Lemma 6.11) the number of children of N down from Õ(nψd) to Õ(nφ̂d),
and if all of N ’s children are null and d > 0 then remove N ’s partial label. Finally, for each
leaf (τ, τ ′) of S, append a copy of τ ′ to each leaf of τ , and put this in place of (τ, τ ′) in S. J

For each successive H in an optimal union sequence, compute T (H) as described above,
and then apply a single OR gate to all leaves of T (G). J

References
1 Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph

problems. SIAM J. Discrete Math., 25(2):631–644, 2011. doi:10.1137/100812653.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.
3 Kazuyuki Amano. k-subgraph isomorphism on AC0 circuits. Comput. Complexity, 19(2):183–

210, 2010. doi:10.1007/s00037-010-0288-y.
4 L. Sunil Chandran and Telikepalli Kavitha. The treewidth and pathwidth of hypercubes.

Discrete Math., 306(3):359–365, 2006. doi:10.1016/j.disc.2005.12.011.
5 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and

dominating set. Theoret. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/j.tcs.2004.05.
009.

6 L. H. Harper. On an isoperimetric problem for Hamming graphs. Discrete Appl. Math.,
95(1-3):285–309, 1999. doi:10.1016/S0166-218X(99)00082-7.

7 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proc. 18th Ann.
ACM Symp. on Theory of Computing, pages 6–20, 1986. doi:10.1145/12130.12132.

8 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin Yi. Optimal depth, very small
size circuits for symmetric functions in AC0. Inform. and Comput., 108(2):200–211, 1994.
doi:10.1006/inco.1994.1008.

9 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

10 Yuan Li, Alexander Razborov, and Benjamin Rossman. On the AC0 complexity of subgraph
isomorphism. SIAM J. Comput., 46(3):936–971, 2017. doi:10.1137/14099721X.

11 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

IPEC 2019

https://doi.org/10.1137/100812653
https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/s00037-010-0288-y
https://doi.org/10.1016/j.disc.2005.12.011
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/S0166-218X(99)00082-7
https://doi.org/10.1145/12130.12132
https://doi.org/10.1006/inco.1994.1008
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/14099721X
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005

24:14 Beating Treewidth

12 Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). In STACS,
volume 25 of LIPIcs, pages 542–553. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/LIPIcs.STACS.2014.542.

13 K. Nakagawa and O. Watanabe. Gap Between Two Combinatorial Measures for Constant
Depth Circuit Complexity of Subgraph Isomorphism. Technical report, Tokyo Institute of
Technology, 2011.

14 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Comment.
Math. Univ. Carolin., 26(2):415–419, 1985.

15 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

16 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proc. 40th Ann. ACM
Symp. on Theory of Computing (STOC), pages 721–730, 2008. doi:10.1145/1374376.1374480.

17 Benjamin Rossman. Average-Case Complexity of Detecting Cliques. Ph.d., MIT, 2010.
18 Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM J.

Comput., 43(1):256–279, 2014. doi:10.1137/110839059.
19 Benjamin Rossman. Lower bounds for subgraph isomorphism. In Proc. Intern. Congress of

Mathematicians (ICM), volume 3, pages 3409–3430, 2018. URL: https://eta.impa.br/dl/
051.pdf.

20 Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill Book Company, 6 edition, 2011.

21 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proc. 18th Ann. IEEE Symp. on Foundations of Computer Science, pages 222–227, 1977.
doi:10.1109/SFCS.1977.24.

https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1137/110839059
https://eta.impa.br/dl/051.pdf
https://eta.impa.br/dl/051.pdf
https://doi.org/10.1109/SFCS.1977.24

The PACE 2019 Parameterized Algorithms and
Computational Experiments Challenge:
The Fourth Iteration
M. Ayaz Dzulfikar1

University of Indonesia, Kota Depok, Jawa Barat 16424, Indonesia
muhammad.ayaz@ui.ac.id

Johannes K. Fichte
Faculty of Computer Science, TU Dresden, 01062 Dresden, Germany
johannes.fichte@tu-dresden.de

Markus Hecher
Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria
University of Potsdam, Germany
hecher@dbai.tuwien.ac.at

Abstract
The organizers of the 4th Parameterized Algorithms and Computational Experiments challenge
(PACE 2019) report on the 4th iteration of the PACE challenge. This year, the first track featured
the MinVertexCover problem, which asks given an undirected graph G = (V, E) to output a
set S ⊆ V of vertices such that for every edge vw ∈ E at least one endpoint belongs to S. The exact
decision version of this problem is one of the most discussed problem if not even the prototypical
problem in parameterized complexity theory. Another two tracks were dedicated to computing the
hypertree width of a given hypergraph, which is a certain generalization of tree decompositions to
hypergraphs that has widely been applied to problems in databases, constraint programming, and
artificial intelligence. On one track we asked for submissions that compute hypertree decompositions
of minimum width (MinHypertreeWidth) and on the other track we asked to heuristically
compute hypertree decompositions of small width quickly (HeurHypertreeWidth). We received
28 implementations from 26 teams. This year we asked participants to submit solver descriptions in
order to count as a submission for the challenge. We received those from 16 teams with overall 33
participants from 10 countries. One team submitted successful solutions to all three tracks.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Complexity theory and logic; Mathematics of computing →
Solvers; Mathematics of computing→ Graph algorithms; Mathematics of computing→ Hypergraphs

Keywords and phrases Parameterized Algorithms, Vertex Cover Problem, Hypertree Decompositions,
Implementation Challenge, FPT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.25

Category Invited Paper

Funding The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and
P26696, and the German Science Fund (DFG), Grant HO 1294/11-1 and Erasmus+ KA107. Hecher
is also affiliated with the University of Potsdam, Germany.

Acknowledgements The PACE challenge was supported by Networks [5], an NWO Gravitation
project of the University of Amsterdam, Eindhoven University of Technology, Leiden University and
the Center for Mathematics and Computer Science (CWI), by the Centre for Information and High
Performance Computing (ZIH) of TU Dresden [3], and by data-experts [1]. The prize money (4,000

1 The author contributed significantly to the realization of PACE 2019 during his internship at TU Dresden.

© Muhammad Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 25; pp. 25:1–25:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:muhammad.ayaz@ui.ac.id
https://orcid.org/0000-0002-8681-7470
mailto:johannes.fichte@tu-dresden.de
https://orcid.org/0000-0003-0131-6771
mailto:hecher@dbai.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 The PACE Challenge 2019 Report

EUR) was given through the generosity of Networks and data experts. We are grateful to Szymon
Wasik and Jan Badura for the fruitful collaboration and for hosting the challenge at optil.io [154].
We like to acknowledge the generous support by the High Performance Computing Center at TU
Dresden, who gave us access to the HRSK-II and 80.000 CPU hours from February on to select
instances and validate the results [3].

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. It aims to:
1. Bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering.
2. Inspire new theoretical developments.
3. Investigate in how far theoretical algorithms from parameterized complexity and related

fields are competitive in practice.
4. Produce universally accessible libraries of implementations and repositories of benchmark

instances.
5. Encourage the dissemination of these findings in scientific papers.

The first iteration of PACE was held at IPEC 2016 [40]. There programmers were asked
for submissions on two tracks, namely, (a) a treewidth track allowing for exact sequential,
exact parallel, heuristic sequential, and heuristic parallel submissions and (b) a feedback
vertex set track. PACE 2017 [41] featured (a) a treewidth track allowing for sequential exact
or heuristic submissions and (b) a minimum fill-in track. PACE 2018 [26] then asked for
submissions that solve the Steiner tree problem. The line of past challenges has inspired a
long list of works on the proposed problems [8, 17, 20, 57, 62, 76, 81, 90, 97, 98, 107, 123,
142, 153, 143, 144, 151, 152, 99]. Benchmarks from the PACE challenges have been used for
other competitions and evaluations [47, 129, 134]. Various applications have built on top of
results from PACE or were inspired by the success of solvers produced for PACE [16, 21, 22,
30, 32, 33, 58, 59, 60, 61, 64, 65, 66, 101, 103, 105, 110, 109, 111, 122, 127, 150, 158]. Finally,
PACE challenges have been mentioned in research works [38, 115]. Among the various papers
have also been papers that received a best paper award [16, 143].

In this article, we report on the 4th iteration of PACE. The PACE 2019 challenge was
announced on November 16, 2018. Format descriptions were posted on November 20, 2018
and the public instances were released on December 5, 2019 (hypertree decompositions)
January 4, 2019 (vertex cover) and updated on March 6, 2019 (vertex cover), since the
initial instances were not challenging enough for the participants. The final version of
the submissions was due on May 6, 2019. We informed the participants of the results on
July 14. We released the private instances on July 29 [50, 56] and announced the final
results to the public on September 11, during the award ceremony at the International
Symposium on Parameterized and Exact Computation (IPEC 2019) in Munich. For the first
time in the history of PACE, we had a poster session after the award ceremony, where 4
posters were presented, namely WeGotYouCovered [92], bogdan [156], asc [139] as well as
TULongo [124, 125].

PACE 2019 consists of three tracks. The first track featured the MinVertexCover
problem, which asks given an undirected graph G = (V,E) to output a set S ⊆ V of vertices
such that for every edge vw ∈ E at least one endpoint belongs to S. The exact decision version
of this problem is one of the most discussed problem if not even the prototypical problem in

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:3

parameterized complexity theory. Another two tracks were dedicated to compute the hyper-
tree width of a given hypergraph, which is a certain generalization of tree decompositions to
hypergraphs that has widely been applied to problems in databases [82], constraint program-
ming [35, 82, 87], and artificial intelligence [106, 108]. On one track we asked for submissions
that compute hypertree decompositions of minimum width (MinHypertreeWidth) and on
the other track we asked to heuristically compute hypertree decompositions of small width
fast (HeurHypertreeWidth). This year’s PACE had quite relaxed solver requirements and
we even allowed solvers to use external dependencies such as ILP, SAT, and SMT solvers if the
external solvers were available under an open source license. We received 28 implementations
from 26 teams. This year we asked participants to hand in solver descriptions and received
those from 16 teams. If we count only submissions that handed in a solver and a description
according to the submission requirements, we had overall 33 participants from 10 countries.
One outstanding team submitted successful solutions to all three tracks.

2 The PACE 2019 Challenge Problems

In this section, we give an overview on the PACE 2019 problems. We organized the section by
problem and present the well-known vertex cover problem first and then a generalization of
treewidth to hypergraphs. For each problem, we start with a quick definition, introduce the
tracks and selected instances. We finish with the submission requirements. In the following,
we assume that the reader is familiar with basic graph terminology and we refer to standard
texts [25, 45] otherwise.

2.1 Vertex Cover (Track 1a)
Computing minimum vertex covers was among the original 21 NP-complete problems by
Karp [104] and is probably one of the most famous graph problems. In fact, there are over
537,000 results (queried on 30.07.2019) on Google scholar, dealing with problems related to
finding vertex covers and variants thereof. Besides, vertex covers are particularly well-studied
in parameterized complexity [37], ranging from studies involving different parameters [31, 126]
and related problems [121, 137], over kernelization [52, 112], and also concern concrete
applications [28, 46, 51, 96, 131]. We use the following definition.

I Definition 1 (Vertex Cover). Given an undirected graph G = (V,E). A set S ⊆ V is a
vertex cover for G, if for every edge uv ∈ E, we have {u, v} ∩ S 6= ∅. A vertex cover S is a
minimum vertex cover for G if there is no vertex cover S′ for G such that |S′| < |S|.

This definition motivates the problem of Track 1a.

Problem: MinVertexCover (Exact)
Input: Undirected graph G
Task: Output a minimum vertex cover for G.

Data Format
The input format for providing a graph (.gr) was taken from the PACE 2017 format for
graphs [41]. The output format for specifying a vertex cover (.vc) was an adaption of the
input format in the same style. More details on the format can be found at pacechallenge.
org/2019/vc/vc_format. There is also a simple checker available at github.com/hmarkus/
vc_validate in Python (folder: vc_validate) and C++ (folder: cpp).

IPEC 2019

https://pacechallenge.org/2019/vc/vc_format/
https://pacechallenge.org/2019/vc/vc_format/
https://github.com/hmarkus/vc_validate
https://github.com/hmarkus/vc_validate
vc_validate
cpp

25:4 The PACE Challenge 2019 Report

Table 1 Information on the origins of our graphs, including download links and relevant converters.

Name # Reference (Download Link) Converter

1 PACE 2016/Treewidth 17 pacechallenge.org:2016
2 TransitGraphs 23 github:daajoe/transit_graphs [53]
3 Road-graphs 5 github.com:ben-strasser
4 SNAP 15 snap.stanford.edu
5 frb 41 buaa.edu.cn:kexu/benchmarks
6 ASP Horn backdoors 1,077 asparagus.cs.uni-potsdam.de [23, 24, 78, 102, 54]
7 SAT Horn backdoors 83 marco.gario.org [74, 55]

tinyurl.com:countingbenchmarks
8 SAT2VC 8,329 satlib.org [49]

tinyurl.com:countingbenchmarks
sat2018.tuwien:benchmarks

Instances for Vertex Cover
In order to establish a suitable set of benchmark instances from various areas, we considered
in total 9,591 instances comprising of the following 8 origins.
1. 17 graphs from PACE 2016/Treewidth [40];
2. 23 graphs from TransitGraphs (Denmark, FlixBus, Israel, Luxembourg, Metro Bilbao,

Mexico City, NYC Subway, Pace Bus, Praha, Translink, VBB, WienerLinien) [53];
3. 5 graphs from Road-graphs [42, 141];
4. 15 graphs from SNAP (Stanford Network Analysis Project) [117] including gnutella [120,

135], social circles from facebook [130], bitcoin OTC trust network [113, 114], and wiki
vote [118, 119],

5. 41 graphs from frb [155];
6. 1,077 graphs from ASP Horn backdoors [63], where a vertex cover of the graph gives a

Horn backdoor to the considered logic program (ASP) [27, 100], originating from various
ASP competitions [10, 29, 43, 79], in more detail, 7 SCoreDLP-Mutex [128] logic programs,
282 SCore-RLP200 logic programs [157], 200 MinimalDiagnosis [29, 77] logic programs,
and 588 automotive [140] logic programs;

7. 83 graphs from SAT Horn backdoors [138], where a vertex cover of the graph gives a
Horn backdoor to the considered SAT instance, originating from 15 dfremont projection
formulas [71] and 68 Gario formula collection [73, 75];

8. 8,329 graphs from SAT2VC, where we took widely used SAT instances, reduced them
into 3-SAT instances [133] and then reduced them to k-vertex cover by means of the
well-known reductions by Karp [104] (merge the reductions from SAT to clique and then
clique to vertex cover into one). Then, a vertex cover of k = n+ 2m exists if and only if
the given formula of n variables and m clauses is satisfiable. We took 6,956 SAT instances
from the SATlib collection [95], 1,187 instances from a popular #SAT collection [66, 71],
and 186 instances from the SAT 2018 competition [94].

We implemented a variety of converters, among those tools where the following: asp_
horn_backdoors [54], HornVCBuilder [74], lp2normal [23, 24], gringo [78, 102], a SAT to
vertex cover converter [49]. Table 1 gives an overview on the sources and the involved graph
converters or programs that implement the reductions described above.

For PACE 2019, we were interested in challenging, large instances that are still within
reach for the participants in reasonable development time, but require reasonable efforts to
score one of the medals. In order to get a naive classification of the “practical hardness”

https://pacechallenge.org/2016/treewidth/
https://github.com/daajoe/transit_graphs
https://github.com/ben-strasser/road-graphs-pace16
https://snap.stanford.edu/data/p2p-Gnutella09.html
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
https://asparagus.cs.uni-potsdam.de/
https://marco.gario.org/work/master/
http://tinyurl.com/countingbenchmarks
http://www.satlib.org
http://tinyurl.com/countingbenchmarks
http://sat2018.forsyte.tuwien.ac.at/benchmarks/

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:5

[1
;10

)

[1
0;6

0)
[6

0;3
00

)
[3

00
;60

0)
[6

00
;90

0)
[9

00
;1,

20
0)

[1
,20

0;1
,50

0)
[1

,50
0;1

,80
0)

[1
,80

0;7
,20

0)
[7

,20
0;1

9,0
00

)

0

5

10

15

20

25

30

35

40

Figure 1 Overview on the number of instances and runtime intervals, which were computed by
means of a simple ILP encoding solved by the (M)ILP solver Gurobi, for the selected instances of
Track 1a. The x-axis labels the considered intervals, i.e., [a; b) indicates that runtime t was within
the interval a ≤ t < b. The y-axis indicates the number of selected instances.

of our collected benchmark instances, we encoded the MinVertexCover problem into
a simple ILP encoding and ran the solver Gurobi [89] on all instances with a timeout of
6 hours. After obtaining initial runtime results, we assigned to each instance a category
(easy{1, 2, 3}, medium{1, 2, 3, 4}, and hard{1, 2, 3}). From the classified instances, we picked
200 instances by sampling uniformly at random among the distribution given in Figure 1.
Mainly, we dropped an instance if the runtime was below 1s, and picked 80 instances from
category easy (runtime within the interval [1; 300)), picked 80 instances from category
medium (runtime within the interval [300;1,500), and 40 instances from category hard
(runtime in the interval [1,500;19,000)). We dropped instances that could not be solved
within 6 hours. We numbered the instances from 1 to 200 with increasing hardness, selected
the odd numbered instances as public and even numbered instances as private instances.
Table 2 shows statistics on the resulting instances. The 100 public instances were released at
pacechallenge.org/2019/vc/vc_exact. All the selected instances are publicly available at
Zenodo:3368306 [50]. We released the full collection of instances, instance selection scripts,
and mapping of selected instances at github:daajoe/pace_2019_vc_instances.

2.2 Hypertree Decompositions (Tracks 2a and 2b)
Hypertree decompositions and the resulting measure hypertree width is a prominent struc-
tural restriction in the area of constraint satisfaction problems (CSP) [11, 39, 149] and
databases [82], such as the commercial database system LogicBlox [12, 15, 6, 7, 132] that
uses hypertree decompositions. In the beginning of the 80s, Freuder [72] showed that the
CSP is tractable under structural restrictions imposed in terms of bounded treewidth of the
constraint graph. The result has later been generalized by Gottlob, Leone, and Scarcello
to hypertree width [82], which still renders CSP polynomial-time tractable. In fact, the
polynomial-time solvability for bounded hypertree width instances still holds when one is
interested in counting the number of satisfying assignments [48], which is also known as
sum-of-products, weighted counting, partition function, or probability of evidence [106].
Thus, this problem is also of high interest in artificial intelligence, e.g., to solve probabilistic
reasoning [108]. While there are even more general measures [86, 87], hypertree decomposi-
tions allow for computing a hypertree decomposition of width at most k (if one exists) in
polynomial time for a given fixed integer k. Still hypertree width was mainly of theoretical

IPEC 2019

https://pacechallenge.org/2019/vc/vc_exact/
https://zenodo.org/record/3368306
https://github.com/daajoe/pace2019_vc_instances

25:6 The PACE Challenge 2019 Report

Table 2 Basic statistics on the selected PACE 2019 instances for Track 1a (Vertex Cover/Exact).
|Vmin| and |Emin| refers to the minimum number of vertices and edges, respectively; max refers to
the maximum; avg refers to the mean; med refers to the median; twub

med refers to a heuristically
computed upper bound (median over the instances) on the treewidth using the library htd [8].

instances |Vmin| |Vmax| |Vavg| |Vmed| |Emin| |Emax| |Eavg| |Emed| twub
med

public 198 138.14k 16.44k 14.69k 813 227.24k 30.95k 24.66k 105.0
private 153 98.13k 16.30k 13.59k 625 161.36k 30.50k 27.15k 103.5
all 153 138.14k 16.37k 13.59k 625 227.24k 30.73k 24.66k 107.0

interest due to few practical implementations and missing efficient implementations of heuris-
tics to compute the associated decompositions. The success of PACE 2016 and 2017 and its
resulting decomposers for computing tree decompositions, which facilitated lots of follow-up
implementations [32, 33, 66, 61], and the hope that PACE also drives advances to the CSP,
reasoning, and database community, motivated us to propose this problem for Track 2.

I Definition 2 (Hypergraphs and Tree Decompositions). A hypergraph is a pair H = (V,E)
consisting of a set V of vertices and a set E of hyperedges, where each hyperedge in E is
a subset of V . Let H = (V,E) be a hypergraph. A tree decomposition [136] of H is a pair
T = (T, χ) where T = (N,A) is a rooted tree and χ is a mapping that assigns to each node
t ∈ N a set χ(t) ⊆ V , called bag, such that the following conditions hold: (i) V =

⋃
t∈N χ(t),

(ii) E ⊆ {2χ(t) | t ∈ N}, and (iii) for each r, s, t ∈ A where s lies on the path from r to t, we
have χ(s) ⊆ χ(r) ∩ χ(t).

We follow the definitions of Gottlob, Leone, and Scarcello [82].

IDefinition 3 (Hypertree Decompositions [82]). Let H = (V,E) be a hypergraph and let S ⊆ V
be a set of vertices. An edge cover C ⊆ E of S is a set of hyperedges, where for every v ∈ S,
there is e ∈ C with v ∈ e. A hypertree decomposition of H is a triple H = (T, χ, λ), where
(i) (T, χ) is a tree decomposition of H with T = (N,A), (ii) λ is a mapping that assigns to
each node t ∈ N an edge cover λ(t) of χ(t), and (iii) for every t ∈ N and every e ∈ λ(t), we
have e ∩ χ≤t ⊆ χ(t). The set χ≤t refers to the set of all vertices occurring in a bag χ(t′) of
the subtree T ′ = (N ′, A′) of T where T ′ is rooted at t and t′ ∈ N ′. Then, width(H) is the
size of the largest edge cover λ(t) over all nodes t ∈ N . The hypertree width htw(H) is the
smallest width over all hypertree decompositions of H.

Based on this generalization of tree decompositions to hypergraphs, we defined the
following two problems for Track 2a and 2b.

Problem: MinHypertreeWidth (Exact)
Input: Hypergraph H
Task: Output a hypertree decomposition of H of minimum width.

Problem: HeurHypertreeWidth (Heuristic)
Input: Hypergraph H
Task: Output a hypertree decomposition of H of small width.

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:7

Table 3 Basic statistics on the selected PACE 2019 instances for Track 2a (MinHypertreeWidth)
and Track 2b (HeurHypertreeWidth). |Vmin| and |Emin| refers to the minimum number of vertices
and hyperedges, respectively; max refers to the maximum; med refers to the median.

Track instances |Vmin| |Vmax| |Vmed| |Emin| |Emax| |Emed|

Track 2a (Exact) public 3 130 24.0 3 100 61.5
Track 2a (Exact) private 10 351 25.0 5 250 60.0
Track 2a (Exact) all 3 351 24.0 3 250 60.0

Track 2b (Heuristic) public 12 694 40.0 5 526 84.0
Track 2b (Heuristic) private 12 694 40.0 5 495 90.0
Track 2b (Heuristic) all 12 694 40.0 5 526 84.0

Computation of Hypertree Decompositions
Above we mentioned that there are a variety of applications for hypertree decompositions.
However, many practical sides are not very well explored. In fact, for tree decompositions
both exact as well as heuristic-based decomposers are widely available due to recent PACE
challenges, this is not the case for hypertree decompositions. There, only very few implemen-
tations are available and the exact implementations are highly prototypical. Fortunately,
various theoretical results on computing hypertree decompositions [82, 83, 70, 69, 68] and
more general measures [57] are available. Some of these approaches are simply combinatorial
backtracking based algorithms, others are heuristics based on bucket elimination, and again
others are based on encodings into extensions of SAT. A major obstacle for hypertree decom-
positions is that Condition (iii) of Definition 3 is expensive and in case of encodings into
SAT-related formalisms it blows up the size computation considerably.

Data Format
We designed the input and output format by extending the PACE 2016 formats used for
graphs and tree decompositions [40, 41], which are similar to the format used by DIMACS
challenges [4]. The input format for hypergraphs (.hgr) extends the PACE 2016/2017 graph
format to edges of arbitrary arity. The output format for hypertree decompositions (.htd)
allows in addition to the treewidth format to specify a covering function, i.e., mappings
for the bags that map hyperedges to 0 or 1. More details on the format can be found
at https://pacechallenge.org/2019/htd/htd_format/. We provided a simple checker at
https://github.com/daajoe/htd_validate in Python (folder: htd_validate) and C++
(folder: cpp). Both tools already implement reading and outputting the formats.

Instances for Hypertree Decompositions
For our benchmark selection, we considered 2,191 instances, which contain hypergraphs
that originate from CSP instances and conjunctive database queries from various sources.
All of these instances are part of the hyperbench collection and have been collected and
published by Fischl et al. [68, 69] together with different hypergraph properties including
various notions of width related measures2. The selection consists of eight non-disjoint sets.

2 The hypergraphs together with the properties have been published at http://hyperbench.dbai.tuwien.
ac.at and the collection of hypergraphs is also available in a public data repository [57].

IPEC 2019

https://pacechallenge.org/2019/htd/htd_format/
https://github.com/daajoe/htd_validate
htd_validate
cpp
http://hyperbench.dbai.tuwien.ac.at
http://hyperbench.dbai.tuwien.ac.at

25:8 The PACE Challenge 2019 Report

15 instances from the set DaimlerChrysler, 12 instances from the set Grid2D, 24 instances
on circuits from the set ISCAS’89 [85]. 31 instances from MaxSAT [19]. 1090 instances and
863 instances, respectively on csp_application and csp_random of instances from the well
known XCSP benchmarks [14]. 82 instances from the set csp_other, which have been
collected for works on hypertree decompositions3. 156 instances from the set CQ on various
conjunctive queries [13, 18, 80, 88, 116, 145].

In order to obtain a basic classification of the instances we heuristically computed hypertree
decompositions with htdecomp [44] and computed generalized hypertree decompositions of
smallest width [57]. Generalized hypertree decompositions relax Condition (iii) in Definition 3
and allow certain techniques to find a solution faster. The widths of the thereby obtained
decompositions are indeed of minimum width, which is guaranteed by comparing the widths
with the matching integer lower bounds obtained by fraSMT [57] – a tool for computing
fractional hypertree decompositions, which are more general than hypertree decompositions.
After obtaining initial runtime results we assigned to each instance one category out of easy,
medium, hard, or dropped the instance. An instance was classified as easy if it could be
solved within 60s, as medium if it could be solved within 300 and 900s, and hard if it could
not be solved within 7,200s. We dropped instances that could not be solved within 7,200s on
purpose, since we were interested in many realistic instances and quite challenging instances
for the solvers. From the remaining and classified instances we picked 200 by sampling 20
instances uniform at random from category easy, 60 instances from the category medium,
and 120 instances from the category hard. Table 3 shows statistics on the resulting selected
instances. We released the public instances at https://pacechallenge.org/2019/htd/htd_
exact/ and https://pacechallenge.org/2019/htd/htd_heur/, respectively. The pages
also contain a document that contains the mapping of the selected PACE 2019 instances
and the original instance of hyperbench. We also published the instances in a public data
repository [56].

3 Challenge Settings

In the following, we state the submission requirements for this year’s PACE and basic
information on the system on which we ran the challenge.

Submission Requirements

We invited people to participate in the three proposed tracks. In order to have common
setting we however posted the following submission requirements.
1. Both submitted solver and external dependencies have to be open source.
2. The source code of the solver is maintained by the submitters on a public repository.
3. A dedicated solver description of at least two pages has to be submitted.

We choose Requirement 1 fairly permissive, in order to obtain valuable information on the
actual efficiency of solving the problem. So we did not prescribe the algorithmic paradigm
that had to be used. In that way, we also allowed in principle submissions that relied on an
encoding into paradigms such as SAT or SMT. We imposed Requirement 3 to enable other
researchers to analyze and compare implemented ideas, get insights into correctness of the
other solvers, provide theoreticians with basics ideas on the latest implementations and in
the hope to improve on the reproducibility of the submitted solver.

3 www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip

https://pacechallenge.org/2019/htd/htd_exact/
https://pacechallenge.org/2019/htd/htd_exact/
https://pacechallenge.org/2019/htd/htd_heur/
https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:9

Region Country Teams Participants Tracks

Europe Austria 3 3 1a, 2a, 2b
Germany 4 7 1a
Hungary 1 2 1a
Norway 2 6 1a
Poland 2 4 1a
Russia 1 1 1a
Scotland 1 2 1a, 2a, 2b

Middle East Lebanon 1 2 1a
North America USA 1 1 1a
South Asia India 2 5 1a

10 18 33
1

2

3

4

5

6

7

Figure 2 Participation per country based on the easychair registration and submission of both a
solver and a description. Details are given by country, tracks, and team (left) and illustrated on the
world map (right). Note that more teams and participants uploaded their code on optil.io

In addition, we imposed another main rule for the exact tracks.
E. We expected submissions to be based on a provably optimal algorithm.

While we did not formally check Requirement E, we picked only instances from which we
knew the size of a minimum vertex cover or the hypertree width, respectively and checked
whether the output was both correct and according to our expected size. If a submission
halted on some instance within the allotted time, but produced a solution that was known
to be non-optimal, the submission was disqualified.

Limits

Since our evaluation resources were limited and we were interested in the solving behavior
on a larger number of instance while allowing the participants to have a “training” phase on
public instances, we restricted the runtime to 1,800 seconds and the available main memory
to 8GB per instance. Note that in general, a solver is considered to be better than an
other solver, if it solves more instances faster than the other solver. For more details about
evaluation (criteria), we refer to Section 4.3.

Hardware

Our results were gathered on the cloud evaluation platform optil.io [154] running libc 5.4.0.
optil.io evaluates submissions on Intel Xeon CPU E5-2695 v3, which consist of 14 cores
running at 2.30GHz. Each submission had access to one core. Since the submissions ran
in docker containers and the CPU has only 4 memory channels [2] we repeated the final
evaluation 3 times and took the average.

4 Participants and Results

This year, we had 18 teams and 33 participants coming from 10 countries and four regions:
Austria, Germany, Hungary, India, Lebanon, Norway, Poland, Russia, Scotland, and USA.
Figure 2 provides an overview. The number of teams and participants were little less than
half compared to PACE 2018 and at a similar number to PACE 2017. To be precise, the
2019 numbers above correspond to teams and participants who sent a final implementation
and a solver description in time whereas in previous challenges registrations were carried out
prior to optil.io registration. If we also count people who uploaded some code on the optil.io
platform but dropped out of the challenge, the number of teams is 28, which is however also
a much smaller number than in the 2018 iteration.

IPEC 2019

25:10 The PACE Challenge 2019 Report

Figure 3 Runtime illustrated as cactus plot for Track 1a (Vertex Cover/Exact). The x-axis
labels consecutive integers that identify instances. The y-axis depicts the runtime. The instances
are ordered by running time, individually for each solver.

4.1 Track 1a (Vertex Cover/Exact)
Figure 3 illustrates runtime results for all submitted solvers as cactus plot. Table 4 gives
a detailed overview on the standings and solvers. We allowed each solver 30 minutes per
instance and measured the number of solved instances. If two solvers solved the same number
of instances we would in addition also take into account the runtime needed to solve those
instances.

Winning Team. Demian Hespe and Sebastian Lamm (both: Karlsruhe University of
Technology, Germany), Christian Schulz (University of Vienna, Austria), and Darren Strash
(Hamilton College, USA) won Track 1a by solving 87 private instances in overall 1.3 hours
and 52.7 seconds solving time on average. Their implementation (WeGotYouCovered) [92, 93]
builds on a portfolio of techniques, which include an aggressive kernelization strategy with
all known reduction rules, local search, branch-and-reduce, and a state-of-the-art branch-and-
bound solver. Surprisingly, they also use several techniques that were not from the literature
on the vertex over problem, but originally published to solve the (complementary) maximum
independent set and maximum clique problems.

Runner-up. Patrick Prosser and James Trimble from the University of Glasgow, Scotland,
scored second with their solver Peaty by solving 77 private instances. In fact, the results
looked much closer on the public instances [148]. Interestingly, they also used intensive
kernelization, local search, improved branch-and-bound, and a branch-and-bound maximum
clique solver, and in addition an exact graph colouring algorithm which can quickly prove
the optimality of a solution for some graphs.

Third Place. Sándor Szabó (University of Pecs, Hungary) and Bogdán Zaválnij (Hungarian
Academy of Sciences, Hungary) accomplished a safe third place, which was in fact very close
to the team that obtained the second place on the private instances. However, on the public

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:11

Table 4 Detailed standings of the submitted solvers that solved at least 15 instances for
Track 1a (Vertex Cover/Exact). POS refers to the position of the solver where DSQ refers
to a disqualification due to a produced wrong answer. # refers to the number of solved private
instances and #all refers to the number of all instances. TLE refers to the number of instances were
the runtime limit was exceeded. RTE contains the number of instances on which we observed a
runtime error. Note that if the three sums do not add to 100 we observed a memory overflow on the
remaining ones. tsum[h] states the cumulative runtime over all all solved instances in hours, tavg[s]
contains the average runtime over all solved instances in seconds. In column source, the character H
abbreviates github, character L abbreviates gitlab, and Z refers to Zenodo.

POS Solver # #all TLE RTE tsum[h] tavg[s] Source Reference

1 WeGotYouCovered 87 169 13 0 1.3 52.7 H:sebalamm/pace-2019 [92, 93]
2 Peaty 77 157 23 0 0.4 20.6 H:jamestrimble/peaty [148]
3 bogdan 76 147 24 0 4.5 215.2 H:zbogdan/pace-2019 [156]
4 ksimonov 34 73 64 2 1.0 102.1 L:seemann9/pace-2019-vc [36]
5 opm 33 75 67 0 0.4 47.8 Z:3236867#.XW_J9S2B3x8 [67]
6 sfs 33 74 65 2 0.8 87.0 L:cg_pace2019/vertex_cover [34]
7 vasily_alferov 32 70 68 0 0.2 23.2 H:vasalf/cheburashka [9]
8 hub 23 54 68 9 0.5 79.5 H:hubhegnel/pace-2019 [91]

DSQ Vertex_Cover_Solver 31 69 68 0 0.4 52.1 H:karamkontar99/Vertex-Cover-Solver

instances they solved 9 less than the authors of Peaty. The authors used kernelization and
a maximum clique solver by taking the complement graph. The maximum clique solver is
based on progressive k-clique search by starting from a heuristically computed maximum
clique and increasing until no clique of size k is found.

4.2 Track 2a (Hypertree Width/Exact)
Table 5a summarizes runtime results for all submitted solvers. We allowed each solver 30
minutes per instance and measured the number of solved instances. Much to our regret we
received only 3 submissions. We guess that hypertree width is just yet not very popular in
the parameterized complexity community.

Winning Team. André Schidler and Stefan Szeider from TU Wien, Austria, won this
year’s Track 2a by solving 69 private instances in overall 1.4 hours at an average of 69.4
seconds when considering the solved instances. Their implementation (asc) [139] uses an
incremental SMT-solving approach. There a first-order logic solver (handling arithmetic
constraints) interacts with a SAT solver. Hypertree width and a more general parameter
(generalized hypertree width) share Conditions (i) and (ii) from Definition 3. The additional
Condition (iii) which is present for hypertree width (special condition), however, blows up
the encoding size with a cubic number of clauses resulting in extremely large encodings for
generalized hypertree decompositions and very long encoding times. For that reason, the
authors implement a two-phase approach. They first use an encoding to obtain a generalized
hypertree decomposition and try convert it into a hypertree decomposition satisfying the
special condition without increasing the width. Only if that fails, they use the full encoding
that includes the special condition.

Runner-up. Davide Mario Longo from TU Wien, Austria, scored second with his solver
(TULongo/HdSolveE) by solving 31 private instances in 0.8 hours at an average runtime of
95.9 seconds over the solved instances. He used a combination of algorithms to compute lower
bounds by obtaining generalized hypertree decompositions and then running a backtracking-
based algorithm to determine a hypertree decomposition. Surprisingly, he solved much less
public than private instances.

IPEC 2019

https://github.com/sebalamm/pace-2019
https://github.com/jamestrimble/peaty
https://github.com/zbogdan/pace-2019
https://gitlab.com/seemann9/pace-2019-vc
https://zenodo.org/record/3236867#.XW_J9S2B3x8
https://gitlab.com/cg_pace2019/vertex_cover
https://github.com/vasalf/cheburashka
https://github.com/hubhegnel/pace-2019
https://github.com/karamkontar99/Vertex-Cover-Solver

25:12 The PACE Challenge 2019 Report

Table 5 Detailed overview on the results of the Hypertree Width tracks. # refers to the number
of solved private instances. #all comprises the number of solved public and private instances. tavg

and tsum refer to average and cumulated runtime of solved private instances, respectively. PAR1
refers to the runtime where all unsolved instances are accounted by 1,800 seonds. ∆w refers to the
sum of the width difference to the resulted output by the judge, i.e., the sum over wsolver − wjudge

for each instance I.

(a) Track 2a (Hypertree Width/Exact).

POS # #all Solver tavg tsum Source (github) Ref.

1 69 144 asc 69.38s 1.32h ASchidler/frasmt_pace [139]
2 31 48 TULongo 95.96s 0.83h TULongo/pace-2019-HD-exact [124]
3 1 6 heidi 0.14s 0.00h jamestrimble/heidi [146]

(b) Track 2b (Hypertree Width/Heuristic).

POS Score Solver # PAR1 ∆w Source (github) Ref.

– na htdecomp 100 na na
1 5.0 hypebeast 100 0.1h 501 jamestrimble/hypebeast [147]
2 14.1 TULongo 98 2.3h 20 TULongo/pace-2019-HD-Heuristic [125]
3 128.9 asc 30 27.5 11 ASchidler/frasmt_pace [139]

Third Place. Patrick Prosser and James Trimble from the University of Glasgow, Scotland,
received a surprising third place by solving one private instance correctly. They made
the most of the situation that we had only three submission on this track. Their solver
(heidi) implements an incomplete approach, where they heuristically compute a hypertree
decomposition and used simple rules to check whether the width is equal to two.

4.3 Track 2b (Hypertree Width/Heuristic)
Table 5b summarizes runtime results for all submitted solvers. As for Track 2a, we received
only 3 submissions, while we were hoping to attract more researchers from the community
to this topic. We allowed each solver 30 minutes wall clock time per instance, while
ensuring that not more than one core was used. Our aim for the track was to have
more decomposers available to foster algorithms that employ decompositions for constraint
programming and database applications in the near future. In the past, we observed at
multiple occasions that heuristics are often only well applicable if there is a fairly good
balance between running time of the computation of the decomposer and width of the
decomposition [32, 33, 59, 61, 66]. Improving the width by one pays off if the improvement
runs fast and the width is fairly large, however, on instances with small width there is
no practical point in spending additional runtime to improve while it might even exceed
the running time of the later algorithm that exploits the decomposition. In consequence,
we decided to favor submissions that produce a result fairly quickly while still penalizing
decompositions that are far from the virtual best results. Since the widths are fairly small,
we decided for a very simple score (avoiding exponentially increasing penalties) and compute
it per instance I by (50, 000 + t + 50 · (wsolver − wjudge))/1, 000, 000 where t refers to the
wall clock and wsolver refers to the resulting width of the considered solver for I and wjudge
consists of the width htdecomp [44, 84] produced for I, which we used as judge. The way we
selected the score also depended on the situation that the runtime environment optil.io has
certain technical restrictions in case of unknown optimal results.

https://github.com/ASchidler/frasmt_pace
https://github.com/TULongo/pace-2019-HD-exact
https://github.com/jamestrimble/heidi
https://github.com/jamestrimble/hypebeast
https://github.com/TULongo/pace-2019-HD-Heuristic
https://github.com/ASchidler/frasmt_pace

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:13

Winning Team. Patrick Prosser and James Trimble from the University of Glasgow, Scot-
land, obtained the first place by obtaining a score of 5.0 by solving 100 instances in 0.1 hours
with a cumulated width of 1104 and an overall difference to the judge by 501. Their solver
(hypebeast) implements a very simple bucket elimination strategy by starting from a single
tree node containing all hyperedges and then trying to move edges to deeper tree nodes.

Runner-up. Davide Mario Longo from TU Wien, Austria, scored second with 14.1 points
by solving 98 private instances in 2.3 hours with a total width difference to the judge of 20.
His solver (TULongo/HdSolveH) used a variant of det-k-decomp that prunes the search tree
heuristically [85]. While the det-k-decomp algorithm performs well on yes instances, it is
slow on no instances. So, Longo decided not to perform a complete search, but to prune the
search space by looking only at certain separators. The results were very close to the winning
team and only the running time cost him the first position. It is notable that, however, the
width is much closer to the result by the judge. More precisely, TULongo outputted better
results on 86 instances.

Third Place. André Schidler and Stefan Szeider from TU Wien, Austria, obtained the third
position at a score of 128.9 by solving 30 instances using the same technique as above.

5 PACE organization

The composition of the steering committee and program committee during PACE 2019 was
as follows.

Édouard Bonnet LIP, ENS de Lyon
Holger Dell IT University of Copenhagen
Bart M. P. Jansen (chair) Eindhoven University of Technology

Steering committee: Thore Husfeldt IT Univ. of Copenhagen & Lund Univ.
Petteri Kaski Aalto University
Christian Komusiewicz Philipps-Universität Marburg
Frances A. Rosamond University of Bergen
Florian Sikora LAMSADE, Université Paris Dauphine

Program Committee Johannes Fichte TU Dresden
(Tracks 1a, 2a, 2b): Markus Hecher TU Vienna & University of Potsdam

The Program Committee of PACE 2020 will consist of Łukasz Kowalik (Univ. of Warsaw).

6 Conclusion and Future Editions of PACE

We thank all the participants for their enthusiasm, strong and interesting contributions.
Special thanks go to the participants who also presented at IPEC 2019. We are very happy
that this edition attracted many people and that also people from the SAT community showed
interest in the latest standings on the vertex cover solvers. While we were hoping to attract
more people to the hypertree width measure, which is related to constraint programming
and to the database community. We are still happy about strong contributions and hope
that this will continue for future editions by considering popular problems to the community
or even by repeating previously posted problems.

This year we changed the requirements for submissions by allowing external libraries,
but enforcing that these are open source. Further, we asked participants to provide a solver
description and to place the source code on a public data library, which is hosted long-term

IPEC 2019

25:14 The PACE Challenge 2019 Report

by a public body, e.g., Zenodo. In line with this, we provided the complete pool of instances
from which we selected instances, the instance selection process including references to the
original source, as well as the evaluation in a public data library.

We welcome anyone who is interested to add their name to the mailing list on the PACE
website to receive updates and join the discussion. We look forward to the next edition.
Detailed information will be posted on the website at pacechallenge.org.

References
1 data experts gmbh. https://www.data-experts.de/.
2 Intel® Xeon® processor E5-2695 v3. https://ark.intel.com/content/www/us/en/ark/

products/81057/intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html, 2014.
3 Centre for Information Services and High Performance Computing. https://tu-dresden.de/

zih/hochleistungsrechnen/, 2019. Project: pacechallage2019.
4 DIMACS Challenge. http://dimacs.rutgers.edu/programs/challenge/, 2019.
5 Networks project. https://www.thenetworkcenter.nl, 2019.
6 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via Geometric

Resolutions: Worst-case and Beyond. In Proceedings of the 34th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS’15), pages 213–228, Melbourne,
Victoria, Australia, 2015. Assoc. Comput. Mach., New York. doi:10.1145/2745754.2745776.

7 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’16), pages 13–28, San Francisco, California, USA, 2016. Assoc. Comput.
Mach., New York. doi:10.1145/2902251.2902280.

8 Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – A Free, Open-Source Framework
for (Customized) Tree Decompositions and Beyond. In Domenico Salvagnin and Michele
Lombardi, editors, Proceedings of the 14th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR’17),
volume 10335 of Lecture Notes in Computer Science, pages 376–386, Padova, Italy, June 2017.
Springer Verlag. doi:10.1007/978-3-319-59776-8_30.

9 Vasily Alferov. Cheburashka Vertex Cover solver. Zenodo, June 2019. doi:10.5281/zenodo.
3236897.

10 Mario Alviano, Francesco Calimeri, Günther Charwat, Minh Dao-Tran, Carmine Dodaro,
Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, Johannes Oetsch, Andreas
Pfandler, Jörg Pührer, Christoph Redl, Francesco Ricca, Patrik Schneider, Martin Schwengerer,
LaraKatharina Spendier, Johannes Peter Wallner, and Guohui Xiao. The Fourth Answer Set
Programming Competition: Preliminary Report. In Pedro Cabalar and TranCao Son, editors,
Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’13), volume 8148 of Lecture Notes in Computer Science, pages 42–53.
Springer Verlag, Corunna, Spain, September 2013. doi:10.1007/978-3-642-40564-8_5.

11 Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, Cambridge,
New York, NY, USA, 1st edition, 2009.

12 Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L. Veldhuizen, and Geoffrey Washburn. Design and Implementation of the LogicBlox
System. In Susan B. Davidson and Zack Ives, editors, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD’15), pages 1371–1382, Melbourne,
Victoria, Australia, 2015. Assoc. Comput. Mach., New York. doi:10.1145/2723372.2742796.

13 Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. The iBench Integration
Metadata Generator. In Chen Li and Volker Markl, editors, Proceedings of Very Large Data
Bases (VLDB) Endowment, volume 9:3, pages 108–119. Very Large Data Base Endowment,
November 2015. URL: https://github.com/RJMillerLab/ibench.

https://pacechallenge.org
https://www.data-experts.de/
https://ark.intel.com/content/www/us/en/ark/products/81057/intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81057/intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html
https://tu-dresden.de/zih/hochleistungsrechnen/
https://tu-dresden.de/zih/hochleistungsrechnen/
http://dimacs.rutgers.edu/programs/challenge/
https://www.thenetworkcenter.nl
https://doi.org/10.1145/2745754.2745776
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.5281/zenodo.3236897
https://doi.org/10.5281/zenodo.3236897
https://doi.org/10.1007/978-3-642-40564-8_5
https://doi.org/10.1145/2723372.2742796
https://github.com/RJMillerLab/ibench

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:15

14 G. Audemard, F. Boussemart, C. Lecoutre, and C. Piette. XCSP3: an XML-based format
designed to represent combinatorial constrained problems. http://xcsp.org, 2016.

15 Nurzhan Bakibayev, Tomáš Kočiský, Dan Olteanu, and Jakub Závodný. Aggregation and Or-
dering in Factorised Databases. Proceedings of Very Large Data Bases Endowment (VLDB’13),
6(14):1990–2001, September 2013. doi:10.14778/2556549.2556579.

16 Max Bannach and Sebastian Berndt. Practical Access to Dynamic Programming on Tree
Decompositions. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, Proceedings
of the 26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:13, Helsinki, Finland, 2018.
Dagstuhl Publishing. doi:10.4230/LIPIcs.ESA.2018.6.

17 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A Modular Library for
Computing Tree Decompositions. In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi,
and Rajeev Raman, editors, Proceedings of the 16th International Symposium on Experimental
Algorithms (SEA 2017), volume 75 of Dagstuhl Publishing, pages 28:1–28:21, London, UK, 2017.
Leibniz International Proceedings in Informatics (LIPIcs). doi:10.4230/LIPIcs.SEA.2017.28.

18 Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti,
Donatello Santoro, and Efthymia Tsamoura. Benchmarking the Chase. In Floris Geerts, editor,
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS’17), pages 37–52, Chicago, Illinois, USA, 2017. Assoc. Comput. Mach., New
York. URL: https://github.com/dbunibas/chasebench.

19 J. Berg, N. Lodha, M. Järvisalo, and S. Szeider. MaxSAT benchmarks based on determining
generalized hypertree-width. Technical report, MaxSAT Evaluation 2017, 2017.

20 Sebastian Berndt. Computing Tree Width: From Theory to Practice and Back. In Florin Manea,
Russell G. Miller, and Dirk Nowotka, editors, Sailing Routes in the World of Computation:
Proceedings of the 14th Conference on Computability in Europe (CiE 2018), volume 10936
of Lecture Notes in Computer Science, pages 81–88, Kiel, Germany, 2018. Springer Verlag.
doi:10.1007/978-3-319-94418-0_8.

21 Manuel Bichler, Michael Morak, and Stefan Woltran. Single-shot Epistemic Logic Program
Solving. In Jeffrey S. Rosenschein and Jérôme Lang, editors, Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2018), pages 1714–1720. The AAAI
Press, 2018.

22 Johannes Blum and Sabine Storandt. Computation and Growth of Road Network Di-
mensions. In Lusheng Wang and Daming Zhu, editors, Proceedings of the 24th Interna-
tional Computing and Combinatorics Conference (COCOON 2018), volume 10976 of Lecture
Notes in Computer Science, pages 230–241, Qing Dao, China, July 2018. Springer Verlag.
doi:10.1007/978-3-319-94776-1_20.

23 Jori Bomanson, Martin Gebser, and Tomi Janhunen. Improving the Normalization of Weight
Rules in Answer Set Programs. In Eduardo Fermé and João Leite, editors, Proceedings of
the 14th European Conference on Logics in Artificial Intelligence (JELIA’14), pages 166–180,
Funchal, Madeira, Portugal, September 2014. Springer Verlag.

24 Jori Bomanson, Martin Gebser, and Tomi Janhunen. LP2NORMAL and LP2NORMAL2.
https://research.ics.aalto.fi/software/asp/lp2normal/, 2016.

25 John A. Bondy and U. Murty. Graph theory, volume 244 of Graduate Texts in Mathematics.
Springer Verlag, 2008.

26 Édouard Bonnet and Florian Sikora. The PACE 2018 Parameterized Algorithms and
Computational Experiments Challenge: The Third Iteration. In Christophe Paul and
Michal Pilipczuk, editors, Proceedings of the 13th International Symposium on Parame-
terized and Exact Computation (IPEC 2018), volume 115 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 26:1–26:15, Helsinki, Finland, 2019. Dagstuhl Publishing.
doi:10.4230/LIPIcs.IPEC.2018.26.

27 G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communica-
tions of the ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

IPEC 2019

http://xcsp.org
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.4230/LIPIcs.ESA.2018.6
https://doi.org/10.4230/LIPIcs.SEA.2017.28
https://github.com/dbunibas/chasebench
https://doi.org/10.1007/978-3-319-94418-0_8
https://doi.org/10.1007/978-3-319-94776-1_20
https://research.ics.aalto.fi/software/asp/lp2normal/
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1145/2043174.2043195

25:16 The PACE Challenge 2019 Report

28 Shaowei Cai, Wenying Hou, Jinkun Lin, and Yuanjie Li. Improving Local Search for Minimum
Weight Vertex Cover by Dynamic Strategies. In IJCAI, pages 1412–1418. ijcai.org, 2018.

29 Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The third open answer
set programming competition. Theory Pract. Log. Program., 14:117–135, January 2014.
doi:10.1017/S1471068412000105.

30 Francesco Calimeri, Simona Perri, and Jessica Zangari. Optimizing Answer Set Computation
via Heuristic-Based Decomposition. Theory Pract. Log. Program., 19(4):603—-628, 2019.
doi:10.1017/S1471068419000036.

31 Mathieu Chapelle, Mathieu Liedloff, Ioan Todinca, and Yngve Villanger. Treewidth and
Pathwidth parameterized by the vertex cover number. Discrete Applied Mathematics, 216:114–
129, 2017.

32 Günther Charwat and Stefan Woltran. Dynamic Programming-based QBF Solving. In
Florian Lonsing and Martina Seidl, editors, Proceedings of the 4th International Workshop
on Quantified Boolean Formulas (QBF’16), volume 1719, pages 27–40. CEUR Workshop
Proceedings (CEUR-WS.org), 2016. co-located with 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT’16).

33 Günther Charwat and Stefan Woltran. Expansion-based QBF Solving on Tree Decompositions.
Fundam. Inform., 167(1-2):59–92, 2019.

34 Jiehua Chen and Sven Grottke. A fast solver for Minimum Vertex Cover. Zenodo, June 2019.
doi:10.5281/zenodo.3236992.

35 David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural tractability for
constraint satisfaction problems. J. of Computer and System Sciences, 74(5):721–743, 2008.

36 Christophe Crespelle, Eduard Eiben, and Kirill Simonov. Vertex Cover Solver for PACE 2019.
Zenodo, May 2019. doi:10.5281/zenodo.3235533.

37 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

38 Marek Cygan, Łukasz Kowalik, Arkadiusz Socała, and Krzysztof Sornat. Approximation and
Parameterized Complexity of Minimax Approval Voting. J. Artif. Intell. Res., 63:495–513,
2018. doi:10.1613/jair.1.11253.

39 Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
40 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and

Frances A. Rosamond. The First Parameterized Algorithms and Computational Experiments
Challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 30:1–30:9, Aarhus, Denmark, 2017. Dagstuhl
Publishing. doi:10.4230/LIPIcs.IPEC.2016.30.

41 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC 2017), volume 89 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 30:1–30:12, Vienna, Austria, 2018.
Dagstuhl Publishing. doi:10.4230/LIPIcs.IPEC.2017.30.

42 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge. http://users.diag.uniroma1.it/challenge9/
download.shtml, 2009.

43 Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Mirosław Truszczyński.
The Second Answer Set Programming Competition. In Esra Erdem, Fangzhen Lin, and Torsten
Schaub, editors, Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture Notes in Computer
Science, pages 637–654. Springer Verlag, Potsdam, Germany, September 2009. doi:10.1007/
978-3-642-04238-6_75.

https://doi.org/10.1017/S1471068412000105
https://doi.org/10.1017/S1471068419000036
https://doi.org/10.5281/zenodo.3236992
https://doi.org/10.5281/zenodo.3235533
https://doi.org/10.1613/jair.1.11253
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
https://doi.org/10.1007/978-3-642-04238-6_75
https://doi.org/10.1007/978-3-642-04238-6_75

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:17

44 Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko
Samer. Heuristic Methods for Hypertree Decomposition. In Alexander Gelbukh and Eduardo F.
Morales, editors, Procedings of the 7th Mexican International Conference on Artificial Intelli-
gence on Advances in Artificial Intelligence (MICAI 2008), volume 5317 of Lecture Notes in
Computer Science, pages 1–11. Springer Verlag, 2008. doi:10.1007/978-3-540-88636-5_1.

45 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics.
Springer Verlag, 2012.

46 Diego Delle Donne and Guido Tagliavini. Star Routing: Between Vehicle Routing and Vertex
Cover. In COCOA, volume 11346 of Lecture Notes in Computer Science, pages 522–536.
Springer, 2018.

47 Eugene F. Dumitrescu, Allison L. Fisher, Timothy D. Goodrich, Travis S. Humble, Blair D.
Sullivan, and Andrew L. Wright. Benchmarking treewidth as a practical component of tensor
network simulations. PLOS ONE, 13(12):1–19, December 2018. doi:10.1371/journal.pone.
0207827.

48 Arnaud Durand and Stefan Mengel. Structural tractability of counting of solutions to
conjunctive queries. Theoretical Computer Science, 57(4):1202–1249, 2015.

49 M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. daajoe/sat2vc – A CNF-SAT to
VC converter, 2019. URL: https://github.com/daajoe/sat2vc.

50 M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. PACE2019: Track 1 - vertex
cover instances. Zenodo, July 2019. doi:10.5281/zenodo.3354609.

51 Leah Epstein, Asaf Levin, and Gerhard J. Woeginger. Vertex Cover Meets Scheduling.
Algorithmica, 74(3):1148–1173, 2016.

52 Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What Is Known About Vertex Cover Kernelization? In Adventures Between Lower
Bounds and Higher Altitudes, volume 11011 of Lecture Notes in Computer Science, pages
330–356. Springer, 2018.

53 J. K. Fichte. daajoe/gtfs2graphs – A GTFS transit feed to Graph Format Converter, 2016.
URL: https://github.com/daajoe/gtfs2graphs.

54 Johannes K. Fichte. ASP Horn Backdoors. https://github.com/daajoe/asp_horn_
backdoors, 2014.

55 Johannes K. Fichte. SAT Horn Backdoors. https://github.com/daajoe/sat_horn_
backdoors, 2018.

56 Johannes K. Fichte and Markus Hecher. PACE2019: Track 2a+b - hypertree decomposition
instances. Zenodo, July 2019. doi:10.5281/zenodo.3354607.

57 Johannes K. Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. An SMT Approach to
Fractional Hypertree Width. In John Hooker, editor, Proceedings of the 24th International
Conference on Principles and Practice of Constraint Programming (CP 2018), volume 11008
of Lecture Notes in Computer Science, pages 109–127, Lille, France, 2018. Springer Verlag.

58 Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer Set Solving
with Bounded Treewidth Revisited. In Marcello Balduccini and Tomi Janhunen, editors,
Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’17), volume 10377 of Lecture Notes in Computer Science, pages 132–145,
Espoo, Finland, July 2017. Springer Verlag. doi:10.1007/978-3-319-61660-5_13.

59 Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. DynASP2.5:
Dynamic programming on tree decompositions in action. In Daniel Lokshtanov and Naomi
Nishimura, editors, Proceedings of the 12th International Symposium on Parameterized and
Exact Computation (IPEC’17). Dagstuhl Publishing, 2017. doi:10.4230/LIPIcs.IPEC.2017.
17.

60 Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploiting Treewidth
for Projected Model Counting and its Limits. In Olaf Beyersdorff and Christoph M. Winter-
steiger, editors, Proceedings on the 21th International Conference on Theory and Applications

IPEC 2019

https://doi.org/10.1007/978-3-540-88636-5_1
https://doi.org/10.1371/journal.pone.0207827
https://doi.org/10.1371/journal.pone.0207827
https://github.com/daajoe/sat2vc
https://doi.org/10.5281/zenodo.3354609
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/asp_horn_backdoors
https://github.com/daajoe/asp_horn_backdoors
https://github.com/daajoe/sat_horn_backdoors
https://github.com/daajoe/sat_horn_backdoors
https://doi.org/10.5281/zenodo.3354607
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.4230/LIPIcs.IPEC.2017.17
https://doi.org/10.4230/LIPIcs.IPEC.2017.17

25:18 The PACE Challenge 2019 Report

of Satisfiability Testing (SAT’18), volume 10929 of Lecture Notes in Computer Science, pages
165–184, Oxford, UK, July 2018. Springer Verlag.

61 Johannes K. Fichte, Markus Hecher, and Markus Zisser. gpusat2 – An Improved GPU Model
Counter. In Simon de Givry and Thomas Schiex, editors, Proceedings of the 25th International
Conference on Principles and Practice of Constraint Programming (CP 2018), 2019. To appear.

62 Johannes K. Fichte, Neha Lodha, and Stefan Szeider. SAT-Based Local Improvement for
Finding Tree Decompositions of Small Width. In Serge Gaspers and Toby Walsh, editors,
Proceedings of the 20th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2017), volume 10491 of Lecture Notes in Computer Science, pages 401–411,
Melbourne, VIC, Australia, 2017. Springer Verlag. doi:10.1007/978-3-319-66263-3_25.

63 Johannes K. Fichte and Stefan Szeider. Backdoors to Tractable Answer-Set Programming.
Artificial Intelligence, 220(0):64–103, 2015. doi:10.1016/j.artint.2014.12.001.

64 Johannes Klaus Fichte and Markus Hecher. Treewidth and Counting Projected Answer Sets.
In Marcello Balduccini, Yuliya Lierler, and Stefan Woltran, editors, Proceedings of the 15th
International Conference on Logic Programming and Nonmonotonic Reasoning LPNMR 2019,
volume 11481 of Lecture Notes in Computer Science, pages 105–119, Philadelphia, PA, USA,
2019. Springer Verlag. doi:10.1007/978-3-030-20528-7_9.

65 Johannes Klaus Fichte, Markus Hecher, and Arne Meier. Counting Complexity for Reasoning
in Abstract Argumentation. In Pascal Van Hentenryck and Zhi-Hua Zhou, editors, Proceedings
of the 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, pages 2827–2834, Honolulu,
Hawaii, USA, 2019. The AAAI Press.

66 Johannes Klaus Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser. Weighted Model
Counting on the GPU by Exploiting Small Treewidth. In Yossi Azar, Hannah Bast, and
Grzegorz Herman, editors, Proceedings of the 26th Annual European Symposium on Algorithms
(ESA’18), volume 112 of Leibniz International Proceedings in Informatics (LIPIcs), pages
28:1–28:16. Dagstuhl Publishing, 2018. doi:10.4230/LIPIcs.ESA.2018.28.

67 Aleksander Figiel. An exact vertex cover solver using kernels. Zenodo, June 2019. doi:
10.5281/zenodo.3236867.

68 Wolfgang Fischl, Georg Gottlob, Davide M. Longo, and Reinhard Pichler. HyperBench: a
benchmark of hypergraphs. http://hyperbench.dbai.tuwien.ac.at, 2017.

69 Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler. HyperBench:
A Benchmark and Tool for Hypergraphs and Empirical Findings. In Proceedings of the 38th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’19),
pages 464–480, Amsterdam, Netherlands, 2019. Assoc. Comput. Mach., New York. doi:
10.1145/3294052.3319683.

70 Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. General and Fractional Hypertree
Decompositions: Hard and Easy Cases. In Jan Van den Bussche and Marcelo Arenas, editors,
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS’18), pages 17–32, Houston, TX, USA, June 2018. Assoc. Comput. Mach.,
New York.

71 Daniel Fremont. counting-benchmarks. http://tinyurl.com/countingbenchmarks, 2016.
72 Eugene C. Freuder. A sufficient condition for backtrack-bounded search. J. of the ACM,

29(1):24–32, 1982.
73 Marco Gario. Backdoors for SAT. Master’s thesis, TU Dresden, 2011. Program sources at

https://marco.gario.org/work/master/.
74 Marco Gario. HornVCBuilder. https://marco.gario.org/work/master/, 2011.
75 Marco Gario. Horn backdoor detection via Vertex Cover: Benchmark Description. In Adrian

Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, and Carsten Sinz, editors,
Proceedings of SAT Challenge 2012; Solver and Benchmark Descriptions, Helsinki, Finland,
2012. University of Helsinki.

76 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele.
Turbocharging Treewidth Heuristics. In Jiong Guo and Danny Hermelin, editors, Proceedings

https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1007/978-3-030-20528-7_9
https://doi.org/10.4230/LIPIcs.ESA.2018.28
https://doi.org/10.5281/zenodo.3236867
https://doi.org/10.5281/zenodo.3236867
http://hyperbench.dbai.tuwien.ac.at
https://doi.org/10.1145/3294052.3319683
https://doi.org/10.1145/3294052.3319683
http://tinyurl.com/countingbenchmarks
https://marco.gario.org/work/master/
https://marco.gario.org/work/master/

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:19

of the 11th International Symposium on Parameterized and Exact Computation (IPEC’16),
volume 63 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:13.
Dagstuhl Publishing, 2017. doi:10.4230/LIPIcs.IPEC.2016.13.

77 M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting Inconsistencies in Large Biological
Networks with Answer Set Programming. Theory Pract. Log. Program., 11(2-3):323–360, 2011.

78 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP
+ Control: Preliminary Report. CoRR, abs/1405.3694, 2014. arXiv:1405.3694.

79 Martin Gebser, Lengning Liu, Gayathri Namasivayam, André Neumann, Torsten Schaub,
and Mirosław Truszczyński. The First Answer Set Programming System Competition. In
Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Proceedings of the 9th Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483 of Lecture
Notes in Computer Science, pages 3–17, Tempe, AZ, USA, May 2007. Springer Verlag.
doi:10.1007/978-3-540-72200-7_3.

80 F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and cleaning. In Isabel Cruz,
Elena Ferrari, and Yufei Tao, editors, Proceedings of the IEEE 30th International Conference
on Data Engineering (ICDE’14), pages 232–243, March 2014.

81 Martin Josef Geiger. Implementation of a Metaheuristic for the Steiner Tree Problem in
Graphs. Medeley Data, 2018. doi:10.17632/yf9vpkgwdr.1.

82 G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries. J.
of Computer and System Sciences, 64(3):579–627, 2002.

83 Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and Hypertree Width, pages
3—-38. Cambridge University Press, Cambridge, 2014. doi:10.1017/CBO9781139177801.002.

84 Georg Gottlob, Zoltan Miklos, Nysret Musliu, and Marko Samer. Hypertree Complementary
Approaches to Constraint Satisfaction, 2016. URL: https://www.dbai.tuwien.ac.at/proj/
hypertree/downloads.html.

85 Georg Gottlob and Marko Samer. A Backtracking-based Algorithm for Hypertree Decomposi-
tion. J. of Experimental Algorithmics, 13:1:1.1–1:1.19, February 2009.

86 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. In Proceedings
of the of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pages
289–298. ACM Press, 2006.

87 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transac-
tions on Algorithms, 11(1):Art. 4, 20, 2014.

88 Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web, 3(2):158–182,
2005.

89 LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2019. URL: http://www.
gurobi.com.

90 Michael Hamann and Ben Strasser. Graph Bisection with Pareto Optimization. J. of
Experimental Algorithmics, 23:1.2:1–1.2:34, February 2018. doi:10.1145/3173045.

91 Falko Hegerfeld and Florian Nelles. hubhegnel/pace-2019: Release for zenodo. Zenodo, May
2019. doi:10.5281/zenodo.3234674.

92 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered,
May 2019. doi:10.5281/zenodo.2816116.

93 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the PACE 2019 implementation challenge, vertex cover track. CoRR,
2019. arXiv:1908.06795.

94 Marijn J. H. Heule, Matti Juhani Järvisalo, and Martin Suda, editors. Proceedings of the SAT
Competition 2018: Solver and Benchmark Descriptions, volume B. Department of Computer
Science, University of Helsinki, University of Helsinki, 2018.

95 Holger H. Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT. In
Ian P. Gent, Hans van Maaren, and Toby Walsh, editors, Proceedings of the 3rd Workshop on

IPEC 2019

https://doi.org/10.4230/LIPIcs.IPEC.2016.13
http://arxiv.org/abs/1405.3694
https://doi.org/10.1007/978-3-540-72200-7_3
https://doi.org/10.17632/yf9vpkgwdr.1
https://doi.org/10.1017/CBO9781139177801.002
https://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
https://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1145/3173045
https://doi.org/10.5281/zenodo.3234674
https://doi.org/10.5281/zenodo.2816116
http://arxiv.org/abs/1908.06795

25:20 The PACE Challenge 2019 Report

Satisfiability (SAT’00), pages 283–292, Renesse, The Netherlands, 2000. IOS Press. SATLIB
is available online at www.satlib.org.

96 Md. Rafiqul Islam, Imran Hossain Arif, and Rifat Hasan Shuvo. Generalized vertex cover
using chemical reaction optimization. Appl. Intell., 49(7):2546–2566, 2019.

97 Yoichi Iwata. Linear-Time Kernelization for Feedback Vertex Set. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of the 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 68:1–68:14. Dagstuhl Publishing,
2017. doi:10.4230/LIPIcs.ICALP.2017.68.

98 Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of Highest-Degree Branching for
Feedback Vertex Set. CoRR, abs/1905.12233, 2019. arXiv:1905.12233.

99 Yoichi Iwata and Takuto Shigemura. Separator-Based Pruned Dynamic Programming for
Steiner Tree. In AAAI, pages 1520–1527. AAAI Press, 2019.

100 T. Janhunen and I. Niemelä. The Answer Set Programming Paradigm. AI Magazine, 37(3):13–
24, 2016. doi:10.1609/aimag.v37i3.2671.

101 P. Jégou, H. Kanso, and C. Terrioux. On the Relevance of Optimal Tree Decompositions for
Constraint Networks. In Proceedings of the IEEE 30th International Conference on Tools with
Artificial Intelligence (ICTAI 2018), pages 738–743. IEEE Computer Soc., November 2018.
doi:10.1109/ICTAI.2018.00116.

102 Roland Kaminski. clingo - A grounder and solver for logic programs. https://github.com/
potassco/clingo, 2019.

103 Kustaa Kangas, Mikko Koivisto, and Sami Salonen. A Faster Tree-Decomposition Based
Algorithm for Counting Linear Extensions. In Christophe Paul and Michal Pilipczuk, editors,
Proceedings of the 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages
5:1–5:13. Dagstuhl Publishing, 2019. doi:10.4230/LIPIcs.IPEC.2018.5.

104 Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

105 Steven Kelk, Georgios Stamoulis, and Taoyang Wu. Treewidth distance on phylogenetic trees.
Theoretical Computer Science, 731:99–117, 2018. doi:10.1016/j.tcs.2018.04.004.

106 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked frequently.
CoRR, abs/1504.04044, 2017.

107 Krzysztof Kiljan and Marcin Pilipczuk. Experimental Evaluation of Parameterized Algorithms
for Feedback Vertex Set. In Gianlorenzo D’Angelo, editor, Proceedings of the 17th International
Symposium on Experimental Algorithms (SEA 2018), volume 103 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1–12:12. Dagstuhl Publishing, 2018. doi:
10.4230/LIPIcs.SEA.2018.12.

108 Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques -
Adaptive Computation and Machine Learning. MIT Press, 2009.

109 Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo. Enumerating Potential Maximal
Cliques via SAT and ASP. In Thomas Eiter and Sarit Kraus, editors, Proceedings of the
International Joint Conference on Artificial Intelligence IJCAI 2019, Macao, China, 2019.
The AAAI Press.

110 Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo. Solving Graph Problems via Potential
Maximal Cliques: An Experimental Evaluation of the Bouchitté–Todinca Algorithm. J. of
Experimental Algorithmics, 24(1):1.9:1–1.9:19, February 2019. doi:10.1145/3301297.

111 Philipp Klaus Krause, Lukas Larisch, and Felix Salfelder. The tree-width of C. Discr. Appl.
Math., 2019. doi:10.1016/j.dam.2019.01.027.

112 R. Krithika, Diptapriyo Majumdar, and Venkatesh Raman. Revisiting Connected Vertex
Cover: FPT Algorithms and Lossy Kernels. Theory Comput. Syst., 62(8):1690–1714, 2018.

www.satlib.org
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
http://arxiv.org/abs/1905.12233
https://doi.org/10.1609/aimag.v37i3.2671
https://doi.org/10.1109/ICTAI.2018.00116
https://github.com/potassco/clingo
https://github.com/potassco/clingo
https://doi.org/10.4230/LIPIcs.IPEC.2018.5
https://doi.org/10.1016/j.tcs.2018.04.004
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.1145/3301297
https://doi.org/10.1016/j.dam.2019.01.027

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:21

113 Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Sub-
rahmanian. Rev2: Fraudulent user prediction in rating platforms. In Yi Chang and Yan
Liu, editors, Proceedings of the 11th ACM International Conference on Web Search and Data
Mining (WSDM’18), pages 333–341, Marina Del Rey, CA, USA, 2018. Assoc. Comput. Mach.,
New York.

114 Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight
prediction in weighted signed networks. In Francesco Bonchi and Josep Domingo-Ferrer,
editors, Proceedings of the IEEE 16th International Conference on Data Mining (ICDM’16),
pages 221–230, Barcelona, Catalonia, Spain, 2016. IEEE Computer Soc.

115 Hung V. Le. Structural Results and Approximation Algorithms in Minor-free Graphs. PhD the-
sis, Oregon State University, 2018. URL: https://ir.library.oregonstate.edu/concern/
graduate_thesis_or_dissertations/d217qv924.

116 Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. How Good Are Query Optimizers, Really? Proceedings of Very Large Data Bases
(VLDB) Endowment, 9(3):204–215, November 2015.

117 Jure Leskovec. Stanford Network Analysis Project. https://snap.stanford.edu, 2009.
118 Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting Positive and Negative

Links in Online Social Networks. In Proceedings of the 19th International Conference on World
Wide Web (WWW ’10), pages 641–650, New York, NY, USA, 2010. Assoc. Comput. Mach.,
New York. doi:10.1145/1772690.1772756.

119 Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed Networks in Social Media.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’10), pages 1361–1370, New York, NY, USA, 2010. Assoc. Comput. Mach., New York. doi:
10.1145/1753326.1753532.

120 Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph Evolution: Densification and
Shrinking Diameters. ACM Trans. Knowl. Discov. Data, 1(1), March 2007. doi:10.1145/
1217299.1217301.

121 Zijie Li and Peter van Beek. Finding Small Backdoors in SAT Instances. In Canadian
Conference on AI, volume 6657 of Lecture Notes in Computer Science, pages 269–280. Springer,
2011.

122 Cong Han Lim and Stephen Wright. k-Support and Ordered Weighted Sparsity for Overlapping
Groups: Hardness and Algorithms. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Proceedings of Advances in Neural
Information Processing Systems 30 (NIPS 2017), pages 284–292. Curran Associates, Inc.,
2017.

123 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-Encodings for Special Treewidth
and Pathwidth. In Serge Gaspers and Toby Walsh, editors, Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2017), volume 10491 of
Lecture Notes in Computer Science, pages 429–445, Melbourne, VIC, Australia, 2017. Springer
Verlag. doi:10.1007/978-3-319-66263-3_27.

124 Davide Mario Longo. Pace2019 Hypertree Width Exact. Zenodo, May 2019. doi:10.5281/
zenodo.3236358.

125 Davide Mario Longo. Pace2019 Hypertree Width Heuristic. Zenodo, May 2019. doi:
10.5281/zenodo.3236369.

126 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Polynomial Kernels for Vertex
Cover Parameterized by Small Degree Modulators. Theory Comput. Syst., 62(8):1910–1951,
2018.

127 Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study of the Treewidth
of Real-World Graph Data. In Pablo Barcelo and Marco Calautti, editors, Proceedings of
the 22nd International Conference on Database Theory (ICDT 2019), volume 127 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:18. Dagstuhl Publishing,
2019. doi:10.4230/LIPIcs.ICDT.2019.12.

IPEC 2019

https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/d217qv924
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/d217qv924
https://snap.stanford.edu
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1007/978-3-319-66263-3_27
https://doi.org/10.5281/zenodo.3236358
https://doi.org/10.5281/zenodo.3236358
https://doi.org/10.5281/zenodo.3236369
https://doi.org/10.5281/zenodo.3236369
https://doi.org/10.4230/LIPIcs.ICDT.2019.12

25:22 The PACE Challenge 2019 Report

128 Marco Maratea, Francesco Ricca, Wolfgang Faber, and Nicola Leone. Look-back techniques and
heuristics in DLV: Implementation, evaluation, and comparison to QBF solvers. J. Algorithms,
63(1–3):70–89, 2008. Benchmarks can be found at http://asparagus.cs.uni-potsdam.de/
contest/downloads/benchmarks-score-dlp.tgz. doi:10.1016/j.jalgor.2008.02.006.

129 Thorsten Ehlers Max Bannach, Sebastian Berndt and Dirk Nowotka. SAT-Encodings of
Tree Decompositions. In Marijn Heule, Matti Juhani Järvisalo, and Martin Suda, editors,
Proceedings of SAT Competition 2018: Solver and Benchmark Descriptions, number Report
B-2018-1 in B, page 72. University of Helsinki, Department of Computer Science, 2018.

130 Julian McAuley and Jure Leskovec. Learning to Discover Social Circles in Ego Networks. In
Proceedings of the 25th International Conference on Neural Information Processing Systems
(NIPS’12), pages 539–547, USA, 2012. Curran Associates Inc.

131 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #SAT using vertex covers.
Acta Informatica, 44(7-8):509–523, 2007.

132 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query Results.
ACM Trans. Database Syst., 40(1):2:1–2:44, March 2015. doi:10.1145/2656335.

133 Steven Prestwich. CNF Encodings. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, chapter 2, pages 75–97. IOS Press, 2009.

134 Noam Ravid, Dori Medini, and Benny Kimelfeld. Ranked Enumeration of Minimal Tri-
angulations. In Dan Suciu and Christoph Koch, editors, Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2019),
pages 74–88, Amsterdam, Netherlands, 2019. Assoc. Comput. Mach., New York. doi:
10.1145/3294052.3319678.

135 Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping the Gnutella Network. IEEE
Internet Computing, 6(1):50–57, January 2002. doi:10.1109/4236.978369.

136 Neil Robertson and P.D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width. J.
Algorithms, 7(3):309–322, 1986.

137 Marko Samer and Stefan Szeider. Backdoor Trees. In AAAI, pages 363–368. AAAI Press,
2008.

138 Marko Samer and Stefan Szeider. Fixed-Parameter Tractability. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 13,
pages 425–454. IOS Press, 2009.

139 André Schidler and Stefan Szeider. HtdSMT - An SMT based solver for hypertree decomposi-
tions. Zenodo, May 2019. doi:10.5281/zenodo.3236333.

140 C. Sinz, A. Kaiser, and W. Küchlin. Formal methods for the validation of automotive
product configuration data. AI EDAM, 17(01):75–97, 2003. URL: http://www-sr.informatik.
uni-tuebingen.de/~sinz/DC.

141 Ben Strasser. Road Graphs as Tree-Decomposition PACE Test Instances, 2016. URL:
https://github.com/ben-strasser/road-graphs-pace16.

142 Ben Strasser. Computing Tree Decompositions with FlowCutter: PACE 2017 Submission.
CoRR, abs/1709.08949, 2017. arXiv:1709.08949.

143 Hisao Tamaki. Positive-Instance Driven Dynamic Programming for Treewidth. In Kirk
Pruhs and Christian Sohler, editors, Proceedings of the 25th Annual European Symposium
on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 68:1–68:13, Vienna, Austria, 2017. Dagstuhl Publishing. doi:10.4230/LIPIcs.
ESA.2017.68.

144 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. J. Comb. Optim.,
37(4):1283–1311, May 2019. doi:10.1007/s10878-018-0353-z.

145 Transaction Processing Performance Council (TPC). TPC-H decision support benchmark.
Technical report, TPC, 2014. URL: http://www.tpc.org/tpch/default.asp.

146 James Trimble. jamestrimble/heidi: v1.0.0: Pace Challenge 2019 version. Zenodo, June 2019.
doi:10.5281/zenodo.3237427.

http://asparagus.cs.uni-potsdam.de/contest/downloads/benchmarks-score-dlp.tgz
http://asparagus.cs.uni-potsdam.de/contest/downloads/benchmarks-score-dlp.tgz
https://doi.org/10.1016/j.jalgor.2008.02.006
https://doi.org/10.1145/2656335
https://doi.org/10.1145/3294052.3319678
https://doi.org/10.1145/3294052.3319678
https://doi.org/10.1109/4236.978369
https://doi.org/10.5281/zenodo.3236333
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC
https://github.com/ben-strasser/road-graphs-pace16
http://arxiv.org/abs/1709.08949
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.1007/s10878-018-0353-z
http://www.tpc.org/tpch/default.asp
https://doi.org/10.5281/zenodo.3237427

M.A. Dzulfikar, J. K. Fichte, and M. Hecher 25:23

147 James Trimble. jamestrimble/hypebeast: v1.0.0: PACE Challenge 2019 version. Zenodo, May
2019. doi:10.5281/zenodo.3082314.

148 James Trimble. jamestrimble/peaty: v1.0.0: PACE Challenge 2019 entry. Zenodo, May 2019.
doi:10.5281/zenodo.3082356.

149 Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
150 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms and

data reduction for safe convoy routing. CoRR, abs/1806.09540, 2018. arXiv:1806.09540.
151 Tom C. van der Zanden and Hans L. Bodlaender. Computing Treewidth on the GPU. In

Daniel Lokshtanov and Naomi Nishimura, editors, Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC 2017), volume 89 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1–29:13, Vienna, Austria, 2018.
dp. doi:10.4230/LIPIcs.IPEC.2017.29.

152 Tom Cornelis van der Zanden. Theory and Practical Applications of Treewidth. PhD thesis,
Utrecht University, 2019.

153 Rim van Wersch and Steven Kelk. ToTo: An open database for computation, storage and
retrieval of tree decompositions. Discr. Appl. Math., 217:389–393, 2017. doi:10.1016/j.dam.
2016.09.023.

154 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. Optil.Io:
Cloud Based Platform For Solving Optimization Problems Using Crowdsourcing Approach.
In Eric Gilbert and Karrie Karahalios, editors, Proceedings of the 19th ACM Conference
on Computer Supported Cooperative Work and Social Computing Companion, CSCW ’16
Companion, pages 433–436, New York, NY, USA, 2016. Assoc. Comput. Mach., New York.
doi:10.1145/2818052.2869098.

155 Ke Xu. BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems (Max-
imum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex Coloring).
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm, 2014.

156 Bogdan Zavalnij and Sandor Szabo. zbogdan/pace-2019 a. Zenodo, May 2019. doi:10.5281/
zenodo.3228802.

157 Yuting Zhao and Fangzhen Lin. Answer Set Programming Phase Transition: A Study
on Randomly Generated Programs. In Catuscia Palamidessi, editor, Proceedings of the
19th International Conference on Logic Programming (ICLP’03), volume 2916 of Lecture
Notes in Computer Science, pages 239–253, Mumbai, India, December 2003. Springer Verlag.
doi:10.1007/978-3-540-24599-5_17.

158 Michal Ziobro and Marcin Pilipczuk. Finding Hamiltonian Cycle in Graphs of Bounded
Treewidth: Experimental Evaluation. CoRR, abs/1803.00927, 2018. arXiv:1803.00927.

IPEC 2019

https://doi.org/10.5281/zenodo.3082314
https://doi.org/10.5281/zenodo.3082356
http://arxiv.org/abs/1806.09540
https://doi.org/10.4230/LIPIcs.IPEC.2017.29
https://doi.org/10.1016/j.dam.2016.09.023
https://doi.org/10.1016/j.dam.2016.09.023
https://doi.org/10.1145/2818052.2869098
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
https://doi.org/10.5281/zenodo.3228802
https://doi.org/10.5281/zenodo.3228802
https://doi.org/10.1007/978-3-540-24599-5_17
http://arxiv.org/abs/1803.00927

	p000-Frontmatter
	Preface
	Program Committee
	List of External Reviewers

	p001-Berendsohn
	Introduction
	Preliminaries
	Pattern matching as constraint satisfaction
	Special patterns
	Hardness result

	p002-Bessy
	Introduction
	Preliminaries
	W[1]-hardness and directed width measures
	The treewidth of the underlying undirected graph as parameter
	The size of a minimum directed feedback vertex set as parameter
	Combining DFVS-number and K-width
	Combining DFVS-number and length of a longest directed path

	p003-Blaser
	Introduction
	Our Contribution

	Valiant's Classes
	Parameterized (Counting) Complexity
	Parameterized Valiant's Classes
	VFPT
	The VW-hierarchy
	Hardness of Clique
	Hardness of the Permanent and Cycle Covers
	Hardness of the k-permanent
	Bounded length Cycle Covers

	p004-Blum
	Introduction
	Related Work
	Contributions and Outline

	Preliminaries
	Skeleton Dimension and Doubling Dimension
	Highway Dimension
	Classic graph parameters

	Parameter Relationships
	Upper Bounds
	Incomparabilities

	Hardness Results
	Highway Dimension Computation
	Hardness of Approximating k-Center

	Conclusion and Future Work

	p005-Bonnet
	Introduction
	Our contribution
	Organization of the paper

	Preliminaries
	Graph notations
	Exponential Time Hypothesis, FPT reductions, and W[1]-hardness
	Metric dimension, resolved pairs, distinguished vertices

	Outline of the W[1]-hardness proof of Metric Dimension/tw
	Parameterized hardness of k-Multicolored Resolving Set/tw
	Construction
	Overall picture
	Selector gadget
	Edge gadget
	Propagation gadget
	Wrapping up

	Correctness of the reduction
	k-Multicolored Independent Set in G ==> legal resolving set in G'
	Legal resolving set in G' ==> k-Multicolored Independent Set in G

	Parameterized hardness of Metric Dimension/tw
	Construction
	Forced set gadget
	Forced vertex gadget
	Finishing touches and useful notations

	Correctness of the reduction
	MD-instance has a solution ==> k-MRS-instance has a solution
	k-MRS-instance has a solution ==> MD-instance has a solution

	p006-Bressan
	Introduction
	Results
	Bounds
	Techniques

	Preliminaries and notation
	Related work

	Exploiting degeneracy orientations
	DAG tree decompositions
	Counting homomorphisms via dag tree decompositions
	Inclusion-exclusion arguments

	Bounds on the dag treewidth
	Quasi-cliques
	Quasi-multipartite graphs (non-induced)
	Independence number and dag treewidth
	All patterns

	Lower bounds
	Conclusions

	p007-Chitnis
	Introduction
	Parameterized Streaming Algorithms and Kernels
	Our Results & Organization of the paper
	Prior work on Parametrized Streaming Algorithms

	Parameterized Streaming Algorithms Inspired by FPT techniques
	Multipass FPS algorithm for k-VC using Branching
	Multipass FPS algorithm for k-VC using Iterative Compression
	Minor-Bidimensional problems belong to SemiPS

	Lower Bounds for Parameterized Streaming Algorithms
	Tight Problems for the classes SemiPS and BrutePS
	Lower bound for approximating size of minimum Dominating Set on graphs of bounded arboricity
	Streaming Lower Bounds Inspired by Kernelization Lower Bounds

	Conclusions & Open Problems

	p008-Chitnis
	Introduction
	Previous work and our results
	FPT inapproximability results under (Gap-)ETH

	FPT (In)Approximability of Directed Multicut
	FPT approximation algorithm
	No FPT (59/58-epsilon)-approximation under Gap-ETH
	Construction of the Directed Multicut With 4 Pairs instance
	Completeness of Lemma 11: val(Gamma)=1 ==> Multicut of cost <= 29 l^2
	Soundness of Lemma 11: Multicut of cost <= 29.5 l^2 ==> val(Gamma)>= 1/10

	Finishing the proof of Theorem 2

	FPT inapproximability for DSN_Planar
	(2-{epsilon})-hardness for FPT approximation under Gap-ETH
	Reduction from Colored Biclique to DSN_Planar
	Finishing the proof of Theorem 3

	Lower Bounds for FPT Approximation Schemes for DSN_Planar

	Lower Bounds for FPT Approximation Schemes for SCSS_Planar

	p009-DaLozzo
	Introduction
	Definitions and Preliminaries
	Relationship between Graph-Width Parameters and Connectivity

	A Dynamic-Programming Algorithm for Flat Instances
	Graph-Width Parameters Related to the Dual Carving-Width
	Conclusions

	p010-Dreier
	Introduction
	Preliminaries
	Path Packing on Forests
	Path Packing Parametrized by Path Dependent Attributes
	Path Packing Parametrized by Graph Dependent Attributes
	Conclusion

	p011-Dreier
	Introduction
	Preliminaries
	Graph Notation
	Probabilities and Random Graph Models
	First-Order Logic
	Parameterized Complexity

	Results
	Hardness
	Reductions
	Hard Random Graph Models

	p012-Duarte
	Introduction
	Intractability results
	Algorithmic lower bound for clique-width parameterization
	Inapproximability

	Algorithmic upper bounds for clique-width parameterization
	Bounding the treewidth of G
	The st-bond case

	Taking the treewidth as parameter
	Infeasibility of polynomial kernels

	p013-Eto
	Introduction
	Our contribution
	Related work

	Preliminaries
	Graph parameters

	Computational Complexity on Graph Classes
	Planar bipartite graphs
	Split graphs

	Parameterized Complexity
	Tree-width
	O*({tw}^{O(tw)})-algorithm
	Rank-based approach
	Cut & Count

	Clique-width
	Twin-cover
	Solution size

	Conclusion and Remark

	p014-Fluschnik
	Introduction
	Preliminaries
	Hardness On Restricted Inputs
	Parameter Vertex Cover Size
	An XP-Algorithm
	Parameterized Intractability
	Forward direction
	Backward direction
	Proof of the Proposition

	On Efficient Data Reduction
	No problem kernel of size polynomial in k
	A problem kernel of size O(k^2 tau)
	A linear problem kernel regarding tau

	Conclusion

	p015-Foucaud
	Introduction
	Preliminaries and known results
	Some known complexity dichotomies
	Homomorphism dualities and FPT time

	PTime/NP-complete complexity dichotomies
	Dichotomy for Vertex Deletion-H-Colouring
	Dichotomy for Edge Deletion-H-Colouring when H has order 2
	Dichotomy for Switching-H-Colouring when H has order 2

	Parameterized complexity results
	Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring
	Switching-H-Colouring: FPT cases
	Switching-H-Colouring: W[1]-hard cases
	Generic reduction
	Gadgets for H_{r,r}^{2rb}
	Gadgets for H_{r,-}^{2rb}
	Gadgets for H_{r,b}^{2rb}

	Conclusion and perspectives

	p016-Gao
	Introduction
	Extending one-dimensional dynamic programming to graphs
	Fine-grained complexity preliminaries
	Introducing reachability to first-order model checking
	Main results
	Organization

	From sequential problems to parallel problems, on multitrees
	The recursive algorithm
	A special case that can be exhaustively searched
	Subroutine: reachability across a cut

	Application to Least Weight Subpath
	Open problems
	List of problem definitions and class definitions
	Problem examples

	p017-Goke
	Introduction
	Our results
	Related work

	Preliminaries
	Parameterized Intractability of Minimum Feasibility Blocker
	Fixed-parameter Algorithms for Systems of Difference Constraints
	Few negative right-hand sides
	Few positive right-hand sides

	NP-Hardness for Incidence Matrices of Constant Pathwidth
	Discussion

	p018-Golovach
	Introduction
	Preliminaries
	Clustering to Given Weighted Connectivities for connected graphs
	Auxiliary results
	Sketch of the proof of Theorem 1

	The algorithm for Clustering to Given Weighted Connectivities
	Conclusion

	p019-Gomes
	Introduction
	Preliminaries

	NP-hardness, polynomial cases, and exact exponential algorithm
	Parameterized algorithms and kernelization
	Crossing edges
	Kernelization and distance to cluster

	Concluding remarks

	p020-Hamm
	Overview
	Formal Introduction and Preliminary Observations
	Known Results
	The Vertex Degree Property

	Path Decompositions of Incidence Graphs
	A Linear Time Algorithm for k-CWLA
	Identifying Partial Linear Arrangements
	The Dynamic Programming Procedure

	Future Work – Using a Tree Decomposition of the Incidence Graph

	p021-Husic
	Introduction
	Reduction steps and augmenting graphs
	Bi-trees
	The end of the proof

	p022-Iwata
	Introduction
	Organization

	Algorithm
	Analysis
	Simple Analysis
	Measure-and-Conquer Analysis

	Conclusion

	p023-Novotna
	Introduction
	Main result
	Corollaries
	Max Induced Forest in H-free graphs
	Largest induced degenerate subgraph in low-treewidth graphs

	p024-Rosenthal
	Introduction
	Preliminaries
	Graphs

	The Average-Case Problem and the Parameter kappa(G)
	Threshold Random Graphs
	The Parameter kappa(G) and an Algorithm for the Average Case

	The Parameter emb(G) and Proof that emb(G) is O(kappa(G))
	Separating kappa from Treewidth
	Proof that kappa(K_k) = k/4 + O(1)
	Proof that kappa(Kqd) is O(qd/d) if q is Even
	Proof that kappa(Kqd) is Omega(qd/d) and emb(Kqd) is Theta(qd/d)
	Proof that tw(Kqd) is Theta(qd/root(d)), Summarized

	AC0 Upper Bound
	Proof of Theorem 6.3
	The Circuit

	p025-Dzulfikar
	Introduction
	The PACE 2019 Challenge Problems
	Vertex Cover (Track 1a)
	Hypertree Decompositions (Tracks 2a and 2b)

	Challenge Settings
	Participants and Results
	Track 1a (Vertex Cover/Exact)
	Track 2a (Hypertree Width/Exact)
	Track 2b (Hypertree Width/Heuristic)

	PACE organization
	Conclusion and Future Editions of PACE

