
Slaying Hydrae: Improved Bounds for Generalized
k-Server in Uniform Metrics
Marcin Bienkowski
Institute of Computer Science, University of Wrocław, Poland
marcin.bienkowski@cs.uni.wroc.pl

Łukasz Jeż
Institute of Computer Science, University of Wrocław, Poland
lukasz.jez@cs.uni.wroc.pl

Paweł Schmidt
Institute of Computer Science, University of Wrocław, Poland
pawel.schmidt@cs.uni.wroc.pl

Abstract
The generalized k-server problem is an extension of the weighted k-server problem, which in turn
extends the classic k-server problem. In the generalized k-server problem, each of k servers s1, . . . , sk

remains in its own metric space Mi. A request is a tuple (r1, . . . , rk), where ri ∈Mi, and to service
it, an algorithm needs to move at least one server si to the point ri. The objective is to minimize
the total distance traveled by all servers.

In this paper, we focus on the generalized k-server problem for the case where all Mi are uniform
metrics. We show an O(k2 · log k)-competitive randomized algorithm improving over a recent result
by Bansal et al. [SODA 2018], who gave an O(k3 · log k)-competitive algorithm. To this end, we
define an abstract online problem, called Hydra game, and we show that a randomized solution of
low cost to this game implies a randomized algorithm to the generalized k-server problem with low
competitive ratio.

We also show that no randomized algorithm can achieve competitive ratio lower than Ω(k), thus
improving the lower bound of Ω(k/ log2 k) by Bansal et al.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases k-server, generalized k-server, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.14

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

1 Introduction

The k-server problem, introduced by Manasse et al. [18], is one of the most well-studied
and influential cornerstones of online analysis. The problem definition is deceivingly simple:
There are k servers, starting at a fixed set of k points of a metric space M . An input is
a sequence of requests (points of M) and to service a request, an algorithm needs to move
servers, so that at least one server ends at the request position. As typical for online problems,
the k-server problem is sequential in nature: an online algorithm Alg learns a new request
only after it services the current one. The cost of Alg, defined as the total distance traveled
by all its servers, is then compared to the cost of an offline solution Opt; the ratio between
them, called competitive ratio, is subject to minimization.

In a natural extension of the k-server problem, called the generalized k-server problem [16,
20], each server si remains in its own metric space Mi. The request is a k-tuple (r1, . . . , rk),
where ri ∈ Mi, and to service it, an algorithm needs to move servers, so that at least one
server si ends at the request position ri. The original k-server problem corresponds to the

© Marcin Bienkowski, Łukasz Jeż, and Paweł Schmidt;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-7375-0641
mailto:lukasz.jez@cs.uni.wroc.pl
mailto:pawel.schmidt@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

case where all metric spaces Mi are identical and each request is of the form (r, . . . , r). The
generalized k-server problem contains many known online problems, such as the weighted
k-server problem [1, 7, 11, 12] or the CNN problem [8, 16, 19, 20] as special cases.

So far, the existence of an f(k)-competitive algorithm for the generalized k-server problem
in arbitrary metric spaces remains open. Furthermore, even for specific spaces, such as the
line [16] or uniform metrics [1, 2, 16], the generalized k-server problem requires techniques
substantially different from those used to tackle the classic k-server problems. For these
reasons, studying this problem could lead to new techniques for designing online algorithms.

1.1 Previous Work
After almost three decades of extensive research counted in dozens of publications (see, e.g.,
a slightly dated survey by Koutsoupias [14]), we are closer to understanding the nature of
the classic k-server problem. The competitive ratio achievable by deterministic algorithms is
between k [18] and 2k − 1 [15] with k-competitive algorithms known for special cases, such
as uniform metrics [21], lines and trees [9, 10], or metrics of k + 1 points [18]. Less is known
about competitive ratios for randomized algorithms: the best known lower bound holding
for an arbitrary metric space is Ω(log k/ log log k) [4] and the currently best upper bound
of O(log6 k) has been recently obtained in a breakthrough result [6, 17].

In comparison, little is known about the generalized k-server problem. In particular,
algorithms attaining competitive ratios that are functions of k exist only in a few special
cases. The case of k = 2 has been solved by Sitters and Stougie [20, 19], who gave constant
competitive algorithms for this setting. Results for k ≥ 3 are known only for simpler metric
spaces, as described below.

A uniform metric case describes a scenario where all metrics Mi are uniform with pairwise
distances between different points equal to 1. For this case, Bansal et al. [2] recently
presented an O(k ·2k)-competitive deterministic algorithm and an O(k3 ·log k)-competitive
randomized one. The deterministic competitive ratio is at least 2k − 1 already when
metrics Mi have two points [16]. Furthermore, using a straightforward reduction to the
metrical task system (MTS) problem [5], they show that the randomized competitive
ratio is at least Ω(k/ log k) [2].1

A weighted uniform metric case describes a scenario where each metric Mi is uniform, but
they have different scales, i.e., the pairwise distances between points of Mi are equal
to some values wi > 0. For this setting, Bansal et al. [2] gave an 22O(k)-competitive
deterministic algorithm extending an 22O(k)-competitive algorithm for the weighted k-
server problem in uniform metrics [12]. (The latter problem corresponds to the case
where all requests are of the form (r, . . . , r).) This matches a lower bound of 22Ω(k) [1]
(which also holds already for the weighted k-server problem).

1.2 Our Results and Paper Organization
In this paper, we study the uniform metric case of the generalized k-server problem. We give
a randomized O(k2 · log k)-competitive algorithm improving over the O(k3 · log k) bound by
Bansal et al. [2].

1 In fact, for the generalized k-server problem in uniform metrics, the paper by Bansal et al. [2] claims
only the randomized lower bound of Ω(k/ log2 k). To obtain it, they reduce the problem to the n-state
metrical task system (MTS) problem and apply a lower bound of Ω(log n/(log log n)2) for MTS [3]. By
using their reduction and a stronger lower bound of Ω(log n/ log log n) for n-state MTS [4], one could
immediately obtain a lower bound of Ω(k/ log k) for the generalized k-server problem.

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:3

To this end, we first define an elegant abstract online problem: a Hydra game played by
an online algorithm against an adversary on an unweighted tree. We present the problem along
with a randomized, low-cost online algorithm Herc in Section 2. We defer a formal definition
of the generalized k-server problem to Section 3.1. Later, in Section 3.2 and Section 3.3, we
briefly sketch the structural claims concerning the generalized k-server problem given by
Bansal et al. [2]. Using this structural information, in Section 3.4, we link the generalized
k-server problem to the Hydra game: we show that a (randomized) algorithm of total
cost R for the Hydra game on a specific tree (called factorial tree) implies a (randomized)
(R + 1)-competitive solution for the generalized k-server problem. This, along with the
performance guarantees of Herc given in Section 2, yields the desired competitiveness bound.
We remark that while the explicit definition of the Hydra game is new, the algorithm of
Bansal et al. [2] easily extends to its framework.

Finally, in Section 4, we give an explicit lower bound construction for the generalized
k-server problem, which does not use a reduction to the metrical task system problem, hereby
improving the bound from Ω(k/ log k) to Ω(k).

2 Hydra Game

The Hydra game2 is played between an online algorithm and an adversary on a fixed
unweighted tree T , known to the algorithm in advance. The nodes of T have states which
change throughout the game: Each node can be either asleep, alive or dead. Initially, the
root rT is alive and all other nodes are asleep. At all times, the following invariant is
preserved: all ancestors of alive nodes are dead and all their descendants are asleep. In
a single step, the adversary picks a single alive node w, kills it (changes its state to dead)
and makes all its (asleep) children alive. Note that such adversarial move preserves the
invariant above.

An algorithm must remain at some alive node (initially, it is at the root rT). If an algorithm
is at a node w that has just been killed, it has to move to any still alive node w′ of its choice.
For such movement it pays dist(w,w′), the length of the shortest path between w and w′ in
the tree T . The game ends when all nodes except one (due to the invariant, it has to be
an alive leaf) are dead. Unlike many online problems, here our sole goal is to minimize the
total (movement) cost of an online algorithm (i.e., without comparing it to the cost of the
offline optimum).

This game is not particularly interesting in the deterministic setting: As an adversary
can always kill the node where a deterministic algorithm resides, the algorithm has to visit
all but one nodes of tree T , thus paying Ω(|T |). On the other hand, a trivial DFS traversal
of tree T has the cost of O(|T |). Therefore, we focus on randomized algorithms and assume
that the adversary is oblivious: it knows an online algorithm, but not the random choices
made by it thus far.

2.1 Randomized Algorithm Definition
It is convenient to describe our randomized algorithm Herc as maintaining a probability
distribution η over set of nodes, where for any node u, η(u) denotes the probability that
Herc is at u. We require that η(u) = 0 for any non-alive node u. Whenever Herc decreases

2 This is a work of science. Any resemblance of the process to the decapitation of a mythical many-headed
serpent-shaped monster is purely coincidental.

ISAAC 2019

14:4 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

the probability at a given node u by p and increases it at another node w by the same
amount, we charge cost p · dist(u,w) to Herc. By a straightforward argument, one can
convert such description into a more standard, “behavioral” one, which describes randomized
actions conditioned on the current state of an algorithm, and show that the costs of both
descriptions coincide. We present the argument in Appendix A for completeness.

At any time during the game, for any node u from tree T , rank(u) denotes the number of
non-dead (i.e., alive or asleep) leaves in the subtree rooted at u. As Herc knows tree T in
advance, it knows node ranks as well. Algorithm Herc maintains η that is distributed over
all alive nodes proportionally to their ranks. As all ancestors of an alive node are dead and
all its descendants are asleep, we have η(u) = rank(u)/rank(rT) if u is alive and η(u) = 0
otherwise. In particular, at the beginning η is 1 at the root and 0 everywhere else.

While this already defines the algorithm, we still discuss its behavior when an alive
node u is killed by the adversary. By Herc definition, we can think of the new probability
distribution η′ as obtained from η in the following way. First, Herc sets η′(u) = 0. Next,
the probability distribution at other nodes is modified as follows.
Case 1. Node u is not a leaf. Herc distributes the probability of u among all (now alive)

children of u proportionally to their ranks, i.e., sets η′(w) = (rank(w)/rank(u)) · η(u) for
each child w of u.

Case 2. Node u is a leaf. Note that there were some other non-dead leaves, as otherwise the
game would have ended before this step, and therefore η(u) ≤ 1/2. Herc distributes η(u)
among all other nodes, scaling the probabilities of the remaining nodes up by a factor of
1/(1− η(u)). That is, it sets η′(w) = η(w)/(1− η(u)) for any node w.

Note that in either case, η′ is a valid probability distribution, i.e., all probabilities are
non-negative and sum to 1. Moreover, η′ is distributed over alive nodes proportionally to
their new ranks, and is equal to zero at non-alive nodes.

I Observation 1. At any time, the probability of an alive leaf u is exactly η(u) = 1/rank(rT).

2.2 Analysis
For the analysis, we need a few more definitions. We denote the height and the number of
the leaves of tree T by hT and LT , respectively. Let level(u) denote the height of the subtree
rooted at u, where leaves are at level 0. Note that hT = level(rT).

To bound the cost of Herc, we define a potential Φ, which is a function of the current
state of all nodes of T and the current probability distribution η of Herc. We show that
Φ is initially O(hT · (1 + logLT)), is always non-negative, and the cost of each Herc’s action
can be covered by the decrease of Φ. This will show that the total cost of Herc is at most
the initial value of Φ, i.e., O(hT · (1 + logLT)).

Recall that η(w) = 0 for any non-alive node w and that rank(u) is the number of non-dead
leaves in the subtree rooted at u. Specifically, rank(rT) is the total number of non-dead
leaves in T . The potential is defined as

Φ = 4 · hT ·H(rank(rT)) +
∑
w∈T

η(w) · level(w) , (1)

where H(n) =
∑n

i=1 1/i is the n-th harmonic number.

I Lemma 2. At any time, Φ = O(hT · (1 + logLT)).

Proof. Since rank(rT) ≤ LT at all times, the first summand of Φ is O(hT · logLT). The
second summand of Φ is a convex combination of node levels, which range from 0 to hT , and
is thus bounded by hT . J

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:5

I Lemma 3. Fix any step in which an adversary kills a node u and in result Herc changes
the probability distribution from η to η′. Let ∆Herc be the cost incurred in this step by
Herc and let ∆Φ be the resulting change in the potential Φ. Then, ∆Φ ≤ −∆Herc.

Proof. We denote the ranks before and after the adversarial event by rank and rank′,
respectively. We consider two cases depending on the type of u.

Case 1. The killed node u is an internal node. In this case, ∆Herc = η(u) as Herc simply
moves the total probability of η(u) along a distance of one (from u to its children). As
rank′(rT) = rank(rT), the first summand of Φ remains unchanged. Let C(u) be the set of
children of u. Then,

∆Φ =
∑
w∈T

(η′(w)− η(w)) · level(w) = −η(u) · level(u) +
∑

w∈C(u)

η′(w) · level(w)

≤ −η(u) · level(u) +
∑

w∈C(u)

η′(w) · (level(u)− 1)

= −η(u) · level(u) + η(u) · (level(u)− 1) = −∆Herc ,

where the inequality holds as level of a node is smaller than the level of its parent and
the penultimate equality follows as the whole probability mass at u is distributed to its
children.

Case 2. The killed node u is a leaf. It is not the last alive node, as in such case the game
would have ended before, i.e., it holds that rank(rT) ≥ 2. Herc moves the probability
of η(u) = 1/rank(rT) (cf. Observation 1) along a distance of at most 2 · hT , and thus
∆Herc ≤ 2 · hT /rank(rT).
Furthermore, for any w 6= u, η′(w) = η(w)/(1− η(u)). Using η(u) = 1/rank(rT), we infer
that the probability at a node w 6= u increases by

η′(w)− η(w) =
(

1
1− η(u) − 1

)
· η(w) = η(u)

1− η(u) · η(w)

= 1
rank(rT)− 1 · η(w) ≤ 2

rank(rT) · η(w) , (2)

where the last inequality follows as rank(rT) ≥ 2.
Using (2) and the relation rank′(rT) = rank(rT) − 1 (the number of non-dead leaves
decreases by 1), we compute the change of the potential:

∆Φ = 4 · hT ·
(
H(rank′(rT))−H(rank(rT))

)
+
∑
w∈T

(η′(w)− η(w)) · level(w)

= − 4 · hT

rank(rT) + (η′(u)− η(u)) · level(u) +
∑
w 6=u

(η′(w)− η(w)) · level(w)

≤ − 4 · hT

rank(rT) +
∑
w 6=u

2
rank(rT) · η(w) · hT ≤ −

2 · hT

rank(rT) ≤ −∆Herc .

In the first inequality, we used that level(u) = 0 and level(w) ≤ hT for any w.
Summing up, we showed that ∆Φ ≤ −∆Herc in both cases. J

I Theorem 4. For the Hydra game played on any tree T of height hT and LT leaves, the
total cost of Herc is at most O(hT · (1 + logLT)).

ISAAC 2019

14:6 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

Proof. Let ΦB denote the initial value of Φ. By non-negativity of Φ and Lemma 3, it holds
that the total cost of Herc is at most ΦB. The latter amount is at most O(hT · (1 + logLT))
by Lemma 2. J

Although Herc and Theorem 4 may seem simple, when applied to appropriate trees, they
yield improved bounds for the generalized k-server problem in uniform metrics, as shown in
the next section.

3 Improved Algorithm for Generalized k-Server Problem

In this part, we show how any solution for the Hydra game on a specific tree (defined
later) implies a solution to the generalized k-server problem in uniform metrics. This will
yield an O(k2 log k)-competitive randomized algorithm for the generalized k-server problem,
improving the previous bound of O(k3 · log k) [2]. We note that this reduction is implicit
in the paper of Bansal et al. [2], so our contribution is in formalizing the Hydra game and
solving it more efficiently.

3.1 Preliminaries
The generalized k-server problem in uniform metrics is formally defined as follows. The
offline part of the input comprises k uniform metric spaces M1, . . . ,Mk. The metric Mi

has ni ≥ 2 points, the distance between each pair of its points is 1. There are k servers
denoted s1, . . . , sk, the server si starts at some fixed point in Mi and always remains at some
point of Mi.

The online part of the input is a sequence of requests, each request being a k-tuple
(r1, . . . , rk) ∈

∏k
i=1 Mi. To service a request, an algorithm needs to move its servers, so

that at least one server si ends at the request position ri. Only after the current request is
serviced, an online algorithm is given the next one.

The cost of an algorithm Alg on input I, denoted Alg(I), is the total distance traveled
by all its k servers. We say that a randomized online algorithm Alg is β-competitive if there
exists a constant γ, such that for any input I, it holds that E[Alg(I)] ≤ β ·Opt(I) + γ,
where the expected value is taken over all random choices of Alg, and where Opt(I) denotes
the cost of an optimal offline solution for input I. The constant γ may be a function of k,
but it cannot depend on an online part of the input.

3.2 Phase-Based Approach
We start by showing how to split the sequence of requests into phases. To this end, we need
a few more definitions. A (server) configuration is a k-tuple c = (c1, . . . , ck) ∈

∏k
i=1 Mi,

denoting positions of respective servers. For a request r = (r1, . . . , rk) ∈
∏k

i=1 Mi, we define
the set of compatible configurations comp(r) = {(c1, . . . , ck) : ∃i ci = ri}, i.e., the set of all
configurations that can service the request r without moving a server. Other configurations
we call incompatible with r.

An input is split into phases, with the first phase starting with the beginning of an input.
The phase division process described below is constructed to ensure that Opt pays at least 1
in any phase, perhaps except the last one. At the beginning of a phase, all configurations
are phase-feasible. Within a phase, upon a request r, all configurations incompatible with r
become phase-infeasible. The phase ends once all configurations are phase-infeasible; if this
is not the end of the input, the next phase starts immediately, i.e., all configurations are

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:7

restored to the phase-feasible state before the next request. Note that the description above
is merely a way of splitting an input into phases and marking configurations as phase-feasible
and phase-infeasible. The actual description of an online algorithm will be given later.

Fix any finished phase and any configuration c and consider an algorithm that starts the
phase with its servers at configuration c. When configuration c becomes phase-infeasible,
such algorithm is forced to move and pay at least 1. As each configuration eventually becomes
phase-infeasible in a finished phase, any algorithm (even Opt) must pay at least 1 in any
finished phase. Hence, if the cost of a phase-based algorithm for servicing requests of a single
phase can be bounded by f(k), the competitive ratio of this algorithm is then at most f(k).

3.3 Configuration Spaces

Phase-based algorithms that we construct will not only track the set of phase-feasible
configurations, but they will also group these configurations in certain sets, called configuration
spaces.

To this end, we introduce a special wildcard character ?. Following [2], for any k-tuple
q = (q1, . . . , qk) ∈

∏k
i=1(Mi ∪ {?}), we define a (configuration) space S[q] = {(c1, . . . , ck) ∈∏k

i=1 Mi : ∀i ci = qi ∨ qi = ?}. A coordinate with qi = ? is called free for the configuration
space S[q]. That is, S[q] contains all configurations that agree with q on all non-free
coordinates.

The number of free coordinates in q defines the dimension of S[q] denoted dim(S[q]).
Observe that the k-dimensional space S[(?, . . . , ?)] contains all configurations. If tuple q
has no ? at any position, then S[q] is 0-dimensional and contains only (configuration) q.
The following lemma, proven by Bansal et al. [2], follows immediately from the definition of
configuration spaces.

I Lemma 5 (Lemma 3.1 of [2]). Let S[q] be a d-dimensional configuration space (for
some d ≥ 0) whose all configurations are phase-feasible. Fix a request r. If there exists
a configuration in S[q] that is not compatible with r, then there exist d (not necessarily disjoint)
subspaces S[q1], . . . , S[qd], each of dimension d − 1, such that

⋃
i S[qi] = S[q] ∩ comp(r).

Furthermore, for all i, the k-tuples qi and q differ exactly at one position.

Using the lemma above, we may describe a way for an online algorithm to keep track
of all phase-feasible configurations. To this end, it maintains a set A of (not necessarily
disjoint) configuration spaces, such that their union is exactly the set of all phase-feasible
configurations. We call spaces from A alive.

At the beginning, A = {S[(?, . . . , ?)]}. Assume now that a request r makes some
configurations from a d-dimensional space S[q] ∈ A phase-infeasible. (A request may affect
many spaces from A; we apply the described operations to each of them sequentially in
an arbitrary order.) In such case, S[q] stops to be alive, it is removed from A and till
the end of the phase it will be called dead. Next, we apply Lemma 5 to S[q], obtaining
d configuration spaces S[q1], . . . , S[qd], such that their union is S[q]∩comp(r), i.e., contains all
those configurations from S[q] that remain phase-feasible. We make all spaces S[q1], . . . , S[qd]
alive and we insert them into A. (Note that when d = 0, set S[q] is removed from A, but no
space is added to it.) This way we ensure that the union of spaces from A remains equal to
the set of all phase-feasible configurations. Note that when a phase ends, A becomes empty.
We emphasize that the evolution of set A within a phase depends only on the sequence of
requests and not on the particular behavior of an online algorithm.

ISAAC 2019

14:8 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

3.4 Factorial Trees: From Hydra Game to Generalized k-Server
Given the framework above, an online algorithm may keep track of the set of alive spaces A,
and at all times try to be in a configuration from some alive space. If this space becomes
dead, an algorithm changes its configuration to any configuration from some other alive
space from A.

The crux is to choose an appropriate next alive space. To this end, our algorithm for
the generalized k-server problem will internally run an instance of the Hydra game (a new
instance for each phase) on a special tree, and maintain a mapping from alive and dead
spaces to alive and dead nodes in the tree. Moreover, spaces that are created during the
algorithm runtime, as described in Section 3.3, have to be dynamically mapped to tree nodes
that were so far asleep.

In our reduction, we use a k-factorial tree. It has height k (the root is on level k and
leaves on level 0). Any node on level d has exactly d children, i.e., the subtree rooted at
a d-level node has d! leaves, hence the tree name. On the k-factorial tree, the total cost
of Herc is O(k · (1 + log k!)) = O(k2 · log k). We now show that this implies an improved
algorithm for the generalized k-server problem.

I Theorem 6. If there exists a (randomized) online algorithm H for the Hydra game on the
k-factorial tree of total (expected) cost R, then there exists a (randomized) (R+1)-competitive
online algorithm G for the generalized k-server problem in uniform metrics.

Proof. Let I be an input for the generalized k-server problem in uniform metric spaces.
G splits I into phases as described in Section 3.2 and, in each phase, it tracks the phase-
feasible nodes using set A of alive spaces as described in Section 3.3. For each phase, G runs
a new instance IH of the Hydra game on a k-factorial tree T , translates requests from I

to adversarial actions in IH , and reads the answers of H executed on IH . At all times,
G maintains a (bijective) mapping from alive (respectively, dead) d-dimensional configuration
spaces to alive (respectively, dead) nodes on the d-th level of the tree T . In particular, at the
beginning, the only alive space is the k-dimensional space S[(?, . . . , ?)], which corresponds to
the tree root (on level k). The configuration of G will always be an element of the space
corresponding to the tree node containing H. More precisely, within each phase, a request r
is processed in the following way by G.

Suppose that request r does not make any configuration phase-infeasible. In this case,
G services r from its current configuration and no changes are made to A. Also no
adversarial actions are executed in the Hydra game.
Suppose that request r makes some (but not all) configurations phase-infeasible. We
assume that this kills only one d-dimensional configuration space S[q]. (If r causes multiple
configuration spaces to become dead, G processes each such killing event separately, in
an arbitrary order.)
By the description given in Section 3.3, S[q] is then removed from A and d new (d− 1)-
dimensional spaces S[q1], . . . , S[qd] are added to A. G executes appropriate adversarial
actions in the Hydra game: a node v corresponding to S[q] is killed and its d children on
level d− 1 change state from asleep to alive. G modifies the mapping to track the change
of A: (new and now alive) spaces S[q1], . . . , S[qd] become mapped to (formerly asleep
and now alive) d children of v. Afterwards, G observes the answer of algorithm H on the
factorial tree and replays it. Suppose H moves from (now dead) node v to an alive node v′,
whose corresponding space is S[q′] ∈ A. In this case, G changes its configuration to the
closest configuration (requiring minimal number of server moves) from S[q′]. It remains to
relate its cost to the cost of H. By Lemma 5 (applied to spaces corresponding to all nodes

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:9

on the tree path from v to v′), the corresponding k-tuples q, q′ differ on at most dist(v, v′)
positions. Therefore, adjusting the configuration of G, so that it becomes an element
of S[q′], requires at most dist(v, v′) server moves, which is exactly the cost of H.
Finally, note that when G processes all killing events, it ends in a configuration of an alive
space, and hence it can service the request r from its new configuration.
Suppose that request r makes all remaining configurations phase-infeasible. In such case,
G moves an arbitrary server to service this request, which incurs a cost of 1. In this
case, the current phase ends, a new one begins, and G initializes a new instance of the
Hydra game.

Let f ≥ 1 be the number of all phases for input I (the last one may be not finished).
The cost of Opt in a single finished phase is at least 1. By the reasoning above, the
(expected) cost of G in a single phase is at most R+ 1. Therefore, E[G(I)] ≤ (R+ 1) · f ≤
(R+ 1) ·Opt(I) + (R+ 1), which completes the proof. J

Using our algorithm Herc for the Hydra game along with the reduction given by
Theorem 6 immediately implies the following result.

I Corollary 7. There exists a randomized O(k2 · log k)-competitive online algorithm for the
generalized k-server problem in uniform metrics.

4 Lower bound

Next, we show that that competitive ratio of any (even randomized) online algorithm for
the generalized k-server problem in uniform metrics is at least Ω(k), as long as each metric
space Mi contains at least two points. For each Mi, we choose two distinct points, the initial
position of the i-th server, which we denote 0 and any other point, which we denote 1. The
adversary is going to issue only requests satisfying ri ∈ {0, 1} for all i, hence without loss of
generality any algorithm will restrict its server’s position in each Mi to 0 and 1. (To see this,
assume without loss of generality that the algorithm is lazy, i.e., it is only allowed to move
when a request is not covered by any of its server, and is then allowed only to move a single
server to cover that request.) For this reason, from now on we assume that Mi = {0, 1} for
all i, ignoring superfluous points of the metrics.

The configuration of any algorithm can be then encoded using a binary word of length k.
It is convenient to view all these 2k words (configurations) as nodes of the k-dimensional
hypercube: two words are connected by a hypercube edge if they differ at exactly one
position. Observe that a cost of changing configuration c to c′, denoted dist(c, c′) is exactly
the distance between c and c′ in the hypercube, equal to the number of positions on which
the corresponding binary strings differ.

In our construction, we compare the cost of an online algorithm to the cost of an algorithm
provided by the adversary. Since Opt’s cost can be only lower than the latter, such approach
yields a lower bound on the performance of the online algorithm.

For each word w, there is exactly one word at distance k, which we call its antipode
and denote w̄. Clearly, w̄i = 1− wi for all i. Whenever we say that an adversary penalizes
configuration c, it issues a request at c̄. An algorithm that has servers at configuration c needs
to move at least one of them. On the other hand, any algorithm with servers at configuration
c′ 6= c need not move its servers; this property will be heavily used by an adversary’s
algorithm.

ISAAC 2019

14:10 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

4.1 A Warm-Up: Deterministic Algorithms
To illustrate our general framework, we start with a description of an Ω(2k/k) lower bound
that holds for any deterministic algorithm Det [2]. (A more refined analysis yields a better
lower bound of 2k − 1 [16].) The adversarial strategy consists of a sequence of independent
identical phases. Whenever Det is in some configuration, the adversary penalizes this
configuration. The phase ends when 2k − 1 different configurations have been penalized.
This means that Det was forced to move at least 2k − 1 times, at a total cost of at least
2k − 1. In the same phase, the adversary’s algorithm makes only a single move (of cost at
most k) at the very beginning of the phase: it moves to the only configuration that is not
going to be penalized in the current phase. This shows that the Det-to-Opt ratio in each
phase is at least (2k − 1)/k.

4.2 Extension to Randomized Algorithms
Adopting the idea above to a randomized algorithm Rand is not straightforward. Again,
we focus on a single phase and the adversary wants to leave (at least) one configuration
non-penalized in this phase. However, now the adversary only knows Rand’s probability
distribution µ over configurations and not its actual configuration. (At any time, for any
configuration c, µ(c) is the probability that Rand’s configuration is equal to c.) We focus
on a greedy adversarial strategy that always penalizes the configuration with maximum
probability. However, arguing that Rand incurs a significant cost is not as easy as for Det.

First, the support of µ can also include configurations that have been already penalized
by the adversary in the current phase. This is but a nuisance, easily overcome by penalizing
such configurations repeatedly if Rand keeps using them, until their probability becomes
negligible. Therefore, in this informal discussion, we assume that once a configuration c is
penalized in a given phase, µ(c) remains equal to zero.

Second, a straightforward analysis of the greedy adversarial strategy fails to give a non-
trivial lower bound. Assume that i ∈ {0, . . . , 2k − 2} configurations have already been
penalized in a given phase, and the support of µ contains the remaining 2k − i configurations.
The maximum probability assigned to one of these configurations is at least 1/(2k− i). When
such configuration is penalized, Rand needs to move at least one server with probability at
least 1/(2k − i). With such bounds, we would then prove that the algorithm’s expected cost
is at least

∑2k−2
i=0 1/(2k − i) = Ω(log 2k) = Ω(k). Since we bounded the adversary’s cost per

phase by k, this gives only a constant lower bound.
What we failed to account is that the actual distance traveled by Rand in a single step

is either larger than 1 or Rand would not be able to maintain a uniform distribution over
non-penalized configurations. However, actually exploiting this property seems quite complex,
and therefore we modify the adversarial strategy instead.

The crux of our actual construction is choosing a subset Q of the configurations, such that
Q is sufficiently large (we still have log(|Q|) = Ω(k)), but the minimum distance between any
two points of Q is Ω(k). Initially, the adversary forces the support of µ to be contained in Q.
Afterwards, the adversarial strategy is almost as described above, but reduced to set Q only.
This way, in each step the support of µ is a set S ⊆ Q, and the adversary forces Rand to
move with probability at least 1/|S| over a distance at least Ω(k), which is the extra Θ(k)
factor. We begin by proving the existence of such a set Q for sufficiently large k. The proof
is standard (see, e.g., Chapter 17 of [13]); we give it below for completeness.

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:11

I Lemma 8. For any k ≥ 16, there exists a set Q ⊆ {0, 1}k of binary words of length k,
satisfying the following two properties:
size property: |Q| ≥ 2k/2/k,
distance property: dist(v, w) ≥ k/16 for any v, w ∈ Q.

Proof. Let ` = bk/16c ≥ k/32. For any word q, we define its `-neighborhood B`(q) = {w :
dist(q, w) ≤ `}.

We construct set Q greedily. We maintain set Q and set Γ(Q) =
⋃

q∈Q B`(q). We start
with Q = ∅ (and thus with Γ(Q) = ∅). In each step, we extend Q with an arbitrary word
w ∈ {0, 1}k \ Γ(Q) and update Γ(Q) accordingly. We proceed until set Γ(Q) contains all
possible length-k words. Clearly, the resulting set Q satisfies the distance property.

It remains to show that |Q| ≥ 2k/2/k. For a word q, the size of B`(q) is

|B`(q)| =
bk/16c∑

i=0

(
k

i

)
< k ·

(
k

bk/16c

)
≤ k ·

(
k · e
bk/16c

)bk/16c

≤ k ·
(
k · e
k/32

)k/16
= k ·

(
(32 · e)1/8

)k/2
< k · 2k/2 .

That is, in a single step, Γ(Q) increases by at most k · 2k/2 elements. Therefore, the process
continues for at least 2k/(k ·2k/2) = 2k/2/k steps, and thus the size of Q is at least 2k/2/k. J

I Theorem 9. The competitive ratio of every (randomized) online algorithm solving the
generalized k-server problem in uniform metrics is at least Ω(k).

Proof. In the following we assume that k ≥ 16, otherwise the theorem follows trivially. We
fix any randomized online algorithm Rand. The lower bound strategy consists of a sequence
of independent phases. Requests of each phase can be (optimally) serviced with cost at
most k and we show that Rand’s expected cost for a single phase is Ω(k2), i.e., the ratio
between these costs is Ω(k). As the adversary may present an arbitrary number of phases to
the algorithm, this shows that the competitive ratio of Rand is Ω(k), i.e., by making the
cost of Rand arbitrarily high, the additive constant in the definition of the competitive ratio
(cf. Section 3.1) becomes negligible.

As in our informal introduction, µ(c) denotes the probability that Rand has its servers
in configuration c (at time specified in the context). We extend the notion µ to sets, i.e.,
µ(X) =

∑
c∈X µ(x) where X is a set of configurations. We denote the complement of X (to∏k

i=1 Mi) by XC . We use ε = 2−(2k+2) throughout the proof.
To make the description concise, we define an auxiliary routine Confine(X) for the

adversary (for some configuration set X). In this routine, the adversary repeatedly checks
whether there exists a configuration c 6∈ X, such that µ(x) > ε. In such case, it penalizes c;
if no such configuration exists, the routine terminates. We may assume that the procedure
always terminates after finite number of steps, as otherwise Rand’s competitive ratio would
be unbounded. (Rand pays at least ε in each step of the routine while an adversary’s
algorithm may move its servers to any configuration from set X, and from that time service
all requests of Confine(X) with no cost.)

The adversarial strategy for a single phase is as follows. First, it constructsQ1 as the config-
uration set fulfilling the properties of Lemma 8; letm denote its cardinality. The phase consists
then of m executions of Confine routine: Confine(Q1),Confine(Q2), . . . ,Confine(Qm).
For i ∈ {2, . . . ,m}, set Qi is defined in the following way. The adversary observes Rand’s
distribution µ right after routine Confine(Qi−1) terminates; at this point this distribution
is denoted µi−1. Then, the adversary picks configuration ci−1 to be the element of Qi−1 that
maximizes the probability µi−1, and sets Qi = Qi−1 \ {ci−1}.

ISAAC 2019

14:12 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

We begin by describing the way that the adversary services the requests. Observe that set
Qm contains a single configuration, henceforth denoted c∗. The configuration c∗ is contained
in all sets Q1, . . . , Qm, and thus c∗ is never penalized in the current phase. Hence, by moving
to c∗ at the beginning of the phase, which costs at most k, and remaining there till the phase
ends, the adversary’s algorithm services all phase requests at no further cost.

It remains to lower-bound the cost of Rand. Confine(Q1) may incur no cost; its sole
goal is to confine the support of µ to Q1. Now, we fix any i ∈ {2, . . . ,m} and estimate
the cost incurred by Confine(Qi). Recall that the probability distribution right before
Confine(Qi) starts (and right after Confine(Qi−1) terminates) is denoted µi−1 and the
distribution right after Confine(Qi) terminates is denoted µi.

During Confine(Qi) a probability mass µi−1(ci−1), is moved from ci−1 to nodes of
set Qi (recall that Qi] {ci−1} = Qi−1). Some negligible amounts (at most µi(QC

i)) of
this probability may however remain outside of Qi after Confine(Qi) terminates. That is,
Rand moves at least the probability mass of µi−1(ci−1)− µi(QC

i) from configuration ci−1
to configurations from Qi (i.e., along a distance of at least dist(ci−1, Qi)), Therefore, its
expected cost due to Confine(Qi) is at least (µi−1(ci−1)− µi(QC

i)) · dist(ci−1, Qi).
First, using the properties of Confine(Qi−1) and the definition of ci−1, we obtain

µi−1(ci−1) ≥ µi−1(Qi−1)
|Qi−1|

=
1− µi−1(QC

i−1)
|Qi−1|

≥
1− |QC

i−1| · ε
|Qi−1|

>
1− 2−(k+2)

|Qi−1|
. (3)

Second, using the properties of Confine(Qi) yields

µi(QC
i) ≤ |QC

i | · ε < 2−(k+2) = 2−2

2k
<

2−2

|Qi−1|
. (4)

Using (3) and (4), we bound the expected cost of Rand due to routine Confine(Qi) as

E[Rand(Confine(Qi))] ≥
(
µi−1(ci−1)− µi(QC

i)
)
· dist(ci−1, Qi)

≥
(

1− 2−(k+2)

|Qi|
− 2−2

|Qi|

)
· k16 ≥

1
2 · |Qi|

· k16
= k/(32 · (m− i+ 1)) (5)

The second inequality above follows as all configurations from {ci−1}] Qi are distinct
elements of Q1, and hence their mutual distance is at least k/16 by the distance property
of Q1 (cf. Lemma 8). By summing (5) over i ∈ {2, . . . ,m}, we obtain that the total cost of
Rand in a single phase is E[Rand] ≥

∑m
i=2 E[Rand(Confine(Qi))] ≥ k

32 ·
∑m

i=2
1

m−i+1 =
Ω(k · logm) = Ω(k2). The last equality holds as m ≥ 2k/2/k by the size property of Q1.
(cf. Lemma 8). J

5 Final remarks

In this paper, we presented an abstract Hydra game whose solution we applied to create
an algorithm for the generalized k-server problem. Any improvement of our Herc strategy for
the Hydra game would yield an improvement for the generalized k-server problem. However,
we may show that on a wide class of trees (that includes factorial trees used in our reduction),
Herc is optimal up to a constant factor. Thus, further improving our upper bound of
O(k2 log k) for the generalized k-server problem will require another approach.

A lower bound for the cost of any randomized strategy for the Hydra game is essentially
the same as our single-phase construction from Section 4.2 for the generalized k-server
problem. That is, the adversary fixes a subset Q of tree leaves, makes only nodes of Q alive

M. Bienkowski, Ł. Jeż, and P. Schmidt 14:13

(this forces the algorithm to be inside set Q), and then iteratively kills nodes of Q where the
algorithm is most likely to be. As in the proof from Section 4.2, such adversarial strategy
incurs the cost of Ω(mindist(Q) · log |Q|), where mindist(Q) = minu6=v∈Q dist(u, v).

The construction of appropriate Q for a tree T of depth k = hT (be either the k-factorial
tree or the complete k-ary tree) is as follows. Let Z be the set of all nodes of T at level bk/2c;
for such trees, log |Z| = Ω(logLT). Let Q consist of |Z| leaves of the tree, one per node
of Z chosen arbitrarily from its subtree. Then, mindist(Q) = Ω(hT) and log |Q| = Ω(logLT),
and thus the resulting lower bound Ω(hT · logLT) on the cost asymptotically matches the
performance of Herc from Theorem 4.

References
1 Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-Server Bounds via

Combinatorial Dichotomies. In Proc. 58th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 493–504. IEEE Computer Society, 2017.

2 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive Al-
gorithms for Generalized k-Server in Uniform Metrics. In Proc. 29th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 992–1001, 2018.

3 Yair Bartal, Béla Bollobás, and Manor Mendel. Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci., 72(5):890–921, 2006.

4 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-type phenom-
ena. In Proc. 35th ACM Symp. on Theory of Computing (STOC), pages 463–472, 2003.

5 Alan Borodin, Nati Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. Journal of the ACM, 39(4):745–763, 1992.

6 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Proc. 50th ACM Symp. on Theory of
Computing (STOC), pages 3–16. ACM, 2018.

7 Ashish Chiplunkar and Sundar Vishwanathan. On Randomized Memoryless Algorithms for
the Weighted K-Server Problem. In Proc. 54th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 11–19, 2013.

8 Marek Chrobak. SIGACT news online algorithms col. 1. SIGACT News, 34(4):68–77, 2003.
9 Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan. New

Results on Server Problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.
10 Marek Chrobak and Lawrence L. Larmore. An Optimal On-Line Algorithm for k-Servers on

Trees. SIAM Journal on Computing, 20(1):144–148, 1991.
11 Marek Chrobak and Jirí Sgall. The weighted 2-server problem. Theoretical Computer Science,

324(2-3):289–312, 2004.
12 Amos Fiat and Moty Ricklin. Competitive Algorithms for the Weighted Server Problem.

Theoretical Computer Science, 130(1):85–99, 1994.
13 Stasys Jukna. Extremal Combinatorics. Springer, 2011.
14 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
15 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. Journal of the

ACM, 42(5):971–983, 1995.
16 Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server variants.

Theoretical Computer Science, 324(2-3):347–359, 2004.
17 James R. Lee. Fusible HSTs and the Randomized k-Server Conjecture. In Proc. 59th IEEE

Symp. on Foundations of Computer Science (FOCS), pages 438–449, 2018.
18 Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for server

problems. Journal of the ACM, 11(2):208–230, 1990.
19 René Sitters. The Generalized Work Function Algorithm Is Competitive for the Generalized

2-Server Problem. SIAM Journal on Computing, 43(1):96–125, 2014.

ISAAC 2019

14:14 Slaying Hydrae: Improved Bounds for Generalized k-Server in Uniform Metrics

20 René A. Sitters and Leen Stougie. The generalized two-server problem. Journal of the ACM,
53(3):437–458, 2006.

21 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

A Probability Distribution and Algorithms

When we described our algorithm Herc for the Hydra game, we assumed that its current
position in the tree is a random node with probability distribution given by η. In a single step,
Herc decreases probability at some node u from η(u) to zero and increases the probabilities
of some other nodes w1, . . . , w` by a total amount of η(u). Such change can be split into
` elementary changes, each decreasing the probability at node u by pi and increasing it at
node wi by the same amount. Each elementary change can be executed and analyzed as
shown in the following lemma.

I Lemma 10. Let η be a probability distribution describing the position of Alg in the tree.
Fix two tree nodes, u and w. Suppose η′ is a probability distribution obtained from η by
decreasing η(u) by p and increasing η(w) by p. Then, Alg can change its random position,
so that it will be described by η′, and the expected cost of such change is p · dist(u,w).

Proof. We define Alg’s action as follows: if Alg is at node u, then with probability p/η(u)
it moves to node w. If Alg is at some other node it does not change its position.

We observe that the new distribution of Alg is exactly η′. Indeed, the probability of
being at node u decreases by η(u) · p/η(u) = p, while the probability of being at node w
increases by the same amount. The probabilities for all nodes different than u or w remain
unchanged.

Furthermore, the probability that Alg moves is η(u) · (p/η(u)) = p and the traveled
distance is dist(u,w). The expected cost of the move is then p · dist(u,w), as desired. J

	Introduction
	Previous Work
	Our Results and Paper Organization

	Hydra Game
	Randomized Algorithm Definition
	Analysis

	Improved Algorithm for Generalized k-Server Problem
	Preliminaries
	Phase-Based Approach
	Configuration Spaces
	Factorial Trees: From Hydra Game to Generalized k-Server

	Lower bound
	A Warm-Up: Deterministic Algorithms
	Extension to Randomized Algorithms

	Final remarks
	Probability Distribution and Algorithms

