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Abstract
Estimating the number of triangles in a graph is one of the most fundamental problems in sublinear
algorithms. In this work, we provide an approximate triangle counting algorithm using only
polylogarithmic queries when the number of triangles on any edge in the graph is polylogarithmically
bounded. Our query oracle Tripartite Independent Set (TIS) takes three disjoint sets of vertices
A, B and C as input, and answers whether there exists a triangle having one endpoint in each of
these three sets. Our query model generally belongs to the class of group queries (Ron and Tsur,
ACM ToCT, 2016; Dell and Lapinskas, STOC 2018) and in particular is inspired by the Bipartite
Independent Set (BIS) query oracle of Beame et al. (ITCS 2018). We extend the algorithmic
framework of Beame et al., with TIS replacing BIS, for triangle counting using ideas from color
coding due to Alon et al. (J. ACM, 1995) and a concentration inequality for sums of random
variables with bounded dependency (Janson, Rand. Struct. Alg., 2004).
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1 Introduction

Counting the number of triangles in a graph is a fundamental algorithmic problem in the
RAM model [4, 10, 22], streaming [1, 2, 5, 11, 13, 24, 25, 26, 27, 28, 33] and the query
model [17, 21]. In this work, we provide the first approximate triangle counting algorithm
using only polylogarithmic queries to a query oracle named Tripartite Independent Set (TIS).

Notations, the query model, the problem and the result
We denote the set {1, . . . , n} by [n]. Let V (G), E(G) and T (G) denote the set of vertices,
edges and triangles in the input graph G, respectively. Let t(G) = |T (G)|. The statement
A,B,C are disjoint, means A,B,C are pairwise disjoint. For three non-empty disjoint sets
A, B, C ⊆ V (G), G(A,B,C), termed as a tripartite subgraph of G, denotes the induced
subgraph of A∪B∪C in G minus the edges having both endpoints in A or B or C. t(A,B,C)
denotes the number of triangles in G(A,B,C). We use the triplet (a, b, c) to denote the
triangle having a, b, c as its vertices. Let ∆u denote the number of triangles having u as
one of its vertices. Let ∆(u,v) be the number of triangles having (u, v) as one of its edges
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19:2 Triangle Estimation Using Tripartite Independent Set Queries

and ∆E = max(u,v)∈E(G) ∆(u,v). For a set U , “U is COLORED with [n]”, means that each
member of U is assigned a color out of [n] colors independently and uniformly at random. Let
E[X] and V[X] denote the expectation and variance of a random variable X. For an event E ,
Ec denotes the complement of E . The statement “a is an 1± ε multiplicative approximation
of b” means |b− a| ≤ ε · b. Next, we describe the query oracle.

Tripartite independent set oracle (TIS). Given three non-empty disjoint subsets V1, V2, V3 ⊆
V (G) of a graph G, TIS query oracle answers “YES” if and only if t(V1, V2, V3) 6= 0.

Notice that the query oracle looks at only those triangles that have vertices in all of these
sets V1, V2, V3. The Triangle-Estimation problem is to report an 1 ± ε multiplicative
approximation of t(G) where the input is V (G), TIS oracle for graph G and ε ∈ (0, 1).

I Theorem 1. Let G be a graph with ∆E ≤ d, |V (G)| = n ≥ 64. For any ε > 0, Triangle-
Estimation can be solved using O

(
ε−12d12 log25 n

)
TIS queries with probability 1−O(n−2).

Note that the query complexity stated in Theorem 1 is poly(logn, 1
ε ), even if d is O(logc n),

where c is a positive constant. We reiterate that the only bound we require is on the number
of triangles on an edge; neither do we require any bound on the maximum degree of the
graph, nor do we require any bound on the number of triangles incident on a vertex.

Query models and TIS

Query models for graphs are essentially of two types:

Local Queries: This query model was initiated by Feige [19] and Goldreich and Ron [20] and
used even recently by [17, 18]. The queries on the graphs are (i) degree query: the oracle
reports the degree of a vertex; (ii) neighbor query: the oracle reports the ith neighbor of
v, if it exists; and (iii) edge existence query: the oracle reports whether there exists an
edge between a given pair of vertices.

Group Queries or Subset queries and Subset samples: These queries were implicitly initi-
ated in the works of Stockmeyer [31, 32] and formalized by Ron and Tsur [29]. Group
queries can be viewed as a generalization of membership queries in sets. The essential
idea of the group queries is to estimate the size of an unknown set S ⊆ U by using a
YES/NO answer from the oracle to the existence of an intersection between sets S and
T ⊆ U ; and give a uniformly selected item of S ∩ T , if S ∩ T 6= ∅ in the subset sample
query. Subset sample queries are at least as powerful as group queries. The cut query by
Rubinstein et al. [30], though motivated by submodular function minimization problem,
can also be seen in the light of group queries – we seek the number of edges that intersect
both the vertex sets that form a cut. Choi and Kim [12] used a variation of group queries
for graph reconstruction. Dell and Lapinskas [14] essentially used this class of queries for
estimating the number of edges in a bipartite graph. Bipartite independent set (BIS)
queries for a graph, initiated by Beame et al. [6], can also be seen in the light of group
queries. It provides a YES/NO answer to the existence of an edge in E(G) that intersects
with both V1, V2 ⊂ V (G) of G, where V1 and V2 are disjoint. A subset sample version of
BIS oracle was used in [9].

In TIS, we seek a YES/NO answer about the existence of an intersection between the set
of triangles, that we want to estimate, and three disjoint sets of vertices. Thus TIS belongs
to the class of group queries, as does BIS. A bone of contention for any newly introduced
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query oracle is its worth1. Beame et al. [6] had given a subjective justification in favor of
BIS to establish it as a query oracle. It is easy to verify that TIS, being in the same class of
group queries, have the interesting connections to group testing and computational geometry
as BIS. We provide justifications in favor of considering ∆E ≤ d in Appendix A. Intuitively,
TIS is to triangle counting what BIS is to edge estimation.

Prior works
Eden et al. [17] used Õ

(
|V (G)|
t(G)1/3 + min

{
|E(G)|3/2

t(G) , |E(G)|
})

2 local queries to estimate the
number of triangles. Their algorithmic results aided by an almost matching lower bound
have almost closed this line of study. Matching upper and lower bounds on k-clique counting
in G using local query model have also been reported [18]. A precursor to triangle estim-
ation in graphs is edge estimation. The number of edges in a graph can be estimated by
using Õ (n/

√
m) many degree and neighbor queries, and Ω (n/

√
m) queries are necessary to

estimate the number of edges even if we allow all the three local queries [20]. This result
would almost have closed the edge estimation problem but for having a relook at the problem
with stronger query models and hoping for polylogarithmic number of queries. Beame et
al. [6] precisely did that by estimating the number of edges in a graph using O

(
ε−4 log14 n

)
bipartite independent set (BIS) queries. Motivated by this result, we explore whether triangle
estimation can be solved using only polylogarithmic queries to TIS.

Organization of the paper
We give a broad overview of the algorithm in Section 2. Sections 3, 4 and 5 give the details of
sparsification, exact estimation and coarse estimation of the number of triangles, respectively.
The final algorithm is given in Section 6. Appendix A provides justifications in favor of TIS.
Appendix B has the probabilistic results used in this paper.

I Remark 1. Note that the Triangle-Estimation can also be thought of as Hyperedge
Estimation problem in a 3-uniform hypergrah. Very recently, Dell et al. [15] and Bhat-
tacharya et al. [8], independently, showed that the bound on ∆E is not necessary to solve
Triangle-Estimation by using polylogarithmic many TIS queries. Also, both Dell et
al. [15] and Bhattacharya et al. [8], independently, generalized our result to c-uniform
hypergraphs, where c ∈ N is a constant.

2 Overview of the algorithm

Our algorithmic framework is inspired by [6] but the detailed analysis is markedly different
using color coding due to Alon et al. [3] and a relatively new concentration inequality, due to
Janson [23], for handling sums of random variables with bounded dependency. Apart from
Lemmas 5 and 13, all other proofs require different ideas.

We feel that the analysis in [6] does not go through in our case because of a subtle
difference between counting the number of triangles and the number of edges in a graph. An
edge is an explicit structure, whereas, a triangle is an implicit structure – triangles (a, b, x),
(b, c, y) and (a, c, z) in G imply the existence of the triangle (a, b, c) in G.

1 See http://www.wisdom.weizmann.ac.il/~oded/MC/237.html for a comment on BIS.
2 Õ(·) hides a polynomial factor of logn and 1

ε , where ε ∈ (0, 1) is such that (1− ε)t ≤ t̂ ≤ (1 + ε)t; t̂ and
t denote the estimated and actual number of triangles in G, respectively.
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Yes

No

For each tripartite subgraph G(A,B,C)
check whether t(A,B,C) ≤ threshold ;

Compute t(A,B,C) if it is less than
the threshold and remove G(A,B,C).

Is there any tripartite
subgraph left?

No

Yes

Sparsify G such that the sparsified graph G′ is a
union of vertex disjoint tripartite subgraphs and a
proper scaling of t(G′) approximates t(G).

Compute t(A,B,C)

Is t(G) < threshold?

Terminate.

Start.

Compute t(G) exactly.Compute t(G) exactly.

subgraphs present large?
Is the number of tripartite

No

Yes

Sample a bounded number of
subgraphs such that a proper
weighted scaling of the number

is approximately same as that of
the number of triangles in the

of triangles in the subgraphs

original set of subgraphs.

Sample

For each subgraph G(A,B,C), use a coarse estimator

for t(A,B,C) that is correct upto O(log3 n) factor.

coarse estimator

For each subgraph G(A,B,C),

in H, formed formed by sparsification.
Replace G(A,B,C) by the tripartite subgraphs,

such that the sparsified graph H is a union of
vertex disjoint tripartite subgraphs and a proper
scaling of t(H) is t(A,B,C), approximately.

Sparsify G(A,B,C)

Sparsify G

Lemma 3

Lemma 3

Lemma 15

Lemma 7

Lemma 4 and 5

Lemma 2

Lemma 6

Figure 1 Flow chart of the algorithm. The highlighted texts indicate the basic building blocks of
the algorithm. We also indicate the corresponding lemmas that support the building blocks.

In Figure 1, we give a flowchart of the algorithm and show the corresponding lemmas
that support the steps of the algorithm. The main idea of our algorithm is as follows. We
can figure out for a given G, if the number of triangles t(G) is greater than or equal to a
threshold τ (Lemma 3). If t(G) < τ , i.e., G is sparse in triangles, we compute t(G) exactly
(Lemma 3). Otherwise, we sparsify G to get a disjoint union of tripartite subgraphs of
G that maintain t(G) up to a scaling factor (Lemma 2). For each tripartite subgraph, if
the subgraph is sparse (decided by Lemma 4), we count the number of triangles exactly
(Lemma 5). Otherwise, we again sparsify (Lemma 6). This repeated process of sparsification
may create a huge number of tripartite subgraphs. Counting the number of triangles in them
is managed by doing a coarse estimation (Lemma 7) and taking a sample of the subgraph
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that maintains the number of triangles approximately. Each time we sparsify, we ensure that
the sum of the number of triangles in the subgraphs generated by sparsification is a constant
fraction of the number of triangles in the graph before sparsification, making the number of
iterations O(logn).

We sparsify G by considering the partition obtained when V (G) is COLORED with
[3k]. This sparsification is done such that: (i) the sparsified graph is a union of a set of
vertex disjoint tripartite subgraphs and (ii) a proper scaling of the number of triangles
in the sparsified graph is a good estimate of t(G) with high probability3. The proof of
the sparsification result stated next uses the method of averaged bounded differences and
Chernoff-Hoeffding type inequality in bounded dependency setting by Janson [23]. The
detailed proof is in Section 3. Recall that ∆E is the maximum number of triangles on a
particular edge.

I Lemma 2 (General Sparsification). Let k, d ∈ N. There exists a constant κ1 such that for
any graph G with ∆E ≤ d, if V1, . . . , V3k is a random partition of V (G) obtained by V (G)
being COLORED with [3k], then

P

(∣∣∣∣∣9k2

2

k∑
i=1

t(Vi, Vk+i, V2k+i)− t(G)

∣∣∣∣∣ > κ1dk
2
√
t(G) logn

)
≤ 2

n4 .

We apply the sparsification corresponding to Lemma 2 only when t(G) is above a threshold4
to ensure that the relative error is bounded. We can decide whether t(G) is less than the
threshold and if it is so, we compute the exact value of t(G), using the following lemma,
whose proof is inspired by color coding ideas [9] and given in Section 4.

I Lemma 3 (Exact Counting). There exists an algorithm that for any graph G and a threshold
parameter τ ∈ N, determines whether t(G) < τ using O(τ6 logn) TIS queries with probability
1− n−10. Moreover, the algorithm finds the exact value of t(G) if t(G) < τ .

Assume that t(G) is large 5 and G has undergone sparsification. We initialize a data structure
with a set of vertex disjoint tripartite graphs that are obtained after the sparsification step.
For each tripartite graph G(A,B,C) in the data structure, we check whether t(A,B,C) is
less than a threshold using the algorithm corresponding to Lemma 4. If it is less than a
threshold, we compute the exact value of t(A,B,C) using Lemma 5 and remove G(A,B,C)
from the data structure. The proofs of Lemma 4 and 5 are given in the full version [7].

I Lemma 4 (Threshold for Tripartite Graph). There exists a deterministic algorithm that
given any disjoint subsets A,B,C ⊂ V (G) of any graph G and a threshold parameter τ ∈ N,
can decide whether t(A,B,C) ≤ τ using O(τ logn) TIS queries.

I Lemma 5 (Exact Counting in Tripartite Graphs). There exists a deterministic algorithm
that given any disjoint subsets A,B,C ⊂ V (G) of any graph G, can determine the exact
value of t(A,B,C) using O(t(A,B,C) logn) TIS queries.

Now we are left with some tripartite graphs such that the number of triangles in each graph
is more than a threshold. If the number of such graphs is not large, then we sparsify each
tripartite graph G(A,B,C) in a fashion almost similar to the earlier sparsification. This

3 High probability means that the probability of success is at least 1− 1
nc for some constant c.

4 The threshold is a fixed polynomial in d, logn and 1
ε .5 Large refers to a fixed polynomial in d, logn and 1

ε

ISAAC 2019
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sparsification result formally stated in the following Lemma, has a proof similar to Lemma 2.
We replace G(A,B,C) by a constant (say, k) 6 many tripartite subgraphs formed after
sparsification.

I Lemma 6 (Sparsification for Tripartite Graphs). Let k, d ∈ N. There exists a constant κ2
such that

P

(∣∣∣∣∣k2
k∑
i=1

t(Ai, Bi, Ci)− t(A,B,C)

∣∣∣∣∣ > κ2dk
2
√
t(G) logn

)
≤ 1
n8

where A, B and C are disjoint subsets of V (G) for any graph G with ∆E ≤ d, and A1, . . . , Ak,
B1, . . . , Bk and C1, . . . , Ck are the partitions of A,B,C formed uniformly at random, respect-
ively.

If we have a large number of vertex disjoint tripartite subgraphs of G and each subgraph
contains a large number of triangles, then we coarsely estimate the number of triangles in
each subgraph which is correct up to O(log3 n) factor by using the algorithm corresponding
to the following Lemma, whose proof is in Section 5. Our Coarse-Estimate algorithm is
similar in structure to the coarse estimation algorithm for edge estimation, but the analysis
involves sophisticated calculations.

I Lemma 7 (Coarse Estimation). There exists an algorithm that given disjoint subsets
A,B,C ⊂ V (G) of any graph G, returns an estimate t̂ satisfying

t(A,B,C)
64 logn ≤ t̂ ≤ 64t(A,B,C) log3 n

with probability 1− n−9. Moreover, the query complexity of the algorithm is O(log4 n).

After estimating the number of triangles in each subgraph coarsely, we generate a bounded
number of samples of the set of subgraphs using a sampling technique given by Beame et
al. [6]. The sampling maintains the triangle count approximately. The Lemma corresponding
to sampling is formally stated in Lemma 13 in Section 6. After getting the sample, we apply
the sparsification algorithm corresponding to Lemma 6 for each subgraph in the sample.

Now again, for each tripartite graph G(A,B,C), we check whether t(A,B,C) is less than
a threshold using the algorithm corresponding to Lemma 4. If yes, then we can compute the
exact value of t(A,B,C) using Lemma 5 and remove G(A,B,C) from the data structure.
Otherwise, we iterate on all the required steps discussed above as shown in Figure 1. Observe
that the query complexity of each iteration is polylogarithmic 7. Now, note that the number
of triangles reduces by a constant factor after each sparsification step. So, the number
of iterations is bounded by O(logn). Hence, the query complexity of our algorithm is
polylogarithmic. This completes the high level description of our algorithm.

6 In our algorithm, k is a constant. However, Lemma 6 holds for any k ∈ N.
7 Polylogarithmic refers to a polynomial in d, logn and 1

ε
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3 Sparsification Lemma

In this Section, we prove Lemma 2. The proof of Lemma 6 is similar.

Proof of Lemma 2. V (G) is COLORED with [3k]. Let V1, . . . , V3k be the resulting partition
of V (G). Let Zi be the random variable that denotes the color assigned to the ith vertex. For
i ∈ [3k], π(i) is a set of three colors defined as follows: π(i) = {i, (1 + (i+k−1) mod 3k), (1 +
(i+ 2k − 1) mod 3k)}.

I Definition 8. A triangle (a, b, c) is said to be properly colored if there exists a bijection in
terms of coloring from {a, b, c} to π(i).

Let f(Z1, . . . , Zn) =
∑k
i=1 t(Vi, Vk+i, V2k+i). Note that f is the number of triangles that are

properly colored. The probability that a triangle is properly colored is 2
9k2 . So, E[f ] = 2t(G)

9k2 .
Let us focus on the instance when vertices 1, . . . , t − 1 are already colored and we are

going to color vertex t. Let S` (Sr) be the set of triangles in G having t as one of the vertices
and other two vertices are from [t− 1] ([n] \ [t]). S`r be the set of triangles in G such that t
is a vertex and the second and third vertices are from [t− 1] and [n] \ [t], respectively.

Given that the vertex t is colored with color c ∈ [3k], let N c
` , N

c
r , N

c
`r be the random

variables that denote the number of triangles in S`, Sr and S`r that are properly colored,
respectively. Now, we can deduce the following about Etf , the difference in the conditional
expectation of the number of triangles that are properly colored whose tth vertex is (possibly)
differently colored, by considering the vertices in S`, Sr and S`r separately.

Etf = |E [f | Z1, . . . , Zt−1, Zt = at]− E [f | Z1, . . . , Zt−1, Zt = a′t]|

=
∣∣∣Nat

` −N
a′t
` + E

[
Nat
r −N

a′t
r

]
+ E

[
Nat
`r −N

a′t
`r

]∣∣∣
≤

∣∣∣Nat
` −N

a′t
`

∣∣∣+ E
[∣∣∣Nat

r −N
a′t
r

∣∣∣]+ E
[∣∣∣Nat

`r −N
a′t
`r

∣∣∣]
Now, consider the following claim, whose proof can be found in the full version [7].

B Claim 9. (a) P(| Nat
` −N

a′t
` |< 8

√
d∆t logn) ≥ 1− 4n−8;

(b) E[| Nat
r −N

a′t
r |] ≤

√
d∆t/k;

(c) E[| Nat
`r −N

a′t
`r |] < 6d

√
∆t logn. 8

Let ct = 15d
√

∆t logn. From the above claim, we have

Etf < 8
√
d∆t logn+

√
d∆t

k
+ 6d

√
∆t logn ≤ 15d

√
∆t logn = ct

with probability at least 1 − 4
n8 . Let B be the event that there exists t ∈ [n] such that

Etf > ct. By the union bound over all t ∈ [n], P(B) ≤ 4
n7 .

Using the method of averaged bounded difference [16] (See Lemma 15 in Appendix B),
we have

P (|f − E[f ]| > δ + t(G)P(B)) ≤ e
−δ2/

n∑
t=1

c2
t

+ P(B).

8 Note that ∆t is the number of triangles having t as one of its vertices and we are not assuming any
bound on ∆t. We assume ∆E , that is number of triangles on any edge, is bounded.

ISAAC 2019



19:8 Triangle Estimation Using Tripartite Independent Set Queries

We set δ = 60d
√
t(G) logn. Observe that

n∑
t=1

c2t = 225d2 logn
n∑
t=1

∆t = 675d2t(G) logn.

Hence,

P
(∣∣∣∣f − 2t(G)

9k2

∣∣∣∣ > 60d
√
t(G) logn+ t(G)P(B)

)
≤ 1
n4 + 1

n7 ,

that is,

P
(∣∣∣∣9k2

2 f − t(G)
∣∣∣∣ > 270dk2

√
t(G) logn+ 9k2

2 · t(G)
n7

)
≤ 1
n4 + 1

n7 .

Since, 9k2

2 ·
t(G)
n7 < dk2

√
t(G) logn, we get

P
(∣∣∣∣9k2

2 f − t(G)
∣∣∣∣ > 271dk2

√
t(G) logn

)
≤ 2
n4 . J

4 Proof of the Lemmas corresponding to exact estimation

In this Section, we prove Lemma 3. The proofs of 4 and 5 can be found in the full version [7].

Proof of Lemma 3. We color V (G) with [100τ2] colors. Let h : V (G) → [100τ2] be the
coloring function and Vi = {v ∈ V (G) : h(v) = i}, i.e., the vertices with color i, where
i ∈ [100τ2]. Note that V1, . . . , V100τ2 forms a partition of V (G). We make TIS queries
with input Vi, Vj , Vk for each 1 ≤ i < j < k ≤ 100τ2. Observe that we make O(τ6) TIS
queries. We construct a 3-uniform hypergraph H, where U(H) = {V1, . . . , V100τ2} 9 and
(Vi, Vj , Vk) ∈ F(H) if and only if TIS oracle answers yes with Vi, Vj , Vk given as input.
We repeat the above procedure γ times, where γ = 50 logn. Let H1, . . . ,Hγ be the set of
corresponding hypergraphs and hi be the coloring function to form the hypergraph Hi, where
i ∈ [γ]. Then we compute A = max{|F(H1)| , . . . , |F(Hγ)|}. If A ≥ τ , we report t(G) ≥ τ .
Otherwise, we report A as t(G). Note that the total number of TIS queries is O(τ6 logn).
Now, we analyze the cases t(G) ≥ τ and t(G) < τ separately.

(i) t(G) ≥ τ : Consider a fixed set T of τ triangles. Let Tv be the set of vertices that is
present in some triangle in T . Observe that |Tv| ≤ 3τ . Let Ei be the event that the
vertices in Tv are uniquely colored by the function hi, i.e., Ei : hi(u) = hi(v) if and only
if u = v, where u, v ∈ Tv. First we prove that P(E) ≥ 9

10 by computing P(Eci ).

P (Eci ) ≤
∑

u,v∈Tv

P(hi(u) = hi(v)) ≤
∑

u,v∈Tv

1
100τ2 ≤

|Tv|2

100τ2 <
1
10 .

Let Propi be the property that for each triangle z ∈ T , there is a corresponding hyperedge
in F(Hi), where i ∈ [γ]. Specifically, for each triangle (a1, a2, a3) ∈ T there exists a
hyperedge (a′1, a′2, a′3) ∈ F(Hi) such that hi(aj) = hi(a′j) for each j ∈ [3]. Note that,
if Propi holds, then |F(Hi)| ≥ |T | ≥ τ . By the definition of TIS oracle, Propi holds
when the event Ei occurs, i.e., Propi holds with probability at least 9

10 . This implies,
with probability 9

10 , |F(Hi)| ≥ τ . Recall that A = max{|F(H1)| , . . . , |F(Hγ)|} and
γ = 50 logn. So, P(A < τ) =

(
1− 9

10
)50 logn ≤ 1

n10 . Hence, if t(G) ≥ τ , our algorithm
detects it with probability at least 1− 1

n10 .

9 U(H) and F(H) denote the set of vertices and hyperedges in a hypergraph H, respectively.
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(ii) t(G) < τ : Let T be the set of all t(G) triangles in G and Tv be the set of vertices that
is present in some triangle in T . Observe that |Tv| ≤ 3 · t(G) < 3τ . Let Ei be the event
that the vertices in Tv are uniquely colored by the function hi, i.e., Ei : hi(u) = hi(v) if
and only if u = v, where u, v ∈ Tv. First we prove that P(Ei) ≥ 9

10 by computing P(Eci ).

P (Eci ) ≤
∑

u,v∈Tv

P(hi(u) = hi(v)) ≤
∑

u,v∈Tv

1
100τ2 ≤

|Tv|2

100τ2 <
1
10 .

Let Propi be the property that for each triangle z ∈ T , there is a corresponding
hyperedge in F(Hi), where i ∈ [γ]. Specifically, for each triangle (a1, a2, a3) ∈ T there
exists a hyperedge (a′1, a′2, a′3) ∈ F(Hi) such that hi(aj) = hi(a′j) for each j ∈ [3]. Note
that, if Propi holds, then |F(Hi)| = t(G). By the definition of TIS oracle, Propi
holds when the event Ei occurs, i.e., Propi holds with probability at least 9

10 . This
implies, with probability 9

10 , |F(Hi)| = t(G). Recall that A = max{|F(H1), . . . ,F(Hγ)|}
and γ = 50 logn. By the construction of Hi, |F(Hi)| ≤ t(G). So, A ≤ t(G) and
P(A 6= t(G)) = P(A < t(G)) ≤

(
1− 9

10
)50 logn ≤ 1

n10 . Hence, if t(G) < τ , our algorithm
outputs the exact value of t(G) with probability at least 1− 1

n10 . J

5 Proof of the Lemma corresponding to coarse estimation

We now prove Lemma 7. Algorithm 2 corresponds to Lemma 7. Algorithm 1 is a subroutine
in Algorithm 2. Algorithm 1 determines whether a given estimate t̂ is correct upto a O(log3 n)
factor. Lemmas 10 and 11 are intermediate results needed to prove Lemma 7.

Algorithm 1 Verify-Estimate (A,B,C, t̂).

Input: Three pairwise disjoint set A,B,C ⊆ V (G) and t̂.
Output: If t̂ is a good estimate, then Accept. Otherwise, Reject.

1 begin
2 for (i = 2 logn to 0) do
3 for (j = logn to 0) do
4 Find Aij ⊆ A, Bij ⊆ B, Cij ⊆ C by sampling each element of A, B and C,

respectively with probability min{ 2i
t̂
, 1}, min{ 2j

2i logn, 1}, 1
2j ,

respectively.
5 if (t(Aij , Bij , Cij) 6= 0) then
6 Accept
7 Reject

I Lemma 10. If t̂ ≥ 64t(A,B,C) log3 n, P(Verify-Estimate (A,B,C, t̂) accepts) ≤ 1
20 .

Proof. Let T (A,B,C) denote the set of triangles having vertices a ∈ A, b ∈ B and c ∈ C,
where A,B and C are disjoint subsets of V (G). For (a, b, c) ∈ T (A,B,C) such that a ∈ A, b ∈
B, c ∈ C, let Xij

(a,b,c) denote the indicator random variable such that Xij
(a,b,c) = 1 if and only if

(a, b, c) ∈ T (Aij , Bij , Cij) and Xij =
∑

(a,b,c)∈T (A,B,C)
Xij

(a,b,c). Note that t(Aij , Bij , Cij) = Xij .

(a, b, c) is present in T (Aij , Bij , Cij) if a ∈ Aij , b ∈ Bij and c ∈ Cij . So,

P
(
Xij

(a,b,c) = 1
)
≤ 2i

t̂
· 2j

2i logn · 1
2j = logn

t̂
and E [Xij ] ≤

t(A,B,C)
t̂

logn.
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As Xij ≥ 0,

P (Xij 6= 0) = P(Xij ≥ 1) ≤ E [Xij ] ≤
t(A,B,C)

t̂
logn.

Now using the fact that t̂ ≥ 64t(A,B,C) log3 n, we have P (Xij 6= 0) ≤ 1
64 log2 n

. Observe that
Verify-Estimate accepts if and only if there exists i, j ∈ {0, . . . , logn} such that Xij 6= 0.
Using the union bound, we get

P(Verify-Estimate accepts) ≤
∑

0≤i≤2 logn

∑
0≤j≤logn

P(Xij 6= 0)

≤ (2 logn+ 1)(logn+ 1)
32 log2 n

≤ 1
20 . J

I Lemma 11. If t̂ ≤ t(A,B,C)
32 logn , P(Verify-Estimate (A,B,C, t̂) accepts) ≥ 1

5 .

Proof. For p ∈ {0, . . . , 2 logn}, let Ap ⊆ A be the set of vertices such that for each a ∈ Ap,
the number of triangles of the form (a, b, c) with (b, c) ∈ B×C , lies between 2p and 2p+1− 1.

For a ∈ Ap and q ∈ {0, . . . , logn}, let Bpq(a) ⊆ B is the set of vertices such that for each
b ∈ B, the number of triangles of the form (a, b, c) with c ∈ C lies between 2q and 2q+1 − 1
We need the following Claim to proceed further.

B Claim 12.
(i) There exists p ∈ {0, . . . , 2 logn} such that |Ap| > t(A,B,C)

2p+1(2 logn+1) .
(ii) For each a ∈ Ap, there exists q ∈ {0, . . . , logn} such that |Bpq(a)| > 2p

2q+1(logn+1) .

Proof.
(i) Observe that t(A,B,C) =

∑2 logn
p=0 t(Ap, B,C) as the sum takes into account all incid-

ences of vertices in A. So, there exists p ∈ {0, . . . , 2 logn} such that t(Ap, B,C) ≥
t(A,B,C)
2 logn+1 . From the definition of Ap, t(Ap, B, C) < |Ap| · 2p+1. Hence, there exists
p ∈ {0, . . . , 2 logn} such that

|Ap| > t(Ap, B,C)
2p+1 ≥ t(A,B,C)

2p+1(2 logn+ 1) .

(ii) Observe that
∑logn
q=0 t({a}, Bpq(a), C) = t({a}, B, C). So, there exists q ∈ {0, . . . , logn}

such that t({a}, Bpq(a), C) ≥ t({a},B,C)
logn+1 . From the definition of Bpq(a),

t({a}, Bpq(a), C) < |Bpq(a)| · 2q+1. Hence, there exists q ∈ {0, . . . , logn} such that

|Bpq(a)| > t({a}, Bpq(a), C)
2q+1 ≥ t({a}, B,C)

2q+1(logn+ 1) ≥
2p

2q+1(logn+ 1) . C

We come back to the proof of Lemma 11. We will show that Verify-Estimate accepts with
probability at least 1

5 when loop executes for i = p, where p is such that |Ap| > t(A,B,C)
2p+1(2 logn+1) .

The existence of such a p is evident from (i) of Claim 12.
Recall that Apq ⊆ A,Bpq ⊆ B and Cpq ⊆ C are the samples obtained when the loop

variables i and j in Algorithm 1 attain values p and q, respectively. Observe that

P (Apq ∩Ap = ∅) ≤
(

1− 2p

t̂

)|Ap|
≤ e−

2p
t̂
|Ap| ≤ e−

2p
t̂

t(A,B,C)
2p+1 logn = e

− t(A,B,C)
2t̂(2 logn+1) .
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Now using the fact that t̂ ≤ t(A,B,C)
32 logn and n ≥ 64,

P (Apq ∩Ap = ∅) ≤ 1
e6 .

Assume that Apq ∩ Ap 6= ∅ and a ∈ Apq ∩ Ap. By (ii) of Claim 12, there exists
q ∈ {0, . . . , logn}, such that Bpq(a) ≥ 2p

2q+1(logn+1) . Observe that we will be done, if we can
show that Verify-Estimate accepts when loop executes for i = p and j = q. Now,

P (Bpq ∩Bpq(a) = ∅ | Apq ∩Ap 6= ∅) ≤
(

1− 2q

2p logn
)|Bpq(a)|

≤ 1
e3/7 .

Assume that Apq ∩ Ap 6= ∅, Bpq ∩ Bpq(a) 6= ∅ and b ∈ Bpq ∩ Bpq(a). Let S be the set
such that (a, b, s) is a triangle in G for each s ∈ S. Note that |S| ≥ 2q. So,

P (Cpq ∩ S = ∅ | Apq ∩Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅) ≤
(

1− 1
2q

)2q

≤ 1
e
.

Observe that Verify-Estimate accepts if t(Apq, Bpq, Cpq) 6= 0. Also, t(Apq, Bpq, Cpq) 6= 0
if Apq ∩Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅. Hence,

P(Verify-Estimate accepts) ≥ P (Apq ∩Ap 6= ∅, Bpq ∩Bpq(a) 6= ∅ and Cpq ∩ S 6= ∅)
= P (Apq ∩Ap 6= ∅) · P (Bpq ∩Bpq(a) 6= ∅ | Apq ∩Ap 6= ∅)
· P (Cpq ∩ S 6= ∅ | Apq ∩Ap 6= ∅ and Bpq ∩Bpq(a) 6= ∅)

>

(
1− 1

e6

)(
1− 1

e3/7

)(
1− 1

e

)
>

1
5 . J

Algorithm 2 Coarse-Estimate (A,B,C).

Input: Three pairwise disjoint sets A,B,C ⊂ V (G).
Output: An estimate t̂ for t(A,B,C).

1 begin
2 for ( t̂ = n3, n3/2, . . . , 1) do
3 Repeat Verify-Estimate (A,B,C, t̂) for Γ = 2000 logn times. If at least Γ

10
many Verify-Estimate accepts, then output t̂.

Proof of Lemma 7. Note that an execution of Coarse-Estimate for a particular t̂, repeats
Verify-Estimate for Γ = 2000 logn times and gives output t̂ if at least Γ

10 many Verify-
Estimate accepts. For a particular t̂, let Xi be the indicator random variable such that
Xi = 1 if and only if the ith execution of Verify-Estimate accepts. Also take X =

∑Γ
i=1Xi.

Coarse-Estimate gives output t̂ if X > Γ
10 .

Consider the execution of Coarse-Estimate for a particular t̂. If t̂ ≥ 32t(A,B,C) log3 n,
we first show that Coarse-Estimate accepts with probability 1− 1

n5 . Recall Lemma 10. If
t̂ ≥ 64t(A,B,C) log3 n, P(Xi = 1) ≤ 1

20 and hence E[X] ≤ Γ
20 . By using Chernoff-Hoeffding’s

inequality (See (i) of Lemma 17 in Appendix B),

P
(
X >

Γ
10

)
= P

(
X >

Γ
20 + Γ

20

)
≤ 1
n10 .

By using the union bound for all t̂, the probability that Coarse-Estimate outputs some
t̂ ≥ 16t(A,B,C) log3 n, is at most 3 logn

n10 .
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Now consider the instance when the for loop in Coarse-Estimate executes for a t̂
such that t̂ ≤ t(A,B,C)

32 logn . In this situation, P(Xi = 1) ≥ 1
5 . So, E[X] ≥ Γ

5 . By using
Chernoff-Hoeffding’s inequality (See (ii) of Lemma 17 in Appendix B),

P
(
X ≤ Γ

10

)
≤ P

(
X <

3Γ
20

)
= P

(
X <

Γ
5 −

Γ
20

)
≤ 1
n10 .

By using the union bound for all t̂, the probability that Coarse-Estimate outputs some
t̂ ≤ t(A,B,C)

16 logn , is at most 3 logn
n10 .

Observe that, Coarse-Estimate gives output t̂ that satisfies either t̂ ≥ 64t(A,B,C) log3 n

or t̂ ≤ t(A,B,C)
32 logn is at most 3 logn

n10 + 3 logn
n10 ≤ 1

n9 .
Putting everything together, Coarse-Estimate gives some t̂ as output with probability

at least 1− 1
n9 satisfying

t(A,B,C)
64 logn ≤ t̂ ≤ 64t(A,B,C) log3 n.

From the description of Verify-Estimate and Coarse-Estimate, the query complexity
of Verify-Estimate is O(log2 n) and Coarse-Estimate calls Verify-Estimate O(log2 n)
times. Hence, Coarse-Estimate makes O(log4 n) many queries. J

6 The final triangle estimation algorithm: Proof of Theorem 1

Now we design our algorithm for 1± ε multiplicative approximation of t(G). If ε ≤ d log2 n
n1/4 ,

we query for t({a}, {b}, {c}) for all distinct a, b, c ∈ V (G) and compute the exact value of
t(G). So, we assume that ε > d log2 n

n1/4 .
We build a data structure such that it maintains two things at any point of time. (i)

An accumulator ψ for the number of triangles. We initialize ψ = 0. (ii) A set of tuples
(A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ), where tuple (Ai, Bi, Ci) corresponds to the tripartite
subgraph G(Ai, Bi, Ci) and wi is the weight associated to G(Ai, Bi, Ci). Initially, there is no
tuple in our data structure. The algorithm will proceed as follows.
(1) (Exact Counting) Fix the threshold τ as 36κ2

1d
2 log4 n
ε2 . Decide whether t(G) < τ by

using the result of Lemma 3, where κ1 is the constant mentioned in Lemma 2. If yes, we
terminate by reporting the exact value of t(G). Otherwise, we go to Step-2. The query
complexity of Step-1 is O(τ6 logn) = O

(
d12 log25 n

ε12

)
.

(2) (General Sparsification) V (G) is COLORED with [3k] for k = 1. Let A,B,C be the
partition generated by the coloring of V (G). We initialize the data structure by setting
ψ = 0 and adding the tuple (A,B,C, 9/2) to the data structure. Note that no query is
required in this step. The constant 9/2 is obtained by putting k = 1 in Lemma 2.

(3) We repeat steps 4 to 7 until there is no tuple left in the data structure. We maintain an
invariant that the number of tuples stored in the data structure, is at most 10κ3 log16 n

ε2 ,
where κ3 is a constant to be fixed later.

(4) (Threshold for Tripartite Graph and Exact Counting in Tripartite Graphs)
For each tuple (A,B,C,w) in the data structure, we determine whether t(A,B,C) ≤
36κ2

2d
2 log4 n
ε2 , the threshold, by using the deterministic algorithm coresponding to Lemma 3

with O(d
2 log4 n
ε2 · logn) = O(d

2 log5 n
ε2 ) many queries, where κ2 is the constant mentioned in

Lemma 6. If yes, we find t(A,B,C) using O(d
2 log5 n
ε2 ) many queries and add w · t(A,B,C)

to ψ. We remove all (A,B,C)’s for which the algorithm found that t(A,B,C) is below
the threshold. As there are at most O

(
log16 n
ε2

)
many triples at any time, the number of

queries made in each iteration of the algorithm is O
(
d2 log5 n

ε2 · log16 n
ε2

)
= O

(
d2 log21 n

ε4

)
.
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(5) Note that each tuple (A,B,C,w) in this step is such that t(A,B,C) > 36κ2
2d

2 log4 n
ε2 . Let

(A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the set of tuples stored at the current instant.
If r > 10κ3 log16 n

ε2 , we go to Step 6. Otherwise, we go to Step 7.
(6) (Coarse Estimation and Sampling) For each tuple (A,B,C,w) in the data structure,

we find an estimate t̂ such that t(A,B,C)
64 log3 n

< t̂ < 64t(A,B,C) log3 n. This can be done
due to Lemma 7 and the number of queries is O

(
log4 n

)
per tuple. As the algorithm

executes the current step, the number of tuples in our data structure is large. We take
a sample from the set of tuples such that the sample maintains the required estimate
approximately by using Lemma 13, that follows from a Lemma by Beame et al. [6]. The
original statement of Beame et al. is given in Lemma 20 in Appendix B.
I Lemma 13 ([6]). Let (A1, B1, C1, w1), . . . , (Ar, Br, Cr, wr) be the tuples present in
the data structure and ei be the corresponding coarse estimation for t(Ai, Bi, Ci), i ∈
[r], such that (i) wi, ei ≥ 1,∀i ∈ [r]; (ii) ei

ρ ≤ t(Ai, Bi, Ci) ≤ eiρ for some ρ >

0 and ∀ i ∈ [r]; and (iii)
∑r
i=1 wi · t(Ai, Bi, Ci) ≤ M . Note that the exact val-

ues t(Ai, Bi, Ci)’s are not known to us. Then there exists an algorithm that finds
(A′1, B′1, C ′1, w′1), . . . , (A′s, B′s, C ′s, w′s) such that all of the above three conditions hold

and
∣∣∣∣ s∑
i=1

w′i · t(A′i, B′i, C ′i)−
r∑
i=1

wi · t(Ai, Bi, Ci)
∣∣∣∣ ≤ λS with probability 1 − δ; where

S =
∑r
i=1 wi · t(Ai, Bi, Ci) and λ, δ > 0. Also, s = O

(
λ−2ρ4 logM

(
log logM + log 1

δ

))
.

We use the algorithm corresponding to Lemma 13 with λ = ε
6 logn , ρ = 64 log3 n

and δ = 1
n10 to find a new set of tuples (A′1, B′1, C ′1, w′1), . . . , (A′s, B′s, C ′s, w′s) such that

|S −
∑s
i=1 w

′
it(A′, B′, C ′)| ≤ λS with probability 1− 1

n10 , where S =
∑r
i=1 wit(Ai, Bi, Ci)

and s = κ3 log16 n
ε2 for some constant κ3 > 0. This κ3 is same as the one mentioned in

Step 3. No query is required to exucute the algorithm of Lemma 13. Recall that the
number of tuples present at any time is O

(
log16 n
ε2

)
. Hence, the number of queries in

this step in each iteration, is O( log16 n
ε2 · log4 n) = O( log20 n

ε2 ).
(7) (Sparsification for Tripartite Graphs) We partition each of A,B and C into 3 parts

uniformly at random. Let A = U1 ] U2 ] U3; V = V1 ] V2 ] V3 and W = W1 ]W2 ]W3.
We delete (A,B,C,w) from the data structure and add (Ui, Vi,Wi, 9w) for each i ∈ [3]
to our data structure. Note that no query is made in this step.

(8) Report ψ as the estimate for the number of triangles in G, when no tuples are left.

First, we prove that the above algorithm produces a (1± ε) multiplicative approximation
to t(G) for any ε > 0 with high probability. If t(G) ≤ 36κ2

1d
2 log4 n
ε2 , then the algorithm

terminates in Step-1 and reports the exact number of triangles with probability 1− 1
n10 by

Lemma 3. Otherwise, the algorithm proceeds to Step-2. In Step-2, the algorithm colors V (G)
using three colors and incurs a multiplicative error of 1± ε0 to t(G), where ε0 = κ1d logn√

t(G)
. As

t(G) > 36κ2
1d

2 log4 n
ε2 and n ≥ 64, ε0 ≤ λ = ε

6 logn . Note that the algorithm possibly performs
Step-4 to Step-7 multiple times, but not more than O(logn) times, as explained below.

Let (A1, B1, C1, w1), . . . , (Aζ , Bζ , Cζ , wζ) are the set of tuples present in the data structure
currently. We define

∑ζ
i=1 t(Ai, Bi, Ci) as the number of active triangles. Let Activei be

the number of triangles that are active in the ith iteration. Note that Active1 ≤ t(G) ≤ n3.
By Lemma 6 and Step-7, observe that Activei+1 ≤ Activei

2 . So, after 3 logn many iterations
there will be at most constant number of active triangles and then we can compute the exact
number of active triangles and add it to ψ. In each iteration, there can be a multiplicative
error of 1 ± λ in Step-5 and 1 ± ε0 due to Step-4. So, using the fact that ε0 ≤ λ, the
multiplicative approximation factor lies between (1 − λ)3 logn+1 and (1 + λ)3 logn+1. As
λ = ε

6 logn , the required approximation factor is 1± ε.
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The query complexity of Step 1 is O(ε−12d12 log25 n). The query complexity of Steps 4 to
6 is O

(
ε−4 log21 n

)
in each iteration and the total number of iterations is O(logn). Hence,

the total query complexity of the algorithm is O(ε−12d12 log25 n).
Now, we bound the failure probability of the algorithm. The algorithm can fail in Step-1

with probability at most 1
n10 , Step-2 with probability at most 2

n4 , Step-6 with probability
at most 10κ3 log16 n

ε4 · 1
n9 + 1

n10 , and Step-7 with probability at most 10κ3 log16 n
ε4 · 1

n8 . As the
algorithm might execute Steps 4 to 6 for 3 logn times, the total failure probability is bounded
by 1

n10 + 2
n4 + 3 logn

(
10κ3 log16 n

ε4 · 1
n8 + 10κ3 log16 n

ε4 · 1
n9 + 1

n10

)
≤ c

n2 . Note that the above

inequality holds because ε > d log2 n
n1/4 and n ≥ 64.
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A Scenario where ∆E is bounded

In this Section, we discuss some scenarios where the number of triangles sharing an edge is
bounded. An obvious example for such graphs are graphs with bounded degree. We explore
some other scenarios.
(i) Consider a graph G(P,E) such that the vertex set P corresponds to a subset of R2 and

(u, v) ∈ E if and only if the distance between u and v is exactly 1. The objective is to
compute the number of triples of points from P forming an equilateral triangle having
side length 1, that is, the number of triangles in G. Observe that there can be at most
two triangles sharing an edge in G, that is, ∆E ≤ 2.

(ii) Consider a graph G(P,E) such that the vertex set P corresponds to a set of points
inside an N ×N square in R2 and (u, v) ∈ E if and only if the distance between u and
v is at most 1. The objective is to compute the number of triples of points from P

forming a triangle having each side length at most 1, that is, the number of triangles in
G. For large enough N there can be bounded number of triangles sharing an edge in G
with high probability.

(iii) Consider a graph G(V,E) representing a community sharing information. Each node
has some information and two nodes are connected if and only if there exists an edge
between the nodes. Nodes increase their information by sharing information among
their neighbors in G. Observe that the information of a node is derived by the set of
neighbors. So, if two nodes have large number of common neighbors in G, then there is
no need of an edge between the two nodes. So, the number of triangles on any edge in
the graph is bounded. The objective is to compute the number of triangles in G, that
is, the number of triples of nodes in G such that each pair of vertices are connected.

In (i) and (ii), TIS oracle can be implemented very efficiently. We can report a TIS query
by just running a standard plane sweep algorithm in Computational Geometry that takes
O(n logn) running time.

B Some probability results

I Proposition 14. Let X be a random variable. Then E[X] ≤
√
E[X2].

I Lemma 15 (Theorem 7.1 from [16]). Let f be a function of n random variables X1, . . . , Xn

such that
(i) Each Xi takes values from a set Ai,
(ii) E[f ] is bounded, i.e., 0 ≤ E[f ] ≤M ,
(iii) B be any event satisfying the following for each i ∈ [n].

|E[f | X1, . . . , Xi−1, Xi = ai,Bc]− E[f | X1, . . . , Xi−1, Xi = a′i,Bc]| ≤ ci.

Then for any δ ≥ 0,

P (|f − E[f ]| > δ +MP(B)) ≤ e
−δ2/

n∑
i=1

c2
i

+ P(B).

I Lemma 16 (Hoeffding’s inequality [16]). Let X1, . . . , Xn be n independent random variables
such that Xi ∈ [ai, bi]. Then for X =

n∑
i=1

Xi, the following is true for any δ > 0.

P (|X − E[X]| ≥ δ) ≤ 2 · e
−2δ2/

n∑
i=1

(bi−ai)2

.
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I Lemma 17 (Chernoff-Hoeffding bound [16]). Let X1, . . . , Xn be independent random vari-
ables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for any

δ > 0.
(i) P (X > µh + δ) ≤ e−2δ2/n.
(ii) P (X < µl − δ) ≤ e−2δ2/n.

I Lemma 18 (Theorem 3.2 from [16]). Let X1, . . . , Xn be random variables such that ai ≤
Xi ≤ bi and X =

n∑
i=1

Xi. Let D be the dependent graph, where V (D) = {X1, . . . , Xn} and

E(D) = {(Xi, Xj) : Xi and Xj are dependent}. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e
−2δ2/χ∗(D)

n∑
i=1

(bi−ai)2

,

where χ∗(D) denotes the fractional chromatic number of D.

The following lemma directly follows from Lemma 18.

I Lemma 19. Let X1, . . . , Xn be indicator random variables such that there are at most d
many Xj’s on which an Xi depends and X =

n∑
i=1

Xi. Then for any δ > 0,

P(|X − E[X]| ≥ δ) ≤ 2e−2δ2/(d+1)n.

I Lemma 20 (Importance sampling [6]). Let (D1, w1, e1), . . . , (Dr, wr, er) are the given
structures and each Di has an associated weight c(Di) satisfying
(i) wi, ei ≥ 1,∀i ∈ [r];
(ii) ei

ρ ≤ c(Di) ≤ eiρ for some ρ > 0 and all i ∈ [r]; and

(iii)
r∑
i=1

wi · c(Di) ≤M .

Note that the exact values c(Di)’s are not known to us. Then there exists an algorithm
that finds (D′1, w′1, e′1), . . . , (D′s, w′s, e′s) such that all of the above three conditions hold and∣∣∣∣ t∑
i=1

w′i · c(D′i)−
r∑
i=1

wi · c(Di)
∣∣∣∣ ≤ λS with probability 1 − δ; where S =

r∑
i=1

wi · c(Di) and

λ, δ > 0. The time complexity of the algorithm is O(r) and s = O
(
ρ4 logM(log logM+log 1

δ )
λ2

)
.
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