
Online Knapsack Problems with a Resource Buffer
Xin Han
Dalian University of Technology, Dalian, China
hanxin@dlut.edu.cn

Yasushi Kawase
Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

Kazuhisa Makino
Kyoto University, Kyoto, Japan
makino@kurims.kyoto-u.ac.jp

Haruki Yokomaku
NTT DATA Mathematical Systems, Tokyo, Japan
dsm4up2c@gmail.com

Abstract
In this paper, we introduce online knapsack problems with a resource buffer. In the problems, we
are given a knapsack with capacity 1, a buffer with capacity R ≥ 1, and items that arrive one
by one. Each arriving item has to be taken into the buffer or discarded on its arrival irrevocably.
When every item has arrived, we transfer a subset of items in the current buffer into the knapsack.
Our goal is to maximize the total value of the items in the knapsack. We consider four variants
depending on whether items in the buffer are removable (i.e., we can remove items in the buffer) or
non-removable, and proportional (i.e., the value of each item is proportional to its size) or general.
For the general&non-removable case, we observe that no constant competitive algorithm exists for
any R ≥ 1. For the proportional&non-removable case, we show that a simple greedy algorithm
is optimal for every R ≥ 1. For the general&removable and the proportional&removable cases,
we present optimal algorithms for small R and give asymptotically nearly optimal algorithms for
general R.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Discrete optimization

Keywords and phrases Online knapsack problem, Resource augmentation, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.28

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1909.10016.

Funding Xin Han: supported by RGC (HKU716412E) and NSFC (11571060).
Yasushi Kawase: supported by JSPS KAKENHI Grant Number 16K16005.
Kazuhisa Makino: supported by JSPS KAKENHI Grant Number JP24106002, JP25280004,
JP26280001, and JST CREST Grant Number JPMJCR1402.

1 Introduction

Online knapsack problem is one of the most fundamental problems in online optimization [16,
18]. In the problem, we are given a knapsack with a fixed capacity, and items with sizes and
values, which arrive one by one. Upon arrival, we must decide whether to accept the arrived
item into the knapsack, and this decision is irrevocable.

In this paper, we introduce a variant of the online knapsack problem, which we call online
knapsack problems with a resource buffer. Suppose that we have a buffer with fixed capacity
in addition to a knapsack with fixed capacity, and items arrive online. Throughout this
paper, we assume that the knapsack capacity is 1, and the buffer capacity is R (≥ 1). In

© Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanxin@dlut.edu.cn
mailto:kawase.y.ab@m.titech.ac.jp
mailto:makino@kurims.kyoto-u.ac.jp
mailto:dsm4up2c@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://arxiv.org/abs/1909.10016
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Online Knapsack Problems with a Resource Buffer

addition, assume that each item e has a size s(e) and a value v(e). When an item e has
arrived, we must decide whether to take it into the buffer or not. The total size of the
selected items must not exceed the capacity of the buffer R. Further, we cannot change the
decisions that we made past, i.e., once an item is rejected, it will never be put into the buffer.
We consider two settings: (i) non-removable, i.e., we cannot discard items in the buffer, and
(ii) removable, i.e., we can discard some items in the buffer, and once an item is discarded, it
will never be put into the buffer again. After the end of the item sequence, we transfer a
subset of items from the buffer into the knapsack. Our goal is to maximize the total value
of the items in the knapsack under the capacity constraint. It is worth mentioning that, if
R = 1, our problem is equivalent to the standard online knapsack problem.

Our model can be regarded as a “partial” resource augmentation model. That is, in the
resource augmentation model, the online algorithm can use the buffer for the final result.
On the other hand, in our model, the online algorithm uses the buffer only to temporary
store items, and it must use the knapsack to output the final result. Moreover, our model
can be viewed as a streaming setting: we process items in a streaming fashion, and we can
keep only a small portion of the items in memory at any point.

To make things more clear, let us see an example of the online knapsack problem with a
resource buffer. Let R = 1.5. Suppose that three items e1, e2, e3 with (s(e1), v(e1)) = (0.9, 4),
(s(e2), v(e2)) = (0.7, 3), (s(e3), v(e3)) = (0.2, 2) are given in this order, but we do not know
the items in advance. When e1 has arrived, suppose that we take it into the buffer. Then,
for the non-removable case, we need to reject e2 because we cannot put it together with
e1. In contrast, for the removable case, we have another option – take e2 into the buffer
by removing e1. If {e1, e3} is selected in the buffer at the end, the resulting value is 4 by
transferring {e1} to the knapsack. Note that, in the resource augmentation model, we can
obtain a solution with value 6 by selecting {e1, e3}.

Related work
For the non-removable online knapsack problem (i.e., non-removable case with R = 1),
Marchetti-Spaccamela and Vercellis [19] showed that no constant competitive algorithm
exists. Iwama and Taketomi [9] showed that there is no constant competitive algorithm even
for the proportional case (i.e., the value of each item is proportional to its size). The problem
has also studied under some restrictions on the input [1, 4, 17,20].

The removable variant of the online knapsack problem (i.e., removable case with R = 1)
is introduced by Iwama and Taketomi [9]. They proved that no constant competitive
deterministic algorithm exists in general, but presented an optimal (1 +

√
5)/2-competitive

algorithm for the proportional case. The competitive ratios can be improved by using
randomization [5, 7]. In addition, the problem with removal cost has been studied under the
name of the buyback problem [2, 3, 6, 11,12].

An online knapsack problem with resource augmentation is studied by Iwama and
Zhang [10]. In their setting, an online algorithm is allowed to use a knapsack with capacity
R ≥ 1, while the offline algorithm has a knapsack with capacity 1. They developed optimal
max{1, 1/(R− 1)}-competitive algorithms for the general&removable and proportional&non-
removable cases and an optimal max

{
1, min{ 1+

√
4R+1

2R , 2
2R−1}

}
-competitive algorithm for the

proportional&removable case. All of their algorithms are based on simple greedy strategies.
The competitive ratios except for the general&non-removable cases become exactly 1 when
R is a sufficiently large real.

In addition, there exist several papers that apply online algorithms to approximately
solve the constrained stable matching problems [13–15].

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:3

Our results

We consider four variants depending on whether removable or non-removable, and proportional
or general. In this paper, we focus on deterministic algorithms. Our results are summarized in
Table 1. To compare our model to the resource augmentation model, we list the competitive
ratio for both models in the table. It should be noted that each competitive ratio in our
model is at least the corresponding one in the resource augmentation model. Hence, lower
bounds for the resource augmentation model are also valid to our model.

For the general&non-removable case, we show that there is no constant competitive
algorithm. For the proportional&non-removable case, we show that a simple greedy is
optimal and its competitive ratio is max{2, 1/(R − 1)}. Interestingly, the competitive
ratio is equal to the ratio in resource augmentation model for 1 < R ≤ 3/2. For the
general&removable case, we present an optimal algorithm for 1 < R ≤ 2. Furthermore, for
large R, we provide an algorithm that is optimal up to a logarithmic factor. The algorithm
partitions the input items into groups according to sizes and values, and it applies a greedy
strategy for each group that meets a dynamically adjusted threshold. We will see that the
competitive ratio is larger than 1 for any R but it converges to 1 as R goes to infinity. For
the proportional&removable case, we develop optimal algorithms for 1 ≤ R ≤ 3/2. The
basic idea of the algorithms is similar to that of the algorithm for R = 1 given by Iwama
and Taketomi [9]. Our algorithms classify the items into three types – small, medium, and
large – and the algorithms carefully treat medium items. We observe that, as R becomes
large, we need to handle more patterns to obtain an optimal algorithm. In addition, for
large R, we show that the algorithm for the general&removable case is also optimal up to a
logarithmic factor.

Table 1 Summary of the competitive ratios for our model and the resource augmentation model.

variants
Our model Resource augmentation

R
lower
bound

upper
bound R

lower
bound

upper
bound

no
n-
re
m
ov
ab

le

prop.
1 ∞ [19] – 1 ∞ [19] –

(1, 3
2] 1

R−1 [10] 1
R−1 (Thm. 4) (1, 2] 1

R−1 [10] 1
R−1 [10]

[3
2 , ∞) 2 (Thm. 3) 2 (Cor. 5) [2, ∞) 1 1 [10]

gen. [1, ∞) ∞ [19] – [1, ∞) ∞ [19] –

re
m
ov
ab

le

prop.

1 1+
√

5
2 [9] 1+

√
5

2 [9] 1 1+
√

5
2 [9] 1+

√
5

2 [9]

[1, 1+
√

2
2] 1+

√
4R+1

2R
(Thm. 13) 1+

√
4R+1

2R
(Thms. 14, 15) [1, 1+

√
2

2] 1+
√

4R+1
2R

[10] 1+
√

4R+1
2R

[10]

[1+
√

2
2 , 2−

√
2

2]
√

2 †)
√

2 (Thm. 15)

[1+
√

2
2 , 3

2] 2
2R−1 [10] 2

2R−1 [10]
[2−

√
2

2 , 17− 9
√

3]
√

16R+1−1
2R

†)
√

16R+1−1
2R

†)

[17− 9
√

3, 2
√

3− 2] 1+
√

3
2

†) 1+
√

3
2

†)

[2
√

3− 2, 3
2] 2

R
†) 2

R
†)

[1, ∞) 1 + 1
d2Re+1 (Thm. 17) 1 + O(log R

R
) (Thm. 9) [3

2 , ∞) 1 1 [10]

gen.

1 ∞ [19] – 1 ∞ [19] –

(1, 3
2] 1

R−1 (Thm. 7) 1
R−1 (Thm. 12)

(1, 2] 1
R−1 [10] 1

R−1 [10]
[3

2 , 2) 2 (Thm. 8) 2 (Thm. 12)

[1, ∞) 1 + 1
R+1 (Thm. 6) 1 + O(log R

R
) (Thm. 9) [2, ∞) 1 1 [10]

†) The corresponding theorems can be found in the full version [8].

ISAAC 2019

28:4 Online Knapsack Problems with a Resource Buffer

2 Preliminaries

We denote the size and the value of an item e as s(e) and v(e), respectively. We assume
that 1 ≥ s(e) > 0 and v(e) ≥ 0 for any e. For a set of items B, we abuse notation, and let
s(B) =

∑
e∈B s(e) and v(B) =

∑
e∈B v(e).

For an item e, the ratio v(e)/s(e) is called the density of e. If all the given items have
the same density, we call the problem proportional. Without loss of generality, we assume
that v(e) = s(e) for the proportional case. We sometimes represent an item e as the pair of
its size and value (s(e), v(e)). Also, for the proportional case, we sometimes represent an
item e as its size s(e).

Let I = (e1, . . . , en) be the input sequence of the online knapsack problem with a
resource buffer. For a deterministic online algorithm ALG, let Bi be the set of items in the
buffer at the end of the round i. Note that B0 = ∅. In the removable setting, they must
satisfy Bi ⊆ Bi−1 ∪ {ei} and s(Bi) ≤ R (i = 1, . . . , n). In the non-removable setting, they
additionally satisfy Bi−1 ⊆ Bi (i = 1, . . . , n). Without loss of generality, we assume that
the algorithm transfers the optimal subset of items from the buffer into the knapsack since
we do not require the online algorithm to run in polynomial time. We denote the outcome
value of ALG by ALG(I) (:= max{v(B) | B ⊆ Bn, s(B) ≤ 1}) and the offline optimal value
OPT(I) (:= max{v(B) | B ⊆ {e1, . . . , en}, s(B) ≤ 1}). Then, the competitive ratio of ALG
for I is defined as OPT(I)/ALG(I) (≥ 1). In addition, the competitive ratio of a problem is
defined as infALG supI OPT(I)/ALG(I), where the infimum is taken over all (deterministic)
online algorithms and the supremum is taken over all input sequences.

3 General&Non-removable Case

To make the paper self-contained, we show that the general&non-removable case admits
no constant competitive algorithm. To see this, we observe an input sequence given by
Iwama and Zhang [10], which was used to prove the corresponding result for the resource
augmentation setting.

I Theorem 1. For any R ≥ 1, there exists no constant competitive algorithm for the
general&non-removable online knapsack problem with a buffer.

Proof. Let ALG be an online algorithm and let R ≥ 1 and c be positive reals. Consider the
input sequence I := ((1, c1), (1, c2), . . . , (1, ck)), where (1, ck) is the first item so that ALG
does not take into the buffer. Note that k ≤ bRc + 1 since the buffer size is R. If k = 1,
ALG is not competitive, since ALG(I) = 0 and OPT(I) = c. If k > 1, since ALG(I) = ck−1

and OPT(I) = ck, the competitive ratio is c, which is unbounded as c goes to infinity. J

4 Proportional&Non-removable Case

In this section, we consider the proportional&non-removable case. We show that the
competitive ratio is max{ 1

R−1 , 2} for the case.

4.1 Lower bounds
For lower bounds, we consider two cases separately: 1 < R ≤ 3/2 and R > 3/2.

I Theorem 2. For all R with 1 < R ≤ 3/2 and all ε > 0, the competitive ratio of the
proportional&non-removable online knapsack problem with a buffer is at least 1/(R− 1)− ε.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:5

Proof. Let ε′ be a positive real such that 1
R−1+ε′ ≥

1
R−1 − ε and let ALG be an online

algorithm. Consider the following input sequence I:

R− 1 + ε′, 1.

Then, ALG must pick the first item, otherwise ALG is not competitive, since ALG(I) = 0
and OPT(I) = R− 1 + ε′. Recall that ALG cannot discard the item since we consider the
non-removable setting. Also, ALG cannot take the second item since the buffer size is strictly
smaller than the total size of the first and the second items. Thus, ALG(I) = R− 1 + ε′ and
OPT(I) = 1, and hence the competitive ratio is at least 1

R−1+ε′ ≥
1

R−1 − ε. J

It should be noted that the input sequence in the proof of Theorem 2 is the same as the one
in [10], which is used to show a lower bound for the resource augmentation model.

I Theorem 3. For all R > 3/2 and all ε > 0, the competitive ratio of the proportional&non-
removable online knapsack problem with a buffer is at least 2− ε.

Proof. Let ε′ be a positive real such that 2
1+2ε′ ≥ 2− ε and let ALG be an online algorithm.

Consider the following input sequence I:

1
2 + ε′,

1
2 + ε′

2 , . . . ,
1
2 + ε′

k
,

1
2 −

ε′

k
,

where the kth item (1/2 + ε′/k) is the first item that ALG does not take it into the buffer.
Note that I is uniquely determined by ALG and k ≤ 2R. Since ALG(I) = 1/2 + ε′ and
OPT(I) = 1/2 + ε′/k + 1/2− ε′/k = 1, the competitive ratio is at least 1

1/2+ε′ ≥ 2− ε. J

4.2 Upper bounds
For upper bounds, we consider an algorithm that greedily picks a given item if it is possible.
The formal description of the algorithm is given in Algorithm 1. Recall that the resulting
outcome of the algorithm is max{s(B) | B ⊆ Bn, s(B) ≤ 1}, where Bn is the items in the
buffer at the final round n. We prove that the algorithm is optimal for any R > 1.

Algorithm 1 1/(R− 1)-competitive algorithm.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 if s(Bi−1 ∪ {ei}) ≤ R then Bi ← Bi−1 ∪ {ei} else Bi ← Bi−1;

I Theorem 4. Algorithm 1 is 1/(R − 1)-competitive for the proportional&non-removable
online knapsack problem with a buffer when 1 < R ≤ 3/2.

Proof. Let ALG be an online algorithm induced by Algorithm 1 and I be an input sequence.
Without loss of generality, we can assume s(I) > R since otherwise ALG(I) = OPT(I).

Suppose that I does not contain items with size at least R−1. Let k be the round such that∑k−1
i=1 s(ei) < R−1 ≤

∑k
i=1 s(ei). Then, we have s(Bk) =

∑k
i=1 s(ei) = s(ek)+

∑k−1
i=1 s(ei) <

(R− 1) + (R− 1) ≤ 1 by s(ek) < R− 1 and R ≤ 3/2. Therefore, in this case, the competitive
ratio is at most 1

R−1 .
Next, suppose that I contains an item with size at least R− 1. Let ej be the first item in

I such that s(ej) ≥ R− 1. If s(Bj−1) ≥ R− 1, then the competitive ratio is at most 1
R−1 by

the same argument as above. Otherwise (i.e., s(Bj−1) < R− 1), we have s(Bj−1 ∪{ej}) ≤ R
and hence ej ∈ Bj ⊆ Bn, i.e., ej is selected in Bn.

Thus, ALG(I) ≥ s(ej) = R− 1 and the competitive ratio is at most 1
R−1 . J

ISAAC 2019

28:6 Online Knapsack Problems with a Resource Buffer

Since 1/(R− 1) = 2 when R = 3/2, we obtain the following corollary from Theorem 4.

I Corollary 5. Algorithm 1 is 2-competitive for the proportional&non-removable online
knapsack problem with a buffer when R ≥ 3/2.

5 General&Removable Case

In this section, we consider the general&removable case. We show that the competitive ratio
is max{ 1

R−1 , 2} for R ≤ 2. In addition, for general R, we prove that the competitive ratio is
at most 1 +O(logR/R) and at least 1 + 1

R+1 .

5.1 Lower bounds
Here, we give lower bounds of the competitive ratio in this case. We first present a general
lower bound 1 + 1/(R+ 1). The proof can be found in the full version [8].

I Theorem 6. For R ≥ 1, the competitive ratio of the general&removable online knapsack
problem with a buffer is at least 1 + 1

R+1 .

Next, we provide the tight lower bound for R ≤ 2. We separately consider the following
two cases: 1 < R ≤ 3/2 and 3/2 ≤ R < 2.

I Theorem 7. For all R with 1 < R ≤ 3/2 and all ε > 0, the competitive ratio of the
general&removable online knapsack problem with a buffer is at least 1/(R− 1)− ε.

Proof. Let ALG be an online algorithm. Let ε̂ be a positive real such that 1/ε̂ is an integer
and min

{
1

(R−1+ε̂)(1+ε̂) ,
1−ε̂2

R−1

}
≥ 1

R−1 − ε. In addition, let m := 1/ε̂ and n := 1/ε̂3.
Suppose that ALG is requested the following sequence of items:

(1, 1), (ε̂, ε̂3), (ε̂, 2ε̂3), . . . , (ε̂, nε̂3),

until ALG discards the first item (1, 1). Note that the first item has a large size and a
medium density, and the following items have the same small sizes but different densities
that slowly increase from small to large. In addition, ALG must take the first item at the
beginning (otherwise the competitive ratio becomes infinite). Thus, ALG would keep the
first item and the last bR−1

ε̂ c items in each round.
We have two cases to consider: ALG discards the first item (1, 1) or not.

Case 1: Suppose that ALG discards the first item (1, 1) when the item (ε̂, iε̂3) comes. Note
that the requested sequence is I :=

(
(1, 1), (ε̂, ε̂3), (ε̂, 2ε̂3), . . . , (ε̂, iε̂3)

)
. Then, we have

ALG(I) ≤ (bR−1
ε̂ c+ 1)iε̂3 (since ALG keeps at most bR−1

ε̂ c+ 1 small items at the end)
and OPT(I) ≥ max{1, m · (i−m)ε̂3} (the left term 1 comes from the first item and the
right term m · (i−m)ε̂3 comes from the last m (= 1/ε̂) items). Hence, the competitive
ratio is at least max{1,m·(i−m)ε̂3}

(bR−1
ε̂ c+1)iε̂3 ≥ 1

(R−1+ε̂)(1+ε̂) ≥
1

R−1 − ε.
Case 2: Suppose that ALG does not reject the first item until the end. Then, the competitive

ratio is at least m·(n−m)ε̂3

bR−1
ε̂ cnε̂3 ≥ 1

R−1 ·
m(n−m)ε̂3

nε̂2 = 1−ε̂2

R−1 ≥
1

R−1 − ε. J

I Theorem 8. For all R with 3/2 ≤ R < 2 and all ε > 0, the competitive ratio of the
general&removable online knapsack problem with a buffer is at least 2− ε.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:7

Proof. Let k be an integer such that k > max{ 1
2−R ,

1
ε }. Let ALG be an online algorithm.

Consider the item sequence I := (e1, . . . , ek) where (s(ei), v(ei)) = (1− i
2k2 , 1− i

2k) for
i = 1, . . . , k. Then, at the end of the sequence, ALG must keep exactly one item because it
must select at least one item (otherwise the competitive ratio is unbounded) and every pair
of items exceeds the capacity of the buffer (i.e., s(ei) + s(ej) ≥ 2(1− k

2k2) = 2− 1
k > R for

any i, j ∈ {1, . . . , k}).
Suppose that {ei} is selected in the buffer at the end of the sequence I. If i = k, then the

competitive ratio for I is OPT(I)
ALG(I) = v(e1)

v(ek) = 1− 1
2k

1− 1
2

= 2 − 1
k > 2 − ε. Otherwise (i.e., i < k),

let us consider a sequence I ′ := (e1, . . . , ek, ek+1) with (s(ek+1), v(ek+1)) = (i+1
2k2 , 1 − i

2k).
Then, the competitive ratio for I ′ is at least OPT(I′)

ALG(I′) = v(ei+1)+v(ek+1)
v(ei) = (1− i+1

2k)+(1− i
2k)

1− i
2k

=
2− 1

2k−i ≥ 2− 1
k > 2− ε. J

5.2 Upper bounds
Here, we provide an asymptotically nearly optimal algorithm for large R and an optimal
algorithm for small R (< 2).

First, we provide a (1 + O(logR/R))-competitive algorithm for the asymptotic case.
Suppose that R is sufficiently large. Let m := b(R− 3)/2c and let ε (≤ 1) be a positive real
such that log1+ε(1/ε) = m. Note that we have m = Θ(1

ε log 1
ε) and ε = O(logR/R) (see

Lemma 18 in Appendix A).
We partition all the items as follows. Let S be the set of items with size at most ε.

Let M be the set of items not in S and let M j (j ∈ Z) be the set of items e ∈ M with
(1 + ε)j ≤ v(e) < (1 + ε)j+1 (note that j is not restricted to be positive). Let us consider
Algorithm 2 for the problem. Intuitively, the algorithm selects items in greedy ways for
S and each M j with νi ≤ j ≤ µi. Note that for any i ≥ 1, we have µi − νi = 2m. For
each i ≥ 1, since s(Bi ∩ S) ≤ 2 + ε and s(Bi ∩M j) ≤ 1 for any νi ≤ j ≤ µi, we have
s(Bi) ≤ 2m+ 2 + ε ≤ R. Thus, the algorithm is applicable.

Algorithm 2 (1 + O(log R/R))-competitive algorithm.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 Bi ← ∅ and B′i ← (Bi−1 ∪ {ei});
4 foreach e ∈ B′i ∩ S in the non-increasing order of the density do
5 Bi ← Bi ∪ {e};
6 if s(Bi) > 2 then break;
7 Let e∗i ∈ arg max{v(e) | e ∈ B′i};
8 Let µi ← blog1+ε v(e∗i)c and νi ← blog1+ε ε

2v(e∗i)c; // e∗i ∈Mµi

9 for j ← νi, . . . , µi do
10 foreach e ∈ B′i ∩M j in the non-decreasing order of the size do
11 if s(Bi ∩M j) + s(e) ≤ 1 then Bi ← Bi ∪ {e};

I Theorem 9. Algorithm 2 is (1+O(logR/R))-competitive for the general&removable online
knapsack problem with a buffer when R is a sufficiently large real.

ISAAC 2019

28:8 Online Knapsack Problems with a Resource Buffer

Let I := (e1, . . . , en) be an input sequence, BOPT ∈ arg max{v(X) | s(X) ≤ 1, X ⊆
{e1, . . . , en}} be the offline optimal solution, and BALG ∈ arg max{v(X) | s(X) ≤ 1, X ⊆
Bn} be the outcome solution of ALG. We construct another feasible solution B∗ from Bn
by Algorithm 3. Note that v(BALG) ≥ v(B∗).

Algorithm 3 Construct a feasible solution.

1 B∗ ← Bn ∩BOPT;
2 for k ← νn, . . . , µn do
3 Let rk ← |(BOPT \B∗) ∩Mk|;
4 for j ← 1, . . . , rk do
5 Let a← arg min{s(e) | e ∈ (Bn \B∗) ∩Mk} and B∗ ← B∗ ∪ {a};

6 while (Bn \B∗) ∩ S 6= ∅ do
7 Let a ∈ arg max{v(e)/s(e) | e ∈ (Bn \B∗) ∩ S};
8 if s(B∗) + s(a) ≤ 1 then B∗ ← B∗ ∪ {a};
9 else break;

10 return B∗;

To prove the theorem, we show the following two claims.

B Claim 10. v(BOPT ∩M) ≤ (1 + ε)v(B∗ ∩M) + εv(BOPT) and s(BOPT ∩M) ≥ s(B∗ ∩M).

B Claim 11. v(BOPT ∩ S) ≤ v(B∗ ∩ S) + ε(1 + 2ε)v(BOPT).

With these claims, B∗ is feasible, and we have v(BOPT) = v(BOPT ∩M) + v(BOPT ∩ S) ≤
(1 + ε)v(B∗) + (2ε + 2ε2)v(BOPT). This implies (1 − 2ε − 2ε2)v(BOPT) ≤ (1 + ε)v(B∗).
Since v(B∗) ≤ v(BALG), the competitive ratio of Algorithm 2 is at most 1+ε

1−2ε−2ε2 ≤ 1+ε
1−3ε ≤

1 + 6ε = 1 +O(logR/R), when ε < 1/12 (this inequality follows from the assumption that R
is sufficiently large).

The proof is completed by proving Claims 10 and 11.

Proof of Claim 10. Note that v(BOPT∩M) =
∑
k<νn

v(BOPT∩Mk)+
∑
k≥νn v(BOPT∩Mk).

For e ∈ Mk with k < νn, we have s(e) > ε and v(e) < (1 + ε)νn ≤ ε2v(e∗n), and hence
v(e)/s(e) ≤ ε2v(e∗n)/ε ≤ εv(BOPT). Thus, we have

∑
k<νn

v(BOPT ∩Mk) ≤ εv(BOPT). For
k with µn ≤ k ≤ νn, the set Bn ∩ Mk is the greedy solution for Mk according to the
non-decreasing order of their size. Hence, by the construction of B∗, the number of items in
BOPT∩Mk equals to the number of items in B∗∩Mk, and we have s(BOPT∩Mk) ≥ s(B∗∩
Mk). Also, for each e ∈ BOPT∩Mk and f ∈ B∗∩Mk, v(e)/v(f) < (1+ε)k+1/(1+ε)k = (1+ε).
Hence,

∑
k≥νn v(BOPT ∩Mk) ≤ (1 + ε)

∑
k≥νn v(B∗ ∩Mk). C

Proof of Claim 11. It is sufficient to consider the case BOPT ∩ S 6⊆ Bn, since otherwise
BOPT ∩ S ⊆ B∗ ∩ S and the claim clearly holds. Hence, we have s(Bn ∩ S) > 2. Let
Bn ∩ S = {f1, f2, . . . , f|Bn∩S|} be sorted in non-increasing order of their density. Let fj be
the item with the largest index in (Bn ∩ S) \BOPT. Also let ` ≥ 1 be the index such that∑`
i=1 s(fi) ≤ 1 <

∑`+1
i=1 s(fi). There are two cases to consider: j ≤ ` and j > `.

Case 1: Suppose that j ≤ `. Then, by the definition of fj , we have {f`+1, . . . f|Bn∩S|} ⊆
BOPT. Since s(Bn∩S) > 2, we have s(BOPT) ≥ s(BOPT∩S) ≥ s(Bn∩S)−

∑`
i=1 s(fi) > 1,

which contradicts with s(BOPT) ≤ 1.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:9

Case 2: Suppose that j > `. In this case, we prove that v(fj) ≤ ε(1 + 2ε)v(BOPT).
Since

∑`
i=1 s(fi) ≥ 1 − ε, we have (1 − ε) · v(fj)

s(fj) ≤
∑`
i=1 s(fi) ·

v(fj)
s(fj) ≤

∑`
i=1 s(fi) ·

v(fi)
s(fi) =

∑`
i=1 v(fi) ≤ v(BOPT). Therefore, v(fj) ≤ s(fj)

1−ε v(BOPT) ≤ ε
1−εv(BOPT) ≤

ε(1 + 2ε)v(BOPT) when ε ≤ 1/2.
Since s(B∗ ∩M) ≤ s(BOPT ∩M) by construction of B∗, we have s(B∗ ∩ S) + s(fj) ≥
s(BOPT∩S). By construction of Bn∩S, we have min{v(f)/s(f) | f ∈ (Bn∩S)\BOPT} ≥
max{v(f)/s(f) | f ∈ (BOPT ∩ S) \ Bn}. Therefore, v(B∗ ∩ S) + v(fj) ≥ v(BOPT ∩ S).
Moreover we have v(fj) ≤ ε(1 + 2ε)v(BOPT), and the claim follows. C

The proof of Theorem 9 is completed.

Next, let us consider an algorithm that selects items according to the non-increasing
order of the density. The algorithm is formally described in Algorithm 4. We prove that it is
optimal when 1 < R < 2.

Algorithm 4 max{1/(R− 1), 2}-competitive algorithm for 1 < R < 2.

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 Bi ← ∅;
4 foreach e ∈ Bi−1 ∪ {ei} in the non-increasing order of the density do
5 if s(Bi) + s(e) ≤ R then Bi ← Bi ∪ {e} ;

I Theorem 12. Algorithm 4 is max{1/(R − 1), 2}-competitive for the general&removable
online knapsack problem with a buffer when 1 < R < 2.

Proof. Let I := (e1, . . . , en) be an input sequence. Without loss of generality, we can assume
that

∑n
i=1 s(ei) > R since otherwise ALG(I) = OPT(I). Let f1, . . . , fn be the rearrangement

of I according to the non-increasing order of the density, i.e., {f1, . . . , fn} = {e1, . . . , en} and
v(f1)/s(f1) ≥ · · · ≥ v(fn)/s(fn). Let k (≤ n− 1) be the index such that

∑k
i=1 s(fi) ≤ 1 <∑k+1

i=1 s(fi). Then, by the definition of the algorithm, we have {f1, . . . , fk} ⊆ Bn. There are
two cases to consider: fk+1 6∈ Bn and fk+1 ∈ Bn.
Case 1: Suppose that fk+1 6∈ Bn. Then, we have

∑k+1
i=1 s(fi) > R, and hence

∑k
i=1 s(fi) >

R− s(fk+1) ≥ R− 1 by s(fk+1) ≤ 1. Thus, OPT(I) is at most ALG(I)/(R− 1) and the
competitive ratio is at most 1/(R− 1).

Case 2: Suppose that fk+1 ∈ Bn. By a similar analysis of the famous 2-approximation
algorithm for the offline knapsack problem, we have OPT(I) ≤

∑k
i=1 v(fi) + v(fk+1) ≤

2 ·max{
∑k
i=1 v(fi), v(fk+1)} ≤ 2 ·ALG(I). Thus, the competitive ratio is at most 2. J

6 Proportional&Removable Case

In this section, we consider the proportional&removable case. We consider the following four
cases separately: (i) 1 ≤ R ≤ 1+

√
2

2 , (ii) 2−
√

2
2 ≤ R ≤ 17−9

√
3, (iii) 2

√
3−2 ≤ R ≤ 3/2, and

(iv) general R (see Figure 1). We remark that the competitive ratios for 1+
√

2
2 ≤ R ≤ 2−

√
2

2
(and 17−9

√
3 ≤ R ≤ 2

√
3−2) can be obtained by considering the upper bound for R = 1+

√
2

2
in case (i) (R = 17 − 9

√
3 in case (ii)) and the lower bound for R = 2 −

√
2

2 in case (ii)
(R = 2

√
3− 2 in case (iii)). Due to space limitation, we only analyze cases (i) and (iv). The

analysis for (ii) and (iii) can be found in the full version [8].

ISAAC 2019

28:10 Online Knapsack Problems with a Resource Buffer

R

Competitive ratio

(i) (ii) (iii)

1+
√

5
2

√
2

1+
√

3
2 4

3

1+
√

2
2 2−

√
2

2
17−9

√
3 2

√
3−2 3

2
1

1+
√

4R+1
2R

√
16R+1−1

2R 2
R

Figure 1 The competitive ratios for the proportional&removable case with 1 ≤ R ≤ 3
2 .

6.1 1 ≤ R ≤ 1+
√

2
2

We prove that the competitive ratio is 1+
√

4R+1
2R when 1 ≤ R ≤ 1+

√
2

2 . Let r > 0 be a real
such that r + r2 = R, i.e., r =

√
1+4R−1

2 .

6.1.1 Lower bound
We first prove the lower bound.

I Theorem 13. For any ε > 0, the competitive ratio of the proportional&removable online
knapsack problem with a buffer is at least 1+

√
4R+1

2R − ε when 1 ≤ R < 2.

Proof. Let ALG be an online algorithm and let ε′ be a positive real such that r
r2+ε′ ≥

1
r − ε

and ε′ < r− r2. Note that r =
√

1+4R−1
2 < 1 and 1

r = 1+
√

4R+1
2R . Consider the input sequence

I := (e1, e2) where s(e1) = r and s(e2) = r2 + ε′. Since r + r2 = R, ALG must discard at
least one of them. If ALG discards the item with size r, then the competitive ratio for the
sequence is r

r2+ε′ ≥
1
r − ε = 1+

√
4R+1

2R − ε. If ALG discards the item with size r2 + ε′, let
I ′ := (e1, e2, e3) where s(e3) = 1− r2 − ε′. As r ≥ 1− r2 and r + (1− r2 − ε′) > 1, we have
OPT(I ′) = 1 and ALG(I ′) ≤ r. Hence the competitive ratio is at least 1

r = 1+
√

4R+1
2R . J

6.1.2 Upper bound for 1 ≤ R ≤ 10/9
Next, we give an optimal algorithm for 1 ≤ R ≤ 10/9. In this subsubsection, an item e is
called small, medium, and large if s(e) ≤ r2, r2 < s(e) < r, and r ≤ s(e), respectively. Let S,
M , and L respectively denote the sets of small, medium, and large items.

We consider Algorithm 5, which is a generalization of the 1+
√

5
2 -competitive algorithm

for R = 1 given by Iwama and Taketomi [9]. If the algorithm can select a set of items B′
such that r ≤ s(B′) ≤ 1, it keeps the set B′ until the end since it is sufficient to achieve
1/r-competitive. Otherwise, it picks the smallest medium item (if exists) and greedily selects
small items according to the non-increasing order of the sizes. We show that it is optimal
when 1 ≤ R ≤ 10/9.

I Theorem 14. Algorithm 5 is 1+
√

1+4R
2R -competitive for the proportional&removable online

knapsack problem with a buffer when 1 ≤ R ≤ 10/9.

Proof. Let I := (e1, . . . , en) be the input sequence. If there exists a large item ei, the
competitive ratio is at most 1/r = 1+

√
1+4R

2R by r ≤ s(ei) ≤ 1. If there exist two medium
items ei, ej such that s(ei) + s(ej) ≤ 1, the competitive ratio is at most 1/r = 1+

√
1+4R

2R
by r < 2r2 < s(ei) + s(ej) ≤ 1. In what follows, we assume that all the input items are

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:11

Algorithm 5 1+
√

1+4R
2R

-competitive algorithm for 1 ≤ R ≤ 10
9 .

1 B0 ← ∅;
2 for i← 1, 2, . . . do
3 if ∃B′ ⊆ Bi−1 ∪ {ei} such that r ≤ s(B′) ≤ 1 then Bi ← B′;
4 else if ei ∈M and |Bi−1 ∩M | = 1 then
5 let {e′i} = Bi−1 ∩M ;
6 if s(ei) < s(e′i) then Bi ← Bi−1 ∪ {ei} \ {e′i};
7 else Bi ← Bi−1;
8 else
9 Bi ← ∅;

10 foreach e ∈ Bi−1 ∪ {ei} in non-increasing order of size do
11 if s(Bi) + s(e) ≤ R then Bi ← Bi ∪ {e};

not large and every pair of medium items cannot be packed into the knapsack together. In
addition, suppose that s(Bn) 6∈ [r, 1] > 1 since otherwise the competitive ratio is at most
1/r = 1+

√
1+4R

2R . By the algorithm, this additional assumption means s(B′) 6∈ [1, r] for any
B′ ⊆ Bi−1 ∪ {ei} with i ∈ {1, . . . , n}.

If {e1, . . . , en} ∩ S ⊆ Bn, the competitive ratio is at most

r + s({e1, . . . , en} ∩ S)
r2 + s({e1, . . . , en} ∩ S) ≤

1
r

= 1 +
√

1 + 4R
2R .

Otherwise, i.e., {e1, . . . , en} ∩ S 6⊆ Bn, let ei be a small item that is not in Bn, and j be the
smallest index such that j ≥ i and ei 6∈ Bj . Note that ei ∈ Bj−1 ∪ {ej}. We have four cases
to consider.
Case 1: Suppose that s(ei) ≥ r/2. In this case, there exists e′ ∈ Bj such that r2 ≥ s(e′) ≥

s(ei). Thus, we have r ≤ s(ei) + s(e′) ≤ 1, a contradiction.
Case 2: Suppose that there exists no medium item in Bj . Then, there exists B′ ⊆ Bj−1∪{ej}

such that r ≤ s(Bj) ≤ 1, because s(Bj−1 ∪ {ej}) > R and all the items in Bj−1 ∪ {ej}
are small. This is a contradiction.

Case 3: Suppose that s(e) < r/2 for any e ∈ Bj ∩ S. Then, we have r ≤ s(Bj) ≤ 1, a
contradiction.

Case 4: Let us consider the other case, i.e., s(ei) < r/2, ∃e ∈ Bj ∩M , and ∃e′ ∈ Bj ∩ S
such that s(e′) ≥ r/2. Then, s(Bj) − s(e) + s(ei) ≥ R − s(e) ≥ R − r2 = r. Also,
s(Bj) − s(e′) ≤ R − s(e′) ≤ R − r/2 = r2 + r/2 ≤ 1. By the additional assumption,
we have s(Bj) − s(e) + s(ei) > 1 and s(Bj) − s(e′) < r. Thus, we have s(Bj) >

1 + s(e)− s(ei) > 1 + r2 − r/2 = (1− r)2 + 3r/2 ≥ r + r/2 ≥ r + s(e′) > s(Bj), which is
a contradiction. J

6.1.3 Upper bound for 10
9 ≤ R ≤

1+
√

2
2

Recall that r > 0 is a real such that r + r2 = R, i.e., r =
√

1+4R−1
2 . For 10

9 ≤ R ≤ 1+
√

2
2 ,

we have 2/3 ≤ r ≤ 1/
√

2 and 1 − r ≤ r/2 ≤ r2 ≤ 1/2 < r < 1. In this subsubsection, an
item e is called small, medium, and large if s(e) ≤ 1 − r, 1 − r < s(e) < r, and r ≤ s(e),
respectively. Let S, M , and L respectively denote the sets of small, medium, and large items.
In addition, M is further partitioned into three subsets Mi (i = 1, 2, 3), where M1, M2, M3
respectively denote the set of the items e with size 1− r < s(e) ≤ r/2, r/2 < s(e) < r2, and
r2 ≤ s(e) < r.

ISAAC 2019

28:12 Online Knapsack Problems with a Resource Buffer

We consider Algorithm 6 for the problem. If the algorithm can select a set of items B′
such that r ≤ s(B′) ≤ 1, it keeps the set B′ until the end. Otherwise, it partitions the buffer
into two spaces with size r and r2. All the small items are taken into the first space. If the
set of medium items is of size at least r2, then the smallest its subset B′ with size at least r2

is selected into the first space. If the set of medium items is of size at most r2, then all of
them are selected into the first space. If there are remaining medium items, the smallest
one is kept in the second space if its size is smaller than r2. We show that the algorithm is
optimal when 10

9 ≤ R ≤
1+
√

2
2 .

Algorithm 6 1+
√

1+4R
2R

-competitive algorithm for 10
9 ≤ R ≤ 1+

√
2

2 .

1 B0 ← ∅, B(1)
0 ← ∅, B(2)

0 ← ∅;
2 for i← 1, 2, . . . do
3 if ∃B′ ⊆ Bi−1 ∪ {ei} such that r ≤ s(B′) ≤ 1 then B

(1)
i ← B′ and B(2)

i ← ∅ ;
4 else if s((Bi−1 ∪ {ei}) ∩M) ≥ r2 then
5 let Ti ∈ arg min{s(B′) | B′ ⊆ (Bi−1 ∪ {ei}) ∩M, s(B′) ≥ r2};
6 B

(1)
i ← Ti ∪ ((Bi−1 ∪ {ei}) ∩ S);

7 if B(1)
i 6= Bi−1 ∪ {ei} then

8 let a ∈ arg min{s(e) | e ∈ Bi−1 ∪ {ei} \B(1)
i };

9 if a ∈M1 ∪M2 then B
(2)
i ← {a};

10 else B
(1)
i ← Bi−1 ∪ {ei} and B(2)

i ← ∅ ;
11 Bi ← B

(1)
i ∪B

(2)
i ;

I Theorem 15. Algorithm 6 is 1+
√

1+4R
2R -competitive for the proportional&removable online

knapsack problem with a buffer when 10/9 ≤ R ≤ 1+
√

2
2 .

Let I := (e1, . . . , en) be the input sequence and let Ik := {e1, . . . , ek} be the first k items
of I.

I Lemma 16. If In ⊆M , then Algorithm 6 is 1+
√

1+4R
2R (= 1/r)-competitive when 10/9 ≤

R ≤ 1+
√

2
2 .

Proof. The proof can be found in the full version [8]. J

Now, we are ready to prove Theorem 15.

Proof of Theorem 15. Let OPT ∈ arg max{s(X) | X ⊆ In, s(X) ≤ 1} and OPTM ∈
arg max{s(X) | X ⊆ In ∩M, s(X) ≤ 1}. Without loss of generality, we can assume that∑n
i=1 s(ei) > R.
If ei ∈ L for some i, then r ≤ s(B(1)

n) ≤ 1. Thus, we assume that all the items in the
input sequence are not large, i.e., In ∩ L = ∅.

Suppose that Algorithm 6 discards some small items, i.e., In ∩ S 6= Bn ∩ S. Let j be
the round such that Ij−1 ∩ S = Bj−1 ∩ S and Ij ∩ S 6= Bj ∩ S. Let Tj ∈ arg min{s(B′) |
B′ ⊆ (Bj−1 ∪ {ej}) ∩M, s(B′) > r}. Since Ij−1 ∩ S = Bj−1 ∩ S and Ij ∩ S 6= Bj ∩ S, we
have s(Tj ∪ (Ij ∩ S)) > 1. Since s(e) < 1 − r (∀e ∈ S), there exists S′ ∈ Ij ∩ S such that
r ≤ s(Tj ∪ S′) ≤ 1. Therefore, if In ∩ S 6= Bn ∩ S, then ALG(I) ≥ r.

X. Han, Y. Kawase, K. Makino, and H. Yokomaku 28:13

Consequently, we assume In ∩ L = ∅ and In ∩ S ⊆ Bn. Then, the competitive ratio is
at most

s(OPT)
s(B(1)

n)
≤ s(OPTM) + s(In ∩ S)
s(B(1)

n ∩M) + s(In ∩ S)
≤ s(OPTM)
s(B(1)

n ∩M)
,

and hence we can assume, without loss of generality, that In ⊆M .
Thus, by Lemma 16, the theorem is proved. J

6.2 General R
In this subsection, we consider proportional&removable case with general R. By Theorem 9,
the upper bound of the competitive ratio is 1 + O(logR/R). Hence, we only give a lower
bound of the competitive ratio.

I Theorem 17. For any positive real ε<1, the competitive ratio of the proportional&removable
online knapsack problem with a buffer is at least 1 + 1

d2Re+1 − ε.

Proof. Let n := d2Re+ 1 and let ALG be an online algorithm. Consider the item sequence
I := (e1, . . . , en−1, en) where s(ei) = i

n + ε
n2 for i = 1, . . . , n − 1 (we will set s(en) later

depending on ALG). At the end of (n − 1)st round, ALG must discard at least one
item because

∑n−1
i=1 s(ei) >

n−1
2 = d2Re

2 ≥ R. Suppose that ALG discards ej , and let
s(en) = 1 − s(ej). Then, we have OPT(I) = s(ej) + s(en) = 1. We will prove that
ALG(I) is at most 1− (1− ε)/n, which implies that the competitive ratio of ALG is at least

1
1−(1−ε)/n ≥ 1 + (1− ε)/n ≥ 1 + 1

d2Re+1 − ε.
Let B∗ be the output of ALG, i.e., s(B∗) = ALG(I). We have two cases to consider:

en /∈ B∗ and en ∈ B∗.

Case 1: If en 6∈ B∗, then we have s(B∗) =
∑

ei∈B∗
i

n + |B∗|·ε
n2 . We assume B∗ 6= ∅ since

otherwise s(B∗) = 0. Since s(B∗) ≤ 1 and |B
∗|·ε
n2 > 0, we have

∑
{i|ei∈B∗}
n ≤ n−1

n . Hence,
we obtain s(B∗) ≤ n−1

n + n·ε
n2 = 1− 1−ε

n .

Case 2: If en ∈ B∗, then we have s(B∗) = (n−j)+
∑
{i|ei∈B∗\{en}}
n + (|B∗|−2)·ε

n2 . We assume
|B∗| ≥ 3 since otherwise s(B∗) ≤ n−1

n by ej 6∈ B∗. Since s(B∗) ≤ 1 and (|B∗|−2)·ε
n2 > 0, we

have (n−j)+
∑
{i|ei∈B∗\{en}}
n ≤ n−1

n . Hence, we obtain s(B∗) ≤ n−1
n + n·ε

n2 = 1− 1−ε
n . J

References
1 Susanne Albers, Arindam Khan, and Leon Ladewig. Improved Online Algorithms for Knapsack

and GAP in the Random Order Model. In Proceedings of APPROX/RANDOM, pages 22:1–
22:23, 2019.

2 Badanidiyuru Ashwinkumar and Robert Kleinberg. Randomized Online Algorithms for the
Buyback Problem. In Internet and Network Economics, pages 529–536, 2009.

3 Moshe Babaioff, Jason D. Hartline, and Robert D. Kleinberg. Selling Ad Campaigns: Online
Algorithms with Cancellations. In Proceedings of EC, 2009.

4 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary
problem with applications. In Proceedings of APPROX/RANDOM, pages 16–28. Springer,
2007.

5 Marek Cygan, Łukasz Jeż, and Jiří Sgall. Online Knapsack Revisited. Theory of Computing
Systems, 58(1):153–190, 2016.

6 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Online Unweighted Knapsack Problem with
Removal Cost. Algorithmica, 70(1):76–91, 2014.

ISAAC 2019

28:14 Online Knapsack Problems with a Resource Buffer

7 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Randomized algorithms for online knapsack
problems. Theoretical Computer Science, 562:395–405, 2015.

8 Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku. Online Knapsack
Problems with a Resource Buffer. CoRR, abs/1909.10016, 2019. arXiv:1909.10016.

9 Kazuo Iwama and Shiro Taketomi. Removable Online Knapsack Problems. In Proceeding of
ICALP, pages 293–305, 2002.

10 Kazuo Iwama and Guochuan Zhang. Optimal Resource Augmentations for Online Knapsack.
In Proceedings of APPROX/RANDOM, pages 180–188, 2007.

11 Yasushi Kawase, Xin Han, and Kazuhisa Makino. Proportional cost buyback problem with
weight bounds. Theoretical Computer Science, 2016.

12 Yasushi Kawase, Xin Han, and Kazuhisa Makino. Unit Cost Buyback Problem. Theory of
Computing Systems, 2018.

13 Yasushi Kawase and Atsushi Iwasaki. Near-Feasible Stable Matchings with Budget Constraints.
In Proceedings of IJCAI, pages 242–248, 2017.

14 Yasushi Kawase and Atsushi Iwasaki. Approximately Stable Matchings with Budget Con-
straints. In Proceedings of AAAI, pages 242–248, 2018.

15 Yasushi Kawase and Atsushi Iwasaki. Approximately Stable Matchings with General Con-
straints. CoRR, abs/1907.04163, 2019. arXiv:1907.04163.

16 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer-Verlag
Berlin Heidelberg, 2004.

17 Anton J. Kleywegt and Jason D. Papastavrou. The dynamic and stochastic knapsack problem.
Operations research, 46(1):17–35, 1998.

18 Dennis Komm. An Introduction to Online Computation. Springer, 2016.
19 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.

Mathematical Programming, 68(1):73–104, 1995.
20 Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget Constrained Bidding in

Keyword Auctions and Online Knapsack Problems. In Proceedings of WWW, pages 1243–1244,
2008.

A Relationship Among m, ε and R in Algorithm 2

Here, we prove some relationships among m, ε and R in Algorithm 2.

I Lemma 18. Let R ≥ 3, m := b(R−3)/2c and let ε > 0 be a real such that log1+ε(1/ε) = m.
Then, m = Θ(1

ε log 1
ε) and ε = O(logR/R)

Proof. By the definition of the base of natural logarithm e and the monotonicity of (1+1/x)x,
we have 2 ≤ (1 + 1/x)x ≤ e for any x ≥ 1. As ε ≤ 1, we have

2εm ≤ (1 + ε) 1
ε εm ≤ eεm.

By substituting m = log1+ε(1/ε), we have (1 + ε) 1
ε εm = 1/ε. Hence, we get

εm log 2 ≤ log 1
ε
≤ εm. (1)

This implies m = Θ(1
ε log 1

ε).
Next, we show that ε = O(logR/R). By the inequalities (1), we have

ε ≤
log 1

ε

m log 2 ≤
log
(1
ε log 1

ε

)
m log 2 ≤ logm

m log 2 = logb(R− 3)/2c
b(R− 3)/2c log 2 = O

(
logR
R

)
. J

http://arxiv.org/abs/1909.10016
http://arxiv.org/abs/1907.04163

	Introduction
	Preliminaries
	General&Non-removable Case
	Proportional&Non-removable Case
	Lower bounds
	Upper bounds

	General&Removable Case
	Lower bounds
	Upper bounds

	Proportional&Removable Case
	1le Rle frac1+sqrt22
	Lower bound
	Upper bound for 1le R le 10/9
	Upper bound for frac109le Rle frac1+sqrt22

	General R

	Relationship Among m, epsilon and R in Algorithm 2

