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Abstract
We study a random graph model introduced in [20] where one adds Erdős–Rényi (ER) type
perturbation to a random geometric graph. More precisely, assume G∗X is a random geometric graph
sampled from a nice measure on a metric space X = (X, d). An ER-perturbed random geometric
graph Ĝ(p, q) is generated by removing each existing edge from G∗X with probability p, while inserting
each non-existent edge to G∗X with probability q. We consider a localized version of clique number
for Ĝ(p, q): Specifically, we study the edge clique number for each edge in a graph, defined as the
size of the largest clique(s) in the graph containing that edge. We show that the edge clique number
presents two fundamentally different types of behaviors in Ĝ(p, q), depending on which “type” of
randomness it is generated from.

As an application of the above results, we show that by a simple filtering process based on the
edge clique number, we can recover the shortest-path metric of the random geometric graph G∗X
within a multiplicative factor of 3 from an ER-perturbed observed graph Ĝ(p, q), for a significantly
wider range of insertion probability q than what is required in [20].
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1 Introduction

Random graphs are mathematical models which have applications in a wide spectrum of
domains. Erdős–Rényi graph G(n, p) is one of the oldest and most-studied models for
networks [19], constructed by adding edges between all pairs of n vertices with probability p
independently. Many global properties of this model are well-studied by using the probabilistic
method [1], such as the clique number and the phase transition behaviors of connected
components w.r.t. parameter p.

Another classical type of random graphs is the random geometric graph G(Xn; r) intro-
duced by Edgar Gilbert in 1961 [10]. This model starts with a set of n points Xn randomly
sampled over a metric space (typically a cube in Rd) from some probability distribution, and
edges are added between all pairs of points within distance r to each other. The Erdős–Rényi
random graphs and random geometric graphs exhibit similar behavior for the Poisson degree
distribution; however, other properties, such as the clique number and phase transition
(w.r.to p or to r), could be very different [11, 16, 21, 22].
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29:2 Local Cliques in ER-Perturbed Random Geometric Graphs

This model has many applications in real world where the physical locations of ob-
jects involved play an important role [7], for example wireless ad hoc networks [18] and
transportation networks [2].

We are interested in mixed models that “combine” both types of randomness together.
One way to achieve this is to add Erdős–Rényi type perturbation (percolation) to random
geometric graphs. A natural question arises: what are the properties of this type of random
graphs? Although these graphs are related to the continuum percolation theory [17], our
understanding about them so far is still limited: In previous studies, the underlying spaces
are typically plane (called the Gilbert disc model) [3], cubes [6] and tori [13]; the vertices
are often chosen as the standard lattices of the space; and the results usually concern the
connectivity [4, 23] or diameter [24].

Our work. In this paper, we consider a mixed model of Erdős–Rényi random graphs and
random geometric graphs, and study the behavior of a local property called edge clique
number. More precisely, we use the following ER-perturbed random geometric graph model
previously introduced in [20]. Suppose there is a compact metric space X = (X, d) (as
feature space) with a probability distribution induced by a “nice” measure µ supported on X
(e.g., the uniform measure supported on an embedded smooth low-dimensional Riemannian
manifold). Assume we now randomly sample n points V i.i.d from this measure µ, and build
the random geometric graph G∗X (r), which is the r-neighborhood graph spanned by V (i.e,
two points u, v ∈ V are connected if their distance d(u, v) ≤ r). Next, we add Erdős–Rényi
(ER) type perturbation to G∗X (r): each edge in G∗X (r) is deleted with a uniform probability
p, while each “short-cut” edge between two unconnected nodes u, v is inserted to G∗X (r) with
a uniform probability q. We denote the resulting generated graph by Ĝp,qX (r).

Intuitively, one can imagine that a graph is generated first as a proximity graph (captured
by the random geometric graph) in some feature space (X in the above setting). The random
insertion / deletion of edges then allows for noise or exceptions. For example, in a social
network, nodes could be sampled from some feature space of people, and two people could
be connected if they are nearby in the feature space. However, there are always some
exceptions – friends could be established by chance even they are very different from each
other (“far away”), and two similar (“close”) people (say, close geographically and in tastes)
may not develop friendship. The ER-perturbation introduced above by [20] aims to account
for such kind of exceptions.

We introduce a local property called the edge clique number of a graph G, to provide
a more refined view than the global clique number. It is defined for each edge (u, v) in
the graph, denoted as ωu,v(G), as the size of the largest clique containing uv in graph
G. Our main result is that ωu,v

(
Ĝp,qX (r)

)
presents two fundamentally different types of

behaviors, depending on from which “type” of randomness the edge (u, v) is generated from:
A “good” edge from the random geometric graph G∗X (r) has an edge-clique number similar
to edges from a certain random geometric graph; while a “bad” edge (u, v) introduced during
the random-insertion process has an edge-clique number similar to edges in some random
Erdős–Rényi graph. See Theorems 5, 10, 12, and 14 for the precise statements.

As an application of our theoretical analysis, in Theorem 15, we show that by using a
filtering process based on our edge clique number, we can recover the shortest-path metric of
the random geometric graph G∗X (r) within a multiplicative factor of 3, from an ER-perturbed
graph Ĝp,qX (r), for a significantly wider range of insertion probability q than what’s required
in [20], although we do need a stronger regularity condition on the measure µ. See more
discussion at the end of Section 4.
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2 Preliminaries

Suppose we are given a compact geodesic metric space X = (X, d) [5] 1. We will consider
“nice” measures on X . Specifically,

I Definition 1 (Doubling measure [12]). Given a metric space X = (X, d), let Br(x) ⊂ X

denotes the closed metric ball Br(x) = {y ∈ X | d(x, y) ≤ r}. A measure µ : X → R on
X is said to be doubling if every metric ball (with positive radius) has finite and positive
measure and there is a constant L = L(µ) s.t. for all x ∈ X and every r > 0, we have
µ(B2r(x)) ≤ L · µ(Br(x)). We call L the doubling constant and say µ is an L-doubling
measure.

Intuitively, the doubling measure generalizes a nice measure on the Euclidean space, but
still behaves nicely in the sense that the growth of the mass within a metric ball is bounded
as the radius of the ball increases. For our theoretical results later, we in fact need a stronger
condition on the input measure, which we will specify later in Assumption-A at the beginning
of Section 3.

ER-perturbed random geometric graph. Following [20], we consider the following random
graph model: Given a compact metric space X = (X, d) and a L-doubling probability
measure µ supported on X, let V be a set of n points sampled i.i.d. from µ. We build
the r−neighborhood graph G∗X (r) = (V,E∗) for some parameter r > 0 on V ; that is,
E∗ = {(u, v) | d(u, v) ≤ r, u, v ∈ V }. We call G∗X (r) a random geometric graph generated
from (X , µ, r). Now we add the following two types of random perturbations:
p-deletion: For each existing edge (u, v) ∈ E∗, we delete edge (u, v) with probability p.
q-insertion: For each non-existent edge (u, v) /∈ E∗, we insert edge (u, v) with probability q.

The order of applying the above two types of perturbations doesn’t matter since they
are applied to two disjoint sets respectively. The final graph Ĝp,qX (r) = (V, Ê) is called a
(p, q)-perturbation of G∗X (r), or simply an ER-perturbed random geometric graph.

We now introduce a local version of the standard clique number:

I Definition 2 (Edge clique number). Given a graph G = (V,E), for any edge (u, v) ∈ E, its
edge clique number ωu,v(G) is defined as

ωu,v(G) = the size of the largest clique(s) in G containing (u, v).

Setup for the remainder of the paper. For convenience of reference, we collect our standard
notations. We assume throughout that we are given a fixed compact geodesic metric space
X = (X, d) and a fixed L-doubling probability measure µ. We denote V as the set of n
graph nodes sampled i.i.d. from µ. Ĝ = Ĝp,qX (r) = (V, Ê) is a (p, q)-perturbation of a random
geometric graph G∗ = G∗X (r) spanned by V with radius parameter r. For an arbitrary graph
G, let V (G) and E(G) refer to its vertex set and edge set, respectively, and let NG(u) denote
the set of neighbors of u in G (i.e. nodes connected to u ∈ V (G) by edges in E(G)).

We now define two types of edges in the perturbed graph Ĝ. Roughly speaking, we say
an edge in Ĝ is a good-edge if it is generated by the random geometric graph G∗ and later is
not removed by (p, q)−perturbation. A bad-edge is typically some long-range edge inserted
by the perturbation.

1 A geodesic metric space is a metric space where any two points in it are connected by a path whose
length equals the distance between them. Uniqueness of geodesics is not required. Riemannian manifolds
or path-connected compact sets in the Euclidean space are all geodesic metric spaces.
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29:4 Local Cliques in ER-Perturbed Random Geometric Graphs

I Definition 3 (Good / bad-edges). An edge (u, v) in the perturbed graph Ĝ is a good-edge
if d(u, v) ≤ r. An edge (u, v) in the perturbed graph Ĝ is a bad-edge if for any x ∈ NG∗(u)
and y ∈ NG∗(v), we have d(x, y) > r.

In other word, (u, v) is a bad-edge if and only if there are no edges between neighbors of
u and neighbors of v in G∗. See figure 1 for some examples.

u v
z

r

r

r
2

u v
r

r

(a) (b)

Figure 1 (a) shows a good-edge (u, v). It also shows that if d(u, v) ≤ r, then there exists an
r/2-ball (shaded region) in the intersection of Br(u) and Br(v); (b) shows a bad-edge (u, v).

Organization of paper. In Section 3, we study the behavior of edge clique number for good-
edges and bad-edges. Our main result Theorem 14 roughly suggests, under certain conditions
on the insertion probability q, for a good-edge (u, v) of Ĝp,qX (r), with high probability,
ωu,v

(
Ĝ
)
has order Ω (ln lnn); while for a bad-edge (u, v), its edge-clique number ωu,v

(
Ĝ
)

has order o (ln lnn) with high probability.
To illustrate the main ideas, we will first give results for when only edge-insertion type of

perturbations is added to the random geometric graph in Section 3.1 – In fact, this case is of
independent interest as well. An application of our result to recover the shortest-path metric
of the hidden geometric graph is given in Section 4.

3 Two different behaviors of edge clique number

In Section 3.1, we study the edge clique numbers for the insertion-only perturbed random
geometric graphs, both to illustrate the main ideas, and to show the different behaviors of the
edge clique number more clearly. In Section 3.2, we study the case for deletion-only perturbed
random geometric graphs, where we only delete each edge independently with probability
p to obtain an input graph Ĝ. Finally, we discuss the combined case of an ER-perturbed
random geometric graph in Section 3.3.

First, we need the following technical assumption on the parameter r (for the random
geometric graph G∗X (r)) and the measure µ where graph nodes V are sampled from.

[Assumption-A]: The parameter r and the doubling measure µ satisfy the following condition:
There exist s ≥ 13 lnn

n

(
= Ω( lnn

n )
)
and a constant ρ such that for any x ∈ X

(Density-cond) µ
(
Br/2(x)

)
≥ s.

(Regularity-cond) µ
(
Br/2(x)

)
≤ ρs

Intuitively, these two conditions require that for the specific r value we choose, the mass
contained inside all radius-r metric balls are similar (within a constant ρ factor). Density-cond
is equivalent to the Assumption-R in [20]. It requires that r is large enough such that with
high probability each vertex v in the random geometric graph G∗X (r) has degree Ω(lnn).
Indeed, we have the following claim.
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B Claim 4 ([20]). Under Density-cond, with probability at least 1− n−5/3, each vertex in
G∗X (r) has at least sn/4 neighbors.

Proof. For a fixed vertex v ∈ V , let nv be the number of points in (V − {v}) ∩ Br(v). The
expectation of nv is (n − 1) · µ (Br(v)) ≥ (n − 1) · µ

(
B r

2
(v)
)
≥ s(n − 1). By the Chernoff

bound, we thus have that

P
[
nv <

sn

4

]
< P

[
nv <

s(n− 1)
3

]
≤ P

[
nv <

1
3(n− 1)µ (Br(v))

]
≤ e−

( 2
3 )2

2 (n−1)µ(Br(v)) ≤ n− 8
3

It then follows from the union bound that the probability that all n vertices in V have
more than sn/4 neighbors is at least 1− n · n− 8

3 = 1− n−5/3. C

3.1 Insertion-only perturbation
Recall G∗X (r) = (V,E) is a random geometric graph whose n vertices V sampled i.i.d. from
a L-doubling probability measure µ supported on a compact metric space X = (X, d). In
this section, we assume that the input graph Ĝ is generated from G∗ = G∗X (r) as follows:
First, include all edges of G∗ in Ĝ. Next, for any u, v ∈ V with (u, v) 6= E(G∗), we add edge
(u, v) to E(Ĝ) with probability q. That is, we only insert edges to G∗ to obtain Ĝ.

First, for good-edges, it is easy to obtain the following result.

I Theorem 5. Assume Density-cond holds. Let G∗ be an n-node random geometric graph
generated from (X, d, µ) as described. Denote Ĝ = Ĝq the final graph after inserting each edge
not in G∗ independently with probability q. Then, with high probability, for each good-edge
(u, v) in Ĝ, its edge clique number satisfies that ωu,v(Ĝ) ≥ sn/4.

Proof. For each good-edge (u, v), observe that Br(u) ∩Br(v) contains at least one metric
ball of radius r/2 (say Br/2(z) with z being the mid-point of a geodesic connecting u to v in
X, see Figure 1 (a)). And all the points in an r/2−ball span a clique in G∗ (r−neighborhood
graph). Then by an argument similar to the proof of Claim 4, we have that with probability
at least 1− n− 2

3 , the number of points in all of O(n2) number r/2-balls centered at some
mid-point of the geodesics between all pair of nodes u, v ∈ V is at least sn/4. Hence with
probability at least 1− n− 2

3 , for all good-edge (u, v) in Ĝ, ωu,v(Ĝ) ≥ sn/4. J

Bounding the edge clique number for bad-edges is much more challenging due to the
interaction between local edges (from random geometric graph) and long-range edges (from
random insertion). To handle this, we will create a finite specific collection of subgraphs for
Ĝ in an appropriate manner, and bound the edge clique number of a bad-edge in each such
subgraph. The property of this specific collection of subgraphs is that the union of these
individual cliques provides an upper bound on the edge clique number for this edge in Ĝ. To
construct this finite collection of subgraphs, we will use the so-called Besicovitch covering
lemma which has a lot of applications in measure theory [8]. The finiteness here is crucial
for later applying the union bound (i.e., Bonferroni inequality [9]).

First, we introduce some notations. We use a packing to refer to a countable collection B
of pairwise disjoint closed balls. Such a collection B is a packing w.r.t. a set P if the centers
of the balls in B lie in the set P ⊂ X, and it is a δ-packing if all of the balls in B have radius
δ. A set {A1, . . . , A`}, Ai ⊆ X, covers P if P ⊆

⋃
iAi.

ISAAC 2019



29:6 Local Cliques in ER-Perturbed Random Geometric Graphs

I Lemma 6 (Besicovitch Covering Lemma, doubling space version, [14]). Let X = (X, d) be a
doubling space. Then, there exists a constant β = β(X ) ∈ N such that for any P ⊂ X and
δ > 0, there are β different δ-packings w.r.t. P , denoted by {B1, · · · ,Bβ}, whose union also
covers P.

We call the constant β(X ) above the Besicovitch constant. Note that this constant
only depends on the doubling space X and thus is finite. Given a set A, we say that A is
partitioned into A1, A2, · · · , Ak, if A = A1 ∪ · · · ∪Ak and Ai ∩Aj = ∅ for any i 6= j.

I Definition 7 (Well-separated clique-partitions family). Consider the random geometric graph
G∗ = G∗X (r). A family P = {Pi}i∈Λ, where Pi ⊆ V and Λ is the index set of Pis, forms a
well-separated clique-partitions family of G∗ if:
1. V = ∪i∈ΛPi.
2. ∀i ∈ Λ, Pi can be partitioned as Pi = C

(i)
1 t C

(i)
2 t · · · t C

(i)
mi where

(2-a) ∀j ∈ [1,mi], there exist v̄(i)
j ∈ V such that C(i)

j ⊆ Br/2
(
v̄

(i)
j

)
∩ V .

(2-b) For any j1, j2 ∈ [1,mi] with j1 6= j2, dH
(
C

(i)
j1
, C

(i)
j2

)
> r, where dH is the Hausdorff

distance between two sets in metric space (X, d).
We also call C(i)

1 tC
(i)
2 t· · ·tC

(i)
mi a clique-partition of Pi (w.r.t. G∗), and its size (cardinality)

is mi. The size of the well-separated clique-partitions family P is its cardinality |P| = |Λ|.

In the above definition, (2-a) implies that each C(i)
j spans a clique in G∗; thus we call

C
(i)
j a clique in Pi and C

(i)
1 t C

(i)
2 t · · · t C

(i)
mi a clique-partition of Pi. (2-b) means that

there are no edges in G∗ between any two cliques of Pi; thus, any edge in Ĝ between such
cliques must come from insertion. The following existence lemma can be derived by applying
Lemma 6 several times.

I Lemma 8. There is a well-separated clique-partitions family P = {Pi}i∈Λ of G∗X (r) with
|Λ| ≤ β2, where β = β(X ) is the Besicovitch constant of X .

Proof. To prove the lemma, first we grow an r/2-ball around each node in V ⊂ X (the
vertex set of G∗). By Besicovitch covering lemma (Lemma 6), we have a family of (r/2)-
packings w.r.t. V , B = {B1, · · · ,Bα1}, whose union covers V . Here, the constant α1 satisfies
α1 ≤ β(X ).

Each Bi contains a collection of disjoint r/2-balls centered at a subset of nodes in V ,
and let Vi ⊆ V denote the centers of these balls. For any u, v ∈ Vi, we have d(u, v) > r as
otherwise, Br/2(u)∩Br/2(v) 6= ∅ meaning that the r/2-balls in Bi are not all pairwise disjoint.
Now consider the collection of r-balls centered at all nodes in Vi. Applying Besicovitch
covering lemma to Vi again with δ = r, we now obtain a family of r-packings w.r.t. Vi,
denoted by D(i) = D(i)

1 t · · · t D
(i)
α

(i)
2
, whose union covers Vi. Here, the constant α(i)

2 satisfies

α
(i)
2 ≤ β(X ) for each i ∈ [1, α1].
Now each D(i)

j contains a set of disjoint r-balls centered at a subset of nodes V (i)
j ⊆ Vi

of Vi. First, we claim that
⋃
j V

(i)
j = Vi. This is because that Bi is an r/2-packing which

implies that d(u, v) > r for any two nodes u, v ∈ Vi. In other words, the r-ball around any
node from Vi contains no other nodes in Vi. As the union of r-balls D(i)

1 t · · · t D
(i)
c

(i)
2

covers
Vi by construction, it is then necessary that each node Vi has to appear as the center in at
least one D(i)

j (i.e, in V (i)
j ). Hence

⋃
j V

(i)
j = Vi.
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Now for each vertex set V (i)
j , let P (i)

j ⊆ V denote all points from V contained in the r/2-
balls centered at points in V (i)

j . As ∪jV (i)
j = Vi, we have that

⋃
j P

(i)
j =

⋃
v∈Vi

(
Br/2(v) ∩ V

)
.

It then follows that
⋃
i∈[1,α1]

(⋃
j∈[1,α(i)

2 ] P
(i)
j

)
= V as the union of the family of r/2-packings

B = {B1,B2, · · · ,Bc1} covers all points in V (recall that Bi is just the set of r/2-balls centered
at points in Vi).

Clearly, each P (i)
j adapts a clique-partition: Indeed, for each V (i)

j , any two nodes in V (i)
j

are at least distance 2r apart (as the r-balls centered at nodes in V ij are disjoint), meaning
that the r/2-balls around them are more than r (Hausdorff-)distance away. In other words,
P =

{
P

(i)
j , i ∈ [1, α1], j ∈ [1, α(i)

2 ]
}

forms a well-separated clique-partitions family of G∗.

Finally, since α1, α
(i)
2 ≤ β(X ) = β, the cardinality of P is thus bounded by β2. J

We also need the following lemma to upper-bound the number of points in every r/2-ball
centered at nodes of G∗.

I Lemma 9. Suppose G∗ = (V,E∗) is an n-node random geometric graph sampled from
(X , µ, r). If Assumption-A holds, then with probability at least 1− n−5, for every v ∈ V , the
ball Br/2(v) ∩ V contains at most 3ρsn points.

Proof. For a fixed vertex v ∈ V , let nv,r/2 be the number of points in (V − {v}) ∩Br/2(v).
By the definition of random geometric graph, we know that nv,r/2 is subject to binomial
distribution Bin

(
n− 1, µ

(
Br/2(v)

))
. The expectation of nv,r/2 is (n− 1)µ(Br/2(v)) ≤ ρsn.

Also note that (n− 1)µ
(
Br/2(v)

)
≥ (n− 1)s ≥ 12 lnn. By applying the Chernoff bound, we

thus have that

P
[
nv,r/2 ≥

5
2ρsn

]
≤ P

[
nv,r/2 ≥

5
2(n− 1)µ

(
Br/2(v)

)]
≤ e−

1
3 ( 3

2 )(n−1)µ(Br/2(v)) ≤ n−6

Finally, by applying the union bound, we know that with probability at least 1−n ·n−6 =
1−n−5, ∀v ∈ G∗, there are at most 5

2ρsn+ 1 < 3ρsn points in the geodesic ball Br/2(v). J

We now state one of our main theorems, which relates the edge clique number for bad-
edges with the insertion probability. To simplify notations, we call a clique containing an
edge (u, v) a uv-clique.

I Theorem 10. Assume Assumption-A holds. Let Ĝ = Ĝq denote the graph obtained by
inserting each edge not in G∗X (r) independently with probability q. Then there exist constants
c1, c2, c3 > 0 which depend on the doubling constant L of µ, the Besicovitch constant β(X ),
and the regularity constant ρ, such that for any K = K(n) with K→∞ as n→∞, with high
probability, ωu,v(Ĝ) < K for any bad-edge (u, v) in Ĝ, as long as q satisfies

q ≤ min
{
c1, c2 ·

(
1
n

)c3/K
· K

sn

}
. (1)

I Remark. To illustrate the above theorem, consider for example when K = Θ(sn). Then
the theorem says that there exists constant c′ such that if q < c′, then w.h.p. ωu,v < K (thus
ωu,v = O(sn)) for any bad-edge (u, v). Now consider when q = o(1). Then the theorem
implies that w.h.p. the edge-clique number for any bad-edge is at most K = o(sn). This is
qualitatively different from the edge-clique number for a good-edge for the case q = o(1),
which is Ω(sn) as shown in Theorem 5. By reducing this insertion probability q, this gap
can be made larger and larger.

ISAAC 2019
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Proof of Theorem 10. Given any node y, let BVr (y) ⊆ V denote Br(y) ∩ V . Now consider
a bad-edge (u, v). Set Auv = {w ∈ V |w /∈ Br(u) ∪Br(v)} and Buv = {w ∈ V |w ∈ BVr (u) ∪
BVr (v)}. Denote Ãuv = Auv ∪ {u} ∪ {v}; It is easy to check that V = Ãuv ∪Buv.

Let G|S denote the subgraph of G spanned by a subset S of its vertices. Given any set C,
let C|S = C ∩ S be the restriction of C to another set S. Now consider a subset of vertices
C ⊆ V : obviously, C = C|Ãuv ∪ C|Buv . Hence by the pigeonhole principle and the union
bound, we have:

P
[
Ĝ has a uv-clique of size ≥ K

]
≤ P

[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
+ P

[
Ĝ|Buv has a uv-clique of size ≥ K

2

]
(2)

Next, we will bound the two terms on the right hand side of Eqn. (2) separately in Case (A)
and Case (B) below.

u v

u v

BV
r (u) BV

r (v)

(a) (b)

Figure 2 (a) A well-separated clique partition P = {P1, P2} of Auv – points in the solid ball are
P1, and those in dashed ball are P2. (b) Points in Buv.

Case (A): bounding the first term in Eqn. (2). We apply Lemma 8 for points in Auv.
This gives us a well-separated clique-partitions family P = {Pi}i∈Λ of Auv with |Λ| being a
constant (see Figure 2 (a)). Augment each Pi to P̃i = Pi∪{u}∪{v}. Suppose there is a clique
C in Ĝ|Ãuv , then as

⋃
i P̃i = Ãuv, we have C =

⋃
i∈Λ C|P̃i , implying that |C| ≤

∑
i∈Λ

∣∣C|P̃i∣∣.
Hence by pigeonhole principle and the union bound, we have:

P
[
Ĝ|Ãuvhas auv-clique of size ≥ K

2

]
≤
|Λ|∑
i=1

P
[
Ĝ|P̃ihas auv-clique of size ≥ K

2|Λ|

]
(3)

Now for arbitrary i ∈ Λ, consider Ĝ|P̃i , the induced subgraph of Ĝ spanned by vertices
in P̃i. Note, Ĝ|P̃i can be viewed as generated by inserting each edge not in G∗|P̃i ∪ {uv} to
it with probability q. Recall from Definition 7 that each Pi adapts a clique decomposition
C

(i)
1 t· · ·tC

(i)
mi , where every C

(i)
j is contained in an r/2-ball, and all such balls are r-separated

(w.r.t Hausdorff distance).
Fix any i ∈ Λ. For simplicity of the argument below, set m = mi, and let Nj =

∣∣∣C(i)
j

∣∣∣
denote the number of points in the j-th cluster C(i)

j . Note that obviously, m ≤ |Pi| ≤ |V | = n

for any i ∈ Λ. Set Nmax = 3ρsn. By Lemma 9, we know that, with high probability (at least
1− n−5), Nj ≤ Nmax for all j in [1,m]. Let F denote the event that “for every v ∈ V , the
ball Br/2(v) ∩ V contains at most Nmax points”; and Fc denotes the complement event of F.
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Now set k :=
⌊

K
2|Λ|

⌋
−2. For every set S of k+2 vertices in this graph Ĝ|P̃i , let AS be the

event “S is a uv-clique in Ĝ|P̃i” and XS its indicator random variable. Set X =
∑
|S|=k+2 XS

and note that X is the number of uv-cliques of size (k + 2) in Ĝ|P̃i . It follows from Markov
inequality that:

P
[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
= P[X > 0] ≤ P[X > 0 | F] + P[Fc]

≤ E[X | F] + n−5. (4)

On the other hand, using linearity of expectation, we have:

E[X | F] =
∑

|S|=k+2

E[XS | F] = q2k
∑

x1+x2+···+xm=k
0≤xi≤Ni

(
N1

x1

)(
N2

x2

)
· · ·
(
Nm
xm

)
q(k2−

∑m

i=1
x2
i )/2

≤ q2k
∑

x1+x2+···+xm=k
0≤xi≤Nmax

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
q(k2−

∑m

i=1
x2
i )/2 (5)

To estimate this quantity, we have the following lemma:

I Lemma 11. There exists a constant c > 0 depending on β and ρ such that for any constant
ε > 0, if K ≤ csn and

q ≤ min
{(

k!
nεNk

maxm

)1/2k
,

(
k!

k2nεNk
maxm

2

)1/k
,

(
k!

nεmkNk
max

)4/k2}
(6)

then we have that E[X | F] = O(n−ε). Specifically, we can set ε = 3 (this choice will be
necessary later to apply union bound) and obtain E[X | F] = O(n−3).

The proof of this lemma is rather technical, and can be found in Appendix A.1.
Furthermore, |Λ| ≤ β2 (which is a constant) and m = |Pi| ≤ |V | = n. One can then

verify that there exist constants ca2 and ca3 (which depend on the doubling constant L of µ,
the Besicovitch constant β, and the regularity constant ρ), such that if

q ≤ ca2 ·
(

1
n

)ca3/K
· K

sn, (7)

then the conditions in Eqn. (6) will hold (the simple proof of this can be found in Appendix
A.2). Thus, by Lemma 11 and Eqn. (4), we know that if K ≤ csn and (7) holds, then

∀i ∈ Λ,P
[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
= O(n−3). (8)

On the other hand, note that

P
[
Ĝ|P̃i has a uv-clique of size ≥ K

2|Λ|

]
= P

[
Ĝ|P̃i has a uv-clique of size ≥ k + 2

]
As |Λ| is a constant, by Eqn. (3), we obtain that

If ∀i ∈ Λ,P
[
Ĝ|P̃i has a uv-clique of size ≥ K

2|Λ|

]
= O(n−3), then

P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3) (9)
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It then follows from Eqn. (8) and (9) that

If K ≤ csn and (7) holds, then P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3). (10)

Set ca1 = c · ca2 ·
( 1
n

)ca3/(c lnn). Easy to see that:

If q ≤ min
{
ca1 , c

a
2 ·
(

1
n

)ca3/K
· K

sn

}
, then

P
[
Ĝ|Ãuv has a uv-clique of size ≥ K

2

]
= O(n−3). (11)

Case (B): bounding the second term in Eqn. (2). Recall that Buv = {w ∈ V | w ∈
BVr (u) ∪ BVr (v)} (see Figure 2 (b)). Imagine we now build the following random graph
G̃localuv = (Ṽ , Ẽ): The vertex set Ṽ is simply Buv. To construct the edge set Ẽ, first, add all
edges in the clique spanned by nodes in BVr (u) as well as edges in the clique spanned by
nodes in BVr (v) into Ẽ. Next, add edge uv to Ẽ. Finally, insert each crossing edge xy with
x ∈ BVr (u) and y ∈ BVr (v) with probability q.

On the other hand, consider the graph Ĝ|Buv , the induced subgraph of Ĝ spanned by
vertices in Buv. We can imagine that the graph Ĝ|Buv was produced by first taking the
induced subgraph G∗|Buv , and then insert crossing edges xy each with probability q. Since
uv is a bad-edge, by Definition 3, we know that there are no edges between nodes in BVr (u)
and BVr (v) in the random geometric graph G∗. Hence we obtain:

P
[
Ĝ|Buv has a uv-clique of size ≥ K

2

]
≤ P

[
G̃localuv has a uv-clique of size ≥ K

2

]
(12)

Using a similar argument as in case (A) (the missing details can be found in Appendix
A.3), we have that there exist constants cb1, cb2, cb3 > 0 which depend on the doubling constant
L, the Besicovitch constant β and the regularity constant ρ such that

If q ≤ min
{
cb1, c

b
2 ·
(

1
n

)cb3/K
· K

sn

}
, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3)

Combining this with Eqn. (12), (11) and (2), we know that there exist constants
c1 = min{ca1 , cb1}, c2 = min{ca2 , cb2} and c3 = max{ca1 , cb3} such that if q satisfies conditions in
Eqn. (1), then

P
[
Ĝ has a uv-clique of size ≥ K

]
= O(n−3)

Finally, by applying the union bound, this means:

P
[
for every bad-edge (u, v), Ĝ has a uv-clique of size ≥ K

]
= O(n−1)

Thus with high probability, we have that for every bad-edge (u, v), ωu,v(Ĝ) < K as long as
Eqn. (1) holds. J
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3.2 Edge clique numbers for the deletion-only case
We now consider the deletion-only case, where we assume that the input graph Ĝ = Ĝp is
obtained by deleting each edge in the random geometric graph G∗ = G∗X (r) independently
with probability p. For an edge (u, v) in Ĝ, below we will give a lower bound on the edge-clique
number ωu,v(Ĝ). A simple observation is that for any edge (u, v) in G∗, as dX(u, v) ≤ r,
we have that Br(u) ∩Br(v) must contain a metric ball of radius r/2 (say Br/2(z) centered
at midpoint z of a geodesic connecting u to v in X; see Figure 1 (a)). Thus by a similar
argument as the proof of Claim 4, the number of points in the r/2-ball can be bounded
from below w.h.p. Note that all points in a r/2-ball span a clique in the random geometric
graph G∗. Since we then remove each edge from G∗ independently (to obtain Ĝ), to find a
lower bound for ωu,v(Ĝ), it suffices to consider the “local” subgraph of Ĝ restricted within
this r/2-ball Br/2(z). This local graph has the same behavior as the standard Erdős–Rényi
random graph G(Nz, 1−p), where Nz is the number of points from V within the ball Br/2(z).
This eventually leads to the following result.

I Theorem 12. Assume Density-cond holds. Let Ĝ = Ĝp denote the final graph after deleting
each edge in G∗X (r) independently with probability p. Then, for any constant p ∈ (0, 1), with
high probability, we have ωu,v(Ĝ) ≥ 2

3 log1/(1−p) sn for all edges (u, v) in Ĝ.

On the high level, we first prove the following technical lemma for an Erdős–Rényi random
graph, via an application of Janson’s Inequality [1]. The detailed proof can be found in the
full version of this paper [15] (see Appendix C in [15]).

I Lemma 13. Suppose G = G(N, p̄) is an Erdős–Rényi random graph with

p̄ ∈

((
1
N

) 1
10

,

(
1
N

) 1
64√
N

)
.

Set k :=
⌊
log1/p̄N

⌋
. Then, we have

P[ω(G) < k] < e−N
3/2

where ω(G) is the clique number of graph G.

I Remark. One can easily verify that ( 1
N ) 1

10 is very close to 0 and ( 1
N )

1
64√
N is very close to 1

as N goes to infinity. Hence the range p̄ ∈
(( 1

N

) 1
10 ,
( 1
N

) 1
64√
N

)
is broader (significantly more

relaxed) than requiring that p̄ is a constant between (0, 1). Hence, while not pursued in the
present paper, it is possible to show that Theorem 12 holds for a larger range of p.

Now we are ready to prove the main result in this section (Theorem 12) .

Proof of Theorem 12. Using the argument in the proof of Claim 4, we know that for a
fixed good-edge (u, v) (i.e. d(u, v) ≤ r), with probability 1− n− 8

3 , the geodesic ball Br/2(z)
(z is the mid-point of a geodesic connecting u to v in X) contains at least (sn/4) points.
Note that all points in a r/2-ball form a clique in r−neighborhood graph. Since we remove
each edge independently, in order to estimate ωu,v(Ĝ) from below, it suffices to consider
the “local” graph spanned by nodes in this r/2-ball. Note that this “local” graph have the
same behavior as the standard Erdős–Rényi random graph Glocuv := G(Nz, 1− p), where Nz
denotes the number of points falling in the ball Br/2(z).
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Furthermore, it is easy to see that, if Nz ≥ sn/4, then for any constant p ∈ (0, 1), one

can always find a sufficiently large n such that 1− p ∈
(

( 1
Nz

) 1
10 , ( 1

Nz
)

1
64√Nz

)
.

Now, we are ready to apply Lemma 13 to those “local” graphs: Note that p̄ in Lemma 13
will be set to be 1− p, and N will be set to be Nz.

P
[
ω(Glocuv ) < k | Nz ≥

sn

4

]
< e−( sn4 )3/2

≤ e−(3 lnn)3/2
< n−(lnn)1/2

where k =
⌊
log1/(1−p)Nz

⌋
.

Hence for k′ = 2
3 log1/(1−p) sn, we have that

P
[
ω(Glocuv ) < k′ | Nz ≥

sn

4

]
< P

[
ω(Glocuv ) < k | Nz ≥

sn

4

]
< n−(lnn)1/2

.

By the law of total probability, we know that

P
[
ω(Glocuv ) < k′ | d(u, v) ≤ r

]
< P

[
ω(Glocuv ) < k′ | Nz ≥

sn

4

]
+ P

[
Nz <

sn

4

]
< n−(lnn)1/2

+ n−
8
3

Applying the union bound, we have

P

 ∧
u,v∈V ;d(u,v)≤r

ω(Glocuv ) ≥ k′
 = 1− P

[
∃u, v ∈ V with d(u, v) ≤ r s.t. ω(Glocuv ) < k′

]
≥ 1− 1

2n
2P
[
ω(Glocuv ) < k′ | d(u, v) ≤ r

]
≥ 1− 1

2n
−(lnn)1/2+2 − 1

2n
− 2

3

Thus, with high probability, for each good-edge (u, v), we have

ωu,v(Ĝ) ≥ k′ = 2
3 log1/(1−p) sn. J

3.3 Combined Case
In this section, we consider both the deletion and insertion. In other words, we consider the
ER-perturbed random geometric graph Ĝ generated via the model described in section 2
that includes both edge-deletion probability p and edge-insertion probability q. Our main
results for the combined case are summarized in the following theorem. The (somewhat
repetitive) details can be found in the full version of this paper [15] (see Appendix D in [15]).

I Theorem 14. Assume Assumption-A holds. Let Ĝ = Ĝp,q(r) denote the graph obtained by
removing each edge in G∗ (= G∗X (r)) independently with probability p ∈ (0, 1) and inserting
each edge not in G∗ independently with probability q. There exist constants c1, c2, c3 > 0 which
depend on the doubling constant L of µ, the Besicovitch constant β(X ), and the regularity
constant ρ, such that the following holds for any K = K(n) with K→∞ as n→∞
1. W.h.p., for all good-edges (u, v) ∈ Ĝ, ωu,v(Ĝ) ≥ 2

3 log1/(1−p) sn.
2. W.h.p., for all bad-edges (u, v) ∈ Ĝ, ωu,v(Ĝ) < K as long as the insertion probability q

satisfies

q ≤ min
{
c1, c2 ·

(
1
n

)c3/K
· K

sn
√

1− p

}
(13)
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I Remark. For example, assume sn = Θ(lnn). Then for a constant deletion probability
p ∈ (0, 1), w.h.p. the edge clique number for any good-edge is at least Ω

(
log1/(1−p) sn

)
=

Ω(ln lnn). For any bad-edge uv, if the insertion probably q = o
(

( 1
n )

c3
ln lnn ln lnn

lnn

)
, then its

edge clique number is at most K = o(ln lnn) w.h.p.. As q decreases, the gap between the
edge clique number for good-edges and bad-edges can be made larger and larger.

Compared to the insertion-only case, it may seem that the condition on q is too restrictive
(recall that for the insertion only case we only require q = o(1) to have a gap between
edge clique number for good-edges and bad-edges). Intuitively, this is because: even for an
Erdős–Rényi graph G(n, q) with q = ( 1

n )
c3

ln lnn ln lnn
lnn , its clique number is of order Θ(ln lnn)

with high probability2. This clique size is already at the same scale as the bound of edge
clique number for a good-edge in the deletion-only case. Intuitively, this now gets into a
regime where the good/bad-edges potentially have edge cliques of asymptotically similar sizes.

4 Recover the shortest-path metric of G∗(r)

In this section, we show an application in recovering the shortest-path metric structure of
G∗X (r) from an input observed graph Ĝp,qX (r). This problem is previously introduced in [20].
Intuitively, assume that G∗ = G∗X (r) is the true graph of interests (which reflects the metric
structure of (X, d)), but the observed graph is a (p, q)-perturbed version Ĝ = Ĝp,qX (r) as
described in Section 2. The goal is to recover the shortest-path metric of G∗ from its noisy
observation Ĝ with approximation guarantees. Note that due to the random insertion, two
nodes could have significantly shorter path in Ĝ than in G∗.

Specifically, given two different metrics defined on the same space (Y, d1) and (Y, d2), we
say that d1 ≤ α · d2 if for any two points y1, y2 ∈ Y , we have that d1(y1, y2) ≤ α · d2(y1, y2).
The metric d1 is an α-approximation of d2 if 1

α · d2 ≤ d1 ≤ α · d2 for α ≥ 1 and α = 1 means
that d1 = d2.

Let dG denote the shortest-path metric on graph G. It was observed in [20] that, roughly
speaking, deletion (with p smaller than a certain constant) does not distort the shortest-path
metric of G∗ by more than a factor of 2. Insertion however could change shortest-path
distances significantly. The authors of [20] then proposed a filtering process to remove some
“bad” edges based on the so-called Jaccard index, and showed that after the Jaccard-filtering
process, the shortest-path metric of the resulting graph G̃ 2-approximates that of the true
graph G∗ when the insertion probability q is small.

We follow the same framework as [20], but change the filtering process to be one based
on the edge clique number instead. This allows us to recover the shortest-path metric within
constant factor for a much larger range of values of the insertion probability q, although we
do need the extra Regularity-cond which is not needed in [20]. (Note that it does not seem
that the bound of [20] can be improved even with this extra Regularity-cond).

We now introduce our edge-clique based filtering process.
τ -Clique filtering: Given graph Ĝ, we construct another graph G̃τ on the same vertex set as
follows: For each edge (u, v) ∈ E(Ĝ), we insert the edge (u, v) into E(G̃τ ) if and only if
ωu,v(Ĝ) ≥ τ . That is, V (G̃τ ) = V (Ĝ) and E(G̃τ ) :=

{
(u, v) ∈ E(Ĝ) | ωu,v(Ĝ) ≥ τ

}
.

The following result can be proved by almost the same argument as that for Theorem 12
of [20] with the help of Theorem 14.

2 Indeed, the upper bound can be easily derived by computing the expectation; and Lemma 13 in the
Appendix provides the lower bound.
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I Theorem 15. Assume Assumption-A holds. Suppose Ĝ = Ĝp,q(r) is the graph as in
Theorem 14. Let G̃τ denote the resulting graph after τ -Clique filtering. Then there exist
constants c0, c1, c2, c3 > 0 which depend on the doubling constant L of µ, the Besicovitch
constant β(X ), and the regularity constant ρ, such that if p ∈ (0, c0), τ ≤ 2

3 log1/(1−p) sn, and

q ≤ c2 ·
(

1
n

)c3/τ

· τ

sn
√

1− p

(
= min

{
c1, c2 ·

(
1
n

)c3/τ

· τ

sn
√

1− p

})
,

then, with high probability, the shortest-path metric dG̃τ is a 3-approximation of the shortest-
path metric dG∗ of G∗. However, if the deletion probability p = 0, then we have w.h.p. that
dG̃τ is a 3-approximation of dG∗ as long as τ < sn

4 , and q ≤ min
{
c1, c2 ·

( 1
n

)c3/τ · τsn
}
.

Proof. A simple application of Theorem 14 (i) and (ii) gives the following two lemmas,
respectively.

I Lemma 16. Under the same setting as Theorem 14, if p ∈ (0, 1) and the filtering parameter
τ satisfies τ < 2

3 log1/(1−p) sn, then, with high probability, our τ -Clique filtering process will
not remove any good-edges.

I Lemma 17. Under the same setting as Theorem 14, there exist constants c1, c2, c3 > 0
such that for constant p ∈ (0, 1), with high probability, a τ -Clique filtering process deletes all
bad-edges, as long as q ≤ min

{
c1, c2 · ( 1

n )c3/τ · τ
sn
√

1−p

}
.

Our goal is to show that 1
3dG̃τ ≤ dG∗ ≤ 3dG̃τ . Let E1 denote the event where d

Ĝ∩G∗ ≤
2dG∗ . By Lemma 17 of [20], event E1 happens with probability at least 1− n−Ω(1).

Let E2 denote the event where all edges Ĝ ∩G∗ are also contained in the edge set of the
filtered graph G̃τ ; that is, Ĝ ∩G∗ ⊆ G̃τ . By Lemma 16, event E2 happens with probability
at least 1− n− 2

3 (this bound is derived in the proof of Theorem 12). It then follows that:

If both events E1 and E2 happen, then dG̃τ ≤ dĜ∩G∗ ≤ 2dG∗ ≤ 3dG∗ .

What remains is to show dG∗ ≤ 3dG̃τ . To this end, we define E3 to be the event where
for all bad-edges (u, v) in Ĝ, we have ωu,v(Ĝ) < τ . If E3 happens, then it implies that for an
arbitrary edge (u, v) ∈ E(G̃τ ), either (u, v) ∈ E(G∗) (thus dG∗(u, v) = 1) or dG∗(u, v) ≤ 3
(since there is at least one edge connecting NG∗(u) and NG∗(v)). By Lemma 17, event E3
happens with probability at least 1 − o(1) (the exact bound can be found in the proof of
Theorem 14).

By applying the union bound, we know that E1, E2 and E3 happen simultaneously with
high probability.

Using a similar argument as the proof of Theorem 11 in [20], it then follows that given
any u, v ∈ V connected in G̃τ , we can find a path in G∗ of at most 3dG̃τ (u, v) number of
edges to connect u and v. Furthermore, event E1 implies that if u and v are not connected
in G̃τ , then they cannot be connected in G∗ either. Putting everything together, we thus
obtain dG∗ ≤ 3dG̃τ . Theorem 15 then follows. J

I Remark. Consider the insertion-only case (i.e, the deletion probability p = 0), which is a
case of independent interest. In this case, if we choose τ = lnn and assume that sn > 4τ ,
then w.h.p. we can recover the shortest-path metric within a factor of 3 as long as q ≤ c lnn

sn

for some constant c > 0. If sn = Θ(lnn) (but sn > 4τ = 4 lnn), then q is only required to
be smaller than a constant. If sn = lna n for some a > 1, then we require that q ≤ c

lna−1 n
.

In constrast, [20] requires that q = o(s), which is q = o( lnc n
n ) if sn = lna n with a ≥ 1. The

gap (ratio) between these two bounds is nearly a factor of n.
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For a constant deletion probability p ∈ (0, c0), our clique filtering process still requires a
much larger range of insertion probability q compared to what’s required in [20]. For example,
assume sn = Θ(lnn). Then if we choose the filtering parameter to be τ =

√
ln lnn, then we

can recover dG∗ approximately as long as the insertion probability q = o
(( 1

n

) c3√
ln lnn

√
ln lnn
lnn

)
.

This is still much larger than the q required in [20], which is q = o(s) = o
( lnn
n

)
. In fact,

( 1
n )

c3√
ln lnn

√
ln lnn
lnn is asymptoticly larger than 1

nε for any ε > 0. However, we do point out
that the Jaccard-filtering process in [20] is algorithmically much simpler and faster, and can
be done in O(n2) time, while the clique-filtering requires the computation of edge-clique
numbers, which is computationally expensive.
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A The missing proofs in Section 3.1

A.1 The proof of Lemma 11

We first pick c(β) to be a positive constant such that
⌊
c(β)Nmax

2|Λ|

⌋
− 2 ≤ Nmax. Then, since

k =
⌊

K
2|Λ|

⌋
− 2, it is easy to see that for any K ≤ c(β)Nmax = c(β)3ρsn, we have k ≤ Nmax.

Pick c = c(β)3ρ. Then, K ≤ csn implies k ≤ Nmax.
To estimate the summation on the right hand side of Eqn. (5), we consider the quantity

xmax := max
i
{xi}. We first enumerate all the possible cases of (x1, x2, · · · , xm) when xmax is

fixed, and then vary the value of xmax.

Set h(y) = max
xmax=y

{
m∑
i=1

x2
i

}
for y ≥

⌈
k
m

⌉
. It is the maximum value of

m∑
i=1

x2
i under the

constraint xmax = y. Without loss of generality, we assume x1 = y and y ≥ x2 ≥ x3 ≥

· · · ≥ xm ≥ 0. We argue that arg max
xmax=y

{
m∑
i=1

x2
i

}
= {y, y, · · · , y, k − ry, 0, · · · , 0}, that is

x1 = x2 = · · · = xr = y, xr+1 = k − ry where r =
⌊
k
y

⌋
.

To show this, we first consider x2: if x2 = y, then consider x3; otherwise, x2 < y, then
we search for the largest index j such that xj > 0. Note the fact that if x ≥ y > 0, then
(x + 1)2 + (y − 1)2 = x2 + y2 + 2(x − y) + 2 > x2 + y2. So if we increase x2 by 1 and
decrease xj by 1, we will enlarge

m∑
i=1

x2
i . After we update x2 = x2 + 1, xj = xj − 1, we

still get a decreasing sequence x1 ≥ x2 ≥ · · · ≥ xm ≥ 0. If we still have x2 < y, then we
repeat the same procedure above (by increasing x2 and decreasing xj where j is the largest
index such that xj > 0). We repeat this process until x2 = y or x1 + x2 = k. If it is the
former case (i.e, x2 = y), then we consider x3 and so on. Finally, we will get the sequence
x1 = · · · = xr = y, xr+1 = k − ry where r =

⌊
k
y

⌋
as claimed, and this maximizes

m∑
i=1

x2
i .

Next we claim that h(y + 1) > h(y). The reason is similar to the above. We update the
sequence x1 = x2 = · · · = xr = y, xr+1 = k − ry (which corresponding to h(y)) from x1: we
increase x1 by 1; search the largest index s such that xs > 0 and decrease xs by 1. And then
consider x2 and so on and so forth. This process won’t stop until x1 = x2 = · · · = xq = y + 1
and xq+1 = k − q(y + 1) with q =

⌊
k
y+1

⌋
. Thus h(y + 1) > h(y).

By enumerating all the possible values of xmax, we split Eqn. (5) into three parts as
follows (corresponding to xmax = k, xmax ∈

[⌈
k+1

2
⌉
, k − 1

]
and xmax ∈

[⌈
k
m

⌉
,
⌈
k+1

2
⌉
− 1
]
)

(see the remarks after this equation for how the inequality is derived);
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q2k
∑

x1+x2+···+xm=k
xi≥0

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
q(k2−

∑m

i=1
x2
i )/2

≤ q2k
(
Nmax

k

)
m + q2k

k−1∑
xmax=d k+1

2 e

((
m

1

)(
Nmax

xmax

) ∑
y1+···+ym−1=k−xmax

xmax≥yi≥0

(
Nmax

y1

)
· · ·

(
Nmax

ym−1

)
qxmax(k−xmax)

)
+
(
mNmax

k

)
q

(k−1)2
4 +2k.

(14)

I Remark. The first term on the right hand side of Eqn. (14) comes from the fact that if
xmax = k, then there are m possible cases for (x1, x2, · · · , xm). For each case, the value of
each term in the summation is

(
Nmax
k

)
, giving rise to the first term in Eqn. (14).

The third term on the right hand side of Eqn. (14) can be derived as follows. First,
observe that

d k+1
2 e−1∑

xmax=d kme

( ∑
x1+x2+···+xm=k

xi≥0,maxi{xi}=xmax

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

))

≤
∑

x1+x2+···+xm=k
xi≥0

(
Nmax

x1

)(
Nmax

x2

)
· · ·
(
Nmax

xm

)
=
(
mNmax

k

)
.

On the other hand, as xmax ≤
⌈
k+1

2
⌉
− 1 =

⌈
k−1

2
⌉
, we have:

k2 −
∑m
i=1 x

2
i

2 ≥ k2 − h(xmax)
2 ≥

k2 − h(
⌈
k−1

2
⌉
)

2 ≥ (k − 1)2

4 ,

where the second inequality uses the fact that h(y) is an increasing function, and the last
inequality comes from that h(

⌈
k−1

2
⌉
) ≤ (

⌈
k−1

2
⌉
)2 +(

⌈
k−1

2
⌉
)2 +1 ≤ k2/4+k2/4+1 = k2/2+1.

To this end, it suffices to estimate all three terms on the right hand side of Eqn. (14).

The first term of Eqn. (14): According to the assumptions in Eqn. (6), we know

q ≤
(

k!
nεNk

maxm

)1/2k
.

Thus, for the first term of Eqn. (14), we have:

q2k
(
Nmax

k

)
m ≤

(
k!

nεNk
maxm

)
Nk

max
k! m = 1

nε
. (15)

The second term of Eqn. (14): For the second term of Eqn. (14), we relax the constraint
xmax ≥ yi ≥ 0 to yi ≥ 0. Thus, we have:∑

y1+···+ym−1=k−xmax
xmax ≥ yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)
≤

∑
y1+···+ym−1=k−xmax

yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)

=
(

(m− 1)Nmax

k − xmax

)
≤ (m− 1)k−xmaxNk−xmax

max
(k − xmax)! . (16)

ISAAC 2019



29:18 Local Cliques in ER-Perturbed Random Geometric Graphs

Now apply (16) to the second term of (14), we have (starting from the second line, we
replace xmax to be j for simplicity):

q2k
k−1∑

xmax=d k+1
2 e

((
m

1

)(
Nmax

xmax

) ∑
y1+···+ym−1=k−xmax

xmax≥yi≥0

(
Nmax

y1

)
· · ·
(
Nmax

ym−1

)
qxmax(k−xmax)

)

≤
k−1∑

j=d k+1
2 e

(
m

(Nmax)j

j! q2k+j(k−j) (m− 1)k−jNk−j
max

(k − j)!

)

<

k−1∑
j=d k+1

2 e

(
mk−j+1Nk

max

(
k

k − j

)
1
k!q

2k+j(k−j)

)

<

k−1∑
j=d k+1

2 e

(
mk−j+1Nk

max
kk−j

(k − j)!
1
k!q

2k+j(k−j)

)
. (17)

Since q ≤
(

k!
k2nεNk

maxm
2

)1/k
by Eqn. (6), for each j satisfying

⌈
k+1

2
⌉
≤ j ≤ k − 1, we

have:

mk−j+1Nk
max

kk−j

(k − j)!
1
k!q

2k+j(k−j)

≤ mk−j+1Nk
max

kk−j

(k − j)!
1
k!

k!
k2nεNk

maxm
2

(
k!

k2nεNk
maxm

2

) 2k+j(k−j)
k −1

≤ mk−j−1kk−j−1
(

k!
k2nεNk

maxm
2

) k+j(k−j)
k 1

knε

≤ mk−j−1kk−j−1
(

k!
k2nεNk

maxm
2

) k−j−1
2 1

knε
(18)

=
(

k!
nεNk

max

) k−j−1
2 1

knε

≤ 1
knε

. (19)

Eqn. (18) comes from two facts: 1) k ≤ Nmax (and thus the term k!
k2nεNk

maxm
2 < 1)

and 2) by tedious by elementary calculation, we can show that k+j(k−j)
k ≥ k−j−1

2 when⌈
k+1

2
⌉
≤ j ≤ k − 1. Eqn. (19) holds since k ≤ Nmax (and thus k!

nεNk
max

< 1).

The third term of Eqn. (14): For the third term of (14), plugging in the condition

q ≤
(

k!
nεmkNk

max

) 4
k2

,
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we thus have(
mNmax

k

)
q

(k−1)2
4 +2k ≤ (mNmax)k

k! q
(k−1)2

4 +2k

≤ (mNmax)k

k!
k!

nεmkNk
max

(
k!

nεmkNk
max

) 4
k2

(
(k−1)2

4 +2k
)
−1
≤ 1

nε

(20)

where the last inequality holds as k!
nεmkNk

max
< 1.

Finally, combining (15), (19) and (20), we have:

E[X | F] ≤ 1
nε

+ k

2 ·
1
knε

+ 1
nε

= 5
2nε .

This proves Lemma 11.

A.2 Existences of constants ca
2 and ca

3

We claim that there exist constants ca2 and ca3 (which depend on the doubling constant L of
µ, the Besicovitch constant β, and the regularity constant ρ), such that if

q ≤ ca2 ·
(

1
n

)ca3/K
· K

sn,

then the conditions in Eqn. (6) will hold. We prove this by elementary calculation below,
where we will use the Stirling’s approximation k! >

√
2πkke−k and the fact that k ≤ Nmax =

3ρsn (K ≤ csn implies this due to the choice of c in the proof of Lemma 11) and m ≤ n

(where recall that m is the size of the number of clusters in the clique-decomposition of Pi).(
k!

nεNk
maxm

) 1
2k

>

(√
2πkke−k

n1+ε

) 1
2k ( 1

3ρsn

) 1
2

=
(
e−

1
2 (2π) 1

4k

)( 1
n

) 1+ε
2k
(

k

3ρsn

) 1
2

(
k!

k2nεNk
maxm

2

) 1
k

>
(
e−1(2π) 1

4k k−
2
k

)( 1
n

) 2+ε
k
(

k

3ρsn

)
(

k!
nεmkNk

max

) 4
k2

>
(

(2π)
2
k2 e−

4
k

)( 1
n

) 4(k+ε)
k2

(
k

3ρsn

) 4
k

.

Thus, by comparing the exponents of each term, we know that if q ≤ 1
3ρe
( 1
n

) 4+ε
k
(
k
sn

)
, then

the condition on q holds. Finally, since k =
⌊

K
2|Λ|

⌋
− 2, easy to see there exists constants

ca2 , c
a
3 such that the constraint q ≤ ca2

( 1
n

)ca3/K K
sn implies the condition.

A.3 The missing details in case (B) of Theorem 10
Denote by H the event that “for every v ∈ V , the ball Br(v) ∩ V contains at most 3Lρsn
points”, and Hc is its complement. By an argument similar to that of Claim 9, we have
that P[Hc] ≤ n−5. Set Nu := |BVr (u)| and Nv := |BVr (v)|. Let k̃ :=

⌊K
2
⌋
− 2. For every set

S of (k̃ + 2) vertices in G̃localuv , let AS be the event “S is a uv-clique in G̃localuv ” and YS its
indicator random variable. Set

Y =
∑

|S|=k̃+2

YS .
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Then Y is the number of uv-cliques of size (k̃ + 2) in G̃localuv . Linearity of expectation gives:

E[Y | H] =
∑

|S|=k̃+2

E[YS | H] =
∑

x1+x2=k̃
0≤x1≤Nu−1
0≤x2≤Nv−1

(
Nu − 1
x1

)(
Nv − 1
x2

)
q(x1+1)(x2+1)−1. (21)

To estimate this quantity, we first prove the following result:

I Lemma 18. For any constant ε > 0, we have that E[Y | H] = O(n−ε) as long as the
following condition on q holds:

q ≤ min


(

k̃!
k̃2nε(Nu +Nv)k̃

)1/k̃

,

(
k̃!

nε(Nu +Nv)k̃

)16/k̃2
 . (22)

Specifically, setting ε = 3 (a case which we will use later), we have E[Y | H] = O(n−3).

The proof of this technical result can be found in Appendix A.4.
Note that if event H is true, then Nu+Nv ≤ 6Lρsn. In this case, there exist two constants

cb2 and cb3 which depend on the doubling constant L of µ, the Besicovitch constant β, and
the regularity constant ρ, such that if K ≤ 12Lρsn and

q ≤ cb2 ·
(

1
n

)cb3/K
· K

sn,

then the conditions in Eqn. (22) will hold (the simple proof of this can be found in Appendix
A.5).

On the other hand, we have

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= P[Y > 0]

= P[Y > 0 | H] · P[H] + P[Y > 0 | Hc] · P[Hc]
≤ P[Y > 0 | H] + P[Hc]
≤ E[Y | H] + n−5.

Thus, by Lemma (18), we know that

If K ≤ 6Lρsn and q ≤ cb2 ·
(

1
n

)cb3/K
· K

sn , then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3). (23)

Finally, suppose K > K1 = 12Lρsn. Set

cb1 = cb2 ·
(

1
n

)cb3/(12Lρ lnn)
· K1

sn ≤ c
b
2 ·
(

1
n

)cb3/K1

· K1

sn

where the inequality holds as by Assumption-A sn > lnn. Plugging in K1 = 12Lρsn to the
definition of cb1, it is then easy to see that cb1 is a positive constant. Using Eqn. (23), we
know that if q ≤ cb1 and K > K1 = 12Lρsn, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
≤ P

[
G̃localuv has a uv-clique of size ≥ K1

2

]
= O(n−3).
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Combining this with the discussion above and applying Lemma 18, we have

If q ≤ min
{
cb1, c

b
2 ·
(

1
n

)cb3/K
· K

sn

}
, then

P
[
G̃localuv has a uv-clique of size ≥ K

2

]
= O(n−3).

A.4 The proof of Lemma 18

Proof. It is easy to see that if K > 2(Nu +Nv), then k̃ > Nu +Nv − 2 which implies that
the summation on the right hand side of Eqn. (21) is 0. Now let’s focus on the case when
K ≤ 2(Nu +Nv). In this case, we have k̃ ≤ (Nu − 1) + (Nv − 1) < Nu +Nv. Note that the
right hand side of (21) can be bounded from above by:

∑
x1+x2=k̃

0≤x1≤Nu−1
0≤x2≤Nv−1

(
Nu − 1
x1

)(
Nv − 1
x2

)
q(x1+1)(x2+1)−1 ≤ qk̃

k̃∑
i=0

(
Nu
i

)(
Nv
k̃ − i

)
qi(k̃−i)

≤ qk̃

b k̃4 c∑
i=0

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qi(k̃−i)

 +
(
Nu +Nv

k̃

)
qk̃+ k̃2

16 . (24)

Eqn. (24) is due to the fact that when
⌊
k̃
4

⌋
+ 1 ≤ i ≤ k̃ −

⌊
k̃
4

⌋
− 1, we have

i(k̃ − i) ≥
(⌊

k̃

4

⌋
+ 1
)(⌊

k̃

4

⌋
+ 1
)
≥ k̃2

16 .

Now it suffices to estimate the two terms on the right hand side of Eqn. (24).

The first term of Eqn. (24): For the first term of (24), we have the following estimate:

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qk̃+i(k̃−i) ≤ N i

uN
k̃−i
v +N k̃−i

u N i
v

i!(k̃ − i)!
qk̃qi(k̃−i)

≤ (Nu +Nv)k̃

i!(k̃ − i)!
qk̃qi(k̃−i).

By plugging in the condition q ≤
(

k̃!
k̃2nε(Nu +Nv)k̃

)1/k̃

, we have:

(Nu +Nv)k̃

i!(k̃ − i)!
qk̃qi(k̃−i) ≤ (Nu +Nv)k̃

i!(k̃ − i)!
k̃!

k̃2nε(Nu +Nv)k̃
qi(k̃−i) = k̃!

i!(k̃ − i)!
qi(k̃−i)

1
k̃2nε

.

For i = 0, we have k̃!
i!(k̃ − i)!

qi(k̃−i) 1
k̃2nε

= 1
k̃2nε

. For i ≥ 1, note that 1 ≤ i ≤
⌊
k̃
4

⌋
implies
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i(k̃−i)
k̃
≥ i

2 . Thus, we have:

k̃!
i!(k̃ − i)!

qi(k̃−i)
1

k̃2nε
≤ k̃i

i!

(
k̃!

k̃2nε(Nu +Nv)k̃

) i(k̃−i)
k̃ 1

k̃2nε

≤ k̃i

i!

(
k̃!

k̃2nε(Nu +Nv)k̃

) i
2 1
k̃2nε

≤
(

k̃!
nε(Nu +Nv)k̃

) i
2 1
k̃2nε

≤ 1
k̃2nε

.

The last two inequalities hold since k̃ ≤ Nu +Nv. Therefore,

qk̃
b k̃4 c∑
i=0

[(
Nu
i

)(
Nv
k̃ − i

)
+
(
Nu
k̃ − i

)(
Nv
i

)]
qi(k̃−i) ≤ k̃

4
1

k̃2nε
= 1

4k̃nε
. (25)

The second term of Eqn. (24): For the second term of (24), directly plugging in the

condition q ≤
(

k̃!
(Nu+Nv)k̃nε

)16/k̃2

, we have:

(
Nu +Nv

k̃

)
qk̃+ k̃2

16 ≤ (Nu +Nv)k̃

k̃!
k̃!

(Nu +Nv)k̃nε

(
k̃!

(Nu +Nv)k̃nε

) 16
k̃2

(
k̃+ k̃2

16

)
−1

≤ 1
nε
.

(26)

Finally, combining (25) and (26), we have:

E[Y | H] ≤ 1
4k̃nε

+ 1
nε

<
2
nε
.

This finishes the proof of Lemma 18. J

A.5 Existences of constants cb
2 and cb

3

Note that as event H holds, we have Nu +Nv ≤ 6Lρsn. Also note that if K ≤ 12Lρsn, then
k̃ ≤ 6Lρsn. Hence

(
k̃!

k̃2nε(Nu +Nv)k̃

) 1
k̃

>

(√
2πk̃k̃e−k̃

k̃2nε

) 1
k̃ 1

6Lρsn =
(

(2π)
1

2k̃ k̃−
2
k̃ e−1

)( 1
n

) ε
k̃
(

k̃

6Lρsn

)
(

k̃!
nε(Nu +Nv)k̃

) 16
k̃2

> (2π)
8
k̃2 e−

16
k̃

(
1
n

) 16ε
k̃2
(

k̃

6Lρsn

) 16
k̃

.

Finally, observe that (2π)
8
k2 > 1, e− 16

k > 1
e . It then follows that there exists constants

cb2, c
b
3 such that cb2

( 1
n

)cb3/K K
sn is smaller than the last term in the right hand side of each

equation above. Hence k̃ ≤ 6Lρsn and q ≤ cb2
( 1
n

)cb3/K K
sn implies the condition on q as in

Eqn. (22).
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