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Abstract
Let V be a multiset of n points in Rd, which we call voters, and let k > 1 and ` > 1 be two given
constants. We consider the following game, where two players P and Q compete over the voters
in V : First, player P selects a set P of k points in Rd, and then player Q selects a set Q of ` points
in Rd. Player P wins a voter v ∈ V iff dist(v, P ) 6 dist(v,Q), where dist(v, P ) := minp∈P dist(v, p)
and dist(v,Q) is defined similarly. Player P wins the game if he wins at least half the voters. The
algorithmic problem we study is the following: given V , k, and `, how efficiently can we decide if
player P has a winning strategy, that is, if P can select his k points such that he wins the game no
matter where Q places her points.

Banik et al. devised a singly-exponential algorithm for the game in R1, for the case k = `. We
improve their result by presenting the first polynomial-time algorithm for the game in R1. Our
algorithm can handle arbitrary values of k and `. We also show that if d ≥ 2, deciding if player P
has a winning strategy is ΣP

2 -hard when k and ` are part of the input. Finally, we prove that for
any dimension d, the problem is contained in the complexity class ∃∀R, and we give an algorithm
that works in polynomial time for fixed k and `.
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1 Introduction

Voronoi games, as introduced by Ahn et al. [1], can be viewed as competitive facility-location
problems in which two players P and Q want to place their facilities in order to maximize
their market area. The Voronoi game of Ahn et al. is played in a bounded region R ⊂ R2,
and the facilities of the players are modeled as points in this region. Each player gets the
same number, k, of facilities, which they have to place alternatingly. The market area of P
(and similarly of Q) is now given by the area of the region of all points q ∈ R whose closest
facility was placed by P , that is, it is the total area of the Voronoi cells of P ’s facilities in the
Voronoi diagram of the facilities of P and Q. Ahn et al. proved that for k > 1 and when the
region R is a circle or a segment, the second player can win the game by a payoff of 1/2 + ε,
for some ε > 0, where the first player can ensure ε is arbitrarily small.

© Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.t.d.berg@tue.nl
mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
mailto:mehran.mehr@gamil.com
https://doi.org/10.4230/LIPIcs.ISAAC.2019.37
https://arxiv.org/abs/1902.09234
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


37:2 On One-Round Discrete Voronoi Games

The one-round Voronoi game introduced by Cheong et al. [8] is similar to the Voronoi
game of Ahn et al., except that the first player must first place all his k facilities, after which
the second player places all her k facilities. They considered the problem where R is a square,
and they showed that when k is large enough the second player can always win a fraction
1/2 + α of the area of R for some α > 0. Fekete and Meijer [11] considered the problem on a
rectangle R of aspect ratio ρ 6 1. They showed that the first player wins more than half
the area of R, unless k > 3 and ρ >

√
2/n, or k = 2 and ρ >

√
3/2. They also showed that

if R is a polygon with holes, then computing the locations of the facilities for the second
player that maximize the area she wins, against a given set of facilities of the first player is
NP-hard.

One-round discrete Voronoi games. In this paper we are interested in discrete (Euclidean)
one-round Voronoi games, where the players do not compete for area but for a discrete set of
points. That is, instead of the region R one is given a set V of n points in a geometric space,
and a point v ∈ V is won by the player owning the facility closest to v. (Another discrete
variant of Voronoi games is played on graphs [16, 18] but we restrict our attention to the
geometric variant.) Formally, the problem we study is defined as follows.

Let V be a multiset of n points in Rd, which we call voters from now on, and let k > 1
and ` > 1 be two integers. The one-round discrete Voronoi game defined by the triple 〈V, k, `〉
is a single-turn game played between two players P and Q. First, player P places a set P of
k points in Rd, then player Q places a set Q of ` points in Rd. (These points may coincide
with the voters in V .) We call the set P the strategy of P and the set Q the strategy of
Q. Player P wins a voter v ∈ V if dist(v, P ) 6 dist(v,Q), where dist(v, P ) and dist(v,Q)
denote the minimum distance between a voter v and the sets P and Q, respectively. Note
that this definition favors player P , since in case of a tie a voter is won by P . We now define
V [P � Q] := {v ∈ V : dist(v, P ) 6 dist(v,Q)} to be the multiset of voters won by player P
when he uses strategy P and player Q uses strategy Q. Player P wins the game 〈V, k, `〉 if
he wins at least half the voters in V , that is, when

∣∣V [P � Q]
∣∣ > n/2; otherwise Q wins the

game. Here
∣∣V [P � Q]

∣∣ denotes the size of the multiset V [P � Q] (counting multiplicities).
We now define Γk,`(V ) as the maximum number of voters that can be won by player P
against an optimal opponent:

Γk,`(V ) := max
P⊂Rd, |P |=k

min
Q⊂Rd, |Q|=`

∣∣V [P � Q]
∣∣.

For a given multiset V of voters, we want to decide if1 Γk,`(V ) > n/2. In other words, we
are interested in determining for a given game 〈V, k, `〉 if P has a winning strategy, which is
a set of k points such that P wins the game no matter where Q places her points.

An important special case, which has already been studied in spatial voting theory for
a long time, is when k = ` = 1 [14]. Here the coordinates of a point in V represent the
preference of the voter on certain topics, and the point played by Q represents a certain
proposal. If the point played by P wins against all possible points played by Q, then the P ’s
proposal will win the vote against any other proposal. Note that in the problem definition we
gave above, voters at equal distance from P and Q are won by P , and P has to win at least
half the voters. This is the definition typically used in papers of Voronoi games [3, 4, 5, 6]. In
voting theory other variants are studied as well, for instance where points at equal distance

1 One can also require that Γk,`(V ) > n/2; with some small modifications, all the results in this paper
can be applied to the case with strict inequality as well.
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to P and Q are not won by either of them, and P wins the game if he wins more voters than
Q; see the paper by McKelvey and Wendell [14] who use the term majority points for the
former variant and the term plurality points for the latter variant.

Previous work. Besides algorithmic problems concerning the one-round discrete Voronoi
game one can also consider combinatorial problems. In particular, one can ask for bounds on
Γk,`(V ) as a function of n, k, and `. It is known that for any set V in R2 and k = ` = 1 we
have bn/3c 6 Γ1,1(V ) 6 dn/2e. This result is based on known bounds for maximum Tukey
depth, where the lower bound can be proven using Helly’s theorem. It is also known [6] that
there is a constant c such that k = c` points suffice for P to win, that is, Γc`,`(V ) > n/2
for any V .

In this paper we focus on the algorithmic problem of computing Γk,`(V ) for given V ,
k, and `. The problem of deciding if Γk,`(V ) > n/2 was studied for the case k = ` = 1 by
Wu et al. [19] and Lin et al. [13], and later by De Berg et al. [9] who solve this problem
in O(n logn) time in any fixed dimension d. Their algorithms works when V is a set (not
a multiset) and for plurality points instead of majority points. Other algorithmic results
are for the setting where the players already placed all but one of their points, and one
wants to compute the best locations for the last point of P and of Q. Banik et al. [5] gave
algorithms that finds the best location for P in O(n8) time and for Q in O(n2) time. For
the two-round variant of the problem, with k = ` = 2, polynomial algorithms for finding the
optimal strategies of both players are also known [4].

Our work is inspired by the paper of Banik et al. [3] on computing Γk,`(V ) in R1. They
considered the case of arbitrarily large k and `, but where k = ` (and V is a set instead of a
multiset). For this case they showed that depending on the set V either P or Q can win
the game, and they presented an algorithm to compute Γk,`(V ) in time O(nk−λk ), where
0 < λk < 1 is a constant dependent only on k. This raises the question: is the problem
NP-hard when k is part of the input?

Our results. We answer the question above negatively, by presenting an algorithm that
computes Γk,`(V ) in R1 in polynomial time. Our algorithm works when V is a multiset, and
it does not require k and ` to be equal. Our algorithm computes Γk,`(V ) and finds a strategy
for P that wins this many voters in time O(kn4). The algorithm can be extended to the
case when the voters are weighted, requiring only a slight increase in running time.

The algorithm by Banik et al. [3] discretizes the problem, by defining a finite set of
potential locations for P to place his points. However, to ensure an optimal strategy for P,
the set of potential locations has exponential size. To overcome this problem we need several
new ideas. First of all, we partition the possible strategies into various classes – the concept
of thresholds introduced later plays this role – such that for each class we can anticipate the
behavior of the optimal strategy for Q. To compute the best strategy within a certain class
we use dynamic programming, in a non-standard (and, unfortunately, rather complicated)
way. The subproblems in our dynamic program are for smaller point sets and smaller values
of k and ` (actually we will need several other parameters) where the goal of P will be to
push his rightmost point as far to the right as possible to win a certain number of points.
One complication in the dynamic program is that it is unclear which small subproblems I ′
can be used to solve a given subproblem I. The opposite direction – determining for I ′
which larger I may use I ′ in their solution – is easier, so we use a sweep approach: when
the solution to some I ′ is determined, we update the solution to larger subproblems I that
can use I ′.

ISAAC 2019



37:4 On One-Round Discrete Voronoi Games

After establishing that we can compute Γk,`(V ) in polynomial time in R1, we turn to the
higher-dimensional problem. We show (in the full version) that deciding if P has a winning
strategy is ΣP2 -hard in R2. We also show that for fixed k and ` this problem can be solved
in polynomial time. Our solution combines algebraic methods [7] with a result of Paterson
and Zwick [15] that one can construct a polynomial-size boolean circuits that implements
the majority function. The latter result in essential to avoid the appearance of n in the
exponent. As a byproduct of the algebraic method, we show that the problem is contained
in the complexity class ∃∀R; see [10] for more information on this complexity class.

2 A Polynomial-Time Algorithm for d = 1

In this section, we present a polynomial-time algorithm for the 1-dimensional discrete Voronoi
game. Our algorithm will employ dynamic programming, and it will be convenient to use n,
k, and ` as variables in the dynamic program. From now on, we therefore use n∗ for the size
of the original multiset V , and k∗ and `∗ for the initial number of points that can be played
by P and Q, respectively.

2.1 Notation and Basic Properties
We denote the given multiset of voters by V := {v1, . . . , vn∗}, where we assume the voters
are numbered from left to right. We also always number the points in the strategies
P := {p1, . . . , pk∗} and Q := {q1, . . . , q`∗} from left to right. For brevity we make no
distinction between a point and its value (that is, its x-coordinate), so that we can for
example write p1 < q1 to indicate that the leftmost point of P is located to the left of the
leftmost point of Q.

For a given game 〈V, k, `〉, we say that a strategy P of player P realizes a gain γ if∣∣V [P � Q]
∣∣ > γ for any strategy Q of player Q. Furthermore, we say that a strategy P is

optimal if it realizes Γk,`(V ), the maximum possible gain for P, and we say a strategy Q is
optimal against a given strategy P if

∣∣V [P � Q]
∣∣ 6 ∣∣V [P � Q′]

∣∣ for any strategy Q′.

Trivial, reasonable, and canonical strategies for P. For 0 6 n 6 n∗, define Vn :=
{v1, . . . , vn} to be the leftmost n points in V . Suppose we want to compute Γk,`(Vn)
for some 1 6 k 6 n and 0 6 ` 6 n. The trivial strategy of player P is to place his points at
the k points of Vn with the highest multiplicities – here we consider the multiset Vn as a set
of distinct points, each with a multiplicity corresponding to the number of times it occurs
in Vn – with ties broken arbitrarily. Let ‖Vn‖ denote the number of distinct points in Vn.
Then the trivial strategy is optimal when k > ‖Vn‖ and also when ` > 2k: in the former
case P wins all voters with the trivial strategy, and in the latter case Q can always win all
voters not coinciding with a point in P (namely by surrounding each pi ∈ P by two points
very close to pi) so the trivial strategy is optimal for P. Hence, from now on we consider
subproblems with k < ‖Vn‖ and ` < 2k.

We can without loss of generality restrict our attention to strategies for P that place
at most one point in each half-open interval of the form (vi, vi+1] with vi 6= vi+1, where
0 6 i 6 n, v0 := −∞, and vn∗+1 := ∞. Indeed, placing more than two points inside an
interval (vi, vi+1] is clearly not useful, and if two points are placed in some interval (vi, vi+1]
then we can always move the leftmost point onto vi. (If vi is already occupied by a point
in P , then we can just put the point on any unoccupied voter; under our assumption that
k < ‖Vn‖ an unoccupied voter always exists.) We will call a strategy for P satisfying the
property above reasonable.
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I Observation 1 (Banik et al. [3]). Assuming k < ‖Vn‖ there exist an optimal strategy for P
that is reasonable and has p1 ∈ V (that is, p1 coincides with a voter).

We can define an ordering on strategies of the same size by sorting them in lexicographical
order. More precisely, we say that a strategy P = {p1, . . . , pk} is greater than a strategy P ′ =
{p′1, . . . , p′k}, denoted by P � P ′, if 〈p1, . . . , pk〉 >lex 〈p′1, . . . , p′k〉, where >lex denotes the
lexicographical order. Using this ordering, the largest reasonable strategy P that is optimal –
namely, that realizes Γk,`(Vn) – is called the canonical strategy of P.

α-gains, β-gains, and gain sequences. Consider a strategy P := {p1, . . . , pk}. It will be
convenient to add two extra points to P , namely p0 := −∞ and pk+1 :=∞; this clearly does
not influence the outcome of the game. The strategy P thus induces k + 1 open intervals of
the form (pi, pi+1) where player Q may place her points. It is easy to see that there exists an
optimal strategy for Q with the following property: Q contains at most two points in each
interval (pi, pi+1) with 1 6 i 6 k− 1, and at most one point in (p0, p1) and at most one point
in (pk, pk+1). From now on we restrict our attention to strategies for Q with this property.

Now suppose that x and y are consecutive points (with x < y) in some strategy P , where
x could be −∞ and y could be ∞. As just argued, Q either places zero, one, or two points
inside (x, y). When Q places zero points, then she obviously does not win any of the voters
in Vn ∩ (x, y). The maximum number of voters Q can win from Vn ∩ (x, y) by placing a single
point is the maximum number of voters in (x, y) that can be covered by an open interval of
length (y − x)/2, as by placing her point in any q ∈ (x, y), Q wins all (and only) the voters
in the open interval ((x+ q)/2, (q + y)/2) of length (y − x)/2; see Banik et al. [3]. We call
this value the α-gain of Q in (x, y) and denote it by gainα(Vn, x, y). By placing two points
inside (x, y), one immediately to the right of x and one immediately to the left of y, player Q
will win all voters Vn ∩ (x, y). Thus the extra number of voters won by the second point in
(x, y) as compared to just placing a single point is equal to |Vn ∩ (x, y)| − gainα(Vn, x, y).
We call this quantity the β-gain of Q in (x, y) and denote it by gainβ(Vn, x, y). Note that
for intervals (x,∞) we have gainα(x,∞) = |Vn ∩ (x,∞)| and gainβ(x,∞) = 0; a similar
statement holds for (−∞, y).

The following observation follows from the fact that gainα(Vn, x, y) equals the maximum
number of voters in (x, y) that can be covered by an open interval of length (y − x)/2.

I Observation 2 (Banik et al. [3]). For any x, y we have gainα(Vn, x, y) > gainβ(Vn, x, y).

Let P := {p0, p1, . . . , pk, pk+1} be a given strategy for P , where by convention p0 = −∞ and
pk+1 =∞. Consider {gainα(Vn, pi, pi+1) : 0 6 i 6 k} ∪ {gainβ(Vn, pi, pi+1) : 0 6 i 6 k}, the
multiset of all α-gains and β-gains defined by the intervals (pi, pi + 1). Sort this sequence in
non-increasing order, using the following tie-breaking rules if two gains are equal:

Gains from the interval (pi, pi+1) have precedence over gains from intervals (pj , pj+1)
when i < j.
if both gains are for the same interval (pi, pi+1) then the α-gain precedes the β-gain.

We call the resulting sorted sequence the gain sequence induced by P on Vn. We denote this
sequence by Σgain(Vn, P ) or, when P and Vn are clear from the context, by Σgain.

The canonical strategy of Q and sequence representations. Given the multiset Vn, a
strategy P and value `, player Q can compute an optimal strategy as follows. First she
computes the gain sequence Σgain(Vn, P ) and chooses the first ` gains in Σgain(Vn, P ). Then
for each 0 6 i 6 k she proceeds as follows. When gainα(Vn, pi, pi+1) and gainβ(Vn, pi, pi+1)
are both chosen, she places two points in (pi, pi+1) that win all voters in (pi, pi+1); when only
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37:6 On One-Round Discrete Voronoi Games

gainα(Vn, pi, pi+1) is chosen, she places one point in (pi, pi+1) that win gainα(Vn, pi, pi+1)
voters. (By Observation 2 and the tie-breaking rules, when gainβ(Vn, pi, pi+1) is chosen it is
always the case that gainα(Vn, pi, pi+1) is also chosen.) The resulting strategy Q is optimal
as highest possible gains are chosen and is called the canonical strategy of Q with ` points
against P on Vn.

From now one we restrict the strategies of player Q to canonical strategies. In a
canonical strategy, player Q places at most two points in any interval induced by a strategy
P = {p0, . . . , pk+1}, and when we know that Q places a single point (and similarly when she
places two points) then we also know where to place the point(s). Hence, we can represent
a canonical strategy Q, for given Vn and P , by a sequence M(V, P,Q) := 〈m0, . . . ,mk〉
where mi ∈ {0, 1, 2} indicates how many points Q plays in the interval (pi, pi+1). We call
M(V, P,Q) the sequence representation of the strategy Q against P on Vn. We denote the
sequence representation of the canonical strategy of Q with ` points against P on Vn by
M(V, P, `).

I Observation 3. The canonical strategy of Q with ` points against P is the optimal strategy
Q with ` points against P which has lexicographically maximal sequence representation.

2.2 The Subproblems for a Dynamic-Programming Solution
For clarity, in the rest of Section 2 we assume the multiset of voters V does not have
repetitive entries, i.e we have a set of voters, and not a multiset. While all the results are
easily extendible to multisets, dealing with them adds unnecessary complexity to the text.

Our goal is to develop a dynamic-programming algorithm to compute Γk∗,`∗(V ). Before
we can define the subproblems on which the dynamic program is based, we need to introduce
the concept of thresholds, which is a crucial ingredient in the subproblems.

Strict and loose thresholds. Recall that in an arbitrary gain sequence Σgain(Vn, P ) =
〈τ1, . . . , τ2k+2〉, each τj is the α-gain or β-gain of some interval (pi, pi+1), and that these
gains are sorted in non-increasing order. We call any integer value τ ∈ [τ`+1, τ`] an `-threshold
for Q induced by P on Vn, or simply a threshold if ` is clear from the context. We implicitly
assume τ0 := n so that talking about 0-threshold is also meaningful. Note that when
τ` > τ > τ`+1 then the canonical strategy for Q chooses all gains larger than τ and no gains
smaller or equal to τ . Hence, we call τ a strict threshold if τ` > τ > τ`+1. On the other
hand, when τ = τ`+1 then gains of value τ may or may not be chosen by the canonical
strategy of Q. (Note that in this case for gains of value τ to be picked, we would actually
need τ` = τ = τ`+1.) In this case we call τ a loose threshold.

The idea will be to guess the threshold τ in an optimal solution and then use the fact
that fixing the threshold τ helps us to limit the strategies for P and anticipate the behavior
of Q. Let Popt be the canonical strategy realizing Γk∗,`∗(V ). We call any `∗-threshold of
Popt an optimal threshold. We devise an algorithm that gets a value τ as input and computes
Γk∗,`∗(V ) correctly if τ is an optimal threshold, and computes a value not greater than
Γk∗,`∗(V ), otherwise.

Clearly we only need to consider values of τ that are at most n∗. In fact, since each
α-gain or β-gain in a given gain sequence corresponds to a unique subset of voters, the
`∗-th largest gain can be at most n∗/`∗, so we only need to consider τ -values up to bn∗/`∗c.
Observe that when there exists an optimal strategy that induces an `∗-threshold equal to
zero, then Q can win all voters not explicitly covered by P . In this case the trivial strategy
is optimal for P. Our global algorithm is now as follows.
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1. For all thresholds τ ∈ {1, . . . , bn∗/`∗c}, compute an upper bound on the number of voters
P can win with a strategy that has an `∗-threshold τ . For the run where τ is an optimal
threshold, the algorithm will return Γk∗,`∗(V ).

2. Compute the number of voters P wins in the game 〈V, k∗, `∗〉 by the trivial strategy.
3. Report the best of all solutions found.

The subproblems for a fixed threshold τ . From now on we consider a fixed threshold
value τ ∈ {1, . . . , bn∗/`∗c}. The subproblems in our dynamic-programming algorithm for the
game 〈V, k∗, `∗〉 have several parameters.

A parameter n ∈ {0, . . . , n∗}, specifying that the subproblem is on the voter set Vn.
Parameters k, ` ∈ {0, . . . , n}, specifying that P can use k + 1 points and Q can use `
points.
A parameter γ ∈ {0, . . . , n}, specifying the number of voters P must win.
A parameter δ ∈ {strict, loose}, specifying the strictness of the fixed `-threshold τ .

Intuitively, the subproblem specified by a tuple 〈n, k, `, γ, δ〉 asks for a strategy P where P
wins at least γ voters from Vn and such that P that induces an `-threshold of strictness δ,
against an opponent Q using ` points. Player P may use k + 1 points and his objective will
be to push his last point, pk+1 as far to the right as possible. The value of the solution to
such a subproblem, which we denote by Xmax(n, k, `, γ, δ), will indicate how far to the right
we can push pk+1. Ultimately we will be interested in solutions where P can push pk∗+1 all
the way to +∞, which means he can actually win γ voters by placing only k∗ points.

To formally define Xmax(n, k, `, γ, δ), we need two final pieces of notation. Let x ∈
R ∪ {−∞}, let n ∈ {1, . . . , n∗}, and let a, b be integers. For convenience, define vn∗+1 :=∞.
Now we define the (a, b)-span of x to vn+1, denoted by span(x, n, a, b), as

span(x, n, a, b) :=
the maximum real value y ∈ (vn, vn+1] such that
gainα(V, x, y) = a and gainβ(V, x, y) = b

if x 6= −∞ and y exists

−∞ otherwise.

If we let a := gainα(Vn, x, y) and b := gainβ(Vn, x, y), then player Q wins either 0, a, or a+ b

points depending on whether she plays 0, 1, or 2 points inside the interval. It will therefore
be convenient to introduce the notation ⊕j for j ∈ {0, 1, 2}, which is defined as

a⊕0 b := 0, a⊕1 b := a, a⊕2 b := a+ b.

We assume the precedence of these operators are higher than addition.

I Definition 4. For parameters n ∈ {0, . . . , n∗}, k, `, γ ∈ {0, . . . , n}, and δ ∈ {strict, loose},
we define the value Xmax(n, k, `, γ, δ) and what it means when a strategy P realizes this, as
follows.

For k = 0, we call it an elementary subproblem, and define Xmax(n, k, `, γ, δ) = vn+1 if
1. {vn+1} wins at least γ voters from Vn, and
2. {vn+1} induces an `-threshold τ with strictness δ on Vn,
and we define Xmax(n, k, `, γ, δ) = −∞ otherwise. In the former case we say that
P := {vn+1} realizes Xmax(n, k, `, γ, δ).
For k > 0, we call it a non-elementary subproblem, and Xmax(n, k, `, γ, δ) is defined
to be equal to the maximum real value y ∈ (vn, vn+1] such that there exists a strategy
P := P ′ ∪ {y} with P ′ = {p1, . . . , pk}, integer values n′, a, b with 0 6 n′ < n and
0 6 a, b 6 n, an integer j ∈ {0, 1, 2}, and a δ′ ∈ {strict, loose} satisfying the following
conditions:
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37:8 On One-Round Discrete Voronoi Games

1. P wins at least γ voters from Vn,
2. P induces an `-threshold τ with strictness δ on Vn,
3. span(pk, n, a, b) = y,
4. P ′ realizes Xmax(n′, k − 1, `− j, γ − n+ n′ + a⊕j b, δ′),
5. Let M(Vn′ , P ′, ` − j) := 〈m′0, . . . ,m′k〉 and M(Vn, P, `) := 〈m0, . . . ,mk+1〉. Then

m′i = mi for all 0 6 i < k.
When a set P satisfying the conditions exists, we say that P realizes Xmax(n, k, `, γ, δ).
We define Xmax(n, k, `, γ, δ) = −∞ if no such P exists.

For example, given voters V = {1, . . . , 6}, k∗ = 3, l∗ = 3, and n∗ = 6, Xmax(3, 0, 1, 2, strict) =
−∞ because P cannot win voters without placing any points and Xmax(3, 2, 1, 2, strict) = 4
because player P can easily win two of the first three voters by placing his first two points
on them and then push his third point to the far right to position 4; note that τ = 1 is an
strict induced 1-threshold in this case.

Intuitively, each prefix of a canonical strategy of P is a realizing strategy to some of these
subproblems, which is consistent with Definition 4 as realizing strategies to subproblems are
defined to be a realizing strategy to a smaller subproblem plus the last point of P pushed to
the rightmost possible position, where Q’s response would be the same except she has the
chance to place j ∈ {0, 1, 2} without violating the conditions mentioned in the definition.

By induction we can show that if the parameters n, k, ` are not in a certain range, namely
if one of the conditions ` < 2(k + 1) or k 6 ‖Vn‖ is violated, then Xmax(n, k, `, γ, δ) = −∞.
The next lemma shows we can compute Γk∗,`∗(V ) from the solutions to our subproblems.

I Lemma 5. Let V = {v1, . . . , vn∗} be a set of n∗ voters in R1. Let 0 6 k∗ 6 n∗ and
1 6 `∗ 6 n∗ be two integers such that `∗ < 2k∗ and k∗ < ‖V ‖, and let τ be a fixed threshold.
Then

Γk∗,`∗(V ) > the maximum value of γ with 0 6 γ 6 n∗ for which there exist a
δ ∈ {loose, strict} such that Xmax(n∗, k∗, `∗, γ, δ) =∞.

(1)

Moreover, for an optimal threshold τopt > 0, the inequality changes to equality.

I Remark. Usually in dynamic programming, subproblems have a clean non-recursive
definition – the recursion only comes in when a recursive formula is given to compute the
value of an optimal solution. Our approach is more complicated: Definition 4 above gives
a recursive subproblem definition (and Lemma 5 shows how to use it), however, using this
recursive formula to compute solutions is not feasible and Lemma 7 below will then give a
different recursive formula to actually compute the solutions to the subproblems.

2.3 Computing Solutions to Subproblems
The solution to an elementary subproblem follows fairly easily from the definitions, and can
be computed in constant time; see the full version.

By definition, in order to obtain a strategy P realizing the solution to a non-elementary
subproblem I = 〈n, k, `, γ, δ〉 of size k, we need a solution to a smaller subproblem I ′ = 〈n′, k−
1, `′, γ′, δ′〉 of size k − 1 and add one point y ∈ (vn, vn+1] to the strategy P ′ = {p1, . . . , pk}
realizing I ′. Thus by adding y, we extend the solution to I ′ to get a solution to I. To find the
“right” subproblem I ′, we guess some values for n′, a, b, j ∈ {0, 1, 2}, and δ′ ∈ {strict, loose};
these values are enough to specify I ′. We note that there are just a polynomial number
of cases and therefore a polynomial number of values for the value y ∈ (vn, vn+1] which
we want to maximize. Namely, there are O(n) choices for the values n′, a, and b, three
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choices for j, and two choices for δ′. This makes O(n3) different cases to be considered for
each subproblem I, in total. However, not all those subproblems can be extended to I. In
the following definition, we list all the triples (δ′, j, δ) that can guarantee the extendibility
of I ′ to I.

Let a and b be the α-gain and β-gain of the interval (pk, y) in a strategy P = {p1, . . . , pk, y}
with threshold τ . We define the following sets of triples:

∆(τ, a, b) :=

{(loose, 2, loose), (strict, 2, strict)} if a > τ ∧ b > τ

{(loose, 1, loose), (strict, 1, loose), (strict, 2, strict)} if a > τ ∧ b = τ

{(loose, 1, loose), (strict, 1, strict)} if a > τ ∧ b < τ

{(loose, 0, loose), (strict, 0, loose), (strict, 1, loose), (strict, 2, strict)} if a = τ ∧ b = τ

{(loose, 0, loose), (strict, 0, loose), (strict, 1, strict)} if a = τ ∧ b < τ

{(loose, 0, loose), (strict, 0, strict)} if a < τ ∧ b < τ.

I Lemma 6. Let P ′ = {p1, . . . , pk} and P := P ′ ∪ {y}, be two reasonable strategies on Vn′
and Vn, where n′ = argmax16i6n∗ vi < pk, n = argmax16i6n∗ vi < y, and y ∈ (vn, vn+1].
Let a = gainα(Vn, pk, y) and b = gainβ(Vn, pk, y), and assume τ > 0 is an (`− j)-threshold
of strictness δ′ for Q induced by P ′ on Vn′ , where j ∈ {0, 1, 2}. Then, there exists a triple
(δ′, j, δ) ∈ ∆(τ, a, b) if and only if
1. P induces an `-threshold τ with strictness δ on Vn.
2. Let M(Vn′ , P ′, `−j) := 〈m′0, . . . ,m′k〉 and M(Vn, P, `) := 〈m0, . . . ,mk+1〉. Then m′i = mi

for all 0 6 i < k.
Moreover, this triple is unique if it exists.

I Lemma 7. For a non-elementary subproblem I = 〈n, k, `, γ, δ〉, we have

Xmax(n, k, `, γ, δ) = max
06n′<n

max
06a6n

max
06b6n

max
(δ′,j,δ)∈∆(τ,a,b)

span
(
Xmax(n′, k − 1, ` − j, γ − n + n′ + a ⊕j b, δ′), n, a, b

)
.

If we can compute the span function efficiently, we can compute all the solutions by
dynamic programming and solve the problem. However, a solution based on a trivial
dynamic programming will have running time bn∗/`∗c · O(k∗`∗(n∗)2) · O((n∗)3f(n∗)) =
O(k∗(n∗)6f(n∗)), where bn∗/`∗c is the total number of choices for the threshold, O(k∗`∗(n∗)2)
is the number of subproblems for each threshold, and O((n∗)3f(n∗)) is the time needed to
solve each subproblem where f(n) is the time needed to compute the span(x, n, a, b) function.
This algorithm is quite slow. More importantly it is not easy to compute the span function.
In the following, we introduce some new concepts to compute the span function and also get
a better running time.

2.4 Computing the span Function Using Gain Maps
Before we give the algorithm we introduce the gain map, which we need to compute the span
function. Consider an arbitrary strategy P of P on V , and recall that such a strategy induces
open intervals of the form (pi, pi+1) where Q can place her points. We can represent any
interval (x, y) that may arise in this manner as a point (x, y) in the plane. Thus the locus of
all possible intervals is the region R := {(x, y) : x < y}. We will define two subdivisions of
this region, the A-map and the B-map, and the gain map will then be the overlay of the
A-map and the B-map.
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Figure 1 a) A-map of V = {1, 4, 6, 13} with the corresponding α-gain for each region. b) B-map
of V with the corresponding β-gain for each region.

The A-map is the subdivision of R into regions At and Bt, for 0 6 t 6 n∗, defined as
At := {(x, y) : gainα(V, x, y) = t} and Bt := {(x, y) : gainα(V, x, y) + gainβ(V, x, y) = t}. In
other words, At is the locus of all intervals (x, y) such that, if (x, y) is an interval induced
by P , then Q can win t voters (but no more than t) from V ∩ (x, y) by placing a single
point in (x, y). To construct the A-map, let A>t denote the locus of all intervals (x, y)
such that gainα(V, x, y) > t. Note that At = A>t \ A>t+1. For 1 6 i 6 n∗ − t + 1, let
V ti := {vi, . . . , vi+t−1} and define

A>t
i := {(x, y) : V ti ⊂ (x, y) and Q can win V ti by placing a single point in (x, y)}.

Thus A>t
i = {(x, y) : x < vi and y > vi+t−1 and y > x+ 2(vi+t−1− vi)}. Here the conditions

x < vi and y > vi+t−1 are needed to guarantee that V ti ⊂ (x, y). The condition y >

x+ 2(vi+t−1 − vi) implies that V ti can be covered with an interval of length (y− x)/2, which
is necessary and sufficient for Q to be able to win all these voters. Note that each region A>t

i

is the intersection of three halfplanes, bounded by a vertical, a horizontal and a diagonal
line, respectively.

Since Q can win at least t voters in inside (x, y) with a single point if she can win at
least t consecutive voters with a single point, we have A>t =

⋃n∗−t+1
i=1 A>t

i . Thus A>t is
a polygonal region, bounded from below and from the right by a a polyline consisting of
horizontal, vertical, and diagonal segments, and the regions At are sandwiched between such
polylines; see Figure 1a. We call the polylines that form the boundary between consecutive
regions At boundary polylines.

The B-map can be constructed in a similar, but easier manner. Indeed, Bt is the locus
of all intervals such that Q can win t voters (but no more) from V ∩ (x, y), and this is
the case if and only if |V ∩ (x, y)| = t. Hence, Bt is the union of the rectangular regions
[vi, vi+1) × (vi+t, vi+t+1] (intersected with R), for 0 6 i 6 n∗ − t, where v0 := −∞ and
vn∗+1 :=∞, as shown in Figure 1b.

As mentioned, by overlaying the A- and B-map, we get the gain map. For any given
region on this map, the corresponding intervals have equal α-gain and equal β-gain.

I Lemma 8. The complexity of the gain-map is O((n∗)2).

Proof. The boundary polylines in the A-map are xy-monotone and comprised of vertical,
horizontal, and diagonal lines. The B-map is essentially a grid of size O((n∗)2) defined by the
lines x = vi and y = vi, for 1 6 i 6 n∗. Since each of these lines intersects any xy-monotone
polyline at most once – in a point or in a vertical segment – the complexity of the gain map
is also O((n∗)2). J
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Using the gain map, we can compute the values span(x0, n, a, b) for a given x0 ∈ R and
for all triples n, a, b satisfying 1 6 n 6 n∗, and 0 6 a 6 n∗ and 0 6 b 6 n∗, as follows. First,
we compute the intersection points of the vertical line x = x0 with (the edges of) the gain
map, sorted by increasing y-coordinates. (If this line intersects the gain map in a vertical
segment, we take the topmost endpoint of the segment.) Let (x0, y1), . . . , (x0, yz) denote this
sorted sequence of intersection points, where z 6 2n∗ denotes the number of intersections.
Let ai and bi denote the α-gain and β-gain of the interval corresponding to the point (x0, yi),
and let az+1 and bz+1 denote the α-gain and β-gain of the unbounded region intersected by
the line x = x0. Define ni = argmaxn vn < yi. Then we have

span(x0, n, a, b) =


yi if a = ai and b = bi, and n = ni, for some 1 6 i 6 z

+∞ if a = az+1 and b = bz+1 and n = n∗

−∞ for all other triples n, a, b
(2)

Our algorithm presented below moves a sweep line from left to right over the gain map.
During the sweep we maintain the intersections of the sweep line with the gain map. It will
be convenient to maintain the intersections with the A-map and the B-map separately. We
will do so using two sequences, A(x0) and B(x0).

The sequence A(x0) is the sequence of all diagonal or horizontal edges in the A-map that
are intersected by the line x = x0, ordered from bottom to top along the line. (More
precisely, the sequence contains (at most) one edge for any boundary polyline. When the
sweep line reaches the endpoint of such an edge, the edge will be removed and it will be
replaced by the next non-vertical edge of that boundary polyline, if it exists.)
The sequence B(x0) is the sequence of the y-coordinates of the horizontal segments in
the B-map intersected by the line x = x0, ordered from bottom to top along the line.

The number of intersections of the A-map, and also of the B-map, with the line x = x0 is
equal to n∗ − n0 + 1, where n0 = argminn vn > x0. Hence, the sequences A(x0) and B(x0)
have length n∗ − n0 + 1 6 n∗ + 1.

If we have the sequences A(x0) and B(x0) available then, using Equation (2), we can
easily find all triples n, a, b such that span(x0, n, a, b) 6= −∞ (and the corresponding y-values)
by iterating over the two sequences. We can summarize the results of this section as follows.

I Observation 9. Given the sequences A(x0) and B(x0), we can compute all the values
span(x0, n, a, b) with 1 6 n 6 n∗ and 0 6 a, b 6 n that are not equal to −∞ in O(n∗) time
in total.

This observation, together with Lemma 7 forms the basis of our dynamic-programming
algorithm.

2.5 The Sweep-Line Based Dynamic-Programming Algorithm
We will use a sweep-line approach, moving a vertical line from left to right over the gain
map. We will maintain a table X, indexed by subproblems, such that when the sweep line
is at position x0, then X[I] holds the best solution known so far for subproblem I, where
the effect of all the subproblems with solution smaller than x0 have been taken into account.
When our sweep reaches a subproblem I ′, then we check which later subproblems I can use
I ′ in their solution, and we update the solutions to these subproblems.

Recall that the algorithm works with a fixed threshold value τ ∈ {1, . . . , bn∗/`∗c} and that
its goal is to compute the valuesXmax(n∗, k∗, `∗, γ, δ) for all 0 6 γ 6 n∗ and δ ∈ {strict, loose}.
Our algorithm maintains the following data structures.
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A[0..n∗] is an array that stores the sequence A(x0), where x0 is the current position of
the sweep line and A[i] contains the i-th element in the sequence. When the i-th element
does not exist then A[i] = Nil.
Similarly, B[0..n∗] is an array that stores the sequence B(x0).
X: This is a table with an entry for each subproblem I = 〈n, k, `, γ, δ〉 with 0 6 n 6 n∗,
and 0 6 k 6 k∗ and 0 6 ` 6 `∗, and 0 6 γ 6 n∗ and δ ∈ {strict, loose}. When the sweep
line is at position x0, then X[I] holds the best solution known so far for subproblem I,
where the effect of all the subproblems with solution smaller than x0 have been taken into
account. More precisely, in the right-hand side of the equation in Lemma 7 we have taken
the maximum value over all subproblems I ′ = 〈n′, k− 1, `− j, γ−n+n′+ a⊕j b, δ′〉 with
Xmax(I ′) < x0. In the beginning of the algorithm the entries for elementary subproblems
are computed in constant time and all other entries have value −∞.
E: This is the event queue, which will contain four types of events, as explained below.

The event queue E is a min-priority queue on the x-value of the events. There are four types
of events, as listed next, and when events have the same x-value then the first event type
(in the list below) has higher priority, that is, will be handled first. When two events of
the same type have equal x-value then their order is arbitrary. Note that events with the
same x-value are not degenerate cases – this is inherent to the structure of the algorithms,
as many events take place at x-coordinates corresponding to voters.
A-map events, denoted by eA(a, s, s′): At an A-map event, the edge s of the A-map ends

– thus the x-value of an A-map event is the x-coordinate of the right endpoint of s –
and the array A must be updated by replacing it with the edge s′. Here s′ is the next
non-vertical edge along the boundary polyline that s is part of, where s′ = Nil if s is the
last non-vertical edge of the boundary polyline. The value a indicates that the edge s
is on the boundary polyline between Aa and Aa+1. In other words s (and s′, if it exist)
are the a-th intersection point, 0 6 a < n∗, with the A-map along the current sweep line,
and so we must update the entry A[a] by setting A[a]← s′.

B-map events, denoted by eB(vn): At a B-map event, a horizontal edge of the B-map
ends. This happens when the sweep line reaches a voter vn – that is, when x0 = xn – and
so the x-value of this event is vn. The bottommost intersection of he sweep line with the
B-map now disappears (see Figure 1b), and so we must update B by shifting all other
intersection points one position down in B and setting B[n∗ − n]← Nil.

Subproblem events, denoted by eX(n′, k′, `′, γ′, δ′): At a subproblem event the solution
to the subproblem given by I ′ = 〈n′, k′, `′, γ′, δ′〉 is known and the x-value of this event
is equal to Xmax(I ′). Handling the subproblem event for I ′ entails deciding which later
subproblems I can use I ′ in their solution and how they can use it, using the sets ∆(τ, a, b),
and updating the solutions to these subproblems.
In the beginning of the algorithm all the events associated with elementary subproblems
are known. The events associated with non-elementary subproblems are added to the
event queue when handling an update event eE(vn), as discussed next.

Update events, denoted by eE(vn): At the update event happening at x-value vn, all
subproblem events of size n are added to the event queue E. These are simply the
subproblems 〈n, k, `, γ, δ〉 for all k, `, γ ∈ {0, . . . , n} and δ ∈ {strict, loose}. The reason
we could not add them at the start of the algorithm was that the x-value of such a
subproblem I was now known yet. However, when we reach vn thenXmax(I) is determined,
so we can add the event to E with Xmax(I) as its x-value.

The pseudocode below summarizes the algorithm.
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Algorithm 1 ComputeSolutions(τ, V, k∗, `∗).

1 for i← 0 to n∗ − 1 do
2 A[i]← (vi, vi+1)− (vi+1, vi+1); B[i]← vi+1 . define v0 := v1 − 1
3 A[n∗]← Nil; B[n∗]← Nil
4 Initialize X by the solutions to elementary subproblems
5 Initialize E by all map events, update events, and elementary subproblem events
6 while E is not empty do
7 e← extractMin(E); x0 ← x-value of e
8 switch e do
9 case eA(a, s, s′) do

10 A[a]← s′

11 case eE(vn) do
12 B[n∗ − n]← Nil
13 for i← 0 to n∗ − n− 1 do
14 B[i]← vn+i+1

15 case eX(n′, k′, `′, γ′, δ′) do
16 for all span(x0, n, a, b) = y where y 6= −∞ do
17 for all (δ′, j, δ) ∈ ∆(τ, a, b) do
18 I ← 〈n, k′ + 1, `′ + j, γ′ + n− n′ − gainj(a, b), δ〉
19 X(I)← max(X(I), y)

20 case eE(vn) do
21 Add all the events for subproblems of size n to E, as explained above

I Lemma 10. Algorithm 1 correctly computes the solutions for subproblems 〈n, k, `, γ, δ〉
for the given value τ , for all n, k, `, γ, δ with 0 6 n 6 n∗, and 0 6 k, `, γ 6 n, and
δ ∈ {strict, loose}, and ` < 2(k + 1). The running time of the algorithm is O(k∗`∗(n∗)3).

Proof. We handle the A-map and B-map events before a subproblem event so that A and
B data structures are up-to-date when we want to compute the span function on handling a
subproblem event. We also handle a subproblem event before an update event so that when
we want to add a new subproblem event to the event queue on handling an update event, its
entry in table X has the correct value. The correctness of the algorithm now follows from
the discussion and lemmas above.

The running time is dominated by the handling of the subproblem events. By Observa-
tion 9, the algorithm handles each subproblem in O(n∗) time, plus O(logn∗) for operations
on the event queue, and there are O(k∗`∗(n∗)2) subproblems. Hence, the total running time
is O(k∗`∗(n∗)3). J

By Lemmas 5 and 10, the algorithm described at the beginning of Section 2.2 computes
Γk∗,`∗(V ) correctly. Since this algorithm calls ComputeSolutions bn∗/`∗c times in Step 1,
we obtain the following theorem.

I Theorem 11. There exists an algorithm that computes Γk∗,`∗(V ), and thus solves the
one-dimensional case of the one-round discrete Voronoi game, in time O(k∗(n∗)4).
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I Remark. We can also solve the one-dimensional case of the one-round discrete Voronoi
game when voters are weighted, i.e. each voter v ∈ V has an associated weight ω(v) and
the players try to maximize the total weight of the voters they win. In this case, the α-gain
and β-gain of an interval is defined as the total weight of voters the second player can win
in that interval by placing one point and two points, respectively. The number of possible
thresholds is not an integer in range [0, n∗], but the sum of any sequence of consecutive voters
define a threshold, which makes a total of O((n∗)2) different thresholds. The gain map also
becomes more complex and in the algorithm we need to spend O((n∗)2) time (instead of
O(n∗)) to handle each subproblem event, which results in an algorithm with running time
O(k∗`∗(n∗)5).

3 Containment in ∃∀R and the Algorithm for d > 2

We now consider the one-round discrete Voronoi game in the Lp-norm, for some arbitrary p.
Then a strategy P = {p1, . . . , pk} can win a voter v ∈ V against a strategy Q = {q1, . . . , q`}
if and only if the following Boolean expression is satisfied:

win(v) :=
∨
i∈[k]

∧
j∈[`]

(distp(pi, v))p 6 (distp(qj , v))p,

where distp is the Lp-distance. This expression has k` polynomial inequalities of degree p.
The strategy P is winning if and only if the majority of the expressions win(v1), . . . ,win(vn)
are true. Having a majority function Majority that evaluates to true if at least half of its
parameters evaluates to true, player P has a winning strategy if and only if

∃x1(p1), . . . , xd(p1), . . . , x1(pk), . . . , xd(pk)
∀x1(q1), . . . , xd(q1), . . . , x1(q`), . . . , xd(q`) : Majority(win(v1), . . . ,win(vn))

is true, where xi(·) denotes the i-th coordinate of a point.
Ajtai et al. [2] show that it is possible to construct a sorting network, often called the

AKS sorting network, composed of comparison units configured in c · logn levels, where c is
a constant and each level contains exactly bn/2c comparison units. Each comparison unit
takes two numbers as input and outputs its input numbers in sorted order. Each output of a
comparison unit (except those on the last level) feeds into exactly one input of a comparison
unit in the next level, and the input numbers are fed to the inputs of the first level. The
outputs of the comparison units in the last level (i.e., the outputs of the network) give the
numbers in sorted order.

Using AKS sorting networks we can construct a Boolean formula of size O(nc) for some
constant c that tests if the majority of its n inputs are true as follows. Assuming the boolean
value false is smaller than the boolean value true value, we make an AKS sorting network
that sorts n boolean values. This is possible using comparison units that get p and q as input,
and output p ∧ q and p ∨ q. It is not hard to verify that the dn/2e-th output of the network
is equal to the value of the majority function on the input boolean values. By construction,
we can write the Boolean formula representing the value of this output as logical and (∧)
and logical or (∨) combination of the input boolean values, and the size of the resulting
formula is O(nc).

Thus we can write Majority(win(v1), . . . ,win(vn)) as a Boolean combination of O(nck`)
polynomial inequalities of degree p, where each quantified block has kd and `d variables
respectively. Basu et al. [7] gave an efficient algorithm for deciding the truth of quantified
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formulas. For our formula this gives an algorithm with O((nck`)(kd+1)(`d+1)pk`d
2) running

time to decide if P has a winning strategy for a given instance 〈V, k, `〉 of the Voronoi game
problem. Note that this is polynomial when k, ` and d are constants.

For the L∞ norm, we can define F (v) as follows:

F (v) :=
∨
i∈[k]

∧
j∈[`]

∨
s′∈[d]

∧
s∈[d]

|xs(pi)− xs(v)| 6 |xs′(qj)− xs′(v)|,

By comparing the squared values instead of the absolute values, we have a formula which
demonstrates that even with the L∞ norm, the problem is contained in ∃∀R and there exists
an algorithm of complexity O((nck`d2)(kd+1)(`d+1)2k`d2) to solve it.

I Theorem 12. The one-round discrete Voronoi game 〈V, k, `〉 in Rd with the Lp norm is
contained in ∃∀R. Moreover, for fixed k, `, d there exists an algorithm that solves it in
polynomial time.

De Berg et al. [9] introduced the notion of personalized preferences. More precisely, given
a natural number p, assuming each axis defines an aspect of the subject voters are voting
for, the voter vi gives different weights to different axes, and vi has a weighted Lp distance
(
∑
j∈[d] wij(xj(p)− xj(vi))p)1/p from any point p ∈ Rd. For the weighted L∞ distance, vi is

at distance maxj∈[d](wij |xj(p)− xj(vi)|) from any point p ∈ Rd. This approach also works
when voters have personalized preferences.

4 ΣP
2 -Hardness for d > 2

In this section, we present the most important ideas behind our proof that the one-round
discrete Voronoi game is ΣP

2 -hard in R2. To prove ΣP
2 -hardness, it suffices to show that

deciding if Q has a winning strategy against every possible strategy of P is ΠP
2 -hard. Our

proof will use a reduction from a special case of the quantified Boolean formula problem
(qbf), as defined next. Let S := {s1, . . . , sns} and T := {t1, . . . , tnt} be two sets of variables,
and let S̄ := {s̄1, . . . , s̄ns

} and T̄ := {t̄1, . . . , t̄nt
} denote their negations. We consider Boolean

formulas B of the form

B := ∀s1, . . . , sns
∃t1, . . . , tnt

: c1 ∧ · · · ∧ cnc

where each clause ci in C := {c1, . . . , cnc} is a disjunctive combination of at most three
literals from S ∪ S̄ ∪ T ∪ T̄ . Deciding if a formula of this form is true is a ΠP

2 -complete
problem [17].

Consider the undirected graph GB := (N,A) representing B, where N := S ∪T ∪C is the
set of nodes of GB and A := {(ci, sj) : sj ∈ ci∨ s̄j ∈ ci}∪{(ci, tj) : tj ∈ ci∨ t̄j ∈ ci} is the set
of edges of GB . Lichtenstein [12] showed how to transform an instance of qbf in polynomial
time to an equivalent one whose corresponding graph is planar (and of quadratic size). Thus
we may start our reduction from a formula B such that GB is planar. Our reduction then
creates an instance 〈V, k, `〉 of the Voronoi game such that B is true if and only if Q has a
winning strategy.

Define Di, the disk of vi with respect to a given set P , as the disk with center vi and
radius dist(vi, P ), that is, Di is the largest disk centered at vi that has no point from P in
its interior.

I Observation 13. Q wins a voter vi against P iff she places a point q in the interior of Di.
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W voters

v1 v2 v3 v4 v5

D1 D2 D3 D4 D5

∈ P ∈ P ∈ P ∈ P ∈ P

q1 q2

(b)

w + 1 voters

dw/2e+ 1 voters bw/2c+ 1 voters

(a)

Figure 2 When all the heavy-weight clusters of W voters are chosen by P, the best strategy of
Q to win the remaining single voters is to put her points in every other intersection of the disks.

The idea of the construction is that a cluster ofW coinciding voters, for a sufficiently largeW ,
forces P to put a point on top of that cluster. The disk Di of a voter vi is then prescribed by
cluster closest to vi. This allows us to create gadgets for the variables si, and clause gadgets,
consisting of (sets of) disks. Because the graph GB is planar, we can carry information
from the variable gadgets to the clause gadgets using non-crossing chains of disks. This is
done in such a way that Q must either place points in the “even-numbered” intersections or
in the “odd-numbered” intersections in a chain, corresponding to the truth settings of the
variables tj ; see Figure 2. An optimal choice of Q will also carry the bits so that the clauses
of B can be checked. The detailed construction is described in the full version.

5 Concluding Remarks

We presented the first polynomial-time algorithm for the one-round discrete Voronoi game
in R1. The algorithm is quite intricate, and it would be interesting to see if a simpler (and
perhaps faster) algorithm is possible. Finding a lower bound for the 1-dimensional case is
also open.

We also showed that the problem is ΣP2 -hard in R2. Fekete and Meijer [11] conjectured
that finding an optimal strategy for the multi-round continuous version of the Voronoi game
is PSPACE-complete. We conjecture that in the multi-round version of the discrete version,
finding an optimal strategy is PSPACE-hard as well. Note that using the algebraic method
presented in this paper, it is easy to show that this problem is contained in PSPACE. While
the algebraic method we used is considered a standard technique, it is, as far as we know, the
first time this method is combined with polynomial-size boolean formulas for the majority
function. We think it should be possible to apply this combination to other problems as well.
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