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Abstract
This paper presents and studies a generalization of the microscopic image reconstruction problem
(MIR) introduced by Frosini and Nivat [7, 12]. Consider a specimen for inspection, represented
as a collection of points typically organized on a grid in the plane. Assume each point x has an
associated physical value `x, which we would like to determine. However, it might be that obtaining
these values precisely (by a surgical probe) is difficult, risky, or impossible. The alternative is to
employ aggregate measuring techniques (such as EM, CT, US or MRI), whereby each measurement
is taken over a larger window, and the exact values at each point are subsequently extracted by
computational methods.

In this paper we extend the MIR framework in a number of ways. First, we consider a generalized
setting where the inspected object is represented by an arbitrary graph G, and the vector ` ∈ Rn

assigns a value `v to each node v. A probe centered at a vertex v will capture a window encompassing
its entire neighborhood N [v], i.e., the outcome of a probe centered at v is Pv =

∑
w∈N [v] `w. We

give a criterion for the graphs for which the extended MIR problem can be solved by extracting the
vector ` from the collection of probes, P̄ = {Pv | v ∈ V }.

We then consider cases where such reconstruction is impossible (namely, graphs G for which
the probe vector P is inconclusive, in the sense that there may be more than one vector ` yielding
P). Let us assume that surgical probes (whose outcome at vertex v is the exact value of `v) are
technically available to us (yet are expensive or risky, and must be used sparingly). We show that in
such cases, it may still be possible to achieve reconstruction based on a combination of a collection of
standard probes together with a suitable set of surgical probes. We aim at identifying the minimum
number of surgical probes necessary for a unique reconstruction, depending on the graph topology.
This is referred to as the Minimum Surgical Probing problem (MSP).

Besides providing a solution for the above problems for arbitrary graphs, we also explore the
range of possible behaviors of the Minimum Surgical Probing problem by determining the number
of surgical probes necessary in certain specific graph families, such as perfect k-ary trees, paths,
cycles, grids, tori and tubes.
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1 Introduction

Background and motivation. Imaging technologies are used increasingly widely in a variety
of medical, engineering, and scientific application domains. Imagine a specimen for inspection,
represented as a collection of points organized in (2- or 3-dimensional) space. Assume each
point x has an associated physical value `x (e.g., atom density, brightness, etc). Our goal is
to determine these values at all points in the specimen. However, it is often the case that
obtaining these values through a direct and precise inspection (hereafter referred to as a
surgical probe) is complicated, prohibitively expensive, potentially risky, or even impossible.
A commonly used alternative is to employ aggregate measuring techniques (such as EM,
CT, US or MRI), whereby measurements are taken over a larger area (rather than a single
point), and the (exact or approximate) values at each point are subsequently extracted
by computational methods. For example, a microscope with a scanning window can be
used for inspecting the specimen by systematically going over it and probing (i.e., taking a
measurement in) each window. The measurement taken from each window centered at point
x, hereafter denoted by Px, consists of the sum of the observed values at all the points in
the observed window. (This is sometimes referred to as the luminosity of the window.) The
goal is then to use the measurements obtained by a sufficiently diverse collection of probes
in order to deduce the original values `x at each point x in the specimen.

This general problem has been extensively studied as the discrete tomography recon-
struction problem (DTR). For a survey, see Herman and Kuba [10]. The microscopic image
reconstruction problem (MIR) was then introduced by Frosini and Nivat in [7, 12] as a
natural extension of the DTR problem. In both problems, the specimen is represented
by a 2-dimensional grid (see Figure 1b) whose points, x = (i, j), for i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n2}, are assigned nonnegative integer 1 values `i,j . In the DTR problem, the
window of a probe is typically an entire row or column (i.e., the probe can be thought of as
performed by a ray piercing the specimen from one side to the other). In the MIR problem,
it is assumed that the microscope’s scanning window is a segment of the plane (e.g., a circle
or a rectangle). For example, assume for the sake of illustration that the window corresponds
to a circle of radius 1 (see Figure 1a). Then the input can be thought of as an n1×n2 integer
matrix, and the output is an n1 × n2 integer matrix. A similar setting can be described with
a square scanning window as shown in Figure 1c. A window consisting of a node and its
eight neighbors in the grid is depicted by the king’s graph, illustrated in Figure 1d.

In this paper we extend the MIR framework of [7] in a number of ways. First, we
consider a generalized setting where the inspected object is represented by an arbitrary
simple undirected connected graph G = (V,E) with vertex set V = {1, . . . , n}. Given a graph
G, the vector ` ∈ Rn is an assignment of a value `v to each node v. Given a graph G and a
vector ` ∈ Rn, define `(U) ,

∑
v∈U `v, for every U ⊆ V . Here, a probe centered at a vertex

v captures a window encompassing its entire neighborhood, N [v] , {w | (v, w) ∈ E} ∪ {v},
i.e., the outcome of a probe centered at v is Pv , `(N [v]) =

∑
w∈N [v] `w. For example, in

1 In fact, [7] assume only Boolean values, 0 or 1.
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(a) Circle scanning
window.

(b) Grid Graph. (c) Square scanning
window.

(d) King’s Graph.

Figure 1 Scanning windows for the grid.

the case of a grid specimen, N [v] may contain all vertices at distance at most d (according
to any norm Lp) from v. Our first question is to determine the class of graphs for which the
extended MIR problem can be solved, namely, for which it is possible to extract the vector `
from the collection of probes at all vertices, P̄ = {Pv | v ∈ V }.

Note, however, that in some cases, this type of reconstruction is not possible. Given a
graph G and a probe vector P, it may be possible that the outcome of the measurements is
inconclusive, in the sense that there may be several (or even infinitely many) vectors ` that
would yield the same probe vector P. For example, consider the case where G consists of
two nodes and an edge between them. In this case, the same probe vector P = (p1, p2) is
obtained for any vector (`1, `2) such that `1 + `2 = p1 = p2.

This leads to our next extension of the problem. Let us assume that surgical probes
(whose outcome at vertex v is the exact value of `v) are technically available to us, yet are so
expensive or risky that we must use them sparingly. In cases where a unique reconstruction
based on standard (aggregate) probes alone is not possible, it may still be possible to achieve
a reliable reconstruction based on a combination of a comprehensive collection of standard
probes together with a (hopefully small) set of surgical probes. Hence, our second goal is
to identify the minimum number of surgical probes necessary for a unique reconstruction,
depending on the graph topology. Formally, we consider the following Minimum Surgical
Probing problem (MSP). Given a graph G and a vector P, the goal is to find the actual
vector ` that generated P, using as few surgical probes as possible.

Our results. In Section 2 we present an efficient algorithm for solving the Minimum
Surgical Probing problem. We show that one can compute the minimum number of
surgical probes necessary for any graph and determine a subset of the vertices which need to
be probed. The general problem can be formulated as a system of linear equations. The
adjacency matrix of our graph (whose main diagonal is set to 1) determines the coefficient
matrix and the probe vector P is the right hand side. We use techniques from linear algebra
to solve the problem.

While these results allow us to determine the number of surgical probes necessary for
every graph, it is interesting to explore and chart the range of possible behaviors of the
problem, by identifying the number of surgical probes necessary for some specific graph
families. Towards this goal, we consider (in Section 3) the behavior of the problem on trees.
We first show that ` can be uncovered on any n-vertex tree using

⌊
n
2
⌋
− 1 many surgical

probes, and that this number is tight if n is odd. In contrast we show that on the class of
perfect k-ary trees, no surgical probes are required to uncover `.

We continue pursuing this line of investigation by considering (in Section 4) Cartesian
products of paths and cycles, resulting in grids, tubes and tori. Furthermore, Section 5
deals with the Strong product of two path graphs, which is known as the king’s graph
(see Figure 1d). Grid graphs are interesting as they have the topology which was studied
in previous papers on discrete tomography. A probe P has a circular scanning window.
Similarly, in the king’s graph a probe P has a square scanning window.
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42:4 The Generalized Microscopic Image Reconstruction Problem

As we will see, the number of required surgical probes is related to the rank of our
graph’s adjacency matrix which in turn is related to its eigenvalues. The eigenvalues of
adjacency matrices are studied in spectral graph theory. Simple expressions to determine
the eigenvalues for adjacency matrices of path and cycle graphs are known. This and the
fact that Cartesian and Strong products preserve the eigenvalues of their factor’s adjacency
matrices allow us to derive expressions for the eigenvalues of the grids, tubes, tori and king’s
graph adjacency matrices. We use these expressions to determine the number of surgical
probes in a more efficient way than our general result allows for.

Table 1 lists the number of surgical probes that are sufficient to discover ` for grids, tubes,
tori and king’s graphs. To express our results, we introduce the following indicator variables:

Iab (n) ,
{

1 if n mod a ≡ b
0 otherwise.

Surprisingly, only a constant number of surgical probes are needed for any grid, tube, or
torus. On the other hand, the king’s graph may require as many as n1 + n2 − 1 probes. In
addition, in all the above graphs the number of probes may be zero, depending on the graph
dimensions. For example, when both n1 and n2 are multiples of 30, a grid of size n1 × n2
does not requires surgical probes. Similarly, when n1 and n2 are multiples of 3, no surgical
probes are required for the king’s graph. Hence, when given control on the dimensions (say,
in a design phase), one may fix the dimensions such that no surgical probes are required.

Note that, these results give us only the number of surgical probes that are sufficient to
uncover `. In general, we need to resort to our result from Section 2 to find a set of vertices
that needs to be probed. For paths and cycles, however, it is possible to find these vertices
directly and uncover ` in linear time.

Table 1 The table shows the number of surgical probes. In the case of a tube n1 is the length of
the path while n2 ≥ 3 is the length of the cycle.

Graph # surgical probes at most

Grid I3
2 (n1)I2

1 (n2) + I2
1 (n1)I3

2 (n2) + 2I5
4 (n1)I5

4 (n2) 4

Path (n2 = 1) I3
2 (n1) 1

Tube 2I2
1 (n1)I3

0 (n2) + I3
2 (n1)I2

0 (n2)+
2I3

2 (n1)I4
0 (n2) + 4I5

4 (n1)I5
0 (n2) 9

Cycle (n1 = 1) 2I3
0 (n2) 2

Torus 4I3
0 (n1)I4

0 (n2) + 4I4
0 (n1)I3

0 (n2) + 2I2
0 (n1)I6

0 (n2)
+2I6

0 (n1)I2
0 (n2) + 8I5

0 (n1)I5
0 (n2) 20

King’s graph I3
2 (n1)n2 + I3

2 (n2)n1 − I3
2 (n1)I3

2 (n2) n1 + n2 − 1

Related Work. Most important for our work is the extension of the DTR problem by
Frosini and Nivat [7, 12]. They introduced the problem of reconstructing a binary matrix
from a rectangular scan instead of the row and column sums. A polynomial time algorithm is
presented that solves the reconstruction problem for a class of matrices. Battaglino, Frosini
and Rinaldi [4] extended this by studying scans of different shapes like diamond shapes.
Relations to tiling are discovered.
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A concept similar to surgical probing was considered by Frosini, Nivat and Rinaldi [8].
They analyze a variation where a grid is scanned by the means of two rectangular windows.
To solve the reconstruction problem, they assume that a small number of the values associated
with the grid points are known in advance.

A combination of DTR and MIR is studied by Alpers and Gritzmann [1]. Their goal is to
reconstruct a matrix from column and row sums with additional windows constraints. In [3]
they study applications to image reconstruction.

Gritzmann et al. [9] show that determining the minimum number of prescribed values
making the DTR problem unique is in general a NP-hard problem. Prescribed values are
an analogue to surgical probes. The hardness results from the integer values in the DTR
problem. Alpers and Gritzmann [2] discuss uniqueness problems for a dynamic variation of
DTR. Here, the application is to track particles over time.

2 Algorithm for Solving Minimum Surgical Probing

In this section, we show how to solve the Minimum Surgical Probing problem. We
start with some preliminaries. Denote the n× n identity matrix by In. Given a matrix A,
let rank(A) denote its rank, and let Λ(A) denote its set of eigenvalues. For an eigenvalue
λ ∈ Λ(A), denote by φ(λ,A) the multiplicity of λ in Λ(A).

Given a graph G, let AG = {aij} be G’s n× n adjacency matrix, i.e.,

aij =
{

1, (i, j) ∈ E,
0, otherwise.

Define ĀG , AG + I|V | as the adjacency matrix whose main diagonal is set to 1.
A probe vector P is induced by ` ∈ Rn if the following is satisfied:

ĀG · ` = P . (1)

I Lemma 1. The multiplicity of the eigenvalue -1 in the matrix AG is

φ(−1, AG) = φ(0, ĀG) = |V | − rank(ĀG) .

Proof. If ĀG has an eigenvalue 0, then it is singular. Indeed, the multiplicity of the eigenvalue
0 is the dimension on the kernel (null-space) ker(ĀG) (cf. [5]). The eigenspace of an eigenvalue
λ consists of the solutions to (ĀG − λI|V |)x = 0. Therefore, the eigenspace of eigenvalue 0
is the kernel of ĀG. If 0 is an eigenvalue of ĀG, then −1 is an eigenvalue of AG, and the
multiplicity is the same. J

We now present our general result.

I Theorem 2. Consider a graph G and a probe vector P.
1. If the adjacency matrix ĀG has full rank, i.e., rank(ĀG) = |V |, then ` can be uncovered

in polynomial time without using any surgical probes.
2. Otherwise, the minimum number of surgical probes needed to uncover ` is s = φ(−1, AG).

Moreover, a set of s nodes whose surgical probes uncover ` can be computed in polynomial
time.

Proof. As mentioned above, the label vector ` ∈ R|V | satisfies the system of linear equations
given in (1). Therefore, system (1) has at least one solution. If the adjacency matrix ĀG has
full rank, i.e., rank(ĀG) = |V |, then system (1) has a unique solution. A standard method,
like the Gauss-Jordan elimination, can be used to uncover ` without any surgical probe in
polynomial time.

ISAAC 2019



42:6 The Generalized Microscopic Image Reconstruction Problem

If rank(ĀG) < |V |, then system (1) has (infinitely) many solutions. The column space
C(ĀG) of ĀG contains all vectors ĀG · x. It is spanned by a maximal subset of independent
columns of ĀG, and its dimension is rank(ĀG). The kernel ker(ĀG) of ĀG consists of all
solutions to the homogeneous system ĀG · x = 0; its dimension is s , |V | − rank(ĀG). To
describe all solutions of system (1), let x be a vector such that ĀG · x = P. Then,

ĀG · (x+ x0) = ĀG · x+ ĀG · x0 = P + 0 = P

for any x0 ∈ ker(ĀG).
To uncover `, we need to remove this ambiguity by surgical probes. One approach is to

select a maximal subset of independent columns U of ĀG. The columns of U are a basis of
C(ĀG), and |U | = rank(ĀG). Let U ′ = ĀG \ U be the remaining columns. Thus, |U ′| = s.
Probing the vertices that correspond to the columns of U ′ returns ¯̀∈ Rs. Now, we can solve
the system

U · x = P − U ′ · ¯̀ (2)

to uncover the unknown entries of `. If ` is a solution of system (1), then system (2) has
at least one solution. Since U is a set of linearly independent columns, this solution is
unique. If we select more than rank(ĀG) columns to form U , system (2) does not have a
unique solution.

A structured way to select a maximal subset of independent columns of ĀG is the reduced
row echelon form. The reduced row echelon form can be computed in polynomial time using
the Gauss-Jordan elimination method (cf. [11]). The output is a partition of the columns
into pivot-columns and free-columns. The pivot-columns form a basis of C(ĀG). We probe
the vertices corresponding to the free-columns. Back-substitution takes care of uncovering
the missing entries of ` (if ĀG was augmented by P before the elimination process). J

Note that the rank of ĀG can be as low as one, e.g., in the case of the complete graph Kn

we have rank(ĀKn
) = 1. Hence, to solve Minimum Surgical Probing for Kn a maximum

number of n− 1 surgical probes is required. However, as we will see in the following sections,
there are many graphs for which we can uncover ` without any surgical probes.

In classic DTR problems the labels are binary or integer vectors. If we add respective
constraints on ` to System (1), Theorem 2 provides an upper bound on the number of
required surgical probes.

3 Minimum Surgical Probing in Trees

In this section we consider the Minimum Surgical Probing problem in trees. A first class
of trees that requires no surgical probes are stars.

I Lemma 3. A star graph requires no surgical probes to uncover `.

Proof. Let G be a star with n ≥ 3 vertices {1, . . . , n} where vertex n is the center. The
label `n can be computed from the neighborhood probes as follows:

1
n−2 (

∑n−1
i=1 Pi − Pn) = 1

n−2 (
∑n−1
i=1 (`n + `i)− (`n +

∑n−1
i=1 `i)) = `n .

Given `n, the remaining labels can be computed using `i = Pi − `n, for i < n. J

The following theorem shows an upper bound on the number of surgical probes that are
required to uncover bipartite graphs. Trees are always connected and bipartite.
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n

2

1

4

3

n− 1

n− 2

· · ·

(a) Spider with n−1
2 legs.



1 1 0 0 · · · 0
1 1 0 0 · · · 1
0 0 1 1 · · · 0
0 0 1 1 · · · 1
...

0 1 0 1 · · · 1


(b) Adj. matrix of a spider.

Figure 2 A spider graph and its adjacency matrix.

I Theorem 4. Let G = (L ∪R,E) be a connected, bipartite graph with n ≥ 3 nodes. Then `
can be uncovered using

⌊
n
2
⌋
− 1 many surgical probes.

Proof. Assume without loss of generality that |L| ≤ |R|. Observe that there must be a
node v ∈ L such that deg(v) > 1 since G is connected. Now, surgical probe L \ {v} and
uncover the labels of all nodes in R \ N(v). This can be done since the induced graph
T [(L \ {v}) ∪ (R \N(v))] is bipartite and we know all the labels of one of the blocks. Since
the graph that is induced by the nodes with unknown labels is a star, we are done due to
Lemma 3.

If n is even, we perform at most n
2 − 1 = n−2

2 many surgical probes. If n is odd, we
perform at most n−1

2 − 1 = n−3
2 many surgical probes. J

We can show that the given upper bound is tight for trees where the number of vertices
is odd.

I Theorem 5. There exist n-vertex trees, for odd n, that require
⌊
n
2
⌋
− 1 surgical probes.

Proof. Consider a spider G with n−1
2 legs as shown in Figure 2a. The adjacency matrix is

given in Figure 2b. Elementary row operations can be used to show that rank(ĀG) = n+3
2 .

To see this, subtract each odd row i < n from its succeeding row i+ 1. The claim follows
from Theorem 2. J

Another class of trees that require no surgical probes are perfect k-ary trees. Recall that
a perfect k-ary tree is a tree where all internal nodes have k children and all leaves have the
same depth.

I Theorem 6. Let T = (V,E) be a perfect k-ary tree. Then, no surgical probes are needed
to uncover `.

Proof. We prove the theorem by induction on the height h of T . For a vertex v we denote
the set of its children by ch(v). As a base case, we consider h = 1. This yields a (k+1)-vertex
star graph, and due to Lemma 3, no surgical probes are needed to uncover `.

Now, let h ≥ 2 and let r be the root of T . We start by calculating the root label, `r,
based on the given neighborhood probes. To do that, we express `r as a function of the
probe results over the entire tree. This is done as follows. Arrange the tree vertices in levels,
with the leaves on level 0 and the root r on level h. Let

γj =


−1 j = 0,
1 j = 1,
−γj−1 − k · γj−2 j ≥ 2,

and b = γh + k · γh−1 . (3)

Next, define a coefficient av = γj for every vertex v on level j.

ISAAC 2019



42:8 The Generalized Microscopic Image Reconstruction Problem

v

z

xy

—

—

— γ0 = −1

γ1 = 1

γ2 = −1 + 2 = 1Pz = `v + `z + . . .

Pv = `v + `z + `x + `y

Py = `v + `y Px = `v + `x

. .
.

. . .

Figure 3 Part of a perfect binary tree. Vertices x and y are leafs. The label `x appears only in
Px and Pv. Their coefficients sum up to 0, i.e., the label cancels out. Analogously, the labels `y and
`v cancel out.

B Claim 7. The root label satisfies b · `r =
∑
v∈V

avPv .

Proof. Consider the sum on the right hand side. Observe that for every vertex v except the
root r, the contribution of the label `v to this sum is cancelled out. To see this, note the
following observations:

The label of a leaf v appears once in Pv and once in Pz where z is v’s parent, so it is
cancelled out in the sum since the coefficients of these probes are av = −1 and az = 1.
The label of a nonleaf v on level 1 appears in Pv, Pz, and Px for x ∈ ch(v) where z is v’s
parent, so it is cancelled out since the coefficients of these probes are ax = −1 (k times
in the sum), av = 1, and az = k − 1.
The label of a vertex v on level 2 ≤ j < h appears in Pv, Pz, and Px for x ∈ ch(v) where
z is v’s parent, so it is cancelled out in the sum since the coefficients of these probes
are ax = γj−1 (k times in the sum), av = −γj−1 − k · γj−2, and az = −γj − k · γj−1 =
−(−γj−1 − k · γj−2)− k · γj−1 = −(k − 1) · γj−1 + k · γj−2.

See Figure 3 for an example of a perfect 2-ary (binary) tree.
It follows that the only label that remains in the sum is the root label `r. This label appears

in Pr and Px for x ∈ ch(r). The coefficients of these probes are ax = γh−1 and ar = γh.
Hence, after all other labels are canceled out, the sum simplifies to (γh + k · γh−1)`r = b`r.

C

B Claim 8. b 6= 0.

Proof. By Eq. (3), b = −γh+1. The recursion of Eq. (3) solves to the following explicit
formula2:

γj = 2−j−1
√

1−4·k ·
((
−1−

√
1− 4 · k

)j+1 −
(
−1 +

√
1− 4 · k

)j+1)
.

Hence b = −γh+1 = 0 if and only if −
√

1− 4 · k =
√

1− 4 · k, which is false. C

Claims 7 and 8 enable us to extract `r from the neighborhood probes P without using
any surgical probes. Subsequently, we use the inductive argument to calculate the rest of the
labels, proving the claim for h. To do this, we remove r from the tree T , and get k smaller
trees Ti whose roots are ri for i ∈ [k]. As the trees Ti are trees of height h−1, we can use the
inductive hypothesis to solve for ` on each of the subtrees Ti. The only correction required
is that before solving the labels on the subtrees Ti, we need to fix the probe results on the

2 the explicit formula can be computed with a computer algebra system
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roots, ri , since probing the vertex ri in Ti yields a different value than in T (in which ri
has another neighbor, r). Hence, to get the correct labels of these roots in Ti, we need to
subtract `r from Pri

. More precisely, for i ∈ [k], let us denote by P̂ri
the expected outcome

of the probe operation on ri had it been applied to the tree Ti. Then P̂ri = Pri − `r. J

4 Mesh graphs and Cartesian Products

In this section we consider mesh graphs, which are Cartesian products of simpler graphs.
For example, grid graphs which were studied in previous papers on discrete tomography can
be presented as the Cartesian product of two path graphs. In addition to grid graphs, we
consider the Cartesian product of a path and a cycle (a tube) and two cycles (a torus).

Graph Products. Let us start with some definitions and notation, following [5]. Given two
graphs, G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1 and G2, denoted
G1�G2, is the graph G = (V,E) where V = V1 × V2 and

E = {(v, u), (v′, u) : (v, v′) ∈ E1} ∪ {(v, u), (v, u′) : (u, u′) ∈ E2} .

The adjacency matrices of the path and cycle graphs are connected to the product graphs’
adjacency matrices by the Kronecker product and Kronecker sum. Given two square matrices
A and B of respective sizes n and m, the Kronecker product and Kronecker sum of A and B
are defined, respectively, as

A⊗B , [aijB] and A⊕B , (A⊗ Im) + (In ⊗B) .

The Kronecker sum of the adjacency matrices of two graphs is the adjacency matrix of the
Cartesian product graph, i.e., AG1�G2 = (AG1 ⊗ I|V2|) + (I|V1| ⊗AG2).

The Kronecker sum preserves eigenvalues of its summands in the following way.

I Theorem 9 ([5]). Let G1 and G2 be graphs. Then, the set of eigenvalues of AG1�G2 is the
Minkowski sum of the set of eigenvalues of AG1 and the set of eigenvalues of AG2 , i.e., it is

Λ(AG1�G2) = {λ+ µ | λ ∈ Λ(AG1), µ ∈ Λ(AG2)} .

Cosine at Rational Angles. The required number of surgical probes for the graphs studied
herein is determined by the number of solutions to equations that involve trigonometric
functions. In particular, rational values of the cosine function at rational angles are of interest.
A rational angle is a rational multiple of π. Conway and Jones [6] give a characterization of
linear combinations of up to four cosine functions at rational angles that are rational.

I Theorem 10 ([6]). Suppose we have at most four distinct rational multiples of π lying
strictly between 0 and π

2 for which some rational linear combination of their cosines is
rational but no proper subset has this property. Then the appropriate linear combination is
proportional to one from the following list:

cos(π3 ) = 1
2

− cos(ϕ) + cos(π3 − ϕ) + cos(π3 + ϕ) = 0 (0 < ϕ < π
6 )

cos(π5 )− cos( 2π
5 ) = 1

2
cos(π7 )− cos( 2π

7 ) + cos( 3π
7 ) = 1

2
cos(π5 )− cos( π15 ) + cos( 4π

15 ) = 1
2

− cos( 2π
5 ) + cos( 2π

15 )− cos( 7π
15 ) = 1

2
cos(π7 ) + cos( 3π

7 )− cos( π21 ) + cos( 8π
21 ) = 1

2
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− cos( 2π
7 ) + cos( 3π

7 ) + cos( 4π
21 ) + cos( 10π

21 ) = 1
2

cos(π7 )− cos( 2π
7 ) + cos( 2π

21 )− cos( 5π
21 ) = 1

2
− cos( π15 ) + cos( 2π

15 ) + cos( 4π
15 )− cos( 7π

15 ) = 1
2

The angles are normalized due to the symmetry of the cosine function. The theorem does
not cover the values of the cosine function at 0 and multiples of π2 . This is characterized by
the following theorem.

I Theorem 11 ([13]). The only rational values of the circular trigonometric functions at
rational multiples of π are 0,± 1

2 and ±1 for cosine and sine, 0 and ±1 for tangent and
cotangent, and ±1 and ±2 for secant and cosecant.

Grids and Paths. We exploit the fact that mesh graphs are products of simpler graphs to
determine the number of surgical probes without having to resort to Theorem 2.

I Theorem 12. Let G be a grid graph of size n1 × n2. The number of surgical probes that
are sufficient to uncover ` is

I2
1 (n1)I3

2 (n2) + I3
2 (n1)I2

1 (n2) + 2I5
4 (n1)I5

4 (n2).

In particular, the number of surgical probes to uncover ` for grid graphs of any size is at
most 4.

Proof. Let G be a grid graph which is the Cartesian product of the two path graphs P1
and P2, of length n1 and n2, resp. By Lemma 1, we look for eigenvalues of AG that are −1.
By Theorem 9, we need to identify eigenvalues of AP1 and AP2 that add up to −1. The
eigenvalues of AP where P is a path of length n are given by 2 cos( πj

n+1 ), for j ∈ [1, n] (cf.
[5]). Hence, we are looking for the number of solutions to the following equation:

2 cos
(

i

n1 + 1 · π
)

+ 2 cos
(

j

n2 + 1 · π
)

= −1 , (4)

for i ∈ [1, n1] and j ∈ [1, n2].
Due to Theorem 11 the only rational values the cosine function takes at rational angles

are 0,± 1
2 and ±1. Since 0 < i

n1+1 ,
j

n2+1 < 1, the values 0 and − 1
2 are the only combination

that can satisfy Eq. (4). For 0 < x < 1, the equations cos(πx) = 0 and cos(πx) = − 1
2 have

solutions x = 1
2 and x = 2

3 , respectively. Hence, Eq. (4) has a solution if 3i = 2(n1 + 1)
and 2j = n2 + 1. This is the case if n1 mod 3 ≡ 2 and n2 mod 2 ≡ 1. Here, we have
that 2(n1+1)

3 ∈ [1, n1] and n2+1
2 ∈ [1, n2]. Due to symmetry, we get another solution if

n1 mod 2 ≡ 1 and n2 mod 3 ≡ 2.
Theorem 10 characterizes linear combinations of cosine functions that have a rational value.

Here, the values of a single cosine function are irrational. For a combination of two cosine
functions, Theorem 10 states that there is only one such combination: cos(π5 )− cos( 2π

5 ) = 1
2 .

Due to symmetry, cos(π5 ) = − cos( 4π
5 ), and we derive

2 cos
(

4π
5

)
+ 2 cos

(
2π
5

)
= −1 . (5)

Hence, Eq. (4) has a solution if 5i = 4(n1 + 1) and 5j = 2(n2 + 1). For 4(n1 + 1) or 2(n2 + 1)
to become a multiple of 5, we need that n1 mod 5 ≡ 4 and n2 mod 5 ≡ 4. In both cases,
4(n1+1)

5 , 2(n1+1)
5 ∈ [1, n1] and 4(n2+1)

5 , 2(n2+1)
5 ∈ [1, n2] giving two solutions to Eq. (4) if both

n1 mod 5 ≡ 4 and n2 mod 5 ≡ 4. J
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1 2 3 4 5

P1 = `1 + `2

P2 = `1 + `2 + `3

P3 = `2 + `3 + `4

P4 = `3 + `4 + `5

P5 = `4 + `5

Figure 4 A path of length n = 5. One probe is needed, but not at i = 3.

There are many grids where no surgical probes are required to uncover ` (e.g. the 3× 3
grid). In the worst case, a total of 4 surgical probes is required to uncover `. This is the case
if n1 = 30i− 1 and n2 = 30j − 1, for i, j ∈ N.

When n2 = 1, i.e., graph G is a path, we can also provide a linear time algorithm for
uncovering `.

I Theorem 13. Let P be a path with n vertices, where V = {1, . . . , n}. If n mod 3 ≡ 2, then
a single probe is needed, and it should be at a node i such that i mod 3 6≡ 0. Otherwise, no
surgical probes are needed. In both cases, the labels can be discovered in O(n) time.

Proof. The number of surgical probes follows from Theorem 12
To discover the labels along the path, we use the following procedure. First, the label

`3 can be discovered using `3 = P2 − P1. Iteratively, `3i, for i = 2, . . . ,
⌊
n
3
⌋
, can be

discovered using

P3i−1 − P3i−2 + `3i−3 = (`3i−2 + `3i−1 + `3i)− (`3i−3 + `3i−2 + `3i−1) + `3i−3 = `3i .

If n mod 3 6≡ 2, we discover either `n or `n−1 in the last iteration. We may discover the other
value due to Pn = `n−1 + `n. Given `n and `n−1, we may discover the rest of the labels going
from right to left. If n mod 3 ≡ 2, then probe any vertex i ∈ [n], such that i mod 3 6≡ 2. The
probe splits the path into two sub-paths of length n1 and n2, where n1, n2 mod 3 6≡ 2. The
rest of the labels can be discovered as above, for each sub-path. See Figure 4. J

Tubes and Cycles. A tube graph is a Cartesian product of a path and a cycle graph. We
denote the length of the path by n1 and the length of the cycle by n2 ≥ 3.

I Theorem 14. Let T be a tube graph of dimensions n1×n2. The number of surgical probes
that are sufficient to uncover ` is

2I2
1 (n1)I3

0 (n2) + I3
2 (n1)I2

0 (n2) + 2I3
2 (n1)I4

0 (n2) + 4I5
4 (n1)I5

0 (n2).

In particular, the number of surgical probes to uncover ` for any tube graph is at most 9.

Proof. Let T be a tube graph which is the Cartesian product of a path graphs P and a cycle
C, of length n1 and n2, resp. The eigenvalues of AP are given by 2 cos( πi

n1+1 ), for i ∈ [1, n1],
and the eigenvalues of AC are given by 2 cos( 2πj

n2
), for j ∈ [0, n2 − 1] (cf. [5]). By Theorem 9

and Lemma 1, we are interested in solutions of the equation

2 cos
(

i

n1 + 1 · π
)

+ 2 cos
(

2j
n2
· π
)

= −1. (6)

Since 0 < πi
n1+1 < π, cos( πi

n1+1 ) has the rational values − 1
2 , 0,

1
2 , and since 0 ≤ 2πj

n2
< 2π,

cos( 2πj
n2

), has the rational values −1,− 1
2 , 0,

1
2 , 1, due to Theorem 11. This gives us the

solutions to Eq. (6) where both cosine functions have rational values. The following
combinations satisfy Eq. (6):
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cos( πi
n1+1 ) = − 1

2 and cos( 2πj
n2

) = 0. The equation cos(πx) = − 1
2 has one solution x = 2

3 ,
for 0 < x < 1. Our question is reduced to 3i = 2(n1 + 1). For 2(n1 + 1) to become a
multiple of 3, we need that n1 mod 3 ≡ 2. In this case, 2

3 (n1 + 1) ∈ [1, n1]. The equation
cos(2πx) = 0 has two solutions x = 1

4 and x = 3
4 , for 0 ≤ x < 1. Hence, either 4j = n2 or

4j = 3n2. It follows that if n2 is a multiple of 4, we have that n2
4 ,

3n2
4 ∈ [0, n2 − 1]. We

get two solutions for Eq. (6) if n1 mod 3 ≡ 2 and n2 mod 4 ≡ 0.

cos( πi
n1+1 ) = 0 and cos( 2πj

n2
) = − 1

2 . The equation cos(πx) = 0 has one solution x = 1
2 , for

0 < x < 1. Our question is reduced to 2i = n1 + 1. For n1 + 1 to become a multiple of 2,
we need that n1 mod 2 ≡ 1. In this case, 1

2 (n1 +1) ∈ [1, n1]. The equation cos(2πx) = − 1
2

has two solutions x = 1
3 and x = 2

3 , for 0 ≤ x < 1. Hence, either 3j = n2 or 3j = 2n2.
It follows that if n2 is a multiple of 3, we have that n2

3 ,
2n2

3 ∈ [0, n2 − 1]. We get two
solutions for Eq. (6) if n1 mod 2 ≡ 1 and n2 mod 3 ≡ 0.

cos( πi
n1+1 ) = 1

2 and cos( 2πj
n2

) = −1. The equation cos(πx) = 1
2 has one solution x = 1

3 , for
0 < x < 1. Our question is reduced to 3i = n1 + 1. For n1 + 1 to become a multiple of 3,
we need that n1 mod 3 ≡ 2. In this case, 1

3 (n1 + 1) ∈ [1, n1]. The equation cos(2πx) = −1
has one solution x = 1

2 , for 0 ≤ x < 1. Hence, we need that 2j = n2. It follows that if
n2 is a multiple of 2, we have that n2

2 ∈ [0, n2 − 1]. We get one solution for Eq. (6) if
n1 mod 3 ≡ 2 and n2 mod 2 ≡ 0.

Theorem 10 characterizes a linear combination of two cosines which yields four more
solutions to Eq. (6). We derive Eq. (5) again: 2 cos

( 4π
5
)

+ 2 cos
( 2π

5
)

= −1. We have
cos( 4π

5 ) = 1
4 (−1 −

√
5). The equation cos(πx) = 1

4 (−1 −
√

5) has one solution x = 4
5 , for

0 < x < 1. Our question is reduced to 5i = 4(n1 + 1). For n1 + 1 to become a multiple of 5,
we need that n1 mod 5 ≡ 4. In this case, 4

5 (n1 + 1) ∈ [1, n1]. We have cos( 2π
5 ) = 1

4 (−1 +
√

5).
The equation cos(2πx) = 1

4 (−1 +
√

5) has two solutions x = 1
5 and x = 4

5 , for 0 ≤ x < 1.
Hence, either 5j = n2 or 5j = 4n2. It follows that if n2 is a multiple of 5, we have that
2n2

5 , 4n2
5 ∈ [0, n2 − 1]. We get two solutions for Eq. (6) if n1 mod 5 ≡ 4 and n2 mod 5 ≡ 0.

Since n1 and n2 can switch, we get another pair of solutions. The equation cos(πx) =
1
4 (−1 +

√
5) has one solution x = 2

5 , for 0 < x < 1. Our question is reduced to 5i = 2(n1 + 1).
For n1 + 1 to become a multiple of 5, we need that n1 mod 5 ≡ 4. In this case, 4

5 (n1 + 1) ∈
[1, n1]. We have cos( 2π

5 ) = 1
4 (−1 +

√
5). The equation cos(2πx) = 1

4 (−1 −
√

5) has two
solutions x = 2

5 and x = 3
5 , for 0 ≤ x < 1. Hence, either 5j = 2n2 or 5j = 3n2. It follows

that if n2 is a multiple of 5, we have that 2n2
5 , 3n2

5 ∈ [0, n2 − 1]. In summary, we get four
solutions for Eq. (6) if n1 mod 5 ≡ 4 and n2 mod 5 ≡ 0. J

I Theorem 15. Let C be a cycle of length n. If n mod 3 ≡ 0, then two probes are needed,
and they should be at nodes i, j such that i− j mod 3 6≡ 0. Otherwise, no surgical probes are
needed. In both cases, the labels can be discovered in O(n) time.

Proof. The number of surgical probes follows from Theorem 14
To discover the labels of a cycle, we use the following

If n mod 3 ≡ 0, then probe vertex 1 which can be understood as removing the vertex
from the cycle. Hence, we are left with a path of length n− 1. Since (n− 1) mod 3 ≡ 2,
we can use the procedure described in the proof of Theorem 13 to discover the remaining
labels with one additional surgical probe.
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If n mod 3 ≡ 1, we compute `1 as follows:

3`1 = (`n + `1 + `2) +
bn/3c∑
i=1

(`3i−2 − `3i−1 − `3i+1 + `3i+2)

= P1 +
bn/3c∑
i=1

(P3i−1 − 2P3i + P3i+1) .

If n mod 3 ≡ 2, we compute `1 as follows:

3`1 = (−`n + `1 + `2 + 2`3) +
bn/3c∑
i=1

(−`3i−1 − 2`3i + `3i+2 + 2`3i+3)

= −P1 + 2P2 +
bn/3c∑
i=1

(−P3i − P3i+1 + 2P3i+2) .

In the two latter cases we are left with a path where we can uncover the remaining labels
without any surgical probes due to Theorem 13. J

Tori. A torus graph is a Cartesian product of two cycle graphs.

I Theorem 16. Let T be a torus graph of dimensions n1 × n2. The number of surgical
probes that are sufficient to uncover ` is

4I3
0 (n1)I4

0 (n2) + 4I4
0 (n1)I3

0 (n2) + 2I2
0 (n1)I6

0 (n2) + 2I6
0 (n1)I2

0 (n2) + 8I5
0 (n1)I5

0 (n2).

In particular, the number of surgical probes to uncover ` for any torus graph is at most 20.

Proof. Let T be a torus graph which is the Cartesian product of two cycles C1 and C2 of
lenghts n1 and n2, resp. The eigenvalues of ACi

are given by 2 cos( 2jπ
ni

), for j ∈ [0, ni − 1]
(cf. [5]). By Theorem 9 and Lemma 1, we are interested in solutions of the equation

2 cos
(

2i
n1
· π
)

+ 2 cos
(

2j
n2
· π
)

= −1 . (7)

The two summands cos( 2iπ
n1

) and cos( 2jπ
n2

) have the rational values −1,− 1
2 , 0,

1
2 , 1, due to

Theorem 11. This gives us the solutions to Eq. (6) where both cosine functions have rational
values. We consider the combinations that satisfy Eq. (7):

cos( 2iπ
n1

) = − 1
2 and cos( 2jπ

n2
) = 0. The equation cos(2πx) = − 1

2 has two solutions
x = 1

3 and x = 2
3 , for 0 ≤ x < 1. It follows that if n1 is a multiple of 3, we have that

n1
3 ,

2n1
3 ∈ [0, n1 − 1]. The equation cos(2πx) = 0 has two solutions x = 1

4 and x = 3
4 , for

0 ≤ x < 1. It follows that if n2 is a multiple of 4, we have that n2
4 ,

3n2
4 ∈ [0, n2 − 1]. We

get four solutions for Eq. (7) if n1 mod 3 ≡ 0 and n2 mod 4 ≡ 0.
cos( 2iπ

n1
) = 0 and cos( 2jπ

n2
) = − 1

2 . Similarly, we get four solutions if n1 mod 4 ≡ 0 and
n2 mod 3 ≡ 0.
cos( 2iπ

n1
) = 1

2 and cos( 2jπ
n2

) = −1. The equation cos(2πx) = 1
2 has two solutions x = 1

6
and x = 5

6 , for 0 ≤ x < 1. It follows that if n1 is a multiple of 6, we have that
n1
6 ,

5n1
6 ∈ [0, n1 − 1]. The equation cos(2πx) = −1 has one solution x = 1

2 , for 0 ≤ x < 1.
It follows that if n2 is a multiple of 2, we have that n2

2 ∈ [0, n2 − 1]. We get two solutions
for Eq. (7) if n1 mod 2 ≡ 0 and n2 mod 6 ≡ 0.
cos( 2iπ

n1
) = −1 and cos( 2jπ

n2
) = 1

2 . Similarly, we get two solutions if n1 mod 6 ≡ 0 and
n2 mod 2 ≡ 0.
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Theorem 10 characterizes a linear combination of two cosines which yields eight more
solutions to Eq. (7). We derive Eq. (5) once again: 2 cos

( 4π
5
)

+ 2 cos
( 2π

5
)

= −1. We have
cos( 4π

5 ) = − 1+
√

5
4 . The equation cos(2πx) = − 1+

√
5

4 has two solutions x = 2
5 and x = 3

5 , for
0 ≤ x < 1. It follows that if n1 is a multiple of 5, we have that 2n1

5 , 3n1
5 ∈ [0, n1 − 1]. We

have cos( 2π
5 ) = −1+

√
5

4 . The equation cos(2πx) = −1+
√

5
4 has two solutions x = 1

5 and x = 4
5 ,

for 0 ≤ x < 1. It follows that if n2 is a multiple of 5, we have that n2
5 ,

4n2
5 ∈ [0, n2− 1]. Since

n1 and n2 can switch roles, in total, we get eight solutions for Eq. (7) if n1 mod 5 ≡ 0 and
n2 mod 5 ≡ 0. J

5 King’s Graph and Strong Products

Again, let us start with some definitions. The Strong product of two graphs G1 and G2,
denoted by G1 �G2, is the graph G = (V,E) where V = V1 × V2 and

E = {(v, u), (v′, u) : (v, v′) ∈ E1} ∪ {(v, u), (v, u′) : (u, u′) ∈ E2}∪
{(v, u), (v′, u′) : (v, v′) ∈ E1 and (u, u′) ∈ E2} .

The adjacency matrix of G1 �G2 is defined as AG1�G2 = ĀG1 ⊗ ĀG2 − I|V1||V2| .

I Theorem 17 ([5]). Let G1 and G2 be graphs. Then, the set of eigenvalues of AG1�G2 is

Λ(AG1�G2) = {(λ+ 1)(µ+ 1)− 1 | λ ∈ Λ(AG1), µ ∈ Λ(AG2)} .

A king’s graph is the Strong product of two paths (see Figure 1d). Underlying a king’s
graph has the topology of a grid graph. Here, the neighborhood of a vertex corresponds
to a rectangular scanning window (see Figure 1c). Again, we use the product-property to
determine the number of surgical probes directly, without using Theorem 2.

I Theorem 18. Let G be a king’s graph of dimensions n1 × n2. The number of surgical
probes that are sufficient to uncover ` is I3

2 (n1)n2 + I3
2 (n2)n1 − I3

2 (n1)I3
2 (n2).

Proof. Due to Theorem 17 the number of required probes is given by the solutions of the
equation:(

2 cos
(

i

n1 + 1 · π
)

+ 1
)(

2 cos
(

j

n2 + 1 · π
)

+ 1
)

= 0 , (8)

for i = [1, n1] and j = [1, n2]. Equation (8) has solutions if one of the factors becomes zero.
From the proof of Theorem 12, we know that the equation 2 cos( iπ

n1+1 ) = −1 has one solution
if n1 mod 3 ≡ 2. In this case, we get a solution of Eq. (8) for each value of j if n2 mod 3 6≡ 2.
By symmetry we get n1 solutions if n2 mod 3 ≡ 2 and n1 mod 3 6≡ 2. If n1, n2 mod 3 ≡ 2,
we get n1 + n2 − 1 solutions for Eq. (8). J

We see that king’s graphs behave quite differently compared to grid graphs. Here, the
number of required surgical probes can be as large as n1 + n2 − 1.

6 Future directions

We extended the MIR framework by representing the inspected object by an undirected
graph. A probe corresponds to a measurement taken over the node and its neighborhood.
There are many other potentially interesting types of probes in this general model of graphs.
For example, when the specimen is a grid and a probe at a node contains all nodes at distance
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at most d from this node. We gave a closed form formula for the number of surgical probes
for the case where d = 1 (grid graph and king’s graph). It would be interesting to obtain
such a formula for general d.

In the setting introduced here, the surgical probes have the same costs at each node.
However, parts of a specimen might be less accessible and therefore more expensive to probe.
It might be interesting to study a variation where a surgical probe at node i implies costs ci,
and the goal is now to uncover the labels with minimum total costs.

Moreover, considering directed graphs instead of un-directed graphs leads to a type of
probes that are not symmetric. However, this implies that the adjacency matrix is no longer
symmetric and Lemma 1 does not longer hold (see example on page 3 of [5]).

Another possible direction is to determine the minimum number of surgical probes in
case ` is a binary or integer vector. As mentioned earlier, our results provide an upper bound
on the number of required surgical probes. This problem is most likely NP-hard as the work
by Gritzmann et al. [9] suggests.

Finally, we conjecture that Theorem 6 can be extended to full k-ary trees.
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