The k-Fréchet Distance: How to Walk Your Dog
While Teleporting

Hugo Alves Akitaya
Department of Computer Science, Tufts University, Massachusetts, USA
hugo.alves_ akitaya@tufts.edu

Maike Buchin

Department of Mathematics, Ruhr University Bochum, Germany
maike.buchin@rub.de

Leonie Ryvkin
Department of Mathematics, Ruhr University Bochum, Germany
leonie.ryvkin@rub.de

Jérome Urhausen
Department of Information and Computing Sciences, Utrecht University, Netherlands
J.E.Urhausen@uu.nl

—— Abstract

We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance. As
the name implies, it is closely related to the well-studied Fréchet distance but detects similarities
between curves that resemble each other only piecewise. The parameter k£ denotes the number of
subcurves into which we divide the input curves (thus we allow up to k — 1 “teleports” on each
input curve). The k-Fréchet distance provides a nice transition between (weak) Fréchet distance and
Hausdorff distance. However, we show that deciding this distance measure turns out to be NP-hard,
which is interesting since both (weak) Fréchet and Hausdorff distance are computable in polynomial
time. Nevertheless, we give several possibilities to deal with the hardness of the k-Fréchet distance:
besides a short exponential-time algorithm for the general case, we give a polynomial-time algorithm
for k = 2, i.e., we ask that we subdivide our input curves into two subcurves each. We can also
approximate the optimal k by factor 2. We then present a more intricate FPT algorithm using
parameters k (the number of allowed subcurves) and z (the number of segments of one curve that
intersect the e-neighborhood of a point on the other curve).

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Design and analysis of algorithms; Theory of computation — Fixed parameter
tractability

Keywords and phrases Measures, Fréchet distance, Hardness, FPT
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.50
Related Version A full version of the paper is available at http://arxiv.org/abs/1903.02353.

Funding Hugo Alves Akitaya: supported by NSF awards CCF-1422311 and CCF-1423615, and the
Science Without Borders scholarship program.

Jérome Urhausen: supported by the Netherlands Organisation for Scientific Research under project
612.001.651.

Acknowledgements We would like to thank Erik Demaine for contributing the key idea for proving
hardness in the free space diagram in Section 3.1, as well as the organizers and other participants
of the Intensive Research Program in Discrete, Combinatorial and Computational Geometry in
Barcelona, 2018, for providing the perfect environment to meet other researchers.

© Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jéréme Urhausen;
37 licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).

Editors: Pinyan Lu and Guochuan Zhang; Article No. 50; pp. 50:1-50:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:hugo.alves_akitaya@tufts.edu
mailto:maike.buchin@rub.de
mailto:leonie.ryvkin@rub.de
mailto:J.E.Urhausen@uu.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2019.50
http://arxiv.org/abs/1903.02353
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2

The k-Fréchet Distance

1 Introduction

During the last decades, several methods for comparing geometrical shapes have been studied
in a variety of applications, e.g., analyzing geographic data, such as trajectories, or comparing
chemical structures like protein chains or DNA. The Fréchet distance has been well-studied
in the past since it has proven to be helpful in several of the mentioned applications. The
Hausdorff distance, another similarity measure, has also proven useful in applications and
can be computed more efficiently. However, it provides us with less information by taking
only the overall positioning of curves into consideration, not how they are traversed.

We introduce the k-Fréchet distance as a distance measure in between Hausdorff and
(weak) Fréchet distance. This measure allows us to compare shapes consisting of several
parts: we cover the input curves by at most k (possibly overlapping) subcurves each and ask
for a matching of the subcurves such that each pair of matched subcurves has at most weak
Fréchet distance € (where € > 0 is a given constant). Note that there are in fact two variants
of the k-Fréchet distance: the cover variant described above and the cut variant, where we
partition the input curves into k disjoint subcurves each. These subcurves are then matched
if and only if their (weak) Fréchet distance is small. In this paper, by k-Fréchet distance we
always refer to the cover variant and mention the cut variant only briefly.

Thus the new measure allows us to find similarities between curves that need to be cut
and reordered to be similar under the Fréchet distance. For instance, this could be objects of
rearranged pieces such as a set of trajectories of tourists visiting several sights in a city. If
the k-Fréchet distance of two trajectories is small, the respective tourists used similar routes
to get to the sights. For small k£ we can also conclude that the tourists visited many sights in
the same order. Other examples would be chemical structures or handwritten characters
and symbols. An example is displayed in Figure 1, where we compare three variants of
writing the letter k by hand. Note that we deal with disconnected curves by concatenating
the respective subcurves. Of course, we can easily identify that all three of them are k’s by
using the Hausdorff distance to compare them to a “generic” k, but the k-Fréchet distance
provides us with more information: the 2-Fréchet distance between the second and the third
k is large because the strokes are set differently. Those k’s are unlikely to be written by the
same person. The 3-Fréchet distance, however, is small, because the letter consists of at most
3 strokes in general.

<Kk

Figure 1 Three ‘k’s written in a different way. For the middle and the right one, the 2-Fréchet
distance is large and the 3-Fréchet distance is small.

Characterizing the mentioned variants of the Fréchet distance next to the Hausdorff
distance intuitively shows that the new distance measure bridges between weak Fréchet and
Hausdorff distance. As is common for the Fréchet distance, we use the following analogy: we
interpret our input curves as two paths, which have to be traversed by a man and a dog, each
of them walking on one of the paths. For the (weak) Fréchet distance we ask for the length
of the shortest leash so that man and dog can traverse their curves. They may choose their
speeds independently. For the weak Fréchet distance, man and dog are allowed to backtrack.

The Hausdorff distance finds for each point on either curve the closest point on the other
curve and takes the largest of the obtained distances. In terms of man and dog we do not
ask for traversal as such, we simply need that for any fixed position on either path there is a

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

position on the other one such that man and dog can stand on their respective positions using
a leash of fixed length. One could say they may “teleport” on their curves any number of
times as long as both man and dog can reach all positions on their respective curves without
exceeding the given maximum distance, i.e., the leash length. The k-Fréchet distance limits
this number of teleports to a constant k (actually, we have k — 1 teleports), so we want man
and dog to traverse their paths piecewise. Note that we use the weak Fréchet distance as an
underlying distance measure. As we picture man and dog to teleport, it is more natural to
allow backtracking, especially since we allow any point on a curve to be the target point of a
teleport. Imagine a subcurve oriented in the opposite direction than the subcurve closest to
it: we would like to teleport the dog to the end of that curve and have it traverse the curve
backward. Moreover, we do not ask to match the endpoints of our input curves.

Related work. Efficient algorithms were presented for computing the Fréchet distance and
the weak Fréchet distance by Alt and Godau in 1995. They first introduced the concept of

the free space diagram, which is key to computing this distance measure and its variants [3].

Following their work, numerous variants and extensions have been considered. Here we
mention only a few results related to our work. Alt, Knauer and Wenk compared Hausdorff to
Fréchet distance and discussed x-bounded curves as a special input instance [4]. In particular,
they showed that for convex closed curves Hausdorff distance equals Fréchet distance. For
curves in one dimension Buchin et al. [6] proved the equality of Hausdorff and weak Fréchet
distance using the well-known Mountain climbing theorem [18]. For computing the Hausdorff
distance, Alt et. al. [2] gave a thorough overview. Buchin [9] gave the characterization of
these measures in free space, which motivated our study of k-Fréchet distance.

For c-packed curves, Driemel, Har-Peled and Wenk presented a (1 + €)-approximation
algorithm, which determines the Fréchet distance in near linear time [15]. For general
polygonal curves, Buchin et al. [7] recently slightly improved the original algorithm of Alt
and Godau, while Bringmann [5] showed that unless SETH fails no strongly subquadratic
algorithm for the Fréchet distance exists. An interesting variant was presented by Gheibi
et al.: they studied the weak Fréchet distance but minimized the length of the subcurves
on which backtracking is necessary [17]. Buchin, Buchin and Wang studied partial curve
matching, where they presented a polynomial-time algorithm to compute the “partial Fréchet
similarity” [8], and a variation of this similarity was presented by Scheffer in [20]. Also,
Driemel and Har-Peled defined a Fréchet distance with shortcuts [14], which was proven to
be the first NP-hard variant of the Fréchet distance in [10].

Interestingly, both Hausdorff and (weak) Fréchet distance are computable in polynomial
time. However, the k-Fréchet distance, as a distance measure that bridges between the two
of them, proves to be NP-complete.

Overview. In the next chapter, we introduce and formally define the k-Fréchet distance.

In Chapter 3, we determine its hardness in two steps: first, we prove NP-hardness of a

simpler auxiliary problem to gain some intuition (Section 3.1) for the then following reduction.

The most intricate part of our work is the construction of said reduction and analyzing its
correctness, both of which are presented in Section 3.2. Finally, we present our algorithmic
findings in Chapter 4. We give an XP-algorithm with parameter k, which even works in
polynomial time for small k. A greedy approach leads to a 2-approximation on the optimal
k. We then make use of two parameters, again the selection size k, and the parameter z,
which indicates how “entangled” the input curves are, to construct our FPT algorithm.

50:3

ISAAC 2019

50:4

The k-Fréchet Distance

2 Preliminaries
First we define the Hausdorff distance [4] for curves P, Q: [0,1] — R? as
Su(P, Q) = max(5x (P, Q), 61 (Q, P)), where
SP, = max min ||P(t1)— Q(t
u(P, Q) Jax min [1P(t1) — Q(t2)]]
denotes the directed Hausdorff distance from P to Q. By || - || we refer to the Euclidean
norm in RY. Now recall the Fréchet distance [3]: For curves P,Q: [0,1] — R? it is given by

Op (P, Q) = inf max ||P(t) — Q(o(t))],

o t€[0,1]
where the reparametrizations o: [0,1] — [0, 1] range over all orientation-preserving homeo-
morphisms. A variant is the weak Fréchet distance 6 where both curves are reparameterised
by o and 7, respectively, which range over all continuous surjective functions.

As mentioned, the Fréchet distance is often illustrated by a man and a dog walking on
two curves where both may choose their speed independently. For the Fréchet distance, man
and dog may not backtrack, for the weak Fréchet distance they may. The (weak) Fréchet
distance corresponds to the shortest leash length allowing them to traverse the curves.

A well-known characterization, which is key to efficient algorithms for computing both
weak and (strong) Fréchet distance uses the free space diagram, which was introduced by
Alt and Godau [3]. First we recall the free space Fy:

Fo(P,Q) = {(t1,t2) € [0,1]*: | P(t1) — Q(t2)]| < e}

For piecewise-linear P and @), the free space diagram puts this information into an (n x m)-
grid where n and m are the numbers of segments in P and) respectively. For the rest of
this paper we assume that m = O(n) to simplify runtime expressions.

The Fréchet distance of two curves is at most a given value ¢ if there exists a monotone
path through the free space connecting the bottom left to the top right corner. For the weak
Fréchet distance, this path need not be monotone. It may also start and end somewhere
other than the corners of the diagram, as long as it touches all four boundaries.

We now define further terms regarding the free space diagram: A component of a free
space diagram is a connected subset ¢ C F.(P,Q). A set S of components covers a set
I C [0,1]p of the parameter space (corresponding to the curve P) if I is a subset of the
projection of S onto said parameter space, i.e., Vo € I: 3¢ € S,y € [0,1]g: (z,y) € c
Covering on the second parameter space is defined analogously. This means the weak Fréchet
distance is smaller than e if there is one component in F;(P, Q) that covers both parameter
spaces. Similarly, the Hausdorff distance can be tested by checking whether the set of all
components covers both parameter spaces. In this paper we extend this concept to also
account for the number of components needed to cover the parameter spaces.

We define the k-Fréchet distance dxr(P, Q) as the minimal € such that there is a set of at
most k components of F.(P, Q) covering both parameter spaces. That is, we cover the curves
P and @Q by at most k pieces (i.e., subcurves) such that there is a matching of the subcurves
where a matched pair has small weak Fréchet distance. Note that the subcurves may overlap.
In the analogy, we allow man and dog to “teleport” on their respective curves, i.e., they may
skip parts of their paths and come back later. We still ask for a complete traversal, but some
parts of the curves may be traversed multiple times with teleports in between.

The decision problem for this distance measure asks whether for a fixed value of k,
dxr (P, Q) is smaller than or equal to a given e. Naturally, for a fixed real ¢ > 0, we would

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

like to cut the curves into as few subcurves as possible (optimization version). By definition,
the k-Fréchet distance lies in between the Hausdorff and the (weak) Fréchet distances:

ou(P, Q) < dkr(P,Q) < 0wr(P,Q) < 0r(P, Q).

Also, the k-Fréchet distance decreases as k increases: for k = 1 it equals the weak Fréchet
distance, whereas for k sufficiently large, e.g., k > n?, it equals the Hausdorff distance.
Figure 2 illustrates this property. The diagram on the left corresponds to a fixed ;. We
observe that there is one connected component in the free space Fg, (P, Q) that projects
surjectively onto both parameter spaces. We therefore have €1 > dwr (= d1r). The diagram
in the middle depicts F¢, (P, Q) for a value ey slightly smaller than ;. In that case two
components cover the parameter spaces, which means €5 > dap. The free space F., (P, Q)
shown on the right for an €3 smaller than €5 consists of three components and all three are
necessary to cover the parameter spaces. Furthermore, reducing the value of €3 even more
would not split up the components into smaller subcomponents, but would just result in the
set of all components not covering the parameter spaces any more. So we have €3 > dy = d3p.

A

Q

7

) Z

w €1 2> Opr = 01F I €9 > dop I €3> 0 = O3F

Figure 2 Comparison of weak Fréchet, 2-Fréchet and Hausdorff distance of curves P and Q.

3 Hardness results

In this section, we prove that deciding the k-Fréchet distance for fixed ¢ is NP-hard.

To give some intuition for the later proof, we first present a reduction from the well-known
3-SAT problem to the problem of covering two sides of a rectangle by selecting a number
of smaller rectangles, or boxes, that are situated inside. This problem (we call it the box
problem) mimics selecting the components in the free space to cover the parameter spaces.
However, we do not ask to find curves that realize this specific free space.

Afterwards we reduce from rectilinear monotone planar 3-SAT [13] to prove hardness of
the actual k-Fréchet distance problem.

3.1 Gaining intuition: The box problem

We want to reduce from the following classical NP-hard satisfiability problem [16]:
3-SAT:

INPUT: a boolean formula with n variables written as a conjunction of m clauses, where a

clause is a disjunction of at most 3 literals;
OutpruUT: “Yes” if there exists a satisfying variable assignment, “No” otherwise.

50:5

ISAAC 2019

50:6

The k-Fréchet Distance

Box problem:
INPUT: a set A of aligned, interior-disjoint rectangles b;, their bounding box B, k € N;
OuTtpUT: “Yes” if there exists a selection of at most k rectangles from A such that their
union surjectively projects onto the bottom and left boundary of B, “No” otherwise.

Given any instance of a 3-SAT formula, we build a bounding box B containing a number
of boxes b; such that we can find a covering selection of size k if and only if there is an
assignment for the formula that outputs true. A covering selection of boxes is a subset of
the b; that projects surjectively onto the bottom and left boundaries of B. For this we build
boxes b; that correspond to the variables and any satisfying assignment of the variables can
be directly “translated” into a covering selection of the b;.

First, note that we assume that no clause contains duplicates, i.e., no clause is of the form
vV vV w. The duplicates can be deleted without changing the boolean function induced by
the formula. Note that clauses of the form v V —v V w are allowed. Additionally, we require
that throughout the formula each literal appears at least once, i.e., each variable appears at
least once in its positive and in its negated form. For each variable v where this is not the
case we add the clause v V —w (colored dark green in Figure 3). These clauses are always
fulfilled and therefore do not change the output of our boolean formula. We add at most n
clauses in this way, which means that the size of the formula only changes polynomially in
the input size.

Now we give the detailed construction of our box problem instance derived from some
3-SAT formula: Let V = {v1,...,v,} be the set of variables and let C = {c1,...,¢n} be
the set of clauses. For each variable v;, let a; (respectively a;) be the number of clauses in
which v; appears positive (respectively negatively), and let {c;fl, CXQ, ey c:;ﬁ} (respectively

{cZ 1€ - }) be the set of clauses in which v; appears positive (respectively negatively).

Additionally we define the sums s;” = 22:1 aj and s; = 22:1 ay .

In the following we describe the placement of boxes, which is depicted in Figure 3. The
number of rows and columns needed for the different gadgets is indicated in the figure. A
box (z,y,w,) designates the axis-aligned rectangle with unit height and width w whose
bottom left corner has coordinates (r,y) € R? with label £. The labels are later used in the
proof of correctness.

Variable gadget. For each variable v;, we place two boxes (i,4,1, ;) and (i,i+n+s;, 1,v;),

and no other boxes are placed over the interval (i,7 + 1) of the bottom boundary. That way,
in order to cover said interval, at least one of those two boxes has to be chosen.

Split gadget. The split gadget ensures that we can propagate the assignment of a variable
onto all clauses the variable takes part in. We build the splits used for the positive occurrences
of the variables first. For each variable v;, we place the box (14 n + 8?_1, 1, a;r, v;) and the
boxes (n + s;“_l +j,n+ s;r_l +7,1,—w;), for j € {1,... ,aj}. For negated occurrences of
v; € V we place the box (1+n+ s} +s;_;,n+ s +i,a;,-v;) and the boxes (n + s, +
s +g2n+st+s +74, 1), forje{l,...,a; }.

Clause gadget. We assign to each clause ¢; the unit interval on the bottom boundary of B
starting at I(c;) = n+ s + s, +i. For each literal of a clause ¢; we place a box labeled
with the respective literal above the unit interval [I(¢;), I(c;) + 1]. To be precise, for each
v; € V we place the boxes (I(cp),n+ s, +j,1,v;), for j € {1,...,a] } and h € {1,...m}
where ¢, = c;fj, and (I(cp),2n+ s + s 1 +J,1,—v;), for j € {1,...,a; }, h € {1,...m}
where this time ¢, = ¢

4.7°

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

vartables| positive split neg.split | clauses
7 Td
s c[-Tc¢
bl)
a : 1l
d ' =d]
n C [=q==---mmmmmmmmmms -----~c
b -0
a .l
s o a
: G i R R c
e T -[2]
g S b
’ : - [a]
! a L [a]
L a P a
T T4
n G e c
—b b
12 a
n s, s, m

ANa VeV ad)
A(=bV eV d)
A(=a V a)

Figure 3 Construction of the box problem instance and propagation of assignment.

Overall, we have 4n + 2(mj + 2ms + 3ms) boxes, where m; is the number of clauses
with ¢ variables (and therefore my + m2 + m3 = m). Each unit interval (¢,7 + 1) with
i€{l,...,2n+ s} + s, } on the left boundary of B can be covered by exactly two different
boxes. The same holds for every unit interval (i,4 + 1) with i € {1,...,n+ s} + s, } on the
bottom boundary. Note that for all these unit intervals, one of the boxes is labeled with a
variable and the other one is labeled with the negated version of that variable, i.e., one box is
labeled v and the other one —w. Each Interval I(c) on the bottom boundary can be covered
by as many boxes as the clause ¢ contains literals. The labels of these boxes correspond to
the variables contained within this clause. We set the bounding box B as the axis-aligned
rectangle spanned by the points (1,1) and (1 +n+ s;7 + s, +m,1+2n+ s} + s;7) and we
set k = 2n + my + 2my + 3mg so only half the boxes can be chosen. For a given boolean
formula, the set of boxes defined above can be determined in polynomial time.

» Theorem 1. The box problem is NP-hard.

Proof. First we prove that the box problem as constructed above has a solution if and only
if the input 3-SAT formula has a variable assignment such that it evaluates to true.

“e=” Let f:V — {true,false} be an assignment of the variables that satisfies the
3-SAT formula. We set S = {boxes (z,y,w,v) | f(v) = true} U {boxes (z,y,w,) | f(v) =
false}. The set S projects surjectively onto the bottom and left boundary of the bounding
box B because each unit interval on the left boundary is covered by exactly one box. For
most of the bottom boundary we also have that each interval is uniquely covered, but for the
clauses columns we allow that more than one box per unit interval is chosen (i.e., more than
one corresponding literal is set to true).

50:7

ISAAC 2019

50:8

The k-Fréchet Distance

“=>". Let S be a minimal set of boxes that covers the boundaries of the bounding box B
with |S| = k. This means that each unit interval on the left boundary of B is covered by
exactly one box. Due to the position of the boxes, this means that for each variable v either
all boxes labeled v or all boxes labeled —v have been chosen. This induces an assignment of
the variable v, i.e., v is set to true if the boxes labeled v have been chosen and else v is set
to false. Note that the selection S covers the box B. Therefore, for each clause ¢ one of
the boxes that can cover I(c) is an element of the selection S. It follows that the assignment
of variables induced by S fulfills the formula.

Above we showed the NP-hardness of the box problem. The box problem is in fact even
NP-complete since for a given subset S of boxes one can test if the bounding box B is covered
by simply marking the covered intervals, which can be done in polynomial time. |

We can interpret the box problem as the problem of finding a selection of components in
the free space that cover the parameter spaces. The small boxes can be seen as bounding
boxes of actual components (for the projection there is no difference) and the bottom and
left boundary of the large box B correspond to the respective parameter spaces. The above
hardness proof, especially the construction of the boxes, provides us with the key ideas to
prove hardness of the k-Fréchet distance. Next, we construct actual curves where certain
intervals on the parameter spaces of the free space diagram each have two components that
could cover them. As with the box problem, the choice we make for one of those intervals
determines the choices for other intervals as we still need to ensure that the selection size
is minimal in the end. The propagation of choices works in the same manner for the box
problem as for the k-Fréchet distance problem.

3.2 Reduction for the k-Fréchet distance

We use the following variant of the 3-SAT problem in this subsection.

Rectilinear monotone planar 3-SAT:
INPUT: a 3-SAT formula with only all positive or all negated variables per clause, embedded
as a graph with rectilinear, non-crossing edges; variables are drawn as vertices on a horizontal
line, positive clauses are vertices drawn above this line and negative clauses are drawn below;
OutpUT: “Yes” if there exists a satisfying assignment for the variables, “No” otherwise.

v1 V Uy V g

v1 VgV s

H—v3 V -y V -y

H=vp V vy Vw03 V 5 V g
Figure 4 Instance of rectilinear monotone planar 3-SAT.
Note that we assume that each variable appears in at least one positive and one negative

clause. Otherwise, we could simply define the occurring literal to be true (or false,
respectively) and omit the clauses the literal appears in.

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

We can draw any graph corresponding to such a 3-SAT formula on a grid, see, e.g.,
Figure 4, which is useful when constructing and analyzing our curves. Since rectilinear
monotone planar 3-SAT is NP-hard [13], we prove hardness of the k-Fréchet distance problem
by reducing from it.

k-Fréchet distance problem:
InpPUT: Two polygonal curves P and @, a distance € and a natural number k;
OuTpPUT: “Yes” if there exists a selection of at most k£ components in the free space diagram
F_ such that their union projects surjectively onto both parameter spaces, “No” otherwise.

Our goal is to construct two curves P (yellow) and @ (blue) that mimic any input instance
of a rectilinear monotone planar 3-SAT graph and show that in the free space resulting from
these curves we can find a covering selection of size k if and only if there exists a satisfying
assignment for the formula. The detailed construction can be found in the full version of this
paper [1].

Overall we create wire and clause gadgets to represent variables and clauses, where wires
correspond to the edges of the input graph. Wire gadgets allow a boolean choice that is
propagated consistently throughout the wire. Clause gadgets test whether at least one
incoming wire carries an appropriate choice.

Figure 5 shows a wire gadget and how it is used. Both curves consist of two long parallels,
which we call base parts of the curves, and spikes, which are the horizontal segments in the
figure. The spikes are formed by taking a 90 degree turn from the base part and traversing
the spike segment back and forth. The base parts are not particularly relevant for the
analysis because the segments forming them can only be covered by larger components that
are always part of any covering selection. The value ¢ is chosen such that two adjacent spikes
are just within distance . It follows that the spikes induce components that are similar to
the boxes of Subsection 3.1. We say that a spike s is covered by an adjacent spike t of the
other curve if the component of the free space diagram that covers the two intervals induced
by these spikes is chosen for the covering selection. In the end, we choose k such that each
blue spike in any gadget can only be covered by one single adjacent yellow spike. The choice
for blue spikes must be consistent along the wire to preserve minimality of k, and it encodes
the assignment of the corresponding variable.

clause gadget

f———————m H
: : \Jf 1 1 1 1 \ 1 1 1
| 1 1 1 1 \ 1 1 1
I | AN | | | T = | | |Q
I T ST TR S I __l ______ y—
| - %) I
' : a1 ' i wire
I : 'Y wires—>| ___]
| ""I A H | |
] J -
= : Yai _____‘ _____ : ____:
| I A Y 1 i T % |
| |:[€ 75 |
:_ Q : Al DC 1 1 1 \\ :
! ' 7 A “+ bend gadget
_________________ N

Figure 5 (Left and middle) The wire gadget and its corresponding free space diagram. Note that
we connected the curves to give a small example, but the horizontal segment on top is not part of
the wire itself. (Right) A part of the construction where wires connect other gadgets.

As displayed in Figure 5, the clause gadget features one yellow spike that can be covered by
either one of the three blue spikes within its e-neighborhood. Which one of their neighboring

50:9

ISAAC 2019

50:10

The k-Fréchet Distance

yellow spikes the blue ones cover is determined by the variable assignment and propagated
throughout the wire, so if at least one of the variables is set to true, the yellow spike at the
center of the clause is covered.

Next, we need a number of other gadgets, too. As mentioned, the wires correspond
to edges in the rectilinear monotone planar 3-SAT instance. To draw them coherently we
need to make sure we can make 90 degree turns (so-called bends, see the right-hand side of
Figure 5) and do T-crossings, i.e., split a wire into two.

We need to treat remaining difficulties: first of all, there is a connection gadget that
enables us to connect the opposite base parts of P and @, respectively. The resulting curves
are closed, which we solve by applying the scissor gadget. Finally, we may need to change
which of the curves has spikes on a specific side to draw the other gadgets consistently, so we
also built a color gadget to “switch” the color pattern of the spikes.

At last, we want to connect all gadgets such that the resulting curves follow the embedding
of the input graph G. Recall that the input is a grid embedding. We first scale the grid by
a factor of 2'° to place all gadgets consistently. Note, that we have to deal with 2-clauses
and take into account that our split gadget is directed, so we need to have some space for
workarounds. Afterwards we can draw the curves’ vertices on grid points only. Consider the
input graph G. We want to traverse all edges of G twice, once per inner, once per outer
base parts. To do so, we have to “walk around” each face of G. To switch between faces we
use connection gadgets. We obtain a traversal order of the faces by computing a minimum
spanning tree of the dual graph, see [1] for a detailed description.

Finally, it remains to prove that our construction works in the sense that the curves have
k-Fréchet distance ¢ if and only if the specific 3-SAT instance is satisfiable.

First, we note that the complexity of our curves is polynomial in the size of our input
instance: the numbers of variables and clauses, but also the number of splits and the length
of the edges determine the number of spikes and therefore also the number of components
in the free space diagram. A spike induces either two or three components, depending on
whether it is part of a specific gadget, i.e., a clause, or not. In addition, the gadgets induce
a number of components, called clutter, that are always part of a covering selection. Some
gadgets also induce a constant number of unnecessary components that are never chosen.

Our goal is to cover the parameter spaces with k& components. We definitely need to
select all clutter components and we need to cover all spikes, therefore we need to select (at
least) one component per spike. We set k to be the number of clutter components plus the
number of blue spikes (spikes of Q). It follows that each blue spike can only be covered once,
which ensures that choices are propagated.

» Theorem 2. [t is NP-hard to decide whether éxr(P,Q) < & for given polygonal curves P
and Q, integer k, and € > 0 where dyr denotes the k-Fréchet distance.

For the full proof, we refer to the arXiv-Version of this paper [1]. For the reduction
constructed above, the following holds: given a satisfying assignment for the input formula,
we know which components to select: apart from all clutter components, we have to decide
how to cover the blue spikes. This choice is implied by the assignment and propagated
throughout the gadgets.

Given a selection of components, we need to backtrack our choices throughout the wires
and other gadgets to determine how the blue spikes are covered. Depending on this choice,
we know whether the corresponding variable has to be set to true or to false. Thus we
derive our assignment for the 3-SAT formula and complete the proof of NP-hardness.

We can test in polynomial time whether the union of a selection of components covers
the parameter spaces. Thus the problem of deciding the k-Fréchet distance lies in NP.

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

4 Algorithms

In this chapter, we begin by presenting a preprocessing algorithm, which applies to the
following algorithmic approaches: First, we can find a covering selection of at most size k in
exponential time and describe how to approximate k by factor 2 (Section 4.2). Then, we
describe an FPT-algorithm for finding an optimal covering selection in Section 4.3. Note that
the XP-algorithm as well as the FPT-algorithm are designed to solve the decision problem,
but we can also optimize k by repeating the decision problem solving algorithm for different
values of k by performing a parametric search on the reasonable values for k, similar to the
algorithm for the Fréchet distance for polygonal curves by Alt and Godau [3].

4.1 Preprocessing

First, we observe two preprocessing strategies, which can be applied before entering any
of our algorithms. In any case we start by computing the free space diagram, which takes
quadratic time. In the free space diagram it is easy to identify all necessary components:
any component that covers an interval of one of the parameter spaces uniquely (i.e., there is
no other component covering the exact same interval) is necessarily chosen for an output
selection. Such components can be found in O(nlogn) time using a scan. Furthermore, it is
possible to rule out all redundant components. A component is called redundant if and only
if it is completely contained in the bounding box of a different component (but there could
be more than one such component with a sufficiently large bounding box). This case can
also be detected via scans. Thus our preprocessing needs quadratic time. However, it does
not improve the size of the input (being the complexity of the free space) nor the resulting
runtime of any of the presented algorithms asymptotically.

4.2 XP-algorithm and approximation

We start by giving the more straight-forward approaches. First, we present an XP-algorithm.

» Remark 3. The k-Fréchet distance can be decided in O(k - n?*) time for constant k.

The brute force approach simply checks for all selections of k components of the free
space whether their joint projections cover both parameter spaces surjectively. That means
we have to check at most (":) possible combinations of components resulting in a runtime of
O(k - n?F) for fixed k, which is of course only feasible for very small k. Therefore we can
compute the answer to the decision problem for the cover distance with k = 2 in O(n*). Since

(7,?) < 2™ holds for any m > k, our runtime is upper-bounded by O(n - 2”2) for general k.

We can also approximate the size of an optimal solution.

The main idea of our algorithm is to find minimal covering selections for each parameter
space individually and combine those selections into an overall solution in the end. We can
find both selections covering only a single parameter space by applying a greedy technique.

Given the free space diagram, we first project all components onto the parameter spaces.

We get two sets of intervals, one covering the first parameter space (we store these intervals
in the list Lp, see Figure 6) and one for the second parameter space (stored in Lg). So one

component projects onto two intervals, one on each parameter space (and thus one per list).
We store the information on which two intervals stem from the same component accordingly.

Now we simply want to select a minimum number of intervals whose union equals the
unit interval, i.e., the parameter space. We deal with each parameter space on its own as
follows: we sort the lists Lp (and Lg) by left endpoint. Now, per list, starting at 0, we
make a greedy choice and select the interval (among the intervals starting at 0) with the

50:11

ISAAC 2019

50:12

The k-Fréchet Distance

Figure 6 The projection onto the first parameter space and the resulting elements of Lp.

rightmost endpoint, say r1. Here we recurse, i.e., we take r; as new start point and again
search among the intervals covering r; (i.e., intervals starting at or to the left of r1) for the
one with the rightmost endpoint. As soon as we select an interval with 1 as endpoint we
have found a minimal covering selection. To see that our greedy strategy is optimal, observe
that the algorithm proceeds from left to right maintaining the following invariant: at any
time we selected a minimum number of intervals to cover the parameter space from its left
boundary to the current position.

As output we have two selections of intervals, Sp and Sg. The intervals correspond to
components. We build the union of both lists, taking into account that an interval in Sp may
belong to the same component as an interval of Sg, and output the selection of components
S that contributed at least one of the chosen intervals.

The worst case that might occur is the following: all of the intervals we selected during
the greedy procedures correspond to different components in the free space, so that the union
of our selections is of size |Sp| + |Sg|. A different selection of size |S| = max(|Sp|,|So|)
might cover both parameter spaces but is not detected by the greedy scan. Schéfer proves
that the approximation factor 2 is indeed tight [19].

Finally, we consider the runtime: computing the free space takes quadratic time. Sorting
the lists adds another logarithmic factor while the greedy selection routine takes linear time
in the number of intervals. Hence we get an overall runtime of O(n?logn).

» Theorem 4. The algorithm described above runs in O(n?logn) time and finds a selection
of components that covers both parameter spaces if and only if one exists. A found selection
contains at most twice the minimum number of components needed.

4.3 Fixed-parameter tractability

Lastly, we present an algorithm for deciding whether dyr(P, Q) < e for given ¢ and k.
The runtime of our algorithm is polynomial in the complexity of our curves P and @, but
exponential in the two parameters k (the selection size) and z (the neighborhood complexity).
We define the neighborhood complexity as the maximum number of segments of one curve
that intersect with the e-neighborhood of any point of the other curve. In the free space
diagram we get that each horizontal or vertical line intersects at most z components. Note
that this requirement is similar but not directly related to c-packedness. The first counts the
number of segments of one curve within a fixed distance of any point of the other curve. In
contrast, c-packedness bounds the length of one curve within a ball of arbitrary radius.
The idea is the following: we build two directed bounded search trees (as described in
Chapter 3 of [12]) to create selections of components of size at most k. Each search tree
represents the projection of the free space onto one parameter space, see Figure 7 below. A

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

node corresponds to a component in the free space (or rather the interval on the respective
parameter space it covers) and a path encodes a selection that covers the interval [I,7]. By [
we denote the left boundary point of the interval corresponding to the root of the path and
r is the right boundary point of the interval of the bottommost node (e.g. a leaf). We call
a selection or a path feasible if the union of the (at most k) components it encodes covers
the respective parameter space. From the first tree, Tp, we are able to extract all feasible
selections which cover the parameter space corresponding to curve P, feasible selections
of the second tree, Ty, cover the other parameter space. In the end, we compare and/or
combine a feasible selection of Tp with a feasible selection of T to get a selection S that
contains no more than k& components, so that its union covers both parameter spaces.

&

GV,
()

\ 2 3 3
'
(1) 5 ¢ ¢
AN\ N A
Q\ S5 6 4 %6 6 4 e
£ AN ATE A UA TS BN
I (3) C 6 4 6 6 6
Figure 7 Curves P,), their free space diagram and the resulting bounded search tree Tp. Leaves
of feasible paths are marked in green.

&0

()
(

\)

More formally, we build two trees of depth k& and branching factor z. Consider the tree
Tp. The root is labeled by the left boundary point of the parameter space of P (we assume
w.l.o.g. that the bottom boundary of the free space diagram corresponds to P). Now we use
a sweep line initialized at the left boundary of the free space diagram. We assign a node in
the tree to all components intersecting the sweep line, i.e., the root has as many children as
there are components touching the left boundary of the free space diagram. The sweep line
moves to the right. Whenever the sweep line is tangent to a component, one of two cases
occur: if it touches the leftmost point of a component it becomes active, i.e., the sweep line
continues to intersect this component when moving further to the right; if the line touches
the rightmost point of the component, it becomes inactive (so the sweep line just stops to
intersect it). In the first case, nothing immediate happens to the tree, in the latter case,
if the tangent component already has a node in the tree, we insert new nodes: each node
corresponding to the tangent component gets assigned as many children as there are other
currently active components. By definition, a node can never have more than z children.
Note that some (small) components may not get assigned any nodes in one tree. Also, with
every node we store its depth (the root has depth 0) and stop assigning children at depth & -
or as soon as a component touches the right boundary of the free space diagram. If a leaf
v; corresponds to a component touching the right boundary, the path from the root to v;
encodes a feasible selection of components for Tp. Other selections are called non-feasible.
The second tree Tj is built analogously by sweeping from bottom to top.

We store the feasible selections obtained from Tp and Tg in sorted lists L, and Lf,. For
each pair of selections Sp;, Sg.;, where 1 < i,j < 2z, we test whether |Sp; U Sq ;| < k and
output this union if the answer is positive.

» Theorem 5. The algorithm described above returns a selection S of k components in the
free space that covers both parameter spaces if and only if such a selection exists. Hence it
solves the decision problem for the k-Fréchet distance in time O(nz + kz2¥).

50:13

ISAAC 2019

50:14

The k-Fréchet Distance

Proof. Our algorithm treats all possible selections of size at most k per parameter space
and combines all these, hence it necessarily finds a valid solution if and only if one exists.
For the first step, we compute the free space, which takes O(n - z) time. Building the
trees takes O(z*) time since we are limited to depth k and insert at most z children per
node. Note that any operation in the free space diagram, such as detecting components that
cover a boundary or projecting them onto the boundaries to find the intervals they cover,
can be done in O(nz) time. We obtain at most z* selections per search tree. Each selection
is stored as the sorted set Sp;, respectively Sq ;, by encoding each component as an integer.
We then sort both lists of selections lexicographically. During the sorting we might detect
duplicates, which we discard immediately. We then compare each selection of the first list
LY to each selection of LY, taking time k per comparison. For any selection smaller than k
we can test whether its union with a selection of the other list is still a solution, i.e., whether
the unified selection does not have more than k integers. All in all, we have a runtime of
O(zn + 28 4+ 2% - klogk + k(2%)?) = O(zn + k2%). <

By combining a greedy approach with building an interval tree, Schéfer improved the runtime
of our FPT algorithm to O(nz + k - (logn + 2) - 2*) in [19].

5 Conclusion

We present a novel variant of the Fréchet distance for polygonal chains that allows to compare
objects of rearranged pieces. We ask for k (possibly overlapping) subcurves per input curve
that have pairwise small weak Fréchet distance. Thus, the k-Fréchet distance provides a
transition between weak Fréchet (k = 1) and Hausdorfl distance (k sufficiently large).

But as we prove, deciding the k-Fréchet distance of two polygonal curves is NP-hard.
However, we were able to tackle the computational challenge from different angles: we give
an XP-algorithm depending on k, approximate k by factor 2 and present an FPT-algorithm.

As mentioned in the introduction, there is a second variant of defining the k-Fréchet
distance we call the “cut version”: instead of allowing overlapping subcurves, we cut the
curves into pieces and search for a matching between these pieces. The NP-hardness proof
presented at EuroCG2018 [11] holds for this variant. However, the algorithmic approaches
only work for the variant we discuss in this paper (we call it the “cover variant”). Finding
algorithmic approaches for the cut version of the k-Fréchet distance is work in progress.

—— References

1 Hugo A. Akitaya, Maike Buchin, Leonie Ryvkin, and Jéréme Urhausen. The k-Fréchet distance.
CoRR, 2019. arXiv:1903.02353.

2 Helmut Alt, Peter Braf}, Michael Godau, Christian Knauer, and Carola Wenk. Computing the
Hausdorff distance of geometric patterns and shapes. In Discrete and computational geometry,
volume 25 of Algorithms Combin., pages 65-76. Springer, 2003.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5:75-91, 1995.

4 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45-58, 2004.

5 Karl Bringmann. Why Walking the Dog Takes Time: Fréchet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661-670, 2014.

http://arxiv.org/abs/1903.02353

H. Alves Akitaya, M. Buchin, L. Ryvkin, and J. Urhausen

10

11

12

13

14

15

16

17

18

19

20

Kevin Buchin, Maike Buchin, Christian Knauer, Giinther Rote, and Carola Wenk. How
Difficult is it to Walk the Dog? In 23rd European Workshop on Computational Geometry
(EuroCG), pages 170-173, 2007.

Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets Walk
the Dog: Improved Bounds for Computing the Fréchet Distance. Discrete and Computational
Geometry, 58:180-216, 2017.

Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 645-654, 2009.

Maike Buchin. On the Computability of the Fréchet Distance Between Triangulated Surfaces.

PhD thesis, Free University Berlin, Institute of Computer Science, 2007. URL: http://www.

diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618.

Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, pages 367-376. ACM, 2014. doi:10.1145/2582112.2582144.

Maike Buchin and Leonie Ryvkin. The k-Fréchet distance of polygonal curves. In 34th

European Workshop on Computational Geometry (EuroCG), 2018. URL: conference.imp.

fu-berlin.de/eurocgl8/.

Marek Cygan, Fedor V. Fomin, ¥, ukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Internat. J. Comput. Geom. Appl., 22:187-205, 2012.

Anne Driemel and Sariel Har-Peled. Jaywalking your Dog - Computing the Fréchet Distance
with Shortcuts. CoRR, 2011. arXiv:1107.1720.

Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete and Computational Geometry, 48:94-127, 2012.

Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979.

Amin Gheibi, Anil Maheshwari, Jérg-Riidiger Sack, and Christian Scheffer. Minimum backward
Fréchet distance. In Proceedings of the 22Nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, SIGSPATIAL ’14, pages 381-388. ACM, 2014.
doi:10.1145/2666310.2666418.

Jacob E. Goodman, Janos Pach, and Chee-K. Yap. Mountain climbing, ladder moving, and
the ring-width of a polygon. Amer. Math. Monthly, 96:494-510, 1989.

Peter Schéifer. Untersuchungen zu Varianten des Fréchet-Abstands. Master’s thesis, Fernuni-
versitidt Hagen, 2019.

Christian Scheffer. More Flexible Curve Matching via the Partial Fréchet Similarity. Int. J.
Comput. Geometry Appl., 26:33-52, 2016.

50:15

ISAAC 2019

http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000002618
https://doi.org/10.1145/2582112.2582144
conference.imp.fu-berlin.de/eurocg18/
conference.imp.fu-berlin.de/eurocg18/
http://arxiv.org/abs/1107.1720
https://doi.org/10.1145/2666310.2666418

	Introduction
	Preliminaries
	Hardness results
	Gaining intuition: The box problem
	Reduction for the k-Fréchet distance

	Algorithms
	Preprocessing
	XP-algorithm and approximation
	Fixed-parameter tractability

	Conclusion

