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—— Abstract
Consider a set of n mobile computational entities, called robots, located and operating on a continuous
cycle C (e.g., the perimeter of a closed region of R?) of arbitrary length £. The robots are identical,
can only see their current location, have no location awareness, and cannot communicate at a
distance. In this weak setting, we study the classical problems of gathering (GATHER), requiring
all robots to meet at a same location; and election (ELECT), requiring all robots to agree on a
single one as the “leader”. We investigate how to solve the problems depending on the amount of
knowledge (exact, upper bound, none) the robots have about their number n and about the length
of the cycle £. Cost of the algorithms is analyzed with respect to time and number of random bits.
We establish a variety of new results specific to the continuous cycle — a geometric domain never
explored before for GATHER and ELECT in a mobile robot setting; compare Monte Carlo and Las
Vegas algorithms; and obtain several optimal bounds.
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1 Introduction

1.1 The Framework

Consider a distributed system composed of a set R of autonomous mobile computational
entities, called robots, located and operating in an Euclidean space U. The robots are
identical: without identifiers or distinguishing features, they have the same capabilities and
execute the same algorithm. Although autonomous, their goal is to collectively perform some
assigned system task or to solve a given problem. Among the important tasks and problems
are: gathering (GATHER), requiring all robots to meet at a same location; and election
(ELECT), requiring all robots to agree on a single one as the “leader”. Indeed, GATHER is
one of the fundamental problems in theoretical mobile robotics, while ELECT is typically
solved as an intermediate step in the resolution of many important problems, in particular
? Paola Flocchini, Ryan Killick, Eva.ngelos Kranakis, Nicola Santoro, and Masafumi Yamashita;
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pattern formations. Both GATHER and ELECT have been extensively investigated under
a variety of assumptions on the capabilities of the robots (e.g., memory, communication,
visibility, orientation, speed), on the space in which they operate, and on the power of the
adversary. From the point of view of the behaviour of the robots, the two main models are
Look-Compute-Move (LCM) and Continuous Time (CT). In LCM the robots operate by
cycling through three separate processes: observing the space (Look), executing the algorithm
to determine a destination (Compute), and moving towards it (Mowve). In CT the robots are
permanently active and continuosly performing all three processes. For a recent overview see
[15] and the chapters therein.

In all investigations, in both models, the theoretical concern is to identify the weakest
possible conditions that make the problems solvable.

In this paper, we consider GATHER and ELECT by identical robots when the space U
is a continuous cycle C (e.g., the perimeter of a closed region of R?). This spatial setting
has been investigated in the LCM model with respect to the scattering problem, requiring
identical robots to place themselves at uniform distance along the cycle [13]. In the CT
model, a continuous cycle has been studied in the context of solving patrolling when the
robots are identical [9] and when they have different motorial capabilities [7]; gathering has
also been investigated, but only with robots having different motorial capabilities [22].

We study GATHER and ELECT in the CT model in a very weak computational setting:
the identical robots can only see their current location and have no location awareness;
furthemore they cannot communicate at a distance (i.e., communication is possible only
between robots located at the same point at the same time).

It is immediate to observe that, in our setting, both problems are deterministically
unsolvable: there is no deterministic algorithm that, in all possible executions of the algorithm
by the robots and regardless of the initial position of the robots in the cycle, will always
correctly solve the problem within finite time. This is obvious in the case of ELECT because,
to render a single robot uniquely different from all others it requires the existence of some
asymmetry in the system (e.g., in the initial placement of the robots, in shape of the Euclidean
space) if no difference is present among the robots (e.g., distinct ids, different speeds). In
our setting the impossibility holds also for GATHER, which does not have such a stringent
requirement, and can sometimes be deterministically solved in absence of asymmetries and
differences among the robots (e.g. [5]). Further observe that, since visibility is limited to the
current robot’s location, in our setting both problems are deterministically unsolvable even if
the initial configuration is asymmetric, and the robots are aware of this fact. Summarizing,
the only possible solution algorithms are randomized ones.

1.2 Main Contributions

In this paper we start the investigation of solving GATHER and ELECT by the set of robots
R deployed in a continuous cycle C. Since GATHER is of easy resolution once a leader has
been elected, we primarily focus on ELECT.

We propose both Las Vegas and Monte Carlo decentralized election protocols where: a
Las Vegas algorithm correctly teminates with probability one in an unpredictable amount of
time; a Monte Carlo algorithm has a fixed termination time but pays for this determinism
with a positive — yet bounded — probability that it has terminated incorrectly. In other words,
a Las Vegas algorithm “gambles with resources” and a Monte Carlo algorithm “gambles with
correctness”.
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We evaluate the complexity of the proposed algorithms with respect to two cost measures:
the time until the algorithm terminates, and the total number of random bits (coin flips)
required by the algorithm. The costs depend not only on the length ¢ of the cycle and the
number n of mobile robots (note that n can be arbitrarily larger than £), but also and more
importantly on the knowledge (none, exact, upper bound) the robots have on ¢ and/or n.

We estabish several results. In particular, we prove that, with knowledge of ¢, a leader
can be elected with probability one in optimal time with an optimal number of random bits,
even without any knowledge of (an upper bound on) n. If only an upper bound L = O (¢) is
known, then a leader can be elected with high probability in optimal time with an optimal
number of random bits, even without any knowledge of (an upper bound on) n.

The results of the paper are summarized in Tables 1 and 2. As we are analyzing
randomized algorithms, the cost measures are often random variables; when this is the case,
we give both the value achieved in the average and that with high probability.

Table 1 Results according to the knowledge of the robots (“Ex.” = exact, “-” = no knowledge,
“UB” = upper bound). Tezp (resp. Bezp) represents the expected time (resp. random-bit) complexity.
The column “Type” gives the type of randomized algorithm (LV = Las Vegas, MC = Monte Carlo).
The last column gives the corresponding algorithm label in the text. When an upper bound on
£ (resp. n) is known it is represented by L (resp. N); and the constructed upper bound on n is

A

— Ln
N ===,

’ n ‘ I4 ‘ Texp ‘ Bezp ‘ Type ‘ Algo.
Ex. | UB O (L) O (n) LV Al
Ex. - O(n+Y¥ O(n+nloglf/n]) | LV | Al + AT

- | Ex. O (¢) O (n) LV | Al + A6
UB | UB O (L) O (n) MC A3
UB | - O(N+N-¢/n) | O(n+nlog[¢/n]) | MC | A3 + AT

- | UB O (L) O (n) MC A3+AS8

Table 2 Same as Table 1 for time and bit complexities with high probability.

’ n ‘ V4 ‘ Twhp ‘ Bunp ‘ Type ‘ Algo.
Ex. | UB O (Llogn) O (nlogn) LV Al
Ex. - O (n+ Llogn) O (nlogn + nlog [¢/n]) LV | Al + A7

- Ex. O (Llogn) O (nlogn) LV | Al + A6
UB | UB O (Llog N) O (nlog N) MC A3
UB | - O(N+N-¢/n-logN) | O(nlogn+nlog[¢/n]) | MC | A3 + A7

- | UB O (LlogN) O (nlog N) MC | A3+AS8

The paper is organized as follows. We first consider the case when the robots have some
level of knowledge (exact or upper bound) of both parameters (Section 3). We prove that,
when the robots possess knowledge of n, the knowledge of an upper bound L = O (¢) allows
for a LV solution which is optimal with respect to both complexity measures. In case the
robots know only upper bounds on both n and ¢, we give a Monte Carlo algorithm. In
Section 4 we consider the cases when the robots have no knowledge (exact nor upper bound)
of one of the two parameters. In these cases we provide Las Vegas algorithms by which the
robots can obtain knowledge of the unknown parameter efficiently, and subsequently elect a
leader using the algorithms of Section 3. In Section 5 we demonstrate that unless the robots
know n and/or ¢ exactly, a Las Vegas algorithm cannot exist that solves ELECT. Extensions,
including the solutions for GATHER using the results for ELECT, and open questions are
discussed in Section 6.
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1.3 Related work

There exists an extensive literature on problem solving by n identical mobile robots in
continuous spaces, both within the distributed computing and the control communities;
e.g., see the books [4, 14, 15]. In distributed computing, the problem of gathering identical
robots has been the focus of intensive investigations under a variety of assumptions on
the computational power and communication capabilities of the robots (e.g., [5, 6, 16, 27]).
Similarly, the problem of electing a leader and its relationship to asymmetry has been
observed, investigated and discussed when studying solvability of a variety of problems by
autonomous mobile robots, in particular pattern formations (e.g., [10, 17, 19]). Indeed,
a great deal of research has been devoted to the link between degree of symmetries and
deterministic problem solving; see [15] and chapters therein for a recent account, in particular
[30]. Almost all of this work is on deterministic solutions, with few exceptions (e.g., [20]).

Robots operating specifically in a continuous cycle have been studied in the context of
rendezvous and gathering, but only with robots having different motorial capabilities [11, 22].
Other investigated problems in a continuous cycle are: patrolling, studied both when the
robots are identical and when they have different motorial capabilities (e.g. see [7, 8, 9]);
and scattering, where the robots must place themselves at uniform distance on the cycle [13].

The geometric continuous settings in which the mobile entities can move freely are
in general more suitable than discrete settings for distributed computing applications in
robotics [4]. This is further enforced by the fact that after a system shut-down in a robot
application the participating robots cannot be guaranteed to occupy the vertices of a graph
but rather might be placed at arbitrary locations in the underlying geometric domain.

Settings of identical mobile entities operating in discrete spaces (i.e., in graphs) are
extremely important as they naturally describe a wide variety of computational environments,
including networked systems supporting mobile software agents, and ad-hoc wireless networks.
In these settings, the analogue of a set of mobile robots in a continuous cycle is a set of
identical mobile agents in a ring of identical nodes. Interestingly, this discrete setting has been
extensively studied, especially for rendezvous and gathering; e.g., see the monograph [26]. In
absence of distinct features of the agents and of the nodes (e.g., ids, markers, tokens), solutions
are necessarily randomized, and their development has been the object of several investigations.
In particular Ooshita et al. studied the gathering problem in anonymous unidirectional ring
networks for multiple (mobile) agents with limited knowledge and characterized the relation
between probabilistic solvability and termination detection [29]. Izumi et al. investigated
the feasibility of polynomial-expected-round randomized gathering for n robots and show
that any randomized algorithm has Q(exp(n)) expected-round lower bound [24].

In the computational universe of static (or stationary) entities connected via a commu-
nication network (i.e. the traditional message-passing universe in distributed computing),
the computational entities coincide with the network nodes (i.e., the nodes are the active
agents). Note that, in this universe, the problem GATHER does not exist; on the other hand,
ELECT is a fundamental problem. When the entities are identical, the system is known as
an anonymous network, and several researchers have focused on computing in an anonymous
ring (e.g., [1, 2, 12]). The problem of electing a leader in an anonymous network, known
also as symmetry breaking and for which clearly only probabilistic solutions exist, has been
investigated in an anonymous ring network (e.g., [3, 18, 23]). In particular, Itai and Rodeh
proposed probabilistic algorithms for both the synchronous and asynchronous case; they
considered both cases when the size of the ring may be either known or unknown to the
nodes and studied its impact on termination with a nonzero probability [23].
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Interestingly, of all the related work, the one closest in spirit to our investigation is that
of symmetry breaking in an anonymous ring, in spite of the fact that the computational
universes are completely different: static entities and discrete space in one while mobile
entities and continuous space in ours.

2 Model

Let R be a set of n > 2 autonomous mobile computational entities, called robots, located in
a continuous cycle C (e.g., the perimeter of a closed region of R?) of real length ¢ in arbitrary
and pairwise distinct positions.

The robots are identical: without identifiers or distinguishing features, they have the same

(computational, motorial and communication) capabilities and execute the same algorithm.

We assume that all robots move at speed one. Each robot » € R has a local memory
composed of a finite set of registers, including a special register state(r) which stores the
current state of r; initially, the content of the memory of every robot is the same. Each robot
is in possession of a fair coin which outputs H or T each with probability 1/2. At any time
a robot may flip its coin and base a decision on the outcome of that flip. For a robot r we
will use the notation b(r) to represent a special register which always contains the outcome
of its most recent coin-flip. We will use the notation b(r) < flip() to represent the action of
flipping a coin and assigning the outcome to b(r).

The robots can only see their current location and have no location awareness. Furthermore
they cannot communicate at a distance; that is, communication is possible only between
robots located at the same point at the same time (face-to-face). A robot may move along
C in either the cw (clockwise) or ccw (counter-clockwise) direction and may stop and/or
reverse its direction of movement at any time. For simplicity, we will assume that the robots
have consistent orientations and argue in Section 6 why this assumption is not necessary.

The robots are permanently active and continuously performing three processes: executing
the algorithm (which might require flipping a coin), moving in a given direction or not at
all (if so prescribed by the algorithm), and communicating with co-located robots. A robot
can distinguish among its co-located robots and is able to instantaneously exchange any
amount of information with each of them. When two robots moving in opposite directions
meet, or a moving robot meets a stopped robot, the two robots become co-located; we call
this an encounter. During an encounter, one of the robots can decide to merge with the
other, thereby comitting itself to following all actions of the robot it has merged with. As a
result of this process, robots will form robot stacks with the head of the stack the only robot
actively participating in an algorithm (the stack acts as a single robot). A robot r will keep
track of the number of robots present in its stack in a special register denoted by CNR(r).

We assume a fully synchronous system in the following sense. Each robot possesses an
identical copy of the same clock and each robot can use their respective clocks to measure
arbitrarily small intervals with respect to the same unit of time (which we may take to be 1
without loss of generality). All robots will begin an algorithm at the same moment and all

robots move with the same speed (which we may also take to be 1 without loss of generality).

This implies that robots can fix a unit length as the distance traveled in one unit of time.
We study how such robots can solve ELECT and GATHER, and at what cost. The election
problem, ELECT, requires the robots to transition from an initial configuration where each
robot is in an identical state, to one where a single robot can be uniquely distinguished
from the others. When solving this problem, we will assume the robots can be found in
one of the three states CANDIDATE, FOLLOWER, or LEADER. The gathering problem,
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GATHER, requires the robots to transition from an initial configuration where each robot is
in an identical state, to one where all robots are co-located and will no longer move. Since
GATHER is of easy resolution once a leader has been elected, we primarily focus on ELECT.

We distinguish between two types of randomized algorithms: those of the Las Vegas type
and those of the Monte Carlo type [28, 21]. An algorithm is of the Las Vegas type, if, for
any problem instance, it is correct when it terminates and it terminates with probability 1.
In contrast, an algorithm is of the Monte Carlo type if, for any problem instance, it always
terminates and it is correct with a probability p which is bounded away from zero.

The costs of a solution algorithm are evaluated with respect to two measures: 1) time
complexity — the time until the algorithm terminates; and 2) random-bit complexity — the
total number of random bits/coin flips used by the algorithm. The costs depend not only on
the system parameters, the length ¢ of the cycle and the number n of mobile robots, but also
and more importantly on the type of knowledge available to the robots about the values of
those parameters. As we are analyzing randomized algorithms, these complexity measures
will often be random variables. When this is the case, we will give the value achieved in the
average and with high probability.

3 Election with knowledge of both n and ¢

In this section we consider ELECT when the robots possess knowledge of both n and ¢ (either
exact or upper bounds). We begin with the case that the robots have exact knowledge.
Pseudocode for all algorithms can be found in the appendix.

3.1 Exact knowledge of n and ¢

» Theorem 1. Let n and £ be known to the robots. There is a Las Vegas algorithm solving
ELECT which terminates in time O (£) on average and in time O (£logn) with high probability;
and requires O (n) random bits on average and O (nlogn) with high probability.

The proof is based on the algorithm ELECTLV (n, ¢). This algorithm is formally described
as Algorithm 1 and takes as inputs the number of robots n and the length of the cycle £.
Initially all robots begin in the same CANDIDATE state and each robot r has CNR(r) set
to 1. The algorithm proceeds in a series of rounds beginning with the round ¢ = 0. In each
round the CANDIDATE robots will run the procedure ELECTIONROUND(D) with input
D, = min{%, %(4/3)t}, the result of which is that a subset of the robots merge and enter the
FOLLOWER state. This will continue on until only a single CANDIDATE robot remains
with a stack containing all n robots. As the robots know the value of n, this last remaining
robot will know it is the last and will thus enter the LEADER state.

The procedure ELECTIONROUND(D) is formally described as Algorithm 2. The idea of
this procedure is as follows. Each robot begins by flipping a coin. Those that flip T will
remain stationary for a time 4D;. Those that flip H will: move ccw a distance D;; return
to their initial positions; move CW a distance D;; and again return to their initial positions.
If ever it occurs that a robot r who flipped H encounters a robot s who flipped T then s will
merge with r and r will update the value of CNR(r) to reflect this.

We begin our analysis by determining how effective the procedure ELECTIONROUND(D)
is at reducing the number of candidates. This will be the subject of the next two lemmas.

» Lemma 2. Let n and n' respectively represent the number of CANDIDATE robots before
and after ELECTIONROUND(D) ds run with input D > 0. Then En'] < 2 + 1 [ 5].
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Proof. Partition the cycle into m = [%W disjoint intervals such that each interval has length
% < 2D. For each i € [1,m] let n; and nj respectively represent the number of CANDIDATE
robots contained in the i*" interval at the beginning and end of ELECTIONROUND(D). Then
it is clear that n =>""", n; and n’ = ;" n!. This latter expression allows us to write the
expectation of n’ as follows:

En'] = ZE[n;] = ZixPr[n; = 1. (1)

To determine the probability Pr[n} = z] consider the i'" interval which initially contains
n; > 0 CANDIDATE robots. If at least one of these n; robots flipped H then the number of
them that will remain CANDIDATE is exactly the number of them that flipped H. Thus, if
we let k; represent the random variable which counts the number of CANDIDATE robots
that flipped H in an interval 7 then we can conclude that Pr[n} = z|k; > 1] =1ifx = k; and 0
otherwise. For z € [1,n;] this implies that Pr[nj = ] = 7" Pr[n} = z|k; = j] Pr[k; = j] or
Prn; = x| = Prlk; = | + Pr[n; = z|k; = 0] Pr[k; = 0]. Using this expression for Pr[n} = z]
we find that E[nj] = > 1""  aPr[k; = 2] + > "« Pr[n} = z|k; = 0] Pr[k; = 0].

It is not hard to see that k; is binomially distributed with parameters n; and p =
1/2 implying that > """ 2 Pr[k; = 2] = n;/2, and that Pr[k; = 0] = (1/2)". The sum
ity xPr[nl = x|k; = 0] represents the expected number of CANDIDATE robots surviving
in an interval i given that they all flipped T. Clearly this expectation is bounded by n; and
we can thus conclude that E[n;j] < % +n; (é)n’ <42

To bound the expectation of n’ we can substitute this inequality into (1) to get E[n'] =
SELER] <Y (% 4+ 1) =2 + 2 where we have used the fact that n = >";" | n; in the

L] the lemma follows. |

last step. Since m = [QD

» Lemma 3. Let n; count the number of CANDIDATE robots remaining in round t > 0 of
ELECTLV (n, ). Then E[n:] < [(%)t n—‘

Proof. The proof is by induction on ¢. The base case t = 0 is clearly true. We assume that
the claim holds up to ¢t = k. Using the induction hypothesis and Lemma 2 we can write

Engs1] < % “%)kn—‘ + % {ﬁ—‘ where D; = min{g, % (%)t} The lemma clearly holds

if Dy > %. If this is not the case then Dy = % (%)}C and again it is easy to see that the
lemma holds. <

In the next three lemmas (Lemma 4, Lemma 5, and Lemma 6) we bound the number of
rounds, time, and random-bits required until only a single candidate robot remains. In order
to do so we will employ a useful theorem by Karp [25] concerning the solutions of stochastic
recurrence relations. This theorem is described in the appendix as Theorem 22.

» Lemma 4. Let T be the first round of ELECTLV (n,{) in which only a single CAN-
DIDATE robot remains. Then E[T] < Llog4/3(n)J + 1 and, for any positive integer w,

Pr{T>{lo nJ+1+w}< HY ——n

- g4/3( ) - (4) (4/3) L10g4/3(n)J

Proof. Observe that T = T'(n) satisfies the stochastic recurrence relation T'(n) = 1+ T (h(n))
with base condition T'(1) = 0 and where the expectation of h(n) is bounded using Lemma 3,
i.e., E[h(n)] < [2n]. With this observation the lemma follows easily from Theorem 22. <
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» Lemma 5. Let 7 be the time required until only a single CANDIDATE robot remains
in ELECTLV (n,¢). Then E[7r] < 8L and, for any positive integer w, Pr[T > 2L(4 + w)] <
3\ n

(4) (4/3) Llog4/3(n)J ’

Proof. Set t; as the first round which satisfies L/n(4/3)" > L/2, i.e. t1, = [log4/3(n/2)—‘.
Assume that it takes T > ¢;, rounds until only one CANDIDATE robot remains. The time
7 required to complete these 7' rounds is 7 = 4% Ziigl(él/?))t +2 ZtT:tL L <12&(4/3)t +
2(T —tr)L <8L+2(T —t1). The lemma now follows from Lemma 4. <

» Lemma 6. Let B be the random variable which counts the number of coin-flips used in
ELECTLV (n,f). Then E[B] < 4n and, for any positive integer w, Pr[T > (4 4+ w)n| < (%)w.

Proof. Similarly to the proof of Lemma 4 we observe B = B(n) satisfies the stochastic
recurrence relation B(n) = n 4+ B(h(n)) with base condition B(1) = 0 and where h(n)
has expectation E[h(n)] < [2n]|. With this observation the lemma follows easily from
Theorem 22. |

The proof of Theorem 1 now follows immediately from Lemmas 5, and 6.

3.2 Inexact knowledge of n and/or £

We now consider the cases that the robots are provided with inexact knowledge (upper
bounds) of at least one of n or £. We begin with the case that the robots know n and an
upper bound on /.

Observe that nowhere in the proof of Theorem 1 did we require the robots to know
exactly the value of £. In particular, if the robots were to instead use an upper bound L on ¢
then the only change we need to make is to replace £ with L in the time complexity. This
observation thus easily leads to the following corollary of Theorem 1:

» Corollary 7. Let n and an upper bound L > { be known to the robots. There is a Las
Vegas algorithm solving this problem which terminates in time O (L) on average and in time
O (Llogn) with high probability; and requires O (n) random bits on average and O (nlogn)
with high probability.

The same argument does not work if the robots know ¢ and an upper bound N > n since
ELECTLV requires the exact value of n in order to terminate. We will see in the next section
that exact knowledge of £ however allows the robots to determine n and we will therefore
postpone a discussion of this case until then.

If the robots only possess upper bounds on both n and ¢ then a Las Vegas algorithm does
not exist (see Section 5). We thus provide a Monte Carlo algorithm (Algorithm 3) to solve
the problem.

» Theorem 8. Let upper bounds N > n and L > ¢ be known to the robots. Then, for any
positive integer w there is a Monte Carlo algorithm solving ELECT with error probability
O ((3/4)"). This algorithm terminates in time O (wL) and requires O (wn) random bits.

Proof. The proof is based on the algorithm ELECTMC(N, L, w) which takes as inputs the
upper bounds N and L, and a positive integer w which controls the runtime. This algorithm
is formally described as Algorithm 3. This algorithm is identical to ELECTLV (N, L) except
that it deterministically terminates on the round o, = {10g4 s3(IV )—‘ -+ w. We may therefore

reuse many of our previously derived results. In particular, the time 7 until termination
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follows from the proof of Lemma 5 and is given by 7 = 8L + 2(w + 1) L. The random-bit
complexity follows from Lemma 6. The error probability of the algorithm is also easy
to derive. In particular, if we let 7" be the number of rounds required until only a single
CANDIDATE remains then the probability that the algorithm terminates incorrectly is simply
the probability Pr[T" > t] = Pr [T > {log4/3(N)—‘ + w} = Pr [T > {10g4/3(N)1 +14+ w}
and this probability is given by Lemma 4. |

4 Election with knowledge of either n or ¢

In this section we investigate ELECT when the robots are provided with knowledge of only
one of n or ¢ (exact or upper bounds). In all cases we use the same strategy to solve the
problem: we develop algorithms by which the robots gain knowledge of the unknown of n or
£ and then use the algorithms of the previous section to solve ELECT. Pseudocode for all
algorithms presented can be found in the appendix.

4.1 Exact knowledge of n or ¢

» Theorem 9. Let cither n or £ be known to the robots. Then there are Las Vegas algorithms
solving ELECT. If £ is known the algorithm terminates in time O (£) on average and in time
O (Llogn) with high probability; and requires O (n) random bits on average and O (nlogn)
with high probability. If n is known the algorithm terminates in time O (n + £) on average
and in time O (n + Llogn) with high probability; and requires O (n + nlog [ﬂ) random bits
on average and O (nlog(n) + nlog (ﬂ) with high probability.

As previously stated, our proof strategy is to first develop algorithms by which the robots
can gain knowledge of the unknown of n or £. More specifically, the goal of this section is to
constructively demonstrate the validity of the following two lemmas from which Theorem 9
will easily follow.

» Lemma 10. Consider n robots on a cycle of length £ and assume the robots know only
the value of £. Then there exists a Las Vegas algorithm by which the robots can determine
the value of n. This algorithm terminates in time O (£) on average and with high probability;
and requires O (n) random bits on average and with high probability.

» Lemma 11. Consider n robots on a cycle of length ¢ and assume the robots know only
the value of n. Then there exists a Las Vegas algorithm by which the robots can determine
an O (£) upper bound L on £. This algorithm terminates in time O (n + £) on average and
with high probability; and requires O (n + nlog (ﬂ) random bits on average and with high
probability.

We will begin by introducing two procedures which will be used throughout the remainder
of the section. The first procedure will be used by the robots to count coin flips, and the
second is a minimum finding procedure.

A procedure to count coin flips. The procedure COUNTFLIPS(D) is formally described as
Algorithm 4 and takes as input a distance D. For simplicity in the following description
we will assume that D = £. The procedure presumes that each robot r has flipped a coin
and stored the result in b(r). It will result in each robot either knowing the total number of
robots or that all robots have flipped the same thing.

At the beginning the robots that flip H will move c¢w a distance ¢ around the cycle and
count each robot they encounter which flipped T. The robots that flipped T will likewise
wait for a time £ and count each robot they encounter that flipped H. Since each moving
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robot makes a full traversal of the cycle they are guaranteed to see all stationary robots.
Thus, after the first ¢ time units, each robot will determine the number of robots which
flipped opposite to themselves. In the last ¢ time units of the algorithm the robots which
initially flipped H (resp. T) will move ccw a distance ¢ around the cycle (resp. wait for ¢
time units). In either case, a robot will determine the total number of robots that flipped the
same as themselves from the first robot they encounter which flipped opposite to themselves.
Thus, after 2¢ time units each robot will have determined both the total number of robots
which flipped H and the number that flipped T and from this they can compute n. If all
robots flipped the same thing then the robots will know this since each will have determined
that Ny(r) = Np(r) = 0. From this description it is easy to establish the following lemma:

» Lemma 12. Assume that all robots have flipped a coin. Then in exactly 2¢ time units the
procedure COUNTFLIPS(¢) will result in either each robot knowing n or that all robots have
flipped the same thing.

When an input D > ¢ is used in the procedure we claim the following:

» Lemma 13. Assume that all robots have flipped a coin and that D > £. Then in exactly
2D time units the procedure COUNTFLIPS(D) will result in either each robot r computing an
upper bound N(r) > n or that all robots have flipped the same thing.

Proof. Clearly, if all robots flip the same then each robot will compute Ny (r) + Nt (r) = 0.
Thus, assume that at least two robots flip differently. Let nt and ny represent the actual
number of robots that flipped T and H respectively, i.e. np 4+ ng = n. Since each robot
that flipped H traverses the cycle at least once each such robot is guaranteed to encounter
all robots that flipped T. Likewise, each robot that flipped T is guaranteed to encounter
each robot that flipped H. It is therefore not possible for a robot r to compute a value of
Nu(r) < nyg or Np(r) < nt and thus it is ensured that Np(r)+ Ny(r) > n for all robots. <

Finally, if an input D < £ is used in the procedure then we claim the following:

» Lemma 14. Assume that all robots have flipped a coin and that D < £. Then in exactly 2D
time units the procedure COUNTFLIPS(D) will result in each robot r computing a lower-bound
N(r) <n.

Proof. The only thing we need to demonstrate is that all robots will compute a value
N(r) <n. Clearly, in order for this not to be true, at least one of the robots must double
count another robot. This, however, is not possible unless a robot traverses the cycle more
than once and this will clearly not be the case if D < /. |

A minimum finding procedure. The minimum finding procedure FINDMIN(L, Ny) is for-
mally described as Algorithm 5 and takes as input an upper bound L > ¢ on the cycle
length, and a value Ny (which is specific to each robot). The algorithm results in each robot
computing the minimum of the inputs Ny. It assumes that all robots have flipped a coin and
that at least two robots have flipped differently.

Each robot that flipped H will initially move CW a distance L > ¢ around the cycle and is
guaranteed to encounter every robot that flipped T. Likewise every robot that flipped T will
encounter every robot that flipped H. Thus, after the first L time units, every robot that
flipped H (resp. T) will know the minimum value of every robot that flipped T (resp. H). In
the second L time units the robots that flipped H will move ccw a distance L and will again
encounter every robot that had flipped T. They can thus determine the minimum value of



P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita

all robots that flipped H from the first robot they encounter that flipped T. Likewise, each
robot that flipped T will determine the minimum value of all robots that flipped T from the
first robot they encounter that flipped H. The algorithm clearly terminates after 2L time
units. We can thus claim the following without proof:

» Lemma 15. Assume that all robots have flipped a coin, at least two have flipped differently,
and that L > £. Then in exactly 2L times units the procedure FINDMIN(L, No(r)) will result
in each robot r computing the minimum of all inputs No(r).

Computing n using £. We will now tackle the proof of Lemma 10 which is based off of the
algorithm CoUNTROBOTS(?). This algorithm is formally described as Algorithm 6 and takes
as input the length of the cycle. The idea is to repeatedly flip coins and run the procedure
CoUNTFLIPS({) until the first round in which at least two robots flip differently. When this
occurs each robot will compute the total number of robots that flipped T and the total
number that flipped H and will thus determine n to be the sum of these values.

Proof. (Lemma 10) The correctness of COUNTROBOTS(¥) is obvious. The algorithm will
terminate on the first round during which at least two robots flip differently. The probability
that all robots flip the same is 2! " and therefore the algorithm terminates after an expected
ﬁ < 2 rounds. The probability that the algorithm terminates after T rounds is
2(T=1)(A=n)(] — 21=") From this it is clear that the algorithm terminates after O (1) rounds
with high probability. The time and random-bit complexities follow from the fact that each

round lasts time at most 2/ and in each round all n robots flip their coins. |

Computing a O (£) upper bound on £ using n. The proof of Lemma 11 is based off of
the algorithm BOUNDCYCLE(n). This algorithm is formally described as Algorithm 7 and
takes as input the number of robots on the cycle. In each round ¢ > 0 the robots will employ
the procedure COUNTFLIPS in an attempt to determine a strict upper bound on the number
of robots using an estimate L; = n - 2¢ for an upper bound on ¢. This will result in each
robot r computing a value N(r). If L; < £ then, by Lemma 14, the robots will each compute
N(r) < n and the algorithm will proceed to the next round. If L; > ¢ then the robots
will each compute N(r) > n and, after performing FINDMIN, they will all agree on the

computed value of N(r). Let ¢, be the first round in which all robots compute N(r) > n.

The corresponding value of L; in the round ¢, will then be an upper bound on ¢. We reduce
L, by a factor % {%J to ensure that the returned upper bound is O (£).

Proof. (Lemma 11) To determine the running time we let ¢y be the first round for which
L; > 20. Then ty = [log %W if n < 2¢ and tp = 0 if n > 2¢. The algorithm will certainly
terminate in the first round ¢, > ¢y in which at least two robots flip differently. Since the
probability that all robots flip the same is 2'™" we will have t, = to + O (1) with high
probability. The algorithm will therefore take at most [log %q + O (1) rounds. Since the
procedures COUNTFLIPS(L;) and FINDMIN(L;) each take time 2L; to complete, each round
of the algorithm lasts time 4L, = n - 2872, The total time required is thus Zi*:o n-2tt2 =
4n(2F1 — 1), If n > 2¢ then the above is clearly O (n). If n < 2¢ then we have that

An(2+ 11 = 1) = an (2[PE 100 1) — 0 (o).
Thus, we can conclude that the algorithm terminates in time O (n + £) on average and

with high probability. In each round of the algorithm all robots flip a coin and thus the
algorithm requires O (n) random bits if n > 2¢ and otherwise O (nlog [%]) whenn < 2. <«
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4.2 Inexact knowledge of n or ¢

We now consider the cases that the robots are only provided with an upper bound on n or
only an upper bound on ¢. The main result follows:

» Theorem 16. Let only an upper bound L > £ or an upper bound N > n be known to the
robots. Then, for any positive integer w there are Monte Carlo algorithms solving ELECT
with error probability O ((3/4)"). If the robots know L > £ then the algorithm terminates in
time O (wL) and requires O (wn) random bits. If the robots know N > n then the algorithm
terminates in time O (N + w%f) and requires O (wn + nlog [%D random bits.

Our goal is again to develop algorithms by which the robots will gain knowledge of the
unknown of n or £ and then employ the algorithm ELECTMC to solve ELECT. We therefore
want to demonstrate the following two lemmas:

» Lemma 17. Consider n robots on a cycle of length ¢ and assume the robots know an upper
bound L > £. Then there exists a Las Vegas algorithm by which the robots can determine an
upper bound N = O (%n) on n. This algorithm terminates in time O (L) on average and
with high probability; and requires O (n) random bits on average and with high probability.

» Lemma 18. Consider n robots on a cycle of length £ and assume the robots know only
an upper bound on the value of n. Then there exists a Las Vegas algorithm by which the
robots can determine an O (%5) upper bound L on £. This algorithm terminates in time
0] (N + %6) on average and with high probability; and requires O (n + nlog (ﬂ) random
bits on average and with high probability.

Clearly Theorem 16 will directly follow from the above two lemmas as well as Theorem 8.
We begin with the case that the robots know L > /.

Computing an upper bound on n from an upper bound on £. Here we will use an
algorithm essentially identical to COUNTROBOTS(¥) except with the addition of a FINDMIN
procedure. The robots will repeatedly flip coins and run the procedure COUNTFLIPS(L)
until at least two robots flip differently. At this point each robot r will know an upper bound
N(r) > n. They will then run the procedure FINDMIN(L, N(r)) in order to determine the
same upper bound. The correctness of the algorithm follows easily from Lemmas 13 and
15. The fact that the robots compute a O (%n) upper bound follows from the fact that the
robots will traverse the cycle % times. The asymptotic running time of the algorithm is
identical to that of COUNTROBOTS with ¢ replaced with L. The random-bit complexity does

not change. Lemma 17 follows without proof from this discussion.

Computing an upper bound on ¢ from an upper bound on n. Here we simply use the
algorithm BOUNDCYCLE with the input N > n instead of n.

Proof. The proof is nearly identical to that of Lemma 11 except we replace n with N and
require at least ty rounds where tg is the first round in which L; = N -2t > 2 [%W 4, ie.

to = [log ([51] %) = O (tog [7]). >
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Figure 1 Left: The instance I with two robots r1 and r2 on a cycle of length ¢. Right: The
instance I’ with four robots r1, r2, 1, and 75 on a cycle of length 2¢.

5 Impossibility results

In the previous sections we have developed Las Vegas algorithms which solve ELECT when
one of n or £ is known exactly to the robots. We have also developed Monte Carlo algorithms
when only upper-bounds on n and/or £ are known. In the sequel we demonstrate that, unless
the robots know at least one of n or ¢ exactly, there does not exist a Las Vegas algorithm
which solves ELECT.

» Theorem 19. Assume that the robots do not know ¢ nor n exactly. Then there is no Las
Vegas type algorithm which solves ELECT.

To demonstrate this we first prove the weaker statement that a Las Vegas algorithm cannot
exist if the robots know nothing of n nor ¢.

» Lemma 20. If neither n nor ¢ is available then there is no Las Vegas type algorithm which
solves ELECT.

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A which
solves the problem. Consider an instance I in which there are two robots r; and 7o at
antipodal positions on a cycle with circumference £. Since A solves the problem it terminates
with probability 1 in a finite, though unpredictable, amount of time T'. Let O; and O3 be
the sequence of outcomes of coin flips of 1 and rs.

Consider another instance I’ in which there are four robots rq, r9, 7], and r} at equally
spaced locations of a cycle with circumference 2¢ such that r; and ] (resp. ro and r}) are
antipodal (see Figure 1). Assume that the pair r; and 7| (resp. 7o and 75) each have the
same orientation and each receives the outcome of coin flips O; (resp. Os). Call an encounter
between a pair of robots r1 and ro a left encounter (resp. a right encounter) if r1 and ro
encounter each other while either r; is moving ccw and r5 is stationary, r5 is moving cw and
r1 is stationary, or r; is moving ccw and ry is moving CW (resp. while either r; is moving
Ccw and r; is stationary, ro is moving cCw and r; is stationary, or r; is moving Cw and 7o
is moving ccw). Then for every left encounter of r; and ro in I there is a corresponding
identical left encounter between r; and 75 in I’ and between ] and r4 in I’. Likewise, for
every right encounter of r; and 75 in I there are corresponding identical right encounters
between 71 and 7} in I and between ro and ] in I’. Thus, at time T, each of r; and r]
(resp. 19 and r4) in I’ must come to the same conclusion as ry (resp. 72) in I. However, this
implies that at the end of the execution of A in I’ we will have elected two leaders. Since
there is a positive probability that r and ] (resp. r2 and 75) both get the outcome of coin
flips O1 (resp. Os) then there is a positive probability that A incorrectly terminates in time
T. This contradicts our assumption that A correctly terminates with probability one. <«
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It is not hard to extend this to the situation that the robots know only an upper bound on n:

» Corollary 21. Suppose that the robots only know an upper bound N on n. Then there is
no Las Vegas type algorithm which solves ELECT.

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A for
ELECT. We use the instances I and I’ given in the proof of Theorem 19. Provided that
N =5 is given, consider the execution of A for I. Then in time 7', A terminates in which O
and O are the sequences of outcomes of the coin flips of 1 and rs.

Then A terminates incorrectly in time 7', when it is executed for I’ with N = 5, as argued
in the proof of Lemma 20, which is a contradiction. <

Proof. (Theorem 19) Assume that a Las Vegas algorithm A exists by which the robots can
solve ELECT if they know upper bounds N and L on n and ¢ respectively. Now consider an
instance of the problem when only an upper bound N on n is known. Then by Lemma 18
there exists a Las Vegas algorithm by which the robots can determine L. Once the robots
know L they run algorithm A to elect a leader. This implies that there exists a Las Vegas
algorithm by which the robots can elect a leader when they only know an upper bound N on
n. This contradicts the previous result of Corollary 21 which states that such an algorithm
cannot exist. We may therefore conclude that a Las Vegas algorithm does not exist if the
robots know both upper bounds N and L. This further implies that a Las Vegas algorithm
does not exist when the robots know only L. <

6 Extensions and Open Questions

Here we discuss why the consistent orientation assumption is unnecessary; the extension of
our election algorithms to the GATHER problem; and other extensions/open problems.

Orientation. In the previous sections we have assumed that the robots have consistent
orientations. Here we will argue why this assumption is not required.

First, observe that with the consistent orientation assumption it will never occur that
two moving robots encounter each other. By removing this assumption we will have to deal
with the extra encounters involving two robots which move in opposite directions. For most
of these encounters the solution is simple — the two moving robots will simply ignore each
other. A more problematic encounter occurs if two moving robots encounter a stationary
robot from opposite directions at the same time. Fortunately, this is also easily remedied —
we simply have the stationary robot choose to “process” the moving robot arriving from its,
say, CW direction first. We can thus conclude that all of our results still hold if we remove
the consistent orientation assumption.

Gathering. In the previous sections our primary goal has been on how to solve ELECT.
However, it is easy to see that our algorithms also solve GATHER at no extra cost. Indeed,
consider Algorithm 1 where, during the election process, robots only enter a FOLLOWER state
when they merge with a remaining CANDIDATE robot. When only a single CANDIDATE
remains all other robots will be part of its stack. This is also the case for Algorithm 3,
however, since this is a Monte Carlo algorithm, there is a bounded probability that more
than one stack remains when the algorithm terminates. Thus, by construction, Algorithm 1
is a Las Vegas algorithm which solves GATHER and Algorithm 3 is a Monte Carlo algorithm
which solves GATHER. Clearly, the complexities of these algorithms remain the same when
applied to either the ELECT or GATHER problems.
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6.1 Discussions and Open Problems

In this paper we have studied the ELECT and GATHER problems for n identical robots in the
C7T model on a continuous cycle of length . We have established several results including
optimal algorithms with respect to time and random bits when the robots know /¢, or an
upper bound L = O (¢) (in the latter case with high probability).

There are a number of open questions remaining. Firstly, we have not considered the
possibility (or lack thereof) of a Monte Carlo algorithm when the robots do not possess any
knowledge of n or £. In addition, we have only considered a fully synchronous time model
and a natural extension is therefore to study ELECT and GATHER when this assumption is
removed. In particular one can consider a model where the robots do not begin an algorithm
simultaneously but otherwise their respective clocks tick at the same rate, or a model where
even the robots’ clocks are not synchronized.
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A Description of Karp’s theorem

Consider the stochastic recurrence relation

T(n) = a(n) + T(h(n) (2)

which describes a process in which we start with an input of size n and after investing some

amount of resources (represented by a(n)) we are left with a smaller problem of size h(n)

upon which we recurse. As it applies here, n represents the number of candidate robots, a(n)
will represent the number of rounds/time/random-bits, and h(n) the expected number of
robots remaining after one iteration of a leader election algorithm.
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Formally, n is a nonnegative integer variable; a(n) a nonnegative real-valued function
of n; h(n) a random variable with support [0,n] and expectation bounded by m(n); and
m(n) is a nonnegative real-valued function of n. The equation 7(n) = a(n) + 7(m(n)) is the
deterministic analogue of (2) and, when it exists, has the unique least nonnegative solution
u(n) given by

u(n) =Y a(m™(n)) (3)
k=0
with m[¥(n) inductively defined by m[%(n) = n and ml*l(n) = m(m®*=1(n)), k > 1. Karp
proved the following:

» Theorem 22 (Karp [25], Theorems 1.1 and 1.2). Consider the stochastic recurrence (2), a

continuous function m(n) with m(n)/n non-decreasing, and let u(n) be given by (3).

1. Suppose there is a constant d such that a(n) = 0, n < d; and a(n) = 1, n > d. Let
¢, = min{n|u(n) > k}. Then, for every positive integer n and every positive integer w,
Pr[T(n) > u(n) + w] < (%n))wil %(:2

2. Suppose that a(n) is strictly increasing on {n|a(n) > 0}. Then, for every positive integer
n and every positive integer w, Pr[T'(n) > u(n) + wa(n)] < (@)w,

B Pseudocode for algorithms of Section 3.1

Algorithm 1 ELECTLV (n, ().

Input: n > 0 (integer); ¢ > 0 (real); > The number of robots and the length of the cycle.
Initialize: state(r) <— CANDIDATE; CNR(r) < 1; t < 0;

Begin:
1: repeat
s de e antl,
2: D(—mln{@ E(g) },
3: ELECTIONROUND(D); t + t + 1; > Run one election round.

4: if ¢NR(r) = n then state(r) + LEADER; > Stack contains n robots, terminate.

5. until state(r) = FOLLOWER or LEADER
:End

Algorithm 2 ELECTIONROUND(D).

Input: D > 0 (real);
Begin: b(r) < flip();

1: if b(r) = H then > H was flipped
2: Move ccw a distance D; ¢w a distance 2D; ccw a distance D;

3: if a robot s with b(s) = T is encountered while moving then

4: CNR(r) « CNR(r) 4+ CNR(s); > Update CNR(r) since s will merge with r.
5: else > T was flipped
6: Remain stationary for time 4D:

T if a robot s with b(s) = H is encountered while waiting then

8: state(r) = FOLLOWER,;

9: Merge with robot s;

:End

ISAAC 2019



8:18

Gathering and Election by Mobile Robots in a Continuous Cycle

C Pseudocode for algorithms of Section 3.2

Algorithm 3 ELECTMC(N, L, w).

Input: N > 0 (integer); L > 0 (real); w > 0 (integer); > upper bounds on n and ¢; termination
parameter w.
Initialize: state(r) <— CANDIDATE; ¢ <+ 0; too < [log4/3(n)~| + w; > te = termination round.
Begin:
1: repeat
2 Dzemin{g, %(%)t},
3: ELECTIONROUND(Dy); t < ¢ + 1; > Run one election round.
4: until state(r) = FOLLOWER or ¢ = t
5: if state(r) = CANDIDATE then state(r) < LEADER,;

:End

D Pseudocode for algorithms of Section 4.1

Algorithm 4 CounTFLIPS(D).

Input: D > 0 (real); > An estimate of the length of the cycle.
Initialize: Ny(r) < 0; Nrp(r) < 0; > To count the robots flipping H and T.
Begin:

1: if b(r) = H then > H was outcome of last coin flip

2: Move cw a distance D;

3: if a robot s with b(s) = T is encountered while moving then Nt(r) < Np(r) + 1;

4: Move ccw a distance D;

5: if Nu(r) =0 and a robot s with b(s) = T is encountered while moving then

6: Nu(r) < Nu(s); > Determine Ny.

7: else > T was outcome of last coin flip

8: Wait for time D;

9: if a robot s with b(s) = H is encountered while waiting then Ny(r) < Nu(r) + 1;

10: Wait for time D;

11: if Np(r) = 0 and a robot s with b(s) = H is encountered while waiting then

12: Nr(r) < Nr(s); > Determine Nr.
13: return Ny(r) + Nt(r); > Returns 0 if all robots flipped the same.
:End

Algorithm 5 FINDMIN(L, No).

Input: L >0 (real); Ny (real); > upper bound cycle length; quantity to find the minimum of.

Initialize: N(r) < No; > Will contain the minimum of the inputs No.
Begin:
1: if b(r) = H then > H was outcome of last coin-flip
2: Move cw a distance L and then move cCw a distance L;
3: if robot s with b(s) = T is encountered then N(r) < min{N(r), N(s)};
4: else > T was outcome of last coin-flip

5: Wait for time 2L;

6: if robot s with b(s) = H is encountered then N(r) < min{N(r), N(s)};
7: return N(r);
:End
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Algorithm 6 CoUNTROBOTS(?).

Input: £ > 0 (real); > The length of the cycle.
Initialize: N(r); > Will contain the computed value of n.
Begin:

1: repeat

2: b(r) < flip(); N(r) < COUNTFLIPS({);
3: until N(r) >0

4: return N(r);

:End

Algorithm 7 BOUNDCYCLE(n).

Input: n > 0 (integer); > The number of robots.
Initialize: N(r); t <+« —1;
Begin:

1: repeat

2 bt 1

3: Li=n-2t71;

4 b(r) + flip();

5: N(r) < COUuNTFLIPS(L:);
6: N(r) <= FINDMIN(L¢, N(r));
7: until N(r) > n

8: return ﬁ;

:End

E Pseudocode for algorithms of Section 4.2

Algorithm 8 BounDRoOBOTS(L).

Input: L > 0, real > upper bound on the length of the cycle.
Initialize: N(r); > Will contain the computed upper bound on n.
Begin:

1: repeat

2: b(r) < flip(); N(r) + CounTFLIPS(L);
3: until N(r) >0

4: N(r) < FINDMIN(L, N(r));

5: return N(r);

:End

8:19
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