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Abstract
In this paper we prove two results about AC0[⊕] circuits.

We show that for d(N) = o(
√

logN/ log logN) and N ≤ s(N) ≤ 2dN
1/4d2

there is an explicit
family of functions {fN : {0, 1}N → {0, 1}} such that
fN has uniform AC0 formulas of depth d and size at most s;
fN does not have AC0[⊕] formulas of depth d and size sε, where ε is a fixed absolute constant.

This gives a quantitative improvement on the recent result of Limaye, Srinivasan, Sreenivasaiah,
Tripathi, and Venkitesh, (STOC, 2019), which proved a similar Fixed-Depth Size-Hierarchy
theorem but for d� log logN and s� exp(N1/2Ω(d)

).
As in the previous result, we use the Coin Problem to prove our hierarchy theorem. Our main
technical result is the construction of uniform size-optimal formulas for solving the coin problem
with improved sample complexity (1/δ)O(d) (down from (1/δ)2O(d)

in the previous result).
In our second result, we show that randomness buys depth in the AC0[⊕] setting. Formally, we
show that for any fixed constant d ≥ 2, there is a family of Boolean functions that has polynomial-
sized randomized uniform AC0 circuits of depth d but no polynomial-sized (deterministic) AC0[⊕]
circuits of depth d.
Previously Viola (Computational Complexity, 2014) showed that an increase in depth (by at
least 2) is essential to avoid superpolynomial blow-up while derandomizing randomized AC0

circuits. We show that an increase in depth (by at least 1) is essential even for AC0[⊕].
As in Viola’s result, the separating examples are promise variants of the Majority function on N
inputs that accept inputs of weight at least N/2 +N/(logN)d−1 and reject inputs of weight at
most N/2−N/(logN)d−1.
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1 Introduction

This paper addresses questions in the field of Boolean Circuit complexity, where we study
the complexity of compuational problems, modeled as sequences of Boolean functions fN :
{0, 1}N → {0, 1}, in the combinatorially defined Boolean circuit model (see, e.g. [5] for an
introduction).
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22:2 AC0[⊕] and Variants of the Majority Function

Boolean circuit complexity is by now a classical research area in Computational complexity,
with a large body of upper and lower bound results in many interesting circuit models. The
questions we consider here are motivated by two of the most well-studied circuit models,
namely AC0 and AC0[⊕]. The circuit class AC0 denotes the class of Boolean circuits of
small-depth made up of AND, OR and NOT gates, while AC0[⊕] denotes the circuit class
that is also allowed the use of parity (addition modulo 2)1 gates.2

Historically, AC0 was among the first circuit classes to be studied and for which super-
polynomial lower bounds were proved. Building on an influential line of work [2, 9, 24],
Håstad [11] showed that any depth-d AC0 circuit for the Parity function on N variables
must have size exp(Ω(N1/(d−1))), hence proving an exponential lower bound for constant
depths and superpolynomial lower bounds for all depths d� logN/ log logN. Researchers
then considered the natural follow-up problem of proving lower bounds for AC0[⊕]. Soon
after, Razborov [17] and Smolensky [21, 22] showed a lower bound of exp(Ω(N1/2(d−1))) for
computing the Majority function on N inputs, again obtaining an exponential lower bound
for constant depths and superpolynomial lower bounds for all depths d� logN/ log logN.

Thus, we have strong lower bounds for both classes AC0 and AC0[⊕]. However, in many
senses, AC0[⊕] remains a much more mysterious class than AC0. There are many questions
that we have been successfully able to answer about AC0 but whose answers still evade us in
the AC0[⊕] setting. This work is motivated by two such questions that we now describe.

Size Hierarchy Theorems. Size Hierarchy theorems are an analogue in the Boolean circuit
complexity setting of the classical Time and Space hierarchy theorems for Turing Machines.
Formally, the problem is to separate the power of circuits (from some class) of size s from
that of circuits of size at most sε for some fixed ε > 0. As is usual in the setting of circuit
complexity, we ask for explicit separations,3 or equivalently, we ask that the separating
sequence of functions be computed by a uniform family of circuits of size at most s.

The challenge here is to obtain explicit functions for which we can obtain tight (or
near-tight) lower bounds, since we want the functions to have (uniform) circuits of size s but
no circuits of size at most sε.

In the AC0 setting, Håstad’s theorem stated above immediately implies such a tight lower
bound, since it is known (folklore) that the Parity function does have depth-d circuits of size
exp(O(N1/d−1)) for every d. Varying the number of input variables to the Parity function
suitably, this yields a Size Hierarchy theorem for the class of AC0 circuits of depth d as long
as d� logN/ log logN and s = exp(o(N1/(d−1))).

For AC0[⊕], however, this is not as clear, as explicit tight lower bounds are harder to
prove. In particular, the lower bounds of Razborov [17] and Smolensky [21, 22] for the
Majority function (and other symmetric functions) are not tight; indeed, the exact complexity
of these functions in AC0[⊕] remains unknown [16]. In a recent result, the authors along
with Sreenivasaiah and Venkitesh [14] were able to show a size hierarchy theorem for AC0[⊕]
formulas4 for depths d � log logN and size s � exp(N1/2Ω(d)). This is a weaker size

1 Though we state our results only for AC0[⊕], they extend in a straightforward way to AC0[p], where we
are allowed gates that add modulo p, for any fixed prime p.

2 The formal definitions of AC0 and AC0[⊕] only allow for polynomial-size circuits and constant depth.
However, since some of our results apply to larger families of circuits, we will abuse notation and talk
about AC0 circuits of size s(N) and depth d(N) where s and d are growing functions of N .

3 It is trivial to show a non-explicit separation by counting arguments.
4 A formula is a circuit where the underlying undirected graph is a tree. For constant-depth, formulas

and circuits are interchangeable with a polynomial blowup in depth. However, this is no longer true at
superconstant depth [18, 19].
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hierarchy theorem than the one that follows from Håstad’s theorem for AC0, both in terms
of the size parameter as well as the depths until which it holds. In this paper, we build upon
the ideas in [14] and prove the following result that is stronger in both parameters.

I Theorem 1. The following holds for some absolute constant ε > 0. Let N be a growing
parameter and d = d(N), s = s(N) be functions of N with d = o

(√
logN

log logN

)
and N ≤ s ≤

2dN1/d2

. Then there is a family of functions {fN} such that fN has uniform AC0 formulas
of depth d and size at most s but no AC0[⊕] formulas of depth d and size at most sε.

Randomized versus Deterministic circuits. The study of the relative power of randomized
versus deterministic computation is an important theme in Computational complexity. In
the setting of circuit complexity, it is known from a result of Adleman [1] that unbounded-
depth polynomial-sized randomized circuits5 are no more powerful than polynomial-sized
deterministic circuits.

However, the situation is somewhat more intriguing in the bounded-depth setting. Ajtai
and Ben-Or [3] showed that for any randomized depth-d AC0 circuit of size at most s, there
is deterministic AC0 circuit of depth d+ 2 and size at most poly(s) that computes the same
function; a similar result also follows for AC0[⊕] with the deterministic circuit having depth
d+ 3. This begs the question: is this increase in depth necessary?

For AC0 circuits of constant depth, Viola [23] gave an optimal answer to this question by
showing that an increase of two in depth is necessary to avoid a superpolynomial blow-up
in size. To the best of our knowledge, this problem has not been studied in the setting of
AC0[⊕]. In this paper, we show that an increase in depth (of at least one) is required even
for AC0[⊕]. More formally we prove the following theorem.

I Theorem 2. Fix any constant d ≥ 2. There is a family of Boolean functions that
has polynomial-sized randomized uniform AC0 circuits of depth d but no polynomial-sized
(deterministic) AC0[⊕] circuits of depth d.

Theorems 1 and 2 are proved in Sections 2 and 3 respectively. Many proofs are omitted
for lack of space.

1.1 Proof Ideas
The proofs of both theorems are based on analyzing the complexity of Boolean functions
that are closely related to the Majority function.

Size-Hierarchy Theorem. To prove the size hierarchy theorem for constant-depth AC0[⊕]
formulas, [14] studied the AC0[⊕] complexity of the δ-coin problem [7], which is the problem
of distinguishing between a coin that is either heads with probability (1 + δ)/2 or is heads
with probability (1− δ)/2, given a sequence of a large number of independent tosses of this
coin. This problem has been studied in a variety of computational models [20, 7, 8, 10].
It is known [15, 4] that this problem can be solved by AC0 formulas of depth d and size
exp(O(d(1/δ)1/(d−1))) and further [15, 20, 14] that this upper bound is tight up to the
constant in the exponent even for AC0[⊕] formulas of depth d. This gives a family of
functions for which we have tight lower bounds for AC0[⊕] formulas.

5 A randomized Boolean circuit for a Boolean function f(x) is a Boolean circuit C that takes as input
variables x and r such that for each setting of x and uniformly random r, C(x) = f(x) with probability
at least 3/4.

FSTTCS 2019
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Based on this, [14] noted that to prove AC0[⊕] size-hierarchy theorems for size s(N) and
depth d(N), it suffices to construct a uniform sequence of formulas of size s and depth d
solving the coin problem optimally (i.e. for δ such that s = exp(O(d(1/δ)1/(d−1)))) using
at most N samples. Before [14], all known size-optimal formula constructions for solving
the δ-coin problem used N = s = exp(O(d(1/δ)1/(d−1))) many samples. The work of [14]
brought the number of samples down to N = (1/δ)2O(d) . Our main technical result here is
an explicit size-optimal formula for solving the δ-coin problem using only (1/δ)O(d) samples.
Plugging this into the framework from [14], we immediately get the improved size-hierarchy
theorem.

While the reason for this improvement is rather technical, we try to give a high-level
outline here. It was shown by O’Donnell and Wimmer [15] and Amano [4] that the δ-coin
problem is solved by read-once AC0 formulas of depth d with gates of prescribed fan-ins.
While the size s of these formulas is optimal, the number of samples is N = s, which is too
big for our purposes. In [14], this number is brought down by distributing a smaller number
of variables across the formula in a pseudorandom way (specifically using a Nisan-Wigderson
design). The challenge now is to show that the formula still solves the δ-coin problem: the
reason this is challenging is that various subformulas now share variables and hence the
events that they accept or reject are no longer independent. However [14] note that Janson’s
inequality [13], a tool from probabilistic combinatorics, can be used to argue that if the
variables are spread out in a suitably “random”-like fashion, then various subformulas at a
certain depth may, for our intents and purposes, be treated as “nearly” independent.

This “distance” from independence is determined by a parameter ∆ that goes into the
statement of Janson’s inequality, and hence let us call it the Janson parameter. In [14],
this parameter was measured in a very brute-force way, forcing us to square the number
of samples every time the depth of the formula increased by 1. This leads to a sample
complexity of (1/δ)2O(d) . Here, however, we give a different way of bounding the Janson
parameter via a recursive analysis, which works as long as the number of variables grows by
a factor of (1/δ) for each additional depth. This gives the improvement in our construction.

Randomized versus Deterministic circuits. For his separation of deterministic and ran-
domized AC0 circuits, Viola [23] used the k-Promise-Majority functions 6 which are Boolean
functions that accept inputs with at least N/2 + k many 1s and reject inputs with at most
N/2−k many 0s. Building on work of [3, 15, 4], Viola [23] showed that for k = N/(logN)d−1,
there are k-Promise-Majorities that have uniform polynomial-sized randomized depth-d AC0

circuits. On the other hand, he also showed that the same problem has no deterministic
circuit of depth d (and in fact even d+ 1).

The challenge in proving such a lower bound is that if a Boolean function has a randomized
circuit of depth d and size s, then it immediately follows that there is also a deterministic
circuit of the same depth and size approximating the same Boolean function (i.e. computing
it correctly on most inputs). In particular, the lower bound technique must be able to
distinguish circuits that are computing the function exactly (since this is hard) from circuits
that are merely approximating it (as this is easy). Viola overcomes this hurdle in the case of
AC0 with a clever argument for depth-3 circuits and an inductive use of the Håstad Switching
lemma for higher depths. Neither of these techniques is available for AC0[⊕] circuits. In fact,

6 These are called Approximate Majorities in a lot of the earlier literature, including in Viola’s work. We
avoid this name, since Approximate Majorities are also used for functions more closely related to the
coin problem [15], and in our opinion, the name “Promise Majorities” better describes these functions.
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the standard techniques for proving lower bounds against AC0[⊕] involve approximating the
circuits to constant error using low-degree polynomials from F2[x1, . . . , xN ]. Note that this
immediately runs into the obstacle mentioned above since we can then no longer distinguish
between circuits that are exactly correct and those that are approximately correct.

The way we get around this argument is to use a recent result of Oliveira, Santhanam and
the second author [16] where it is observed that the standard construction of approximating
polynomials for AC0[⊕] actually gives polynomials that approximate the given circuit C
to very small error on either the zero or the one inputs of C. They are able to use this to
improve known AC0[⊕] lower bounds for the Majority function. Our main observation is that
this stronger lower bound is actually able to distinguish between circuits that approximate
the Majority function to constant error (say from [15, 4]) and those that compute it exactly,
thus overcoming the barrier we mentioned above. We then note that their proof can also be
made to work for k-Promise-Majorities. This yields the separation.

2 Size hierarchy theorem for AC0[⊕]

I Definition 3 (The δ-Coin Problem). Let δ ∈ (0, 1) be a parameter. Given an N ∈ N, we
define the probability distributions µNδ,0 and µNδ,1 to be the product distributions where each bit
is set to 1 with probability (1− δ)/2 and (1 + δ)/2 respectively. We omit the δ in the subscript
and N in the superscript when these are clear from context.

Given a function g : {0, 1}N → {0, 1}, we say that g solves the δ-coin problem if

Pr
x∼µN

0

[g(x) = 1] ≤ 0.1 and Pr
x∼µN

1

[g(x) = 1] ≥ 0.9. (1)

We say that the sample complexity of g is N .

Parameters. Let m, d be growing parameters such that d = o(m/ logm). Let 1/δ =
(m ln 2)d−1/C1, where C1 is a fixed large constant, to be specified below. LetM = dm·2m·ln 2e
and let M1 = 2m.

I Theorem 4. For large enough absolute constant C1, the following holds. For parameters
m, δ, d as above and for d ≥ 2, there is an explicit depth-d AC0 formula of size exp(O(dm))
= exp(O(d(1/δ)1/d−1)) and sample complexity (1/δ)d+4 that solves the δ-coin problem.

We first show how Theorem 4 implies Theorem 1 stated in the introduction.

Proof of Theorem 1. We use Theorem 4 for a suitable choice of parameters to define the
explicit function.

Let m = b(α log s)/dc for some absolute constant α < 1 that we fix below. It can be
checked that as s ≥ N and d = o(

√
logN/ log logN), we have d = o(m/ logm). Define δ as

above and note that (1/δ)d+4 ≤ m2d2 ≤ ((log s)/d)2d2 ≤ N , where the final inequality uses
the given upper bounds on d and s.

We set fN to be the Boolean function computed by the formula Fd constructed above on
the first (1/δ)d+4 of the N input variables. By Theorem 4, the size of Fd is exp(O(dm)) ≤ s
for a small enough absolute constant α and Fd solves the δ-coin problem. Moreover, it was
shown in [14] that any depth-d AC0[⊕] formula solving the δ-coin problem must have size
exp(Ω(d(1/δ)1/(d−1))) = exp(Ω(md)) = sε for some absolute constant ε > 0. This proves the
theorem. J

FSTTCS 2019



22:6 AC0[⊕] and Variants of the Majority Function

2.1 Proof of Theorem 4
In this section we give the construction of the explicit formula solving the δ-coin problem and
prove Theorem 4. There exist integers Q,D, such that7 Q is a prime power, M ≤ QD ≤ 2M
and (m4/δ) ≤ Q ≤ (2m4/δ). Let F be a finite field with Q elements and A ⊆ F be a set
of size m. Let PD be the lexicographically first M univariate polynomials over F of degree
strictly less than D. Similarly, let P ′D be the lexicographically firstM1 univariate polynomials
over F of degree less than D.

We now describe the construction of our formula. The variables in the formula correspond
to the points in the set A × Fd−1. i.e. for each (a, c1, . . . , cd−1) ∈ A × Fd−1, we have a
variable x(a, c1, . . . , cd−1). We thus have m ·Qd−1 many variables, denoted by N .

For each i ∈ [d− 1] and P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD , define a depth-i formula C(Pi,...,Pd−1)
inductively as follows.

C(P1,...,Pd−1) =
∧
a∈A

x(a, P1(a), . . . , Pd−1(a)),

C(P2,...,Pd−1) =
∨

R1∈PD

C(R1,P2,...,Pd−1), C(P3,...,Pd−1) =
∧

R2∈PD

C(R2,P3,...,Pd−1)

and so on, with the gates alternately repeating between AND and OR untill depth d− 1.
Finally, C(∅) is the output of the formula. If the depth of the formula is odd then C(∅) is
equal to

∧
R∈P′

D
C(R) otherwise it is equal to

∧
R∈P′

D
C(R). This finishes the description of

our formula. We use Fd = C(∅) to denote this formula.

Analysis of the construction

Here we present the details regarding the analysis of our construction presented above, which
will be used to prove Theorem 4. We will start with some definitions, notations and some
useful inequalities.

I Definition 5. For 1 ≤ i ≤ d− 1, we define the following terms.
1. For P̄ = (Pi, . . . , Pd−1) ∈ Pd−iD and b ∈ {0, 1}, let

AccP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) accepts] and RejP̄ ,b := Pr
µb

[C(Pi,...,Pd−1) rejects].

Let qP̄ ,b = AccP̄ ,b if i is odd and RejP̄ ,b if i is even.
2. For P̄ = (Pi, . . . , Pd−1), P̄ ′ = (P ′i , . . . , P ′d−1) ∈ Pd−iD , we say that P̄ ∼ P̄ ′ when CP̄ and
CP̄ ′ are distinct gates which share a common input variable.

3. Fix any i ∈ [d−1]. For P̄ = (Pi+1, . . . , Pd−1), P̄ ′ = (P ′i+1, . . . , P
′
d−1) ∈ Pd−i−1

D , b ∈ {0, 1},

∆P̄ ,P̄ ′,b =



∑
Ri,R

′
i∈PD

(Ri,P̄ )∼(R′i,P̄
′)

Prµb [C(Ri,P̄ ) = 0 AND C(R′
i
,P̄ ′) = 0] if CP̄ and CP̄ ′ are AND gates

∑
Ri,R

′
i∈PD

(Ri,P̄ )∼(R′i,P̄
′)

Prµb [C(Ri,P̄ ) = 1 AND C(R′
i
,P̄ ′) = 1] if CP̄ and CP̄ ′ are OR gates

7 Using number-theoretic facts about the density of primes [6] (see for instance [12]), such Q,D can be
found in polynomial time.
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A useful tool in our analysis of the circuit is Janson’s inequality stated here in the
language of Boolean circuits.

I Theorem 6 (Janson’s inequality). Let C1, . . . , CM be any monotone Boolean circuits over
inputs x1, . . . , xn and let C denote

∨
i∈[M ] Ci. For each distinct i, j ∈ [M ], we use i ∼ j to

denote the fact that Ci and Cj share a common variable. Assume each xj (j ∈ [M ]) is chosen
independently to be 1 with probability pj ∈ [0, 1], and that under this distribution, we have
maxi∈[M ]{Prx[Ci(x) = 1]} ≤ 1/2. Then we have

∏
i∈[M ]

Prx[Ci(x) = 0] ≤ Prx[C(x) = 0] ≤

 ∏
i∈[M ]

Prx[Ci(x) = 0]

 · exp(∆) (2)

where ∆ :=
∑
i∼j Prx[(Ci(x) = 1) ∧ (Cj(x) = 1)].

Throughout, we use log(·) to denote logarithm to the base 2 and ln(·) for the natural
logarithm. We use exp(x) to denote ex.

I Fact 7. Assume that x ∈ [−1/2, 1/2]. Then we have the following chain of inequalities.

exp(x− (|x|/2)) ≤
(a)

exp(x− x2) ≤
(b)

1 + x ≤
(c)

exp(x) ≤
(d)

1 + x+ x2 ≤
(e)

1 + x+ (|x|/2) (3)

We define a few parameters which will be useful in the main technical lemma that helps
in proving Theorem 4.

For i ∈ [d − 1], let αi = mi · (ln 2)i−1 · δ. Also define β1 = 2α1 and βi = βi−1 + 2αi +
2

mi(ln 2)i−1 for 2 ≤ i ≤ d− 2.

I Observation 8. For all i ∈ [d− 2], αi, βi ≤ O(1/m). Also, αd−1 = Θ(C1) = Θ(1). Finally,
for i ∈ [d− 2], using Fact 7 above, we get exp(−βi−1)− exp(−βi) ≥ αi/2.

I Lemma 9. Assume d ≥ 3 and qP̄ ,b and formula C(∅) defined as before. We have the
following properties.
1. For b ∈ {0, 1}, i ∈ [d− 2] such that i ≡ b (mod 2),

1
2m · (1 + αi exp(−βi)) ≤ qP̄ ,b ≤

1
2m · (1 + αi exp(βi))

1
2m · (1− αi exp(βi)) ≤ qP̄ ,(1−b) ≤

1
2m · (1− αi exp(−βi))

2. Say d− 1 ≡ b (mod 2). Then

qP̄ ,b ≥
1

2m · exp(αd−1/4) and qP̄ ,1−b ≤
1

2m · exp(−αd−1/4)

3. For all i ∈ [d− 1], b ∈ {0, 1} and P̄ , P̄ ′ ∈ Pd−i−1
D , ∆P̄ ,P̄ ′,b < δ.

Assuming that the above lemma holds for now, we will prove Theorem 4.

Proof of Theorem 4. We start by bounding the size of Fd = C(∅). As per our construction,
the gates at level 1 are AND gates with fan-in m each. For all 2 ≤ i ≤ d − 1, the fan-in
of each gate on level i is M = dm · 2m · ln 2e and the top fan-in is M1 = 2m. Therefore,
the total number of gates in the formula is m ·Md−2 ·M1. We can trivially bound this

FSTTCS 2019



22:8 AC0[⊕] and Variants of the Majority Function

by Md = O(md2dm). As d = o(m/ logm), we get that the size is bounded by exp(O(dm)).
Recall that 1/δ = (m ln 2)d−1/C1, where C1 is an appropriately chosen constant. Hence
exp(O(dm)) = exp(O(d(1/δ)1/(d−1))).

We will now bound the number of variables N used by the formula. As mentioned above,
N = m ·Qd−1. As Q is chosen such that Q = Θ(m4/δ), there exists a constant C ′ such that
N ≤ m · (C ′m4/δ)d−1.

N ≤ m · (C ′m4/δ)d−1 ≤ (1/δ)d−1 · (md−1)4 ·m · C ′d−1

≤ (1
δ

)d−1 · (1
δ

)4 ·m · (C ′′)d−1 (for some constant C ′′ as 1/δ = (m ln 2)d−1/C1)

≤ (1
δ

)d+3 · 1
δ

= (1
δ

)d+4

Finally, we will show that the formula solves the δ-coin problem. Let us assume that d is even.
In that case, the output gate C(∅) is an OR gate. (When it is an AND gate, the analysis
is very similar.) We bound the probabilities Pra∈µ0 [Fd(a) = 1] and Pra∈µ1 [Fd(a) = 0] by
1/10 each.

Pr
a∈µ0

[Fd(a) = 1] ≤
∑
R∈P′

D

Pr
a∈µ0

[C(R)(a) = 1] Using a Union bound

≤ 2m · 1
2m · exp(−αd−1/4) |P ′D| = 2m, using Lemma 9, (2)

≤ exp(−Ω(C1)) Using the value of αd−1

≤ 1/10. for large enough C1

Pr
a∈µ1

[Fd(a) = 0] ≤
∏
P̄∈P′

D

Pr
a∈µ1

[C(P̄ )(a) = 0] · exp(δ) Using Janson’s inequality

and Lemma 9, (3)

≤
∏
P̄∈P′

D

(1− Pr
a∈µ1

[C(P̄ )(a) = 1]) · exp(δ)

≤ (1− 1
2m · exp(αd−1/4))2m

· exp(δ) |P ′D| = 2m, using Lemma 9, (2)

≤ exp
(
−2m

2m · exp(αd−1/4)
)
· 2 As exp(δ) ≤ 2

≤ 1/10. Using the value of αd−1

and for large enough C1

This finishes the proof of Theorem 4 assuming Lemma 9. J

We now give the proof of Lemma 9. The proof is by induction on the depth of the circuit.

Proof of Lemma 9. The lemma has three parts. As mentioned above, we proceed by
induction on the depth.

Base case (i = 1): Here let us first assume that we are working with µN1 . We start with
part (1). We wish to bound qP̄ ,1. From the construction of our formula, we know that the
formula has AND gates at layer 1 and the inputs to these are distinct variables and hence
independent. Therefore, qP̄ ,1 =

( 1+δ
2
)m. We will upper and lower bound this quantity.(

1 + δ

2

)m
≥ 1

2m · (1 + δm) ≥ 1
2m · (1 + α1 · exp(−β1)) (As α1 = δm, β1 > 0)
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(
1 + δ

2

)m
= 1

2m · (1 + δ)m ≤ 1
2m · exp(δm) Fact 7 (c)

≤ 1
2m · (1 + δm+ (δm)2) Fact 7 (d)

≤ 1
2m · (1 + δm · exp(2δm)) Fact 7 (c)

= 1
2m · (1 + α1 · exp(β1)) As α1 = δm, β1 = 2α1

In the case of µN0 , we get qP̄ ,0 =
( 1−δ

2
)m and a very similar computation can be used to

upper and lower bound this quantity.
There is nothing to prove for part (2) in the base case. We now prove the base case for

part (3). Let P̄ = (P2, . . . , Pd−1), P̄ ′ = (P ′2, . . . , P ′d−1) ∈ Pd−2
D . We will analyse ∆P̄ ,P̄ ′,1 here.

The analysis for ∆P̄ ,P̄ ′,0 is very similar. Let λ denote (1 + δ)/2. For a formula F , let Var(F )
denote the set of variables appearing in it.

∆P̄ ,P̄ ′,1 =
∑

R,R′∈PD

(R,P̄ )∼(R′,P̄ ′)

Pr
µ1

[C(R,P̄ ) = 1 AND C(R′,P̄ ′) = 1]

=
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

λ
|Var(C(R,P̄ ))∪Var(C(R′,P̄ ′))|

= λ2m ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

(
1
λ

)|Var(C(R,P̄ ))∩Var(C(R′,P̄ ′))|
. (4)

To bound the above term, we use the following technical claim (proof omitted).

B Claim 10. Fix any i ≤ d− 1 and any P̄ , P̄ ′ ∈ Pd−i−1
D , we have

∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

3|Var(C(R,P̄ ))∩Var(C(R′,P̄ ′))| ≤ Q2D ·O
(
m

Q

)
.

Using Claim 10 and (4), we can immediately bound ∆P̄ ,P̄ ′,1 as follows.

∆P̄ ,P̄ ′,1 ≤ λ2m ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

3|Var(C(R,P̄ ))∩Var(C(R′,P̄ ′))| ≤ λ2mQ2D ·O
(
m

Q

)
≤ O

(
m3

Q

)
< δ

where we have used the fact that λ ≥ 1/3, QD = O(M2) = O(m222m), and Q = Θ(m4/δ).
This concludes the bound on ∆P̄ ,P̄ ′,1 and hence concludes the proof of the base case.

Inductive case: The proof of parts (1) and (2) are similar to the base case and hence
omitted.

Finally, we prove the inductive statement about ∆P̄ ,P̄ ′,1 in the case that i is odd. Fix any
P̄ , P̄ ′ ∈ Pd−i−1

D (in the case that i = d− 1, we will have P̄ = P̄ ′ = (∅)). The computation
goes as follows. The crucial steps are the second equality and first inequality, where we
interpret each term in the sum as the probability that a depth i− 1 circuit takes the value 0,
which is bounded using Janson’s inequality and the induction hypothesis.
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∆P̄ ,P̄ ′,1 =
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

Pr
µN

1

[C(R,P̄ ) = 0 AND C(R′,P̄ ′) = 0]

=
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

Pr
µN

1

[
∨
S

C(S,R,P̄ ) ∨
∨
S′

C(S′,R′,P̄ ′) = 0]

≤
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

∏
S

Pr[C(S,R,P̄ ) = 0] ·
∏
S′

Pr[C(S′,R′,P̄ ′) = 0] · exp(4δ)

≤ exp(4δ) ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

(
1− (1− 2αi−1)

2m
)2M

= exp(4δ)
(

1− (1− 2αi−1)
2m

)2M
·

∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1

≤ 2 exp(−2m ln 2 +O(αi)) ·
∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1 = O

( 1
22m

)
·

∑
R,R′

(R,P̄ )∼(R′,P̄ ′)

1

where the first inequality is just Janson’s inequality applied to the formula
∨
S CS,R,P̄ ∨∨

S′ CS′,R′,P̄ ′ ; the second inequality follows from the induction hypothesis applied to level
i− 1 ≤ d− 2 (we have used a slightly weaker bound that is applicable also to other cases
such as when b = 0); and the last inequality follows from our choice of M and the fact
that αi = αi−1 · (m ln 2). The sum in the final term may be bounded by Q2D ·O(m/Q) by
Claim 10. We thus get

∆P̄ ,P̄ ′,1 ≤ O
(
Q2D

2m

)
· m
Q

= O

(
M2

2m

)
· m
Q
≤ O(m3)

Q
< δ

as Q ≥ m4/δ. This finishes the analysis of ∆P̄ ,P̄ ′,1. J

3 Randomized vs. Deterministic AC0[⊕] circuits

For a ∈ {0, 1}n, let |a| denote the Hamming weight of a, i.e. the number of 1s in a.

I Definition 11. Let k, ` ≤ n/2. The Promise Majority problem, PrMajnk,`, is a promise
problem of distiguishing n-bit strings of Hamming weight less than n/2− k from those with
Hamming weight more than n/2 + `. Formally,

PrMajnk,`(a) =


0 if |a| < (n2 − k)

1 if |a| ≥ (n2 + `)

If the length of the input is clear from the context then we drop the superscript n. If k = 0 then
we denote PrMaj0,` by LowPrMaj`. Similarly, ` = 0 then we denote PrMajk,0 by UpPrMajk.
When both k, ` are zero, PrMaj0,0 is the Majority function. If k = ` then we use PrMajk to
denote PrMajk,k.

Let Yesn` ,Nonk denote the yes and no instances of PrMajnk,`. That is, Yesn` = {a ∈ {0, 1}n |
|a| ≥ n/2 + `} and Nonk = {a ∈ {0, 1}n | |a| < n/2− k}. In [23], the following theorem was
proved.

I Theorem 12 (Theorem 1.2 [23]). For any d ≥ 2 and k(N) = Ω(N/(logN)d−1), there is a
uniform family of randomized AC0 circuits of depth d and poly(N) size computing PrMajNk(N).
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Here, we prove the following theorem.

I Theorem 13. For any d ≥ 2, say C is a (deterministic) AC0[⊕] circuit of depth d computing
PrMajNN/2·(logN)d−1 , then C must have size Nω(1).

It is easy to see that using Theorem 12 and Theorem 13, we immediately get Theorem 2.
In order to prove Theorem 13 we need the following claim. This is our main technical claim.

B Claim 14. Let n ∈ N and let k = Θ(n/(logn)c). Let p ∈ F[x1, . . . , xn] be a (deterministic)
polynomial such that it satisfies one of the following two conditions

either Pr
a∈Non

k

[p(a) = 1] ≤ 1/n, Pr
a∈Yesn

0

[p(a) = 0] ≤ 1/10 (5)

or Pr
a∈Non

0

[p(a) = 1] ≤ 1/10 Pr
a∈Yesn

k

[p(a) = 0] ≤ 1/n (6)

Then deg(p) = Ω(logc+1 n).

Proof of Theorem 13 using Claim 14. We will first show that Theorem 13 follows from the
above claim. We will do this using the following two step argument.

(I) Let us assume for now that C is a circuit of size s and depth d with either OR gate or
⊕ gate as its output gate. Let us call the output gate Gout. We will show that if C
computes PrMajNk then we have a circuit C′ of size s, depth d and with output gate
Gout, such that it computes UpPrMajn2k, where n = N − 2k.8

(II) We will then show that any depth d circuit with OR or ⊕ output gate computing
UpPrMajn2k must have size nω(1).

As we will invoke this for k = N/2(logN)c, which is o(N), an nω(1) lower bound on UpPrMajn2k
will imply a Nω(1) lower bound on PrMajNk , thereby proving the theorem.

Here, (I) can be shown by simply fixing some of the input bits to the constant 1.
Specifically, let us set 2k bits out of the N bits to 1s. Let n = N − 2k. It is easy to see that
if x ∈ {0, 1}n has Hamming weight at least n/2, then in fact y = x · 12k has N/2 + k many
1s. Similarly, if x ∈ {0, 1}n has Hamming weight at most n/2− 2k then the Hamming weight
of y = x · 12k is at most N/2− k.

To show (II) requires a little more work. In particular, to show (II), we use a result
from [16] about degree of polynomials approximating AC0[⊕] circuits. To state their result,
we will introduce some notation.

I Definition 15. Let f : {0, 1}n → {0, 1} be a Boolean function. For any parameters ε0, ε1,
(ε0, ε1)-error probabilistic polynomial for f is a random multilinear polynomial P chosen
from F2[x1, . . . , xn], such that for any b ∈ {0, 1} and any a ∈ f−1(b), Pr[P (a) 6= f(a)] ≤ εb.

A probabilistic polynomial is said to have degree at most d if the underlying distribution
is supported on monomials of degree at most d.

We define the (ε0, ε1)-error probabilistic polynomial degree of a Boolean function f ,
denoted as pdegε0,ε1(f), to be the smallest d such that there is an (ε0, ε1)-error probabilistic
polynomial of degree d for f .

8 As PrMaj is a self-dual function and UpPrMaj and LowPrMaj are duals of each other, we can assume
that the output gate of C is OR or ⊕ without loss of generality.
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I Lemma 16 (Corollary 15, [16]). Let C be a size s, depth d circuit with OR or ⊕ as its output
gate. Then there is a probabilistic polynomial p approximating C such that pdeg1/n2,1/100(p)
is at most O(log s)d−1.

I Remark 17. Let C be a circuit of size s and depth d (with any output gate). It is known that
if p is a probabilistic polynomial for C such that ε0 = ε1 = 1/sO(1), then pdeg1/sO(1),1/sO(1)(p)
is O(log s)d. The above lemma says that if we need only constant error on one of sides, i.e.
say if either ε0 or ε1 is Ω(1), then we can get a better degree upper bound. Instead of having
d in the exponent, we get d− 1 in the exponent. This is crucial.

Note that, if the output gate of C is OR (AND) then we can ensure that ε0 = 1/n2

(ε1 = 1/n2, resp.). If it is a ⊕ gate, then either can be ensured.

Suppose there is an AC0[⊕] circuit C of size s = nt and depth d with top gate OR or ⊕
and computing UpPrMaj2k.

Applying Lemma 16 and by standard averaging arguments we can show that there is a
fixed polynomial P ∈ F [X] that satisfies conditions (5) for c = d− 1 and has the same degree
as the degree of p. Therefore on the one hand, we know that deg(P ) is less than or equal to
O(t logn)d−1, while on the other hand using Claim 14 we get that deg(P ) is at least Ω(logn)d.
(As N/(logN)c = Θ(n/(logn)c), Claim 14 is applicable.) Thus, O(t logn)d−1 ≥ Ω(logn)d
and hence we get t ≥ Ω(logn)1/d−1. Therefore we get (II). This finishes the proof of
Theorem 13. J

We now proceed with the proof of Claim 14. We will use the following fact in the proof of
Claim 14.

I Fact 18. Say R ∈ F[X] is a non-zero polynomial that vanishes on Nonk , then degree of R
is at least n/2− k.

Proof of Claim 14. We will show that if a deterministic polynomial p ∈ F[X] satisfies condi-
tion (5), then it has degree C · logc+1 n for some constant C. The proof for the lower bound
on the degree of p assuming condition (6) is similar. For simplicity we will work out the
proof when k = n/(logn)c. The proof is similar when k = Θ(n/(logn)c).

Let us use D to denote C · logc+1 n. Consider a polynomial p satisfying condition (5).
Let E0 and E1 be error sets of this polynomial on no and yes instances respectively, i.e.
E0 = {a ∈ Nonn/(logn)c | p(a) = 1} and E1 = {a ∈ Yesn0 | p(a) = 0}. From condition (5) we
have a bound on the cardinalities of E0, E1.

We will first observe that in order to prove the claim, it suffices to show the existence of
a polynomial Q ∈ F[X] with the following three properties.
(a) Q(a) = 0 for all a ∈ E0.
(b) Q · p 6= 0.
(c) deg(Q) ≤ r −D, where r = n/2− n/(logn)c and D is as defined above.
Suppose we have such a Q then let R = Q · p. Now R is a polynomial that vanishes on
Nonn/(logn)c . This is because either p vanishes on Nonn/(logn)c \ E0 or Q vanishes on E0. Due
to property (b), R is also a non-zero polynomial. Therefore using Fact 18, we know that it
has degree at least r. Now assuming property (c) we get that p must have degree at least D,
thereby proving the claim.

The existence of such a Q can be proved using arguments similar to those in [16]. The
proof is omitted for lack of space. C
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