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Abstract
Event structures are fundamental models in concurrency theory, providing a representation of events
in computation and of their relations, notably concurrency, conflict and causality. In this paper
we present a theory of minimisation for event structures. Working in a class of event structures
that generalises many stable event structure models in the literature, (e.g., prime, asymmetric, flow
and bundle event structures) we study a notion of behaviour-preserving quotient, taking hereditary
history preserving bisimilarity as a reference behavioural equivalence. We show that for any event
structure a uniquely determined minimal quotient always exists. We observe that each event
structure can be seen as the quotient of a prime event structure, and that quotients of general event
structures arise from quotients of (suitably defined) corresponding prime event structures. This
gives a special relevance to quotients in the class of prime event structures, which are then studied
in detail, providing a characterisation and showing that also prime event structures always admit a
unique minimal quotient.
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1 Introduction

When dealing with formal models of computational systems, a classical problem is that of
minimisation, i.e., for a given system, define and possibly construct a compact version of
the system which, very roughly speaking, exhibits the same behaviour as the original one,
avoiding unnecessary duplications. The minimisation procedure depends on the notion of
behaviour of interest and also on the expressive power of the formalism at hand, which
determines its capability of describing succinctly some behaviour. A classical example is
that of finite state automata, where one is typically interested in the accepted language.
Given a deterministic finite state automaton, a uniquely determined minimal automaton
accepting the same language can be constructed, e.g., as a quotient of the original automaton
via a partition/refinement algorithm (see, e.g., [16]). Moving to non-deterministic finite
automata, minimal automata become smaller, at the price of a computationally more
expensive minimisation procedure and non-uniqueness of the minimal automaton [22].

In this paper we study the problem of minimisation for event structures, a fundamental
model in concurrency theory [33, 34]. Event structures are a natural semantic model when
one is interested in modelling the dynamics of a system by providing an explicit representation
of the events in computations (occurrence of atomic actions) and of the relations between
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30:2 Minimisation of Event Structures

events, like causal dependencies, choices, possibility of parallel execution, i.e., in what is
referred to as a true concurrent (non-interleaving) semantics. Prime event structures [24],
probably the most widely used event structure model, capture dependencies between events
in terms of causality and conflict. A number of generalisations of prime event structures have
been introduced in the literature. For instance, flow [9, 8] and bundle [20] event structures
add the possibility of directly modelling disjunctive causes. Asymmetric event structures [5]
and extended bundle event structures [20] include an asymmetric form of conflict which
allows one to model concurrent readings and precedences between actions. Event structures
have been used for defining a concurrent semantics of several formalisms, like Petri nets [24],
graph rewriting systems [4, 3, 27] and process calculi [32, 31, 10]. Recent applications are in
the field of weak memory models [11, 25, 17, 13] and of process mining and differencing [15].

Behavioural equivalences, defined in a true concurrent setting, take into account not
only the possibility of performing steps, but also the way in which such steps relate with
each other. We will focus on hereditary history preserving (hhp-)bisimilarity [7], the finest
equivalence in the true concurrent spectrum in [29], which, via the concept of open map,
has been shown to arise as a canonical behavioural equivalence when considering partially
ordered computations as observations [18].

The motivation for the present paper originally stems from some work on business
process models. The idea, advocated in [15, 1], is to use event structures as a foundation
for representing, analysing and comparing process models. Processes are mined in the form
of event structures and then translated into a suitable process modeling language. The
processes, in their graphical presentation, should be simple and understandable, as much as
possible, by a human user, who should be able, e.g., to interpret the differences between two
processes diagnosed by a comparison tool. For this aim it is important to avoid “redundancies”
in the representation and thus to reduce the number of events, without altering the behaviour
(modifications that “extend” the behaviour could be sensible in model generalisation, but this
is not of interest here). The paper [2] explores the use of asymmetric and flow event structures
and, for such models, it introduces some reduction techniques that allow one to merge events
without changing the true concurrent behaviour. A notion of behaviour-preserving quotient,
referred to as a folding, is introduced over an abstract class of event structures, having
asymmetric and flow event structures as subclasses. However, no general theory is developed.
The mentioned paper focuses on a special class of foldings, the so-called elementary foldings,
which can only merge a single set of events into one event, and these are studied separately on
each specific subclass of event structures (asymmetric and flow event structures), providing
only sufficient conditions ensuring that a function is an elementary folding.

A general theory of behaviour-preserving quotients for event structures is thus called for,
settling some natural foundational questions. Is the notion of folding adequate, i.e., are all
behaviour-preserving quotients expressible in terms of foldings? Is there a minimal quotient
in some suitably defined general class of event structures? Does it exist in specific subclasses?
(for asymmetric and flow event structures the answer is known to be negative, but for prime
event structures the question is open). Can we have a characterisation of foldings for specific
subclasses of event structures, providing not only sufficient but also necessary conditions?

In this paper we start addressing the above questions. We work in a general class of
event structures based on the idea of family of posets [26] (also called rigid families in [14]).
Although this is not discussed in deep due to space limitations, poset event structures are
sufficiently expressive to generalise most stable event structures models in the literature,
including prime [24], asymmetric [5], flow [9] and bundle [20] event structures (a wider
discussion can be found in [6].)
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As a first step we study, in this general setting, the notion of folding. A folding is
a surjective function that identifies some events while keeping the behaviour unchanged.
Formally, it establishes a hhp-bisimilarity between the source and target event structure. It
turns out that not all behaviour-preserving quotients arise as foldings, but we show that
for any behaviour-preserving quotient, there is a folding that induces a coarser equivalence.
Additionally, given two possible foldings of an event structure we show that it is always
possible to “join” them. This allows us to prove that for each event structure a maximally
folded version, namely a uniquely determined minimal quotient, always exists.

Relying on the order-theoretic properties of the set of configurations of event structures [26],
and on the correspondence between prime event structures and domains [24], we derive that
each event structure in the considered class arises as the folding of a canonical prime event
structure. Moreover, all foldings between general event structures arise from foldings of the
corresponding canonical prime event structures. Interestingly, this result can be derived from
a characterisation of foldings as open maps in the sense of [18].

The results above give a special relevance to foldings in the class of prime event structures,
which thus are studied in detail. We provide necessary and sufficient conditions characterising
foldings for prime event structures. This allows us to establish a clear connection with the so-
called abstraction morphisms, introduced in [12] for similar purposes. The characterisation of
foldings provided can guide, at least in the case of finite structures, the effective construction
of behaviour preserving quotients. Moreover we show that also prime event structures always
admit a minimal quotient.

Most results have a natural categorical interpretation, which is only hinted at in the
paper. In order to keep the presentation simple, the categorical references are inserted in side
remarks that can be safely skipped by the non-interested reader. This applies, in particular,
to the possibility of viewing foldings as open maps in the sense of [18]. This correspondence,
which in the present paper only surfaces, suggests the possibility of understanding and
developing our results in a more abstract categorical setting. More details are provided in
the extended version [6].

The rest of the paper is structured as follows. In § 2 we introduce the class of event
structures we work with and hereditary history preserving bisimilarity. Moreover, we discuss
how some event structure models in the literature embed into the considered class. In § 3 we
study the notion of folding, we prove the existence of a minimal quotient and we show the
tight relation between general foldings and those on prime event structures. In § 4 we present
folding criteria on prime event structures, and discuss the existence of minimal quotients.
Finally, in § 5 we draw some conclusions, discuss connections with related literature and
outline future work venues. Due to space limitations all proofs have been omitted. They can
be found in the extended version [6], which also contains some additional results.

2 Event Structures and History Preserving Bisimilarity

In this section we define hereditary history-preserving bisimilarity, the reference behavioural
equivalence in the paper. This is done for an abstract notion of event structure, introduced
in [26], in a way that various stable event structure models in the literature can be seen as
special subclasses. We will explicitly discuss prime [24] and flow [9, 8] event structures.

Notation. We first fix some basic notation on sets, relations and functions. Let r⊆ X ×X
be a binary relation. The relation r is acyclic on Y if there is no {y0, y1, . . . , yn} ⊆ Y such
that y0 r y1 r . . . r yn r y0. Relation r is a partial order if it is reflexive, antisymmetric and
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Figure 1 An event structure E and the canonical pes P(E).

transitive. Given a function f : X → Y we will denote by f [x 7→ y] : X ∪ {x} → Y ∪ {y}
the function defined by f [x 7→ y](x) = y and f [x 7→ y](z) = f(z) for z ∈ X \ {x}. Note that
the same notation can represent an update of f , when x ∈ X, or an extension of its domain,
otherwise. For Z ⊆ X, we denote by f|Z : Z → Y the restriction of f to Z.

2.1 Event Structures
Following [26, 28, 30, 2, 14], we work on a class of event structures where configurations are
given as a primitive notion. More precisely, we borrow the idea of family of posets from [26],
more recently considered also under the name of rigid family in [14].

I Definition 2.1 (family of posets). A poset is a pair (C,≤C) where C is a set and ≤C is
a partial order on C. A poset will be often denoted simply as C, leaving the partial order
relation ≤C implicit. Given two posets C1 and C2 we say that C1 is a prefix of C2 and write
C1 v C2 if C1 ⊆ C2 and ≤C1=≤C2 ∩ (C2 × C1). A family of posets F is a prefix-closed set
of finite posets i.e., a set of finite posets such that if C2 ∈ F and C1 v C2 then C1 ∈ F . We
say that two posets C1, C2 ∈ F are compatible, written C1 a C2, if they have an upper bound,
i.e., there is C ∈ F such that C1, C2 v C. The family of posets F is called coherent if each
subset of F whose elements are pairwise compatible has an upper bound.

Posets C will be used to represent configurations, i.e., sets of events executed in a
computation of an event structure. The order ≤C intuitively represents the order in which
the events in C can occur. This motivates the prefix order that can be read as a computational
extension: when C1 v C2 we have that C1 ⊆ C2, events in C1 are ordered exactly as in C2,
and the new events in C2 \ C1 cannot precede events already in C1 (i.e., for all x1 ∈ C1,
x2 ∈ C2, if x2 ≤C2 x1 then x2 ∈ C1).

An example of family of posets can be found in Fig. 1 (left). Observe, for instance, that
the configuration with set of events {c} is not a prefix of the one with set of events {a, c},
since in the latter a ≤ c.

An event structure is then defined simply as a coherent family of posets where events
carry a label. Hereafter Λ denotes a fixed set of labels.

I Definition 2.2 ((poset) event structure). A (poset) event structure is a tuple E =
〈E,Conf (E), λ〉 where E is a set of events, Conf (E) is a coherent family of posets such
that E =

⋃
Conf (E) and λ : E → Λ is a labelling function. For a configuration C ∈ Conf (E)

the order ≤C is referred to as the local order.

In [2] abstract event structures are defined as a collection of ordered configurations, without
any further constraint. This is sufficient for giving some general definitions which are then
studied in specific subclasses of event structures. Here, in order to develop a theory of foldings
at the level of general event structures, we need to assume stronger properties, those of a
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family of posets from [26] (e.g, the fact that Definition 3.14 is well-given relies on this). This
motivates the name poset event structure. Also note that, differently from what happens
in other general concurrency models, like configuration structures [30], configurations are
endowed explicitly with a partial order, which in turn intervenes in the definition of the prefix
order between configurations. This is essential to view as subclasses some kinds of event
structures, like asymmetric event structures [5] or extended bundle event structures [21],
where the order on configuration is not simply subset inclusion. Since we only deal with
poset event structures and their subclasses, we will often omit the qualification “poset” and
refer to them just as event structures. Moreover, we will often identify an event structure E
with the underlying set E of events and write, e.g., x ∈ E for x ∈ E.

An isomorphism of configurations f : C → C ′ is an isomorphism of posets that respects
the labelling, namely for all x, y ∈ C, we have λ(x) = λ(f(x)) and x ≤C y iff f(x) ≤C′ f(y).
When configurations C,C ′ are isomorphic we write C ' C ′.

Given an event x in a configuration C, it will be useful to refer to the prefix of C including
only those events that necessarily precede x in C (and x itself). This motivates the following
definition.

I Definition 2.3 (history). Let E be an event structure, let C ∈ Conf (E) and let x ∈ C.
The history of x in C is defined as the set C[x] = {y ∈ C | y ≤C x} endowed with the
restriction of ≤C to C[x], i.e., ≤C[x]=≤C ∩(C[x] × C[x]). The set of histories in E is
Hist(E) = {C[x] | C ∈ Conf (E) ∧ x ∈ C}. The set of histories of a specific event x ∈ E will
be denoted by Hist(x).

We mentioned that various generalisations of pess in the literature can be naturally
viewed as subclasses of poset event structures. Verifying that the corresponding families of
configurations satisfy the properties of Definition 2.2 is easy. We briefly discuss prime and
flow event structures (more details are in [6], where also other models are discussed).

Prime event structures. Prime event structures [24] capture the dependencies between
events in terms of causality and conflict.

I Definition 2.4 (prime event structure). A prime event structure (pes, for short) is a tuple
P = 〈E,≤,#, λ〉, where E is a set of events, ≤ and # are binary relations on E called
causality and conflict, respectively, and λ : E → Λ is a labelling function, such that
≤ is a partial order and bxc = {y ∈ E | y ≤ x} is finite for all x ∈ E;
# is irreflexive, symmetric and hereditary with respect to causality, i.e., for all x, y, z ∈ E,
if x#y and y ≤ z then x#z.

Configurations are sets of events without conflicts and closed with respect to causality. For
later use, we also introduce a notation for the absence of conflicts, referred to as consistency.

I Definition 2.5 (consistency, configuration). Given a pes P = 〈E,≤,#, λ〉, say that x, y ∈ E
are consistent, written x a y, when ¬(x#y). A subset X ⊆ E is called consistent, written
aX, when its elements are pairwise consistent. A configuration of P is a finite set of events
C ⊆ E such that (i) aC and (ii) for all x ∈ C, bxc ⊆ C.

Some examples of pess can be found in Fig. 2. Causality is represented as a solid arrow,
while conflict is represented as a dotted line. For instance, in P0, event a1 is a cause of b1 and
it is in conflict both with a2 and b3. Only direct causalities and non-inherited conflicts are
represented. For instance, in P0, the conflicts a1#b2, a2#b1 and b1#b2 are not represented
since they are inherited. The labelling is implicitly represented by naming the events by
their label, possibly with some index. For instance, a1 and a2 are events labelled by a.
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b1 b2

a12 b3 c
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Figure 2 Some prime event structures.
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Figure 3 Some flow structures.

Clearly pess can be seen as poset event structures. Given a pes P = 〈E,≤,#, λ〉
and its set of configurations Conf (P), the local order of a configuration C ∈ Conf (P) is
≤C=≤ ∩(C × C), i.e., the restriction of the causality relation to C. The extension order
turns out to be simply subset inclusion. In fact, given C1 ⊆ C2, if x1 ∈ C1 and x2 ∈ C2,
with x2 ≤C2 x1, then necessarily x2 ∈ C1 since configurations are causally closed. Therefore,
recalling that ≤C1=≤ ∩(C1 × C1) and ≤C2=≤ ∩(C2 × C2), we immediately conclude that
≤C2 ∩(C2 × C1) =≤ ∩(C2 × C1) =≤ ∩(C1 × C1) =≤C1 , as desired. As an example, the pes
P2 of Fig. 2, viewed as a poset event structure, can be found in Fig. 4.

Flow event structures. Flow event structures [9, 8] extend pess with the possibility of
modelling in a direct way multiple disjunctive and mutually exclusive causes for an event.

I Definition 2.6 (flow event structure). A flow event structure (fes) is a tuple 〈E,≺,#, λ〉,
where E is a set of events, ≺⊆ E × E is an irreflexive relation called the flow relation,
# ⊆ E × E is the symmetric conflict relation, and λ : E → Λ is a labelling function.

Causality is replaced by an irreflexive (in general non transitive) flow relation ≺, intuitively
representing immediate causal dependency. Moreover, conflict is no longer hereditary.

An event can have causes which are in conflict and these have a disjunctive interpretation,
i.e., the event will be enabled by a maximal conflict-free subset of its causes.

I Definition 2.7 (fes configuration). Given a fes F = 〈E,≺,#, λ〉, a configuration is a
finite set of events C ⊆ E such that (i) ≺ is acyclic on C, (ii) ¬(x#x′) for all x, x′ ∈ C and
(iii) for all x ∈ C and y /∈ C with y ≺ x, there exists z ∈ C such that y#z and z ≺ x.

Some examples of fess can be found in Fig. 3. Relation ≺ is represented by a double
headed solid arrow. For instance, consider the fes F1. The set C = {a, d01} is a configuration.
We have b ≺ d01 and b 6∈ C, but this is fine since there is a ∈ C such that a#b and a ≺ d01.

Under mild assumptions that exclude the presence of non-executable events (a condition
referred to as fullness in [8]), fess can be seen as poset event structures, by endowing
each configuration C with a local order arising as the reflexive and transitive closure of the
restriction of the flow relation to C, i.e., ≤C= (≺ ∩(C × C))∗.

2.2 Hereditary History Preserving Bisimilarity
In order to define hereditary history preserving bisimilarity, it is convenient to have an
explicit representation of the transitions between configurations.
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a12 c b3
a12

b12
a12 c b3 c

a12 c

b12

Figure 4 The configurations Conf (P2) of the pes P2 in Fig. 2 viewed as poset event structures.

I Definition 2.8 (transition system). Let E be an event structure. If C,C ′ ∈ Conf (E) with
C v C ′ we write C X−→ C ′ where X = C ′ \ C.

When X is a singleton, i.e., X = {x}, we will often write C x−→ C ′ instead of C {x}−−→ C ′.
As it happens in the interleaving approach, a bisimulation between two event structures

requires any event of an event structure to be simulated by an event of the other, with the
same label. Additionally, the two events must have the same “causal history”.

I Definition 2.9 (hereditary history preserving bisimilarity). Let E, E′ be event structures.
A hereditary history preserving (hhp-)bisimulation is a set R of triples (C, f, C ′), where
C ∈ Conf (E), C ′ ∈ Conf (E′) and f : C → C ′ is an isomorphism of configurations, such that
(∅, ∅, ∅) ∈ R and for all (C1, f, C

′
1) ∈ R

1. for all C1
x−→ C2 there exists some C ′1

x′−→ C ′2 such that (C2, f [x 7→ x′], C ′2) ∈ R;
2. for all C ′1

x′−→ C ′2 there exists some C1
x−→ C2 such that (C2, f [x 7→ x′], C ′2) ∈ R;

3. if C2 ∈ Conf (E) with C2 v C1 then (C2, f|C2 , f(C2)) ∈ R (downward closure).

Observe that, in the definition above, an event must be simulated by an event with the
same label. In fact, in the triple (C ∪ {x}, f [x 7→ x′], C ′ ∪ {x′}) ∈ R, the second component
f [x 7→ x′] must be an isomorphism of configurations, i.e., of labelled posets, and thus
it preserves labels. Hhp-bisimilarity has been shown to arise as a canonical behavioural
equivalence on prime event structures, as an instance of a general notion defined in terms of the
concept of open map, when considering partially ordered computations as observations [18].

3 Foldings of Event Structures

In this section, we study a notion of folding, which is intended to formalise the intuition of a
behaviour-preserving quotient for an event structure. We prove that there always exists a
minimal quotient and we show that foldings between general poset event structures always
arise, in a suitable formal sense, from foldings over prime event structures.

3.1 Morphisms and Foldings
We first endow event structures with a notion of morphism. In the sequel, given two event
structures E, E′, a function f : E → E′ and a configuration C ∈ Conf (E), we write f(C)
to refer to the poset whose underlying set is {f(x) | x ∈ C}, endowed with the order
f(x) ≤f(C) f(y) iff x ≤ y.

I Definition 3.1 (morphism). Let E,E′ be event structures. A (strong) morphism f : E→ E′
is a function f : E → E′ between the underlying sets of events such that λ = λ′ ◦ f and for
all configurations C ∈ Conf (E), the function f is injective on C and f(C) ∈ Conf (E′).

FSTTCS 2019
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Hereafter, the qualification “strong” will be omitted since this is the only kind of morphisms
we deal with. It is motivated by the fact that normally morphisms on event structures
are designed to represent simulations. If this were the purpose, then the requirement on
preservation of configurations could have been weaker, i.e., we could have asked the order in
the target configuration to be included in (not identical to) the image of the order of the
source configuration and morphisms could have been partial. However, in our setting, for
the objective of defining history-preserving quotients, the stronger notion works fine and
simplifies the presentation.
I Remark 3.2. The composition of morphisms is a morphism and the identity is a morphism.
Hence the class of event structures and event structure morphisms form a category ES.

I Definition 3.3 (folding). Let E and E′ be event structures. A folding is a morphism
f : E→ E′ such that the relation Rf = {(C, f|C , f(C)) | C ∈ Conf (E)} is a hhp-bisimulation.

In words, a folding is a function that “merges” some sets of events of an event structure
into single events without altering the behaviour modulo hhp-bisimilarity. In [2] the notion
of folding is given by requiring the preservation of hp-bisimilarity, a weaker behavioural
equivalence defined as hhp-bisimilarity but omitting the requirement of downward-closure
(condition 3 in Definition 2.9). Note that, as far as the notion of folding is concerned, this
makes no difference: Rf is downward-closed by definition, hence it is a hhp-bisimulation
whenever it is a hp-bisimulation. Instead, taking hhp-bisimilarity as the reference equivalence
appears to be the right choice for the development of the theory. For instance, it allows one
to prove Lemma 3.12 that plays an important role for arguing about the adequateness of
the notion of folding (e.g., it is essential for Proposition 3.13). Interestingly, foldings can be
characterised as open maps in the sense of [18], by taking conflict free prime event structures
as subcategory of observations. This is explicitly worked out in [6].

As an example, consider the pess in Fig. 2 and the function f02 : P0 → P2 that maps
events as suggested by the indices, i.e., f02(a1) = f02(a2) = a12, f02(b1) = f02(b2) = b12,
f02(b3) = b3 and f02(c) = c. It is easy to see that f02 is a folding. Note that, instead,
f01 : P0 → P1, again mapping events according to their indices, is not a folding. In fact,
f01({a1}) = {a12}

b2−→ {a12, b2}, but clearly there is no transition {a1}
x−→ with f01(x) = b2,

since the only preimage of b2 in P0 is b2.
Observe that the greater expressiveness of fess allows one to obtain smaller quotients.

For instance, consider Fig. 3. The fes F0 seen as a pes would be minimal. Instead, in the
class of fess it is not: the obvious functions from F0 to F1 and F2 are foldings.
I Remark 3.4. The composition of foldings is a folding and the identity is a folding. We can
consider a subcategory ESf of ES with the same objects and foldings as morphisms.

Consider again the pess in Fig. 2 and the morphisms f30 : P3 → P0 and f02 : P0 → P2.
These are induced by the labelling, apart for the bij for which we let f30(bij) = bi. Both are
foldings: the first merges b11 with b12 and b21 with b22, while the second merges a1 with a2
and b1 with b2. Their composition f32 = f30 ◦ f02 : P3 → P2 is again a folding.

A simple but crucial result shows that the target event structure for a folding is completely
determined by the mapping on events. We first define the quotient induced by a morphism.

I Definition 3.5 (quotients from morphisms). Let E, E′ be event structures and let f : E→ E′
be a morphism. Let ≡f be the equivalence relation on E defined by x ≡f y if f(x) = f(y). We
denote by E/≡f

the event structure with configurations Conf (E/≡f
) = {[C]≡f

| C ∈ Conf (E)}
where [C]≡f

= {[x]≡f
| x ∈ C} is ordered by [x]≡f

≤[C]≡f
[y]≡f

iff x ≤C y.

It is immediate to see that E/≡f
is a well-defined event structure.
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b1 b2
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a12

b12

P4 P5 P6

Figure 5 Non existence of pushout of general morphisms.

I Lemma 3.6 (folding as equivalences). Let E, E′ be event structures and let f : E→ E′ be a
morphism. If f is a folding then E/≡f

is isomorphic to E′.

The previous result allows us to identify foldings with the corresponding equivalences on
the source event structures and motivates the following definition.

I Definition 3.7 (folding equivalences). Let E be an event structure. The set of folding
equivalences over E is FEq(E) = {≡f | f : E→ E′ folding for some E′}.

Hereafter, we will freely switch between the two views of foldings as morphisms or as
equivalences, since each will be convenient for some purposes.

We next observe that given two foldings we can always take their “join”, providing a new
folding that, roughly speaking, produces a quotient smaller than both the original ones.

I Proposition 3.8 (joining foldings). Let E,E′,E′′ be event structures and let f ′ : E → E′,
f ′′ : E → E′′ be foldings. Define E′′′ as the quotient E/≡ where ≡ is the transitive closure
of ≡f ′ ∪ ≡f ′′ . Then g′ : E′ → E′′′ defined by g′(x′) = [x]≡ if f ′(x) = x′ and g′′ : E′′ → E′′′
defined by g′′(x′′) = [x]≡ if f ′′(x) = x′′ are foldings.

As an example, consider the pes in Fig. 2 and two morphisms f30 : P3 → P0 and
f31 : P3 → P1. The way all events are mapped by f30 and f31 is naturally suggested by their
labelling, apart for the bij for which we let f30(bij) = bi while f31(bij) = bj . It can be seen
that both are foldings. Their join, constructed as in Proposition 3.8, is P2 with the folding
morphisms f02 : P0 → P2 and f12 : P1 → P2.
I Remark 3.9. Proposition 3.8 is a consequence of the fact that the category ES has pushouts
of foldings. Indeed, E′′′ as defined above is the pushout of f ′ and f ′′ (in ES and also in ESf ).
It can be seen that, in general, ES does not have all pushouts.

As a counterexample to the existence of pushouts in ES for general morphisms, consider
the obvious mappings f45 : P4 → P5 and f46 : P4 → P6 in Fig. 5. It is easy to realise that, if a
pushout existed, the mapping from P5 into the pushout object should identify the concurrent
events a1 and a2, failing to be an event structure morphism.

When interpreted in the setting of folding equivalences of an event structure, Proposi-
tion 3.8 has a clear meaning. Recall that the equivalences over some fixed set X, ordered
by inclusion, form a complete lattice, where the top element is the universal equivalence
X ×X and the bottom is the identity on X. Then Proposition 3.8 implies that FEq(E) is a
sublattice of the lattice of equivalences. Actually, it can be shown that FEq(E) is itself a
complete lattice. Therefore each event structure E admits a maximally folded version.

I Theorem 3.10 (lattice of foldings). Let E be an event structure. Then FEq(E) is a sublattice
of the complete lattice of equivalence relations over E.

I Remark 3.11. The above result arises from a generalisation of Proposition 3.8 showing that,
for any event structure E, each collection of foldings fi : E→ Ei, with i ∈ I, admits a colimit
in ES. Thus the coslice category (E ↓ ESf ) has a terminal object, which is the maximally
folded event structure.
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It is natural to ask whether behaviour-preserving quotients correspond to foldings. Strictly
speaking, the answer is negative. More precisely, there can be morphisms f : E→ E′ such
that E/≡f

is hhp-bisimilar to E, but f is not a folding. For an example, consider the pess P0
and P1 in Fig. 2 and the morphism f01 : P0 → P1 suggested by the indexing. We already
observed this is not a folding, but P0/≡f01

, which is isomorphic to P1, is hhp-bisimilar to P0.
However, we can show that for any behaviour-preserving quotient, there is a folding that
produces a coarser equivalence, and thus a smaller quotient. For instance, in the example
discussed above, there is the folding f02 : P0 → P2, that “produces” a smaller quotient.

This follows from the possibility of joining foldings (Proposition 3.8) and the fact that a
hhp-bisimulation can be always seen as an event structure, a result that generalises to our
setting a property proved for pess in [7].

I Lemma 3.12 (hhp-bisimulation as an event structure). Let E′, E′′ be event structures and
let R be a hhp-bisimulation between them. Then there exists a (prime) event structure ER
and two foldings π′ : ER → E′ and π′′ : ER → E′′.

I Proposition 3.13 (foldings subsume behavioural quotients). Let E be an event structure
and let f : E→ E′ be a morphism such that E/≡f

is hhp-bisimilar to E. Then there exists a
folding g : E→ E′′ such that ≡g is coarser than ≡f .

The proof relies on the possibility of joining foldings (Proposition 3.8) and the fact that
a hhp-bisimulation can be always seen as an event structure, a result that generalises to our
setting a property proved for pess in [7].

3.2 Folding through Prime Event Structures
We observe that each event structure is the folding of a corresponding canonical pes. We
then prove that, interestingly enough, all foldings between event structures arise from foldings
of the corresponding canonical pess.

We start with the definition of the canonical pes associated with an event structure.

I Definition 3.14 (pes for an event structure). Let E be an event structure. Its canonical pes
is P(E) = 〈Hist(E),v,#, λ′〉 where v is prefix, # is incompatibility, i.e., for H1, H2 ∈ Hist(E)
we let H1#H2 if ¬(H1 a H2), and λ′(H) = λ(x) when H ∈ Hist(x). Given a morphism
f : E→ E′ we write P(f) : P(E)→ P(E′) for the morphism defined by P(f)(H) = f(H).

It can be easily seen that the definition above is well-given. In particular, P(E) is a
well-defined pes because, as proved in [26], a family of posets ordered by prefix is finitary
coherent prime algebraic domain. Then the tight relation between this class of domains and
pes highlighted in [33] allows one to conclude the proof. For instance, in Fig. 1(right) one
can find the canonical pes for the event structure on the left.

The canonical pes associated with an event structure can always be folded to the original
event structure.

I Lemma 3.15 (unfolding event structures to pes’s). Let E be an event structure. Define a
function φE : P(E)→ E, for all H ∈ Hist(E) by φE(H) = x if H ∈ Hist(x) for x ∈ E. Then
φE is a folding.

We next show that any morphism from a pes to an event structure E factorises uniquely
through the pes P(E) associated with E (categorically, φE is cofree over E). The same applies
to foldings and it will be useful to relate foldings in E with foldings in P(E).
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I Lemma 3.16 (cofreeness of φE). Let E be an event structure, let P′ be a pes and let f :
P′ → E be an event structure morphism. Then there exists a unique morphism g : P′ → P(E)
such that f = φE ◦ g.

P(E) E

P′

φE

f
g

Moreover, when f is a folding then so is g.

I Remark 3.17. Lemma 3.16 means that the category PES of prime event structures is a
coreflective subcategory of ES, i.e., P : ES→ PES can be seen as a functor, right adjoint
to the inclusion I : PES → ES. Moreover, P restricts to a functor on the subcategory of
foldings, P : ESf → PESf , where an analogous result holds.

We conclude that all foldings between event structures arise from foldings of the associated
pess. Given that PES is a coreflective subcategory of ES and foldings can be seen as open
maps, this result (and also the fact that morphisms φE are foldings) can be derived from [18,
Lemma 6]. More details on this can be found in the extended version [6].

I Proposition 3.18 (folding through pes’s). Let E,E′ be event structures. For all morphisms
f : E→ E′ consider P(f) : P(E)→ P(E′) defined by P(f)(H) = f(H). Then f is a folding iff
P(f) is a folding.

4 Foldings for Prime Event Structures

Motivated by the fact that foldings on general poset event structures always arise from
foldings of the corresponding canonical pess, in this section we study foldings in the class of
pess. We provide a characterisation and show that also pess always admit a least quotient.

Since foldings are special morphisms, we first provide a characterisation of pes morphisms.

I Lemma 4.1 (pes morphisms). Let P and P′ be pess and let f : P → P ′ be a function on
the underlying sets of events. Then f is a morphism iff for all x, y ∈ P
1. λ′(f(x)) = λ(x);
2. f(bxc) = bf(x)c; namely (a) for all z′ ∈ P′, if z′ ≤ f(x) there exists z ∈ P such that

z ≤ x and f(z) = z′ (b) if z ≤ x then f(z) ≤ f(x);
3. (a) if f(x) = f(y) and x 6= y then x#y and (b) if f(x)#f(y) then x#y.

These are the standard conditions characterising (total) pes morphisms (see, e.g., [33]),
with the addition of condition (2b) that is imposed to ensure that configurations are mapped
to isomorphic configurations, as required by the notion of (strong) morphism (Definition 3.1).

We know that not all pes morphisms are foldings. We next identify some additional
conditions characterising those morphisms which are foldings. Given a relation r⊆ X ×X
and Y,Z ⊆ X we write Y r∀ Z if for all y ∈ Y and z ∈ Z it holds y r z. Singletons are
replaced by their only element, writing, e.g., y r∀ Z for {y} r∀ Z.

I Theorem 4.2 (pes foldings). Let P and P′ be pess and let f : P → P′ be a morphism.
Then f is a folding if and only if it is surjective and for all X,Y ⊆ P, x, y ∈ P, y′ ∈ P′
1. if x#∀f−1(y′) then f(x)#y′;
2. if a(X ∪ {x}), a(Y ∪ {y}), a(X ∪ Y ) and f(x) = f(y) then there exists z ∈ P such that

f(z) = f(x) and a(X ∪ Y ∪ {z}).
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The notion of folding on pess turns out to be closely related to that of abstraction
homomorphism for pess introduced in [12] for similar purposes. More precisely, abstraction
homomorphisms can be characterised as those pes morphisms additionally satisfying condition
(1) of Theorem 4.2, while they do not necessarily satisfy condition (2). Their more liberal
definition with respect to foldings can be explained by the fact that they are designed to
work on a subclass of structured pess (a formal comparison is in the extended version [6]).

The next result “transfers” the conditions characterising foldings to folding equivalences.

I Corollary 4.3 (folding equivalences for pes’s). Let P be a pes and let ≡ be an equivalence
on P. Then ≡ is a folding equivalence in FEq(P) iff for all x, y ∈ P, x 6= y, if x ≡ y then
1. λ(x) = λ(y);
2. [bxc]≡ = [byc]≡;
3. x#y.
Moreover, for all x, y ∈ P, X,Y ⊆ P
4. if x#∀[y]≡ then [x]≡#∀[y]≡;
5. if a(X ∪ {x}), a(Y ∪ {y}), a(X ∪ Y ) there exists z ∈ [x]≡ such that a(X ∪ Y ∪ {z}).

For instance, in Fig. 2, consider the equivalence ≡01 over P0 such that a1 ≡01 a2.
This produces P1 as quotient. This is not a folding equivalence since condition (4) fails:
a1#∀[b2]≡01 , but ¬(a2#b2) and thus ¬([a1]≡01#∀[b2]≡01). Instead, the equivalence ≡02 over
P0 such that a1 ≡02 a2 and b1 ≡02 b2, producing P2 as quotient, satisfies all five conditions.

When pess are finite, the result above suggests a possible way of identifying foldings:
one can pair candidate events to be folded on the basis of conditions (1)-(3) and then try to
extend the sets with condition (4)-(5) when possible. The procedure can be inefficient due to
the global flavor of the conditions. This will be further discussed in the conclusions.

We know, from Proposition 3.8, that all event structures admit a “maximally folded”
version. We next observe that the same result continues to hold in the class of pess.

I Theorem 4.4 (joining foldings on pes’s). Let P,P′,P′′ be pess and let f ′ : P → P′,
f ′′ : P → P′′ be foldings. Define E′′′ along with g′ : P′ → E′′′ and g′′ : P′′ → E′′′ as
in Proposition 3.8. Then E′′′ is a pes. As a consequence, each pes admits a uniquely
determined minimal quotient in the class of pess.

I Remark 4.5. Theorem 4.4 is a consequence of the fact that the subcategory PESf is a
coreflective subcategory of ESf and thus it is closed under colimits.

In passing, we note that in the class of fess the existence of a unique minimal folding
is lost. In fact, consider Fig. 3. It can be easily seen that F1 and F2 are different minimal
foldings of F0. In particular, merging the three d-labelled events as done in F3 modifies the
behaviour. In fact, in F3, the event d012 is not enabled in C = {a} since c ≺ d012 and no
event in C is in conflict with c. Instead, in F0, the event d0 is clearly enabled from {a}.
Existence of a unique minimal folding could be possibly recovered by strengthening the
notion of folding. Note, however, that this would be against the spirit of our work where
the notion of folding is not a choice. Rather, after having assumed hhp-bisimilarity as the
reference behavioural equivalence, the notion of folding is essentially “determined” as a
quotient (surjective function) that preserves the behaviour up to hhp-bisimilarity.

5 Conclusions

We studied the problem of minimisation for poset event structures, a class that encompasses
many stable event structure models in the literature, taking hereditary history preserving
bisimilarity as reference behavioural equivalence. We showed that a uniquely determined
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minimal quotient always exists for poset event structures and also in the subclass of pess.
We showed that foldings between general poset event structures arise from foldings of
corresponding canonical pess. Finally, we provided a characterisation of foldings of pess.

We believe that, besides its original motivations from the setting of business process
models and its foundational interest, this work can be of help in the study of minimisation,
under a true concurrent equivalence, of operational models which can be mapped to event
structures, like transition systems with independence or Petri nets.

As underlined throughout the paper, our theory of folding has many connections with
the literature on event structures. The idea of “unfolding” more expressive models to prime
algebraic domains and pess has been studied by many authors (e.g., in [26, 24, 28, 30, 9]).
The same can be said for the idea of refining a single action into a complex computation
(see, e.g., [29] and references therein). Instead, the problem of characterising behaviour-
preserving quotients of event structures has received less attention. We already commented
on the relation with abstraction homomorphisms for pess [12], which capture the idea of
behaviour-preserving abstraction but only in a subclass of structured pess. In some cases,
given a Petri net or an event structure a special transition system can be extracted, on which
minimisation is performed. In particular, the paper [23] proposes an encoding of safe Petri
nets into causal automata, preserving hp-bisimilarity. Such automata can be transformed
into a standard labelled transition systems, which in turn can be minimised. However, in
this way, the correspondence with the original events is lost.

The notion of behaviour-preserving function has been given an elegant abstract charac-
terisation in terms of open maps [18]. We mentioned the possibility of viewing our foldings
as open maps and we observed that various results admit a categorical interpretation (see
also [6]). This gives clear indications of the possibility of providing a general abstract view of
the results in this paper, something which represents an interesting topic of future research.

The characterisation of foldings on pess can be used as a basis to develop, at least in the
case of finite structures, algorithms for the construction of behaviour preserving quotients.
The fact that conditions for folding refer to sets of events might make the minimisation
procedure very inefficient. Identifying suitable heuristics and investigating the possibility of
having more “local” folding conditions are interesting directions of future work.

Although not explicitly discussed in the paper, by considering elementary foldings, i.e.,
foldings that just merge a single set of events, one can indeed determine some more efficient
folding rules. This is essentially what is done for aess and fess in [2]. However, restricting
to elementary foldings is limiting, since it can be seen that general foldings cannot be always
decomposed in terms of elementary ones (e.g., it can be seen that in Fig. 2, the folding
f02 : P0 → P2 cannot be obtained as the composition of elementary foldings).

When dealing with possibly infinite event structures one could try to devise reduction
rules acting on some finitary representation and inducing foldings on the corresponding event
structure. Note, however, that working, e.g., on finite safe Petri nets, the minimisation
procedure would be necessarily incomplete, given that hhp-bisimilarity is undecidable [19].
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