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Abstract
Traditional concurrent games on graphs involve a fixed number of players, who take decisions
simultaneously, determining the next state of the game. In this paper, we introduce a parameterized
variant of concurrent games on graphs, where the parameter is precisely the number of players.
Parameterized concurrent games are described by finite graphs, in which the transitions bear regular
languages to describe the possible move combinations that lead from one vertex to another.

We consider the problem of determining whether the first player, say Eve, has a strategy to ensure
a reachability objective against any strategy profile of her opponents as a coalition. In particular
Eve’s strategy should be independent of the number of opponents she actually has. Technically, this
paper focuses on an a priori simpler setting where the languages labeling transitions only constrain
the number of opponents (but not their precise action choices). These constraints are described as
semilinear sets, finite unions of intervals, or intervals.

We establish the precise complexities of the parameterized reachability game problem, ranging
from PTIME-complete to PSPACE-complete, in a variety of situations depending on the contraints
(semilinear predicates, unions of intervals, or intervals) and on the presence or not of non-determinism.
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1 Introduction

Parameterized verification. The generalisation and everyday usage of, for example, cloud
computing and blockchains technology, calls for the verification of algorithms running on
distributed systems. Concrete examples are consensus and leader-election algorithms, but also
coherence protocols, etc. This explains the recent interest of the model-checking community
for the verification of systems composed of an arbitrary number of agents [10, 5].

Verifying algorithms running on distributed systems for all possible number of agents at
once calls for symbolic techniques. These are generic, and compare favorably –in terms of
complexity– to applying standard verification techniques on a given instance with a fixed
large number of agents. Therefore, beyond its original goal of verifying systems independently
of the number of agents, parameterized verification can also be more efficient than standard
verification for large systems. In the last 15 years, parameterized verification algorithms were
successfully applied to various case studies, such as data-consistency for cache coherence
protocols in uniform memory access multiprocessors [9], and the core of simple reliable
broadcast protocols in asynchronous systems [13].
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31:2 Concurrent Parameterized Games

Multiplayer concurrent games. In parallel, for multi-agents systems, the AI and model-
checking communities traditionally use concurrent games on graphs to model the complex
interactions between agents [1, 2]. An arena for n players is a directed graph where the
transitions are labeled by n-tuples of actions. At each vertex of the graph, the n players
select simultaneously and independently an action, and the next vertex is determined by the
combined move consisting of all the actions. Most often, one considers infinite duration plays,
that is plays generated by iterating this process forever. Concepts studied on multiplayer
concurrent games include some borrowed from game theory, such as winning strategies (see
e.g. [1]), rationality of players (see e.g. [11]), Nash equilibria (see e.g. [17, 6]).

Concurrent games with a parameterized number of players. The purpose of the current
paper is to settle the foundations of concurrent games involving a parameterized number
of players, paving the way to the modelling and verification of interactions involving an
arbitrary number of agents. We envision that such games may later have applications in a
variety of contexts, such as telecommunications and distributed algorithms. The conclusion
presents a simple coordination game, and one of our long-term objectives is to solve the
distributed synthesis problem of such games.

Generalising concurrent games to a parameterized number of agents can be done by
replacing, on edges of the arena, tuples representing the choice of each of the agents by
languages of finite yet a priori unbounded words. It seems natural to first consider regular
languages, represented by regular expressions. For instance the label a+ represents that all
players choose action a, while ab+ is the situation where the first player chooses a, while all
other players play b. Such a parameterized arena can represent infinitely many interaction
situations, one for each possible number of agents. In parameterized concurrent games, the
agents do not know a priori the number of agents participating to the interaction. Each
player observes the action it plays and the vertices the play goes through. These pieces of
information may refine the knowledge each player has on the number of involved agents.

Figure 1 presents a first example of a parameterized arena. This arena represents a
situation where the players need to figure out the parity of their number in order to make
a correct decision (action b if there is an even number of players, and c otherwise). Here,
players can collectively reach the target vertex v4: they all play a in the two first steps, and
from v3, if the play went through v1 (resp. v2), they all play b (resp. c).

v0
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v2

v3

v4

v5

(aa
)+

a(aa) +

a ≥2

a
≥2

(bb
)+

c(c
c)
+
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b(bb) +

Figure 1 Example of a parameterized arena.

As for traditional concurrent games, one can consider natural questions such as, for
instance, the distributed synthesis problem as in the above example, or the existence and
computation of Nash equilibria. To start with, we consider a simpler decision problem:
the first player, called Eve, is distinguished, and the question is whether she can ensure
a reachability objective against the coalition of the other players, not knowing a priori
the number of her opponents. She therefore must play uniformly, whatever the number of
opponents she has. To simplify the exposition, we assume that the languages on transition
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of the arena are particularly simple: they only constrain the number of opponents Eve has.
However, as discussed in Section 4, this simpler setting is not restrictive for the decision
problem we consider.

Contributions. After the definition of the parameterized game setting, the main contribution
of this paper is the resolution of the so-called parameterized reachability game problem, with
tight complexity bounds. We distinguish several cases, depending on whether arenas are
deterministic or not, and on whether constraints on the number of opponents are intervals,
finite unions of intervals, or semilinear sets.

The existence of a uniformly winning strategy for Eve reduces to the resolution of the
knowledge game, a two-player reachability turn-based game. The latter is a priori exponential
in the size of the original arena, since vertices include the knowledge Eve has on the possible
number of her opponents, and this exponential blowup is unavoidable. Yet, when constraints
are only intervals, the knowledge game is only of polynomial size. In this particular case, we
prove the parameterized game problem to be PTIME-complete. For finite unions of intervals,
and when the parameterized arena is deterministic, we show that if Eve has a winning
strategy, she has one that can be represented by a polynomial size strategy tree. This small
model property, together with the encoding of 3SAT allows us to prove the problem to
be NP-complete. Finally, for finite unions of intervals and non-deterministic arenas, or for
semilinear sets (with no assumption of non-determinism) the parameterized game problem
is PSPACE-complete. The lower bound is obtained by a reduction from QBF-SAT, while
the upper bound derives from a depth-first search algorithm on an exponential size tree,
non-trivially extracted from the knowledge game. All the complexities are summarized in
Table 1, on page 6.

Related work. Up to our knowledge, this contribution is the first to introduce and study
a model of concurrent games with a parameterized number of players. Our model of
parameterized concurrent games mixes interactions and an arbitrary number of agents. As
far as we are aware, only a couple of other works in parameterized verification have defined
a game semantics, and they all largely differ from the current setting. First, to study
broadcast networks of many identical Markov decision processes, broadcast networks of
two-player games were introduced [4]. There, the behaviour of each agent is the same and
is described by a two-player turn-based game. Second, a control problem for an arbitrary
size population of identical agents was studied in [3]. In that work, a controller plays
against a parameterized number of agents, similarly to Eve playing against an unknown
number of opponents. However, in contrast to our parameterized games, in the population
control problem, the semantics is a turn-based game, and, most importantly, the arena is not
centralized.

2 Game setting

We first introduce parameterized arenas, which form a simple setting for modelling games
with a parameterized number of players. In such arenas, edges are labeled with sets of pairs
(a, k) for a an action of Eve, and k a number of opponents. We discuss in Section 4 how a
natural extension of concurrent games to a parameterized number of players, with regular
languages on edges, reduces to this simpler setting. In the whole paper, we denote by N the
set of natural numbers (including 0) and write N>0 for the set of positive natural numbers.

FSTTCS 2019



31:4 Concurrent Parameterized Games

I Definition 1. A parameterized arena is a tuple A = 〈V,Σ,∆〉 where
V is a finite set of vertices;
Σ is a finite set of actions;
∆ : V × Σ× N>0 → 2V is the transition function.

The arena is deterministic if for every v ∈ V , and every pair (a, k) ∈ Σ×N>0, there is at
most one vertex v′ ∈ V such that v′ ∈ ∆(v, a, k). Action a ∈ Σ is enabled at vertex v if there
exists k ∈ N>0 such that ∆(v, a, k) 6= ∅. The arena is assumed to be complete for enabled
actions: for every v ∈ V , if a is enabled at v, then for all k ∈ N>0, ∆(v, a, k) 6= ∅. This
assumption is natural: Eve does not know how many opponents she has, and the successor
vertex must exist whatever that number is. Given a predicate P ⊆ N>0, ∆(v, a, P ) is a
shorthand for

⋃
k∈P ∆(v, a, k).

Further, for any v, v′ ∈ V and a ∈ Σ, we introduce the following notation to represent the
set of number of opponents that can lead from v to v′ under action a of Eve: ∇(v, a, v′) =
{k ∈ N>0 | v′ ∈ ∆(v, a, k)}. Finally, we write E = {(v, a, v′) | ∃k ∈ N>0, v

′ ∈ ∆(v, a, k)} for
the set of edges of the arena.
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Figure 2 Example of a parameterized reachability game.

I Example 2. An example of a deterministic parameterized reachability game is presented
in Figure 2, with V = {v0, . . . , v5}, Σ = {a, b}. Here and in other pictures, we use constraints
to represent the transition function: for instance, the label ‘a,= 1’ on the transition from v0
to v1 represents ∆(v0, a, 1) = {v1}, and the label ‘a, 6= 1’ means that for every k 6= 1 (that is,
k ≥ 2), ∆(v0, a, k) = {v2}, or simply ∆(v0, a, 6= 1) = {v2}. Moreover, we omit the constraint
if it is trivial e.g., for every k ∈ N>0, ∆(v1, a, k) = {v3}. On that example, action a is the
only enabled action at vertices v0, v1 and v2, and both a and b are enabled at v3. Also
(v0, a, v1) is an example of edge. Finally, ∇(v3, a, v4) = {1} and ∇(v3, b, v4) = [2,∞).

Let k ∈ N>0. A k-history, for a coalition composed of k opponents of Eve, is a finite
sequence v0a0 · · · vi ∈ (V ·Σ)∗ ·V such that for every j < i, vj+1 ∈ ∆(vj , aj , k) (or equivalently
k ∈

⋂
j<i∇(vj , aj , vj+1)). A history in A is a k-history for some k ∈ N>0. We note Hist(k)

(resp. Hist) for the set of k-histories (resp. histories) in G. Similar notions of a k-play and a
play are defined for infinite sequences.

I Definition 3. A strategy for Eve from v in A is a mapping σ : Hist→ Σ that associates
to every history hv′ ∈ Hist an action σ(hv′) which is enabled at v′. Further, σ is memoryless
whenever for every hv′, h′v′ ∈ Hist, σ(hv′) = σ(h′v′).

A strategy for Eve is applied with no prior information on the number of her opponents.
Given a strategy σ, an initial vertex v and k ∈ N>0 a number of opponents, we define
the outcome Out(σ, v, k) as the set of plays that σ induces from v when Eve has exactly k
opponents. Formally, Out(σ, v, k) is the set of all k-plays ρ = v0a0v1a1v2 · · · such that v = v0,
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and for all i ≥ 0, σ(v0a0 · · · vi) = ai and vi+1 ∈ ∆(vi, ai, k). The completeness assumption
ensures that the set Out(σ, v, k) is not empty. Finally, Out(σ) is the set of all possible plays
induced by σ from v: Out(σ, v) =

⋃
k≥1 Out(σ, v, k).

Given an arena A = 〈V,Σ,∆〉, a target vertex t ∈ V defines a reachability game G = (A, t)
for Eve. A strategy σ for Eve from v in the reachability game G = (A, t) is winning if all
plays in Out(σ, v) eventually reach t. If there exists a winning strategy from v, then we say
that v belongs to the winning region of Eve.

I Example 4. Resuming Example 2, one can show that Eve has a winning strategy σ from
v0 to reach the target v4 defined by σ(v0) = σ(v0av1) = σ(v0av2) = a, σ(v0av1av3) = a and
σ(v0av2av3) = b. Intuitively, the decision at vertex v3 depends on whether the play went
through v1 –in this case Eve deduces that she has a single opponent– or v2. Note that no
memoryless strategy is winning for Eve: if she always chooses a at v3, she is losing against
more than 1 opponents; and similarly for b. The winning region for Eve is {v0, v4}.

The purpose of this paper is to establish the complexity of the following decision problem:

Parameterized reachability game problem
Input: A parameterized reachability game G = (A, t) and an initial vertex v.
Question: Does Eve have a winning strategy from v in G?

For algorithmic reasons, we assume the transition function ∆ of A can be described
in a finite way. More precisely, the sets ∇(v, a, v′) for v, v′ ∈ V and a ∈ Σ should be
simple enough.

We first consider constraints described by closed intervals (since we deal with sets of
natural numbers, it is no restriction to assume intervals to be closed) or finite unions of closed
intervals. If [a, b] (resp. [a,∞)) is an interval, then we say a is a left endpoint and b (resp.
∞) is a right endpoint. As a complexity parameter, we use #endpointsA, the number of
endpoints used in constraints in A. All the complexities will be functions of this parameter,
independently of the precise values of the endpoints.

More generally, we also consider semilinear predicates over N. A simple example of a
semilinear predicate is the predicate “divisible by p”, where p ∈ N>0. W.l.o.g. we assume
semilinear sets are given as finite unions of ultimately periodic sets of integers. A set S ⊆ N
is ultimately periodic if there exist a threshold t ∈ N and a period p ∈ N such that for all
a, b ∈ N with a, b ≥ t and a ≡ b mod p, we have a ∈ S iff b ∈ S. For complexity issues,
all constants are assumed to be represented in binary. In that context, as a complexity
parameter, we use #predA, the number of predicates used on edges of A.

3 Resolution of the parameterized reachability game problem

In this section, we study the complexity of the parameterized reachability game problem.

I Theorem 5. The complexity of the parameterized reachability game problem is stated in
Table 1.

Note that the complexities for constraints given as (finite unions of) intervals are in-
dependent of values of endpoints used in the constraints. When constraints are given as
semilinear sets, the complexity does depend on #predA as well as the size of the encodings
of the semilinear sets.

The rest of this section is devoted to proving these complexity results. To do so, we
start with defining a finite two-player game abstraction, the knowledge game, which precisely
captures the partial-information aspect of our parameterized game model.

FSTTCS 2019



31:6 Concurrent Parameterized Games

Table 1 Complexity of the parameterized reachability game problem.

Deterministic arenas Non-deterministic arenas
C
on

st
ra
in
ts Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets PSPACE-complete

3.1 The knowledge game
From a parameterized reachability game, we construct a standard two-player turn-based
game. We do not recall this notion here, and refer to [12, Chap. 2] for it.

I Definition 6. Let G = (A, t) be a parameterized game, with A = 〈V,Σ,∆〉. The knowledge
game associated with G is the two-player turn-based reachability game KG = (VE∪VA,∆K, F ),
between Eve and Adam, such that VE ⊆ V ×2N>0 and VA ⊆ VE×Σ are Eve and Adam vertices,
respectively; ∆K ⊆ (VE×VA)∪(VA×VE) is the edge relation; and F = VE∩{(t,K) | K ⊆ N>0}
is the set of target vertices. They are defined inductively by
{(v,N>0) | v ∈ V } ⊆ VE;
∀(v,K) ∈ VE, ∀a ∈ Σ enabled at v, (v,K, a) ∈ VA and

(
(v,K), (v,K, a)

)
∈ ∆K;

∀(v,K, a) ∈ VA, ∀v′ ∈ V such that K ∩ ∇(v, a, v′) 6= ∅, (v′,K ∩ ∇(v, a, v′)) ∈ VE and(
(v,K, a), (v′,K ∩∇(v, a, v′))

)
∈ ∆K;

A strategy for Eve in KG is a function λ : (VE · VA)∗ · VE → VA compatible with ∆K. We
borrow standard notions of outcomes and winning strategies from the literature.

It is not hard to see that the game KG is finite. Indeed, one can show by induction
that every Eve’s vertex (v,K) (hence every Adam’s vertex (v,K, a)) is such that K is an
intersection of finitely many sets of the form ∇(v′, a, v′′) or N>0.

I Example 7. Figure 3 represents the knowledge game associated with the parameterized
game from Example 2. Circle vertices belong to Eve, and rectangle ones to Adam. In this
two-player game, Eve has a winning strategy from (v0,N>0) to reach the doubly-circled
target vertices.

v0,N>0 v0,N>0,a

v1,=1

v2,6=1

v1,=1,a

v2,6=1,a

v3,=1

v3,6=1

v3,=1,a

v3,=1,b

v3, 6=1,a

v3, 6=1,b

v4,=1

v5,=1

v4,6=1

v5,6=1

Figure 3 Knowledge game for the example of Figure 2.

We now investigate the size of KG , that the number of its vertices and edges, w.r.t.
the complexity measures we introduced for the parameterized game G. Note that the size
only might not reflect the complexity of building the knowledge game, in particular when
constraints are given as semilinear predicates (one for instance needs to check emptiness of
intersections of predicates); we discuss this further in the proof of Proposition 11.
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I Lemma 8. For G = (A, t) a parameterized game with A = 〈V,Σ,∆〉, the size of the
associated knowledge game KG is polynomial in both |V | and |Σ|, and
1. exponential in #predA, for constraints defined by semilinear predicates;
2. exponential in #endpointsA, for constraints defined by finite unions of intervals; and
3. polynomial in #endpointsA, for constraints defined as intervals.
Furthermore, the exponential blowup is unavoidable in the two first cases.

Proof. By definition, all pairs (v,N>0) for v ∈ V belong to VE representing that Eve has
no initial knowledge of the number of her opponents. Further knowledge sets for vertices in
KG are obtained by taking the intersection of existing knowledge sets with sets of the form
∇(v, a, v′).

Therefore, when constraints in the arena are given by semilinear predicates, the number
of knowledge sets is bounded by 2#predA . Hence |VE | ≤ 2#predA |V | and |VA| ≤ 2#predA |V ||Σ|,
yielding an overall exponential bound on |KG |. Note that it is exponential in the number of
predicates, but not in the size of their encodings.

When constraints are defined by finite unions of intervals, the number of knowledge sets is
bounded by 3#endpointsA . Indeed, a finite union of intervals can be encoded by a word on the
alphabet formed of the set of endpoints, with a repetition for singletons; for instance, if E =
{2, 5, 8, 11, 17, 23,∞}, writing ai for the i-th letter of E, [2, 8] ∪ {11} ∪ [17,∞) is represented
by the string a1a3a4a4a5a7. Hence |VE | ≤ 3#endpointsA |V | and |VA| ≤ 3#endpointsA |V ||Σ|,
yielding an overall exponential bound on |KG |. Note that it is exponential in the number of
endpoints, but not in the size of their encodings.

Finally, when constraints are defined by intervals, a better upper bound can be obtained.
All knowledge sets in KG are intervals whose endpoints appear in the constraints of A.
There can be at most #endpoints2

A such intervals, so that |VE | ≤ #endpoints2
A|V | and

|VA| ≤ #endpoints2
A|V ||Σ|, yielding an overall polynomial bound on |KG |.

v0

v1 v′1

v2 v′2

vn v′n

t

a1

b,
6=1

b,=1

a2 b,=2

b,6=2

a
n

b,=n

b, 6=n

b

b

b

...

...

Figure 4 A deterministic game Gn (n ∈ N>0), whose size is polynomial in n and whose knowledge
game is exponential in n.

The exponential upper bound is reached by the family (Gn)n∈N>0 of deterministic para-
meterized games depicted on Figure 4, and for which the constraints are unions of intervals
(a particular case of semilinear predicates). Both the number of endpoints, and the number
of predicates are linear in n. The associated knowledge game has vertices (v0,K) for every
non-empty subset K of {1, . . . , n}. Indeed, intuitively, from vertex (v0,K) in KGn

, for any
k ∈ K, the successor vertex in two steps by ak and b, in case the number of opponents is not
k, is the vertex (v0,K \ {k}). Thus |Gn| ∈ O(n) and |KGn

| ∈ O(n2n). J

FSTTCS 2019



31:8 Concurrent Parameterized Games

We now state the correctness of the knowledge game construction:

I Theorem 9. Eve has a winning strategy σ from v0 in G if and only if she has a winning
strategy λ from (v0,N>0) in KG.

Proof sketch. There is a correspondence between histories in G and KG . Every history h =
v0a0v1 · · · vi in G, can be lifted to the history κ(h) = (v0,K0)(v0,K0, a0)(v1,K1) · · · (vi,Ki)
in KG where: K0 = N>0, and for every 1 ≤ j ≤ i, Kj = Kj−1 ∩∇(vj−1, aj−1, vj). Note that
κ(h) is well-defined since, by definition of a history, Ki is not empty. Conversely, any history
H = (v0,K0)(v0,K0, a0)(v1,K1) · · · (vi,Ki) in KG projects to ι(H) = v0a0v1 · · · vi which is a
history in G. Moreover, for every k ∈ Ki, ι(H) is a k-history in G. Using κ and ι, one can
easily lift winning strategies from G to KG and, vice versa project winning strategies from
KG to G, to prove the desired equivalence. J

3.2 The simple case of intervals
I Proposition 10. When constraints are intervals, the parameterized reachability game
problem is PTIME-complete.

When constraints are intervals only, the knowledge game is polynomial in the size of the
parameterized arena (see Lemma 8) and it can be computed in polynomial time. Hence
the parameterized reachability game problem is in PTIME. It is moreover complete for this
class, since two-player reachability games are PTIME-hard (by straightforward reduction
from the CIRCUIT-SAT problem). We thus obtain the above complexity result, independently
of whether the arena is deterministic or not.

3.3 General PSPACE upper bound
I Proposition 11. The parameterized reachability game problem is in PSPACE when con-
straints are given as finite unions of intervals or semilinear sets.

Proof sketch. To prove this result, we rely on the knowledge game construction, which has
been proven correct for the existence of winning strategies (see Theorem 9). Let G = (A, t) be
a parameterized reachability game, and v0 be an initial vertex. We show that one can decide
in polynomial space in the size of G whether Eve has a winning strategy from (v0,N>0) in KG .

For each vertex (v,K) ∈ VE of Eve in KG , we define a reachability game KG [v,K], which
is the restriction of KG to vertices (v′,K, a) and (v′,K ′) that are reachable from (v,K) via
vertices with same knowlege set K only. Formally, KG [v,K] is the restriction of KG to the
following sets of vertices, defined inductively:

V 0
E = {(v,K)}
V iA = {(v′,K, a) | v′ 6= t and (v′,K) ∈ V iE and

(
(v′,K), (v′,K, a)

)
∈ ∆G}

V i+1
E = {(v′,K ′) | ∃(v′′,K, a) ∈ V iA s.t.

(
(v′′,K, a), (v′,K ′)

)
∈ ∆G}

Notice that in KG [v,K], all Adam vertices have knowledge set K. Also Eve vertices
(v′,K ′) with knowledge K ′ ( K or with v′ = t have no successors: we refer to them as the
output vertices of KG [v,K]. We write O[v,K] for the set of such vertices.

The game KG [v,K] is polynomial in the size of G. Indeed, there are at most (|Σ|+ 1)|V |
many Eve or Adam vertices with second component exactly K and at most |E||V | many Eve
vertices with second component strictly smaller than K. When constraints are given as finite
unions of intervals, this game can be computed in polynomial time in #endpointsA. For
semilinear sets, KG [v,K] can be computed in polynomial space in the size of the encodings
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of the predicates as finite unions of ultimately periodic sets; in particular, if P is a semilinear
predicate one needs to check whether (P ∩K) ( K (to decide whether one obtains an output
vertex of KG [v,K]). Once constructed, KG [v,K] can be solved in polynomial time in |G|
since this is a standard two-player turn-based reachability game. We use these games in
sub-routines for solving the parameterized reachability game problem.

Using the subgames KG [v,K], we consider the following exponential-size tagged tree T
defined inductively as follows: the root n0 = (v0,N>0) is the initial vertex of KG , and (v′,K ′)
is a child of (v,K) if (v′,K ′) ∈ O[v,K] is an output vertex of KG [v,K]. Our aim is to tag
each node n = (v,K) of T with Win or Lose, to reflect whether Eve has a winning strategy
from (v,K) in KG . We define the following tagging function:

tag((v,K)) =


Win if v = t

Win if Eve has a winning strategy in KG [v,K] from (v,K) to reach
the set {α ∈ O[v,K] | tag(α) = Win}

Lose otherwise.

One can show the correctness of the tagging function: tag((v,K)) = Win if and only if Eve
has a winning strategy in KG from (v,K). Finally, the root of the tree can be tagged in
polynomial space, by a a depth-first search algorithm on T (see Figure 5). The height of
T is polynomially bounded, in #endpointsA in the case of finite unions of intervals, and in
#predA in the case of semilinear predicates. Once the tag of a node has been computed, its
whole subtree can be forgotten. Therefore one can “reuse” polynomial space to repeatedly
solve the games KG [v,K] for different v and K. In the DFS tagging, the size of the stack is
at most the height of tree times the maximal number of successors of a vertex v in G. Finally
polynomial space is sufficient to store the knowledge of one node of the T . J

v0,K0,?

v1,K1,Win v2,K2,Lose v3,K3,?

v5,K5,Lose v6,K6,?

t,K9,Win v10,K10,?
...

v11,K11,?

v7,K7,? v8,K8,?

v4,K4,?

Figure 5 Illustration of the polynomial space DFS tagging algorithm: the Win/Lose tags of green
nodes have already been computed (and their subtrees have been removed); the tags of red nodes
are being computed (hence the label ‘?’); and the blue nodes are waiting to be processed (we also
use label ‘?’). For instance, before tagging (v6, K6), one needs to first compute the tag of (v10, K10)
(which is ongoing), then compute the tag of (v11, K11) (which is waiting).
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3.4 An NP upper bound for deterministic arenas when constraints are
finite unions of intervals

The previous PSPACE upper bound can be improved when the arena is deterministic and
constraints are given by finite unions of intervals.

I Proposition 12. The parameterized reachability game problem is in NP, when constraints
are finite unions of intervals and when restricting to deterministic arenas.

Proof sketch. Pick an arbitrary winning strategy σ for Eve, and consider the (labeled) tree
Tσ it induces: nodes are histories, and the children of a node are the possible next histories
(depending on the number of opponents). This tree is finite because σ is winning, and one
can add to the node label the knowledge Eve has for the corresponding history. This tree
satisfies the following properties: (i) along any path of Tσ, the number of distinct knowledge
sets is at most #endpointsA; and (ii) the knowledge at sibling nodes form a partition of the
knowledge at their parent node. The second property has the following consequence. At each
level of the tree, the knowledge of all nodes form a partition of N>0 using endpoints from
the arena description, so that the number of nodes at each level is bounded by #endpointsA.
Also, if a node has the same knowledge as its parent, it cannot have siblings. This allows to
compress linear parts of the tree, and to tranform an arbitrary winning strategy into one
whose tree is “small”, i.e. polynomial in the size of the arena. J

3.5 Lower bounds
We prove all lower bounds mentioned in Table 1. We start with the PSPACE-hardness when
constraints are finite unions of intervals and arenas are a priori non-deterministic.

I Proposition 13. When constraints are finite unions of intervals, the parameterized reach-
ability game problem is PSPACE-hard.

Proof sketch. The proof is by reduction from QBF-SAT, which is known to be PSPACE-
complete [16]. Let ϕ = ∃x1∀x2∃x3 . . . ∀x2r ·

(
C1 ∧ C2 ∧ . . . ∧ Cm

)
be a quantified Boolean

formula in prenex normal form, where for every 1 ≤ h ≤ m, Ch = `h,1 ∨ `h,2 ∨ `h,3, and for
every 1 ≤ j ≤ 3, `h,j ∈ {xi,¬xi | 1 ≤ i ≤ 2r} are the literals. From ϕ, we construct an arena
Aϕ = 〈V,Σ,∆〉 (see an illustrative example in Figure 6) as follows:

V = {v0, v1, . . . , v2r−1, v2r} ∪ {vx1 , vx̄1 , . . . , vx2r , vx̄2r} ∪ {vC1 , vC2 , . . . , vCm , vCm+1} ∪
{⊥,>}, where we identify v2r with vC1 , and vCm+1 with >.
Σ = {u, c} ∪

⋃
1≤i≤2r{ai, āi}

For every 0 ≤ s ≤ r−1, 1 ≤ i ≤ 2r, 1 ≤ h ≤ m and 1 ≤ j ≤ 3:
1. ∆(v2s, a2s+1,≥ 1) = {vx2s+1} and ∆(v2s, ā2s+1,≥ 1) = {vx̄2s+1}
2. ∆(v2s+1, u,≥ 1) = {vx2s+2 , vx̄2s+2}
3. ∆(vxi

, c, 6= 2i) = {vi} and ∆(vxi
, c,= 2i) = {>}

4. ∆(vx̄i
, c, 6= 2i−1) = {vi} and ∆(vx̄i

, c,= 2i−1) = {>}
5. ∆(vCh

, ai, 6= 2i) = {vCh+1} if `h,j = xi; ∆(vCh
, āi, 6= 2i−1) = {vCh+1} if `h,j = ¬xi

To obtain a complete arena, all unspecified transitions lead to a sink state ⊥.

From v0, a first phase consists in choosing a valuation for the variables: Eve can choose
the truth values of existentially quantified variables in vertices v2s (with actions a2s+1 for
true and ā2s+1 for false), and her opponents resolve the non-determinism of action u (u
stands for universal) to choose the truth values of universally quantified variables in vertices
v2s−1. Due to the constraints on the edges, the knowledge of Eve at vC1 contains for every
variable xi, either 2i or 2i−1 (and not both); where containing 2i (resp. 2i−1) encodes the
fact that xi has been set to false by Eve or her opponents (resp. true).
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v0 v1 v2 v3 vC1 vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a1

ā
1

u

u

a3

ā
3

u

u

c,6=2

c,
6=1

c,6=4

c,
6=3

c, 6=6

c,
6=5

c, 6=8

c,
6=7

c,=2

>

c,=4

>

c,=6

>

c,=8

>

c,=1

>

c,=3

>

c,=5

>

c,=7

>

a1,6=2

ā2,6=3

ā3,6=5

⊥

a2,6=4

a3,6=6

ā4,6=7

⊥

Figure 6 Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 ·(x1∨¬x2∨¬x3)∧(x2∨x3∨¬x4). Knowledge
of Eve at vC1 contains for every variable xi, either 2i or 2i−1 (and not both); containing 2i (resp.
2i−1) encodes that xi has been set to false (resp. true).

From vC1 a second phase starts where one checks whether the generated valuation makes
all clauses in ϕ true. Sequentially, Eve chooses for every clause a literal that makes the clause
true and these choices must be consistent with the first phase. To enforce this, plays with
2i−1 and 2i opponents check the consistency of the assignment for variable xi. For instance,
if action ai (encoding xi set to true) against 2i−1 opponents leads from vCh

to vCh+1 , this
means that vxi was visited, hence that xi was set to true. On the contrary, if vxi was not
visited, hence xi was set to false, then against 2i−1 opponents, action ai will lead to ⊥. The
role of āi is dual; it encodes assigning false to xi, and will be checked with plays against 2i
opponents.

The above reduction ensures the following equivalence: Eve has a winning strategy in the
parameterized game Gϕ = (Aϕ,>) if and only if ϕ is true. J

Note that the reduction can also be done with only three actions, which is the maximal
number of enabled actions from any vertex. The reduction uses unions of intervals (due
to 6= i constraints). Finally the arena is non-deterministic at each vertex corresponding to
universal quantifiers in ϕ. We extend this reduction in two ways to get rid of nondeterminism.
First, instead of QBF-SAT, one can encode 3SAT (which is known to be NP-complete [8])
and obtain a deterministic parameterized game:

I Corollary 14. When constraints are finite unions of intervals, and arenas are deterministic,
the parameterized reachability game problem is NP-hard.

Second, increasing the expressive power of predicates can encode universal quantifiers
without nondeterminism:

I Proposition 15. When constraints are semilinear sets and arenas are deterministic, the
parameterized reachability game problem is PSPACE-hard.

Proof sketch. We slightly modify the construction of the proof of Proposition 13 as shown
on Figure 7. For every 1 ≤ i ≤ 2r, pi is the i-th prime number, and Pi the semilinear
predicate “is a multiple of pi”.

Intuitively, at the end of the first phase, the truth value of variable xi is witnessed by the
fact that the set of possible number of opponents is a multiple of pi if xi is set to true (that
is Pi is satisfied), and it is not a multiple of pi if xi is set to false (that is, ¬Pi is satisfied).
The rest of the proof is identical to that of Proposition 13. J
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v0 v1 v2 v3 vC1 vC2 >

vx1

vx̄1

vx2

vx̄2

vx3

vx̄3

vx4

vx̄4

a1
,P

1

ā
1 ,¬
P
1

u,
P2

u,¬
P
2

a3
,P

3

ā
3 ,¬
P
3

u,
P4

u,¬
P
4

a1,¬P1

>

ā1,P1

>

a3,¬P3

>

ā3,P3

>

a1,P1

ā2,¬P2

ā3,¬P3

⊥

a2,P2

a3,P3

ā4,¬P4

⊥

Figure 7 Reduction for formula ϕ = ∃x1∀x2∃x3∀x4 · (x1∨¬x2∨¬x3)∧ (x2∨x3∨¬x4). Predicate
Pi is “divisible by i-th prime number”.

4 Discussion: Beyond the number of players

Our model of parameterized game, with constraints on the number of opponents for Eve, is
actually a simplification of a general concurrent game model, where the number of players is a
parameter. This general model, motivated in introduction, is an extension of the multiplayer
concurrent games of [2], where tuples of actions are replaced with languages.

I Definition 16. A language-based parameterized arena is a tuple AL = 〈V,Σ,∆L〉 where
V is a finite set of vertices;
Σ is a finite set of actions;
∆L : V × Σ≥2 → 2V is the transition function.

The fact that Eve has at least one opponent explains the term Σ≥2 in the transition function.
We assume that for every (v, v′) ∈ V 2, ∇L(v, v′) def= {w ∈ Σ≥2 | v′ ∈ ∆L(v, w)} is regular.
Figure 1 in introduction provides an example of a language-based parameterized arena.

The game is then played as follows, when k+1 is the number of players, called Eve, Adam1,
. . . , Adamk: from vertex v, each of the players select simultaneously and independently an
action in Σ; concatenating all the letters (Eve first, and then all Adams’ actions), it forms a
word w; the next vertex of the game is then one of the vertices v′ in ∆L(v, w); the game then
resumes from vertex v′. Strategies for Eve, and outcomes can be defined similarly to that of
parameterized arenas in Section 2. The language-based parameterized game problem is then
to decide whether Eve has a strategy that is winning against any number of opponents:

Language-based parameterized reachability game problem
Input: A language-based parameterized reachability game G = (A, t) and a vertex v.
Question: Does Eve have a winning strategy from v in G?

Language-based parameterized arenas generalize parameterized arenas: one can for
instance replace rules of the form v′ ∈ ∆(v, a, k) in a parameterized arena by v′ ∈ ∆L(v, aΣk)
to construct a language-based parameterized arena, preserving the winning region for Eve.
For our problem of existence of a winning strategy for Eve, the reduction in the other
direction also holds:

I Proposition 17. The language-based parameterized reachability game problem reduces in
polynomial time to the parameterized reachability game (with semilinear predicates).
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Proof sketch. From a language-based parameterized arena, one can obtain an equivalent one
(i.e. preserving the winning region for Eve) by first taking a left quotient of languages by any
possible letter, and then projecting the obtained languages to lengths of words. Describing
the reduction is simpler with the ∇ functions (and equivalent to using the ∆ ones). We
set ∇(v, a, v′) = {|u| | u ∈ a−1∇L(v, v′)}, where a−1∇L(v, v′) is the left quotient by a of
∇L(v, v′). Since ∇L(v, v′) is regular, the set ∇(v, a, v′) is semilinear [15]. Moreover, one can
compute in polynomial time a representation for ∇(v, a, v′) as a union of polynomially many
ultimately periodic sets, with a polynomial encoding [7, 14]. Clearly enough this polynomial
time reduction preserves the winning region for Eve. J

Thanks to Proposition 17, and using Propositions 11 and 15 we obtain the precise
complexity of the language-based parameterized reachability game problem:

I Theorem 18. The language-based parameterized reachability game problem is PSPACE-
complete.

5 Conclusion

In this paper, we introduce parameterized concurrent reachability games as a natural extension
of the traditional concurrent games, where the number of players is unknown a priori. We
consider different variants of a parameterized arena where the constraints on the number of
opponents can be represented by intervals, finite unions of intervals, or semilinear sets. We
have shown the existence of a uniform winning strategy for the first player to be PSPACE-
complete in the general case, NP-complete when the arena is deterministic and the constraints
are unions of intervals, and PTIME-complete when restricting to intervals only.

In this paper, we focused on reachability objectives. However the knowledge game
approach also applies to more general objectives, like Büchi or parity, and even for quantitative
objectives such as mean-payoff objectives. There is indeed a tight connection between
strategies in the original game and strategies in the knowledge game, making the knowledge
game abstraction correct for a variety of objectives. We plan to investigate complexity issues
for objectives beyond reachability.

In future work, we also wish to investigate further this parameterized games model. In
particular, it will be interesting to consider standard game theory concepts such as Nash
equilibria. Also, to solve coordination problems, we will look for algorithms to synthesize
strategies for all the players to achieve a global common goal. The figure below presents a
simple coordination game, where we assume each player has a distinct identifier from 1 to
some n ∈ N, and their global objective is to reach the target vertex v1.

v0 v1v2
a+bΣ≥2\(a+b+a∗ba+)

a∗ba+

If the players do not know beforehand the total number of players, but know their identifiers,
a winning strategy profile is as follows: player i plays action a for the first i−1 steps, then
plays b, and finally plays a for the remaining steps. Doing so, each player will in turn play
action b, and when the last player does, the play reaches v1. Synthesizing automatically
winning profiles in such games is one of our long-term goals.
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