
Strategy-Stealing Is Non-Constructive
Greg Bodwin
Georgia Tech, Atlanta, GA, USA

Ofer Grossman
MIT, Cambridge, MA, USA

Abstract
In many combinatorial games, one can prove that the first player wins under best play using a
simple but non-constructive argument called strategy-stealing. This work is about the complexity
behind these proofs: how hard is it to actually find a winning move in a game, when you know
by strategy-stealing that one exists? We prove that this problem is PSPACE-Complete already for
Minimum Poset Games and Symmetric Maker-Maker Games, which are simple classes of games
that capture two of the main types of strategy-stealing arguments in the current literature.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases PSPACE-hard, Hex, Combinatorial Game Theory

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.21

Funding Greg Bodwin: Supported in part by NSF awards CCF-1717349, DMS-183932 and CCF-
1909756.
Ofer Grossman: Supported by the Fannie and John Hertz Foundation fellowship, an NSF GRFP
award, NSF CNS-1413920, DARPA/NJIT 491512803, Sloan Foundation 996698, and MIT/IBM
W1771646. This work was done in part at the Simons Institute for the Theory of Computing.

1 Introduction

Theoretical Computer Science includes a rich theory of the complexity class TFNP, defined
as the set of NP search problems where a solution always exists. The interesting subclasses
of TFNP are based on simple yet non-constructive existence proofs for these solutions. For
example: given a circuit

C : {0, 1}n → {0, 1}n−1,

one sees immediately by the Pigeonhole Principle that there exist distinct inputs x1, x2 with
matching output C(x1) = C(x2). But can one find such a pair of inputs computationally?
This problem is complete for a complexity class PWPP ⊆ TFNP, and a similar story holds
for various other problems with other non-constructive proofs of solution existence.

A major motivation for TFNP as an object of study is that it gives satisfying formalizations
of the natural question of whether a type of proof is constructive (“is the Pigeonhole Principle
constructive?” roughly corresponds to “is P = PWPP?”). But really, some non-constructive
proof methods in mathematics do not correspond to NP search problems at all. Thus,
we argue, a valuable direction for research in the spirit of TFNP is to look outside TFNP
itself to analyze the constructiveness of proofs in other complexity classes. This paper is
about one such instance: strategy-stealing proofs, which are fundamental existence results in
combinatorial game theory that naturally lie in PSPACE.

© Greg Bodwin and Ofer Grossman;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITCS.2020.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Strategy-Stealing Is Non-Constructive

Figure 1 A Hex board with a winning configuration for Blue [1].

1.1 Combinatorial Games and Strategy-Stealing
A combinatorial game is a finite two-player game of perfect information. The players take
turns choosing moves that manipulate a game board by some predefined rules, eventually
reaching one out of a set of terminal states which determine the outcome of the game.
Examples of combinatorial games include chess, go, tic-tac-toe, and some others that we will
describe in detail shortly.

In general, deciding which player has a winning strategy in a combinatorial game is
computationally hard. However, certain classes of games admit slick proofs that a certain
player wins under best play (and thus determining who has a winning strategy in these
games is not computationally hard). A famous example is the game Hex, in which two
players named Red and Blue alternately color in hexagons in a symmetric board (pictured in
Figure 1); Red wins if there is a continuous path of red hexagons connecting the top and
bottom, and Blue wins if there is a continuous path of blue hexagons connecting the left and
right. The Hex Theorem states that exactly one of the two players will achieve a winning
configuration once all hexagons have been colored, so there are no draws. It was observed by
Nash [15] that:

I Theorem 1 ([15]). The first player has a winning strategy in the game of Hex.

Proof Sketch. Suppose for contradiction that the second player has a winning strategy. The
first player can then make an arbitrary first move and then “steal” the winning strategy of
the second player. That is, he will now pretend he is the second player, and play according
to the second player’s winning strategy. This will lead to a win for the first player anyways
since their arbitrary initial move can only help them achieve a winning configuration. J

This has been dubbed the first strategy-stealing proof, referring to a now-broad collection
of proofs that assume for contradiction that the second player can win, then repurpose the
winning strategy to create a win for the first player. Another illustrative example is the game
Chomp. Here, the game board is an m× n chocolate bar in which the top right square has
been poisoned. The players alternately choose an uneaten square, and then eat that square
and all remaining squares down and to the left. A player loses if they eat the poisoned square.

The following strategy stealing argument applies to Chomp:

I Theorem 2 (Folklore). The first player has a winning strategy in the game of Chomp.

Proof Sketch. Consider the possible first move where the first player chomps off only the
bottom-left-most square. There are two cases. Maybe the second player does not have a
winning response, in which case the game is a win for the first player. Alternately, suppose
the second player has a winning response by chomping off an a× b block. Since this block



G. Bodwin and O. Grossman 21:3

Figure 2 A valid two-move sequence from the starting position in 5× 3 Chomp.

necessarily contains the bottom-left-most square, the board state is the same as if an a× b
block had been chomped off with the first move of the game. It follows that this a× b chomp,
instead, would have been a winning first move for the first player. J

Both of the proofs above seem non-constructive, in the sense that they do not yield an
actual winning first move. Our central research question is whether this is inherent:

Are strategy-stealing proofs constructive?

To tackle this problem, we consider games that admit strategy stealing proofs, and we
investigate the computational hardness of finding winning moves in such games. With this
view, one can see that strategy-stealing proofs can essentially be arbitrarily non-constructive:
for any combinatorial game X with two players P1 and P2, we can define a game X ′ in
which the first player can decide whether he wishes to play as P1 or P2 in game X.1 Then
finding a winning move for P1 is the same as determining the winner of X, which in general
is computationally hard. (We discuss this point in a little more detail in the conclusion.)

Thus, a more interesting direction is not to proceed in the maximally general case, but
rather to investigate whether hardness persists in special classes of games to which strategy-
stealing applies. In particular, we will study games which (to our eye) are the minimal
natural classes captured by the two strategy-stealing arguments given above.

1.2 Our Results
To capture “Hex-type strategy stealing,” we consider the well-studied class of symmetric
Maker-Maker games:

I Definition 3 (Symmetric Maker-Maker Game2). In a Maker-Maker Game, two players
alternately claim elements of a finite universe U . There are families of winning sets
W1,W2 ⊆ P (U); the first player wins as soon as they claim all the elements of any winning
set S ∈W1, the second player wins as soon as they claim all the elements of any winning set
S ∈W2, and the game is a draw if all of U is claimed without either player winning. The game
is symmetric if W1,W2 are isomorphic, i.e., there is a permutation π of U and a bijection
φ : W1 →W2 such that for all S1 = {s1, . . . , sk} ∈W1, we have φ(S1) = {π(s1), . . . , π(sk)}.

1 Notice the strategy stealing argument that the first player has a winning strategy in the game X ′:
suppose otherwise. Then we know if the first player chooses to play as P1, the second player has a
winning strategy, so P2 has a winning strategy in X. But then the first player can choose to play as P2
in X ′ and use the winning strategy for P2 in X.

2 This is a generalization of the usual definition: in the literature, a “Maker-Maker game” often implies
W1 = W2.

ITCS 2020



21:4 Strategy-Stealing Is Non-Constructive

Hex is a symmetric Maker-Maker (SMM) game, and indeed the proof of Theorem 1
generalizes immediately to imply that any SMM game is not a win for the second player.
There are many other examples of SMM games, which will be surveyed later. In general an
SMM game can be a draw under best play, but some games like Hex are draw-free and so a
first-player win is the only remaining possibility. We associate a computational problem to
these games as follows:

I Definition 4 (SMMMove). The problem SMMMove is defined as follows:
Input: Circuits C1, C2, both with input wires labelled x1, . . . , xn. C1 and C2 are the same
up to relabelling of the wires. Call X = {x1, . . . , xn}. The Maker-Maker game associated
with this input is where W1 contains any set of inputs Y ⊆ X for which C1 evaluates to
true when the inputs in Y are set to true and X \ Y to false. W2 is defined similarly with
respect to C2.
Output: any optimal first move for the first player in the associated game.

We prove:

I Theorem 5. SMMMove is PSPACE-hard,3 even under the additional promise that the
input defines a draw-free game with W1 = W2.

Thus, Hex-type strategy stealing is a formally non-constructive style of proof, and
additional draw-freeness results like the Hex Theorem do not generally help. To capture
“Chomp-type strategy stealing,” we consider:

I Definition 6 (Minimum Poset Games). In a poset game, two players alternately choose
remaining elements of a poset P , removing the chosen element and all lesser elements at
each step. A player loses if it is their turn but the poset is empty. The game is minimum
if P has a minimum element (i.e., m ∈ P that is comparable to and less than every other
element in P ).

(For both these types of games, we refer to [4, 11] for some of their history and prior
work.) Chomp is a minimum poset game, where the associated poset holds the squares of
the chocolate bar, with the poisoned square removed, and squares are compared by the usual
poset relation on Z2 (note that the bottom-left-most square is a minimum element). Theorem
2 generalizes to show that any minimum poset game is a win for the first player. Other
examples of poset games, which may or may not have a minimum, include Nim, Hackendot,
certain cases of Hackenbush, and many others. Computationally, we have:

I Definition 7 (MPMove). The problem MPMove is defined as follows:
Input: a poset P (with elements and relations between them enumerated explicitly) with a
minimum element.
Output: any winning move for the first player in the poset game defined by P .

I Theorem 8. MPMove is PSPACE-hard.

From a technical standpoint, both Theorems 5 and 8 are proved roughly as follows. We
start with a theorem in prior work stating that it is PSPACE-hard to decide the winner in a
related class of games: Hex from an arbitrary starting position [16], or a certain class of poset

3 A straightforward algorithm solves SMMMove in polynomial space, so in some sense it is complete
(ignoring subtleties in the terminology), but we will not discuss these easy upper bounds in this paper.
A similar comment holds for MPMove below.



G. Bodwin and O. Grossman 21:5

games [9]. We then apply transformations that introduce the necessary strategy-stealing
properties to these games while arguing that the winner in the original game is implicitly
encoded by the first player’s winning move(s). In the case of minimum poset games, this is an
easy extension of the theorem in [9]; we include this mostly to illustrate our conceptual goal
of computationally formalizing non-constructiveness. For SMM games, the transformation is
nontrivial and requires significant new ideas. Thus, the SMM result constitutes our main
technical contribution.

1.3 Related Work
As mentioned, this paper is conceptually related to the study of the complexity class TFNP,
defined in [14] and including notable subclasses PPAD,PPA,CLS,PPP,PWPP,PLS, among
others. These classes all hold search problems in NP that admit proofs that a solution always
exists. Our work is related in that our goal is to prove hardness of searching for a winning
moves in games, when there are strategy-stealing proofs that one always exists. The key
difference is that our problems are not in NP; there is not generally a short certificate that
an optimal move is indeed the first one in some optimal strategy.

In [5], the author proves that it is PSPACE-hard to decide whether an SMM game is a
win for the first player or a draw. Our work differs in that (1) to minimally generalize Hex
we restrict attention to draw-free games, in which this decision problem is trivial, and (2)
we are interested in constructively finding a winning move rather than deciding existence.
Similarly related is [16], in which it is proved to be PSPACE-hard to decide whether Hex
from a partially-filled board is a win for the first or second player. This can be viewed as a
Maker-Maker game, but since the board is partially filled, it is not generally a symmetric
Maker-Maker game and thus strategy-stealing does not apply.

There is a rich and developed theory of Maker-Maker games, poset games, and vari-
ants, most of which focuses on understanding these games under best play (rather than
computational aspects of playing the games). See books [4, 11] for more information.

2 Non-Constructiveness of Strategy-Stealing

We will now prove our main results.

2.1 Symmetric Maker-Maker Games
Our first topic will be Symmetric Maker-Maker games, and eventually a proof of Theorem 5.

Examples

We first survey some famous examples of SMM games in the literature.

Hex is an SMM game, as discussed above, which is draw-free and has non-equal winning
sets.
In the (n, k)-Clique game, the game board is a complete graph on n nodes and the
players take turns claiming its edges. The first player to claim all edges in a k-clique
wins. This is a symmetric Maker-Maker game, even with identical winning sets W1 = W2
(i.e., the underlying permutation is the identity). An interesting property of this game
is that, for all k, if n is sufficiently large then the game is draw-free. This follows from
Ramsey’s Theorem, which states that any 2-coloring of the edges of the complete graph
has a monochromatic clique of size Ω(logn). Hence, for large enough n, strategy-stealing
implies specifically that the first player has a winning strategy. For work on the Clique
game and some natural variants, see e.g., [2, 7, 6, 3, 12].

ITCS 2020



21:6 Strategy-Stealing Is Non-Constructive

Tic-Tac-Toe is an SMM game, where the winning sets are the 8 possible “lines” in the
3× 3 grid. This game is not draw-free.
In (k, d) Tic-Tac-Toe, the game board is the elements of the kd hypercube ({1, 2, . . . , k}d),
and the winning sets W1 = W2 are the k-element subsets which are colinear in the
hypercube. The Hales-Jewett Theorem [10] implies that for every k, if d is sufficiently
large then the game is draw-free. For work on this game, see e.g., [4, 8].
In the (n, k) Arithmetic Progression game, the universe is the set of integers {1, . . . , n},
and the winning sets are any k elements that form an arithmetic progression (i.e., the
difference between successive integers is equal). Van-der-Waerden’s Theorem [17] implies
that for every k, if n is sufficiently large then the game is draw-free. The Arithmetic
Progression game has been studied e.g., in [13, 2, 12].

All of these games are SMM and hence admit strategy-stealing proofs that the second
player does not win under best play. The problem of finding an optimal first move for the
first player can thus be captured as a special case of SMMMove. All of these games are
draw-free in the appropriate range of parameters (except standard Tic-Tac-Toe), and thus
here they even fit the promise that the input to SMMMove defines a draw-free game. Of
course, these special cases need not be as hard as SMMMove: for example, it is trivial
to find a winning first move in the (n, k)-Clique game, since by symmetry of the game
board all first moves are equivalent. (Perhaps a more interesting version of the Clique game
computational problem is to determine the first player’s optimal move on their second turn,
since the game necessarily still retains the symmetry needed for a strategy-stealing argument
after each player claims only one edge.)

Hardness for SMMMove

We now show computational hardness for SMMMove. We first outline the proof ideas, and
then provide a full proof. Our starting point is the following result from prior work:

I Definition 9 (DecisionHex). The problem DecisionHex is defined as follows:
Input: a partially-filled Hex board Q
Output: does Red have a winning strategy in the Hex game starting from Q (assuming it
is currently Red’s turn to play)?

I Theorem 10 ([16]). DecisionHex is PSPACE-complete.

Our goal is to reduce DecisionHex to SMMMove. First, let us remark on why Theorem
10 does not directly give hardness for SMMMove, given that Hex is an SMM game. The
result that DecisionHex is hard means that there exist families of positions from which
deciding the winner is hard. However, these positions are not generally symmetric, so the
game starting from these positions is not SMM. Additionally, a talented player playing
from the starting position could still potentially be able to win the game while avoiding
these hard settings of the game board, thus winning without ever really encountering a
PSPACE-complete problem.

So, we are given a partially filled (possibly asymmetric) boardQ on input to DecisionHex,
representing a Hex game between Red and Blue where it is Red’s turn to move, and our goal
is to create a new SMM draw-free game between players First and Second that captures the
structure of Q in some useful way. To build intuition, let us start with a first (incorrect)
attempt at such a game G. Suppose we add two new elements to the universe called r and b.
The idea will be that claiming r is choosing to play as Red in the Hex game defined by Q,
and claiming b is choosing to playing as Blue. More formally, the winning sets W1 = W2 of
the new SMM game would be:



G. Bodwin and O. Grossman 21:7

Figure 3 The universe used in our definition of an SMM game G.

r and any set of hexagons that complete a win for Red in Q,
b and any set of hexagons that complete a win for Blue in Q, and
{r, b}.

If SMMMove(G) = r, this solves Q: the second player must claim b with their next move
to block the winning set {r, b}, and then the game reduces to Q itself where First plays as
Red and Second plays as Blue. Thus, if r is a winning move for First, then Q is a win for
Red. Unfortunately, the other cases of the proof break down. For example: suppose the
position on the board Q is such that whoever has the next move wins (so Q is a win for Red).
Then it is winning for First to claim either r or b with their first move, meaning the output
of SMMMove(G) is not very informative. Our fix is, intuitively, to amplify the game to
avoid the possibility that the game winner depends on the turn order.

Proof of Theorem 5. We will prove that SMMMove is hard by reducing DecisionHex to
it. Let Q an instance of DecisionHex. We will construct a Symmetric Maker-Maker game
G which is draw-free and W1 = W2, such that finding a winning move in G allows us to find
who has a winning strategy in Q.

The universe of our new game G will contain two identical copies Q1, Q2 of the input to
DecisionHex, as well as new elements r, b like before. The winning sets W1 = W2 in G are
(see Figure 3):

r and any set of hexagons that completes a win for Red in either Q1 or Q2,
b and any set of hexagons that completes a win for Blue in both Q1 and Q2, and
{r, b}.

It is immediate that G is an SMM game, since the winning sets are identical. Additionally,
we have:

I Lemma 11. G is draw-free.

ITCS 2020



21:8 Strategy-Stealing Is Non-Constructive

Proof. Let S be any subset of the universe in G. We will show that either S or its complement
SC contains a winning set. First, if r, b ∈ S then {r, b} ⊆ S, or if r, b /∈ S then {r, b} ⊆ SC .
So the nontrivial case is when S contains exactly one of r, b; let us assume without loss of
generality that r ∈ S, b /∈ S (else switch the roles of S and SC). For either board Qi, by
the Hex Theorem and the fact that the union of Si, S

C
i covers the board, exactly one of the

following two statements hold:
1. The elements of S on the board Qi (call this Si), combined with the elements on Qi

which are initially marked red, form a winning configuration for red on Qi.
2. The elements of SC on the board Qi (call this set SC

i ), combined with the elements on
Qi which are initially marked blue, form a winning configuration for blue on Qi.

Therefore, we conclude that in each board Qi, either the elements of S complete a win for
Red (we call Qi a “red” board in this case), or the elements of SC complete a win for Blue
(we call Qi a “blue” board in this case). If at least one of Q1, Q2 is red, then S contains r
and a Red winning set. If both Q1, Q2 are blue, then SC contains b and a Blue winning set
on each board. In either case the lemma holds. J

Our goal is now to show that the winning move(s) for First in G completely determine
the winner of Q. We consider two cases:

I Lemma 12. If Blue has a winning strategy in Q, then the unique winning move for First
in G is to claim b.

Proof. We first show that claiming b is a winning move for First. In response, Second is
forced to claim r to block the winning set {r, b}. First then claims an arbitrary hexagon, and
then each time Second claims a hexagon on Q1 or Q2, First claims a hexagon on the same
board to execute a winning strategy for Blue. Thus, First will have b and also a winning set
for Blue on both boards, meaning First wins in G. (Note that Second will be unable to ever
obtain a red winning set on either board, since it is not possible for both sides to obtain a
winning configuration on any individual Hex board.)

We then show that, if First does not claim b with their first move, then it is a winning
response for Second to claim b. Here we consider two cases. If First claims r, then after
Second claims b, in each subsequent turn, each time First claims a hexagon on Q1 or Q2,
Second can claim a hexagon on the same board to execute a winning strategy for Blue on
that board, thus obtaining a winning set for Blue on both boards and hence winning in G. In
the other case, if First claims a hexagon in (say) Q1 with their first move, then after Second
claims b, First must immediately claim r to block the winning set {r, b}. Second then claims
a hexagon on Q1 and from here this case reduces to the first one. J

I Lemma 13. If Red has a winning strategy in Q, then it is not a winning move for First
in G to claim b.

Proof. Suppose that First claims b. The winning response for Second is to claim r. Without
loss of generality, First then claims a hexagon in Q1. Second then decides to permanently
ignore Q1 and focus entirely on Q2, claiming exclusively hexagons in Q2 for the rest of the
game. Since Second is the first to move on Q2, they can execute a winning strategy for
Red on Q2. Thus Second will eventually claim r and a winning set for Red on Q2, meaning
that Second wins in G. (Note, again, that First cannot possibly obtain a winning set in the
meantime, since they cannot possibly hold a winning set for Blue on Q2.) J



G. Bodwin and O. Grossman 21:9

We now put the pieces together: after constructing the game G as described above, from
Lemmas 12 and 13 we have

SMMMove(G) = b if and only if ¬DecisionHex(Q).

Since DecisionHex is PSPACE-complete, it follows that SMMMove is PSPACE-hard. J

2.2 Minimum Poset Games
Next, we prove Theorem 8. Our starting point is:

I Definition 14 (DecisionPoset). The problem DecisionPoset is defined as follows:
Input: a poset P , described by explicitly listing its elements and the relations between
them.
Output: is the poset game (see Definition 6) associated to P a win for the first player
under best play?

I Theorem 15 ([9]). DecisionPoset is PSPACE-complete.

We then argue:

Proof of Theorem 8. Given a poset game defined by P , generate a new poset P ′ by adding
a new element m, defined to be less than every other element in P . We now argue that
MPMove(P ′) = m if and only if the original poset game defined by P was a win for the
second player:

Suppose P is a win for the first player. If in P ′ the first player claims m with their
first move, then the game becomes equivalent to P with the turn order reversed. Thus
claiming m is a losing move for the first player, and so MPMove(P ′) 6= m.
Suppose P is a win for the second player. If in P ′ the first player claims m with their
first move, then again the game is equivalent to P with the turn order reversed, so the
first player has a winning strategy. This means we can have MPMove(P ′) = m, but
since MPMove might return any winning move, we also need to rule out the possibility
that any other move is winning. For this, we observe that any other first move in P ′
necessarily removes m and at least one other element from P ′, thus giving a position
that can possibly be obtained after one move in P . Since P is a win for the second
player, any such position must be losing for the player who creates it, and thus we have
MPMove(P ′) /∈ P ′ \ {m}, so MPMove(P ′) = m.

This completes the reduction from DecisionPoset to MPMove, and thus MPMove is
PSPACE-hard. J

3 Open Questions

We conclude by listing some conceptual open questions left by this work.

TFPSPACE

Can we similarly analyze the computational properties of other interesting non-constructive
proof techniques that lie outside of NP? Is there a satisfying theory of TFPSPACE, in analogy
with TFNP?

ITCS 2020



21:10 Strategy-Stealing Is Non-Constructive

Figure 4 Due to the symmetry in the game tree of Chomp illustrated here, the value of the game
tree can be expressed as X or ¬X, where X is the game tree after a 1× 1 square has been chomped.

Bounded Computational Power

The existence of a winning strategy in a game does not necessarily shed much light on how
computationally bounded players would play the game. To illustrate, consider the following
game: player 1 declares a circuit C of their choice. Then, player 2 wins if they can declare
an input x such that C(x) = 1. Then, player 1 then wins if they can declare an input x with
C(x) = 1. If both players fail to declare such an input x, then player 2 wins. Here, there is
clearly a winning strategy for the second player: if there exists an x such that C(x) = 1, then
declare that x and win immediately; if there is no such x then player 2 also wins. However,
if the players are represented by Turing machines that can only run for a polynomial amount
of time, then the game is (probably) a win for player 1: for example, player 1 can pick a
one way function f , compute it on some random x′ of his choice to get output y, and then
have the circuit C output 1 on all x such that f(x) = y. Under standard cryptography
assumptions, player 2 will be unable to find such an x, and then player 1 will win in the next
turn by declaring the x used to create the circuit.

Interestingly, for draw-free SMM games, such situations will not arise: even for com-
putationally bounded players, it is preferable to play first, since playing an extra move
is never disadvantageous. In contrast, this is not clearly true for poset games, where the
wrong first move can possibly throw the game. Hence, this might be an interesting avenue
to separate the computational properties of these two strategy-stealing arguments (since
they are both PSPACE-hard under “best play,” i.e., unbounded computational power). More
generally, it would be interesting to further understand and formalize the effects of bounded
computational power on various existence proofs for winning strategies in combinatorial
game theory.

Generalized Strategy-Stealing

Many strategy-stealing arguments can be viewed as a reduction of the game tree to a
tautology. To illustrate, the game tree of Chomp may be phrased as follows. Let X be the
subgame tree from the starting chocolate bar with the bottom-left-most square removed.
The proof of Theorem 2 essentially observes that the Chomp game tree is equal to X or ¬X,
which is true as a formula (meaning a win for the first player) regardless of the value of X
(see Figure 4).
Naturally, a reduction of the game tree to any tautology implies a first-player win, including
more complicated tautologies in which multiple variables are assigned to multiple subgames.
We might call this type of argument generalized strategy-stealing, as it extends the usual proofs



G. Bodwin and O. Grossman 21:11

in the literature that use only X or ¬X. For any given tautology it is easy enough to invent an
artificial game that admits a generalized strategy-stealing proof via that tautology. However,
it would be interesting to find a “natural” game that admits a generalized strategy-stealing
proof, using a tautology formally distinct from X or ¬X.

Hardness for Specific Games

While we have proved hardness for finding winning moves in game classes that include Hex
and Chomp, our results do not imply hardness for Hex and Chomp specifically. In particular,
it would be interesting to determine whether or not the following problem is in FP: given
game board dimensions for Hex or Chomp (or basically any other game mentioned in this
paper), written in unary, output a winning move for the first player. This problem is in
PSPACE, but it will not be readily possible to prove it PSPACE-hard for the following reason:
it is known that no unary language can be NP-complete unless P = NP; thus, a unary
language complete for PSPACE would imply that P = NP or NP 6= PSPACE, which is not
known and would constitute a breakthrough in complexity theory. Thus it is unclear what
hardness notion should be used to approach this question.

Other Notions of Constructiveness

We have proved that it is generally hard to find a winning move in a game, even when
strategy-stealing arguments apply. Finding a good first move is one natural formalization of
“constructiveness” in PSPACE, but there are others. For example, here is an open question that
we have not addressed: for (say) the game Hex, does there necessarily exist a polynomial-size
circuit that plays the game optimally, even if it is computationally hard to find the circuit?

References
1 Wining situation on a Hex Board. https://en.wikipedia.org/wiki/Hex_(board_game)#/

media/File:Hex-board-11x11-(2).jpg.
2 József Beck. Van der Waerden and Ramsey type games. Combinatorica, 1(2):103–116, 1981.
3 József Beck. Positional games and the second moment method. Combinatorica, 22(2):169–216,

2002.
4 József Beck. Combinatorial Games: Tic-Tac-Toe Theory, volume 114. Cambridge University

Press, 2008.
5 Jesper Makholm Byskov. Maker-maker and maker-breaker games are PSPACE-complete.

BRICS Report Series, 11(14), 2004.
6 Paul Erdös and John L Selfridge. On a combinatorial game. Journal of Combinatorial Theory,

Series A, 14(3):298–301, 1973.
7 Heidi Gebauer. On the clique-game. European Journal of Combinatorics, 33(1):8–19, 2012.
8 Solomon W Golomb and Alfred W Hales. Hypercube tic-tac-toe. More Games of No Chance,

42:167–180, 2002.
9 Daniel Grier. Deciding the winner of an arbitrary finite poset game is PSPACE-Complete. In

International Colloquium on Automata, Languages, and Programming, pages 497–503. Springer,
2013.

10 Alfred W Hales and Robert I Jewett. Regularity and positional games. In Classic Papers in
Combinatorics, pages 320–327. Springer, 2009.

11 Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Positional Games.
Springer, 2014.

12 Christopher Kusch. Problems in Positional Games and Extremal Combinatorics. PhD thesis,
FU Berlin, 2017.

ITCS 2020

https://en.wikipedia.org/wiki/Hex_(board_game)#/media/File:Hex-board-11x11-(2).jpg
https://en.wikipedia.org/wiki/Hex_(board_game)#/media/File:Hex-board-11x11-(2).jpg


21:12 Strategy-Stealing Is Non-Constructive

13 Christopher Kusch, Juanjo Rué, Christoph Spiegel, and Tibor Szabó. Random strategies
are nearly optimal for generalized Van der Waerden games. Electronic Notes in Discrete
Mathematics, 61:789–795, 2017.

14 Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

15 John F Nash. Some games and machines for playing them, 1952.
16 Stefan Reisch. Hex ist PSPACE-Vollständig. Acta Informatica, 15(2):167–191, 1981.
17 Bartel van der Waerden. Beweis einer baudetschen vermutung. Nieuw Arch. Wisk., 19:212–216,

1927.


	Introduction
	Combinatorial Games and Strategy-Stealing
	Our Results
	Related Work

	Non-Constructiveness of Strategy-Stealing
	Symmetric Maker-Maker Games
	Minimum Poset Games

	Open Questions

