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Abstract
A probability distribution over the Boolean cube is monotone if flipping the value of a coordinate
from zero to one can only increase the probability of an element. Given samples of an unknown
monotone distribution over the Boolean cube, we give (to our knowledge) the first algorithm that
learns an approximation of the distribution in statistical distance using a number of samples that is
sublinear in the domain.

To do this, we develop a structural lemma describing monotone probability distributions. The
structural lemma has further implications to the sample complexity of basic testing tasks for analyzing
monotone probability distributions over the Boolean cube: We use it to give nontrivial upper bounds
on the tasks of estimating the distance of a monotone distribution to uniform and of estimating the
support size of a monotone distribution. In the setting of monotone probability distributions over
the Boolean cube, our algorithms are the first to have sample complexity lower than known lower
bounds for the same testing tasks on arbitrary (not necessarily monotone) probability distributions.

One further consequence of our learning algorithm is an improved sample complexity for the
task of testing whether a distribution on the Boolean cube is monotone.
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1 Introduction

1.1 Learning Monotone Distributions
Data generated from probability distributions is ubiquitous, and algorithms for understanding
such data are of fundamental importance. In particular, a fundamental task is to learn
an approximation to the probability distribution underlying the data. For probability
distributions over huge discrete domains, the sample complexity and run-time bounds for the
learning task can be prohibitive. In particular, learning an arbitrary probability distribution
on a universe of Nuniverse elements up to sufficiently small constant total variation distance
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28:2 Learning Monotone Probability Distributions over the Boolean Cube

requires Ω(Nuniverse) samples. However, when the probability distribution is known to
belong to a more structured class of distributions, much better results are possible (cf.
[16, 19, 22, 21, 20, 24, 13, 12, 6, 10, 25, 23, 15, 28]) – for example, learning an unknown
Poisson binomial distribution up to variation distance ε can be achieved with only Õ(1/ε3)
samples and Õ(log(Nuniverse)/ε3) run-time [13].

A fundamental class of probability distributions is the class of multidimensional monotone
probability distributions, which broadly satisfy the following properties:

The elements of the probability distribution have n different features.
For every element, an increase in the value of one of the features can only increase its
probability.

This basic class of distributions is of great interest because many commonly studied dis-
tributions are either monotone or can be approximated by a combination of monotone
distributions. Furthermore, often the tools developed for monotone distributions are useful
for other classes of distributions: for example, in the one dimensional setting, [12] use tools
developed for testing monotone distributions in order to learn k-modal distributions. In [8],
tools developed for testing properties of monotone distributions by [4] are used to develop
testers for many other classes of distributions.

For the case of only one feature, or equivalently for monotone probability distributions
over the totally ordered set [k], a sample-efficient algorithm is known for learning the unknown
distribution up total variation distance ε with O(log(k)/ε3) samples [6, 12]. In [1] it was also
shown that an unknown probability distribution over [k]n can be learned up to χ2 distance
ε2 with O((n log k/ε2)n/ε2) samples (note that for constant ε, this sample complexity is
non-trivial only when k is sufficiently large). Overall, the cases considered in the literature
specialize on the regime when all the dimensions have a wide range that grows with n. Here
we focus on a contrasting case, where each feature has only two possible values, 0 and 1, thus
specializing on the Boolean cube:

I Definition 1. A probability distribution ρ over {0, 1}n is monotone if whenever for
x, y ∈ {0, 1}n we have that x � y (which means that for all i xi ≤ yi), then we have that
ρ(x) ≤ ρ(y).

When studying multi-dimensional objects, focusing on the specific case of the Boolean cube
is a common research theme, because the ideas and techniques developed for the Boolean
cube are often applicable in the general case. A lower bound of Ω(20.15n) for learning
monotone probability distributions over the Boolean cube (up to sufficiently small constant
variation distance) can be inferred from an entropy testing lower bound in [29, page 39]
and an argument in [32] (see Claim 17 in Preliminaries). Though the dramatic exponential
improvement as in [6, 12] for the totally ordered set is thereby impossible, this still leaves
open the possibility of a sublinear sample algorithm for the Boolean cube.

We give, to the best of our knowledge, the first sublinear sample algorithm for learning a
monotone probability distribution over the Boolean cube:

I Theorem 2. For every positive ε, such that 0 < ε ≤ 1 and for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(n1/5)
samples from an unknown monotone probability

distribution ρ over {0, 1}n, can reliably return a description of an estimate probability
distribution ρ̂, such that dTV(ρ, ρ̂) ≤ ε. The algorithm runs in time O

(
2n+Oε(n1/5 logn)

)
.

Our algorithm relies on a new structural lemma describing monotone probability distribu-
tions on the Boolean cube, as described in Section 1.3. These structural insights also allow
us to get improved sample complexity for certain testing tasks on monotone distributions –
namely, estimating the closeness of a distribution to uniformity and the support size of the
distribution, as presented in Section 1.2.



R. Rubinfeld and A. Vasilyan 28:3

Theorem 2, together with the L1 distance tester in [31], can be applied to give the best
known sample complexity for testing whether a distribution is monotone. Specifically, one
can test whether an unknown distribution ρ over the Boolean cube is monotone or ε-far from
monotone with O( 2n

nε2 ) samples as shown in Claim 18 in Preliminaries. Note that this does
not follow from [32] directly, because monotonicity is not a symmetric property. The best
previously known algorithm for testing monotonicity over the Boolean cube was presented in
[5], requiring Õ

(
2n

(n/ logn)1/4 poly(1/ε)
)
samples. The best sample complexity lower bound for

testing monotonicity over {0, 1}n is Ω(2(1−Θ(
√
ε)+o(1))·n), as presented in [3]. For the domain

[k]n, a monotonicity testing algorithm that requires O
(
kn/2/ε2 +

(
n log k
ε2

)n
· 1
ε2

)
samples is

given and shown to be optimal in [1] (note that this is inapplicable to the Boolean setting,
because this sample bound is non-trivial only for sufficiently large k).

1.2 Testing properties of monotone distributions

In addition to learning a distribution, several other basic tasks aimed at understanding distri-
butions have received attention. These include estimating the entropy of a distribution, the
size of the support and whether the distribution has certain “shape” properties (monotonicity,
convexity, monotone hazard rate, etc.). For arbitrary probability distributions over huge
domains, the sample complexity and run-time bounds for the above tasks can be prohibitive,
provably requiring Ω

(
Nuniverse

log(Nuniverse)

)
samples. This is true in particular for the properties of

support size, entropy and the distance to the uniform distribution [27, 32, 30, 33, 34].
This state of affairs motivates going beyond worst-case analysis and considering common

classes of structured probability distributions, a direction that has been considered by many
and with a large variety of results (cf. [4, 9, 24, 29, 14, 18]). Some specific examples
include: In [4] it is shown that testing whether a monotone distribution is uniform requires
only Θ(log3(Nuniverse)/ε3) samples, in contrast to the Θ(

√
Nuniverse/ε

2) samples required for
testing arbitrary distributions for uniformity [26, 11, 17]. The situation is analogous for
the tasks of testing whether two distributions given by samples are either the same or far,
and testing whether a constant dimensional distribution is independent, which require only
polylogarithmic samples if the unknown distributions are promised to be monotone on a
total order [4].

Algorithms for testing properties of monotone probability distributions over the Boolean
cube were studied in [29, 2]. It was shown that, given samples from a probability distribution
over {0, 1}n that is promised to be monotone, distinguishing the uniform distribution over
{0, 1}n from one that is ε-far from uniform can be done using only O

(
n
ε2

)
samples, which is

nearly optimal. In contrast, a number of other testing problems cannot have such dramatic
improvements when the distribution is known to be monotone: for example in [29] it was
shown that for sufficiently small constant ε the estimation of entropy up to an additive error
of εn requires 2Ω(n) samples. However, no nontrivial1 upper bounds on the sample complexity
of any other computational tasks for monotone probability distributions over the Boolean
cube are known.

1 i.e. using monotonicity in an essential way and going beyond the bounds known for arbitrary probability
distributions.

ITCS 2020
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1.2.1 Estimating support size
We consider the task of additively estimating the support size of an unknown monotone
probability distribution over the Boolean cube. The following assumption is standard in
support size estimation:

I Definition 3. A probability distribution over a universe of size Nuniverse is called well-
behaved (in context of support size estimation) if for every x in the set, the probability of x
is either zero or at least 1/Nuniverse.

The purpose of this definition is to rule out pathological cases in which there are items
that are in the support, yet have probability very close to zero. We henceforth adapt this
definition to probability distributions over {0, 1}n, where we have Nuniverse = 2n. We prove
the following theorem:

I Theorem 4. For every positive ε, the following is true: for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(
√
n) samples from an unknown well-behaved monotone

probability distribution ρ over {0, 1}n, can reliably2 approximate the support size of ρ with
an additive error of up to ε. The algorithm runs in time Oε

(
2n

2Θε(
√
n)

)
We contrast this result to the results of [27, 30, 31, 32, 34] that show that one needs

Ω(Nuniverse/ log(Nuniverse)) samples to estimate the support size of an arbitrary distribution
up to a sufficiently small constant, which equals to Ω(2n/n) for a universe of size 2n, such as
the Boolean cube.

1.2.2 Estimating distance to uniformity
We now consider the task of additively estimating the distance from an unknown monotone
probability distribution over the Boolean cube to the uniform distribution. We prove the
following theorem:

I Theorem 5. For every positive ε, the following is true: for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(
√
n) samples from an unknown monotone probability

distribution ρ over {0, 1}n, can reliably approximate the distance between ρ and the uniform
distribution over {0, 1}n with an additive error of up to ε. The algorithm runs in time
O
(

2n+Oε(
√
n logn)

)
.

We, again, contrast this result to the results of [30, 31, 32] that show that one needs
Ω(Nuniverse/ log(Nuniverse)) samples to estimate the distance of an arbitrary distribution to
the uniform distribution, which equals to Ω(2n/n) for a universe of size 2n, such as the
Boolean cube.

We also have the following sample complexity lower bound on this task, which we prove
using the sub-cube decomposition technique of [29]:

I Theorem 6. For infinitely many positive integers n, there exist two probability distributions
∆Close and ∆Far over monotone distributions over {0, 1}n, satisfying:
1. Every distribution in ∆Far is 1/2-far from the uniform distribution.
2. Any algorithm that takes only o

(
2n

0.5−0.01
2

)
samples from a probability distribution, fails

to reliably distinguish between ∆Close and ∆Far.
3. Every distribution in ∆Close is o(1)-close to the uniform distribution.

2 By reliably we henceforth mean that the probability of success is at least 2/3.
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I Remark 7. In our construction, the distribution ∆Close consists of only one probability
distribution. Additionally, the constant 0.01 can be made arbitrarily small.

Recall that in [29, 2] it was shown that, given samples from a probability distribution over
the Boolean cube that is promised to be monotone, distinguishing the uniform distribution
from one that is ε-far from uniform can be done using only O

(
n
ε2

)
samples. Yet, as the

theorem above shows, the tolerant version of this problem, which requires one to distinguish
a distribution that is o(1)-close to the uniform from a distribution that is 1/2-far from
uniform, requires Ω

(
2n

0.5−0.01
2

)
samples, which is dramatically greater.

1.3 Technical overview
1.3.1 Structural results
Our analysis applies and builds upon the main structural lemma in [7]. To state it, recall
that a DNF is a Boolean function that is formed as an OR of ANDs, and it is monotone if
there are no negations. Each AND is referred to as a clause, with the number of variables
in the AND is referred to as the width of the clause. Their structural lemma shows that
each monotone function can be approximated by a DNF with only a constant number of
distinct clause widths. Specifically:

I Lemma 8 (Main Lemma in [7], abridged and restated). For every positive ε, for all sufficiently
large n, let f be a monotone Boolean function over the domain {0, 1}n. There is a function
g = g1 ∨ ... ∨ gt with the following properties: (i) t ≤ 2/ε (ii) each gi is a monotone DNF
with terms of width exactly ki (iii) g disagrees with f at no more than ε · 2n elements of
{0, 1}n (iv) g(x) ≤ f(x) for all x in {0, 1}n.

For Theorem 4, we use the lemma above on the indicator function of the support of the
probability distribution, which allows us to prove the correctness of our algorithm. For the
problems of learning and estimating the distance to uniform, we go a step further and prove
an analogous structural lemma for monotone probability distributions.

There are some crucial differences between monotone Boolean functions in the setting of
Boolean function approximation and monotone probability distributions in our setting. First
of all, the basic properties of the two objects are different: a Boolean function always has one
of the two values (zero or one), which is usually not the case for a probability distribution,
but a probability distribution, summed over {0, 1}n, has to equal one. Secondly, the relevant
notions of a function f2 being well-approximated by a function f1 are different: for Boolean
functions we bound the fraction of points on which f1 and f2 disagree, whereas for monotone
probability distributions we would like to bound the L1 distance between f1 and f2.

To overcome these differences, we generalize to the setting of non-Boolean functions the
main concept used in the proof of Lemma 8: the concept of a minterm of a monotone
Boolean function. In [7] the minterm of a monotone Boolean function f is defined as follows:

mintermf (x) def=
{

1 if f(x) = 1 and for all y ≺ x, f(y) = 0
0 otherwise

Using this language, the function g in Lemma 8 can be characterized as a function, for which:

n∑
h=0

1∃ x∈{0,1}n: ||x||=h ∧mintermg(x)6=0 ≤
2
ε

(1)

ITCS 2020
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We introduce the notion of monotone slack that generalizes the notion of a minterm to
non-Boolean functions:

slackf (x) def= f(x)−max
y≺x

f(y) = f(x)− max
y�x and ||y||=||x||−1

f(y)

With such a definition at hand, one could hope to prove that every monotone prob-
ability distribution ρ is well-approximated in the L1 norm by a monotone function f ,
for which

∑n
h=0 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x)6=0 is bounded by a constant independent of

n. We were not able to prove such a theorem, and instead we bound a related quant-
ity that can be thought of as the weighted analogue of the expression in Equation 1:∑n
h=0Rh · 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x)6=0, where the Rh are positive weights that can be

chosen arbitrarily, as long as they satisfy a certain technical condition that ensures that not
too many of these weights are too large. Precisely, our main lemma is:

I Lemma 9 (Main Structural Lemma). For all positive ζ, for all sufficiently large n, the
following is true: Let ρ be a monotone probability distribution over {0, 1}n. Suppose,
for each h between 0 and n we are given a positive value Rh, and it is the case that:∑n
h=0Rh ·

(nh)∑n

j=h (nj)
≤ ζ

Then, there exists a positive monotone function f , mapping {0, 1}n to positive real
numbers, satisfying:
1. For all x, it is the case that ρ(x) ≥ f(x).
2. It is the case that:

∑
x∈{0,1}n ρ(x)− f(x) ≤ ζ

3. It is the case that:
∑n
h=0Rh · 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x) 6=0 ≤ 1

Now, as a corollary, we present a simple special case (proven to be so in Subsection
3.1) that not only illustrates the power of Lemma 9, but also is sufficient for our proof of
Theorem 5:

I Corollary 10. Let ρ be a monotone probability distribution over {0, 1}n and let h0 be an
integer for which:

ε

4 ≤ Pr
x∼{0,1}n

[||x|| ≥ h0] ≤ ε

2

Then, there exists a positive monotone function f : {0, 1}n → R satisfying:
1. For all x, it is the case that ρ(x) ≥ f(x).
2. It is the case that:

∑
x∈{0,1}n ρ(x)− f(x) ≤ ε

4 .
3. There exists a set of values {k1, ..., kt} (ordered in an increasing order) with t ≤ 16

ε2 ,
satisfying that if for some x in {0, 1}n we have ||x|| < h0 and slackf (x) 6= 0, then
||x|| = ki for some i.
For Theorem 2, however, we use the full power of Lemma 9.

1.3.2 Algorithmic ideas

Here we present an informal overview of the ideas involved in the design and analysis of
our algorithms. Throughout we omit details and technicalities. As already mentioned, our
algorithms for Theorems 4, 5 and 2 use respectively Lemma 8, Corollary 10 and Lemma 9
as their structural core. Here we present the algorithmic ideas in the order of increasing
technical sophistication.
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1.3.2.1 Support size estimation (Theorem 4)

The idea behind our support size estimation algorithm is as follows: if we received x as a
sample, then not only x has to be in the support of ρ, but every y, satisfying x � y is in the
support of ρ. For all such y, we say that y is covered by x. Our algorithms estimates the
support size of ρ through estimating the number of all such y that are covered by at least
one of the samples.

This algorithm can be made computationally efficient by standard methods in randomized
algorithms, and the only non-trivial step is to show that 2n

2Θε(
√
n) samples suffice. To show

this, we first apply Lemma 8 to the indicator function of the support of ρ (which we from
now on call the support function of ρ). This gives us a Boolean function g that approximates
well the support function of ρ and has zero slack everywhere, except for a small number
of levels3 of {0, 1}n. For simplicity, assume that the support function of ρ itself has this
property, and there are only a small number of levels of the Boolean cube on which the
support function of ρ can have non-zero slack, which we call the slacky levels.

Now, we divide the elements of {0, 1}n (which we also call points) into good4 points
and bad points, with the former defined as all the points sufficiently close to a slacky level,
and the latter defined as all the other points. Clearly, a given level of {0, 1}n consists either
fully from good points or fully from bad points, so we also refer to levels as good or bad.

We argue that if a point y in the support of ρ is a good point, then it is likely to be
covered by one of the samples, because there is a large number of values x in the support of
ρ, for which y � x.

We conclude by bounding the number of elements in the support of ρ that are bad, by
using the fact that there cannot be too many slacky levels.

1.3.2.2 Estimation of distance to uniform (Theorem 5)

To estimate the distance of a monotone distribution to uniform, we pick a value h0 as in
Corollary 10 and break down the value of the total variation distance from ρ to uniform into
contributions from two disjoint components: (i) {x ∈ {0, 1}n s.t. ||x|| ≥ h0} and (ii) all the
other points of {0, 1}n. In other words, we use h0 as the cutoff value for the Hamming weight,
to separate {0, 1}n into components (i) and (ii). The first contribution is straightforward to
estimate simply through estimating how likely a random sample x from ρ is to have ||x|| ≥ h0,
because it is straightforward to prove that if one redistributes the probability mass of ρ in
{x ∈ {0, 1}n s.t. ||x|| ≥ h0}, while keeping the total amount of probability mass in this set
fixed, the total variation distance between ρ and the uniform distribution cannot change by
more than Oε(1).

For any element x of the component (ii), we prepare an estimate of ρ(x), which we call
φ̂(x). Our approach here is somewhat similar to the one for our support size estimation
algorithm. In the case of support size estimation, we only registered whether x was covered
by a sample from ρ or not. In this case, we actually need an estimate on ρ(x) (as opposed
to 1ρ(x)6=0) which we obtain by studying the pattern of all the samples covering x. More
precisely, suppose we draw N2 samples from the distribution, which form a multiset S2. We
extract the estimate φ̂(x) from the pattern of samples as follows:

φ̂(x) := 1
2L ·

maxy s.t. y�x and ||x||−||y||=L

∣∣∣∣{z ∈ S2 : y � z � x
}∣∣∣∣

N2

3 i.e. subsets of {0, 1}n that have the same Hamming weight.
4 We later re-define these notions in order to adapt them for the technical details we ignore in the

introduction.

ITCS 2020
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Here L is a parameter equal to Θε(
√
n). We then estimate the contribution of set (ii) as∑

x∈{0,1}n: ||x||≥h0

∣∣∣φ̂(x)− 1/2n
∣∣∣.

We show the correctness of our algorithm as follows. We use a tail bound to show that
φ̂(x) concentrates sufficiently closely to the value: .

φ(x) def= 1
2L · max

y s.t. y�x and ||x||−||y||=L
Pr
z∼ρ

[y � z � x] =

1
2L · max

y s.t. y�x and ||x||−||y||=L

∑
z s.t. y�z�x

ρ(z)

Then, we apply Corollary 10, which implies that ρ is approximated well by a function f and
a certain set of constraints on the slack of f holds.

Now for the sake of simplicity (analogously to the case of support size estimation), assume
that ρ itself satisfies the condition that below the threshold h0 there are at most Oε(1)
levels of {0, 1}n on which there are points x with non-zero slackρ(x) (in reality it is merely
well-approximated by such a function). We now can (analogously to the case of support size
estimation) introduce the concepts of slacky levels as levels on which ρ has non-zero slack,
and good levels, which are below h0 and farther than L from all slacky levels of ρ. Now,
one can prove that for x on a good level the value of φ(x) equals precisely to ρ(x), for the
following reasons: First of all the inequality:

max
y s.t. y�x and ||x||−||y||=L

ρ(y) ≤ φ(x) ≤ ρ(x)

follows immediately from the monotonicity of ρ and the definition of φ. Secondly, if ρ has no
slack on the levels between ||x|| and ||x|| − L (inclusive), then from the definition of slack it
follows immediately using induction on L that:

max
y s.t. y�x and ||x||−||y||=L

ρ(y) = ρ(x)

Therefore, it has to be the case that ρ(x) = φ(x).
Finally, we bound the contribution to the L1 distance between φ̂ and ρ of all the levels

below h0 that are not good (which we again call the bad levels). We do this by upper-
bounding the number of bad levels, and then upper bounding the total probability mass on
a single level below h0.

1.3.2.3 Learning a monotone probability distribution (Theorem 2)

As we saw, our algorithm for the estimation of the distance to the uniform distribution
contained a component that learned in L1 distance the restriction of ρ on the levels below
the cutoff h0. The main challenge here is to extend these ideas to levels above h0. To this,
we make the following changes to our setup:

Instead of having one fixed constant L defining whether a point is close to a slacky level,
we make this value level-dependent. In other words, for every h we define Lh, and then
after drawing N samples, which form a multiset S, we compute:

φ̂(x) := 1
2bL||x||c

·
maxy s.t. y�x and ||y||−||x||=bL||x||c

∣∣∣∣{z ∈ S : y � z � x
}∣∣∣∣

N

Instead of using Corollary 10, we use the the full power of Lemma 9. This, again gives us
a function f that approximates ρ closely and has a restriction on its slacky levels.
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Finally, we pick values of Lh in the algorithm and Rh in the analysis so we balance (i) The
random error from the deviation of φ̂(x) from its expectation and (ii) The systematic error
introduced by the slacky levels of f and the levels close to them. As a result, we find that

2n

2Θ(n1/5)
samples suffice.

2 Preliminaries

We use the following basic definitions and notation:

I Definition 11. For x ∈ {0, 1}n, its Hamming weight is denoted as ||x|| and is equal to∑
i xi.

I Definition 12. For a function f : {0, 1}n → R, we define the average value on level k
(with 0 ≤ k ≤ n) as: µf (k) = 1

(nk)
∑
x∈{0,1}n:||x||=k f(x). We also refer to average value on

level k for a probability distribution ρ, which we denote µρ(k). By this we mean the average
value on level k of the density function of ρ.

I Definition 13. For a monotone function f : {0, 1}n → R, we define the monotone
slack slackf (x) at point x ∈ {0, 1}n as follows: slackf (x) def= f(x) −maxy≺x f(y) = f(x) −
maxy�x and ||y||=||x||−1 f(y). We also stipulate that slackf (0n) = f(0n).

I Definition 14. The total variation distance between two probability distributions ρ1
and ρ2 is defined as:

dTV(ρ1, ρ2) def= 1
2
∑
x|ρ1(x)− ρ2(x)|.

The following are well-known facts, which were also used in [7]:

I Fact 15. For a monotone function f : {0, 1}n → R, for all k1, k2 satisfying 0 ≤ k1 ≤ k2 ≤
n, it is the case that µf (k1) ≤ µf (k2).

I Fact 16. For all k, it is the case that
(
n
k

)
≤ 2√

n
· 2n.

Now, we justify two claims we made in the introduction:

B Claim 17. For sufficiently small ε0, for all sufficiently large n, any algorithm that learns an
unknown monotone probability distribution over {0, 1}n requires at least Ω(20.15n) samples
from the distribution.

Proof. From the argument in [32, pages 1937-1938] it follows that if two probability dis-
tributions are ε-close in total variation distance, then their entropy values are within
2 log(Nuniverse)ε = 2εn. Therefore, the task of estimating the entropy of an unknown
monotone probability up to an additive error 2εn is not harder than learning it to withing
total variation distance ε. But in [29, page 39] it is shown that at least

√
T/10 samples are

required for the task of distinguishing whether the unknown monotone probability distri-
bution has entropy at least 0.81n or at most n/2 + log T . Picking T = 20.3n gives us the
desired learning lower bound. C

B Claim 18. Given Theorem 2, one can test whether an unknown distribution ρ over the
Boolean cube is monotone or ε-far from monotone with O( 2n

nε2 ) samples.

Proof. This can be done in the following way: (1) Use our learning algorithm with an error
parameter ε/4. This gives us a description of a distribution ρ̂, which is ε/4-close to ρ if ρ is
monotone. (2) Estimate, using the estimator of [31], the total variation distance between
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ρ and ρ̂ up to ε/4. If the result is closer to ε than to zero, output NO. (3) Compute the
total variation distance between ρ̂ and the closest monotone probability distribution. If this
distance estimate is closer to ε than to zero, output NO, otherwise output YES. For constant
ε, the sample complexity is dominated by step (3), which is O( 2n

ε2n ). It is easy to see that
a monotone probability distribution will pass this test, whereas a distribution that is ε-far
from monotone will fail either step (2) or step (3). C

3 Learning monotone probability distributions

Algorithm 1 Algorithm for learning a monotone probability distribution over the Boolean cube
(given sample access from a distribution ρ, which is monotone over {0, 1}n).

1. Set A := 1
2n · e

1
2000 ·n

1/5 . For all h ≥ n/2, set Lh := max
(

log
(

2nA · (nh)
2n

)
, 0
)

Similarly, for all h, satisfying n/2 > h ≥ 0, set: Lh := Ln/2 = log
(

2nA · ( n
n/2)
2n

)
.

2. Set N := 2n
A ·

192
ε2 · (n+ 9

√
n+ 4)

Draw N samples from the probability distribution ρ and denote the multiset of these
samples as S.

3. For all x in {0, 1}n, if ||x|| < 9
√
n, then set φ̂(x) = 0, otherwise compute:

φ̂(x) := 1
2bL||x||c

·
maxy s.t. y�x and ||y||−||x||=bL||x||c

∣∣∣∣{z ∈ S : y � z � x
}∣∣∣∣

N

Do this by first making a look-up table, which given arbitrary z ∈ {0, 1}n returns the
number of times z was encountered in S. Then, use this look-up table to compute the
necessary values of |{z ∈ S : y � z � x}| by querying all these values of z in the lookup
table and summing the results up.

4. For all x in {0, 1}n, compute the following: ρ̂(x) = φ̂(x) + 1
2n

(
1−

∑
y∈{0,1}n φ̂(y)

)
5. Output the value table of ρ̂.

In this section we prove our upper-bound on the sample complexity of learning an
unknown monotone probability distribution over the Boolean cube. We restate the theorem:

I Theorem 2. For every positive ε, such that 0 < ε ≤ 1 and for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(n1/5)
samples from an unknown monotone probability

distribution ρ over {0, 1}n, can reliably return a description of an estimate probability
distribution ρ̂, such that dTV(ρ, ρ̂) ≤ ε. The algorithm runs in time O

(
2n+Oε(n1/5 logn)

)
.

Proof. We present the algorithm as Algorithm 1. The number of samples drawn from ρ is
N = 2n

2Θε(n1/5)
. The run-time, in turn, is dominated by computing the values of φ̂ in step

(3), in which the construction of the lookup table takes O(n · 2n) time, and the time spent
computing each φ̂(x) can be upper bounded by the product of: (i) the number of pairs (y, z)
that simultaneously satisfy y � z � x and ||y|| − ||x|| = L||x||, which can be upper-bounded
by O(nL||x|| · 2L||x||) and (ii) the time it takes to look up a given z in the lookup table,
which can be upper-bounded by O(n). Overall, this gives us a run-time upper bound of
O(2n+Oε(n1/5 logn)).
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Now, the only thing to prove is correctness. Here is our main claim:

B Claim 19. If the following conditions are the case:
a) As a function of h, Lh is non-increasing.
b) For all h, we have that Lh ≤ 9

√
n.

c)

1
2n ·

n∑
h=9
√
n

(
n

h

)
· A2Lh ≤

1
2

d)

n∑
h=9
√
n

Lh ·




400
n2.5 if h ≤ n/2−

√
n ln(n)

40000
n if n/2−

√
n ln(n) < h < n/2 +

√
n

40000 ·
(
h−n/2
n

)2
if h ≥ n/2 +

√
n

 ≤ ε2

20000

Then, with probability at least 2/3, it is the case that
∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)−ρ(x)
∣∣∣∣ ≤ ε

2 .

We verify in Appendix A, subsection 7.1, that Lh indeed satisfy the conditions above. In
fact, the values of Lh and A were chosen specifically to satisfy the constraints above. We
prove Claim 19 in Section 3.2, after we develop our main structural lemma in Section 3.1.

We now bound the contribution to the L1 distance between φ̂ to ρ that comes from
points of Hamming weight less than 9

√
n. Since

∑
x∈{0,1}n ρ(x) = 1 and ρ is monotone, then

whenever ||x|| ≤ n/2 we have ρ(x) ≤ 1/2n/2. Therefore, for sufficiently large n we have:

∑
x∈{0,1}n s.t. ||x||<9

√
n

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣ =

∑
x∈{0,1}n s.t. ||x||<9

√
n

ρ(x) ≤ n9
√
n

2n/2
≤ ε

2

Combining this with the bound in Claim 19 we get:∑
x∈{0,1}n

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣ ≤ ε

Overall, we have:

2 · dTV(ρ, ρ̂) =
∑

x∈{0,1}n

∣∣∣∣ρ̂(x)− ρ(x)
∣∣∣∣ =

∑
x∈{0,1}n

∣∣∣∣φ̂(x)− ρ(x) + 1
2n

1−
∑

y∈{0,1}n
φ̂(y)

∣∣∣∣ ≤
∑

x∈{0,1}n

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣+

∣∣∣∣∣∣1−
∑

y∈{0,1}n
φ̂(y)

∣∣∣∣∣∣ =

∑
x∈{0,1}n

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣+

∣∣∣∣∣∣
∑

x∈{0,1}n
ρ(x)− φ̂(x)

∣∣∣∣∣∣ ≤ 2 ·
∑

x∈{0,1}n

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣ ≤ 2 · ε

Thus, with probability at least 2/3, we have dTV(ρ, ρ̂) ≤ ε. J
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3.1 Main lemma
Here we prove the following structural lemma. The lemma, as well as its proof are inspired
by the main structural lemma of [7] (i.e. Lemma 8). Recall that the slack of a monotone
function was given in Definition 13.

I Lemma 9 (Main Structural Lemma). For all positive ζ, for all sufficiently large n, the
following is true: Let ρ be a monotone probability distribution over {0, 1}n. Suppose,
for each h between 0 and n we are given a positive value Rh, and it is the case that:∑n
h=0Rh ·

(nh)∑n

j=h (nj)
≤ ζ

Then, there exists a positive monotone function f , mapping {0, 1}n to positive real
numbers, satisfying:
1. For all x, it is the case that ρ(x) ≥ f(x).
2. It is the case that:

∑
x∈{0,1}n ρ(x)− f(x) ≤ ζ

3. It is the case that:
∑n
h=0Rh · 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x) 6=0 ≤ 1

Proof. We use the following process to obtain f :
a) Set f∗ = ρ.
b) For h = 0 to n:

If it is the case that:
1(
n
h

) · ∑
x∈{0,1}n s.t. ||x||=h

slackf∗(x) < Rh ·
1∑n

j=h
(
n
h

) (2)

Then, for all x in {0, 1}n, satisfying ||x|| = h set: f∗(x) := f∗(x)− slackf∗(x).
c) Set f = f∗ and output f .

By inspection, f∗ remains monotone and positive at every iteration of the process.
Therefore, f is also monotone and positive.

Property (1) in the Lemma is true, because at every step of the process, values of f∗ only
decrease.

To see why Property (2) is the case, note that the value
∑
x∈{0,1}n ρ(x)− f(x) is zero in

the beginning of the process, and at a step h it either stays the same or decreases by at most
Rh ·

(nh)∑n

j=h (nj)
. Therefore we can upper-bound:

∑
x∈{0,1}n

ρ(x)− f(x) ≤
n∑
h=0

Rh ·
(
n
h

)∑n
j=h

(
n
j

) ≤ ζ
Now, the only thing left to prove is that property (3) holds.
From the definition of monotone slack, it follows that modifying the value of a function on

points of Hamming weight j does not affect the slack on any point with Hamming weight lower
than j. Therefore, the value 1

(nj)
·
∑
x∈{0,1}n s.t. ||x||=j slackf∗(x) will not change as f∗ changes

after the jth iteration. Therefore, this value will be equal to 1
(nj)
·
∑
x∈{0,1}n s.t. ||x||=j slackf (x).

Thus, the value of 1
(nj)
·
∑
x∈{0,1}n s.t. ||x||=j slackf (x) is either zero or at least Rh · 1∑n

j=h (nh)
.

Now, we need the following generalization of Fact 15:

I Observation 20. Let f be an arbitrary monotone function {0, 1}n → R. Then, for any k
in [0, n− 1] it is the case that:

µf (k + 1) ≥ µf (k) + 1(
n
k+1
) · ∑

x∈{0,1}n s.t. ||x||=k+1

slackf (x)



R. Rubinfeld and A. Vasilyan 28:13

Proof. For all x with ||x|| = k + 1 we have that:

f(x) = slackf (x) + max
y∈{0,1}n s.t. ||y||=k and y�x

f(y)

We have that:

max
y∈{0,1}n s.t. ||y||=k and y�x

f(y) ≥ Ey∼{0,1}n conditioned on ||y||=k and y�x[f(y)]

Therefore:

f(x) ≥ slackf (x) + Ey∼{0,1}n conditioned on ||y||=k and y�x[f(y)]

Averaging the both sides, we get:

µf (k + 1) ≥ 1(
n
k+1
) · ∑

x∈{0,1}n s.t. ||x||=k+1

slackf (x)+

Ex∼{0,1}n conditioned on ||x||=k+1Ey∼{0,1}n conditioned on ||y||=k and y�x[f(y)] =
1(
n
k+1
) · ∑

x∈{0,1}n s.t. ||x||=k+1

slackf (x) + Ey∼{0,1}n conditioned on ||y||=k[f(y)] =

1(
n
k+1
) · ∑

x∈{0,1}n s.t. ||x||=k+1

slackf (x) + µf (k) (3)

Above, the penultimate equality followed from a simple probabilistic fact: if one picks a
random n-bit string of Hamming weight k+ 1 and then sets to zero a random bit that equals
to one, this is equivalent to picking a random n-bit string of weight k. J

Using the Observation 20 repeatedly and recalling that in Definition 13 we defined
slackf (0n) = f(0n), we get that for all h:

µf (h) ≥ µf (0) +
h∑
k=1

1(
n
k

) · ∑
x∈{0,1}n s.t. ||x||=k

slackf (x) =

h∑
k=0

1(
n
k

) · ∑
x∈{0,1}n s.t. ||x||=k

slackf (x) ≥
h∑
k=0

Rk ·
1∑n

j=k
(
n
j

) ·1∃ x∈{0,1}n: ||x||=k ∧ slackf (x)6=0

Summing this up over all h and changing the order of summations, we get:

1 =
∑

x∈{0,1}n
ρ(x) ≥

∑
x∈{0,1}n

f(x) =
n∑
h=0

(
n

h

)
µf (h) ≥

n∑
h=0

(
n

h

) h∑
k=0

Rk ·
1∑n

j=k
(
n
j

) · 1∃ x∈{0,1}n: ||x||=k ∧ slackf (x)6=0 =

n∑
k=0

n∑
h=k

(
n

h

)
Rk ·

1∑n
j=k

(
n
j

) · 1∃ x∈{0,1}n: ||x||=k ∧ slackf (x) 6=0 =

n∑
k=0

Rk · 1∃ x∈{0,1}n: ||x||=k ∧ slackf (x)6=0

This finishes the proof of the lemma. J
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Now, we prove the following corollary:

I Corollary 10. Let ρ be a monotone probability distribution over {0, 1}n and let h0 be an
integer for which:

ε

4 ≤ Pr
x∼{0,1}n

[||x|| ≥ h0] ≤ ε

2

Then, there exists a positive monotone function f : {0, 1}n → R satisfying:
1. For all x, it is the case that ρ(x) ≥ f(x).
2. It is the case that:

∑
x∈{0,1}n ρ(x)− f(x) ≤ ε

4 .
3. There exists a set of values {k1, ..., kt} (ordered in an increasing order) with t ≤ 16

ε2 ,
satisfying that if for some x in {0, 1}n we have ||x|| < h0 and slackf (x) 6= 0, then
||x|| = ki for some i.

Proof. We use Lemma 9, setting ζ = ε/4 and

Rh =
{
ε2

16 if h ≤ h0

0 otherwise

We verify the precondition to Lemma 9, by using that
∑
x∈{0,1}n ρ(x)− f(x) ≤ ε

4 :

n∑
h=0

Rh ·
(
n
h

)∑n
j=h

(
n
j

) =
h0∑
h=0

ε2

16 ·
(
n
h

)∑n
j=h

(
n
j

) ≤ h0∑
h=0

ε2

16 ·
(
n
h

)∑n
j=h0

(
n
j

) ≤
h0∑
h=0

ε2

16 ·
(
n
h

)
2n · ε/4 = ε

4 ·
h0∑
h=0

(
n
h

)
2n ≤

ε

4

Now, we simply check that properties (1), (2) and (3) of the Lemma directly imply the
properties (1), (2) and (3) of the Corollary respectively. This completes the proof. J

To use Lemma 9, we need an upper bound on the value of (nh)∑n

j≥h (nj)
. The following claim

provides such an upper bound:

B Claim 21. For all sufficiently large n, for all h, satisfying 0 ≤ h ≤ n, it is the case that:

(
n
h

)∑n
j≥h

(
n
j

) ≤



2
n2 if h ≤ n/2−

√
n ln(n)

200√
n

if n/2−
√
n ln(n) < h < n/2 +

√
n

200 · h−n/2n if h ≥ n/2 +
√
n


Proof. See Appendix A, Subsection 7.2 C

3.2 Proof of Claim 19
For all x in {0, 1}n, satisfying 9

√
n ≤ ||x||, we define the following quantity:

φ(x) def= 1
2bL||x||c

· max
y s.t. y�x and ||x||−||y||=bL||x||c

Pr
z∼ρ

[y � z � x] =

1
2bL||x||c

· max
y s.t. y�x and ||x||−||y||=bL||x||c

∑
z s.t. y�z�x

ρ(z) (4)
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Observe that since for every such x and y there are 2bL||x||c values of z satisfying y � z � x,
and ρ is a monotone probability distribution, it has to be the case that φ(x) ≤ ρ(x) for all x
on which φ(x) is defined.

More interestingly, we will be claiming that φ is (in terms of L1 distance) a good
approximation to ρ, but first we will show that φ̂ is a good approximation to φ, assuming
that the values Lh are not too small:

B Claim 22. If it is the case that 1
2n ·

∑n
h=9
√
n

(
n
h

)
· A

2Lh ≤
1
2 , then, with probability at least

7/8, it is the case that:

∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣ ≤ ε

4 (5)

Proof. See Appendix A, Subsection 7.3, for the proof, which follows using tail bounds. C

Now, we apply Lemma 9 to ρ, with value ζ := ε/100. For now, we postpone setting the
values of Rh, which we will do later in our derivation (of course, we will then check that the
required constraint is indeed satisfied by these values).

This gives a positive monotone function f that satisfies the three conditions of Lemma 9.
We separate all the values of x in {0, 1}n for which 9

√
n ≤ ||x|| into two kinds: good and

bad. We say that x is bad if there is some y for which 0 ≤ ||x|| − ||y|| <
⌊
L||x||

⌋
and

slackf (y) is non-zero. Otherwise, x if good. Clearly, for a given Hamming weight value,
wither every point with this Hamming weight is good, or every such point is bad.

We can write:∑
x∈{0,1}n s.t. 9

√
n≤||x||

|φ(x)− f(x)| =
∑

good x
|φ(x)− f(x)|+

∑
bad x

|φ(x)− f(x)| (6)

Now, we bound the two terms above separately. If x is good, then it is the case that
for all y satisfying ||x|| − bL||x||c < ||y|| ≤ ||x|| we have slackf (x) = 0, and therefore
f(y) = maxy′∈{0,1}n s. t. y′�y and ||y||−||y′||=1 f(y′). Using this relation recursively, we obtain
that:

f(x) = max
y∈{0,1}n s. t. y�x and ||x||−||y||=bL||x||c

f(y)

Therefore, since f is monotone, we obtain that:

f(x) = 1
2bL||x||c

· max
y s.t. y�x and ||x||−||y||=bL||x||c

∑
z s.t. y�z�x

f(z)

By Lemma 9, it is the case ρ(x) ≥ f(x). This, together with the equation above and
Equation 4 implies:

φ(x) ≥ f(x)

But we also know that ρ(x) ≥ φ(x). Therefore:∑
good x

|φ(x)− f(x)| ≤
∑

good x
|ρ(x)− f(x)| ≤ ε

4 (7)

Where the last inequality follows from Lemma 9.
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Now, we bound the contribution of bad points. Since φ(x) ≤ ρ(x), f(x) ≤ ρ(x) and
recalling the definition of a bad point, we get:∑

bad x
|φ(x)− f(x)| ≤

∑
bad x

max(φ(x), f(x)) ≤
∑
bad x

ρ(x) ≤

n∑
h2=9

√
n

µρ(h2) ·
(
n

h2

)
· 1∃ x∈{0,1}n: (h2−bLh2c<||x||≤h2) ∧ slackf (x) 6=0 (8)

Since Lemma 9 gives us a bound on a weighed sum of indicator variables of the form
1∃ x∈{0,1}n: ||x||=h ∧ slackf (x)6=0, we would like to upper-bound the expression above by such a
weighted sum. To do this, to every Hamming weight value h that has a point x with non-zero
slackf (x) (we call such Hamming weight value h slacky) we “charge” every value h2, for
which points of Hamming weight h2 are rendered bad because h is slacky. This will happen
only if h2 ≥ h and h2 − bLh2c < h . But since bLh2c can only decrease as h2 increases, the
latter can happen only if h2 − bLhc < h. Therefore:

∑
bad x

|φ(x)− f(x)| ≤
n∑
h=0

h+bLhc−1∑
h2=h

µρ(h2) ·
(
n

h2

) · 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x) 6=0 (9)

Now, to upper-bound µρ(h2), we need the following claim:

B Claim 23. For any monotone probability distribution ρ it is the case that for all h:

µρ(h) ≤ 1∑n
j=h

(
n
j

)
Proof. This follows immediately from Fact 15 and that

∑
x∈{0,1}n ρ(x) = 1. C

Claim 23, Equation 8 and Claim 21 together imply:

∑
bad x

|φ(x)− f(x)| ≤
n∑
h=0

h+bLhc−1∑
h2=h

(
n
h2

)∑n
j=h2

(
n
j

)
1( ∃ x∈{0,1}n:

||x||=h ∧ slackf (x)6=0

) ≤
n∑
h=0

h+bLhc−1∑
h2=h

({
200√
n

if h2 < n/2 +
√
n

200 · h2−n/2
n if h2 ≥ n/2 +

√
n

)1( ∃ x∈{0,1}n:
||x||=h ∧ slackf (x)6=0

) ≤
n∑
h=0

Lh ·

({
200√
n

if h+ Lh < n/2 +
√
n

200 · h+Lh−n/2
n if h+ Lh ≥ n/2 +

√
n

)
1( ∃ x∈{0,1}n:
||x||=h ∧ slackf (x)6=0

) (10)

Now, we claim that:({
200√
n

if h+ Lh < n/2 +
√
n

200 · h+Lh−n/2
n if h+ Lh ≥ n/2 +

√
n

)
≤ 10 ·

({
200√
n

if h < n/2 +
√
n

200 · h−n/2n if h ≥ n/2 +
√
n

)
(11)

This follows by considering three cases (i) h+Lh < n/2 +
√
n, in which case this is equivalent

to 200√
n
≤ 2000√

n
, which is trivially true. (ii) h ≥ n/2 +

√
n, in which case since Lh ≤ 9

√
n, we

have that h+Lh−n/2
n ≤ 10 · h−n/2n (iii) h+ Lh ≥ n/2 +

√
n, but h < n/2 +

√
n, in which case

since Lh ≤ 9
√
n, we have that h+Lh−n/2

n ≤
√
n+Lh
n ≤ 10

√
n.
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Combining Equations 10 and 11, we get:∑
bad x

|φ(x)− f(x)| ≤

n∑
h=0

Lh · 10 ·
({

200√
n

if h < n/2 +
√
n

200 · h−n/2n otherwise

)
· 1∃ x∈{0,1}n: ||x||=h ∧ slackf (x) 6=0 (12)

Recall that we postponed setting the values of Rh. The equation above motivates us to set:

Rh := 200
ε
· Lh ·

({
200√
n

if h < n/2 +
√
n

200 · h−n/2n otherwise

)

Now, we check the constraint on Rh in Lemma 9. Using Claim 21 and the premise of
Claim 19:

n∑
h=0

Rh ·
(
n
h

)∑n
j≥h

(
n
j

) ≤ n∑
h=0

Rh ·




2
n2 if h ≤ n/2−

√
n ln(n)

200√
n

if n/2−
√
n ln(n) < h < n/2 +

√
n

200 · h−n/2n if h ≥ n/2 +
√
n

 =

200
ε
·
n∑
h=0

Lh ·




400
n2.5 if h ≤ n/2−

√
n ln(n)

40000
n if n/2−

√
n ln(n) < h < n/2 +

√
n

40000 ·
(
h−n/2
n

)2
if h ≥ n/2 +

√
n

 ≤ ε

100 = ζ

Therefore, Lemma 9, together with Equation 12 implies that:

∑
bad x

|φ(x)− f(x)| ≤
n∑
h=0

ε

20 ·Rh · 1∃ x∈{0,1}
n: ||x||=h ∧ slackf (x) 6=0 ≤

ε

20

Now, using triangle inequality and then combining the inequality above with Equations 28, 6
and 7 we get:

∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)− ρ(x)
∣∣∣∣ ≤

∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣+

∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ(x)− ρ(x)
∣∣∣∣ ≤

ε

4 + ε

100 + ε

20 ≤
ε

2 (13)

4 Estimating the distance to uniform

In this section we prove our upper-bound on the sample complexity of estimating the distance
from uniform of an unknown monotone probability distribution over the Boolean cube. We
restate the theorem:

I Theorem 5. For every positive ε, the following is true: for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(
√
n) samples from an unknown monotone probability

distribution ρ over {0, 1}n, can reliably approximate the distance between ρ and the uniform
distribution over {0, 1}n with an additive error of up to ε. The algorithm runs in time
O
(

2n+Oε(
√
n logn)

)
.
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Algorithm 2 Algorithm for the estimation of distance to uniform efficiently (given sample access
from a distribution ρ, which is monotone over {0, 1}n).

1. Pick set h0 to be an integer for which it is the case that:

ε

4 ≤ Pr
x∼{0,1}n

[||x|| ≥ h0] ≤ ε

2 (14)

Do this by going through every integer candidate hcandidate in the interval and computing
the fraction of points x in {0, 1} for which ||x|| ≥ hcandidate. Finally, pick h0 to be one of
hcandidate for which the relation above holds.

2. Set N1 := 32 ln 2
ε2 . Draw N1 samples from the probability distribution ρ and denote the

multiset of these samples as S1.
3. Set:

d̂1 := 1
2 ·

∣∣∣∣{z ∈ S1 : ||z|| ≥ h0

}∣∣∣∣
N1

4. Set L :=
⌊√

nε4

512

⌋
.

5. Set

N2 := 2n

2L ·
192
ε2
·
(
n ln 2 + L lnn+ 4 ln 2

)
Draw N2 samples from the probability distribution ρ and denote the multiset of these
samples as S2.

6. For all x, satisfying L ≤ ||x|| < h0, compute:

φ̂(x) := 1
2L ·

maxy s.t. y�x and ||x||−||y||=L

∣∣∣∣{z ∈ S2 : y � z � x
}∣∣∣∣

N2

Do this by first making a look-up table, which given arbitrary z ∈ {0, 1}n returns the
number of times z was encountered in S2. Then, use this look-up table to compute the
necessary values of |{z ∈ S2 : y � z � x}| by querying all these values of z in the lookup
table and summing the results up.

7. Compute the following:

d̂2 := 1
2 ·

∑
x s.t. L≤||x||<h0

∣∣∣∣φ̂(x)− 1
2n

∣∣∣∣
8. Output d̂1 + d̂2.
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Proof. We present the algorithm as Algorithm 2. The number of samples drawn from ρ is
N1 +N2 = 2n

2Θε(
√
n) . The run-time, in turn, is dominated5 by computing the values of φ̂ in

step (6), in which the construction of the lookup table takes O(n · 2n) time and the time
spent computing each φ̂(x) can be upper bounded by the product of: (i) the number of pairs
(y, z) that simultaneously satisfy y � z � x and ||x||− ||y|| = L, which can be upper-bounded
by O(nL · 2L) and (ii) the time it takes to look up a given z in the lookup table, which can be
upper-bounded by O(n). Overall, this gives us a run-time upper bound of O(2n+Oε(

√
n logn)).

Now, the only thing left to prove is correctness. First of all, it is not a priori clear that
there exists a value of h0 satisfying Equation 14 (in Algorithm 2). This is true for the
following reason: imagine changing hcandidate from n to 0 by decrementing it in steps of
one. Then Prx∈{0,1}n [||x|| ≥ hcandidate] will increase from 1

2n to 1 and by Fact 16 it will not
increase by more than 2√

n
at any given step. For sufficiently large n we have 2√

n
< ε

4 . Then
it is impossible to skip over the interval between ε

4 and ε
2 in just one step of length at most

2√
n
, and therefore Equation 14 (in Algorithm 2) will be the case for some value of hcandidate.
We decompose the total variation distance between ρ and the uniform distribution into

three terms:

1
2 ·

∑
x∈{0,1}n

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣ =

1
2 ·

∑
x∈{0,1}n s.t.
||x||≥h0

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣+ 1
2 ·

∑
x∈{0,1}n s.t.
L≤||x||<h0

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣+ 1
2 ·

∑
x∈{0,1}n s.t.
||x||<L

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣
(15)

We argue that the first term is well approximated by d̂1, the second term is well approximated
by d̂2, and the third term is negligible. As the reader will see, out of these three terms, the
middle term is the least trivial to prove guarantees for.

We will first handle the first term: From the triangle inequality, Hoeffding’s bound and
Equation 14 (in Algorithm 2) it follows immediately that with probability at least 7/8 it is
the case that:∣∣∣∣d̂1 −

1
2 ·

∑
x∈{0,1}n s.t. ||x||≥h0

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣∣∣∣∣ ≤∣∣∣∣d̂1 −
1
2 ·

∑
x∈{0,1}n s.t. ||x||≥h0

ρ(x)
∣∣∣∣+ 1

2 ·
∑

x∈{0,1}n s.t. ||x||≥h0

1
2n ≤

ε

8 + ε

4 = 3ε
8 (16)

Now, we use the two following facts: (i) Since
∑
x ρ(x) = 1 and ρ is monotone, for every x

with ||x|| ≤ L it should be the case that ρ(x) ≤ 1
2n−L . (ii) The number of different values of

x in {0, 1}n for which ||x|| ≤ L can be upper bounded by nL. We get for sufficiently large n:

1
2 ·

∑
x∈{0,1}n s.t. ||x||<L

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣ ≤ 1
2 ·

∑
x∈{0,1}n s.t. ||x||<L

(
1
2n + ρ(x)

)
≤

1
2 · n

L ·
(

1
2n + 1

2n−L

)
= o(1) ≤ ε

8 (17)

5 Step 1 requires only 2npoly(n) time, which is less than what step (6) requires. By inspection, other
steps require even less run-time. Incidentally, the task in step 1 can be done much faster by randomized
sampling, but since this is not the run-time bottleneck, we use this direct approach for the sake of
simplicity.
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The rest of this section will be dedicated to proving the following claim:

B Claim 24. With probability at least 7/8 it is the case that:∣∣∣∣d̂2 −
1
2 ·

∑
x∈{0,1}n s.t. L≤||x||<h0

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣∣∣∣∣ ≤ ε

2 (18)

Once this is proven, it follows by a union bound that with probability at least 3/4 both
Equations 16 and 18 will be the case. This, together with Equation 17, when substituted
into Equation 15 will imply that:∣∣∣∣ ∑

x∈{0,1}n

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣− (d̂1 + d̂2)
∣∣∣∣ ≤ ε

This will imply the correctness of our algorithm. J

4.1 Proof of Claim 24
For all x in {0, 1}n, satisfying L ≤ ||x|| < h0, we define the following quantity:

φ(x) def= 1
2L · max

y s.t. y�x and ||x||−||y||=L
Pr
z∼ρ

[y � z � x] =

1
2L · max

y s.t. y�x and ||x||−||y||=L

∑
z s.t. y�z�x

ρ(z) (19)

Observe that since for every such x and y there are 2L values of z satisfying y � z � x,
and ρ is a monotone probability distribution, it has to be the case that φ(x) ≤ ρ(x) for all x
on which φ(x) is defined.

We will be claiming that φ(x) is (in terms of L1 distance) a good approximation to ρ(x),
but first we will show that φ̂(x) is a good approximation to φ(x):

B Claim 25. With probability at least 7/8, it is the case that:

∑
x∈{0,1}n s.t. L≤||x||<h0

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣ ≤ ε

4 (20)

Proof. We claim that for any pair (x, y), such that φ is defined on x and ||x|| − ||y|| = L,
with probability at least 1− 1

8·2n·nL the following holds:

1
2L

∣∣∣∣ Pr
z∼ρ

[y � z � x]− |{z ∈ S : y � z � x}|
N2

∣∣∣∣ ≤ ε

8 ·max
(

1
2n ,

1
2L Pr

z∼ρ
[y � z � x]

)
(21)

We use Chernoff’s bound to prove this as follows. Denote by q the value Prz∼ρ[y � z � x].
If q ≥ 2L

2n then by Chernoff’s bound we have:

Pr
[∣∣∣∣|{z ∈ S : y � z � x}| − qN2

∣∣∣∣ ≥ ε

8qN2

]
≤ 2 exp

(
−1

3

( ε
8

)2
qN2

)
≤

2 exp
(
−1

3

( ε
8

)2 2L

2n ·N2

)
= 1

8 · 2n · nL



R. Rubinfeld and A. Vasilyan 28:21

Otherwise, if we have q < 2L
2n , then by Chernoff’s bound:

Pr
[∣∣∣∣|{z ∈ S : y � z � x}| − qN2

∣∣∣∣ ≥ ε

8 ·
2L

2n ·N2

]
≤ 2 exp

(
−1

3

(
ε

8 ·
2L

2n ·
1
q

)2

qN2

)
≤

2 exp
(
−1

3

( ε
8

)2 2L

2n ·N2

)
= 1

8 · 2n · nL

Now, by taking a union bound, it follows that with probability 7/8 for all such pairs (x, y)
Equation 21 will be the case. For all x on which φ is defined it then will be the case that:∣∣∣∣φ̂(x)− φ(x)

∣∣∣∣ ≤ ε

8 ·max
(

1
2n , φ(x)

)
Summing this for all x in the domain of φ we get:

∑
x∈{0,1}n s.t. L≤||x||<h0

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣ ≤ ε

8 ·

2n · 1
2n +

∑
x∈{0,1}n s.t. L≤||x||<h0

φ(x)

 ≤
ε

8 ·

1 +
∑

x∈{0,1}n s.t. L≤||x||<h0

ρ(x)

 ≤ ε

4

C

Now, we apply Corollary 10 to ρ. This gives a positive monotone function f that satisfies
the three conditions of Corollary 10. We separate all the values of x in {0, 1}n for which
L ≤ ||x|| < h0 into two kinds: good and bad. Recall that by Corollary 10 an element x of
{0, 1}n for which L ≤ ||x|| < h0 can have slackf (x) 6= 0 only if ||x|| = ki for some i between
1 and t. We say that x is bad if there is some ki for which 0 ≤ ||x|| − ki ≤ L. Otherwise, x
if good.

We can write:∑
x∈{0,1}n s.t. L≤||x||<h0

|φ(x)− f(x)| =
∑

good x
|φ(x)− f(x)|+

∑
bad x

|φ(x)− f(x)| (22)

Now, we bound the two terms above separately. If x is good, then it is the case
that for all z satisfying ||x|| − L ≤ ||z|| ≤ ||x|| we have slackf (x) = 0, and therefore
f(z) = maxz′∈{0,1}n s. t. z′�z and ||z||−||z′||=1 f(z′). Using this relation recursively, we obtain
that:

f(x) = max
z∈{0,1}n s. t. z�x and ||x||−||z||=L

f(z)

Therefore, since f is monotone, we obtain that:

f(x) = 1
2L · max

y s.t. y�x and ||x||−||y||=L

∑
z s.t. y�z�x

f(z)

By Corollary 10, it is the case ρ(x) ≥ f(x). This, together with the equation above and
Equation 19 implies:

φ(x) ≥ f(x)
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But we also know that ρ(x) ≥ φ(x). Therefore:∑
good x

|φ(x)− f(x)| ≤
∑

good x
|ρ(x)− f(x)| ≤ ε

4 (23)

Where the last inequality follows from Corollary 10.
Now, we bound the contribution of bad points.

∑
bad x

|φ(x)− f(x)| ≤
∑
bad x

max(φ(x), f(x)) ≤
∑
bad x

ρ(x) =

∑
k∈[L,h0] s.t. for some ki: |k − ki| ≤ L

µρ(k) ·
(
n

k

)

Now, by Claim 23 we have µρ(k) ≤ 1
2n ·

4
ε and by Fact 16 we have that

(
n
k

)
≤ 2√

n
· 2n.

Combining these two facts with the inequality above we get:

∑
bad x

|φ(x)− f(x)| ≤
(

1
2n ·

4
ε

)
·
(

2√
n
· 2n
)
· (L · t) = 4

ε
· 2√

n
· L · t

Substituting the value of L and the upper bound on t from Corollary 10 we get:∑
bad x

|φ(x)− f(x)| ≤ 4
ε
· 2√

n
· ε

4√n
512 ·

16
ε2

= ε

4

Combining this with Equations 22 and 23 we get:∑
x∈{0,1}n s.t. L≤||x||<h0

|φ(x)− f(x)| ≤ ε

2 (24)

Overall, we have:∣∣∣∣ ∑
x∈{0,1}n s.t. L≤||x||<h0

|ρ(x)− 1/2n| −
∑

x∈{0,1}n s.t. L≤||x||<h0

|φ̂(x)− 1/2n|
∣∣∣∣ ≤∑

x∈{0,1}n s.t. L≤||x||<h0

|φ̂(x)− ρ(x)| ≤
∑

x∈{0,1}n s.t. L≤||x||<h0

|φ̂(x)− φ(x)|+

∑
x∈{0,1}n s.t. L≤||x||<h0

|φ(x)− f(x)|+
∑

x∈{0,1}n s.t. L≤||x||<h0

|f(x)− ρ(x)|

This three terms can be bound using respectively Equation 20, Corollary 10 and Equation
24. This gives us:∣∣∣∣2 · d̂2 −

∑
x∈{0,1}n s.t. L≤||x||<h0

∣∣∣∣ρ(x)− 1
2n

∣∣∣∣∣∣∣∣ =

∣∣∣∣ ∑
x∈{0,1}n s.t. L≤||x||<h0

|ρ(x)− 1/2n| −
∑

x∈{0,1}n s.t. L≤||x||<h0

|φ̂(x)− 1/2n|
∣∣∣∣ ≤ ε

Therefore, with probability at least 7/8 Equation 18 holds, which proves Claim 24 and
completes the proof of correctness.
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5 Estimating the support size

In this section we prove our upper-bound on the sample complexity of estimating the support
size of an unknown monotone probability distribution over the Boolean cube. Recall that
a probability distribution ρ is well-behaved if for every x either ρ(x) = 0 or ρ(x) ≥ 1/2n.
We restate the theorem:

I Theorem 4. For every positive ε, the following is true: for all sufficiently large n, there
exists an algorithm, which given 2n

2Θε(
√
n) samples from an unknown well-behaved monotone

probability distribution ρ over {0, 1}n, can reliably6 approximate the support size of ρ with
an additive error of up to ε. The algorithm runs in time Oε

(
2n

2Θε(
√
n)

)
Proof. The algorithm we use is listed as Algorithm 3.

Algorithm 3 Algorithm for the estimation of support size (given sample access from the distribu-
tion).

1. Set

M1 = 2n

2 ε
2

64
√
n

(
ln 32

ε
+ 1
)

2. Take M1 samples from the probability distributions. Call the set of these samples S1.
3. Set

M2 = 32 ln 2
ε2

4. Pick M2 elements of {0, 1}n uniformly at random. Call these samples S2.
5. We say that a point y is covered if in S1 there exists at least one z, so that z � y. One

can check if a point y is covered by going through all the M1 elements in S1. Using this
checking procedure, compute the fraction η̂ of the elements in S2 that are covered.

6. Output η̂.

Clearly, the sample complexity is:

O

(
2n

2 ε
2

64
√
n

(
ln 32

ε
+ 1
))

= 2n

2Θε(
√
n)

In turn, the run-time is:

O

(
2n

2 ε
2

64
√
n

(
ln 32

ε
+ 1
)
· 32 ln 2

ε2

)
= 2n

2Θε(
√
n)

Now, all is left to prove is correctness.
Let η denote the fraction of elements in {0, 1}n that are covered by our samples in S1.

Then, a random element of {0, 1}n is covered with probability η. Therefore, by the Hoeffding
bound it follows that:

Pr
S2

[
|η̂ − η| > ε

4

]
≤ 2 exp

(
−2
( ε

4

)2
M2

)
= 1

8 (25)

The last equality follows by substituting the value of M2.

6 By reliably we henceforth mean that the probability of success is at least 2/3.
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Since ρ is monotone, it has to be the case that every point that is covered is in the support
of ρ. Hence, the support size of ρ is at least η · 2n.

Now, all we need to show is that η · 2n is not likely to be much smaller than the support
size of ρ. We call a point x in the support of ρ good if there are at least 2 ε

2
64
√
n points y each

of which satisfying: (i) y belongs to the support of ρ. (ii) x � y. If a point in the support of
ρ is not good, then it is bad. We will show that the bad points are few, while a lot of the
good points are likely to be covered.

Let fsupport be defined as follows:

fsupport
def=
{

1 if ρ(x) 6= 0
0 otherwise

In other words, fsupport is the indicator function of the support of ρ. Since ρ is a monotone
probability distribution, fsupport is a monotone function. Therefore, applying Lemma 8, there
exists a function g = g1 ∨ ... ∨ gt that ε/4-approximates fsupport, where t ≤ 8/ε and each gi
is a monotone DNF with terms of width exactly ki. Additionally, g(x) ≤ f(x) for all x in
{0, 1}n

B Claim 26. For all i, gi contains at most ε2

32 · 2
n bad points.

Proof. Recall that gi is ki-regular, and therefore every point x on which gi(x) = 1 needs to
have Hamming weight ||x|| ≥ ki.

B Claim 27. If x satisfies gi(x) = 1 and ||x|| ≥ ki + ε2

64
√
n, then x has to be good

Proof. Since gi is a DNF and gi(x) = 1 then x satisfies at least one of the terms of gi. If
there are more than one, arbitrarily pick one of them. Let this term be

t(y) =
∧
j∈H1

yj

The width of this AND has to be ki, therefore |H| = ki. Since ||x|| ≥ ki + ε2

64
√
n, there must

be ε2

64
√
n values of j for which xj = 1 but j is not in H1. Denote the set of these values of j

as H2.
Now, consider an element y ∈ {0, 1}n satisfying the criteria:
For all j in H1, yj = 1.
For all j neither in H1 nor in H2, yj = 0.

Clearly, t(y) = 1, which implies gi(y) = 1, g(y) = 1, and fsupport(y) = 1. Also, for all j,
we have yj ≤ xj , and therefore y � x. Finally, for all j in H2 the value of yj can be set
arbitrarily to zero or one, and therefore there are 2|H2| such points, which is at least 2 ε

2
64
√
n.

Therefore, x is a good point. C

Thus, we can upper-bound the number of bad points x on which gi(x) = 1 by:∣∣∣∣{x ∈ {0, 1}n : g(x) = 1 and ki + ε2

64
√
n >

∑
j

xj ≥ ki
}∣∣∣∣ ≤

∣∣∣∣{x ∈ {0, 1}n : ki + ε2

64
√
n >

∑
j

xj ≥ ki

}∣∣∣∣ =
ki+ ε2

64
√
n−1∑

j=ki

(
n

j

)
≤ ε2

64
√
n

(
n

n/2

)
By Fact 16, for sufficiently large n, it is the case that

(
n
n/2
)
≤ 2 · 2n√

n
. This implies that

the expression above is upper-bounded by ε2

32 · 2
n, which completes the proof of this claim.

C
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Since g = g1 ∨ ... ∨ gt(x), our claim implies the following:

∣∣∣∣{x : g(x) = 1 and x is bad
}∣∣∣∣ ≤ t∑

i=1

∣∣∣∣{x : gi(x) = 1 and x is bad
}∣∣∣∣ ≤

t · ε
2

32 · 2
n ≤ 8

ε
· ε

2

32 · 2
n = ε

4 · 2
n

In addition, there could be at most ε
4 · 2

n bad points among the points on which fsupport and
g disagree. Thus, in total, there are at most ε

2 · 2
n bad points.

Finally, we need to argue that it is likely that many of the good points get covered:

B Claim 28. Suppose there are G good points. Then, with probability at least 7/8 it will be
the case that at least 1− ε/4 fraction of these good points are covered.

Proof. For every good point x there exist least 2 ε
2

64
√
n values of y for which i) x � y and ii) y

is in the support of ρ. Since x � y, if y is ever picked from the distribution, then x will be
covered. Since y is in the support of ρ, and ρ is well-behaved, we have ρ(y) ≥ 1

2n . Together,

these imply that the probability that a random sample from ρ covers x is at least 2
ε2
64
√
n

2n .
Hence, the probability that any of the M1 i.i.d. samples taken from ρ does not cover x is at
most:(

1− 2 ε
2

64
√
n

2n

)M1

=
(

1− 2 ε
2

64
√
n

2n

) 2n

2
ε2
64
√
n

(ln 32
ε +1)

≤ 1
eln 32

ε

= ε

32

Let C denote a random variable, whose value equals to the number of the good points
(out of total G) covered after taking M1 i.i.d. samples from ρ.

The value of C has to satisfy these two constraints: (i) It has to be between 0 and G (ii)
By linearity of expectation, E[C] ≥ (1− ε

32 )G. Thus, to finish the proof of the Lemma, it is
sufficient to show the following claim:

B Claim 29. If, for some fixed G, a random variable C is supported on [0, G] and E[C] ≥
(1− ε

32 )G, then Pr[C ≥ (1− ε/4)G] ≥ 7/8.

Proof. This is immediate from Markov’s inequality for the random variable G− C. C

C

Now, we put it all together. Suppose that the bad events we previously identified do not
happen. In particular, we know that with probability at least 7/8 we have:∣∣∣∣η̂ − η∣∣∣∣ ≤ ε

4

Additionally, we also know that with probability at least 7/8 it is the case that:

∣∣∣∣
∣∣ {x : fsupport(x)=1 and

x is good and covered

} ∣∣
2n −

∣∣ {x : fsupport(x)=1 and
x is good

} ∣∣
2n

∣∣∣∣ ≤
ε

4 ·
|{x : fsupport(x) = 1 and x is good}|

2n
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By union bound, the probability that none of this bad events happens is at least 3/4, which
we will henceforth assume. Using the inequalities above together with the fact that the
fraction of bad points is at most ε/2 we get:∣∣∣∣η̂ − |{x : fsupport(x) = 1}|

2n

∣∣∣∣ ≤ ∣∣∣∣η̂ − η∣∣∣∣+
∣∣∣∣η − |{x : fsupport(x) = 1}|

2n

∣∣∣∣ =∣∣∣∣η̂ − η∣∣∣∣+
∣∣∣∣ |{x : fsupport(x) = 1 and x is covered}|

2n − |{x : fsupport(x) = 1}|
2n

∣∣∣∣ ≤ ∣∣∣∣η̂ − η∣∣∣∣+∣∣∣∣
∣∣ {x : fsupport(x)=1 and

x is good and covered

} ∣∣
2n −

∣∣ {x : fsupport(x)=1 and
x is good

} ∣∣
2n

∣∣∣∣+
|{x : fsupport(x) = 1 and x is bad}|

2n ≤ ε

4 + ε

4 ·
|{x : fsupport(x) = 1 and x is good}|

2n + ε

2 ≤
ε

4 + ε

4 + ε

2 = ε

This completes the proof of correctness. J

6 A lower bound on tolerant testing of uniformity

In this section we prove a sample complexity lower bound on the problem of tolerantly
testing the uniformity of an unknown monotone probability distribution over {0, 1}n: the
task of distinguishing a distribution that is o(1)-close to uniform from a distribution that is
sufficiently far from uniform. Recall the theorem:

I Theorem 6. For infinitely many positive integers n, there exist two probability distributions
∆Close and ∆Far over monotone distributions over {0, 1}n, satisfying:
1. Every distribution in ∆Far is 1/2-far from the uniform distribution.
2. Any algorithm that takes only o

(
2n

0.5−0.01
2

)
samples from a probability distribution, fails

to reliably distinguish between ∆Close and ∆Far.
3. Every distribution in ∆Close is o(1)-close to the uniform distribution.

Proof. A basic building block of our construction is the following:

I Definition 30. For a member of the Boolean cube x, the subcube distribution Sx is the
probability distribution that picks y uniformly, subject to y � x.
All our distributions will be mixtures of such subcube distributions. For all the mixtures
we will use, each subcube in the mixture is given the same weight. This method involving
subcube distributions was used in [29] to prove property testing lower bounds for monotone
probability distributions.

We construct ∆Close to have only one member, which is equal to the uniform mixture of
Sx for all

(
n

n0.5−0.01

)
values of x with Hamming weight n0.5−0.01.

We define a random member of ∆Far to be the uniform mixture of 1
22n0.5−0.01 subcube

distributions Sxj , where each of the xj is picked randomly among all the members of the
Boolean cube with Hamming weight n0.5−0.01.

We show that any member of ∆Far is sufficiently far from uniform by upper-bounding
the size of its support (i.e. the number of elements that have non-zero probability). Each of
the subcube distributions has a support size of 2n−n0.5−0.01 . The support size of a mixture
of distributions is at most the sum of the supports sizes of the respective distributions.
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Therefore, the support size of a member of ∆Far is at most:

2n−n
0.5−0.01

· 1
22n

0.5−0.01
= 1

22n

This is sufficient to conclude that any member of ∆Far is 1/2-far from uniform.
A random member D1 of ∆Far and the sole member D2 of ∆Close cannot be reliably

distinguished using only o
(

2n
0.5−0.01

2

)
samples. This follows by the argument used in [29]:

Because of the number of samples, with probability at least 0.99, the samples drawn from
a random distribution from D1 will all be from different subcube distributions. Also with
probability at least 0.99, this will also be true for the sole distribution of D2. If both of
these things happen (which is the case with probability at least 0.98), the samples will be
statistically indistinguishable. Thus, no tester can distinguish between D1 and D2 with an
advantage greater than 0.02.

Finally, we need to prove that D2 is o(1)-close to the uniform distribution. Here, the
proof goes as follows. Both D2 and the uniform distribution are symmetric with respect to
a change of indices. This implies that the distance between these probability distributions
equals to the distance between random variables R2 and R1, where R1 is distributed as the
Hamming weight of a random sample from D2, whereas R2 is distributed as the Hamming
weight of uniformly random element of the Boolean cube. It is not hard to see that R1 and
R2 are distributed according to binomial distributions with slightly different parameters.
Now, the problem is equivalent to proving that the two following probability distributions
are o(1)-close in total variation distance:

A sum of n i.i.d. uniform random variables from {0, 1}.
A sum of n− n0.5−0.01 i.i.d. uniform random variables from {0, 1}.

It is convenient to first bound the variation distance between 1) the sum of k i.i.d. uniform
random variables from {0, 1} and 2) k + 1 i.i.d. uniform random variables from {0, 1}, where
k. We write the total variation distance as:

1
2k +

k−1∑
i=1

∣∣∣∣ 1
2k

(
k

i

)
− 1

2k−1

(
k − 1
i

)∣∣∣∣ = 1
2k

(
1 +

k−1∑
i=1

∣∣∣∣(k − 1
i

)
−
(
k − 1
i− 1

)∣∣∣∣ =
)

=

1
2k

1 +
(k−1)/2∑
i=1

((
k − 1
i

)
−
(
k − 1
i− 1

))
+

k−1∑
i=(k−1)/2

((
k − 1
i− 1

)
−
(
k − 1
i

)) =

1
2k

(
1 +

(
k − 1

(k − 1)/2

)
− 1 +

(
k − 1

(k − 1)/2

)
− 1
)

= O

(
1√
k

)

We telescoped the sums, and used the inequality that for all k, we have that
(
k
k/2
)
≤ O

(
2k√
k

)
.

For simplicity, we assumed above that k− 1 is even, the odd case can be handled analogously.
Thus, we have an upper bound of O(1/

√
k) on the total variation distance.

Using this, together with the triangle inequality for total variation distance, we bound
the variation distance between 1) the sum of n i.i.d. uniform random variables from {0, 1}
and 2) the sum of n− n0.5−0.01 i.i.d. uniform random variables from {0, 1} by

O

(
n0.5−0.01

n0.5

)
= o(1).

This finishes the proof. J

ITCS 2020



28:28 Learning Monotone Probability Distributions over the Boolean Cube

References
1 Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal Testing for

Properties of Distributions. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 3591–3599, 2015. URL: http://papers.nips.cc/paper/
5839-optimal-testing-for-properties-of-distributions.

2 Michal Adamaszek, Artur Czumaj, and Christian Sohler. Testing Monotone Continuous
Distributions on High-dimensional Real Cubes. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 56–65, 2010. doi:10.1137/1.9781611973075.6.

3 Maryam Aliakbarpour, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak Yod-
pinyanee. Towards Testing Monotonicity of Distributions Over General Posets. In Conference
on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, pages 34–82, 2019.
URL: http://proceedings.mlr.press/v99/aliakbarpour19a.html.

4 Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone
and unimodal distributions. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 381–390. ACM, 2004.

5 Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing monotonicity
of distributions over general partial orders. In ICS, pages 239–252, 2011.

6 Lucien Birgé et al. Estimating a density under order restrictions: Nonasymptotic minimax
risk. The Annals of Statistics, 15(3):995–1012, 1987.

7 Eric Blais, Johan Håstad, Rocco A Servedio, and Li-Yang Tan. On DNF approximators
for monotone boolean functions. In International Colloquium on Automata, Languages, and
Programming, pages 235–246. Springer, 2014.

8 Clément L Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubinfeld. Testing
shape restrictions of discrete distributions. Theory of Computing Systems, 62(1):4–62, 2018.

9 Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Testing
Bayesian Networks. In Proceedings of the 30th Conference on Learning Theory, COLT
2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 370–448, 2017. URL: http:
//proceedings.mlr.press/v65/canonne17a.html.

10 Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Learning mixtures of
structured distributions over discrete domains. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pages 1380–1394. Society for Industrial and
Applied Mathematics, 2013.

11 Siu-on Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal Algorithms
for Testing Closeness of Discrete Distributions. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 1193–1203, 2014. doi:10.1137/1.9781611973402.88.

12 Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning k-Modal
Distributions via Testing. Theory of Computing, 10:535–570, 2014. doi:10.4086/toc.2014.
v010a020.

13 Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning Poisson Binomial
Distributions. Algorithmica, 72(1):316–357, 2015. doi:10.1007/s00453-015-9971-3.

14 Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, and Paul
Valiant. Testing k-Modal Distributions: Optimal Algorithms via Reductions. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1833–1852, 2013. doi:10.1137/1.
9781611973105.131.

15 Constantinos Daskalakis and Gautam Kamath. Faster and Sample Near-Optimal Algorithms
for Proper Learning Mixtures of Gaussians. In Proceedings of The 27th Conference on Learning
Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, pages 1183–1213, 2014.

http://papers.nips.cc/paper/5839-optimal-testing-for-properties-of-distributions
http://papers.nips.cc/paper/5839-optimal-testing-for-properties-of-distributions
https://doi.org/10.1137/1.9781611973075.6
http://proceedings.mlr.press/v99/aliakbarpour19a.html
http://proceedings.mlr.press/v65/canonne17a.html
http://proceedings.mlr.press/v65/canonne17a.html
https://doi.org/10.1137/1.9781611973402.88
https://doi.org/10.4086/toc.2014.v010a020
https://doi.org/10.4086/toc.2014.v010a020
https://doi.org/10.1007/s00453-015-9971-3
https://doi.org/10.1137/1.9781611973105.131
https://doi.org/10.1137/1.9781611973105.131


R. Rubinfeld and A. Vasilyan 28:29

16 Constantinos Daskalakis, Gautam Kamath, and Christos Tzamos. On the Structure, Covering,
and Learning of Poisson Multinomial Distributions. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 1203–1217, 2015. doi:10.1109/FOCS.2015.77.

17 Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-Based Testers
are Optimal for Uniformity and Closeness. Chicago J. Theor. Comput. Sci., 2019, 2019. URL:
http://cjtcs.cs.uchicago.edu/articles/2019/1/contents.html.

18 Ilias Diakonikolas, Daniel M Kane, and Vladimir Nikishkin. Testing identity of structured
distributions. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 1841–1854. Society for Industrial and Applied Mathematics, 2015.

19 Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Efficient robust proper learning of
log-concave distributions. arXiv preprint, 2016. arXiv:1606.03077.

20 Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Optimal learning via the fourier
transform for sums of independent integer random variables. In Conference on Learning
Theory, pages 831–849, 2016.

21 Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Properly learning poisson binomial
distributions in almost polynomial time. In Conference on Learning Theory, pages 850–878,
2016.

22 Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Fast and sample near-optimal algorithms
for learning multidimensional histograms. arXiv preprint, 2018. arXiv:1802.08513.

23 Rong Ge, Qingqing Huang, and Sham M. Kakade. Learning Mixtures of Gaussians in High
Dimensions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 761–770, 2015.
doi:10.1145/2746539.2746616.

24 Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and testing k-histogram
distributions in sub-linear time. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 15–22. ACM, 2012.

25 Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures
of two Gaussians. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 553–562, 2010. doi:
10.1145/1806689.1806765.

26 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

27 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

28 Oded Regev and Aravindan Vijayaraghavan. On Learning Mixtures of Well-Separated Gaus-
sians. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 85–96, 2017. doi:10.1109/FOCS.2017.17.

29 Ronitt Rubinfeld and Rocco A Servedio. Testing monotone high-dimensional distributions.
Random Structures & Algorithms, 34(1):24–44, 2009.

30 Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log (n)-sample estimator
for entropy and support size, shown optimal via new CLTs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 685–694. ACM, 2011.

31 Gregory Valiant and Paul Valiant. The power of linear estimators. In 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pages 403–412. IEEE, 2011.

32 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

33 Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets via
best polynomial approximation. IEEE Transactions on Information Theory, 62(6):3702–3720,
2016.

34 Yihong Wu, Pengkun Yang, et al. Chebyshev polynomials, moment matching, and optimal
estimation of the unseen. The Annals of Statistics, 47(2):857–883, 2019.

ITCS 2020

https://doi.org/10.1109/FOCS.2015.77
http://cjtcs.cs.uchicago.edu/articles/2019/1/contents.html
http://arxiv.org/abs/1606.03077
http://arxiv.org/abs/1802.08513
https://doi.org/10.1145/2746539.2746616
https://doi.org/10.1145/1806689.1806765
https://doi.org/10.1145/1806689.1806765
https://doi.org/10.1109/FOCS.2017.17


28:30 Learning Monotone Probability Distributions over the Boolean Cube

7 Appendix A

7.1 Verifying the conditions on Lh

Recall that we defined A and Lh as follows:
A := 1

2n · e
1

2000 ·n
1/5

For all h ≥ n/2, we set Lh := max
(

log
(

2nA · (nh)
2n

)
, 0
)

For all h, satisfying n/2 > h ≥ 9
√
n, we set: Lh := Ln/2 = log

(
2nA · ( n

n/2)
2n

)
.

Here we prove that these values of A and Lh satisfy the following four conditions:
a) As a function of h, Lh is non-increasing.
b) For all h, we have that Lh ≤ 9

√
n.

c)

1
2n ·

n∑
h=9
√
n

(
n

h

)
· A2Lh ≤

1
2

d)

n∑
h=9
√
n

Lh ·




400
n2.5 if h ≤ n/2−

√
n ln(n)

40000
n if n/2−

√
n ln(n) < h < n/2 +

√
n

40000 ·
(
h−n/2
n

)2
if h ≥ n/2 +

√
n

 ≤ ε2

20000

We will need the following standard fact can be proven, for example, by comparing∑N
i=0 i

k and
∫ N
i=0 i

k di:

I Fact 31. For any positive constant k and for sufficiently large n, it is the case that:∑n
i=0 i

k = (1 + o(1)) nk+1

k+1 .

The truth of conditions (a) and (b) follows immediately by inspection. In fact a statement
stronger than (b) is the case: for sufficiently large n we have Lh ≤ log(n · A) ≤ 2 · n1/5.
Regarding condition (c), we have:

1
2n ·

n∑
h=9
√
n

(
n

h

)
· A2Lh =

A

2n

 n/2∑
h=9
√
n

(
n

h

)
1

2nA ·
2n(
n
n/2
) +

n∑
h=n/2

(
n

h

)
·min

(
1

2nA ·
2n(
n
h

) , 1)
 ≤ n∑

h=9
√
n

1
2n ≤

1
2

Finally, recall that for all h, we have Lh ≤ 2 · n1/5. For sufficiently large n, we have:

n∑
h=9
√
n

Lh ·




400
n2.5 if h ≤ n/2−

√
n ln(n)

40000
n if n/2−

√
n ln(n) < h < n/2 +

√
n

40000 ·
(
h−n/2
n

)2
if h ≥ n/2 +

√
n

 ≤

n/2−
√
n lnn∑

h=9
√
n

2·n1/5· 400
n2.5 +

n+
√
n∑

h=n/2−
√
n lnn

2·n1/5· 40000
n

+
n∑

h=n/2+
√
n

40000·
(
h− n/2

n

)2
·Lh ≤

ε2

40000 +
n∑

h=n/2+
√
n

40000 ·
(
h− n/2

n

)2
· Lh (26)
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We now bound the last term using Hoeffding’s inequality to bound the value of
(
n
h

)
, making a

change of variables with i := n−h
2 and then using Fact 31 to bound the resulting summation.

Precisely, we have the following chain of inequalities (some of which are only true for
sufficiently large n):

n∑
h=n/2+

√
n

40000 ·
(
h− n/2

n

)2
· Lh ≤

n∑
h=n/2

40000 ·
(
h− n/2

n

)2
· max

(
log
(

2nA ·
(
n
h

)
2n

)
, 0
)
≤

n∑
h=n/2

40000 ·
(
h− n/2

n

)2
· max

(
log
(

2nA · exp
(
−2(h− n/2)2

n

))
, 0
)

=

√
n
2 ln(2nA)∑
i=0

40000
ln 2 ·

(
i

n

)2(
ln(2nA)− 2 · i

2

n

)
=

40000
ln 2 ·

(
(1 + o(1))

(√
n
2 ln(2nA)

)3
3n2 ln(2nA)− (1 + o(1)) 2 ·

(√
n
2 ln(2nA)

)5
5n3

)

Finally, simplifying and substituting the value of A we get:

n∑
h=n/2+

√
n

40000 ·
(
h− n/2

n

)2
· Lh ≤ (1 + o(1)) · 40000

ln 2 ·
√

2
30
√
n

(ln(2nA))5/2 ≤ ε2

40000

Condition (d) is verified by combining Equation 26 with the equation above.

7.2 Proof of Claim 21
Here we prove that for all sufficiently large n, for all h, satisfying 0 ≤ h ≤ n, it is the case
that:

(
n
h

)∑n
j≥h

(
n
j

) ≤



2
n2 if h ≤ n/2−

√
n ln(n)

200√
n

if n/2−
√
n ln(n) < h < n/2 +

√
n

200 · h−n/2n if h ≥ n/2 +
√
n


We first handle the case when h ≥ n/2 +

√
n. If, furthermore, h > 11n/20, then it is

sufficient to prove that (nh)∑n

j≥h (nj)
≤ 10, which is trivially true. Thus, we now assume that

h ≤ 11n/20
It is the case that:(

n
k

)(
n
k−1
) =

1− k−n/2−1
n/2

1 + k−n/2
n/2

(27)

Therefore, we can write:∑n
j≥h

(
n
j

)(
n
h

) =
n∑
j=h

j∏
k=h+1

1− k−n/2−1
n/2

1 + k−n/2
n/2
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Since n/2 +
√
n ≤ h ≤ 11n/20, for sufficiently large n we have that h+ 1

4 ·
n

h−n/2 ≤ n. Using
this, we can truncate the sum above, and then lower-bound the result by the product of the
smallest summand with the total number of summands, getting:∑n

j≥h
(
n
j

)(
n
h

) ≥
h+ 1

4 ·
n

h−n/2∑
j=h

j∏
k=h+1

1− k−n/2−1
n/2

1 + k−n/2
n/2

≥ 1
4 ·

n

h− n/2 ·
h+ 1

4 ·
n

h−n/2∏
k=h+1

1− k−n/2−1
n/2

1 + k−n/2
n/2

Now, we analogously lower-bound the product by lower-bounding each of the factors, and
then use the fact that since h ≥ n/2 +

√
n, it is the case that n

h−n/2 ≤ h− n/2. We get:

∑n
j≥h

(
n
j

)(
n
h

) ≥ 1
4 ·

n

h− n/2 ·

1−
h+ 1

4 ·
n

h−n/2−n/2−1
n/2

1 +
h+ 1

4 ·
n

h−n/2−n/2
n/2


1
4 ·

n
h−n/2

≥

1
4 ·

n

h− n/2 ·

1− 1.25h−n/2n/2

1 + 1.25h−n/2n/2

 1
4 ·

n
h−n/2

Finally, we use the fact that for all w between zero and one we have that 1
1+w = 1 − w +

w2 − ... ≥ 1− w. We get:∑n
j≥h

(
n
j

)(
n
h

) ≥ 1
4 ·

n

h− n/2 ·
(

1− 1.25h− n/2
n/2

) 1
2 ·

2n
h−n/2

Now, recall that for any value w between zero and one, we have that ln(1 − w) =
−
∑∞
i=1

wi

i ≥ −
∑∞
i=1 w

i = − w
1−w . Using this, and recalling that h ≤ 11n/20, we get that:

ln
(

1− 1.25h− n/2
n/2

)
≥ −

1.25h−n/2n/2

1− 1.25h−n/2n/2

≥ −
1.25h−n/2n/2

1− 1.25 11n/20−n/2
n/2

= −20
7
h− n/2

n

Combining the two previous equations together we get:∑n
j≥h

(
n
j

)(
n
h

) ≥ 1
4 ·

n

h− n/2 · exp
(
−20

7
h− n/2

n
· 1

2 ·
n

h− n/2

)
≥ 1

200 ·
n

h− n/2

This completes the proof in the case h ≥ n/2 +
√
n.

Given our bound in the range h ≥ n/2 +
√
n, to show the desired bound in the range

n/2 −
√
n ln(n) < h < n/2 +

√
n it is sufficient to show that (nh)∑n

j≥h (nj)
is non-decreasing,

as a function of h. If h < n/2, this follows immediately, because, as a function of h, the
numerator is non-decreasing, whereas the denominator is decreasing. If h ≥ n/2, then using
Equation 27, we get:∑n

j≥h+1
(
n
j

)(
n
h+1
) =

1 + h+1−n/2
n/2

1− h−n/2
n/2

· 1(
n
h

) · n∑
j≥h+1

1− j−n/2−1
n/2

1 + j−n/2
n/2

(
n

j − 1

)
≤

1(
n
h

) · n∑
j≥h+1

(
n

j − 1

)
≤ 1(

n
h

) · n+1∑
j≥h+1

(
n

j − 1

)
=
∑n
j≥h

(
n
j

)(
n
h

)
Which implies that ( n

h+1)∑n

j≥h+1 (nj)
≥ (nh)∑n

j≥h (nj)
Finally, for the range h ≤ n/2−

√
n ln(n) we can use Hoeffding’s bound:(

n
h

)∑n
j≥h

(
n
j

) ≤ (
n
h

)
1
2 · 2n

≤ 2 · Pr
x∼{0,1}n

[
x ≤ n/2−

√
n ln(n)

]
≤ 2 · exp (−2 lnn) = 2

n2
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7.3 Proof fo Claim 22
Recall that:

N
def= 2n

A
· 192
ε2
· (n+ 9

√
n+ 4)

Our algorithm for learning a monotone probability distribution drew N samples from the
probability distribution ρ and the resulting multiset of samples was denoted as S. For all x
in {0, 1}n, if ||x|| < 9

√
n, we set φ̂(x) = 0, otherwise we set:

φ̂(x) := 1
2bL||x||c

·
maxy s.t. y�x and ||y||−||x||=bL||x||c

∣∣∣∣{z ∈ S : y � z � x
}∣∣∣∣

N

Where Lh is a specific value associated to each value of h. We also defined for all x with
x ≥ 9

√
n the value:

φ(x) def= 1
2bL||x||c

· max
y s.t. y�x and ||x||−||y||=bL||x||c

Pr
z∼ρ

[y � z � x] =

1
2bL||x||c

· max
y s.t. y�x and ||x||−||y||=bL||x||c

∑
z s.t. y�z�x

ρ(z)

Here we prove that if it is the case that 1
2n ·

∑n
h=9
√
n

(
n
h

)
· A

2Lh ≤
1
2 , then, with probability

at least 7/8, it is the case that:∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣ ≤ ε

4

We claim that for any pair (x, y), such that φ is defined on x and ||x|| − ||y|| =
⌊
L||x||

⌋
,

with probability at least 1− 1
8·2n·n9

√
n the following holds:∣∣∣∣ Pr

z∼ρ
[y � z � x]− |{z ∈ S : y � z � x}|

N

∣∣∣∣ ≤ ε

8 ·max
(
A

2n , Pr
z∼ρ

[y � z � x]
)

(28)

We use Chernoff’s bound to prove this as follows. Denote by q the value Prz∼ρ[y � z � x].
If q ≥ A

2n then by Chernoff’s bound we have:

Pr
[∣∣∣∣|{z ∈ S : y � z � x}| − qN

∣∣∣∣ ≥ ε

8qN
]
≤

2 exp
(
−1

3

( ε
8

)2
qN

)
≤ 2 exp

(
−1

3

( ε
8

)2 A

2n ·N
)

= 1
8 · 2n · n9

√
n

Otherwise, if we have q < A
2n , then by Chernoff’s bound:

Pr
[∣∣∣∣|{z ∈ S : y � z � x}| − qN

∣∣∣∣ ≥ ε

8 ·
A

2n ·N
]
≤ 2 exp

(
−1

3

(
ε

8 ·
A

2n ·
1
q

)2
qN

)
≤

2 exp
(
−1

3

( ε
8

)2 A

2n ·N
)

= 1
8 · 2n · n9

√
n

Now, by taking a union bound, it follows that with probability 7/8 for all such pairs (x, y)
Equation 28 will be the case. Recalling the definition of φ, for all x on which φ is defined it
then will be the case that:∣∣∣∣φ̂(x)− φ(x)

∣∣∣∣ ≤ ε

8 ·max
(

1
2bL||x||c

A

2n , φ(x)
)
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Now, we sum this for all x in the domain of φ and use the fact that bLhc ≥ Lh + 1, and then
use that 1

2n ·
∑n
h=9
√
n

(
n
h

)
· A

2Lh ≤
1
2 . We get:

∑
x∈{0,1}n s.t. 9

√
n≤||x||

∣∣∣∣φ̂(x)− φ(x)
∣∣∣∣ ≤

ε

8 ·

 1
2n ·

∑
x∈{0,1}n s.t. 9

√
n≤||x||

A

2bL||x||c
+

∑
x∈{0,1}n s.t. 9

√
n≤||x||

φ(x)

 =

ε

8 ·

 1
2n ·

n∑
h=9
√
n

(
n

h

)
· A

2bLhc
+

∑
x∈{0,1}n s.t. 9

√
n≤||x||

φ(x)

 ≤
ε

8 ·

2 · 1
2n ·

n∑
h=9
√
n

(
n

h

)
· A2Lh +

∑
x∈{0,1}n s.t. 9

√
n≤||x||

φ(x)

 ≤
ε

8 ·

1 +
∑

x∈{0,1}n s.t. 9
√
n≤||x||

ρ(x)

 ≤ ε

4
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