
Parameterization Above a Multiplicative
Guarantee
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
fomin@ii.uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
petr.golovach@uib.no

Daniel Lokshtanov
University of California, Santa Barbara, USA
daniello@ucsb.edu

Fahad Panolan
Indian Institute of Technology Hyderabad, India
fahad@iith.ac.in

Saket Saurabh
Department of Informatics, University of Bergen, Norway
The Institute of Mathematical Sciences, HBNI and IRL 2000 ReLaX, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University of the Negev, Beersheba, Israel
meiravze@bgu.ac.il

Abstract
Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the
best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form
defined as follows. Given an instance (I, k) of some (parameterized) problem Π with a guarantee
g(I), decide whether I admits a solution of size at least (at most) k + g(I). Here, g(I) is usually a
lower bound (resp. upper bound) on the maximum (resp. minimum) size of a solution. Since its
introduction in 1999 for Max SAT and Max Cut (with g(I) being half the number of clauses and
half the number of edges, respectively, in the input), analysis of parameterization above a guarantee
has become a very active and fruitful topic of research.

We highlight a multiplicative form of parameterization above a guarantee: Given an instance (I, k)
of some (parameterized) problem Π with a guarantee g(I), decide whether I admits a solution of size
at least (resp. at most) k·g(I). In particular, we study the Long Cycle problem with a multiplicative
parameterization above the girth g(I) of the input graph, and provide a parameterized algorithm
for this problem. Apart from being of independent interest, this exemplifies how parameterization
above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ε > 0,
multiplicative parameterization above g(I)1+ε of Long Cycle yields para-NP-hardness, thus our
parameterization is tight in this sense. We complement our main result with the design (or refutation
of the existence) of algorithms for other problems parameterized multiplicatively above girth.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Parameterized Complexity, Above-Guarantee Parameterization, Girth

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.39

© Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 39; pp. 39:1–39:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:petr.golovach@uib.no
mailto:daniello@ucsb.edu
mailto:fahad@iith.ac.in
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2020.39
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Parameterization Above a Multiplicative Guarantee

Funding Fedor V. Fomin: Research Council of Norway via the project MULTIVAL.
Petr A. Golovach: Research Council of Norway via the project MULTIVAL.
Daniel Lokshtanov: European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant no. 715744), and United States - Israel
Binational Science Foundation grant no. 2018302.
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant no. 819416), and Swarnajayanti Fellowship
grant DST/SJF/MSA-01/2017-18.
Meirav Zehavi: Israel Science Foundation grant no. 1176/18, and United States – Israel
Binational Science Foundation grant no. 2018302.

1 Introduction

The goal of parameterized complexity is to find ways of solving NP-hard problems more
efficiently than brute force: our aim is to restrict the combinatorial explosion to a parameter
that is hopefully much smaller than the input size. Formally, a parameterization of a problem
is the assignment of an integer k to each input instance, and we say that a parameterized
problem is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in
time f(k) · nO(1), where n is the size of the input and f is an arbitrary computable function
depending on the parameter k only. There is a long list of NP-hard problems that are FPT
under various parameterizations: finding a vertex cover of size k, finding a cycle of length
k, finding a maximum independent set in a graph of treewidth at most k, etc. For more
background, the reader is referred to the monographs [12, 14, 21].

Choosing a suitable parameter plays an important role in the field of parameterized
complexity. Traditionally, the solution size has been the most sought after parameter.
However, in various circumstances this is not a good parameter. To illustrate this, consider
the following problems: Max Sat and Max Cut. Observe that there always exists a truth
assignment that satisfies half of the clauses, and there is always a max-cut containing at least
half the edges. Thus, if we choose solution size as the parameter, then we get the following
trivial algorithm: if k ≤ m/2, then return yes; else m ≤ 2k, so now any brute-force algorithm
is an FPT algorithm. Thus if we want to design a nontrivial parameterized algorithm, then
solution size is not a suitable parameter. In particular, a general message here is as follows.

The natural parameterization of, say, a maximization/minimization problem by
the solution size is not satisfactory if there is a lower bound for the solution size
that is sufficiently large.

Thus, for such cases, it is more natural to parameterize the problem by the difference
between the solution size and the bound. This perspective is known as “above guarantee”
parameterization. This approach was introduced by Mahajan and Raman [33] for the Max
Sat and Max Cut problem. This approach was successfully applied to many various
problems (see, e.g., [1, 11, 24, 25, 26, 34, 10] for a few illustrative examples).

In some of the above examples there is an explicit lower bound on the solution size, given
in terms of the input size. However, in many cases, we do not have explicit lower bounds.
We substantiate this with the example of classic Vertex Cover problem. In this problem,
we are given a graph G and a positive integer k, and the goal is to test whether there exists
a set of vertices C of size at most k that is a vertex cover (i.e., every edge has at least one
endpoint in C). Clearly, the size of a maximum matching of G or the value of the linear
programming relaxation of an integer linear program for Vertex Cover is a lower bound
on the size of a vertex cover of G. Observe that these lower bounds are graph dependent

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:3

and not the size dependent. This is what we mean by implicit lower bounds. Coming back
to Vertex Cover, in polynomial time it is possible to reduce the size of the graph, without
changing the answer, such that we are guaranteed that any vertex cover must contain half of
the remaining vertices. Thus, again we can employ any brute-force algorithm and design
an FPT algorithm for Vertex Cover. This has led to the study of the problem Vertex
Cover Above LP (or Vertex Cover Above Matching), which has played a central
role in the development of the field of parameterized complexity [12].

In this paper, we take the philosophy of above guarantee parameterization a significant
conceptual step forwards. In particular,

The goal of this paper is to study another classical problem – namely, Long
Cycle – from the viewpoint of a new implicit parameterization, that is neither
standard nor an additive above guarantee parameterization.

The Long Path problem is to decide, given a directed or undirected n-vertex graph G
and an integer k, whether G contains a path on at least k vertices, that is, a self-avoiding
walk with at least k vertices. Similarly, the Long Cycle problem is to decide whether
G contains a cycle of length at least k, that is, a closed self-avoiding walk with at least k
vertices. These problems are natural generalization of the classical Hamiltonian Path
and Hamiltonian Cycle problems and have been actively studied. In particular, there
is a plethora of results about parameterized complexity of Long Path and Long Cycle
(see, e.g., [4, 5, 9, 8, 18, 22, 29, 30, 31, 38]) since the early work of Monien [35]. Let us
just mention here that the fastest known randomized algorithm for Long Path is due to
Björklund et al. [4] and runs in time 1.657k · nO(1), whereas the fastest known deterministic
algorithm is due to Tsur [37] and runs in time 2.554k · nO(1). Respectively for Long Cycle,
the randomized algorithm with the currently best running time of 4k · nO(1) was given by
Zehavi in [40], and the best deterministic algorithm was given by Fomin et al. in [20] and
runs in time 4.884k · nO(1).

For Long Path, the investigation of above guarantee parameterizations was initiated
by Bezáková et al. in [2]. Let s and t be two vertices of a graph G. Clearly, the length
of any (s, t)-path in G is lower bounded by the shortest distance, d(s, t), between these
vertices. Based on this straightforward observation, Bezáková et al. in [2] introduced the
Longest Detour problem that asks, given a graph G, two vertices s, t, and a positive
integer k, whether G has an (s, t)-path with at least d(s, t) + k vertices. They proved that
for undirected graphs, this problem can be solved in time 2O(k) · nO(1). That is, it is FPT.
For the variant of the problem where the question is whether G has an (s, t)-path with
exactly d(s, t) + k vertices, a randomized algorithm with running time 2.746k · nO(1) and a
deterministic algorithm with running time 6.745k · nO(1) were obtained. In a recent work,
Fomin et al. [17] studied the parameterization of Long Path and Long Cycle above the
degeneracy d of the input graph G. Formally, a graph G has degeneracy at most d if every
subgraph of G has a vertex of degree at most d. A classic result by Erdős and Gallai [15]
from 1959 states that any graph of degeneracy d > 1 has a cycle (and hence also path)
on at least d vertices. If the graph G is not guaranteed to be 2-connected, then deciding
whether G contains a cycle of length d+2 is already NP-hard, and therefore parameterization
above degeneracy does not make sense. However, when we add the requirement that G is
2-connected, then then deciding whether G contains a cycle of length d+ k parameterized
by k can be done in time 2O(k) · nO(1) and hence FPT. A similar situation holds for Long
Path where connectivity replaces 2-connectivity.

ITCS 2020

39:4 Parameterization Above a Multiplicative Guarantee

1.1 Multiplicative Above Guarantee Parameterization
To the best of our knowledge, all successful above guarantee parameterizations are additive.
Roughly speaking, this means that if we have a lower bound τ on the optimal solution
size, then we ask whether we can find a solution of size (at least or at most) τ + p in time
f(p) · nO(1). Our main message of this paper is the following.

The goal of this paper is to introduce the notion of multiplicative above guarantee
parameterization (which is neither standard nor an additive above guarantee
parameterization). In multiplicative above guarantee parameterization, we ask
whether we can find a solution of size (at least or at most) τ · p in time g(p) ·
nO(1). We will illustrate our new definition by designing several FPT algorithms
parameterized above a multiplicative guarantee.

We remark that a few problems in [36] were stated in a way fitting parameterization
above a multiplicative guarantee. However, these were shown to be para-NP-hard [27, 28].

Recall that the girth of a graph G, denoted by γ(G), is the length of the shortest cycle
in G. First, consider the problem where we are given a graph G and an integer k and the
objective is to test whether there is a cycle of length at least γ(G) + k in G. If γ(G) ≤ 2k+ 6,
then clearly we can solve the problem in time 2O(k)nO(1) by using the algorithm in [39].
We now show that when 2k + 6 < γ(G), the problem is solvable in polynomial time. To
this end, let (G, k) be a yes-instance, and let C be a hypothetical solution. That is, C is
a cycle of length at least γ(G) + k. Let g = γ(G). Let u, v, w, x ∈ V (C) such that when
we traverse C in some order from u, we encounter v at distance b g2c − 1 from u, next we
encounter w at additional distance b g2c − 1 from v, and lastly we encounter x at additional
distance k′ = (g + k)− (2b g2c − 2) from w. Notice that k′ ∈ {k+ 2, k+ 3}. Since the girth of
G is g and k + 3 < g

2 , we have that shortest paths between u and v, v and w, and w and
x are unique and they are part of the cycle C. Therefore, we may compute the shortest
paths between the pairs above, and later check whether u is reachable from x after deleting
these shortest paths. Going over every possible choice of u, v, w, x ∈ V (C), this leads to a
polynomial time algorithm when 2k + 6 < γ(G). This implies that it can be decided in time
2O(k)nO(1) whether a graph has a cycle with at least γ(G) + k vertices.

The informal argument above shows that Long Cycle parameterized additively above
girth is not more “interesting” than just normal Long Cycle, where the input lower bound
on solution size is the parameter. In a sense, it hints that the guarantee may be strengthened.
In light of this, we introduce a new above guarantee version of Long Cycle (resp. Long
Path), termed Long Cycle (resp. Long Path) parameterized multiplicatively above girth,
as follows. The input consists of a graph G and an integer k, and the objective is to decide
whether there is a cycle (resp. path) on at least k · γ(G) vertices.

1.2 Our Contribution
We first prove our main result, which states that Long Cycle (and Long Path) paramet-
erized multiplicatively above girth is FPT. Specifically, we prove the following theorem.

I Theorem 1. Long Cycle (and Long Path) parameterized multiplicatively above girth
is solvable in time 2O(k2)n.

As a complementary result to the above theorem, we assert that our parameterization is
tight in the following sense.

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:5

I Theorem 2. For any fixed constant ε > 0, Long Cycle (and Long Path) parameterized
multiplicatively above g1+ε is para-NP-hard, where g is the girth of the input graph.

Next, we further extend the scope of our problem domain by showing that also Vertex
Cover, Connected Vertex Cover and Max Internal Spanning Tree parameterized
multiplicatively above girth are FPT. Given a graph G and an integer k, the objectives
of these problems are to decide whether G has a vertex cover of size at most k · γ(G), a
connected vertex cover (that is, a vertex cover that induces a connected subgraph) of size at
most k · γ(G), and a spanning tree with at least k · γ(G) internal vertices, respectively. Here,
γ(G)/2 is a lower bound on the size of an optimal solution.

I Theorem 3. Vertex Cover, Connected Vertex Cover and Max Internal Span-
ning Tree parameterized multiplicatively above girth are solvable in time 2O(k log k)n.

Lastly, we observe that parameterization above girth (even additively) can often yield
NP-hardness when k is a fixed constant. Specifically, we give Feedback Vertex Set and
Cycle Packing as illustrative simple examples.

I Theorem 4. Feedback Vertex Set and Cycle Packing parameterized additively
above girth are para-NP-hard.

2 Preliminaries

For terminology not explicitly defined here, we refer to the book of Diestel [13]. Throughout
the paper, we consider finite undirected graphs. For a graph G, let V (G) and E(G) denote
its vertex set and edge set, respectively. When G is clear from context, let n = |V (G)| and
m = |E(G)|. Given a subset U ⊆ V (G), let G[U] be the subgraph of G induced by U . The
girth of G is the length of the shortest cycle in G,1 and is denoted by γ(G). A vertex cover
of G is a set of vertices in G whose removal from G yields an edgeless graph. The vertex
cover number of G is the smallest size of a vertex cover of G. A feedback vertex set of G is a
set of vertices in G whose removal from G yields a forest. The feedback vertex set number of
G is the smallest size of a feedback vertex set of G. For any t ∈ N, let Ct denote the cycle
on t vertices and Kt denote the complete graph on t vertices.

A subdivision of an edge e = {u, v} ∈ E(G) is its replacement by a new degree-2 vertex
whose neighbors are u and v. A subdivision of G is any graph that can be obtained by
subdividing some of the edges of G (where a single edge can be subdivided multiple times).
Let Paths(G) be the set of all (simple) paths in G. Given two (simple) paths P1 and P2 that
share one or two endpoints and are internally vertex-disjoint, let P1 + P2 denote the (simple)
path or cycle (if both endpoints are shared) obtained by concatenating P1 and P2. The size
of a cycle or path is its number of vertices, and its length is its number of edges. A graph H
is a topological minor of G if G contains a subgraph that is isomorphic to some subdivision
of H. More explicitly, this notion is defined as follows.

I Definition 5 (Topological Minor). A graph H is a topological minor of a graph G if there
exist injective functions φ : V (H) → V (G) and ϕ : E(H) → Paths(G) such that for all
e = {h, h′} ∈ E(H), the endpoints of ϕ(e) are φ(h) and φ(h′), for all distinct e, e′ ∈ E(H),
the paths ϕ(e) and ϕ(e′) are internally vertex-disjoint, and there do not exist a vertex v in
the image of φ and an edge e ∈ E(H) such that v is an internal vertex on ϕ(e).

1 If G does not contain any cycle, then its girth is defined as ∞.

ITCS 2020

39:6 Parameterization Above a Multiplicative Guarantee

The Catersian product of two graphs is defined as follows.

I Definition 6 (Cartesian Product of Graphs). The Cartesian product G×H of two graphs
G and H is the graph whose vertex set is the Cartesian product V (G)× V (H), where any
two vertices (u, u′) and (v, v′) are adjacent if and only if one of the following holds: (i) u = v

and {u′, v′} ∈ E(H); (ii) u′ = v′ and {u, v} ∈ E(G).

Treewidth is a measure of how “treelike” is a graph, formally defined as follows.

I Definition 7 (Treewidth). A tree decomposition of a graph G is a pair (T, β) of a tree T
and β : V (T)→ 2V (G), such that
1. for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T) such that x, y ∈ β(v), and
2. for any vertex x ∈ V (G), the subgraph of T induced by the set Tx = {v ∈ V (T) : x ∈ β(v)}

is a non-empty tree.
The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The treewidth of G, denoted by tw(G), is the
minimum width over all tree decompositions of G.

The treewidth of a graph can be efficiently approximated up to a constant factor as
follows.

I Proposition 8 ([7]). There exists an algorithm that, given a graph G and an integer t,
in time 2O(t)n either determines that the treewidth of G is larger than t, or outputs a tree
decomposition of G of width at most 5t+ 4.

The following relation between treewidth and feedback vertex set number is folklore.

I Proposition 9 ([12]). There exists an algorithm that, given a graph G with a feedback
vertex set U , in time O(|U |n) outputs a tree decomposition of G of width |U |.

3 FPT Algorithm for Long Cycle

In this section, we consider the parameterized complexity of Long Cycle parameterized
multiplicatively above girth, and prove Theorems 1 and 2. For our positive result, we required
the following definition and propositions. First, we give the definition of a graph called a
t-prism, which has 2t vertices and 3t edges (see Fig. 1).

I Definition 10 (Prism). For any t ∈ N, the t-prism is the Cartesian product Ct ×K2.

The following proposition asserts that a graph of sufficiently high treewidth necessarily
contains a large prism as a topological minor.

I Proposition 11 ([3]). For any k ∈ N, any graph G of treewidth at least 60k2 contains a
k-prism as a topological minor.2

In case the treewidth of the graph is low, we will be able to solve the problem by making
use of the following proposition.

I Proposition 12 ([6]). There exists an algorithm that, given a graph G and a tree decom-
position of G of width t, in time 2O(t)n outputs a cycle (if one exists) and a path in G of
maximum sizes.

2 Although the result is mentioned in terms of minors, the proof given in [3] yields the result stated here.

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:7

𝑎" 𝑎#
𝑎$

𝑎%

𝑎&

𝑎'

𝑎(

𝑎%)
𝑎%)*"

𝑏" 𝑏#
𝑏$
𝑏%
𝑏&
𝑏'

𝑏(

𝑏%)
𝑏%)*"

𝑏,
𝑎, 𝑏-

𝑎-

𝑏".

𝑎".

𝑎""

𝑏""

𝑎"#

𝑏"# 𝑏"$

𝑎"$

𝑏"%

𝑎"%

𝑏"&

𝑎"&

𝑏"'

𝑎"'

.
.

.

Figure 1 A 4k-prism.

The main combinatorial lemma we need for our positive result is as follows. This lemma
handles the case where the treewidth of the graph is large.

I Lemma 13. For any k ∈ N, any graph G that contains the 4k-prism as a topological minor
also has a cycle on at least γ(G) · k vertices.

Proof. Let H be the 4k-prism. Notice that the vertex set of H can be denoted by
V (H) = {a1, a2, . . . , a4k, b1, b2, . . . , b4k} so that H[{a1, a2, . . . , a4k}] and H[{b1, b2, . . . , b4k}]
are cycles and {{ai, bi} : i ∈ {1, 2, . . . , 4k}} ⊆ E(H) (see Fig. 1). Let φ : V (H) → V (G)
and ϕ : E(H) → Paths(G) be some two functions that witness that H is a topological
minor of G. Let S1, . . . , S2k be a set of 2k vertex-disjoint cycles of length 4 in H defined
as follows: For each i ∈ {0, 1, . . . , 2k − 1}, Si = H[{a2i+1, a2i+2, b2i+2, b2i+1}] (see Fig. 1).
Additionally, we define two (not vertex-disjoint) cycles C and C ′ in H as follows: C =
H[{a1, a2, b2, b3, a3, a4, . . . , a4k−1, a4k, b4k}] and C ′=H[{a1, b1, b2, a2, a3, b3, . . . , b4k, a4k, a1}]
(see Fig. 1).

Now, for each i ∈ {0, 1, . . . , 2k − 1}, let Ai = ϕ({a2i+1, a2i+2}) + ϕ({a2i+2, b2i+2}) +
ϕ({b2i+2, b2i+1})+ϕ({b2i+1, a2i+1}). This notation is well defined as required to concatenate
paths – specifically, here we concatenated internally vertex-disjoint paths sharing exactly one
endpoint except for the last concatenation where both endpoints are shared (by the paths
ϕ({a2i+1, a2i+2}) +ϕ({a2i+2, b2i+2}) + ϕ({b2i+2, b2i+1}) and ϕ({b2i+1, a2i+1})). Roughly
speaking, Ai is the cycle to which ϕ maps Si. Notice that {Ai}2k−1

i=0 is a collection of 2k
vertex-disjoint cycles in G. Therefore, together they contain at least 2γ(G) · k edges.

Additionally, let B = ϕ({a1, a2})+ϕ({a2, b2})+ϕ({b2, b3})+ϕ({b3, a3}+· · ·+ϕ({a4k, b4k}
+ϕ({b4k, a1}). Again, this notation is well defined as required to concatenate paths. Similarly,
let B′ = ϕ({a1, b1})+ϕ({b1, b2})+ϕ({b2, a2})+ϕ({a2, a3}+ · · ·+ϕ({b4k, a4k}+ϕ({a4k, a1}).
Roughly speaking, B and B′ are the cycles to which ϕ maps C and C ′, respectively. Notice
that E(H) = E(C)∪E(C ′). Thus, we deduce that

⋃2k−1
i=0 E(Ai) ⊆ E(C)∪E(C ′). From this,

ITCS 2020

39:8 Parameterization Above a Multiplicative Guarantee

we further deduce least one among the cycles B and B′ must contain at least half the edges
in

⋃2k−1
i=0 E(Ai). Because we already showed that |

⋃2k−1
i=0 E(Ai)| ≥ 2γ(G) · k, this means

that at least one among the cycles B and B′ has length (and therefore also size) at least
γ(G) · k. This completes the proof. J

By Proposition 11, any graph G of treewidth at least 60 · (4k)2 = 960k2 contains a
4k-prism as a topological minor. Thus, we derive the following corollary to Lemma 13.

I Corollary 14. For any k ∈ N, any graph G of treewidth at least 960k2 has a cycle on at
least γ(G) · k vertices.

We are now ready to prove our main theorem.

I Theorem 1. Long Cycle (and Long Path) parameterized multiplicatively above girth
is solvable in time 2O(k2)n.

Proof. Given an instance (G, k) of Long Cycle (Long Path), the algorithm is executed as
follows. First, it calls the algorithm in Proposition 8 with t = 960k2 in time 2O(t)n = 2O(k2)n

to either determine that the treewidth of G is larger than t, or output a tree decomposition
of G of width at most 5t+ 4. In the first case, it concludes that (G, k) is a Yes-instance of
Long Cycle (resp. Long Path), which is correct by Corollary 14. In the second case, it
calls the algorithm in Proposition 12 to obtain a cycle (resp. path) of maximum size in G
in time 2O(5t+4)n = 2O(k2)n, and concludes that (G, k) is a Yes-instance of Long Cycle
(resp. Long Path) if and only if the size of this cycle (resp. path) is at least γ(G) · k. J

I Theorem 2. For any fixed constant ε > 0, Long Cycle (and Long Path) parameterized
multiplicatively above g1+ε is para-NP-hard, where g is the girth of the input graph.

Proof. Consider some fixed constant ε > 0. Our proof is based on a reduction from the
Hamiltonian Cycle (resp. Hamiltonian Path) problem, which is known to be NP-
hard [23], to Long Cycle (resp. Long Path) parameterized multiplicatively above g1+ε.
In the Hamiltonian Cycle (resp. Hamiltonian Path) problem, we are given a graph G
and the objective is to decide whether G contains a (simple) cycle (resp. path) on n vertices.
In what follows, we only describe the proof for Long Cycle (since the proof for Long Path
is similar).

We now describe the reduction. To this end, let G be an instance of Hamiltonian
Cycle. Let b be the smallest positive integer such that b(1 + ε) ∈ N. (Note that b depends
only on ε.) Let a = b(1 + ε)− 1. Notice that b ≤ a (since b · ε is a positive integer). Now,
subdivide each edge in G na − 1 times, and let G′ be the resulting graph. Let H be the
disjoint union of G′ and C, where C is a cycle of length nb. Finally, set k = 1, and let (H, k)
be the output instance of Long Cycle parameterized multiplicatively above g1+ε. Notice
that here, g is the girth of H, i.e. g = γ(H).

Notice that for any ` ∈ N, for any cycle of size ` in G, there is a corresponding cycle
of size ` · na in G′, and vice versa. This implies that any cycle in G′ has size at least 3na.
Thus, as b ≤ a, there is a unique shortest cycle in H, which is C. Therefore, γ(H) = nb.
Then, any cycle (resp. path) C ′ on at least (γ(H))1+εk = nb(1+ε) = n1+a vertices in H is
fully contained in G′. From this, we conclude that for any cycle of size n in G, there is a
corresponding cycle of size (γ(H))1+εk in H, and vice versa. This yields the correctness of
the reduction. In particular, a parameterized algorithm for Long Cycle parameterized
multiplicatively above g1+ε would solve (H, k) is polynomial time (because k = 1), and
thereby yield a polynomial-time for Hamiltonian Cycle. This completes the proof. J

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:9

4 FPT Algorithms for (Connected) Vertex Cover and Max Internal
Spanning Tree

In this section, we consider the parameterized complexity of (Connected) Vertex Cover
and Max Internal Spanning Tree parameterized multiplicatively above girth, and prove
Theorem 3. The following proposition asserts that every graph contains either a small
feedback vertex set or a large number of vertex-disjoint cycles (with a logarithmic gap),
which can also be computed efficiently.

I Proposition 15 ([16, 32]). For some fixed constant c ∈ N, there exists an algorithm that,
given any r ∈ N and a graph G, in time rO(1)n outputs either a feedback vertex set of G of
size at most cr log r or r vertex-disjoint cycles in G.

In what follows, we use c to refer to the constant in this proposition. In case the treewidth
of the graph is low, we will be able to solve the problem by making use of the following
proposition.

I Proposition 16 ([12, 19]). There exist algorithms for Vertex Cover, Connected
Vertex Cover and Max Internal Spanning Tree that run in time 2O(t)n, where t is
the treewidth of the input graph.3

The main combinatorial lemmas required for our algorithms are as follows. They handle
the case where the feedback vertex set number (and hence also treewidth) of the graph is low.
First, for (Connected) Vertex Cover, we need the following lemma.

I Lemma 17. For any r ∈ N, any graph G that contains r vertex-disjoint cycles has vertex
cover number at least γ(G)

2 · r.

Proof. Let C be a collection of r vertex-disjoint cycles of G. Consider any vertex cover U of
G. Then, U must contain at least half the vertices of each cycle in C in order to contain an
endpoint of every edge of that cycle. Since each cycle in C contains at least γ(G) vertices,
the lemma follows. J

Second, for Max Internal Spanning Tree, we need the following lemma.

I Lemma 18. For any r ∈ N, any connected graph G that contains r vertex-disjoint cycles
has a spanning tree with at least (γ(G)− 1) · r − 1 internal vertices.4

Proof. Let C be a collection of r vertex-disjoint cycles of G. Let H be the graph obtained
from G by replacing each cycle C ∈ C by a single new vertex vC (that is made adjacent to
all vertices previously adjacent to at least one vertex in C). Let T be some spanning tree of
H (whose existence follows from the supposition that G, and hence also H, is connected).

Now, we traverse T in preorder, and when we encounter a new vertex of the form vC ,
we perform the following operations. Let p be the parent of vC in T (if it is not the root),
and let u be some vertex in C that is adjacent to p (if vC is the root, let u be any vertex
in C). Then, replace vC in T by a path P from u to one of its neighbors in C so that this
path P contains exactly all the edges of C except one (between u and the chosen neighbor).

3 Such an algorithm for Max Internal Spanning Tree is not given explicitly, but it is easily seen to
follow from the approach of dynamic programming over tree decompositions using representative sets as
in [19].

4 Notice that the supposition that r is positive also implies that G is not a forest and hence γ(G) is finite.

ITCS 2020

39:10 Parameterization Above a Multiplicative Guarantee

Here, make u be the child of p in T , and every child w of vC is handled as follows: the
subtree of w is “hanged” from a vertex of the path P such that w (or some vertex in the
cycle represented by w, if w is a new vertex) is adjacent to it in G. Notice that at the end
of this process, we obtain a spanning tree of G with the following property. For each cycle
C ∈ C, all vertices except possibly one are internal vertices, with the exception of possibly
one cycle (if there was a cycle represented by the root of T) where all vertices except possibly
two are internal vertices. Thus, this spanning tree has at least (γ(G) − 1) · r − 1 internal
vertices. This completes the proof. J

We are now ready to prove our main theorem.

I Theorem 3. Vertex Cover, Connected Vertex Cover and Max Internal Span-
ning Tree parameterized multiplicatively above girth are solvable in time 2O(k log k)n.

Proof. Given an instance (G, k) of (Connected) Vertex Cover (resp. Max Internal
Spanning Tree), the algorithm is executed as follows. Without loss of generality, we
suppose that G is connected in the case of Max Internal Spanning Tree, else we clearly
have a No-instance of this problem. First, the algorithm calls the algorithm in Proposition 15
with r = 2k+ 1 in time rO(1)n = kO(1)n to obtain either a feedback vertex set of G of size at
most cr log r or r > 2k vertex-disjoint cycles in G. In the second case, by Lemma 17 G has
vertex cover number strictly larger than γ(G)

2 · 2k = γ(G) · k, and by Lemma 18, it also has a
spanning tree with at least (γ(G)− 1) · 2k − 1 ≥ γ(G) · k internal vertices (where the last
inequality follows from the facts that γ(G) ≥ 3 and k ∈ N). Thus, for Vertex Cover and
Connected Vertex Cover the algorithm correctly determines that the answer is No, and
for Max Internal Spanning Tree the algorithm correctly determines that the answer is
Yes. In the first case, the algorithm calls the algorithm in Proposition 9 in time O(k log k · n)
to obtain a tree decomposition of G of width at most cr log r = O(k log k). Then, it calls
the algorithm in Proposition 12 in time 2O(k log k)n to obtain a (connected) vertex cover of
G of minimum size (resp. a spanning tree of G of maximum number of internal vertices),
and concludes that (G, k) is a Yes-instance of (Connected) Vertex Cover (resp. Max
Internal Spanning Tree) if and only if the output (connected) vertex cover has size at
most γ(G) · k (resp. the output spanning tree has at least γ(G) · k internal vertices). J

5 Hardness for Feedback Vertex Set and Cycle Packing

Lastly, we prove the correctness of Theorem 4.

I Theorem 4. Feedback Vertex Set and Cycle Packing parameterized additively
above girth are para-NP-hard.

Proof. We only prove the lemma for Feedback Vertex Set since the proof for Cycle
Packing follows from symmetric arguments. For this purpose, we give a reduction from
Feedback Vertex Set itself, which is an NP-hard problem [23]. Towards this, let (G, k)
be an instance of Feebdack Vertex Set. Then, obtain H from G by subdividing each
edge of G k times, and adding a new cycle of size k. Clearly, G has a feedback vertex set of
size at most k if and only if H has a feedback vertex set of size at most k + 1 (the extra 1 is
required to hit the new cycle). Moreover, the girth of H is exactly k. Thus, an algorithm
for Feedback Vertex Set parameterized additively above girth should solve (H, 1) in
polynomial time (since the parameter is 1), thereby determining whether the feedback vertex
set number of H is at most k, and consequently solving (G, k). J

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:11

References
1 Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-

SAT Above a Tight Lower Bound. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 511–517. SIAM, 2010.

2 Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding Detours
is Fixed-Parameter Tractable. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, volume 80 of LIPIcs, pages 54:1–54:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

3 E. Birmelé, J. A. Bondy, and B. A. Reed. Brambles, Prisms and Grids. In Adrian Bondy, Jean
Fonlupt, Jean-Luc Fouquet, Jean-Claude Fournier, and Jorge L. Ramírez Alfonsín, editors,
Graph Theory in Paris: Proceedings of a Conference in Memory of Claude Berge, pages 37–44.
Birkhäuser Basel, Basel, 2007.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. CoRR, abs/1007.1161, 2010. arXiv:1007.1161.

5 Hans L. Bodlaender. On Linear Time Minor Tests with Depth-First Search. J. Algorithms,
14(1):1–23, 1993. doi:10.1006/jagm.1993.1001.

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

7 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

8 Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith,
Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: improved path, matching,
and packing algorithms. SIAM J. Comput., 38(6):2526–2547, 2009. doi:10.1137/080716475.

9 Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for path,
matching, and packing problems. In Proceedings of the18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 298–307. SIAM, 2007.

10 Robert Crowston, Michael R. Fellows, Gregory Z. Gutin, Mark Jones, Eun Jung Kim, Fran
Rosamond, Imre Z. Ruzsa, Stéphan Thomassé, and Anders Yeo. Satisfying more than half
of a system of linear equations over GF(2): A multivariate approach. J. Comput. Syst. Sci.,
80(4):687–696, 2014.

11 Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, and
Saket Saurabh. Polynomial Kernels for lambda-extendible Properties Parameterized Above the
Poljak-Turzik Bound. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 24 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 43–54, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, third edition, 2005.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci.
Hungar, 10:337–356 (unbound insert), 1959.

16 P Erdős and L Pósa. On independent circuits contained in a graph. Canad. J. Math.,
17:347–352, 1965.

ITCS 2020

http://arxiv.org/abs/1007.1161
https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1137/080716475
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

39:12 Parameterization Above a Multiplicative Guarantee

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Going Far From Degeneracy. In Michael A. Bender, Ola Svensson, and
Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms (ESA 2019),
volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47:1–47:14,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ESA.2019.47.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. J. ACM,
63(4):29:1–29:60, 2016.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Long
directed (s, t)-path: FPT algorithm. Inf. Process. Lett., 140:8–12, 2018.

21 F.V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameter-
ized Preprocessing. Cambridge University Press, 2018.

22 Harold N. Gabow and Shuxin Nie. Finding a long directed cycle. ACM Transactions on
Algorithms, 4(1), 2008. doi:10.1145/1328911.1328918.

23 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

24 Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex Cover Problem
Parameterized Above and Below Tight Bounds. Theory of Computing Systems, 48(2):402–410,
2011. doi:10.1007/s00224-010-9262-y.

25 Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permutation
constraint satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. J. Computer and System Sciences, 78(1):151–163, 2012. doi:10.1016/j.
jcss.2011.01.004.

26 Gregory Z. Gutin and Viresh Patel. Parameterized Traveling Salesman Problem: Beating the
Average. SIAM J. Discrete Math., 30(1):220–238, 2016.

27 Gregory Z. Gutin, Arash Rafiey, Stefan Szeider, and Anders Yeo. The Linear Arrangement
Problem Parameterized Above Guaranteed Value. Theory Comput. Syst., 41(3):521–538, 2007.

28 Gregory Z. Gutin, Stefan Szeider, and Anders Yeo. Fixed-Parameter Complexity of Minimum
Profile Problems. Algorithmica, 52(2):133–152, 2008.

29 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection. Algorithmica, 52(2):114–132, 2008.
doi:10.1007/s00453-007-9008-7.

30 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-Color. In
Proceedings of the 34th International Workshop Graph-Theoretic Concepts in Computer Science
(WG), volume 4271 of Lecture Notes in Computer Science, pages 58–67. Springer, 2008.

31 Ioannis Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming (ICALP),
volume 5125 of Lecture Notes in Comput. Sci., pages 575–586. Springer, 2008.

32 Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. Packing Cycles
Faster Than Erdos-Posa. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 71:1–71:15, 2017.

33 Meena Mahajan and Venkatesh Raman. Parameterizing above Guaranteed Values: MaxSat
and MaxCut. J. Algorithms, 31(2):335–354, 1999.

34 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. J. Computer and System Sciences, 75(2):137–153, 2009. doi:10.1016/j.
jcss.2008.08.004.

https://doi.org/10.4230/LIPIcs.ESA.2019.47
https://doi.org/10.4230/LIPIcs.ESA.2019.47
https://doi.org/10.1145/2886094
https://doi.org/10.1145/1328911.1328918
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1007/s00453-007-9008-7
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1016/j.jcss.2008.08.004

F. V. Fomin, P. A. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 39:13

35 B. Monien. How to find long paths efficiently. In Analysis and design of algorithms for
combinatorial problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages
239–254. North-Holland, Amsterdam, 1985. doi:10.1016/S0304-0208(08)73110-4.

36 Maria J. Serna and Dimitrios M. Thilikos. Parameterized Complexity for Graph Layout
Problems. Bulletin of the EATCS, 86:41–65, 2005.

37 Dekel Tsur. Faster deterministic parameterized algorithm for k-Path. CoRR, abs/1808.04185,
2018. arXiv:1808.04185.

38 Ryan Williams. Finding Paths of Length k in O∗(2k) Time. Inf. Process. Lett., 109(6):315–318,
2009.

39 Meirav Zehavi. Mixing Color Coding-Related Techniques. In ESA 2015, volume 9294 of
Lecture Notes in Computer Science, pages 1037–1049. Springer, 2015.

40 Meirav Zehavi. A randomized algorithm for long directed cycle. Inf. Process. Lett., 116(6):419–
422, 2016. doi:10.1016/j.ipl.2016.02.005.

ITCS 2020

https://doi.org/10.1016/S0304-0208(08)73110-4
http://arxiv.org/abs/1808.04185
https://doi.org/10.1016/j.ipl.2016.02.005

	Introduction
	Multiplicative Above Guarantee Parameterization
	Our Contribution

	Preliminaries
	FPT Algorithm for Long Cycle
	FPT Algorithms for (Connected) Vertex Cover and Max Internal Spanning Tree
	Hardness for Feedback Vertex Set and Cycle Packing

