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Abstract
Building on [Clegg et al. ’96], [Impagliazzo et al. ’99] established that if an unsatisfiable k-CNF
formula over n variables has a refutation of size S in the polynomial calculus resolution proof system,
then this formula also has a refutation of degree k + O(

√
n log S). The proof of this works by

converting a small-size refutation into a small-degree one, but at the expense of increasing the proof
size exponentially. This raises the question of whether it is possible to achieve both small size and
small degree in the same refutation, or whether the exponential blow-up is inherent. Using and
extending ideas from [Thapen ’16], who studied the analogous question for the resolution proof
system, we prove that a strong size-degree trade-off is necessary.
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1 Introduction

The main task of proof complexity is to quantify the amount of different resources required
to prove that some given formula is unsatisfiable. The particular resources examined depend
on the proof system under study, but it is believed that no proof system can have proofs
that are both efficiently verifiable and short – that is, polynomial in the size of the given
formula. Establishing such an impossibility result in full generality is equivalent to proving
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NP 6= coNP, and hence this goal currently seems out of reach. Current research in proof
complexity instead focuses on studying more limited, concrete methods of reasoning, and on
proving lower bounds for these methods.

In this paper we consider polynomial calculus resolution (PCR). This is a more
powerful proof system than what is arguably the most well studied system in all of proof
complexity, namely resolution [12], but is therefore also less well understood. PCR,
introduced by Clegg et al. [15] and Alekhnovich and Razborov [1] can be seen as a dynamic
version of Hilbert’s Nullstellensatz [6]. In order to refute a CNF formula in PCR, the clauses
in the formula are translated into multilinear polynomials, and the proof of unsatisfiability,
or refutation, consists essentially of certifying that the polynomial 1 is a member of the
ideal generated by these polynomials.

Two important masures for PCR refutations are the size (the number of monomials in
the refutation when all polynomials are expanded out as linear combinations of monomials)
and the degree (the maximal monomial degree in the refutation). Impagliazzo et al. [24]
showed a strong connection between these two measures: if a k-CNF formula over n variables
admits a PCR refutation of size S then there is also a refutation of degree k +O(

√
n logS).

This result, which is known by [21] to be tight, plays a crucial role in almost all known
size lower bounds for PCR. By proving strong enough degree lower bounds one can also
obtain size lower bounds, and techniques for establishing lower bounds on degree have been
developed in, e.g., [2, 21, 20, 26]. An interesting aspect of [24], however, is that the small-size
refutation is not the same as the small-degree one. Instead, the transformation from small
size to small degree increases the proof size exponentially. It is natural to ask whether this
exponential blow-up is nescessary.

A similar question arises also in the context of the resolution proof system, where the
measures of interest are length and width. Building on [24], Ben-Sasson and Wigderson [10]
showed that every small-length resolution refutation can be transformed into a small-width
refutation with the same parameters as in [24]. Again, this bound is again known to be
tight [13], and the conversion increases the length exponentially. For resolution, Thapen [29]
proved that such a blow-up cannot be avoided in the worst case. In this work, we show that
this holds true for PCR as well.1 More precisely we prove the following theorem.

I Theorem 1. For any ε > 0 and c large enough, there is a CNF formula ϕ with θ(c1+ε)
variables, of size θ(c1+ε) and degree O(log c) such that

ϕ has a PCR refutation of size polynomial in c and degree c+O(log c),
ϕ has a PCR refutation of degree O(cε),
any PCR refutation of degree strictly less than c− 1 has size exp

(
cΩ(ε)).

In particular, this implies that any PCR refutation of the formula ϕ in degree O(log c) +
O(
√
c1+o(1) log c)� c, as obtained by the size-degree bound in [24], must have size exp

(
cΩ(ε)).

1.1 Related work
The study of connections between different complexity measures has received a fair amount
of attention in proof complexity. We give a brief overview below, referring the reader to the
book [25] or the upcoming survey chapter [14] for more details.

1 Note that this is more precise than just saying that there is a trade-off between length and width, or
between size and degree, so that minimizing the latter measure must lead to an increase in the former.
It is easy to show that there are trade-offs between length/size and width/degree as observed in [27], but
such trade-offs are very far from being strong enough to show that the blow-ups in [10, 24] is necessary.
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We have already mentioned connections between size and degree in PCR [24] and between
length and width in resolution [10]. Let us also mention that in [3] a beautiful relation is
exhibited between width and space in resolution, showing that width provides a lower bound
on space, and that a similar, but weaker, result was recently proved in [19] for PCR.

When studying trade-offs, we are asking whether two different complexity measures can
be minimized at the same time, or whether optimizing one measure must lead to an increase
in the other in the worst case. This question was first raised in the context of proof complexity
by Ben-Sasson [8], who proved trade-offs between space and width in resolution. This result
was later extended to size-degree trade-offs in PCR [7], and the result for resolution was
extended to a wider regime of parameters in [11].

Trade-offs between length/size and space have been shown for resolution in [5, 9] and
for PCR in [7]. There are even some size-space trade-offs for stronger proof systems such as
cutting planes [16] in [18, 22, 23], but since this proof system will not be relevant for the
current paper we will not discuss it further.

For length versus width in resolution, or size versus degree in PCR, it is not too hard to
show that there are trade-offs [27], but to prove that the length blow-up in [10] is necessary
requires the stronger result in [29]. Recently, Razborov [28] established another length-width
trade-off showing that low-width tree-like resolution refutations of certain k-CNF formulas
must have doubly exponential size,

For Nullstellensatz, which as noted above can be viewed as a weaker version of PCR,
strong trade-offs between size and degree were shown in [17]. That paper states as an
open problem whether similarly strong results could be established for PCR, and this is the
problem that we resolve here.

1.2 Organization of the paper
We start with preliminaries in Section 2 where we define the relevant proof systems and
discuss some basic properties of ideals in polynomial rings. In Section 3, we present the
family of CNF formulas that we will consider, which we call safe colored polynomial local
search formulas. Section 4 is devoted to a description of the overall proof strategy. Section 5
develops the machinery used to prove PCR degree lower bounds together with the adaptations
needed to obtain our results. Section 6, finally, contains some concluding remarks. We refer
to the upcoming full-length version of the paper for the details missing in this extended
abstract.

2 Preliminaries

Throughout this paper, we let F denote a fixed but arbitrary field. For a an integer, we
denote by [a] the set {0, 1, . . . , a− 1}. Given a graph H and a vertex v ∈ H, we write N(v)
for the set of neighbours of v in the graph H.

2.1 Resolution and Polynomial calculus
We use x to denote boolean variables ranging over {0, 1}, and write x̄ to denote the negation
of x. A literal is either a variable x or its negation x̄. A clause C is a disjunction of literals,
such as x ∨ ȳ. The width of a clause is the number of literals in it. A CNF formula F

is a conjunction of clauses, and F is a k-CNF formulas if all clauses in it have width at
most k. Clauses and formulas are considered as sets, so that there are no repetitions and the
ordering is immaterial.

ITCS 2020



72:4 Trade-Offs Between Size and Degree in Polynomial Calculus

The resolution proof system has a single derivation rule C∨x D∨x̄
C∨D , called the resolution

rule, for any clauses C,D and any variable x. In this proof system, a derivation of a
clause D from a CNF formula F = C1∧· · ·∧Cm is a sequence of clauses such that each clause
is either an original clause Ci or the conclusion of the resolution rule applied to previously
derived clauses. A resolution refutation of F is a derivation of the empty clause containing
no literals from F . The length of a derivation, or refutation, is the length of the sequence
of clauses, and the width is the maximum width of any clause appearing in the sequence.

Moving on to polynomial calculus, we let X denote a set of algebraic variables containing
x and x̄ for all boolean variables, where x and x̄ are considered to be distinct, and consider
polynomials in the ring F[X]. We note that in the context of algebraic proof systems it is
natural to think of 0 as True and 1 as False, and so we will use this convention in what
follows.

The PCR proof system contains the following axioms:
boolean axioms: x2 − x for all variables x;
complementary axioms: x+ x̄− 1 for all variables x.

It also contains the following derivation rules:
linear combination: p q

αp+βq for any α, β ∈ F, p, q ∈ F[X];
multiplication: p

xp for any p ∈ F[X] and x ∈ X.
A polynomial f is derivable from a set of polynomials g1, . . . , gk (written g1, . . . , gk ` f) if
there is a sequence of polynomials such that each polynomial is either an axiom, an original
polynomial gi, or the conclusion of a derivation rule applied to previously derived polynomials.
We refer to such a sequence of polynomials as a PCR derivation. A PCR refutation of
a set of polynomials g1, . . . , gk is a derivation of the polynomial 1 from g1, . . . , gk.

I Example 2. Over the variables x, y, z, if we are given xz and yz̄ we can derive xy. This is
a simulation, in PCR, of the resolution rule deriving x ∨ y from x ∨ z and y ∨ z̄.

yz̄

xyz̄
z + z̄ − 1

xyz + xyz̄ − xy
xy − xyz

xz
xyz

xy

A set I of polynomials in F[X] is an ideal if I is closed under linear combination and
multiplication by any polynomial in F[X]. Given a set of polynomials S = {g1, . . . , gk}, the
ideal generated by S is defined as the smallest ideal IS that contains the set S.

Observe that, by definition, g1, . . . , gk ` f is equivalent to saying that f is in the ideal
generated by g1, . . . , gk together with all boolean and complementary axioms. Intuitively, a
PCR refutation is a certificate that the system of polynomial equations {g1 = 0, . . . , gk = 0}
has no boolean solutions. If the polynomials have no common boolean solution then there
always exists such a certificate, since it can be shown that 1 lies in the ideal generated by
the polynomials arising in the system together with the polynomials from the boolean and
complementary axioms. In other words, the PCR proof system is sound and complete.

The size of a PCR refutation is the total number of non-zero monomials (counted with
repetition) that appear in the derivation when all polynomials are expanded out as linear
combinations of monomials. The degree of a PCR refutation is the maximal degree of a
non-zero monomial that appears in the derivation.

There is a standard translation tr(·) from clauses to monomials defined by induction in
the following way:

tr(x) = x;
tr(¬x) = x̄;
tr(C ∨D) = tr(C) · tr(D).
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Using tr(·), any k-CNF formula F with s clauses can be converted into a set of s polynomials
of degree at most k by applying the translation to all clauses in F . Denote this set by tr(F ).
It is not hard to see that F is satisfiable if and only if the set of polynomials tr(F ) have a
common boolean root. Therefore F is an unsatisfiable CNF formula if and only if there is a
PCR refutation of the set of polynomials tr(F ). Furthermore, a straightforward generalization
of Example 2 shows that a resolution refutation in length ` and width w can be converted
into a PCR refutation in size O(`w) and degree w + 1.

A restriction is a partial assignment of the variables, that is a function ρ : X → X ∪ F
such that the value ρ(x) is either x or a constant from F. For a polynomial p, we denote by
p � ρ the polynomial p in which any variable x is replaced by ρ(x).

2.2 Reduction over ideals

Two polynomials p, q are said to be equivalent modulo an ideal I, written p ∼I q, if
p−q ∈ I. This is an equivalence relation. For any polynomial p we fix a special representative
of the equivalence class [p] that we call the reduction of p modulo I and write as RI(p).
If an ideal I is generated by a set of polynomials S, we abuse notation slightly and write
RS(p) for RI(p).

To define the representative, we fix any order ≺ on the polynomials that respects inclusion
as follows:
1. Firstly, for two monomials m1 and m2 we have m1 ≺ m2 whenever m1 is a submonomial

of m2.
2. Secondly, we extend this in an arbitrary way to a total order on monomials.
3. Finally, we order polynomials in the following way. To any polynomial p we associate a

sequence sp consisting of the non-zero monomials of p, sorted in decreasing order with
respect to ≺. The polynomials are then compared by comparing lexicographically their
associated sequences. For example, if m1 ≺ m2 ≺ m3, then the polynomial m2 is strictly
smaller than the polynomial m2 +m1, which is itself strictly smaller than the polynomial
m3.

The representative RI(p) is then defined as min({q ∈ [p]}). We now observe two easy but
useful properties of ≺.

I Fact 3. For any restriction ρ, we have that p � ρ � p.

Proof. To see this, observe that any monomial in p � ρ is either a monomial or a submononial
from p; this can only decrease p. J

I Fact 4. If I1, I2 are two ideals such that I1 ⊆ I2, then

RI2(p×RI1(q)) = RI2(p× q).

Proof. By definition, q = RI1(q) + h for some h ∈ I1. Therefore

RI2(p× q) = RI2(p× (RI1(q) + h))
= RI2(p× (RI1(q)) +RI2(p× h)

by linearity. To conclude, observe that p× h ∈ I1 so is reduced to zero modulo I1, and hence
is reduced to zero modulo I2 since I1 ⊆ I2. J

ITCS 2020
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3 The formula

In this section, we describe the construction of the family of formulas for which we establish
our size-degree trade-off result. We also argue why they have small-size refutations. Our
formulas encode a modified version of the colored polynomial local search (CPLS)
principle, and are very similar to the ones used in [29] to prove trade-offs between length and
width in resolution, but there are two main differences. First, we add an extra color that
we call the safe color that plays a role slightly different from the normal ones. The reason
for adding this color is purely technical – we were not able to make the PCR machinery
works without it. Second, instead of using a grid graph where any two consecutive layers
form a complete bipartite graph, we restrict the edges between two consecutive layers to
be a well-chosen expander graph. Since this makes the formula more constrained than that
in [29], it makes our lower bound slightly stronger.

3.1 The modified CPLS formula

Let a, b, c be positive integers. We work only with graphs H = (V,E) of the following form:
The set V of vertices are given by {(i, x), i ∈ [a], x ∈ [b]}. We say a vertex (i, x) is the
vertex x on layer i.
Edge appear only between consecutive layers. I.e., if ((i, x), (i′, x′)) is an edge then
i′ = i+ 1.

To any such graph H we associate a formula CPLSH(a, b, c) (or simply CPLS(a, b, c) if H
is clear from the context). Intuitively, the formula will give a set of colors (which is a subset
of [c]) to each node in H according to the following rules.
1. Node (0, 0) gets no color.
2. From every node u there is some special neighbor v on the next layer. If v gets a color

then u gets a color. Specifically, there is a safe color (corresponding to the first color
from [c]) and either u gets the safe color or it gets all of v’s colors.

3. Every node on the bottom layer gets some color.
Of course, this means there is a path of special neighbors from (0, 0) to the bottom layer.
The last node must get some color, so we can trace backward and see (0, 0) gets some color,
a contradiction. Hence CPLS(a, b, c) is unsatisfiable. Now we state this formally. We use
Θ(abc) variables:

G(u, y) for each u ∈ V and y ∈ [c]. This says whether y is set at u.
f(u, v) for each u ∈ V and v ∈ N(u). This says whether v is a special neighbor of u.
h(u)j for each u = (a − 1, x) and j ∈ [log c]. The function h(u) identifies a color that
must be present at u, but is encoded in binary.

Now we can restate the intuitive rules above as formal axioms:
1. for each color y ∈ [c],
¬G((0, 0), y);

2. for each node u ∈ V
(a) for each neighbor v ∈ N(u), and color y ∈ [c],

(f(u, v) ∧G(v, y))→ G(u, y) ∨G(u, 0);
(b) if u is not on the bottom layer,∨

v∈N(u) f(u, v);
3. for each node u ∈ V on the last layer and color y ∈ [c],

(h(u) = y)→ G(u, y).
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{0, 4}
u

{2, 3}

v

{2}
w

Figure 1 Nodes u and v have three possible neighbors represented by the arrows. The two arrows
that are not dotted represent the actual values of f ; for these arrows, axioms 2a are respected.
Indeed the axioms Pv,w,· are satisfied because the colors at v is a superset of the colors at w; the
axioms Pu,v,· are satisfied because u contains the safe color 0.

See Figure 1 for an illustration of the formula. We refer to instances of axioms 2a, 2b, and 3
as Pu,v,y, Qu, and Tu,y respectively.

I Definition 5. An (s, e)-expander is a bipartite graph (VL, VR, E) such that for any subset
of “left” vertices S ⊆ VL such that |S| ≤ s, the following holds: |N(S)| ≥ e|S|. We recall
that N(S) is the neighborhood of S.

We will use a = b = cε in this paper. Let Hi be H restricted to the ith layer. That is
Hi := H ∩ {(i, x), (i+ 1, y) | x, y ∈ [b]}. We need Hi to be an (a7/8, e)-expander, where any
constant e > 1 suffices. We also need Hi to have vertex degrees bounded above and below
by some constants. For simplicity we assume it has constant degree d.

I Remark 6. Note that it is also possible to ask each Hi to be a full bipartite graph. Because
the vertex degree then grows with a, we need to change the formula by encoding the neighbors
of any vertex in “binary”, as in Thapen’s paper [29], in order to avoid the width becoming
too large (due to type 2b axioms).

3.2 Short and narrow refutations
We give a refutation of CPLSH(a, b, c) which is of small size. While this refutation can be
translated into a refutation of small degree, by a result from [24], we additionally give a much
lower degree refutation. The rest of the paper will consist of proving that small size and
small degree cannot be obtained simultaneously. The proof of the next two propositions can
be found in the appendix of the full version and are very similar to the one from Thapen [29].

I Proposition 7. For any graph H, CPLSH(a, b, c) has a resolution refutation Π of length
O(ab2c) and width c+ log b+ 1.

As discussed in Section 2, this gives a PCR refutation of size O(a2b4c2) and degree c+log b+2.

I Proposition 8. For any graph H, CPLSH(a, b, c) has a resolution refutation Π of width
a(d + 1) + log c.

ITCS 2020
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4 Restricting the formula and refutation

The strategy we are going to use is as follows: we suppose for contradiction that we have a
refutation Π of the formula CPLS which is both of small size and small degree. Then we
will apply a random restriction ρ to both CPLS and Π, which is a partial assignment to
the variables. At this point, we have in hand a refutation Π � ρ of the restricted formula
CPLS � ρ. By the assumption that Π is both of small size and small degree, we show
that Π � ρ enjoys some nice properties; we call such a refutation a beautiful refutation.
We conclude by showing that CPLS � ρ cannot have any beautiful refutation, yielding the
desired contradiction.

We start with the definition of ρ.

4.1 The restriction
Let p = a−3/4 and w = a7/8. The restriction ρ is randomly set in the following way.

With probability p, for any vertex u, we set independently for all y ∈ [1, c− 1] the value
of G(u, y) to True or False with probability 1/2; if this happens for a vertex u, we say
that the colors at u are set. Moreover, if such a vertex is at the bottom layer, then
we select one color y that has been set to True during the process and we set h(u) = y.
If we set the colors at u then we also give the safe color to this vertex, i.e., we set
G(u, 0) = True. Otherwise we set G(u, 0) = False.
If we set the colors at u then with probability 1

2 we also set f(u, v) = True for a uniformly
random chosen vertex v ∈ N(u) and we set all others values f(u, ·) to zero.

For the rest of the paper, we write this restriction ρ.
I Remark 9. Note that for any u where the colors are set, u gets the safe color. Hence we
satisfy all type 2a axioms mentioning f(u, ·) and we can treat the vertex u as if it is removed
from the graph. For any node v with an edge (v, u) in the graph this reduces the (out-)degree
of v by 1. We must maintain a positive degree for vertices outside the last layer. If vertices
have degree at least 3 then the chance of reducing any vertex degree to 0 is o(1). Hence our
random choice of ρ works with high probability in this case. It is still a CPLS formula (over
a smaller graph) and we can now reason over this new graph.

4.2 Beautiful properties after restriction
In this section, we prove that applying the above restriction ρ to a small sized refutation Π
gives a refutation Π � ρ of CPLS � ρ enjoying useful properties.

I Definition 10. A term t touches vertex u ∈ H iff t contains at least one of the following:
G(u, y) for some y ∈ [c] \ {0};
f(u, v) for some v ∈ N(u);
h(u)j for some j ∈ [log c].

The vertex-degree of a term t is the number of vertices it touches.

See Figure 2 for an example.

I Definition 11. We say that a term t is almost beautiful if:
the vertex-degree of t is at most w + 1;
it does not contain any G(·, 0) variable;
it touches at most c− 2 different colors.

If the vertex-degree of t is at most w then we say it is beautiful. By extension, a derivation
Π is beautiful if every term that appears in Π is beautiful.
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t = G(u, 2)f(v, w)h(x)3

u

v

w

x

Figure 2 The term t touches three vertices that are the ones colored in the figure.

I Proposition 12. There is an ε so that if |Π| = s ≤ 2cε then with probability 1− s · 2−cε

over the choice of ρ, every term in Π � ρ is beautiful.

Proof. Consider a term t and suppose it touches at least w distinct vertices u. We show
that except with exponentially small probability ρ sets t to 0.

Suppose we set the colors at u, which happens with probability p. If t contains G(u, y)
for 0 < y then with probability 1

2 we set G(u, y) = 0. If t contains h(u)j then because h(u)
is uniformly random we set h(u)j = 0 with probability 1

2 .
We also set the arrow at u with probability p/2. There are d neighbors of u so we set

f(u, v) to True with probability 1
d and False with probability d−1

d Hence if t contains f(u, v)
then we set t to 0 with probability at least p

2d .
Hence, for each u, if t touches u then with probability at least p

2d we set t to 0. For
distinct u these events are independent so the probability of not setting t to 0 is at most:

(1− p

2d )w < e−
1

2da
1/8
.

To conclude the proof, observe that t � ρ does not contain any G(·, 0) variable since the
restriction sets the value G(u, 0) to True of False for any vertex u. J

5 PCR machinery

In this section, we ask the order on monomials to have the additional property that it respects
the vertex-degree: if a monomial m1 has a vertex-degree smaller than a monomial m2, then
m1 ≺ m2.

5.1 R operator
We follow a strategy similar in spirit to the technique developed by Alekhnovich and
Razborov [2]. The idea is to define a linear map R : F[X] → F[X] that acts as a witness
that the polynomial 1 is not reachable from the axioms by any beautiful derivation. Such a
linear map was constructed by Alekhnovich and Razborov to separate the polynomial 1 from
polynomials reachable by small degree derivations. It has been applied to Tseitin tautologies,
among other formulas. Note that Mikša and Nordström [26] gave some sufficient (and quite
general) conditions to prove existence of such operators. Unfortunately, we can not use
directly these results since they deal with degree and we therefore need to adapt them to
handle our notion of beautifulness. More precisely, we aim to prove the following theorem.

ITCS 2020
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I Theorem 13. There is a linear map R : F[X]→ F[X] such that:
1. R(A) = 0 for any axiom A;
2. R(1) 6= 0;
3. R(xt) = R(xR(t)) whenever xt is a beautiful monomial.
Theorem 13 is sufficient to prove our main theorem, since any polynomial derived by a
beautiful derivation is mapped to zero under the R operator, leaving the polynomial 1
unreachable.

The operator R that we will use is defined on monomials and then extended linearly to
general polynomials. To do that, we associate to any monomial t a set of vertices, written
Supp(t), and the value R(t) is defined to be the reduction of t under the ideal generated
by axioms associated to Supp(t). Again, we abuse notation slightly and write this reduced
polynomial as RSupp(t)(t).

More formally, to a given set A of vertices, we identify the following set of axioms:

{Qu | u ∈ A}
∪ {Pu,v,y | u ∈ A, v ∈ N(u), y ∈ [c]}
∪ {Tu,y | u ∈ A, y ∈ [c]}
∪ {¬G((0, 0), y) | y ∈ [c]}
∪ all boolean axioms
∪ all complementary axioms.

This set contains some axioms that are related to set A as well as the axioms saying that
(0, 0) is not colored. RA(t) is then interpreted as the reduction of t under the ideal generated
by the axioms above.

5.2 Closure/support

We first associate to any term t a set of vertices called its support and written Supp(t).
The motivation here is that only axioms associated with certain vertices could have been
meaningfully used to derive t. Any axiom that mentions a variable of t certainly could be
used, but axioms associated with a node u that is in turn associated with a variable in t may
be used, and even axioms at some nearby nodes in H may be used.

The support is defined using the following closure operation:

I Definition 14. Given a bipartite graph with partition (VL, VR), and S ⊆ VR a subset of
“right” vertices. We say that Cl(S) := {v ∈ VL | N(v) ⊆ S} is the closure of S.

The following property of the closure will be useful.

I Lemma 15. Let G = (VL, VR) be an (s, e)-expander. If S, S′ ⊆ VR such that |S|, |S′| < e s2
then:
|Cl(S)| ≤ |S|e ;
Cl(S) ∪ Cl(S′) ⊆ Cl(S ∪ S′);
∀V ⊆ (VL \ Cl(S)) such that |V | ≤ s

2 we have N(V ) * S.
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t = G(x, 2)h(y)3h(z)1f(v, s)f(`, z)

x y z s

w v `

u b

a

Figure 3 Example of the support of a term t. Color notation:

nodes for which t contains f variables: {v, `};
nodes for which t contains G variables: {x};
nodes for which t contains h variables: {y, z};
nodes that are not touched by t but included in Supp(t): {a, b, u, w};

nodes that are banished from the graph after application of the restriction from Section 4.

The proof is straightforward and appears in the full version. We can now define the
support (and extended support) associated with a term t. We do this by a downward
induction on i over the layers of the graph H as follows:

bi := {(i, x) | ∃v.f((i, x), v) or h((i, x)) appears in t}
ci := {(i, x) | ∃y.G((i, x), y) appears in t}

di−1 := bi−1 ∪ Cl(di ∪ ci)

Supp :=
⋃
i∈[a]

di

ExSupp :=
⋃
i∈[a]

(di ∪ ci)

I Remark 16. For any terms t, t′ it holds that

Supp(t) ∪ Supp(t′) ⊆ Supp(t ∪ t′).

Proof. Follows from Lemma 15, third item. J

I Lemma 17. If t touches at most ` vertices where ` ≤ 2w, then |Supp(t)| ≤ |ExSupp(t)| =
O(`).

The proof uses a simple induction and telescoping sum and appears in the full version.
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5.3 Proof of Theorem 13

The following propositions are sufficient to prove that the R operator fulfills the desired
properties.

I Proposition 18. For any variable x, any monomial t such that xt is beautiful, and any
t′ ∈ R(t), we have RSupp(xt′)(xt′) = RSupp(xt)(xt′).

I Proposition 19. For any almost beautiful monomial t and any A ⊆ H with |A| ≤ O(w)
we have:

RSupp(t)∪A(t) = RSupp(t)(t).

With these propositions in hand, let us now prove Theorem 13

Proof of Theorem 13. We start with the first item, that R(A) = 0 for any axiom A.
Consider some axiom A and note that it touches a set of vertices HA ⊆ H of constant size.
Let

∑
ti be a polynomial representation of A. By Remark 16,

⋃
Supp(ti) ⊆ Supp(

⋃
ti) and

by Proposition 19, R(
∑
ti) =

∑
RSupp(ti)(ti) =

∑
RSupp(

⋃
ti)∪HA(ti) = 0.

For the second item, that R(1) 6= 0, observe that since Supp(1) = ∅ the set of axioms
associated to it is simply:

{¬G((0, 0), y) | y ∈ [c]}
∪ all boolean axioms
∪ all complementary axioms.

This is a satisfiable set of polynomial equations and thus the polynomial 1 is irreducible over
the ideal generated by Supp(1).

Let us now prove the third item, that R(xt) = R(xR(t)) whenever xt is beautiful. Consider
a beautiful term xt.

R(xR(t)) =
∑

t′∈R(t)

R(xt′) by linearity

=
∑

t′∈R(t)

RSupp(xt′)(xt′) by definition of R(·)

=
∑

t′∈R(t)

RSupp(xt)(xt′) using Proposition 18

= RSupp(xt)(xR(t)) by linearity
= RSupp(xt)(xRSupp(t)(t)) by definition of R(·)

Observe that since Supp(t) ⊆ Supp(xt), we can remove the righthand R operator using
Fact 4. We then get

= RSupp(xt)(xt)
= R(xt)

by definition of R(·). J
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5.4 Proof of Proposition 19

Proof of Proposition 19. We assume for sake of contradiction that the proposition is false
and let A be a minimal witness of this. Without loss of generality A ∩ Supp(t) = ∅ and A is
nonempty. We find A′ with |A′| < |A| where the lemma also fails.

Let r := RSupp(t)∪A(t). We have an equation t = r +
∑
qipi where pi is one of the axiom

that correspond to Supp(t) ∪A. By assumption, we also have that r ≺ RSupp(t)(t). We want
to construct an assignment α that:

sets pi to 0 for at least one pi ∈ A;
leaves t unchanged;
for any pi either satisfies it or leaves it unchanged.

If such an assignment exists then t � α = r � α +
∑

(qi � α)(pi � α) and thus t =
r � α+

∑
q′i(pi � α) with r � α � r. Since α sets at least one pi, this shows we can reduce t

using only Supp(t) ∪ (A \ {pi}), as desired.
First observe that if there is a vertex u ∈ A with neighbor v ∈ N(u) \ (A ∪ ExSupp(t))

then we can:
set the arrow out of u to point to v (α(f(u, v)) = True);
set all other arrows out of u to False (∀v′ ∈ N(u) \ v.α(f(u, v′)) = False);
set all colors to False at v (∀y ∈ [c].α(G(v, y)) = False).

This satisfies all Pu,·,· and Qu axioms at u and leaves axioms at other vertices in A∪ Supp(t)
untouched. Also v /∈ ExSupp(t) and hence t is also untouched.

The only way we can fail to find such a u and v is if N(A) ⊆ A ∪ ExSupp(t). Note that
this implies A contains a vertex in the last layer. Indeed, consider the largest i ∈ [a] that
contains some vertices from A. If i < a− 1 then for any vertex u ∈ A on this layer there is
at least one neighbor v /∈ ExSupp(t) because otherwise by definition of closure u should be
included in the Supp(t). Since we picked the largest possible i we also know v /∈ A.

If A contains a vertex on the last layer then we consider some layer i such that axioms
from ExSupp(t) ∪A do not touch any vertex on layers i, i+ 1 and let

B := {(i′, j) | i′ > i, j ∈ [b]}.

B is the set of all vertices between this layer and the bottom layer. Since |A|+ |Supp(t)| =
O(w) we know such a row exists. We pick some color y not mentioned by t, set G(u, y) = True
for all u ∈ B, and set h((a− 1, x)) = y for any (a− 1, x) ∈ B \ Supp(t).

Furthermore, for any u ∈ B ∩A that is not on the last layer we know by the second item
of Lemma 15 that u has a neighbor z /∈ ExSupp(t). We set f so it points u to z and set
G(z, y′) = False for all other colors. Here we use the fact that z /∈ ExSupp(t) and if we set
colors for z the term t remains unchanged. That is, f(u, v) = False for all v ∈ N(u) \ {z}
and f(u, z) = True. If there were no such z then u would be included in Supp(t) and hence
would not be in A.

By setting colors in this way we satisfy all axioms for all u ∈ B ∩A. At u ∈ B ∩ Supp(t)
we only set a single color to True and satisfy the corresponding axiom. We can always pick a
color y because |t| < c and we touch no variable in t. Finally, we satisfy the Qu and Tu,y
axioms anywhere they are touched by setting h and f . J

The proof of Proposition 18 uses similar ideas to that of Proposition 19 and appears in
the full version.
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6 Concluding remarks

In this paper, we have shown that although it is known from [24] that size provides an upper
bound on degree in polynomial calculus resolution (PCR) – in the sense that if a set of
degree-k polynomials have a PCR refutation in size S, then there is also a refutation in
degree k +O(

√
n logS) – it is not possible in general to construct PCR refutations that get

even remotely close to these two upper bounds simultaneously. This extends the analogous
trade-off result in [29] for the weaker resolution proof system.

We would like to remark that while our trade-off result is currently stated for formulas
of logarithmic width – in order to avoid extra technical complications – it is also possible
to obtain the result for constant-width formulas. This involves converting the wide clauses
in our formulas to 3-CNF using the standard approach with extension variables. Since the
upper bounds for our formulas also work in resolution, this strengthens [29]. We refer to the
upcoming full-length version of the paper for the details.

As mentioned in the introduction, in addition to generalizing [29] from resolution to
PCR, our main theorem is also a counterpart of the size-degree trade-offs for the weaker
algebraic system Nullstellensatz established in [17]. In contrast to our result, however, the
Nullstellensatz trade-offs only hold for the version of the proof system without formal variables
for negated literals. It would be desirable to obtain more robust trade-off theorems that also
applies to Nullstellensatz with separate formal variables for positive and negative literals.

Another, even more interesting, question would be to investigate stronger proof systems.
Very recently, Atserias and Hakoniemi [4] showed that if a system of degree-k polynomial
constraints over n boolean variables has a Sums-of-Squares (SOS) refutation of size S,
then it also has a refutation of degree at most O(k +

√
n logS). They also proved a similar

statement for the stronger Positivstellensatz proof system, and an analogous result for
the weaker system Sherali-Adams also follows from the proofs in the paper. However, for
these proof systems the question of whether the conversion from small size to small degree
can be achieved without blowing up the size remains open, and it is not even known if the
upper bound on degree in terms of size in [4] is tight.
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