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Abstract
Agreement expansion is concerned with set systems for which local assignments to the sets with
almost perfect pairwise consistency (i.e., most overlapping pairs of sets agree on their intersections)
implies the existence of a global assignment to the ground set (from which the sets are defined) that
agrees with most of the local assignments.

It is currently known that if a set system forms a two-sided or a partite high dimensional expander
then agreement expansion is implied. However, it was not known whether agreement expansion can
be implied for one-sided high dimensional expanders.

In this work we show that agreement expansion can be deduced for one-sided high dimensional
expanders assuming that all the vertices’ links (i.e., the neighborhoods of the vertices) are agreement
expanders. Thus, for one-sided high dimensional expander, an agreement expansion of the large
complicated complex can be deduced from agreement expansion of its small simple links.

Using our result, we settle the open question whether the well studied Ramanujan complexes are
agreement expanders. These complexes are neither partite nor two-sided high dimensional expanders.
However, they are one-sided high dimensional expanders for which their links are partite and
hence are agreement expanders. Thus, our result implies that Ramanujan complexes are agreement
expanders, answering affirmatively the aforementioned open question.

The local-to-global agreement expansion that we prove is based on the variance method that we
develop. We show that for a high dimensional expander, if we define a function on its top faces and
consider its local averages over the links then the variance of these local averages is much smaller
than the global variance of the original function. This decreasing in the variance enables us to
construct one global agreement function that ties together all local agreement functions.
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1 Introduction

Agreement expansion has been extensively studied. It plays an important role in nearly all
PCP constructions, and has found various applications in many recent works (see e.g., [8, 5,
1, 9] and [3]). Previous works could only prove agreement expansion for complexes which are
two-sided local spectral expanders or partite one-sided local spectral expanders. However,
the question for the general case of one-sided local spectral expanders remained open. In this
work we show that all one-sided local spectral expanders are agreement expanders, given that
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the local views of their vertices are agreement expanders. In particular, this solves an open
question regarding the well studied Ramanujan complexes, which are not two-sided local
spectral expanders nor partite, but the local views of their vertices are agreement expanders.

Our main theorem is a local-to-global agreement expansion. We show that agreement
expansion of the entire complex can be deduced from agreement expansion of its vertices,
i.e., if locally the complex is an agreement expander, then it is also globally expanding. In
many cases of high dimensional expanders, the entire complex is a complicated object which
is hard to understand, but it is composed of many simple local objects. We show that it is
enough to argue regarding the simple local views of the complex, which then implies that
the whole complicated complex is also an agreement expander.

The main theorem that we prove is based on the variance method that we develop. We
show that for one-sided local spectral expanders, the variance of any function decreases as
we go down the dimensions. Namely, if we define a function on the top faces of the complex
and consider its local averages over the links then the variance of these local averages is
much smaller than the global variance of the original function. This decreasing in variance
enables us to construct a single global function that stitches together all the local agreement
functions.

Agreement tests

Let S a collection of subsets over some ground set V . A local assignment is a collection of
functions f = {fσ}σ∈S , where each fσ is a function that specifies a 0, 1 value for each u ∈ σ.
Any fσ is local in the sense that it gives values only to the elements in σ, independently
of the rest of the functions and the ground set. A global assignment is a single function
g : V → {0, 1} which specifices a value for every vertex in the ground set. We say that a
local assignment f = {fσ} comes from a global assignment g, if for every σ ∈ S it holds that
fσ = g

∣∣
σ
, i.e., fσ is just the restriction of g to σ.

Denote by G the set of all global assignments. An agreement test is specified by a
distribution D on tuples (τ, σ1, σ2) such that σ1, σ2 ∈ S and τ ⊆ σ1 ∩ σ2. The test picks
τ, σ1, σ2 according to D and accepts if fσ1 and fσ2 agree on τ , i.e., if for every u ∈ τ ,
fσ1(τ) = fσ2(τ).1 We denote the acceptance probability of the test by

agreeD(f) = Pr
τ,σ1,σ2∼D

[fσ1

∣∣
τ

= fσ2

∣∣
τ
].

It is easy to see that if a local assignment comes from a global assignment then the test
accepts with probability 1. Denote by dist(f, g) the fraction of σ ∈ S for which fσ 6= g

∣∣
σ
.

An agreement theorem states that if agreeD(f) ≥ 1− ε then f is 1−O(ε) close to a global
assignment, i.e., there exists a global assignment g ∈ G such that dist(f, g) ≤ O(ε). In
other words, an agreement theorem guarantees that the agreement test provides a good
approximation for the distance of a local assignment from the global assignments.

High dimensional expanders

A d-dimensional simplicial complex X is a (d + 1)-hypergraph which is closed under con-
tainment: For any (d+ 1)-hyperedge σ in X, all of its subsets τ ⊂ σ also belong to X. A
hyperedge σ is also called a face of the complex, and its dimension is |σ| − 1. The set of all
k-dimensional faces of the complex is denoted by X(k).

1 A weaker notion of an agreement test, which we do not discuss in this paper, is concerned with an
approximate global consistency, i.e., that fσ agrees with g

∣∣
σ
on most of the elements in σ.
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For any face σ ∈ X, its link is the subcomplex obtained by all the faces in X which
contain σ after removing σ from all of them, and denoted by Xσ = {τ \ σ | σ ⊆ τ ∈ X}.
Note that if X is of dimension d then Xσ is of dimension d− |σ|.

I Definition 1.1 (Partite complex). A d-dimensional complex X is called partite if its vertices
can be partitioned into d+ 1 sets X(0) = V1 ·∪ V2 ·∪ · · · ·∪ Vd+1 such that any d-dimensional
face σ ∈ X(d) contains a vertex from each Vi, i.e., |σ ∩ Vi| = 1.

In recent years, several distinct notions of high dimensional expansion have been studied.
For a detailed survey regarding high dimensional expanders we refer the reader to [10]. In
this work we focus on the spectral expansion of the links of the complex.

I Definition 1.2 (Local spectral expansion). A d-dimensional complex X is called a λ-
one-sided local spectral expander (or λ-two-sided local spectral expander) if for every
−1 ≤ k ≤ d− 2 and every σ ∈ X(k), the underlying graph2 of Xσ is a λ-one-sided spectral
expander (or λ-two-sided spectral expander, respectively).

High dimensional expanders and agreement expansion

The work of [4] initiated the relation of high dimensional expanders to agreement tests. We
follow their definition of agreement expansion.

I Definition 1.3 (Agreement expansion). A d-dimensional complex X is called a c-agreement
expander for dimension k if there exists a distribution D such that for every local assignment
f = {fσ}σ∈X(k) there exists a global agreement function g ∈ G such that

dist(f, g) ≤ c · disagreeD(f),

where disagreeD(f) = 1− agreeD(f) is the rejection probability of the test.

The name “agreement expansion” comes from its similarity to other expansion measures,
since X is an agreement expander if and only if

min
f

disagreeD(f)
dist(f,G) ≥ 1

c
,

where the minimum is taken over all local assignments that do not come from a global
assignment.

In [6], the authors prove that there exists a constant c > 0 such that the d-dimensional
complete complex, which is the complex that contains all possible sets of size ≤ d+ 1, is a
c-agreement expander for its top dimension. Building on [6], [4] show that there exists a
constant c > 0 such that a d-dimensional two-sided local spectral expander is a c-agreement
expander for dimension k = O(

√
d). Their proof goes by a reduction to the complete complex,

and therefore they could not prove agreement expansion for the top dimension of the complex,
but only for some lower dimension.

In a recent work, Dikstein and Dinur [2] prove that there exists a constant c > 0 such
that a d-dimensional two-sided local spectral expander or a partite one-sided local spectral
expander are c-agreement expanders for their top dimension. However, the general question
for one-sided local spectral expanders remained open.

2 The graph whose vertices are Xσ(0) and its edges are Xσ(1).

ITCS 2020



74:4 Local-To-Global Agreement Expansion via the Variance Method

Our main theorem in this work is that agreement expansion of a complex can be deduced
from the agreement expansion of the links of its vertices. In particular, for any constant
c > 0 there exists a constant c′ > 0 which is dependent only on c such that a d-dimensional
one-sided local spectral expander is a c′-agreement expander for its top dimension, given
that the links of its vertices are c-agreement expanders for their top dimension.

I Theorem 1.4 (Main Theorem, informal). For any constant c > 0 there exists a constant
c′ = c′(c) such that if the links of the vertices of a one-sided local spectral expander are
c-agreement expanders for their top dimension, then the entire complex is a c′-agreement
expander for its top dimension. Moreover, the global agreement function that agrees with
most of the local functions is defined by majority decoding.

Our result extends [2] to general one-sided local expanders, which are not necessarily
partite. Moreover, the result of [2] ensures that if the agreement test accepts with probability
1−ε then there exists some global function that agrees with 1− cε of the local functions. The
global function that [2] construct is not necessarily the majority function, but rather some
conditional majority. We show here that the majority function agrees with 1− c′ε of the local
functions, regardless of which functions agree with the local functions on each vertex. Our
proof technique can be used for two-sided local spectral expanders and for partite one-sided
local spectral expanders as well: As a first step use [2] to construct a local agreement function
for each vertex, and then by our work conclude that the majority function agrees with most
of these local agreement functions.

I Corollary 1.5. There exists a constant c > 0 such that any d-dimensional two-sided
local spectral expander and any d-dimensional partite one-sided local spectral expander is a
c-agreement expander for its top dimension, where the global agreement function is defined
by majority decoding.

Ramanujan complexes

Much of the motivation for the study of high dimensional expanders comes from the existence
of Ramanujan complexes, whose properties are optimal in almost every measure. Ramanujan
complexes are the high dimensional analogs of the celebrated LPS Ramanujan graphs [11],
which arise from number theory. In [12] the authors describe an explicit construction of a
family of bounded degree Ramanujan complexes, i.e., every vertex is contained in a bounded
number of faces. Thus, the number of d-dimensional faces in these complexes is linear in the
number of vertices.

Ramanujan complexes are known to be one-sided local spectral expanders [7], and their
links are also partite. However, Ramanujan complexes are not two-sided local spectral
expanders nor partite, so previous works could not show that they are agreement expanders.
As a corollary of our theorem, we settle this open question.

I Corollary 1.6. There exists a constant c > 0 such that Ramanujan complexes are c-
agreement expanders for their top dimension.

The variance method

Our local-to-global agreement theorem is based on the variance method. The decreasing in
variance idea has first appeared in [4], where the authors proved that in high dimensional
expanders, the difference of variances of a function on successive dimensions is decreasing.
The authors in [4] proved it only for two-sided local spectral expanders, and used it just for
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the single purpose of showing that random walks on high dimensional expanders have an
optimal convergence rate. We extend their work and show that the same holds for one-sided
local spectral expanders as well. In addition, we show the general statement that the variance
of any function on the top faces of a high dimensional expander decreases by a factor of d
when considered on the vertices.

I Theorem 1.7 (The variance method, informal). Let X be a d-dimensional one-sided local
spectral expander. For any function h : X(d)→ R,

Var
u∈X(0)

E
σ∈Xu(d−1)

h(uσ) ≤ O
(

1
d

)
Var

σ∈X(d)
h(σ).

The small variance is important in order to get a global function that agrees with
1−O(ε) of the local functions. Recall that we are given a local assignment f = {fσ} and a
probability distribution D such that disagreeD(f) ≤ ε and our goal is to construct a global
function g such that dist(f, g) ≤ O(ε). By a simple union bound argument, it is easy to
get dist(f, g) ≤ O(dε). In order to get an agreement which is not dependent on d, we must
bound the probability of the bad events by O(ε/d) and then by a union bound to get an
agreement of O(ε). Using the variance method, we can show that the variance on the vertices
decreases by a factor of d, and thus the bad events happen with a probability bounded by
O(ε/d). We believe that this method will find many more applications in the future.

Organization

In Section 2 we provide some required preliminaries regarding expander graphs and high
dimensional expanders. In Section 3 we introduce the variance method. In Section 4 we
prove our main theorem.

2 Preliminaries

2.1 Expander graphs
Let G = (V,E) be a graph with positive weights on the edges w : E → R>0. Assume without
loss of generality that the sum of the weights is 1 (otherwise just normalize), i.e., w is a
probability distribution on the edges. These weights induce a probability distribution on the
vertices as well, where the probability of a vertex u ∈ V is given by 1

2
∑
e3u w(e). All the

following probabilities are taken according to these distributions.
For any two functions h, h′ : E → R, we define their inner product by

〈h, h′〉 =
∑
e∈E

w(e)h(e)h′(e) = E
e∈E

h(e)h′(e).

Similarly, for any two functions g, g′ : V → R, their inner product is defined by

〈g, g′〉 = E
u∈V

g(u)g′(u).

The adjacency operator A = A(G) : RV → RV is defined by Ag(u) = Euv|u g(v), where
uv|u denotes the event that the edge {u, v} was chosen given that the vertex u was chosen.

Denote the eigenvalues of the adjacency operator of G by λ1 ≥ λ2 ≥ · · · ≥ λ|V |. It is easy
to see that λ1 = 1 (with corresponding eigenfunction 1) and that λ|V | ≥ −1. Let 0 < λ < 1
be a positive constant. The graph G is said to be a λ-one-sided spectral expander if λ2 ≤ λ,
and G is said to be a λ-two-sided spectral expander if both λ2 ≤ λ and λ|V | ≥ −λ.

ITCS 2020
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2.2 High dimensional expanders
Recall that a d-dimensional simplicial complex X is a (d+ 1)-hypergraph which is closed
under containment. Throughout the paper we refer to the probability of choosing a face of
the complex, which is given by the following probabilistic process. Consider the random
sequence of faces σd ⊃ σd−1 ⊃ · · · ⊃ σ0 ⊃ ∅, where σd ∈ X(d) is chosen uniformly at random,
and then for each k = d − 1, · · · , 0, σk is chosen by removing a uniformly random vertex
from σk+1. For any σ ∈ X(k), we denote the probability of choosing σ by

Pr[σ] = Pr[σd ⊃ σd−1 ⊃ · · · ⊃ σ0 ⊃ ∅ | σk = σ].

For any −1 ≤ k < d and a face σ ∈ X(k), its link is the (d− k − 1)-dimensional complex
defined by Xσ = {τ \ σ | σ ⊆ τ ∈ X}. The probability of choosing a face τ ∈ Xσ is given by
Pr[τ ∈ Xσ] = Pr[τ ·∪ σ | σk = σ].

For the agreement test, we use the Dd,` distribution as defined in [2].

I Definition 2.1 (The Dd,` distribution). Let X be a d-dimensional simplicial complex and
` < d be a positive integer. The Dd,` distribution is defined by the following random process:
1. Choose τ ∈ X(`) at random.
2. Choose σ1, σ2 ∈ Xτ (d− `− 1) independently at random.
The tuple that is then returned is (τ, τ ·∪ σ1, τ ·∪ σ2).

3 The Variance Method

We show in this section that for one-sided local spectral expanders, the variance of any
function decreases as we go down the dimensions of the complex. We first bound the variance
in one-sided spectral expander graphs, and then show how to use this bound in order to
bound the variance on functions of a complex.

3.1 Bounding the variance in expander graphs
Let G = (V,E) be a weighted graph. Recall that the adjacency operator A : RV → RV is
defined by Ag(u) = Euv|u g(v). We define the following two additional averaging operators:

A↓ : RE → RV defined by A↓h(u) = Ee|u h(e).
A↑ : RV → RE defined by A↑g(e) = Eu|e g(u).

The following properties are pretty standard.
(1) A↓ and A↑ are adjoint to each other, i.e., for any two vectors h ∈ RE , g ∈ RV ,

〈A↓h, g〉 = E
u
E
e|u
h(e)g(u) = E

e
E
u|e
h(e)g(u) = 〈h,A↑g〉.

(2) Denote by λ2(A↓A↑) and λ2(A) the second largest eigenvalues of A↓A↑ and A corre-
spondingly. It is easy to check that A↓A↑ = (A+ I)/2, where I is the identity operator.
Thus,

λ2(A↓A↑) = 1 + λ2(A)
2 .

(3) A↑A↓ and A↓A↑ have the same non-zero eigenvalues. In particular, λ2(A↑A↓) =
λ2(A↓A↑).
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(4) By Rayleigh quotient

λ2(A↑A↓) = max
h:E→R
h⊥1

〈A↑A↓h, h〉
‖h‖2 .

We will use the following lemma, which is immediate from the aforementioned properties.

I Lemma 3.1. Let G = (V,E) be a λ-one-sided spectral expander graph. For any function
h : E → R such that h ⊥ 1 it holds that∥∥A↓h∥∥2 ≤ 1 + λ

2 ‖h‖2
.

Proof. It follows immediately from the properties mentioned above, since

∥∥A↓h∥∥2 = 〈A↓h,A↓h〉 = 〈A↑A↓h, h〉 ≤ λ2(A↑A↓) ‖h‖2 = λ2(A↓A↑) ‖h‖2 = 1 + λ2(A)
2 ‖h‖2

,

where we used properties (1), (4), (3) and (2) in that order. J

We can now bound the variance of any function on the edges of the graph.

I Lemma 3.2. Let G = (V,E) be a λ-one-sided spectral expander graph. For any function
h : E → R it holds that

E
u

Var
e|u

h(e) ≥ 1− λ
1 + λ

Var
u

E
e|u
h(e).

Proof. Assume without loss of generality that Ee h(e) = 0 (otherwise, define h′ = h−Ee h(e)
and continue with h′). Now, note that

Var
u

E
e|u
h(e) = E

u

(
E
e|u
h(e)

)2
=
∥∥A↓h∥∥2

. (1)

Note also that

E
u

Var
e|u

h(e) = E
u

(
E
e|u
h(e)2 −

(
E
e|u
h(e)

)2
)

= E
e
h(e)2−E

u

(
E
e|u
h(e)

)2
= ‖h‖2−

∥∥A↓h∥∥2
. (2)

Since Ee h(e) = 0, by lemma 3.1 we have that

‖h‖2 ≥ 2
1 + λ

∥∥A↓h∥∥2
. (3)

Combining (1), (2) in (3) finishes the proof. J

3.2 Bounding the variance in one-sided local spectral expanders
The following lemma follows immediately from lemma 3.2.

I Lemma 3.3. Let X be a d-dimensional λ-one-sided local spectral expander. For any
1 ≤ k ≤ d and a function h : X(k)→ R it holds that

E
σ∈X(k−1)

Var
u∈Xσ(0)

h(σu) ≥ 1− λ
1 + λ

E
σ∈X(k−2)

Var
u∈Xσ(0)

E
v∈Xσu(0)

h(σuv).

ITCS 2020
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Proof. By definition, for every σ ∈ X(k − 2), the underlying graph of Xσ is a λ-one-sided
spectral expander. Thus, by lemma 3.2,

E
u∈Xσ(0)

Var
v∈Xσu(0)

h(σuv) ≥ 1− λ
1 + λ

Var
u∈Xσ(0)

E
v∈Xσu(0)

h(σuv).

Averaging over all σ ∈ X(k − 2) finishes the proof. J

We can now prove the following two lemmas for one-sided local spectral expanders.

I Lemma 3.4. Let X be a (d− 1)-dimensional λ-one-sided local spectral expander, where
d ≥ k · ` for k ≥ 2, ` ≥ 1. If λ ≤ 1/2d then for any function h : X(d− 1)→ R,

Var
σ∈X(d−1)

h(σ) ≤ k + 2
k − 1 E

τ∈X(`−1)
Var

σ∈Xτ (d−`−1)
h(τσ).

Proof. Note that

Var
σ∈X(d−1)

h(σ) = E
u1
· · · E

ud
h(u1 · · ·ud)2 −

(
E
u1
· · · E

ud
h(u1 · · ·ud)

)2

= E
u1
· · · E

ud
h(u1 · · ·ud)2 − E

u1
· · · E

ud−1

(
E
ud
h(u1 · · ·ud)

)2
+

E
u1
· · · E

ud−1

(
E
ud
h(u1 · · ·ud)

)2
− E
u1
· · · E

ud−2

(
E

ud−1
E
ud
h(u1 · · ·ud)

)2
+ · · ·

· · ·+ E
u1

(
E
u2
· · · E

ud
h(u1 · · ·ud)

)2
−
(
E
u1
· · · E

ud
h(u1 · · ·ud)

)2

= E
u1
· · · E

ud−1
Var
ud

h(u1 · · ·ud) +

E
u1
· · · E

ud−2
Var
ud−1

E
ud
h(u1 · · ·ud) + · · ·

· · ·+ Var
u1

E
u2
· · · E

ud
h(u1 · · ·ud),

(4)

where the second equality follows by a telescoping sum argument. Similarly,

E
τ∈X(`−1)

Var
σ∈Xτ (d−`−1)

h(τσ) = E
u1
· · · E

ud−1
Var
ud

h(u1 · · ·ud) +

E
u1
· · · E

ud−2
Var
ud−1

E
ud
h(u1 · · ·ud) + · · ·

· · ·+ E
u1
· · · E

u`
Var
u`+1

E
u`+2
· · · E

ud
h(u1 · · ·ud).

For any 1 ≤ i ≤ k − 1, invoking lemma 3.3 i · ` times on each of the last ` summands
of (4) yields

E
u1
· · · E

u`−1
Var
u`

E
u`+1
· · · E

ud
h(u1 · · ·ud) + · · ·+ Var

u1
E
u2
· · · E

ud
h(u1 · · ·ud)

≤
(1 + λ

1− λ

)i`(
E
u1
· · · E

u(i+1)`−1
Var
u(i+1)`

E
u(i+1)`+1

· · · E
ud
h(u1 · · ·ud) + · · ·

· · ·+ E
u1
· · · E

ui`
Var
ui`+1

E
ui`+2

· · · E
ud
h(u1 · · ·ud)

)
≤ e

(
E
u1
· · · E

u(i+1)`−1
Var
u(i+1)`

E
u(i+1)`+1

· · · E
ud
h(u1 · · ·ud) + · · ·

· · ·+ E
u1
· · · E

ui`
Var
ui`+1

E
ui`+2

· · · E
ud
h(u1 · · ·ud)

)
,
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where the last inequality follows since i ·` ≤ d−1 and λ ≤ 1/2d. Thus, by invoking lemma 3.3
i · ` times on the last ` summands of (4) for i = 1, . . . , k − 1 we get

(k − 1) Var
σ∈X(d−1)

h(σ) ≤ (k − 1 + e) E
τ∈X(`−1)

Var
σ∈Xτ (d−`−1)

h(τσ),

which finishes the proof. J

I Lemma 3.5. Let X be a d-dimensional λ-one-sided local spectral expander. If λ ≤ 1/(2d+1)
then for any function h : X(`)→ R, ` ≤ d,

Var
u∈X(0)

E
σ∈Xu(`−1)

h(uσ) ≤ 8
5` Var

σ∈X(`)
h(σ).

Proof. Note that
Var

σ∈X(`)
h(σ) = E

u1
· · · E

u`
Var
u`+1

h(u1 · · ·u`+1) +

E
u1
· · · E

u`−1
Var
u`

E
u`+1

h(u1 · · ·u`+1) + · · ·

· · ·+ Var
u1

E
u2
· · · E

u`+1
h(u1 · · ·u`+1).

(5)

By invoking lemma 3.3 on each summand of (5), where on the ith summand we invoke it
i− 1 times, we get

Var
σ∈X(`)

h(σ) ≥
∑̀
i=0

(
1− λ
1 + λ

)i
Var

u∈X(0)
E

σ∈Xu(`−1)
h(uσ) ≥ `(1− e−1) Var

u∈X(0)
E

σ∈Xu(`−1)
h(uσ),

where the last inequality follows since λ ≤ 1/(2d+ 1). J

I Corollary 3.6. By the assumptions of lemma 3.5, if the range of h is [0, 1] then

Var
u∈X(0)

E
σ∈Xu(`−1)

h(uσ) ≤ 8
5` E

σ∈X(`)
h(σ).

Proof. It follows immediately since for h with range in [0, 1], Varσ∈X(`) h(σ) ≤ Eσ∈X(`) h(σ).
J

4 Local-to-Global Agreement Expansion

In this section we state and prove our main theorem.

I Theorem 4.1 (Main Theorem). For any constant c > 0 and two natural numbers d > ` ≥ 2
such that ` = Θ(d), there exists a constant c′ = c′(c, d/`) such that the following holds. Let
X be a d-dimensional λ-one-sided local spectral expander, λ ≤ 1/(2d+ 1). If for every vertex
v ∈ X(0), the link Xv is a c-agreement expander with regard to the Dd−1,`−1 distribution,
then X is a c′-agreement expander with regard to the Dd,` distribution. Moreover, the global
agreement function is defined by majority decoding.

The general idea will be to decompose the global agreement probability to local agreements
in the links, and to show that with high probability the local functions agree with the global
majority function.

Let f = {fσ}σ∈X(d). Define the majority function maj : X(0)→ {0, 1} by

maj(v) = arg max
α∈{0,1}

{
Pr

σ∈Xv(d−1)
[fvσ(v) = α]

}
.

Denote by ε = disagree(f). The proof will follow from the following claims.
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B Claim 4.2. E
v∈X(0)

Pr
σ∈Xv(d−1)

[fvσ(v) 6= maj(v)] ≤ 2
(

1 + 3
d/`− 1

)
ε.

B Claim 4.3. E
v∈X(0)

Pr
σ∈Xv(d−1)

[
gv
∣∣
σ
6= maj

∣∣
σ

]
≤ 120

(2d
`
c2 + 2c+ 1 + 3

d/`− 1

)
ε,

where gv : Xv(0)→ {0, 1} is the function promised by the c-agreement expansion of Xv.

Proof of Main Theorem. Consider a vertex v ∈ X(0) and a top face in its link σ ∈ Xv(d−1).
Note that if the following three events happen then fvσ agrees with maj

∣∣
vσ
:

(1) fvσ(v) = maj(v),
(2) fvσ

∣∣
σ

= gv
∣∣
σ
,

(3) gv
∣∣
σ

= maj
∣∣
σ
.

Therefore,

Pr
σ∈X(d)

[fσ 6= maj
∣∣
σ
] = E

v∈X(0)
Pr

σ∈Xv(d−1)
[fvσ

∣∣
vσ
6= maj

∣∣
vσ

]

≤ E
v∈X(0)

(
Pr

σ∈Xv(d−1)
[fvσ(v) 6= maj(v)] +

Pr
σ∈Xv(d−1)

[fvσ
∣∣
σ
6= gv

∣∣
σ
] +

Pr
σ∈Xv(d−1)

[gv
∣∣
σ
6= maj

∣∣
σ
]
)

≤ 2
(

1 + 3
d/`− 1

)
ε+ cε+ 120

(2d
`
c2 + 2c+ 1 + 3

d/`− 1

)
ε

=
(240d

`
c2 + 241c+ 122 + 366

d/`− 1

)
ε,

where the second inequality follows by claims 4.2 and 4.3, and by the c-agreement expansion
of the link of every vertex in the complex. Finally, the theorem follows since d/l = Θ(1). J

4.1 Proofs of Claims 4.2 and 4.3
Proof of Claim 4.2. The idea of the proof is by the variance method, as follows. For any
vertex v ∈ X(0) we consider the indicator function on the d-faces whether a local function
fσ agrees with the majority on v. We note that the global variance of this function indicates
the disagreement probability of two d-faces on v, and the average over τ ∈ Xv(`− 1) of local
variances indicates the disagreement probability of two d-faces on v with intersection of size
at least `. Since ` = Θ(d) we conclude by the variance method that these two distributions
are approximately equal. Details follow.

Let v ∈ X(0). Define the indicator function hv : Xv(d− 1)→ {0, 1} by

hv(σ) =
{

1 fvσ(v) 6= maj(v),
0 fvσ(v) = maj(v).

By definition, Eσ∈Xv(d−1) hv(σ) ≤ 1/2. Thus,

E
σ∈Xv(d−1)

hv(σ) ≤ 2 E
σ∈Xv(d−1)

hv(σ)
(

1− E
σ∈Xv(d−1)

hv(σ)
)
. (6)

Since hv is an indicator function

E
σ∈Xv(d−1)

hv(σ)
(

1− E
σ∈Xv(d−1)

hv(σ)
)

= Var
σ∈Xv(d−1)

hv(σ). (7)
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Since X is a λ-one-sided local spectral expander, by lemma 3.4

Var
σ∈Xv(d−1)

hv(σ) ≤ d+ 2`
d− `

E
τ∈Xv(`−1)

Var
σ∈Xvτ (d−`−1)

hv(τσ). (8)

Again, since hv is an indicator function

Var
σ∈Xvτ (d−`−1)

hv(τσ) = E
σ∈Xvτ (d−`−1)

hv(τσ)
(

1− E
σ∈Xvτ (d−`−1)

hv(τσ)
)
. (9)

Combining (6), (7), (8) and (9) yields

Pr
σ∈Xv(d−1)

[fvσ(v) 6= maj(v)] ≤

2d+ 2`
d− `

E
τ∈Xv(`−1)

Pr
σ1,σ2∈Xvτ (d−`−1)

[fvτσ1(v) 6= maj(v) ∧ fvτσ2(v) = maj(v)].

Finally, since fvτσ1(v) 6= maj(v)∧ fvτσ2(v) = maj(v) implies that fvτσ1

∣∣
vτ
6= fvτσ2

∣∣
vτ
, we

can conclude that

E
v∈X(0)

Pr
σ∈Xv(d−1)

[fvσ(v) 6= maj(v)] ≤ 2d+ 2`
d− `

E
τ∈X(`)

Pr
σ1,σ2∈Xτ (d−`−1)

[fτσ1

∣∣
τ
6= fτσ2

∣∣
τ
]

≤ 2
(

1 + 3
d/`− 1

)
ε.

C

Before proving Claim 4.3, let us define the following set of “bad neighbors”. For any vertex
u ∈ X(0), by the agreement expansion of Xu, there exists a function gu : Xu(0) → {0, 1}
that agrees with most of the top faces on u. We say that v ∈ Xu(0) is a bad neighbor of u if
gu disagrees with many top faces that contain v:

Bu =
{
v ∈ Xu(0)

∣∣∣∣ Pr
σ∈Xuv(d−2)

[fuvσ
∣∣
vσ
6= gu

∣∣
vσ

] > 3
10

}
.

We will use the following two claims, which guarantee that on average almost all of the
neighbors are not bad.

B Claim 4.4. E
u∈X(0)

Pr
v∈Xu(0)

[v ∈ Bu] ≤ 160
(d
`
c2 + c

) ε

d− 1 .

B Claim 4.5. E
v∈X(0)

Pr
u∈Xv(0)

[gu(v) 6= maj(v) ∧ v /∈ Bu] ≤ 80
(

1 + 3
d/`− 1

) ε

d− 1 .

Proof of Claim 4.3. Note that

E
u∈X(0)

Pr
σ∈Xu(d−1)

[gu
∣∣
σ
6= maj

∣∣
σ
] = E

u∈X(0)
Pr

σ∈Xu(d−1)
[∃v ∈ σ s.t. gu(v) 6= maj(v)]

≤ d E
u∈X(0)

Pr
v∈Xu(0)

[gu(v) 6= maj(v)].

By the law of total probability

E
u∈X(0)

Pr
v∈Xu(0)

[gu(v) 6= maj(v)] = E
u∈X(0)

Pr
v∈Xu(0)

[gu(v) 6= maj(v) ∧ v ∈ Bu] +

E
v∈X(0)

Pr
u∈Xu(0)

[gu(v) 6= maj(v) ∧ v /∈ Bu]

≤ 160
(d
`
c2 + c

) ε

d− 1 + 80
(

1 + 3
d/`− 1

) ε

d− 1

= 80
(2d
`
c2 + 2c+ 1 + 3

d/`− 1

) ε

d− 1 ,
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where the inequality follows by claims 4.4 and 4.5. Therefore,

E
u∈X(0)

Pr
σ∈Xu(d−1)

[gu
∣∣
σ
6= maj

∣∣
σ
] ≤ 120

(2d
`
c2 + 2c+ 1 + 3

d/`− 1

)
ε,

where the inequality follows by the assumption that d ≥ 3. C

4.2 Proofs of Claims 4.4 and 4.5
For any u ∈ X(0), denote by εu the disagreement probability conditioned on u:

εu = E
τ∈Xu(`−1)

Pr
σ1,σ2∈Xuτ (d−`−1)

[fuτσ1

∣∣
uτ
6= fuτσ2

∣∣
uτ

],

and define the following set of vertices:

S =
{
u ∈ X(0)

∣∣∣∣ εu ≤ 1
5c

}
.

The proofs will follow from the following claims.

B Claim 4.6. Pr
u∈X(0)

[u /∈ S] ≤ 160c2 ε

`
.

B Claim 4.7. For any vertex u ∈ S,

Pr
v∈Xu(0)

[v ∈ Bu | u ∈ S] ≤ 160c εu
d− 1 .

Proof of Claim 4.4. Assuming claims 4.6 and 4.7 the proof follows immediately since

E
u∈X(0)

Pr
v∈Xu(0)

[v ∈ Bu] ≤ Pr
u∈X(0)

[u /∈ S] + E
u∈S

Pr
v∈Xu(0)

[v ∈ Bu]

≤ 160c2 ε

`
+ 160c 1

d− 1 E
u∈S

εu

≤ 160
(d
`
c2 + c

) ε

d− 1 ,

where the last inequality follows since Eu∈X(0) εu ≤ ε. C

Proof of Claim 4.5. Consider a vertex v ∈ X(0) and the sets of top faces which disagree with
the majority on v. By the variance method we know that almost all the vertices in the link
of v see the right amount of top faces that disagree with the majority on v. Thus, if for
a vertex u ∈ Xv(0), where v is not bad neighbor of u, the function gu disagrees with the
majority on v, it must see a lot of top faces that disagree with the majority. By the variance
method we know that this happens with a small probability. Details follows.

For any vertex v ∈ X(0) define the function hv : Xv(d− 1)→ {0, 1} by

hv(σ) =
{

1 fvσ(v) 6= maj(v),
0 fvσ(v) = maj(v).

Note that Eσ∈Xv(d−1) hv(σ) ≤ 1/2. Note also that for any vertex u ∈ Xv(0),

gu(v) 6= maj(v) ∧ v /∈ Bu ⇒ E
σ∈Xuv(d−2)

hv(uσ) > 7
10 .



T. Kaufman and D. Mass 74:13

Therefore,

Pr
u∈Xv(0)

[gu(v) 6= maj(v) ∧ v /∈ Bu] ≤ Pr
u∈Xv(0)

[
E

σ∈Xuv(d−2)
hv(uσ)− E

σ∈Xv(d−1)
hv(σ) > 1

5

]
.

By corollary 3.6

Var
u∈Xv(0)

E
σ∈Xuv(d−2)

hv(uσ) ≤ 8
5(d− 1) E

σ∈Xv(d−1)
hv(σ).

Thus, by Chebyshev inequality

Pr
u∈Xv(0)

[
E

σ∈Xuv(d−2)
hv(uσ)− E

σ∈Xv(d−1)
hv(σ) > 1

5

]
≤ 40
d− 1 E

σ∈Xv(d−1)
hv(σ).

Averaging over all v ∈ X(0) yields

E
v∈X(0)

Pr
u∈Xv(0)

[gu(v) 6= maj(v) ∧ v /∈ Bu] ≤ 40
d− 1 E

v∈X(0)
E

σ∈Xv(d−1)
hv(σ)

≤ 80
(

1 + 3
d/`− 1

) ε

d− 1 ,

where the last inequality follows by claim 4.2. C

4.3 Proofs of Claims 4.6 and 4.7
Both of these claims follow immediately by the variance method. In claim 4.6 we use the
small variance of the function that measures the disagreement probability on a face τ ∈ X(`).
Since the variance of the average of this function on the vertices is small, almost all the
vertices have disagreement close to the expectation.

In claim 4.7 we use the small variance of the indicator function in the link of a vertex
u ∈ X(0), which indicates whether a top face disagrees with the function gu. Since the
variance of the average of this function on the vertices is small, almost all the vertices in the
link of u see a small amount of top faces which disagree with gu, i.e., almost all the vertices
in the link of u are not bad neighbors. Details follow.

Proof of Claim 4.6. Note that Eu∈X(0) εu ≤ ε and assume that ε ≤ 1/10c. Thus, for a vertex
u ∈ X(0) to not be in S, it has to deviate from its mean by more than 1/10c. By corollary 3.6

Var
u∈X(0)

εu ≤
8
5` E

τ∈X(`)
Pr

σ1,σ2∈Xτ (d−`−1)
[fτσ1

∣∣
τ
6= fτσ2

∣∣
τ
] ≤ 8ε

5` .

Thus, by Chebyshev inequality

Pr
u∈X(0)

[u /∈ S] ≤ Pr
u∈X(0)

[
εu − E

u′∈X(0)
εu′ >

1
10c

]
≤ 160c2ε

`
. C

Proof of Claim 4.7. Consider a vertex u ∈ S. Since Xu is a c-agreement expander, there
exists a local function gu : Xu(0)→ {0, 1} such that

Pr
σ∈Xu(d−1)

[fuσ
∣∣
σ
6= gu

∣∣
σ
] ≤ cεu.

Define the indicator function hu : Xu(d− 1)→ {0, 1} by

hu(σ) =
{

1 fuσ
∣∣
σ
6= gu

∣∣
σ
,

0 fuσ
∣∣
σ

= gu
∣∣
σ
.
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By the definition of S, Eσ∈Xu(d−1) hu(σ) ≤ cεu ≤ 1/5. Thus, in order for a vertex
v ∈ Xu(0) to be in Bu, it has to deviate from its mean by more than 1/10. By corollary 3.6

Var
v∈Xu(0)

E
σ∈Xuv(d−2)

hu(vσ) ≤ 8
5(d− 1) E

σ∈Xu(d−1)
hu(σ) ≤ 8cεu

5(d− 1) .

Thus, by Chebyshev inequality

Pr
v∈Xu(0)

[v ∈ Bu | u ∈ S] ≤ Pr
v∈Xu(0)

[
E

σ∈Xuv(d−2)
hu(vσ)− E

σ∈Xu(d−1)
hu(σ) > 1

10

]
≤ 160cεu

d− 1 .

C
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