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Abstract
The frameworks of coverage and vacuity in formal verification analyze the effect of mutations applied
to systems or their specifications. We adopt these notions to network formation games, analyzing the
effect of a change in the cost of a resource. We consider two measures to be affected: the cost of the
Social Optimum and extremums of costs of Nash Equilibria. Our results offer a formal framework to
the effect of mutations in network formation games and include a complexity analysis of related
decision problems. They also tighten the relation between algorithmic game theory and formal
verification, suggesting refined definitions of coverage and vacuity for the latter.
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1 Introduction

Following the emergence of the Internet, there has been an explosion of studies employing
game-theoretic analysis to explore applications such as network formation and routing in
computer networks [21, 1, 20, 4]. In network-formation games (for a survey, see [37]), the
network is modeled by a weighted graph. The weight of an edge indicates the cost of
activating the transition it models, which is independent of the number of times the edge is
used. Players have reachability objectives, each given by a source and a target vertex. Under
the common Shapley cost-sharing mechanism, the cost of an edge is shared evenly by the
players that use it. The players are selfish agents who attempt to minimize their own costs,
rather than to optimize some global objective. In network-design settings, this would mean
that the players selfishly select a path instead of being assigned one by a central authority.
The study of networks from a game-theoretic point of view focuses on optimal strategies for
the underlying players, stable outcomes of a given setting, namely equilibrium points, and
outcomes that are optimal for the society as a whole.

A different type of reasoning about networks is the study of their on-going behaviors. In
particular, in recent years we see growing use of formal-verification methods in the context
of software-defined networks [34, 33]. The study of networks from a formal-verification point
of view focuses on specification and verification of their behavior. The primary problem
here is model checking: given a system (in particular, a network) and a specification for its
desired behavior, decide whether the system satisfies the specification [18]. Typically, the
system is given by means of a labeled graph and the specification is given by a temporal-logic
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10:2 Coverage and Vacuity in Network Formation Games

formula. An important element in model-checking methodologies is an assessment of the
quality of the modeling of the system and the specifications as well as the exhaustiveness of
the model-checking process. Researchers have developed a number of sanity checks, aiming
to detect errors in the modeling [27]. Two leading sanity checks are vacuity and coverage.
In vacuity, the goal is to detect cases where the system satisfies the specification in some
unintended trivial way [10, 31, 14]. In coverage, the goal is to increase the exhaustiveness
of the specification by detecting components of the system that do not play a role in the
verification process [24, 25, 16, 15]. Both vacuity and coverage checks are based on analyzing
the effect of applying local mutations to the system or the specification. The intuition is
that model checking of an exhaustive well-formed specification should be sensitive to such
mutations.

Beyond the practical importance of sanity checks, their study highlights some general
important theoretical properties regarding the sensitivity of systems and specifications to
mutations. Examples to such properties include duality between mutations applied to the
system and the specification [29], and trade-offs between desired and undesired insensitivity
to mutations (for example, fault tolerance is associated with a desired insensitivity to
mutations) [17]. A fundamental property of mutations in the context of formal verification is
monotonicity: mutations to temporal-logic formulas are monotone, in the sense that if ψ is a
formula and ϕ is a sub-formula of ψ that appears in a positive polarity (that is, nested in an
even number of negations), then when we mutate ψ to ψ′ by replacing ϕ by ϕ′, then ψ′ → ψ

iff ϕ′ → ϕ. Monotonicity turns out to be a very helpful property in the context of vacuity
checking. Indeed, the basic notion in vacuity is of a subfumula ϕ not affecting the satisfaction
of a specification ψ. Formally, consider a system S satisfying a specification ψ. A subformula
ϕ of ψ does not affect (the satisfaction of) ψ in S if S also satisfies all specifications obtained
by mutating ϕ to some other subformula [10]. Thanks to monotonicity, we can check whether
ϕ affects ψ by examining only the most challenging mutation, namely one that replaces ϕ by
false and the most helpful mutation, namely one that replaces ϕ by true.

Our goal in this paper is to examine the sensitivity of network-formation games (NFGs,
for short) to mutations applied to costs. While our study adopts from formal verification
the notion of mutation-based analysis, we examine the effect of mutations on measures from
game theory: the cost of stable and optimal outcomes. Recall that a strategy of a player
in an NFG is a path from a source to a target vertex. A profile in the game is a vector of
strategies, one for each player. A Social Optimum (SO) is a profile that minimizes the total
cost to all players. A Nash equilibrium (NE) is a profile in which no player can decrease her
cost by a unilateral deviation from her current strategy, that is, assuming that the strategies
of the other players do not change.

Consider an NFG N . We say that the edge e of N SO-affects N if a change in the cost of
e leads to a change in the cost of the SO. Formally, there exists x ≥ 0 such that the cost of
the SO profiles in N is different from the cost of the SO profiles in N [e← x], that is N with
e being assigned cost x. We consider the function costeSO(N) : R→ R, mapping a cost x ≥ 0
to the cost of the SO profiles in N [e← x]. That is, costeSO(N) describes the cost of the SO
in N as a function of the cost of the edge e. We say that costSO is monotonically increasing
if for every NFG N and edge e of N , the function costeSO(N) is monotonically increasing.
Likewise, costSO is continuous if for every NFG N and edge e, the function costeSO(N) is
continuous. For the best and worst NEs, we similarly define when an edge e bNE-affects and
wNE-affects N , and define the functions costbNE and costwNE , which describe the cost of
the best and worst NEs as a function of the cost of an edge.
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Our first set of results concerns the way edge costs affect the SO. Here, the results are
quite expected: costSO is monotonically increasing and continuous, which leads to simple
solutions to related decision problems: as is the case with model checking and temporal-logic
specifications, we can decide whether an edge e SO-affects N by checking the cost of the
SO in N [e ← 0] and N [e ← ∞N ], for a sufficiently large cost ∞N . This leads to ∆P

2 and
ΘP

2 upper bounds (depending on whether costs are given in binary or unary, respectively),
which we show to be tight. Also, we show that it is NP-complete and DP-complete to
decide whether we can mutate a cost in a way that would cause the SO to be below or agree
exactly with, respectively, a given threshold. The technically challenging results here are
the ∆P

2 -lower bound (it is tempting to believe that thanks to monotonicity, we could decide
whether e SO-affects N using only logarithmically many queries to an NP oracle that bounds
the SO) and the DP upper bound (the upper and lower bounds on the SO that we can obtain
by querying an NP and a co-NP oracle need not be associated with the same edge).

Things become unexpected when we turn to study effects on the costs of the best and
worst NEs. Here an edge may affect the bNE without participating in profiles that are NEs,
and may thus affect the bNE both positively and negatively. In model checking, this is
related to coverage and vacuity in a setting with multiple occurrences of subformulas. For
example, the atomic proposition p appears in the formula ψ = (ϕ1 → p) ∧ (p → ϕ2) both
positively and negatively. Consequently, we cannot decide whether p affects the satisfaction
of ψ by examining its replacement by only true or false (in the context of vacuity), and we
do not know the effect of mutating p in the system on the satisfaction of ψ (in the context of
coverage). We show that costbNE is neither monotone nor continuous, and in fact a change
in the cost of an edge may incentivize players in surprising ways. In particular (see Figure 5),
an edge e may not participate in any bNE in N [e← x], for all x ≥ 0, and still the bNE may
decrease as we increase the cost of e. We show that these challenges can be overcome by
more restricted notions such as piecewise monotonicity and monotonicity on the participation
of the mutated edge in bNE profiles. In particular, we show that these notions produce the
same (tight) complexity bounds for the analogous decision problems we introduce for the
SO. We note that while the general phenomenon of non-monotonicity is known (e.g., Braess’
Paradox [12], the effectiveness of burning money [23, 36] or tax increase [19]), we are the
first, to the best of our knowledge, to provide a comprehensive study of effects caused by
cost mutation.

Our results on NFGs give rise to two research directions in coverage and vacuity in formal
verification. The first arises from the segmentation of R+ induced by the non-monotonicity
of the bNE, which suggests a similar segmentation in the context of multi-valued specification
formalisms [2]. The second is a study of coverage and vacuity in formalisms for specifying
strategic on-going behaviors [3, 13]. We discuss these research directions in Section 5.

Due to lack of space, some of the proofs are omitted, and can be found in the full version,
as listed above.

2 Preliminaries

2.1 Network formation games
A network formation game (NFG) is N = 〈k, V,E, c, γ〉, where k is a number of players, V
is a set of vertices, E ⊆ V × V is a set of directed edges, c : E → R

+, where R+ is the set
of positive real numbers including 0, is a cost function that maps each edge to the cost of
forming it, and γ = {〈s1, t1〉, ..., 〈sk, tk〉} is a set of objectives, each specifying a source and a
target vertex per player. Thus, for all 1 ≤ i ≤ k, the objective of player i is to form a path
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10:4 Coverage and Vacuity in Network Formation Games

from si to ti. A strategy for player i is a simple path πi ⊆ E from si to ti. Note that since
the path is simple, then πi is indeed a subset of E. A profile P = 〈π1, ..., πk〉 is a vector
of strategies, one for each player. For an edge e ∈ E, we denote by usedP (e) the number
of players that use e in their strategy in P , thus these with e ∈ πi. We say that e ∈ P if
usedP (e) > 0.

Players pay the cost of forming edges they use. If players share an edge, they also share
its cost. Thus, the cost of a strategy πi in a profile P is costN,P (πi) =

∑
e∈πi

c(e)
usedP (e) . Note

that since c is positive, it is indeed sufficient to consider only simple paths as strategies. The
cost of P in N is the sum of costs of its strategies, that is cost(N,P ) =

∑k
i=1 costN,P (πi).

Equivalently, cost(N,P ) =
∑
e∈P c(e).

A Social Optimum (SO) of N is a profile with minimal cost. That is, a profile P is an
SO if for every other profile P ′ we have that cost(N,P ) ≤ cost(N,P ′). Note that there may
be several profiles that are a social optimum. We denote by SO(N) and costSO(N) the set
of such profiles and their cost, respectively.

We say that the profile P is a Nash Equilibrium (NE) inN if no player can decrease her cost
by deviating to another strategy assuming the other players stay in their strategies1. Formally,
for all 1 ≤ i ≤ k and every π′i 6= πi, the cost of π′i in P ′ = 〈π1, ..., πi−1, π

′
i, πi+1, ..., πk〉 is no

lower than the cost of πi in P , i.e. costN,P (πi) ≤ costN,P ′(π′i). A best NE (bNE) in N is an
NE profile with minimal cost, i.e. a profile P is bNE iff P is an NE, and for every profile P ′
that is an NE, we have cost(N,P ) ≤ cost(N,P ′). We denote by bNE(N) and costbNE(N)
the set of profiles that are bNE, and their cost, respectively.

We dually define a worst NE (wNE) to be an NE profile with maximal cost, and denote
by wNE(N ) and costwNE(N) the set of such profiles and their cost, respectively. The
Price of Stability (PoS) of N is the ratio between the cost of the bNE and the SO, that is,
PoS(N ) = costbNE(N)

costSO(N) .

I Example 1. Consider the NFG N appearing in Figure 1.

s

u v

t1 t2

4 4

3
4 2

1

Figure 1 The NFG N .

Table 1 Players’ costs in N .

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 5 7
π2

1 8 3
s→ v → t1 6 4

Assume that N is formed by two players. The first has objective 〈s, t1〉. The available
strategies for her are π1

1 = {(s, u), (u, t1)} and π2
1 = {(s, v), (v, t1)}. The second player

has objective 〈s, t2〉. The available strategies for her are π1
2 = {(s, u), (u, t2)} and π2

2 =
{(s, v), (v, t2)}. If Player 1 choses the strategy π1

1 and Player 2 uses the strategy π1
2 , then

they share the cost of the edge (s, u), and their costs are 4
2 + 3 = 5 and 4

2 + 4 = 6 respectively.
Table 1 describes the costs of the two players in the different profiles.

The profile with the lowest cost is P = 〈π2
1 , π

2
2〉. Therefore, SO(N) = {P}, with cost

costSO(N) = 7. Note that P is also the only NE in N . It is an NE since for the deviation
P ′ = 〈π1

1 , π
2
2〉, it holds that 4 = costN,P (π2

1) < costN,P ′(π1
1) = 7 and for the deviation

1 Throughout this paper, we consider pure strategies and pure deviations, as is the case for the vast
literature on cost-sharing games.
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P ′′ = 〈π2
1 , π

1
2〉 it holds that 3 = costN,P (π2

2) < costN,P ′′(π1
2) = 8. It is the only NE in N

since for every other profile there is a beneficial deviation. Therefore, P is both a bNE and a
wNE. Since the bNE and the SO coincide, it follows that PoS(N ) = 1 . J

Consider an edge e ∈ E and a value x ∈ R+. We denote by c[e← x] the cost function that
agrees with c on every edge except e, which is assigned x. That is, c[e ← x](e) = x, and
for all edge e′ 6= e, we have c[e← x](e′) = c(e′). Let N = 〈k, V,E, c, γ〉, and let e ∈ E. We
denote by N [e ← x] the network obtained from N by changing the cost of e to x. Thus,
N [e← x] = 〈k, V,E, c[e← x], γ〉.

Let c1 and c2 be cost functions. We say that c2 bounds c1 from above, denoted c1 ≤ c2, if for
all e ∈ E, we have c1(e) ≤ c2(e). We extend the notation to NFGs. Let N1 = 〈k, V,E, c1, γ〉
and N2 = 〈k, V,E, c2, γ〉 be two NFGs that differ only on their cost functions. If c1 ≤ c2, we
say that N2 bounds N1 from above, denoted N1 ≤ N2.

I Lemma 2. Let N1 and N2 be two NFGs that differ only on their cost functions. If
N1 ≤ N2, then for every profile P , we have cost(N1, P ) ≤ cost(N2, P ).

2.2 Affecting edges in NFGs
Consider an NFG N and an edge e of N . We say that the edge e SO-affects N if there
exists x ≥ 0 such that costSO(N [e← x]) 6= costSO(N). That is, when changing the cost of
e to x, the cost of the SO profiles of N changes. We define bNE-affects, wNE-affects, and
PoS-affects in a similar way, referring to the costs of the best and worst NEs, and the PoS.

I Example 3. Consider the NFG N from Example 1, and consider the edge e = (s, v). The
edge e SO-affects N , since, for example, for N [e← 2] we have that 〈π2

1 , π
2
2〉 is an SO with

cost 5 < 7 = costSO(N). As another example, for N [e ← 10] we have that 〈π1
1 , π

1
2〉 is an

SO with cost 11 > 7 = costSO(N). Next, consider the edge e = (u, t1). For every x ≥ 0,
we have cost(N [e ← x], 〈π1

1 , π
1
2〉) = x + 8, cost(N [e ← x], 〈π1

1 , π
2
2〉) = x + 9, cost(N [e ←

x], 〈π2
1 , π

1
2〉) = 14, and cost(N [e ← x], 〈π2

1 , π
2
2〉) = 7. Therefore, costSO(N [e ← x]) =

min{x+ 8, x+ 9, 14, 7} = 7 = costSO(N), and so e does not SO-affect N .
We proceed to bNE and wNE. Here, the change may affect the stability of profiles, and

not just their cost. Consider the edge e = (s, u). Table 2 describes the costs of the different
profiles of N [e← (1− ε)], for some 0 < ε < 1.

Table 2 Costs in N [〈s, u〉 ← (1− ε)].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 4 1

2 −
ε
2 5

s→ u→ t1 3 1
2 −

ε
2 4− ε

π2
1 5− ε 3

s→ v → t1 6 4

Table 3 Costs in N [〈u, t1〉 ← x].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 2 + x 4 + x

π2
1 8 3

s→ v → t1 6 4

We previously saw that the only NE profile in N is P = 〈π2
1 , π

2
2〉, with cost 7, and therefore

it is both the bNE and the wNE. We can see that the cost of P is minimal for N [e← (1− ε)].
However, P is no longer an NE. Indeed, for the profile P ′ = 〈π1

1 , π
2
2〉, obtained by a deviation

of Player 1, we have that 4 − ε = costN [e←1−ε],P ′(π1
1) < costN [e←1−ε],P (π2

1) = 4. For
N [e← (1− ε)], the only NE profile is 〈π1

1 , π
1
2〉, with cost 8− ε. For 0 < ε < 1 it therefore

holds that 7 = costbNE(N) < costbNE(N [e ← 1 − ε]) = 8 − ε, and the same for wNE.

CSL 2020



10:6 Coverage and Vacuity in Network Formation Games

Therefore, the edge e both bNE-affects and wNE-affects N . Furthermore, e PoS-affects N ,
as PoS(N ) = 1 and PoS(N [e ← 1 − ε]) = 8−ε

7 > 1 .
Next, consider the edge e = (u, t1). We show that e does not bNE-affect nor does it

wNE-affect N . To see this, consider the costs of the different profiles of N [e← x] for x ≥ 0,
described in Table 3. It can be easily verified that, for all x ≥ 0, the only NE in N [e← x] is
〈π2

1 , π
2
2〉. Therefore, costbNE(N [e ← x]) = costwNE(N [e ← x]) = 7. As e neither SO-affect

nor bNE-affect N , it follows that e does not PoS-affect N .
It is also worth noting that it is not always the case that an edge either both bNE-affects

and wNE-affects or both does not bNE-affect and wNE-affect N . As an example, consider
the edge e = (u, t2). The cost table of N [e← x] appears in Table 4.

Table 4 Costs in N [〈u, t2〉 ← x].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 2 + x 5

s→ u→ t1 5 7
π2

1 4 + x 3
s→ v → t1 6 4

It is not hard to see that for 0 ≤ x ≤ 3, it holds that P1 = 〈π1
1 , π

1
2〉 and P2 = 〈π2

1 , π
2
2〉

are NEs in N [e ← x]. However, cost(N [e ← x], P1) = 7 + x and cost(N [e ← x], P2) = 7.
Therefore, costbNE(N [e ← x]) = min{7 + x, 7} = 7, and costwNE(N [e ← x]) = max{7 +
x, 7} = 7 + x. Since for all x > 3, the profile P2 is the only NE in N [e← x], it follows that e
does not bNE-affect N , and e wNE-affects N . J

2.3 Monotonicity and continuity

Consider a function f : R → R. We say that f is monotonically increasing if for all
x1, x2 ∈ R, we have that x1 ≤ x2 implies f(x1) ≤ f(x2). For x0 ∈ R, we say that f is
continuous at x0 if for every ε > 0 there exists δ > 0 such that for all x ∈ R, if |x− x0| < δ

then |f(x)− f(x0)| < ε. Then, we say that f is continuous if f is continuous at x0 for all
x0 ∈ R.

For an edge e ∈ E, we define the function costeSO(N) : R → R by costeSO(N)(x) =
costSO(N [e ← x]) if x ≥ 0, and costeSO(N)(x) = costSO(N [e ← 0]) otherwise. That is,
costeSO(N) is the cost of the SO in N as a function of the cost of the edge e. We say
that costSO is monotonically increasing, if for every NFG N and edge e of N , the function
costeSO(N) is monotonically increasing. That is, costSO is monotonically increasing if an
increase in the cost of any edge, for any NFG, can only cause an increase in the cost of the
SO. Likewise, costSO is continuous, if for every NFG N and edge e, the functioncosteSO(N)
is continuous. We define the monotonicity and the continuity of costbNE , costwNE and PoS
in a similar way.

3 Affecting the Social Optimum

In this section we study the sensitivity of the SO to cost mutations. We first study the
monotonicity and continuity of costSO, and then the complexity of relevant decision problems.
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3.1 Monotonicity and continuity of the SO
I Theorem 4 (costSO is monotone). For every NFG N and edge e of N , the function
costeSO(N) is monotone.

Proof. Let N1 and N2 be NFGs that differ only in their cost functions. We prove that if
N1 ≤ N2, then costSO(N1) ≤ costSO(N2). In particular, this holds for N1 and N2 being N
with cost functions that differ only in the cost of e. Let P1 ∈ SO(N1) and let P2 ∈ SO(N2).
By the minimality of the SO for N1, we get that cost(N1, P1) ≤ cost(N1, P2). By Lemma 2, as
N1 ≤ N2, we have that cost(N1, P2) ≤ cost(N2, P2). Therefore, cost(N1, P1) ≤ cost(N2, P2),
and hence costSO(N1) ≤ costSO(N2). J

Since costSO is monotonically increasing, a sufficient condition for an edge not to SO-affect
the network is based on comparing the cost of the SO in the two extreme costs for the edge.
The lowest cost is 0. For the highest cost, let ∞N be a sufficiently large value for a cost of
an edge to be considered extreme in N , in the sense that if an edge e with cost ∞N is in
some strategy, then the cost of that strategy is guaranteed to be larger than the cost of all
strategies that do not contain e. For example, we can define ∞N to be 1 +

∑
e∈E c(e).

I Lemma 5. For every NFG N and edge e of N , the edge e does not SO-affect N iff
costSO(N [e← 0]) = costSO(N [e←∞N ]).

Proof. Since N [e ← 0] ≤ N [e ← ∞N ] and the function costSO(N) is monotonically in-
creasing, then costSO(N [e← 0]) = costSO(N [e←∞N ]) implies that for all x ≥ 0, we have
costSO(N [e ← 0]) = costSO(N [e ← x]) = costSO(N [e ← ∞N ]). Thus, for all x ≥ 0, we
have costSO(N) = costSO(N [e← x]), so the cost of e does not SO-affect N . For the other
direction, if the cost of e does not SO-affect N , then, by definition, for all x ≥ 0, we have that
costSO(N) = costSO(N [e ← x]). In particular, costSO(N [e ← 0]) = costSO(N [e ← ∞N ]),
and we are done. J

Note that it follows that for an NFG N and edge e in it, if there is a profile P ∈ SO(N) such
that e ∈ P and c(e) > 0, then e SO-affects N , as reducing its cost to 0 reduces also the cost
of the SO.

In case e SO-affects N , we can characterize the behavior of costSO(N [e← x]) as follows.

I Lemma 6. Consider an NFG N and an edge e of N . If e SO-affects N , then there is a
value x ∈ R such that the following hold.
1. For all values y with y > x, the edge e does not participate in any profile in SO(N [e← y])

and costSO(N [e← y]) = x+ costSO(N [e← 0]).
2. For all values y with y < x, the edge e participates in at least one profile in SO(N [e← y])

and costSO(N [e← y]) = y + costSO(N [e← 0]).
3. The edge e participates in at least one profile in SO(N [e← x]) and costSO(N [e← x]) =

x+ costSO(N [e← 0]).

Proof. Since e SO-affects N , then, by Lemma 5, we have that costSO(N [e ← 0]) <

costSO(N [e ← ∞N ]). It is not hard to see that taking x to be min{y : costSO(N [e ←
y]) = costSO(N [e ← ∞N ])} satisfies the conditions in the lemma. In particular, when e

participates in all profiles in the SO, then x = min ∅ =∞. J

I Theorem 7. For every NFG N and edge e of N , the function costeSO(N) is continuous.

CSL 2020



10:8 Coverage and Vacuity in Network Formation Games

Proof. Consider an NFG N and edge e of N . First, if the edge e does not SO-affect N , then
costeSO(N) is constant and therefore continuous. Otherwise, by Lemma 6, there is a value x ∈
R such that for all values y with y ≥ x, we have that costSO(N [e← y]) = x+ costSO(N [e←
0]), and for all values y with y < x, we have that costSO(N [e← y]) = y + costSO(N [e← 0]).
Thus, continuity in all points except x follows immediately from continuity of linear functions.
For the point x, Lemma 6 implies that for all ε > 0, we have that f(x+ ε)− f(x) = 0, and
f(x)− f(x− ε) = ε, so costeSO(N) is continuous also at x. J

3.2 Decision problems
The SO-cost decision problem is the problem of deciding, given an NFG N and a threshold
κ ≥ 0, whether costSO(N) ≤ κ. The SO-cost problem is NP-complete [37]. In this section
we study the following related decision problems.
1. Edge-SO-affects: Given an NFG N and an edge e of N , does e SO-affect N? Thus,

Edge-SO-affects = {〈N, e〉 | e SO-affects N}.
2. Edge-SO-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is there a

value x ≥ 0, such that costSO(N [e← x]) ≤ κ? Thus, Edge-SO-optimization = {〈N, e, κ〉 |
there exists x ≥ 0 such that costSO(N [e← x]) ≤ κ}.

3. SO-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a
value x ≥ 0, such that costSO(N [e ← x]) ≤ κ? Thus, SO-optimization= {〈N,κ〉 | there
exist e and x ≥ 0 such that costSO(N [e← x]) ≤ κ}.

4. SO-control: Given an NFGN and a threshold κ ≥ 0, is there an edge e ofN and a value x ≥
0, such that costSO(N [e ← x]) = κ? Thus, SO-control= {〈N,κ〉 | there exist e and x ≥
0 such that costSO(N [e← x]) = κ}.

Analyzing the complexity of the problems, we assume that the costs of an NFG are given
in binary. As we shall note below, this affects the complexity of the problems. In addition to
the classes NP and co-NP, we are going to refer to the class ∆P

2 = PNP (ΘP
2 ), of decision

problems that can be decided by a polynomial-time deterministic Turing machine that has
access to polynomially many (logarithmically many, respectively) queries to an oracle to an
NP-complete problem, and the class DP, of decision problems that are the intersection of
an NP and a co-NP problem. That is, a decision problem L is in DP if there are decision
problems L1, L2 such that L1 ∈ NP, L2 ∈ co-NP and L = L1 ∩ L2.

I Theorem 8. The Edge-SO-affects problem is ∆P
2 -complete, and is ΘP

2 complete when costs
are given in unary.

Proof. We start with membership in ∆P
2 . Given an NFG N and an edge e in N , a

deterministic Turing machine can use an oracle to SO-cost, calculate costSO(N [e← 0]) and
costSO(N [e←∞N ]) and compare them. Since the maximal cost of a profile is

∑
e∈E c(e),

and costSO is the sum of costs of a subset of edges, rather than an arbitrary number in
R, the Turing machine can proceed by a binary search and thus the number of oracle
calls is logarithmic in

∑
e∈E c(e). When costs are given in binary,

∑
e∈E c(e) is exponential

in input, hence there are polynomially-many oracle calls. Thus, Edge-SO-affects∈ ∆P
2 .

However, when costs are given in unary,
∑
e∈E c(e) is polynomial in input, hence there are

logarithmically-many oracle calls. Thus, Edge-SO-affects∈ ΘP
2 .

In the full version, we prove that the problem is ∆P
2 -hard by a reduction from maximum-

satisfying-assignment, namely the problem of deciding, given a 3CNF formula ϕ if the
lexicographically maximal assignment that satisfies ϕ has LSB that equals 1. It was shown by
[26] that maximum-satisfying-assignment is ∆P

2 -complete. Essentially, given ϕ, we construct
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an NFG N such that profiles corresponds to assignments, and the cost of a profile decreases
with lexicographically greater satisfying assignments. The edge e participates in profiles
that correspond to assignments in which the LSB is 1, and is minimal only when the
maximal lexicographic assignment has LSB 1. Consequently, 〈N, e〉 ∈ Edge-SO-affects iff ϕ ∈
maximum-satisfying-assignment.

In the full version, we prove that when costs are given in unary, the problem is ΘP
2 -hard.

The proof is by a reduction from VC-compare, namely the problem of deciding, given two
undirected graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, whether the size of a minimal vertex
cover of G1 is less than or equal to the size of a minimal vertex cover of G2. Essentially,
given G1 and G2, we construct an NFG N that subsumes both graphs and the objectives of
the players are defined so that profiles correspond to choosing a vertex cover in one of the
graphs. The edge e participates in profiles in which the players choose to proceed with a
cover in G1, which happens only when the size of a minimal vertex cover of G1 is less than
or equal to the size of a minimal vertex cover of G2. Consequently, 〈N, e〉 ∈ Edge-SO-affects
iff 〈G1, G2〉 ∈ VC-compare. J

We continue to the optimization problems. The proof is easy and can be found in the full
version. In particular, the lower bounds are by a reduction from the SO-cost problem.

I Theorem 9. The Edge-SO-optimization and SO-optimization problems are NP-complete.

For the upper-bound of the SO-control problem, we first need the following lemma.

I Lemma 10. Let N be an NFG and let κ ≥ 0 be a threshold. If there are (not necessarily
distinct) edges e1 and e2 of N such that costSO(N [e1 ← 0]) ≥ κ and costSO(N [e2 ←∞]) ≤ κ,
then there is an edge e of N and a value x ≥ 0 such that costSO(N [e← x]) = κ.

Proof. Assume towards contradiction that for all edges e of N and value x ≥ 0, it holds
that costSO(N [e ← x]) 6= κ. In particular, this means that costSO(N [e1 ← 0]) > κ and
costSO(N [e2 ← ∞]) < κ. Hence, by monotonicity of costeSO(N), we get that costSO(N) =
costSO(N [e2 ← c(e2)]) ≤ costSO(N [e2 ← ∞]) < κ < costSO(N [e1 ← 0]) ≤ costSO(N [e1 ←
c(e1)]) = costSO(N). J

I Theorem 11. The SO-control problem is DP-complete.

Proof. We start with membership. Let L1 = {〈N,κ〉 | there exist an edge e and x ≥ 0
such that costSO(N [e ← x]) ≤ κ} and L2 = {〈N,κ〉 | there exist an edge e and x ≥ 0
such that costSO(N [e ← x]) ≥ κ}. Note that L1 is SO-optimization and is therefore in
NP. We show that L2 is in co-NP. The complement of L2 is Lc2 = {〈N,κ〉 | for all edges
e and x ≥ 0 we have costSO(N [e ← x] < κ)}. A witness for membership in Lc2 is a set
S of |E| = m profiles, one for each edge, satisfying cost(N [e ← ∞], Pe) < κ for each
Pe ∈ S. The witness is polynomial since we only require m profiles. By monotonicity, it
holds that if such a profile Pe exists for an edge e, then for every x ≥ 0, we have that
costSO(N [e ← x]) ≤ cost(N [e ← x], Pe) ≤ cost(N [e ← ∞], Pe) < κ. If this holds for every
edge, then 〈N,κ〉 ∈ Lc2. In the other direction, if there is an edge e such that for every
profile P it holds that cost(N [e←∞], P ) ≥ κ, then costSO(N [e←∞]) ≥ κ, and therefore
〈N,κ〉 /∈ Lc2. Therefore, Lc2 is in NP, hence L2 is in co-NP. We show that L1∩L2 =SO-control.

For the first direction, let 〈N,κ〉 ∈ SO-control. Therefore, there is an edge e ∈ E and
a value x ≥ 0 such that costSO(N [e← x]) = κ. In particular, we have that costSO(N [e←
x]) ≤ κ, therefore 〈Nκ〉 ∈ L1. Furtheremore, costSO(N [e← x]) ≥ κ, therefore 〈N,κ〉 ∈ L2.
Hence, 〈N,κ〉 ∈ L1 ∩ L2.
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For the other direction, let 〈N,κ〉 ∈ L1 ∩ L2. Since 〈N,κ〉 ∈ L1, there is e1 ∈ E and
x1 ≥ 0 such that costSO(N [e1 ← x1]) ≤ κ. If costSO(N [e1 ← ∞]) ≥ κ, then by continuity
and the intermediate value theorem, there is x ≥ 0 such that costSO(N [e1 ← x]) = κ, hence
〈N,κ〉 ∈ SO-control. If costSO(N [e1 ← ∞]) < κ, we use the fact that 〈N,κ〉 ∈ L2. Hence,
there is e2 ∈ E and x2 ≥ 0 such that costSO(N [e2 ← x2]) ≥ κ. If costSO(N [e2 ← 0]) ≤ κ,
then again by continuity and the intermediate value theorem, there is x ≥ 0 such that
costSO(N [e2 ← x]) = κ. If costSO(N [e2 ← 0]) > κ, then since costSO(N [e1 ← ∞]) < κ by
Lemma 10, there is an edge e ∈ E and a value x ≥ 0 such that costSO(N [e← x]) = κ, and
therefore 〈N,κ〉 ∈ SO-control.

We turn to prove that the problem is DP-hard. We reduce SAT-UNSAT to SO-control.
SAT-UNSAT is the problem of deciding, given two 3CNF formulas ϕ1 and ϕ2, whether ϕ1
is satisfiable and ϕ2 is not satisfiable. That is, 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff there exists an
assignment f1 to the variables of ϕ1 such that f1 satisfies ϕ1, and for all assignments f2 to
the variables of ϕ2, it holds that f2 does not satisfy ϕ2. It was shown in [35] that SAT-UNSAT
is DP-complete.

We propose the following reduction. For each formula ϕi, with i ∈ {1, 2}, we add a fresh
variable zi. We first construct a new formula ϕ′i in the following way. For each clause, we
disjunct the clause with zi. We also conjunct the entire formula with ¬zi. Note that if ϕi
is satisfied by an assignment fi, then ϕ′i is satisfied by the assignment that agrees with fi
on all the variables in ϕi, and has zi = false. Furthermore, if ϕi is unsatisfiable, then ϕ′i is
unsatisfiable. Indeed, an assignment that satisfies ϕ′i must have zi = false, implying that all
other clauses are satisfied by an assignment that satisfies ϕi as well. Next, we construct an
NFG Ni = 〈ki, Vi, Ei, ci, γi〉, for i ∈ {1, 2}, as follows (see Figure 2).

¬zizi...¬xijxij...¬xi1xi1

¬z′iz′i...¬x′j
i

x′j
i...¬x′1

i
x′1
i

si

bizbijbi1

cik
... ... cini

ci1 ci¬zi

i+ 1

i+
1

i
+

1

i+
1

i+ 1

i+ 1

i+ 1 i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

0 0 0 00 0 0 0

0 00 0

Figure 2 The NFG Ni; each edge denotes a set of two parallel edges with the same cost.

Let ni be the number of variables in ϕi, and let mi be the number of clauses in ϕi. Thus,
the number of variables in ϕ′i is ni + 1, and the number of clauses in ϕ′i is mi + 1. We define
Vi =

⋃
1≤j≤ni+1{xij ,¬xij , x′j

i
,¬x′j

i
, bij}

⋃
1≤k≤mi+1{cik} ∪ {si}. That is, for each variable xij

of ϕ′i, we have in Vi two vertices for the variable xij , denoted xij , x
′
j
i, two vertices for its

negation ¬xij , denoted ¬xij ,¬x′j
i, and another vertex, denoted bij . We also have a vertex for
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each clause, and a source vertex. The edges and costs are as follows. There are two parallel
edges, each with cost i+ 1, from si to both x′j

i
,¬x′j

i for every variable xij of ϕ′i. There are
two parallel edges, each with cost i+1, from x′j

i to xij and from ¬x′j
i to ¬xij for every variable

xij of ϕ′i. There are two parallel edges, each with cost 0 from both xij ,¬xij to bij . Finally, for
every clause cik, there are two parallel edges, each with cost 0, from every literal appearing
in cik to the vertex cik. Note that, in particular, this means that there are two parallel edges
with cost 0 from zi to all clauses except the clause ¬zi. Finally, we have ki = ni + 1 +mi + 1
players. The first ni + 1 players are clause players, and the objective of Player 1 ≤ k ≤ ni + 1
is 〈si, cik〉. The rest are variable players, and the objective of Player ni + 2 ≤ j ≤ ni +mi + 2
is 〈si, bij〉. To complete the construction, we fix N = 〈k1 +k2, V1∪V2, E1∪E2, c1∪c2, γ1∪γ2〉
and κ = 4n1 + 6n2 + 16.

Note that since N1 and N2 are disjoint, it holds that costSO(N) = costSO(N1) +
costSO(N2). We argue that if ϕi, for i ∈ [1, 2], is satisfiable, then costSO(Ni) = 2(i+1)·(ni+1),
and otherwise costSO(Ni) = 2(i + 1) · (ni + 2). Thus, N has a distinct SO-cost to every
combination of {SAT, UNSAT} × {SAT, UNSAT}, which enables us to point to a threshold κ
such that 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff 〈N,κ〉 ∈ SO-control. Details can be found in the full
version. J

4 Affecting the Best Nash Equilibrium

In this section we study the sensitivity of the best NE to cost mutations. As we shall see,
while the setting is less clean than in the SO case, we are able to obtain the same complexity
bounds for analogous decision problems.

4.1 Monotonicity and continuity of the bNE
I Theorem 12 (costbNE is not monotone). There is an NFG N and an edge e of N , such
that the function costebNE(N) is not monotone.

Proof. Consider the NFG N appearing in Figure 3. The game is played between two players,
with objectives 〈s, t1〉 and 〈s, t2〉. Let e = 〈s, t2〉. Table 5 describes the costs of the players
in the possible four profiles of N [e← x]. When x ∈ [0, 1), the only NE is 〈π2

1 , π
1
2〉, with cost

x+ 2. When x > 1, the only NE is 〈π2
1 , π

2
2〉, with cost 2. So, for all x ∈ (0, 1), we have that

costbNE(N [e← x]) = 2 + x > 2 = costbNE(N [e← 1]), and thus costebNE(N) is not monotone.
J

t2 v t1

s

x 32

00

Figure 3 The NFG N .

Table 5 Players’ costs in N .

Player 2 π1
2 π2

2

Player 1 s→ t2 s→ v → t2

π1
1 x 2

s→ t1 3 3
π2

1 x 1
s→ v → t1 2 1

I Theorem 13 (costbNE is not continuous). There is an NFG N and an edge e of N , such
that the function costebNE(N) is not continuous.
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Proof. We use the same NFG N and edge e as in the proof of Theorem 12. It is easy to see
that costebNE(N) is not continuous at 1. J

While costbNE is neither monotonous nor continuous, we now show that it is composed
of finitely many linear segments. We say that a function f : R+ → R

+ is composed of linear
segments if there is a segmentation 0 = x0 < x1 < ... < xn < xn+1 = ∞ of R+, for some
n ≥ 0, such that for every 0 ≤ i ≤ n there is a linear function fi : R→ R such that for all
x ∈ [xi, xi+1] it holds that f(x) = fi(x). We call x0, x1, ..., xn+1 the edge points of f . Given
an NFG N , a profile P , and an edge e, the cost of P is a linear function with respect to the
cost of e. Indeed, cost(N,P ) =

∑
e′∈P\{e} c(e′)+1P,ec(e), where 1P,e ∈ {0, 1} is an indicator

of e being used in P . In particular, when 1P,e = 0, then cost(N,P ) is a constant function.

I Lemma 14. Given an NFG N , an edge e, and a profile P , the range of values x such that
P is an NE in N [e← x] is a single (possibly empty) segment.

Proof. By definition, a profile P is an NE if for every i and for every profile P ′ obtained
from P by a deviation π′i of Player i that costN,P (πi) ≤ costN,P ′(π′i). Hence, P is an NE in
N [e← x] in values x for which the set of constraints of the form costN,P (πi) ≤ costN,P ′(π′i)
holds. As each constraint is a linear inequality in a single variable (that is, x), the solution
set is a single (perhaps empty) segment. J

We denote by bumps(P ) the set of edge points of the segment along which P is an
NE in N [e ← x]. That is, bumps(P ) = {a, b} if P is an NE in N [e ← x] for exactly all
a ≤ x ≤ b. By Lemma 14, bumps(P ) contains at most two points. We further denote by
Bumps(N, e) =

⋃
P bumps(P ). Since the number of strategies per player and the number of

players are finite, the number of profiles is finite as well. Hence, since |bumps(P )| ≤ 2 for
every profile P , we get that Bumps(N, e) is finite.

Consider two profiles P1 6= P2 in N . For an edge e, we say that a value x ≥ 0 is an
intersection point for e, P1, and P2, if cost(N [e← x], P1) = cost(N [e← x], P2). Note that
since cost(N [e← x], P ) is linear for every profile P , there is at most one intersection point
for every edge and two profiles. Let Ints(N, e) be the set of all intersection points for e and
pairs of profiles in N . Since the number of different profiles is finite, so is Ints(N, e).

I Theorem 15. Consider an NFG N and an edge e in N . Then, costbNE(N [e ← x]) is
composed of finitely many linear segments, and is monotonically increasing within each
segment.

Proof. Recall that costebNE(N)(x) = costbNE(N [e ← x]) = minP∈bNE(N [e←x]) cost(N [e ←
x], P ) = minP∈bNE(N [e←x])

∑
e′∈P\{e} c(e′) + 1P,ex. Hence, costbNE(N [e← x]) is composed

of linear segments. The set of edge points refines bumps(N, e) ∪ Ints(N, e), and since it is
finite, so are the number of segments. Furthermore, as cost(N [e← x], P ) is monotonically
increasing for every P , we get that costbNE(N [e ← x]) is monotonically increasing within
each segment. J

Figure 4 below contains plots2 of the function costbNE(N [e← x]). The left plot describes
costbNE(N [e ← x]) where N is the NFG from Example 1 and e = 〈s, u〉. To its right, we
describe a three-player NFG N and the plot of costbNE(N [e← x]) with e = 〈s, v2〉.

2 The plots were generated by a simple Python program that gets as input an NFG by means of a
NetworkX weighted directed graph, and naively follows the segmentation from Theorem 15.
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t3 t1

t2v1 v2

s

6 x 3

0.5

2.501

Figure 4 Plots for costbNE(N [e← x]).

4.2 Decision problems
The bNE-cost decision problem is the problem of deciding, given an NFG N and a threshold
κ ≥ 0, whether costbNE(N) ≤ κ. The bNE-cost problem is NP-complete [4]. In this section
we study the following related decision problems.
1. Edge-bNE-affects: Given an NFG N and an edge e of N , does e bNE-affect N? Thus,

Edge-bNE-affects = {〈N, e〉 | e bNE-affects N}.
2. Edge-bNE-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is

there a value x ≥ 0, such that costbNE(N [e ← x]) ≤ κ? Thus, Edge-bNE-optimization
= {〈N, e, κ〉 | there exists x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.

3. bNE-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a
value x ≥ 0, such that costbNE(N [e← x]) ≤ κ? Thus, bNE-optimization= {〈N,κ〉 | there
exist e and x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.

Before we turn to analyze the complexity of the problems, let us illustrate the non-intuitive
behavior of costbNE . Consider the NFG N appearing in Figure 5, and let e = 〈s, v2〉. As can
be seen in Table 6, the profile 〈π3

1 , π
3
2〉 is an NE with cost 10 independent of the value of x.

Then, when 0 ≤ x ≤ 1
2 , the profile 〈π2

1 , π
1
2〉 is an NE with cost 10.5 + x, and when x ≥ 1

2 , the
profile 〈π1

1 , π
1
2〉 is an NE with cost 9. Accordingly, costbNE(N [e← x]) is 10 when 0 ≤ x < 1

2 ,
and is 9 when x ≥ 1

2 . Though observations of the non-intuitive behavior of network exists in
literature (e.g., Braess’ Paradox [12]), it is common that added/removed edges participate in
equilibria profiles either before or after changing the network. In this example, however, the
edge e, which bNE-affects N , does not participate in any bNE profile! Thus, costbNE is fixed
in the two segments [0, 1

2 ) and [ 1
2 ,∞], yet still e bNE affects N .

t1 t2

v1 v2 v3

s

4 x 8

4 1

5.5 5
1 1

Figure 5 The NFG N .

Table 6 Players’ costs in N .

Player 2 π1
2 π2

2 π3
2

Player 1 s, v1, t2 s, v2, t2 s, v3, t2

π1
1 3 5 + x 9

s, v1, t1 6 8 8
π2

1 5 5 + x
2 9

s, v2, t1 5.5 + x 5.5 + x
2 5.5 + x

π3
1 5 5 + x 5

s, v3, t1 9 9 5

I Lemma 16. Let N be an NFG, and let e be an edge in N . If there is an NE profile P
such that e /∈ P , then for all x ≥ c(e), we have that P is an NE in N [e← x].
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Proof. Assume towards contradiction that there is x > c(e) such that P is not an NE.
Then, there is a player i with strategy πi in P that has an incentive to unilaterally deviate
to another strategy π′i. Denote by P ′ the deviation profile resulting from i’s deviation.
Since P is an NE in N , we have that costN,P (πi) ≤ costN,P ′(π′i). Since e /∈ P , we have that
costN [e←x],P (πi) = costN,P (πi). Since x > c(e) we have that costN,P ′(π′i) ≤ costN [e←x],P ′(π′i).
Therefore costN [e←x],P (πi) ≤ costN [e←x],P ′(π′i), in contradiction to the fact that Player i has
an incentive to deviate. J

Lemma 16, together with the segmentation of bNE(N [e← x]), is used for proving the
following characterization of an edge that does not bNE-affect N . The proof is based on a
careful consideration of all cases and can be found in the full version.

I Theorem 17. Let N be an NFG. An edge e in N does not bNE-affect N iff there is a
profile P ∈ bNE(N [e← 0]) such that e /∈ P and for all x ≥ 0 it holds that costbNE(N [e←
x]) ≥ costbNE(N [e← 0]).

I Theorem 18. The Edge-bNE-affects problem is ∆P
2 -complete, and is ΘP

2 -complete when
costs are given in unary.

Proof. We start with membership. First, note that given an NFG N , and edge e of N ,
and a value κ ≥ 0, we can decide in NP whether there is a profile P such that e /∈ P and
cost(N,P ) = κ.

Let OPT0 = costbNE(N [e← 0]). As argued in the membership claim for Theorem 8, we
can find OPT0 using polynomially-many queries to an NP oracle when costs are given in
binary, and using logarithmically-many queries when costs are given in unary. Then, using a
single query to Edge-bNE-optimization (with modification to strictly smaller) with input N, e,
and OPT0, we can decide if there is a value x ≥ 0 such that costbNE(N [e← x]) < OPT0. If
so, then e affects N . Otherwise, use a single query to ask if there is a profile P such that
e /∈ P and cost(N [e← 0], P ) = OPT0. By Theorem 17, we have that e bNE-affects N iff the
answer is no.

The hardness results for ∆P
2 and ΘP

2 can be found in the full version. In both cases we
use the same reduction as in the hardness results for Theorem 8. In the case of ∆P

2 we make
a slight variation. Then we show that the profiles described for the SO is a superset of the
bNE profiles. J

Finally, for the optimization problems, the analysis is similar to the one in Theorem 9,
except that we also have to argue that the witness value x is polynomial in input. The details
can be found in the full version.

I Theorem 19. The edge-bNE-optimization and bNE-optimization problems are NP-complete.

I Remark 20 (On the PoS and the worst NE). Recall that PoS(N ) = costbNE(N)
costSO(N) . If an

edge e bNE-affects N , it does not necessarily imply that e PoS-affects N . Indeed, e may
participate also in the SO. Nevertheless, the NFG N used in the proofs of Theorems 12
and 13 demonstrates that PoS is neither monotone nor continuous. To see this, note that
for all x ≥ 0, we have that costSO(N [e ← x]) = 2, we get that for x ∈ [0, 1), we have that
PoS(N [e ← x]) = 1 + x

2 , and for x ≥ 1, we have that PoS(N [e ← x]) = 1 .
As for the worst NE, since the NFG N used in the proofs of Theorems 12 and 13 is such

that N [e← x] has a single NE for all values of x, the considerations about the best and worst
NE coincide, and thus N demonstrate that costwNE is neither monotone nor continuous.
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5 Discussion and Future Work

We studied the effect of mutations applied to the cost of edges in network formation games.
Our results about monotonicity and continuity of the SO and NE are aligned with similar
folk results in similar settings in game theory. We are, however, the first to introduce a
formal framework to study these phenomena, and to provide a complexity analysis of the
decision problems they induce. We also point to new surprising effects of the mutations.

The mutations we study for NFGs are of a restricted type: an unbounded change in
the cost of a single resource in the game. As has been the case in coverage and vacuity
in formal verification, richer types of mutations reflect practical bounds on the possible
mutations. For example, it would be interesting to study how one can control the bNE by a
budget-restricted mutation of several edges. Also, while our definition of affect is Boolean,
namely an edge SO-, bNE-, or wNE-affects a network or it does not, it is interesting to
examine a quantitative approach, where we care how much an edge affects these measures.
Finally, while our optimization problems care about an upper bound to the costs of the SO
and bNE, in some applications it is interesting to control these values by both an upper and
lower bound. We leave the richer setting and variants for future research.

Both game theory and formal verification aim at reasoning about behaviors of interacting
entities, yet consider different aspects of the interaction. We view this work as another chain
in an exciting transfer of concepts and ideas between the two areas [28]. In the context of
game theory, this includes an extension of NFGs to objectives that are richer than reachability
[9], to a timed setting [6], and to a setting where the strategies of the players are dynamic
[7]. Beyond richer settings, it is shown in [30, 5] how ideas used in formal verification for
abstraction and symbolic presentation of huge systems can be used for reasoning about NFGs.
In the other direction, concepts from game theory are used in the formalization of strategic
behaviors in formal verification (e.g., rational verification and synthesis [22, 38]). In the more
economic view, cost-sharing mechanisms from NFGs are used in [8] in order to augment the
problem of synthesis from component libraries by cost considerations.

Our contribution here started with the transfer of concepts from formal verification to
game theory, yet our results suggest new research directions in coverage and vacuity in formal
verification, and logic in general. Studies of coverage and vacuity so far concern Boolean
specification formalisms [27]. In contrast, the objectives of the players in typical game-
theoretic settings, in particular NFGs, are quantitative. Recently, there is growing interest
in multi-valued specification formalisms, which specify the quality of systems, and not only
their correctness [2]. Moreover, the systems we reason about may be multi-valued too. For
the multi-valued setting, we need to develop a theory of quantified multi-valued propositions.
In particular, the segmentation of values in R+ we perform for bNE, is analogous to a
segmentation of [0, 1] – the domain of values of atomic propositions and sub-formulas in
typical multi-valued formalisms. Indeed, while mutations of sub-formulas that appear in a
positive or negative polarity behave monotonically, sub-formulas with a mixed polarity may
induce a non-trivial segmentation. Moreover, as has been the case with bumps(P ) in the
bNE segmentation, the edge points of the segments may not be constants that appear in the
formula. For example, when sub-formulas and atomic propositions take values in [0, 1], then
the maximal satisfaction value of the formula p∧ (¬p) is when the satisfaction value of p is 1

2 .
Furthermore, the need to reason formally about multi-agent systems has led to a devel-

opment of specification formalisms that enable reasoning about on-going strategic behavi-
ors [3, 13, 32, 11]. Essentially, these formalisms, most notably ATL, ATL?, and Strategy
Logic (SL), include quantification of strategies of the different agents and of the computations
they may force the system into, making it possible to specify concepts like SO and NE.
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While coverage and vacuity are traditionally viewed as sanity checks in model checking, in
the context of SL specifications, they can also be used for revealing properties of games
and strategic behaviors. Out work demonstrates how SL formulas that specify concepts
like SO and NE explain properties like monotonicity. Indeed, non-monotonicity of the bNE
corresponds to the mixed polarity of the objectives in the SL formula that describes an NE:
a negative occurrence (left-hand side of an implication) when we refer to a deviation and a
positive one (right-hand side of that implication) in for the current strategy. In contrast, in
the formula for the SO, all occurrences of the objectives are positive, implying monotonicity.
Moreover, for a specific given game, reasoning about the effect of mutations can be reduced to
checking the coverage of SL formulas that specify properties of the game. Thus, a framework
for coverage and vacuity in SL is interesting for both formal verification and game theory.
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