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Abstract
Following the pattern from linear logic, the coKleisli category of a differential category is a Cartesian
differential category. What then is the coEilenberg-Moore category of a differential category? The
answer is a tangent category! A key example arises from the opposite of the category of Abelian
groups with the free exponential modality. The coEilenberg-Moore category, in this case, is the
opposite of the category of commutative rings. That the latter is a tangent category captures a
fundamental aspect of both algebraic geometry and Synthetic Differential Geometry. The general
result applies when there are no negatives and thus encompasses examples arising from combinatorics
and computer science.
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1 Introduction

It is well-established, following the pattern from linear logic [21], that the coKleisli category
of a (tensor) differential category is a Cartesian differential category [6]. What then is
the coEilenberg-Moore category of a (tensor) differential category? The answer, which is
the subject of this paper, is that, under mild limit assumptions, it is a tangent category
[12]. A tangent category is a category equipped with an endofunctor and several natural
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17:2 Tangent Categories from the Coalgebras of Differential Categories

Differential Categories
Blute, Cockett, Seely [7]

Cartesian Differential Categories
Blute, Cockett, Seely [6]

Restriction Differential Categories
Cockett, Cruttwell, Gallagher [14]

Tangent Categories
Rosicky [41]
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Figure 1 The world of differential categories and how it’s all connected.

transformations that formalize the basic properties of the tangent bundle functor on the
category of smooth manifolds. The study of the tangent category structure of coEilenberg-
Moore categories of such differential categories was initiated by the third author in talks
at the Category Theory 2014 conference [35] and the Foundational Methods in Computer
Science conference in 2014 [34].

The use of differentiation in programming, particularly for applications in machine learn-
ing, has renewed computer scientists’ interest in the abstract semantics of differentiation.
Tensor differential categories provide perhaps the simplest abstract description of differenti-
ation. Tangent categories, on the other hand, are at quite the other end of the spectrum,
providing an abstract semantics for differential geometry. That the two are directly linked
by the coEilenberg-Moore construction (which is purely algebraic) witnesses that there is a
surprisingly direct relationship between differential programming and differential geometry
which might usefully be exploited.

In Figure 1 the relationships between the various differential categories are illustrated.
The investigation of differential structure of this kind was initiated by Erhrard [17] and
formulated as a categorical axiomatization in [7]. Classical smooth functions arose indirectly
as the coKleisli maps of these differential categories: thus, the next step was to directly
axiomatize this classical intuition. This was accomplished in [6], where Cartesian differential
categories were introduced. By considering the representability of a tensor product in
Cartesian differential categories it was then possible to extract a (tensor) differential category
from a Cartesian differential category [4]. Classical analysis considers maps that are not
defined everywhere and, thus, the theory of Cartesian differential categories with partiality
was developed [14]. It was a natural step from there to consider differentiable manifolds, and
this created a desire to develop a basic axiomatization for differential geometry: this led to the
development of abstract differential geometry based on tangent categories, which had been
introduced by Rosický in [41] and were later generalized and studied further by Cockett and
Cruttwell in [12]. An important alternative approach to tangent categories was introduced
by Leung [32] and was further developed by Garner in [20] to provide a view of tangent
categories as categories enriched in Weil spaces. Cartesian differential categories are always
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examples of tangent categories [12, Proposition 4.7]. Conversely the differential bundles
of a tangent category over a fixed base, under mild limit assumptions, form a Cartesian
differential category, showing that a tangent category is locally a Cartesian differential
category [13, Theorem 5.14]. These observations tightly linked Cartesian differential and
tangent categories; in fact this relationship is captured by an adjunction [12, Theorem 4.12].
The current paper provides an important direct link between (tensor) differential categories
and tangent categories.

An important example of a (tensor) differential category is the opposite of the category of
Abelian groups with the free exponential modality [7] where the differential structure is based
on differentiating polynomials. The coEilenberg-Moore category, in this case, is the opposite
of the category of commutative rings. The fact that this is a tangent category captures a
fundamental aspect of both algebraic geometry [24] and Synthetic Differential Geometry [29].
That the coEilenberg-Moore category of a differential category is a tangent category in much
more generality allows further significant examples. Not only can one dispense with the
necessity of assuming negatives, but also with the necessity of having a monoidal coalgebra
modality [4] or, equivalently, the Seely isomorphisms, !(A×B) ∼= !(A)⊗ !(B) [43] (which the
third author required in [34]). Dispensing with the assumption of negatives allows one to
generalize the example of commutative rings to commutative semirings [22] and to consider
examples from combinatorics and computer science. Dispensing with the assumption of a
monoidal coalgebra modality/the Seely isomorphisms allows consideration of such examples
as C∞-rings [29, 39] or Rota-Baxter algebras [23]. When a coalgebra modality is monoidal,
it will give rise, when sufficient limits are present, to a representable tangent category. This
means that the tangent functor is of the form _D for an infinitesimal object D and so has
left adjoint _×D. Two examples of such differential categories include the opposite category
of vector spaces with the free commutative algebra modality (one of the original examples of
a differential category in [7]), as well as the the category of vector spaces with the cofree
cocommutative coalgebra modality (as studied by Clift and Murfet in [11]). It is interesting
to note that in both cases, the infinitesimal object is the ring of dual numbers over the field.
On the other hand, as the free C∞-ring modality is not monoidal, this provides an example
of a non-representable tangent category that, nonetheless, has a tangent functor that is a
right adjoint.

Conventions: This paper assumes a knowledge of basic category theory and of symmetric
monoidal categories. We refer the reader to [36] if further details are needed on these topics.
In this paper we shall use diagrammatic order for composition: explicitly, this means that
the composite map fg is the map that employs f first and then g. Furthermore, to simplify
working in symmetric monoidal categories, we will allow ourselves to work in symmetric
strict monoidal categories, and therefore we suppress the associator and unitor isomorphisms.
Symmetric monoidal categories will be denoted by (X,⊗,K, τ) where X is the underlying
category, ⊗ is the tensor product, K is the monoidal unit, and τA,B : A⊗B → B ⊗A is the
symmetry isomorphism.

2 Tangent Categories

Tangent categories were introduced by Rosický in [41], then later generalized and studied
further by Cockett and Cruttwell in [12]. This generalization, which replaced Abelian
groups with commutative monoids, opened the door to examples of tangent categories from
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17:4 Tangent Categories from the Coalgebras of Differential Categories

combinatorics and computer science where one does not expect to have negatives. The
axioms of a tangent category abstract the essential properties of tangent bundles over smooth
manifolds [31]. In this section we provide a brief overview of tangent categories, and refer
the reader to [12, 20] for a more in-depth introduction.

I Definition 1. Let X be a category. A tangent structure [12] T on X is a sextuple
T := (T, p, σ, z, `, c) consisting of:

An endofunctor T : X→ X;
A natural transformation pM : T(M) → M , known as the projection, such that for
each M and each n ∈ N, there is an n-th fibre power1 Tn(M) of pM (with projections
ρi : Tn(M)→ T(M)), and this fibre power is preserved by Tm for each m ∈ N. For each
n ∈ N, this induces a functor Tn : X→ X where by convention T0 = 1X and T1 = T.
Natural transformations σM : T2(M)→ T(M), known as the sum operation on tan-
gent vectors, zM : M → T(M), known as the zero vector field, `M : T(M)→ T2(M),
known as the vertical lift, and cM : T2(M)→ T2(M), known as the canonical flip;

and such that p, σ, z, `, and c satisfy the various equational axioms found in [12, 20] and that
for each M , the following diagram is an equalizer diagram [36], known as the universality
of the vertical lift:

T2(M)
〈ρ0zT(M),ρ1`M 〉T(σM )

// T2(M)
T(pM ) //

pT(M)pMzM

// T(M)

where 〈−,−〉 is the pairing operation induced by the universal property of the pullback.

I Definition 2. A tangent category [12] is a pair (X,T) consisting of a category X and a
tangent structure T on X. The fibre powers of p, together with the equalizer appearing in the
axiom of universality of the vertical lift, are collectively referred to as the tangent limits
[20] of a tangent category.

We refer the reader to [12] where the axioms of a tangent category are expressed in
commutative diagrams. In [32], Leung defined an alternative axiomatization of a tangent
category using Weil algebras; this was exploited by Garner in [20] to provide a description of
tangent categories as categories enriched in Weil spaces.

I Example 3. Here are some well-known examples of tangent categories. Other examples of
tangent categories can be found in [12, 20, 13].
1. The canonical example of a tangent category is the category of finite-dimensional smooth

manifolds, where for a manifold M , T(M) is the standard tangent bundle over M .
2. Every Cartesian differential category [6] is a tangent category [12, Proposition 4.7]. In

particular this implies that every categorical model of the differential λ-calculus [10, 37]
is a tangent category.

3. Let k be a field, and let CALGk be the category of commutative k-algebras. Then CALGk
is a tangent category where for a commutative k-algebra A, T(A) := A[ε] is the ring of
dual numbers over A, A[ε] = {a+ bε| a, b ∈ A} with ε2 = 0. The projection is defined as
pA(a+ bε) = a, and so T2(A) := A[ε, ε′] = {a+ bε+ cε′| a, b, c ∈ A} with ε2 = ε′

2 = εε′ =
0. On the other hand, T2(A) := {a+ bε1 + cε2 + dε1ε2| a, b, c, d ∈ A} with ε21 = ε22 = 0.
The remaining tangent structure is defined as follows: σA(a + bε + cε′) = a + (b + c)ε,
zA(a) = a, `A(a+ bε) = a+ bε1ε2, and cA(a+ bε1 + cε2 + dε1ε2) = a+ cε1 + bε2 + dε1ε2.

1 I.e, a fibered product [36] of n instances of pM
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We will generalize this example in the context of codifferential categories in Section 5. In
particular, this example generalizes to the category of commutative algebras over any
commutative unital semiring.

Of particular importance to this paper is when the tangent functor has a left adjoint,
which induces a tangent structure on the opposite category of the tangent category.

I Theorem 4. [12, Proposition 5.17] Let (X,T) be a tangent category such that for each
n ∈ N, Tn : X → X has a left adjoint Ln : X → X. Then Xop has a tangent structure with
tangent functor L = L1.

See Example 7.3 for an application of this theorem. In Section 6 we will use Theorem 4
to obtain a tangent structure on the coEilenberg-Moore category of a differential category.

We now turn our attention to representable tangent categories, which briefly are tangent
categories whose tangent functor is representable. Representable tangent categories are a
very important kind of tangent category as they are closely related to synthetic differential
geometry [29]. First recall that in a category X with binary products ×, an object D is
an exponent object if the functor − ×D : X → X has a right adjoint (−)D : X → X. A
functor F : X→ X is representable if F(−) ∼= (−)D for some exponent object D, and D is
said to represent the functor F.

I Definition 5. A representable tangent category [12] is a tangent category (X,T)
such that X has finite products and for each n ∈ N, Tn is a representable functor, that
is, Tn(−) ∼= (−)Dn for some exponent object Dn. In the case of n = 1, the object D1
(which we denote simply as D) representing the tangent functor, T(−) ∼= (−)D, is called the
infinitesimal object [12] of the representable tangent category (X,T).

Alternatively one can axiomatize representable tangent categories in terms of the infin-
itesimal object D, see [12, Definition 5.6]. Note that by definition, a representable functor
has a left adjoint and therefore one can apply Theorem 4 to a representable tangent category.

I Theorem 6. [12, Corollary 5.18] Let (X,T) be a representable tangent category with
infinitesimal object D. Then Xop has a tangent structure with tangent functor −×D.

I Example 7. We finish this section with some examples of representable tangent categories.
1. Every tangent category embeds into a representable tangent category [20].
2. The subcategory of infinitesimally and vertically linear objects of any model of synthetic

differential geometry [29] is a representable tangent category with infinitesimal object
D = {x ∈ R| x2 = 0}, where R is the line object [12, Proposition 5.10].

3. Let k be a field. Recall that in CALGk, the categorical coproduct is given by the tensor
product of k-vector spaces ⊗ which is therefore a product in CALGopk . Then CALGopk is a
representable tangent category with infinitesimal object k[ε], the ring of dual numbers
over k. For a commutative k-algebra A, Ak[ε] (in CALGopk ) is defined as the symmetric
A-algebra over the Kähler module of A (see [12, Proposition 5.16] for full details). By
applying Theorem 6 to this example, one obtains precisely the tangent structure on
CALGk from Example 3.3, where in particular we note that A[ε] ∼= A⊗ k[ε]. In Section
6 we will generalize this example to the context of differential categories. We again
note that this example generalizes to the category of commutative algebras over any
commutative semiring.

CSL 2020
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3 Coalgebra Modalities and their coEilenberg-Moore Categories

In this section we review (co)algebra modalities and take a look at their (co)Eilenberg-
Moore categories. Coalgebra modalities were introduced in the development of differential
categories [7], as a weakening of the notion of linear exponential comonad that is required
for a categorical model of the multiplicative and exponential fragment of linear logic (MELL)
[3, 42, 38]. While the notion of a coalgebra modality is strictly weaker than that of a linear
exponential comonad – which is precisely a monoidal coalgebra modality [4] – coalgebra
modalities provide a sufficient context in which to axiomatize differentiation.

A comonad [36] on a category X will be denoted as a triple (!, δ, ε) with endofunc-
tor ! : X→ X and natural transformations δA : !(A) → !!(A) and εA : !(A) → A. A
!-coalgebra will be denoted as a pair (A,ω) with underlying object A and !-coalgebra
structure ω : A→ !(A). The category of !-coalgebras and !-coalgebra morphisms is called
the coEilenberg-Moore category [36] of the comonad (!, δ, ε) and will be denoted X!.
Coalgebra modalities are comonads such that every cofree !-coalgebra comes equipped with
a natural cocommutative comonoid structure.

I Definition 8. A coalgebra modality [7] on a symmetric monoidal category is a quin-
tuple (!, δ, ε,∆, e) consisting of a comonad (!, δ, ε) equipped with two natural transformations
∆A : !(A)→ !(A)⊗ !(A) and eA : !(A)→ K such that for each object A, (!(A),∆A, eA) is a
cocommutative comonoid and δA is a comonoid morphism.

What can we say about the coEilenberg-Moore category of a coalgebra modality? It turns
out that every !-coalgebra of a coalgebra modality comes equipped with a cocommutative
comonoid structure [9]. Indeed if (A,ω) is a !-coalgebra, then the triple (A,∆ω, eω) is a
cocommutative comonoid where ∆ω and eω are defined as follows:

∆ω := A
ω // !(A) ∆A // !(A)⊗ !(A) εA⊗εA// A⊗A eω := A

ω // !(A) eA // K

It is important to point out that (A,∆ω, eω) is in general only a cocommutative comonoid
in the base category X and not in the coEilenberg-Moore category X!, since the latter does
not necessarily have a monoidal product. Also notice that since δA is a comonoid morphism,
when applying this construction to a cofree !-coalgebra (!(A), δA) we recover ∆A and eA,
that is, ∆δA = ∆A and eδA = eA.

I Definition 9. In a symmetric monoidal category with finite products × and terminal object
1, a coalgebra modality has Seely isomorphisms [3, 4, 43] if the map χ1 : !(1)→ K and
natural transformation χ : !(A×B)→ !A⊗ !B defined respectively as

!(1) e // K !(A×B) ∆ // !(A×B)⊗ !(A×B)
!(π0)⊗!(π1) // !(A)⊗ !(B)

are isomorphisms, so !(1) ∼= K and !(A×B) ∼= !(A)⊗ !(B).

Coalgebra modalities with Seely isomorphisms can equivalently be defined as monoidal
coalgebra modalities [3, 4], which are coalgebra modalities equipped with a natural
transformation mA,B : !(A) ⊗ !(B) → !(A ⊗ B) and a map mK : K → !(K) making !
a symmetric monoidal comonad such that ∆ and e are both monoidal transformations
and !-coalgebra morphisms. Furthermore for a monoidal coalgebra modality, the monoidal
product of the base category becomes a finite product in the coEilenberg-Moore category [42].
Explicitly, the terminal object is the !-coalgebra (K,mK) while the product of !-coalgebras
(A,ω) and (B,ω′) is (A,ω)⊗ (B,ω′) := (A⊗B, (ω ⊗ ω′)mA,B).
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I Example 10. Here are some examples of coalgebra modalities. Many other examples of
coalgebra modalities (with and without the Seely isomorphisms) can be found in [5].
1. There is no shortage of examples of coalgebra modalities since every categorical model

of MELL admits a coalgebra modality which has the Seely isomorphism. For example,
Hyland and Schalk provide a nice list of such examples in [26, Section 2.4].

2. Let k be a field and let VECk be the category of k-vector spaces, which is a symmetric
monoidal category with respect to the standard tensor product of k-vector spaces. For
every k-vector space V , there exists a cofree cocommutative k-coalgebra [44] over V ,
denoted !(V ), where a detailed construction can be found in [11, 26, 44]. In particular, if
k has characteristic 0 2 and if X = {xi | i ∈ I} is a basis of V , then !(V ) ∼=

⊕
v∈V

k[X] as

k-coalgebras (where k[X] is the polynomial ring over k generated by the set X). This
induces a coalgebra modality ! on VECk which furthermore has the Seely isomorphisms
(!(V ×W ) ∼= !(V )⊗ !(W ) and !(0) ∼= k), and by [40] we know that the coEilenberg-Moore
category of ! is isomorphic to the category of cocommutative k-coalgebras (which are the
cocommutative comonoids in VECk). By applying results in [40], one can generalize this
example to the category of modules over an arbitrary commutative unital ring.

The dual notion of a coalgebra modality is an algebra modality. Since we will be working
with algebra modalities in Section 5, we provide the definition of an algebra modality in detail.
Amonad [36], the dual notion a comonad, on a category X will be denoted as a triple (S, µ, η)
consisting of an endofunctor S : X→ X and natural transformations µA : S2(A)→ S(A) and
ηA : S(A)→ A. An S-algebra will be denoted as a pair (A, ν) with underlying object A and
structure map ν : S(A)→ A. The category of S-algebras and S-algebra morphisms is called
the Eilenberg-Moore category [36] of the monad (S, µ, η) and is denoted XS.

I Definition 11. An algebra modality [9] on a symmetric monoidal category is a quintuple
(S, µ, η,∇, u) consisting of a monad (S, µ, η) equipped with two natural transformations
∇A : S(A)⊗ S(A)→ S(A) and e : K → S(A) such that for each object A, (S(A),∇A, uA) is
a commutative monoid and µA is a monoid morphism.

Since algebra modalities are dual to coalgebra modalities, it follows that every S-algebra
comes equipped with a commutative monoid structure [9], which we again point out is in the
base category and not the Eilenberg-Moore category. Explicitly, given an S-algebra (A, ν) of
an algebra modality (S, µ, η,∇, u), the triple (A,∇ν , uν) is a commutative monoid where ∇ω
and uω are defined as follows:

∇ν := A⊗A
ηA⊗ηA// S(A)⊗ S(A) ∇A // S(A) νA // A uν := K

uA // S(A) ν // A

Dual to coalgebra modalities with the Seely isomorphisms, in the case of a symmetric
monoidal category with finite coproducts ⊕ and initial object 0, if the algebra modality has
the Seely isomorphisms, i.e. S(0) ∼= K and S(A ⊕ B) ∼= S(A) ⊗ S(B), then the monoidal
product becomes a coproduct in Eilenberg-Moore category.

I Example 12. Here are some examples of algebra modalities. Many other examples of
algebra modalities (with and without the Seely isomorphisms) can be found in [5].

2 In [11], Clift and Murfet work, for simplicity, with an algebraically closed field of characteristic 0.
However, as they point out, the assumption that the field is algebraically closed is not necessary in the
construction.
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1. Let k be a field. In analogy with Example 10.2, for every k-vector space V there exists a
free commutative k-algebra over V , denoted Sym(V ), which is also called the symmetric
algebra over V [30]. In particular, if X = {xi | i ∈ I} is a basis of V , then Sym(V ) ∼= k[X]
as k-algebras (where k[X] is the polynomial k-algebra generated by the set X). This
induces an algebra modality Sym on VECk which furthermore has the Seely isomorphisms
(so that Sym(V × W ) ∼= Sym(V ) ⊗ Sym(W ) and Sym(0) ∼= k) and whose Eilenberg-
Moore category is isomorphic to the category of commutative k-algebras (which are the
commutative monoids in VECk). This example generalizes to the category of modules
over an arbitrary commutative unital semiring.

2. Let R be the field of real numbers. C∞-rings [29, 39] are defined as the algebras of the
Lawvere theory whose morphisms are smooth maps between Cartesian spaces Rn, so
a C∞-ring can be defined equivalently as a set A equipped with a family of functions
Φf : An → A indexed by the smooth functions f : Rn → R, satisfying certain equations.
For example, if M is a smooth manifold, then C∞(M) = {f : M → R| f is smooth} is
a C∞-ring where for a smooth map f : Rn → R, Φf : C∞(M)n → C∞(M) is defined
by post-composition by f . Every C∞-ring is a commutative R-algebra and for every
R-vector space V there exists a free C∞-ring over V [28, Theorem 3.3][16], denoted as
S∞(V ). This induces an algebra modality S∞ on VECR [16], where in particular for a
finite dimensional vector space V of dimension n, one has that S∞(V ) ∼= C∞(Rn). The
Eilenberg-Moore category of S∞ is the category of C∞-rings [29, 39, 16]. It is important
to note that this is an example of an algebra modality which does NOT have the Seely
isomorphisms. However, C∞-rings are mathematically important, as they provide the
basis for well-adapted models of synthetic differential geometry [29, 39] and provide a
natural setting for the adaptation of algebro-geometric methods to a smooth context.

4 Differential Categories

In this section we review (co)differential categories and, in particular, we will take a look
at some well-known examples that correspond to differentiating polynomials and smooth
maps. Differential categories were introduced by Blute, Cockett, and Seely [7] to provide the
categorical semantics of differential linear logic [18]. While a codifferential category is simply
the dual of a differential category, we provide full definitions of each since we will be working
with codifferential categories in Section 5 and in the appendix, and we will be working with
differential categories in Section 6.

Two of the basic properties of the derivative from classical differential calculus require
addition (or at least the number 0): the Leibniz rule and the constant rule. Therefore we
must first discuss additive structure. Here we mean “additive” in the sense of [7], that is,
enriched over commutative monoids. In particular this definition does not assume negatives
nor does it assume biproducts, so this differs from other definitions of an additive category
such as in [36]. That said, in Section 5 and Section 6 we will be working with (co)differential
categories with biproducts.

I Definition 13. An additive category is a category enriched in commutative monoids,
that is, a category in which each hom-set is a commutative monoid, with addition operation
+ and zero 0, and in which composition preserves the additive structure in the sense that
k(f+g)h = (kfh)+(kgh) and 0f = 0 = f0. An additive symmetric monoidal category
[7] is a symmetric monoidal category that is also an additive category such that the monoidal
product ⊗ is compatible with the additive structure in the sense that k ⊗ (f + g) ⊗ h =
k ⊗ f ⊗ h+ k ⊗ g ⊗ h and f ⊗ 0⊗ g = 0.
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Every category with finite biproducts is an additive category, and finite (co)products in
an additive category are automatically finite biproducts. In fact, every additive category can
be completed to a category with biproducts [36], where the completion is also an additive
category, and similarly every additive symmetric monoidal category can be completed to
an additive symmetric monoidal category with distributive biproducts. For this reason it
is possible to argue (as in [19]) that one might as well always assume one has biproducts.
However, it is important to bear in mind that only monoidal coalgebra modalities are
guaranteed to lift to the biproduct completion. Thus, for a treatment of arbitrary coalgebra
modalities this assumption cannot be made (see [5] for more details).

I Definition 14. A differential category [7] is an additive symmetric monoidal category
with a coalgebra modality (!, δ, ε,∆, e) that comes equipped with a deriving transformation,
that is, a natural transformation dA : !(A)⊗A→ !(A) such that the following equalities hold:
[d.1] Constant Rule: dAeA = 0
[d.2] Leibniz Rule: dA∆A = (∆A⊗1!(A))(1!(A)⊗τ!(A),A)(dA⊗1!(A))+(∆A⊗1!(A))(1!(A)⊗dA)
[d.3] Linear Rule: dAεA = eA ⊗ 1A
[d.4] Chain Rule: dAδA = (∆A ⊗ 1A)(δA ⊗ dA)d!(A)
[d.5] Interchange Rule3: (dA ⊗ 1A)dA = (1⊗ τA,A)(dA ⊗ 1A)dA

CoKleisli maps of coalgebra modalities, that is, maps of type f : !(A) → B, are to
be thought of as smooth maps from A to B as they are, in a certain sense, infinitely
differentiable. Indeed the derivative of f : !(A) → B is the map D[f ] : !(A) ⊗ A → B,
defined as the composite D[f ] := dAf . The constant rule [d.1] amounts to the statement
that the derivative of a constant map is zero. The second axiom [d.2] is the analogue of
the classical Leibniz rule in differential calculus. For the third axiom, a subclass of smooth
maps are the linear maps, which are coKleisli maps of the form εAg : !(A) → B for some
map g : A → B. Then the linear rule [d.3] says that the derivative of a linear map is
“constant” with respect to the point at which it is taken. The fourth axiom [d.4] is the
chain rule regarding composition in the coKleisli category. The interchange rule [d.5], is the
independence of order of differentiation, which, naively put, says that differentiating with
respect to x then y is the same as differentiation with respect to y then x. For more details
and for string diagram representation of the axioms of a differential category, we refer the
reader to [7, 5].

I Definition 15. A differential storage category [7] is a differential category with finite
biproducts whose coalgebra modality has the Seely isomorphisms.

For differential storage categories, the differential category structure can equivalently be
axiomatized by a natural transformation ηA : A→ !(A) known as a codereliction [7, 5, 19].
For monoidal coalgebra modalities, there is a bijective correspondence between coderelictions
and deriving transformations [5]. However, we will see below that the deriving transformation
plays the more important role when discussing tangent category structure of (co-)Eilenberg-
Moore categories of differential categories.

I Example 16. Here are some examples of differential storage categories. Many other
examples of differential (storage) categories can be found in [7, 5, 18].

3 It should be noted that the interchange rule [d.5] was not part of the definition in [7] but was later added
to ensure that the coKleisli category of a differential category (with finite products) was a Cartesian
differential category [6].
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1. In [8], Blute, Ehrhard, and Tasson showed that the category of convenient vector spaces
and bounded linear maps between them is a differential storage category. In particular,
the coKleisli category is precisely the category of convenient vector spaces and smooth
maps between them. The differential structure is induced by the limit definition of the
derivative in locally convex vector spaces.

2. In [18], Ehrhard provides a differential storage category (amongst others) whose objects
are linearly topologized vector spaces generated by finiteness spaces. The differential
structure corresponds to differentiating multivariable power series.

3. In [11], Clift and Murfet study the differential category structure induced by cofree
cocommutative coalgebras. So if k is a field of characteristic 0, VECk is a differential
storage category with the coalgebra modality ! defined in Example 10.2. Recalling that
for a vector space V with basis X, !(V ) ∼=

⊕
v∈V

k[X], the deriving transformation can be

expressed as:

dV :
(⊕
v∈V

k[X]
)
⊗ V →

⊕
v∈V

k[X] pv(x1, . . . , xn)⊗ xi 7→ pv(x1, . . . , xn)xi

where pv(x1, . . . , xn) is a polynomial in distinct indeterminates x1, x2, ..., xn ∈ X and lies
in the v-th coproduct-component of !V , where v ∈ V . This example also generalizes for
modules over a commutative unital semiring.

I Definition 17. A codifferential category [9] is an additive symmetric monoidal category
with an algebra modality (S, µ, η,∇, u) that comes equipped with a deriving transforma-
tion4, that is, a natural transformation dA : S(A)→ S(A)⊗A such that dual equalities of
[d.1] to [d.5] hold, that is:
[cd.1] Constant Rule: uAdA = 0
[cd.2] Leibniz Rule:

∇AdA = (dA ⊗ 1S(A))(1S(A) ⊗ τA,S(A))(∇A ⊗ 1S(A)) + (1S(A) ⊗ dA)(∇A ⊗ 1S(A))

[cd.3] Linear Rule: ηAdA = uA ⊗ 1A
[cd.4] Chain Rule: µAdA = dS(A)(µA ⊗ dA)(∇A ⊗ 1A)
[cd.5] Interchange Rule: dA(dA ⊗ 1A) = dA(dA ⊗ 1A)(1⊗ τA,A)

I Example 18. Here are some examples of codifferential categories. Many other examples
of codifferential categories can be found in [7, 5].
1. Let k be a field. Then VECk is a codifferential storage category with the algebra modality

Sym defined in Example 12.1, and where the differential structure corresponds precisely
to differentiation of polynomials. To see this, recall that for a k-vector space V with
basis set X, Sym(V ) ∼= k[X]. Therefore the deriving transformation can be expressed as
dV : k[X]→ k[X]⊗ V , which is given by taking a sum involving the partial derivatives:

dV : k[X]→ k[X]⊗ V p(x1, . . . , xn) 7→
n∑
i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi

So VECopk is a differential storage category. See [7, 5] for full details on this example. This
example generalizes to the category of modules over a commutative unital semiring.

4 As in the literature, we keep the same terminology and notation for a deriving transformation in the
context of a codifferential category



R. Cockett, J.-S.-P. Lemay, and R. B. B. Lucyshyn-Wright 17:11

2. Other than the codifferential category structure given by Sym from the previous example,
VECR also has a codifferential category structure with respect to the algebra modality S∞
defined in Example 12.2. The deriving transformation is induced by differentiating smooth
functions. In particular for Rn, S∞(Rn) = C∞(Rn) and the deriving transformation
dRn : C∞(Rn)→ C∞(Rn)⊗ Rn is defined as a sum involving the partial derivatives:

dRn : C∞(Rn)→ C∞(Rn)⊗ Rn f 7→
n∑
i=1

∂f

∂xi
⊗ xi

Hence VECopR is a differential category. See [16] for full details on this example.

5 Tangent Structure and Codifferential Categories

The goal of this section is to prove that the Eilenberg-Moore category of a codifferential
category with finite biproducts is a tangent category. To achieve this we need to first
introduce the concept of a tangent monad, in order to lift tangent structure to Eilenberg-
Moore categories.

Let (S, µ, η) be a monad on a category X and let T : X→ X be an endofunctor. Recall
that a distributive law [45] of T : X → X over (S, µ, η) is a natural transformation
λM : S(T(M))→ T(S(M)) such that the following diagrams commute:

S2T(M)

µT(M)

��

S(λM )// STS(M)
λS(M)// TS2(M)

T(µM )
��

T(M)

T(ηM ) ##

ηT(M)// ST(M)

λM

��
ST(M)

λM

// TS(M) TS(M)

Distributive laws of this sort allow us to lift T to the Eilenberg-Moore category of (S, µ, η)
[45], noting that this is an instance of a more general result of Appelgate that is stated in
[27]. Explicitly, the endofunctor T : XS → XS, called the lifting of T, is defined on objects by

T(A, S(A) ν // A ) := (T(A), ST(A) λA // TS(A)
T(ν)// T(A)) and on maps by T(f) := T(f).

I Definition 19. A tangent monad on a tangent category (X,T) is a quadruple (S, η, µ, λ)
consisting of a monad (S, η, µ) equipped with a distributive law λ of the tangent functor T
over (S, µ, δ) such that the following diagrams commute:

ST(M)

λM

��

S(pM )

##

ST2(M)
S(σM )//

〈S(ρ0)λ,S(ρ1)λ〉
��

ST(M)

λM

��

S(M)

zS(M) ##

S(zM )// ST(M)

λM

��
TS(M)

pS(M)
// S(M) T2S(M)

σS(M)
// TS(M) TS(M)

ST(M)

λM

��

S(`M )// ST2(M)

λT(M)

��

ST2(M)

λT(M)

��

S(cM )// ST2(M)

λT(M)

��
TST(M)

T(λM )
��

TST(M)

T(λM )
��

TST(M)

T(λM )
��

TS(M)
`S(M)

// T2S(M) T2S(M)
cS(M)
// T2S(M)
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Equivalently a tangent monad is a monad in the 2-category of tangent categories [20]
since the above diagrams imply that (S, λ) is a tangent morphism [12].

I Proposition 20. The Eilenberg-Moore category of a tangent monad is a tangent category
such that the forgetful functor preserves the tangent structure strictly.

Proof. Let (S, η, µ, λ) be a tangent monad on a tangent category (X,T). Since λ is a
distributive law, this induces a lifting functor T : XS → XS. Then we can define p(A,ν) := pA,
z(A,ν) := zA, `(A,ν) := `A, c(A,ν) := cA. That p, z, `, and c are all S-algebra morphisms
follows from naturality of p, z, `, c and the respective diagrams of a tangent monad. To define
the addition map σ, we must first address limits in XS. It is well known that any given
diagram has a limit in the Eilenberg-Moore category as soon as it has a limit in the base
category [36]. Therefore the tangent limits of (X,T) easily lift to XS, where in particular

T2(A, S(A) ν // A ) := (T2(A), ST2(A)
〈S(ρ0)λ,S(ρ1)λ〉 // T2S(A)

T2(ν) // T2(A)) . Then
we have that σ(A,ν) := σA. It follows that T := (T, p, σ, z, `, c) is a tangent structure on XS,
which by definition is preserved strictly by the forgetful functor. We conclude that (XS,T) is
a tangent category. J

The converse of Proposition 20 is also true, that is, if the Eilenberg-Moore category
of a monad admits a tangent structure that is strictly preserved by the forgetful functor,
then said monad is a tangent monad. In fact, in analogy with results for other kinds of
distributive laws [45], tangent monads are in bijective correspondence with liftings of the
tangent structure in this sense. Also note that by the universal property of the pullback
there are distributive laws λn,M : STn(M)→ TnS(M) for each n ∈ N.

To provide a tangent structure on the Eilenberg-Moore category of a codifferential
category, we will define a tangent monad structure on the algebra modality itself. However
we first need to address which tangent structure of the base category we will be lifting to
the Eilenberg-Moore category. This is where finite biproducts come into play. Recall that a
category with finite biproducts [36] can be described as an additive category with a zero
object 0 = 1 such that for each pair of objects A and B, there is an object A⊕B and maps
ι0 : A → A ⊕ B, ι1 : B → A ⊕ B, π0 : A ⊕ B → A, and π1 : A ⊕ B → B, satisfying the
well-known identities. This makes A⊕B both a product and a coproduct of A and B.

Every category X with finite biproducts admits a tangent structure whose tangent
functor is the diagonal functor, that is, the tangent functor T is defined on objects as
T(A) := A⊕A and on maps as T(f) := f ⊕ f . The projection is pA := A⊕A π0 // A , the

zero is zA := A
ι0 // A⊕A , the vertical lift is `A := A⊕A ι0⊕ι1 // A⊕A⊕A⊕A , and the

canonical flip is cA := A⊕A⊕A⊕A 1⊕τ⊕⊕1 // A⊕A⊕A⊕A where τ⊕A,B : A⊕B ∼= B⊕A
is the canonical symmetry isomorphism of the biproduct. Therefore it follows that for every
n ∈ N, Tn(A) :=

n⊕
i=0

A. For n = 2, T2(A) := A ⊕ A ⊕ A and the addition map is

σA := A⊕A⊕A
1⊕(π0+π1)// A⊕A . We denote this tangent structure as B (for biproduct).

That (X,B) is a tangent category follows from that fact that every category with finite
biproducts is in fact a Cartesian differential category (see Example 3.2).

I Proposition 21. Let X be a codifferential category with algebra modality (S, η, µ,∇, u) and
deriving transformation d, and suppose that X admits finite biproducts ⊕. Define the natural
transformation λA : S(A⊕ A)→ S(A)⊕ S(A) as the unique map that makes the following
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diagram commute:

S(A⊕A)
S(π0)

yy
λA

��

dA // S(A⊕A)⊗ (A⊕A)
S(π0)⊗π1// S(A)⊗A

1S(A)⊗ηA// S(A)⊗ S(A)

∇A

��
S(A) S(A)⊕ S(A)

π0
oo

π1
// S(A)

Equivalently, using the additive structure, λ := S(π0)ι0 + d(S(π0) ⊗ π1)(1 ⊗ η)∇ι1. Then
(S, µ, η, λ) is a tangent monad on (X,B).

Proof. See the extended version of this paper [15]. J

An immediate consequence of Proposition 20 and Proposition 21 is that (XS,B) is a
tangent category. Summarizing, we obtain one of the main results of this paper:

I Theorem 22. The Eilenberg-Moore category of a codifferential category with finite bi-
products is a tangent category.

In particular, the result of applying the tangent functor of (XS,B) to an S-algebra can be
simplified to T(A, ν) := (A⊕A, S(π0)νι0 + d(S(π0)⊗ π1)(ν ⊗ 1)∇νι1), which is an instance
of the S-algebra structure defined in [9, Theorem 4.1]. Denote the S-algebra structure of
T(A, ν) as ν[ : S(A⊕A)→ A⊕A. By [9, Proposition 5.4], the induced commutative monoid
structure on T(A, ν), generalizes that of the ring of dual numbers from Example 3.3:

∇ν
[

= (π0 ⊗ π0)∇νι0 + [(π0 ⊗ π1) + (π1 ⊗ π0)]∇νι1 uν
[

= uνι0

Thus, the above tangent structure on the Eilenberg-Moore category of a codifferential category
further highlights the relation between tangent structure and Weil algebras [32].

I Example 23. We conclude this section with some of the resulting tangent categories from
our main examples of codifferential categories:
1. For a field k, when applying the constructions of this section to Example 18.1, one recovers

precisely the tangent category from Example 3.3 induced by dual numbers, recalling that
VECSym

k
∼= CALGk.

2. For Example 18.2, the resulting tangent structure on the category of C∞-rings is particu-
larly important, since the ring of dual numbers plays a key role in models of synthetic
differential geometry based on C∞-rings [29, 39].

3. For a field k, one can also apply the constructions of this section to Example 16.3, which
implies that the opposite category of cocommutative k-coalgebras is a tangent category.

6 Representable Tangent Structure and Differential Categories

The goal of this section is to show that the coEilenberg-Moore category of a differential
category with biproducts is a tangent category, provided that it has certain equalizers. We
will also explain that in the case of a differential storage category, the coEilenberg-Moore
category is in fact a representable tangent category. To achieve this, we wish to apply
Theorem 4 to the tangent structure that we constructed in the previous section, which resides
on the Eilenberg-Moore category of a codifferential category.

In a category X with finite biproducts, the pullback powers of the projection pA := π0 are
Tn(A) =

n⊕
i=0

A. By the universality of the product and couniversality of the coproduct, each

Tn is its own adjoint, that is, Tn is a left adjoint to Tn. However in the Eilenberg-Moore
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category, Tn is not necessarily its own adjoint (in fact it is far from it in any of the examples
in this paper). Therefore we cannot use results about lifting adjunctions to Eilenberg-Moore
category on the nose such as in [25]. Instead we employ Johnstone’s left adjoint lifting
theorem [27, Theorem 2], which is a special case of the adjoint lifting theorem of Butler that
can be found in [2, Theorem 7.4], and it is at this point that we require the mild further
assumption that the Eilenberg-Moore category admits reflexive coequalizers. First recall that
a reflexive pair is a pair of parallel maps f, g : A→ B with a common section, that is, there
is a map h : B → A such that hf = 1B = hg. A reflexive coequalizer is a coequalizer of a
reflexive pair, and a category is said to have reflexive coequalizers if it has coequalizers of all
reflexive pairs. A famous result of Linton’s is that for a monad on a cocomplete category, the
Eilenberg-Moore category is cocomplete if and only if the Eilenberg-Moore category admits
all reflexive coequalizers [33].

I Proposition 24. [27, Theorem 2] Let λ be a distributive law of a functor R : X → X
over a monad (S, µ, η), and suppose that R has a left adjoint L. If XS admits reflexive
coequalizers then the lifting of R, R : XS → XS, has a left adjoint G : XS → XS such that
G(S(A), µA) = (SL(A), µL(A)).

Applying Proposition 24 to the Eilenberg-Moore category of a codifferential category, we
obtain the following result:

I Proposition 25. Let X be a codifferential category with algebra modality (S, η, µ,∇, u)
and deriving transformation d, and suppose that X admits finite biproducts and XS admits
reflexive coequalizers. Then for each n ∈ N, Tn : XS → XS has a left adjoint.

Applying Theorem 4 to the above proposition, we obtain the main result of this paper:

I Theorem 26. If the coEilenberg-Moore category of a differential category with finite bi-
products admits coreflexive equalizers (the dual of reflexive coequalizers), then the coEilenberg-
Moore category is a tangent category.

For differential storage categories, in order to show that the coEilenberg-Moore category
is a representable tangent category, we will need to look at the construction of Section 5
for codifferential categories with comonoidal algebra modalities. So let X be a codifferential
category with a comonoidal algebra modality (S, µ, η,∇, u, n, nK) such that X also admits
finite biproducts, noting that n and nK denote the comonoidal structure on S (Section 3).
Note that in X, it follows from distributivity between the biproduct and monoidal product
(which is automatic in any additive symmetric monoidal category) that for every n ∈ N one
has that Tn(A) =

n⊕
i=0

A ∼=
n⊕
i=0

(A⊗K) ∼= A⊗
n⊕
i=0

K = A⊗ Tn(K). In particular when n = 1,

T(A) ∼= A⊗ (K ⊕K). Recall that for a comonoidal algebra modality, ⊗ is a coproduct in
the Eilenberg-Moore category and there is a map nK : S(K)→ K making (K, nK) into an S-
algebra and an initial object. Then for every n ∈ N one has the following isomorphisms in the
Eilenberg-Moore category XS: Tn(A, ν) ∼= (A, ν)⊗ Tn(K, nK), and in particular, for n = 1,
T(A, ν) ∼= (A, ν) ⊗ T(K, nK) = (A, ν) ⊗ (K ⊕K, n[K) . If XS admits reflexive coequalizers
then by Proposition 25, each functor Tn ∼= − ⊗ Tn(K, nK) has a left adjoint. Dualizing,
this implies that − ⊗ Tn(K, nK) : (XS)op → (XS)op has a right adjoint and therefore that
Tn(K, nK) is an exponent object in (XS)op. Therefore, in view of Theorem 26, (XS)op is a
representable tangent category whose infinitesimal object is T(K, nK) = (K ⊕K, n[K).

Let us restate this result in terms of differential storage categories. Let X be a differential
storage category with coalgebra modality (!, δ, ε,∆, e) equipped with deriving transformation
dA : !(A) ⊗ A → !(A) and such that X has finite biproducts ⊕. Recall that the monoidal
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structure on ! includes a map mK : K → !(K) that makes (K,mK) into a !-coalgebra. If X!

admits coreflexive equalizers, then X! is a representable tangent category whose infinitesimal
object is (K ⊕K,m]

K), where m]
K : K ⊕K → !(K ⊕K) is defined as the unique map that

makes the following diagram commute (using the couniversal property of the coproduct):

K

mK

��

K ⊕K//ι0

m]
K

��

oo ι1 K
∼= // K ⊗K

mK⊗1K��
!(K)⊗K

!(ι0)⊗ι1��
!(K)

!(ι0)
// !(K ⊕K) !(K ⊕K)⊗ (K ⊕K)

dK⊕K

oo

We summarize this result for differential storage categories to obtain the final main result of
this paper:

I Theorem 27. If the coEilenberg-Moore category of a differential storage category admits
coreflexive equalizers, then the coEilenberg-Moore category is a representable tangent category.

I Example 28. We conclude this section by looking briefly at some examples.
1. For a field k and Example 18.1, recall once again that VECSym

k
∼= CALGk. It is well known

that CALGk is complete and cocomplete, and therefore VECSym
k admits reflexive coequal-

izers. Applying Theorem 27 to this example, one obtains precisely the tangent structure
on CALGopk from Example 7.3 (and described in full detail in [12, Proposition 5.16]), where
we recall that the infinitesimal object is the ring of dual numbers k[ε]. It is interesting
to note that for polynomial rings k[X] we have in CALGopk that k[X]k[ε] ∼= k[X]⊗ k[X].
In [35, 34], the third author generalized the tangent structure on the opposite of the
category of commutative k-algebras to the setting of certain codifferential categories,
using universal derivations [9], which generalize Kähler differentials.

2. Similarly for Example 16.3 (again for a field k) recall that VEC!
k is isomorphic to the

category of cocommutative k-coalgebras, which is both complete and cocomplete [40, 1].
Therefore, VEC!

k admits coreflexive equalizers and so by applying Theorem 27, VEC!
k is a

representable tangent category. Most interesting is that the infinitesimal object in this
case is again the ring of dual numbers k[ε] but seen as a cocommutative k-coalgebra with
comultiplication defined on the basis elements as 1 7→ 1⊗ 1 and ε 7→ 1⊗ ε+ ε⊗ 1. The
coalgebra k[ε] played an important role in [11].

3. For C∞-rings and Example 18.2, the Eilenberg-Moore category is the category of C∞-
rings. As it is the category of algebras for a Lawvere theory, the category of C∞-rings is
both complete and complete and therefore, in particular, admits reflexive coequalizers.
Hence it follows that the opposite of the category of C∞-rings is a tangent category. In
particular, for a smooth manifold M , the image of C∞(M) under the tangent functor in
this case is precisely C∞(T(M)), where T(M) is the standard tangent bundle over M .

7 Conclusion

Given that differential categories involve a comonad it seems obvious from a categorical
perspective that one should consider the coEilenberg-Moore category of coalgebras. That these
coEilenberg-Moore categories are tangent categories, assuming the existence of coreflexive
equalizers, provides an important way of generating tangent categories that is already “baked
in” to algebraic geometry and synthetic differential geometry. As there are many examples of
differential categories from various fields, this opens the door to studying new and interesting
tangent categories.
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However, viewing these structures at this level of generality raises a number of further
questions. Indeed, the fact that one has a tangent category begs the question of how various
devices from abstract differential geometry (such as vector fields, Lie algebras, connections,
solutions to differential equations, etc.) manifest in these settings. For example when and
how do “curve objects” and “line objects” appear in these settings? In any tangent category,
one can also consider differential objects, which are objects A such that T(A) ∼= A×A. Can
one characterize the differential objects in a coEilenberg-Moore category of a differential
category? The cofree !-coalgebras (!(A), δA) are always differential objects, but when are
these exactly the differential objects?

There is now much work to be done to examine the more detailed ramifications of the
constructions in this paper and to place specific results in a more general geography.
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