
Internal Calculi for Separation Logics
Stéphane Demri
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France

Etienne Lozes
Université Côte d’Azur, CNRS, I3S, France

Alessio Mansutti
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France

Abstract
We present a general approach to axiomatise separation logics with heaplet semantics with no
external features such as nominals/labels. To start with, we design the first (internal) Hilbert-
style axiomatisation for the quantifier-free separation logic SL(∗,−∗). We instantiate the method
by introducing a new separation logic with essential features: it is equipped with the separating
conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply
our approach for its axiomatisation. As a by-product of our method, we also establish the exact
expressive power of this new logic and we show PSpace-completeness of its satisfiability problem.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Separation logic, internal calculus, adjunct/quantifier elimination

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.19

Acknowledgements We would like to thank the anonymous reviewers for their suggestions and
remarks that help us to improve the quality of this paper.

1 Introduction

The virtue of axiomatising program logics. Designing a Hilbert-style axiomatisation for
your favourite logic is usually quite challenging. This does not lead necessarily to optimal
decision procedures, but the completeness proof usually provides essential insights to better
understand the logic at hand. That is why many logics related to program verification have
been axiomatised, often requiring non-trivial completeness proofs. By way of example, there
exist axiomatisations for the linear-time µ-calculus [28, 19], the modal µ-calculus [39] or for
the alternating-time temporal logic ATL [23]. Concerning the separation logics that extend
Hoare-Floyd logic to verify programs with mutable data structures (see e.g. [34, 38, 27, 33, 37]),
a Hilbert-style axiomatisation of Boolean BI has been introduced in [21], but remained at the
abstract level of Boolean BI. More recently, HyBBI [8], a hybrid version of Boolean BI has
been introduced in order to axiomatise various classes of separation logics; HyBBI naturally
considers classes of abstract models (typically preordered partial monoids) but it does not fit
exactly the heaplet semantics of separation logics. Furthermore, the addition of nominals
(in the sense of hybrid modal logics, see e.g. [1]) extends substantially the object language.
Other frameworks to axiomatise classes of abstract separation logics can be found in [18]
and in [25], respectively with labelled tableaux calculi and with sequent-style proof systems.

Our motivations. Since the birth of separation logics, there has been a lot of interest in
the study of decidability and computational complexity issues, see e.g. [3, 10, 11, 7, 15, 32],
and comparatively a bit less attention to the design of proof systems, and even less with
the puristic approach that consists in discarding any external feature such as nominals or
labels in the calculi. The well-known advantages of such an approach include an exhaustive
understanding of the expressive power of the logic and discarding the use of any external

© Stéphane Demri, Etienne Lozes, and Alessio Mansutti;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2020.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Internal Calculi for Separation Logics

artifact referring to semantical objects. For instance, a complete tableaux calculus with labels
for quantifier-free separation logic is designed in [22] –with an extension of the calculus to
handle quantifiers, whereas Hilbert-style calculi for abstract separation logics with nominals
are defined in [8] (see also in [26] a proof system for a first-order abstract separation logic
with an abstracted version of the points-to predicate). Similarly, display calculi for bunched
logics are provided in [5] and such calculi extend Gentzen-style proof systems by allowing new
structural connectives. In this paper, we advocate a puristic approach and aim at designing
Hilbert-style proof systems for quantifier-free separation logic SL(∗,−∗) (which includes
the separating conjunction ∗ and implication −∗, as well as all Boolean connectives) and
more generally for other separation logics, while remaining within the very logical language.
Consequently, in this work we only focus on axiomatising the separation logics, and we have
no claim for practical applications in the field of program verification. Aiming at internal
calculi is a non-trivial task as the general frameworks for abstract separation logics make use
of labels, see e.g. [18, 25]. We cannot fully rely on label-free calculi for BI, see e.g. [36, 21],
as separation logics are usually understood as Boolean BI interpreted on models of heap
memory and therefore require calculi that handle specifically the stack-and-heap models.
Finally, we know translations from separation logics into logics/theories, see e.g. [9, 35, 4],
but completeness cannot always be inherited by sublogics as the proof system should only
use the sublogic and therefore their axiomatisation may lead to different methods.

Our contribution. Though our initial motivation is to design an internal Hilbert-style
axiomatisation for SL(∗,−∗), we go beyond this, and we propose a method to axiomatise other
separation logics assuming that key properties are satisfied. Hence, we consider a broader
perspective and we use our approach on two separation logics: quantifier-free separation
logic and a new separation logic that admits a form of guarded first-order quantification.
Our results are not limited to (internal) axiomatisation, as we provide a complexity analysis
based on the properties of the derivations in the proof system. Let us be a bit more precise.

In Section 3, we provide the first Hilbert-style proof system for SL(∗,−∗) that uses axiom
schemas and rules involving only formulae of this logic. Each formula of SL(∗,−∗) is equivalent
to a Boolean combination of core formulae: simple formulae of the logic expressing elementary
properties about the models [30]. Though core formulae (also called test formulae) have
been handy in several occasions for establishing complexity results for separation logics,
see e.g. [14, 15, 20], in the paper, these formulae are instrumental for the axiomatisation.
Indeed, we distinguish the axiomatisation of Boolean combinations of core formulae from the
transformation of formulae into such Boolean combinations. Thus, we show how to introduce
axioms to transform every formula into a Boolean combination of core formulae, together with
axioms to deal with these simple formulae. Schematically, for a valid formula ϕ, we conclude
` ϕ from ` ϕ′ and ` ϕ′ ⇔ ϕ, where ϕ′ is a Boolean combination of core formulae. Another
difficulty arises as we have to design an axiomatisation for such Boolean combinations. So,
the calculus is divided in three parts: the axiomatisation of Boolean combinations of core
formulae, axioms and inference rules to simulate a bottom-up elimination of separating
connectives, and finally axioms and inference rules from propositional calculus and Boolean
BI. Such an approach that consists in first axiomatising a syntactic fragment of the whole
logic (in our case, the core formulae), is best described in [19] (see also [39, 40, 31, 13]).

In Section 4, our intention is to add standard features to the logic such as first-order
quantification and inductive predicates, and to apply our method for axiomatisation. As
SL(∗,−∗, ls) (i.e. SL(∗,−∗) enriched with the predicate ls) is already non-finitely axioma-
tisable [16], we need to fine-tune the logical formalism. That is why, we introduce a new

S. Demri, E. Lozes, and A. Mansutti 19:3

separation logic SL(∗,∃:) that admits the separating conjunction ∗ (no −∗) and a guarded
form of first-order quantification. In the formula ∃z:〈x y〉ϕ, the variable z is existentially
quantified over the set of locations in the minimal non-empty path from x to y, if any. The
logic SL(∗,∃:) contains the symbolic heap fragment [2, 11] but also richer logics such as
SL(∗, reach+) from [15]. Hence, the logic SL(∗,∃:) captures the list segment predicate ls
but also allows us to quantify in a guarded form over locations in a minimal path, which makes
it a promising language. We provide an internal Hilbert-style axiomatisation for SL(∗,∃:),
illustrating the flexibility of our method. It requires the design of an adequate family of
core formulae that captures SL(∗,∃:). The axiomatisation of Boolean combinations of core
formulae reveals to be challenging, and the elimination of guarded quantification or separating
conjunction happens also to require complex developments. We analyse the derivations from
the calculus to establish a small model property for the logic and, together with a symbolic
model-checking algorithm, prove that the satisfiability problem for SL(∗,∃:) is in PSpace.

2 Preliminaries

Quantifier-free separation logic SL(∗,−∗). We present the quantifier-free separation logic
SL(∗,−∗), that includes standard features such as the separating conjunction ∗ and the
separating implication −∗. Let VAR = {x, y, . . .} be a countably infinite set of program
variables. The formulae ϕ of SL(∗,−∗) and its atomic formulae π are built from the grammars
below (where x, y ∈ VAR and the connectives ⇒, ⇔ and ∨ are defined as usually).

π ::= x = y | x ↪→ y | emp ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ−∗ ϕ.

In the heaplet semantics, the formulae of SL(∗,−∗) are interpreted on memory states that
are pairs (s, h) where s : VAR→ LOC is a variable valuation (the store) from the set of
program variables to a countably infinite set of locations LOC = {`0, `1, `2, . . .} whereas
h : LOC→fin LOC is a partial function with finite domain (the heap). We write dom(h) to
denote its domain and ran(h) to denote its range. A memory cell of h is understood as a
pair of locations (`, `′) such that ` ∈ dom(h) and `′ = h(`). As usual, the heaps h1 and h2
are said to be disjoint, written h1 ⊥ h2, if dom(h1) ∩ dom(h2) = ∅; when this holds, we
write h1 + h2 to denote the heap corresponding to the disjoint union of the graphs of h1 and
h2, hence dom(h1 + h2) = dom(h1)] dom(h2). Moreover, we write h′ v h to denote that
dom(h′) ⊆ dom(h) and for all locations ` ∈ dom(h′), we have h′(`) = h(`). Given a heap
h, we define a family of (hδ)δ∈N of partial functions such that h0 is the identity function
on LOC, h1 = h and for all δ ≥ 2 and ` ∈ LOC, we have hδ(`) def= h(hδ−1(`)), assuming that
hδ−1(`) is defined and belongs to dom(h), otherwise hδ(`) is undefined. The satisfaction
relation |= is defined as follows (omitting standard clauses for ¬, ∧):

(s, h) |= x = y def⇔ s(x) = s(y) (s, h) |= emp def⇔ dom(h) = ∅
(s, h) |= x↪→y def⇔ s(x) ∈ dom(h) and h(s(x)) = s(y)
(s, h) |= ϕ1 ∗ ϕ2

def⇔ ∃h1, h2. h1⊥h2, (h1 + h2) = h, (s, h1) |= ϕ1 and (s, h2) |= ϕ2

(s, h) |= ϕ1 −∗ ϕ2
def⇔ ∀h1. (h1⊥h and (s, h1) |= ϕ1) implies (s, h+ h1) |= ϕ2.

We denote with ⊥ the contradiction x 6= x, and with > its negation ¬⊥. The septraction
operator −~ (kind of dual of −∗), defined by ϕ−~ψ def= ¬(ϕ−∗¬ψ), has the following semantics:

(s, h) |= ϕ−~ ψ ⇔ there is a heap h′ such that h⊥h′, (s, h′) |= ϕ, and (s, h+ h′) |= ψ.

Moreover, we introduce the following (important) shortcuts:

alloc(x) which is satisfied by (s, h) iff s(x) ∈ dom(h). It is defined as (x ↪→ x)−∗ ⊥.

CSL 2020

19:4 Internal Calculi for Separation Logics

size ≥ β which is satisfied by (s, h) iff card(dom(h)) ≥ β, where β ∈ N and card(X)
denotes the cardinality of the set X. This shortcut is inductively defined as size ≥ 0 def= >,
size ≥ 1 def= ¬emp and, for each β ∈ N, size ≥ β+2 def= ¬emp ∗ size ≥ β+1.

We use size=β as a shorthand for size≥β ∧¬size≥β+1. A formula ϕ is valid if (s, h) |= ϕ

for all (s, h) (and we write |= ϕ). For a complete description of separation logic, see e.g. [38].

Hilbert-style proof systems. A Hilbert-style proof system H is defined as a set of derivation
step schemata ((Φ1, . . . ,Φn),Ψ) with n ≥ 0, where Φ1, . . . ,Φn,Ψ are formula schemata.
When n ≥ 1, ((Φ1, . . . ,Φn),Ψ) is called an inference rule, otherwise it is an axiom. As usual,
formula schemata generalise the notion of formulae by allowing metavariables for formulae
(typically ϕ,ψ, χ), for program variables (typically x, y, z) or for any type of syntactic objects
in formulae, depending on the context. The set of formulae derivable from H is the least set S
such that for all ((Φ1, . . . ,Φn),Ψ) ∈ H and for all substitutions σ such that Φ1σ, . . . ,Φnσ ∈ S,
Ψσ ∈ S. We write `H ϕ if ϕ is derivable from H. A proof system H is sound if all derivable
formulae are valid. H is complete if all valid formulae are derivable. H is strongly complete iff
for all sets of formulae Γ and formulae ϕ, we have Γ |= ϕ (semantical entailment) iff `H∪Γ ϕ.

Interestingly enough, there is no strongly complete proof system for separation logic,
as strong completeness implies compactness and separation logic is not compact. Indeed,
{size ≥ β | β ∈ N} is unsatisfiable, as heaps have finite domains, but all finite subsets
of it are satisfiable. Even for the weaker notion of completeness, deriving an Hilbert-style
axiomatisation for SL(∗,−∗) remains challenging. Indeed, the satisfiability problem for
SL(∗,−∗) reduces to its validity problem, making SL(∗,−∗) an unusual logic from a proof-
theoretical point of view. Let us develop a bit further this point. Let ϕ be a formula with
program variables in X ⊆fin VAR, and let ≈ be an equivalence relation on X. The formula
ψ≈

def= (emp∧
∧

x≈y x = y∧
∧

x6≈y x 6= y)⇒ (ϕ−~>) can be shown to be valid iff for every store
s agreeing on ≈, there is a heap h such that (s, h) |= ϕ. It is known that for all stores s, s′
agreeing on ≈, and every heap h, (s, h) and (s′, h) satisfy the same set of formulae having
variables from X. Since the antecedent of ψ≈ is satisfiable, we conclude that ψ≈ is valid iff
there are a store s agreeing on ≈ and a heap h such that (s, h) |= ϕ. To check whether ϕ is
satisfiable, it is sufficient to find an equivalence relation ≈ on X such that ψ≈ is valid. As the
number of equivalence relations on X is finite, we obtain a Turing reduction from satisfiability
to validity. Consequently, it is not possible to define sound and complete axiom systems
for any extension of SL(∗,−∗) admitting an undecidable validity problem (as long as there
is a reduction from satisfiability to validity, as above). A good example is SL(∗,−∗, ls) [16]
(extension of SL(∗,−∗) with ls). Indeed, in order to obtain a sound and complete axiom
system, the validity problem has to be recursively enumerable (r.e.). However, this would
imply that the satisfiability problem is also r.e.. As ϕ is not valid iff ¬ϕ is satisfiable, we
then conclude that the set of valid formulae is recursive, hence decidable, a contradiction.

It is worth also noting that quantifier-free SL(∗,−∗) axiomatised below admits a PSpace-
complete validity problem, see e.g. [10], and should not be confused with propositional
separation logic with the stack-heap models shown undecidable in [6, Corollary 5.1] (see
also [12]), in which there are propositional variables interpreted by sets of memory states.

3 Hilbert-style proof system for SL(∗,−∗)

We define a proof system for SL(∗,−∗), namely HC(∗,−∗), by relying on its core formulae:
simple SL(∗,−∗) formulae capturing essential properties of the models, see e.g. [29, 41]. It
is known that every SL(∗,−∗) formula is logically equivalent to a Boolean combination of

S. Demri, E. Lozes, and A. Mansutti 19:5

(System 1) HC: Axioms for Boolean combinations of core formulae

(AC
1) x = x

(AC
2) ϕ ∧ x = y⇒ ϕ[y←x]

(AC
3) x ↪→ y⇒ alloc(x)

(AC
4) x ↪→ y ∧ x ↪→ z⇒ y = z

(IC
5) size ≥ β+1⇒ size ≥ β

(IC
6)
∧

x∈X(alloc(x) ∧
∧

y∈X\{x} x 6= y)⇒ size ≥ card(X)

(System 2) Axioms and inference rule for the separating conjunction

(A∗7) (ϕ ∗ ψ)⇔ (ψ ∗ ϕ)
(A∗8) (ϕ ∗ ψ) ∗ χ⇔ ϕ ∗ (ψ ∗ χ)
(I∗9) (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ)
(I∗10) (⊥ ∗ ϕ)⇔ ⊥
(A∗11) ϕ⇔ ϕ ∗ emp
(I∗12) alloc(x) ∗ > ⇒ alloc(x)
(I∗13) (alloc(x) ∗ alloc(x))⇔ ⊥

(A∗14) e ∗ > ⇒ e J[e is ¬emp, x = y, x 6= y or x ↪→ y]
(A∗15) ¬alloc(x) ∗ ¬alloc(x)⇒ ¬alloc(x)
(A∗16) (alloc(x) ∧ ¬x ↪→ y) ∗ > ⇒ ¬x ↪→ y
(A∗17) alloc(x)⇒ (alloc(x) ∧ size = 1) ∗ >
(A∗18) ¬emp⇒ size = 1 ∗ >
(A∗19) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ β1+β2

.−1
(A∗20) alloc(x) ∧ alloc(y) ∧ x 6= y⇒ size ≥ 2

∗-Intro: ϕ⇒ χ
ϕ ∗ ψ ⇒ χ ∗ ψ where a .− b = a− b if a ≥ b, 0 otherwise.

(System 3) Axioms and inference rules for the separating implication

(A−∗21) (size = 1 ∧
∧

x∈X ¬alloc(x))−~> J[X ⊆fin VAR]
(A−∗22) ¬alloc(x)⇒ ((x ↪→ y ∧ size = 1)−~>)

∗-Adj: ϕ ∗ ψ ⇒ χ
ϕ⇒ (ψ −∗ χ) −∗-Adj: ϕ⇒ (ψ −∗ χ)

ϕ ∗ ψ ⇒ χ

(A−∗23) ¬alloc(x)⇒ ((alloc(x) ∧ size = 1 ∧
∧

y∈X ¬x ↪→ y)−~>) J[X ⊆fin VAR]

1 emp⇒ ¬size ≥ 1 (¬¬E) and def. of size ≥ 1
2 alloc(x) ∧ size = 1⇒ ¬size ≥ 2 (∧Er)
3 emp ∗ (alloc(x) ∧ size = 1)⇒ ¬size ≥ 1 ∗ ¬size ≥ 2 ∗-Ilr, 1, 2
4 ¬size ≥ 1 ∗ ¬size ≥ 2⇒ ¬size ≥ 2 (A∗19)
5

(
emp ∗ (alloc(x) ∧ size = 1)

)
⇒ ¬size ≥ 2 ⇒-Tr, 3, 4

6 emp⇒
(
(alloc(x) ∧ size = 1)−∗ ¬size ≥ 2

)
∗-Adj rule, 5

Figure 1 Proof of emp⇒
(
(alloc(x) ∧ size = 1)−∗ ¬size ≥ 2

)
.

core formulae [29]. However, as every core formula is an SL(∗,−∗) formula, we stay in
the original language and we can derive an axiomatisation of SL(∗,−∗) by extending the
axiom system of propositional calculus with three sets of axioms and inference rules: the
axioms and inference rules of the propositional logic of core formulae (System 1), the axioms
and inference rules witnessing that every formula of the form ϕ1 ∗ ϕ2, where ϕ1, ϕ2 are
Boolean combinations of core formulae is logically equivalent to a Boolean combination of
core formulae (System 2), and the axioms and inference rules to eliminate formulae whose
outermost connective is the separating implication −∗ (System 3). The core formulae are
expressions of the form x = y, alloc(x), x ↪→ y and size ≥ β, where x, y ∈ VAR and
β ∈ N. As previously shown, these formulae are from SL(∗,−∗) and are used in the axiom
system as abbreviations. Given X ⊆fin VAR and α ∈ N, we define Core(X, α) as the set
{x = y, alloc(x), x ↪→ y, size ≥ β | x, y ∈ X, β ∈ [0, α]}. Bool(Core(X, α)) is the set of
Boolean combinations of formulae from Core(X, α), whereas Conj(Core(X, α)) is the set of
conjunctions of literals built upon Core(X, α) (a literal being a core formula or its negation).
Given ϕ = L1 ∧ · · · ∧ Ln ∈ Conj(Core(X, α)), every Li being a literal, Lt(ϕ) def= {L1, . . . , Ln}.
ψ ⊆Lt ϕ stands for Lt(ψ) ⊆ Lt(ϕ). We write χ ⊆Lt {ϕ | ψ}, {ϕ | ψ} ⊆Lt χ and χ ⊆Lt {ϕ ; ψ}
for “χ ⊆Lt ϕ or χ ⊆Lt ψ”, “ϕ ⊆Lt χ or ψ ⊆Lt χ”, and “χ ⊆Lt ϕ and χ ⊆Lt ψ”, respectively.

Example. To show the flavour of the axioms and the rules, Figure 1 displays a proof in
HC(∗,−∗). In the proof, a line “j |χ A, i1, . . . , ik” states that χ is a theorem denoted by the
index j and derivable by the axiom or the rule A. If A is a rule, the indices i1, . . . , ik<j denote

CSL 2020

19:6 Internal Calculi for Separation Logics

the theorems used as premises in order to derive χ. The example uses the rule ∗-Adj, which
together with −∗-Adj states that the ∗ and −∗ are adjoint operators, and the axiom (A∗19),
stating that card(dom(h)) ≤ β1+β2 holds whenever a heap h can be split into two subheaps
that have less than β1+1 and β2+1 memory cells, respectively. We also use the following
theorems and rules, which can be shown derivable/admissible in the forthcoming calculus:

(∧Er) ψ ∧ ϕ⇒ ϕ (¬¬E) ¬¬ϕ⇒ ϕ ∗-Ilr: ϕ⇒ ϕ′ ψ ⇒ ψ′

ϕ ∗ ψ ⇒ ϕ′ ∗ ψ′ ⇒-Tr: ϕ⇒ χ χ⇒ ψ
ϕ⇒ ψ

3.1 A simple calculus for the core formulae
To axiomatise SL(∗,−∗), we start by introducing the proof system HC (presented in System 1)
dedicated to Boolean combinations of core formulae. HC and all the subsequent proof
systems contain the axiom schemata and modus ponens for the propositional calculus.
The axioms I?

i in System n are necessary for the fragment the System n governs, but are
admissible when the axioms/rules from the System n+1 are present. In (AC

2), ϕ[y←x] is the
formula obtained from ϕ by replacing with x every occurrence of y. Let (s, h) be a memory
state. The axioms state that = is an equivalence relation (first two axioms), h(s(x))=s(y)
implies s(x) ∈ dom(h) (axiom (AC

3)) and that h is a (partial) function (axiom (AC
4)).

Furthermore, there are two intermediate axioms about size formulae: (IC
5) states that if

dom(h) has at least β+1 elements, then it has at least β elements, whereas (IC
6) states

that if there are β distinct memory cells corresponding to program variables, then indeed
dom(h) ≥ β. It is easy to check that HC is sound (right-to-left direction of Theorem 2, below).
In order to establish its completeness with respect to Bool(Core(X, α)), we first establish
that HC is complete for a fragment of Bool(Core(X, α)), made of core types. Let X⊆finVAR,
α ∈ N+ and α̂=α+card(X). We write CoreTypes(X, α) to denote the set of core types defined
by
{
ϕ ∈ Conj(Core(X, α̂))

∣∣ ∀ψ ∈ Core(X, α̂), {ψ | ¬ψ} ⊆Lt ϕ, and (ψ ∧ ¬ψ) 6⊆Lt ϕ
}
. Every formula in

this set is a conjunction having exactly one literal built upon ψ for every ψ ∈ Core(X, α̂).

I Lemma 1. Let ϕ ∈ CoreTypes(X, α). We have ¬ϕ is valid iff `HC ¬ϕ.

By classical reasoning, one can show that every ϕ ∈ Bool(Core(X, α)) is provably equivalent
to a disjunction of core types. Together with Lemma 1, this implies that HC is complete.

I Theorem 2. (Adequacy) A Boolean combination of core formulae ϕ is valid iff `HC ϕ.

3.2 A constructive elimination of ∗ to axiomatise SL(∗, alloc)

We enrich HC by adding axioms and inference rule that handle ∗ (System 2). The axioms
deal with the commutative monoid properties of (∗, emp) and its distributivity over ∨ (as
for Boolean BI, see e.g. [21]). In (A∗14), the notation ϕ J[B] refers to the axiom schema ϕ
assuming that the Boolean condition B holds. The rule ∗-Intro states that logical equivalence
is a congruence for ∗. This allows us to remove the intermediate axioms (IC

5) and (IC
6) from

the proof system. Hence, we call HC(∗) the proof system obtained from HC by adding all
schemata from System 2 and removing (IC

5) and (IC
6). It is easy to check that HC(∗) is sound.

More importantly, HC(∗) enjoys the ∗ elimination property with respect to core types.

I Lemma 3. Let ϕ and ψ in CoreTypes(X, α). There is a conjunction of core formulae
literals χ ∈ Conj(Core(X, 2α)) such that `HC(∗) ϕ ∗ ψ ⇔ χ.

Proof. (sketch) Let ϕ,ψ∈CoreTypes(X, α). If ϕ is unsatisfiable, then `HC ϕ⇒ ⊥, by Lemma 1.
By the rule ∗-Intro and the axiom (I∗10), we get `HC(∗) ϕ ∗ ψ ⇒ ⊥ and we take χ =⊥.

S. Demri, E. Lozes, and A. Mansutti 19:7

Assume now both ϕ and ψ to be satisfiable. Then ϕ ∗ψ can be shown provably equivalent to:∧{
x ∼ y ⊆Lt {ϕ | ψ}

∣∣∼∈ {=, 6=}} ∧
∧
{alloc(x) ⊆Lt {ϕ | ψ}}

∧
∧
{x ↪→ y ⊆Lt {ϕ | ψ}} ∧

∧
{¬alloc(x) ⊆Lt {ϕ ; ψ}}

∧
∧{
⊥
∣∣ alloc(x) ⊆Lt {ϕ ; ψ}

}
∧
∧{
¬x ↪→ y

∣∣ alloc(x) ∧ ¬x ↪→ y ⊆Lt {ϕ | ψ}
}

∧
∧{

size ≥ β1+β2

∣∣∣∣ size ≥ β1 ⊆Lt ϕ
size ≥ β2 ⊆Lt ψ

}
∧
∧{

¬size ≥ β1+β2
.−1
∣∣∣∣ ¬size ≥ β1 ⊆Lt ϕ
¬size ≥ β2 ⊆Lt ψ

}
This equivalence is reminiscent to the one in [20, Lemma 3] that is proved semantically. In a
way, because HC(∗) will reveal to be complete, the restriction of the proof of [20, Lemma 3]
to SL(∗, alloc) can actually be replayed completely syntactically within HC(∗). J

By the distributivity axiom (I∗9), this result is extended from core types to arbitrary Boolean
combinations of core formulae. HC(∗) is therefore complete for SL(∗, alloc), i.e. the logic
obtained from SL(∗,−∗) by removing −∗ and adding the formulae alloc(x) (only core formulae
requiring −∗). Then, to prove that a formula ϕ ∈ SL(∗, alloc) is valid, we repeatedly apply
the ∗ elimination bottom-up obtaining a Boolean combination of core formulae ψ that is
equivalent to ϕ. We rely on the completeness of HC (Theorem 2) to prove that ψ is valid.

I Theorem 4. A formula ϕ in SL(∗, alloc) is valid iff `HC(∗) ϕ.

3.3 A constructive elimination of −∗ to axiomatise SL(∗,−∗)

The proof systemHC(∗,−∗) is defined asHC(∗) augmented with the axioms and inference rules
from System 3 dedicated to separating implication. The axioms involving −~ (kind of dual of
−∗ introduced in Section 2) express that it is always possible to extend a given heap with an
extra cell, and that the address and the content of this cell can be fixed arbitrarily (provided
it is not already allocated). The adjunction rules are from the Hilbert-style axiomatisation
of Boolean BI [21, Section 2]. One can observe that the axioms (I∗9), (I∗10), (I∗12) and (I∗13)
are derivable in HC(∗,−∗). It is easy to check that HC(∗,−∗) is sound. Analogously, HC(∗,−∗)
enjoys the −∗ elimination property, stated below by means of −~.

I Lemma 5. Let ϕ and ψ in CoreTypes(X, α). There is a conjunction of core formulae
literals χ ∈ Conj(Core(X, α)) such that `HC(∗,−∗) (ϕ−~ ψ)⇔ χ.

Proof. (sketch) If either ϕ or ψ is unsatisfiable, then one can show that `HC(∗,−∗) ϕ−~ψ ⇒ ⊥.
Otherwise, ϕ−~ ψ can be shown provably equivalent to∧{

x ∼ y ⊆Lt {ϕ | ψ}
∣∣∼∈ {=, 6=}} ∧

∧
{¬alloc(x) ⊆Lt ψ} ∧

∧
{¬x↪→y ⊆Lt ψ}

∧
∧{

alloc(x)
∣∣∣∣¬alloc(x) ⊆Lt ϕ

alloc(x) ⊆Lt ψ

}
∧
∧{

x ↪→ y

∣∣∣∣¬alloc(x) ⊆Lt ϕ
x ↪→ y ⊆Lt ψ

}
∧
∧{
¬alloc(x)

∣∣ alloc(x) ⊆Lt ϕ
}

∧
∧{

size ≥ β2+1 .−β1

∣∣∣∣¬size ≥ β1 ⊆Lt ϕ
size ≥ β2 ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ x ↪→ y ⊆Lt ϕ
¬x ↪→ y ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ alloc(x) ∧ ¬x ↪→ y ⊆Lt ϕ

x ↪→ y ⊆Lt ψ

}
∧
∧{

¬size ≥ β2
.−β1

∣∣∣∣ size ≥ β1 ⊆Lt ϕ
¬size ≥ β2 ⊆Lt ψ

}
∧
∧{

⊥
∣∣∣∣ alloc(x) ⊆Lt ϕ
¬alloc(x) ⊆Lt ψ

}
where a .− b stands for a− b if a ≥ b, 0 otherwise. Again, this equivalence is reminiscent to the
one in [20, Lemma 4] proved semantically. Herein, the proof is completely syntactical. J

Again, this result for core types can be extended to arbitrary Boolean combinations of core
formulae, as we show that the distributivity of −~ over disjunctions is provable in HC(∗,−∗).
As a consequence of this development, we achieve one of the main results of the paper.

I Theorem 6. HC(∗,−∗) is sound and complete for SL(∗,−∗).

CSL 2020

19:8 Internal Calculi for Separation Logics

What’s next? To provide further evidence that our method is robust, we shall apply it to
axiomatise other separation logics, for instance by adding the list segment predicate ls [2]
(or inductive predicates in general) or first-order quantification. Of course, the set of valid
formulae must be r.e., which discards any attempt with SL(∗,−∗, ls) or with the first-order
version of SL(∗,−∗) [15, 4]. In Section 4, we introduce an extension of SL(∗, ls) and we
axiomatise it with our method, whose main ingredients are recalled below.

3.4 Ingredients of the method
The Hilbert-style axiomatisation of SL(∗,−∗) has culminated with Theorem 6 that states
the adequateness of HC(∗,−∗). Below, we would like to recapitulate the key ingredients of
the proposed method, not only to provide a vade-mecum for axiomatising other separation
logics (which we illustrate on the newly introduced logic SL(∗,∃:) in Section 4), but also
to identify the essential features and where variations are still possible.

Core formulae. To axiomatise SL(∗,−∗) internally, the core formulae have played an essential
role. The main properties of these formulae is that their Boolean combinations capture the
full logic SL(∗,−∗) [29] and all the core formulae can be expressed in SL(∗,−∗). Generally
speaking, our axiom system naturally leads to a form of constructive completeness, as
advocated in [19, 31]: the axiomatisation provides proof-theoretical means to transform any
formula into an equivalent Boolean combination of core formulae, and it contains also a part
dedicated to the derivation of valid Boolean combinations of core formulae (understood as a
syntactical fragment of SL(∗,−∗)). What is specific to each logic is the design of the set of
core formulae and in the case of SL(∗,−∗), this was already known since [29].

Big-step vs. small-step axiom schemas. HC(∗,−∗) simulates the bottom-up elimination
of separating connectives (see Lemmata 3 and 5) when the arguments are two Boolean
combinations of core formulae. To do so, HC(∗,−∗) contains axiom schemas that perform
such an elimination in multiple “small-step” derivations, e.g. by deriving a single alloc(x)
predicate from alloc(x) ∗ > (axiom (I∗12)). Alternatively, it would have been possible to
include “big-step” axiom schemas that, given the two Boolean combinations of core formulae,
derive the equivalent formula in one single derivation step. Instances of this are given in the
proof sketch of Lemma 3, and later in Section 4 (axiom (∗48)). The main difference is that
small-step axioms provide a simpler understanding of the key properties of the logic.

4 How to axiomatise internally the separation logic SL(∗, ∃:)

Though core formulae are handful for several existing separation logics, see e.g. recently [15,
32, 20], we would like to test our method with first-order quantification and reachability
predicates, standard features in specifications. However, SL(∗,−∗, ls) is already known to
be non-finitely axiomatisable, see the developments in Section 2. So, we need to downgrade
our ambitions and we suggest to consider a new logic with guarded quantification and ls
and this is SL(∗,∃:) presented below. Note that the idea of having guarded quantification
with second-order features is not new, see e.g. in [24] extensions of the guarded fragment of
first-order logic with fixed points, but herein, this is done in the framework of separation
logics and their axiomatisation. In short, we introduce the new separation logic SL(∗,∃:)
that admits the connective ∗, the list segment predicate ls (implicitly) and a guarded form
of first-order quantification involving ls. It contains the symbolic heap fragment [2, 11] but

S. Demri, E. Lozes, and A. Mansutti 19:9

y

x

Figure 2 Path quantifier.

mz(x,u)

z

mz(x,y)
mz(y,x)

x y

umz(u,x)

Figure 3 Meet points.

x

u

mz(x,y)

y

z

Figure 4 Sees predicates.

also richer logics such as SL(∗, reach+) (see e.g. [15]). As a by-product of our completeness
proof, we are able to characterise the complexity of the satisfiability problem for SL(∗,∃:).

4.1 A guarded logic with ls: SL(∗, ∃:)
Formulae of SL(∗,∃:) are defined according to the grammar below (where x, y, z ∈ VAR):

ϕ := x = y | x ↪→ y | emp | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ∃z:〈x y〉ϕ

All the syntactic ingredients are standard except the quantifier (denoted with ∃:). Intuitively
(the formal definition is provided below), ∃z:〈x y〉ϕ is a guarded form of quantification that
is intended to hold true whenever y is reachable from x in at least one step, and there is a
location ` along the minimal path between x and y so that the formula ϕ holds whenever ` is
assigned to z. Figure 2 highlights the possible assignments of z (arrows represent the heap).
Given a heap h and `1, `2 ∈ LOC, we define h[`1, `2[as the set of locations in the shortest
path from `1 to `2 (`2 possibly excluded). Formally:

h[`1, `2[def=
{
` ∈ LOC

∣∣∣∣ there are δ1 ≥ 0 and δ2 ≥ 1 such that hδ1(`1) = `,

hδ2(`) = `2 and, for every δ ∈ [1, δ1+δ2−1], hδ(`1) 6= `2

}
For example, h[`, `[= ∅ holds iff ` is not in a cycle. Otherwise, h[`, `[contains all the
locations in the cycle containing `. By definition, the minimal paths are preserved when
considering heap extensions. Then, the satisfaction relation |= is completed with

(s, h) |= ∃z:〈x y〉 ϕ def⇔ h[s(x), s(y)[6= ∅ and ∃` ∈ h[s(x), s(y)[∪ {s(y)} s.t. (s[z← `], h) |= ϕ.

We define ∀z:〈x y〉ϕ def= ¬∃z:〈x y〉¬ϕ. In a separation logic lingua admitting first-order
quantification of program variables over the set of locations LOC, and a predicate reach+(x, y)
(reachability in at least one step, as in [15]), the formula ∃z:〈x y〉ϕ is equivalent to

reach+(x, y)∧ ∃ z ϕ∧ (z = x∨ z = y∨ ((reach+(x, z)∧¬reach+(x, y)) ∗ reach+(z, y))).

Obviously, SL(∗,∃:) does not allow unrestricted first-order quantification but it can faithfully
define the reachability predicates classically studied in separation logic [15, 38]. reach+(x, y)
is definable as ∃z:〈x y〉>, and allows us to define ls(x, y) and reach(x, y) as shown in [15]:
ls(x, y) def= (x = y ∧ emp) ∨ (x 6= y ∧ reach+(x, y) ∧ ¬(¬emp ∗ reach+(x, y))), whereas
reach(x, y) def= x = y ∨ reach+(x, y). There are two features of SL(∗,∃:), we would like
to emphasize. First, it is possible to enforce a heap domain of exponential size. Indeed,
we define the formula Rn(x, y) of size linear in n, but enforcing the existence of a path of
length at least 2n between two distinct locations corresponding to x and y, respectively.
R0(x, y) def= x 6= y ∧ ∃z:〈x y〉>, whereas for n ≥ 0, Rn+1(x, y) is defined as

x6=y∧∃z:〈x y〉 ∀z′:〈x y〉 ∀z′′:〈x y〉 ((z′ = x ∧ z′′ = z) ∨ (z′ = z ∧ z′′ = y)⇒ Rn(z′, z′′)) .

Nevertheless, in Section 4.6 we show how the satisfiability and validity problems for SL(∗,∃:)
are in PSpace. Another interesting feature of SL(∗,∃:) is illustrated by its ability to state
that from two locations corresponding to program variables (say x, y), it is possible to reach a

CSL 2020

19:10 Internal Calculi for Separation Logics

different location, which in turn reaches another location corresponding to a program variable
(say z). This can be done with the formula ∃w:〈x z〉(reach+(y, w)∧

∧
v∈{x,y,z} w 6= v). Thus,

the logic is able to express that two paths meet at a specific location. This naturally leads to
the notion of meet-points, introduced next in order to define the core formulae for SL(∗,∃:).

4.2 Core formulae are back!

In order to axiomatise internally SL(∗,∃:) with our method, we need to possess a set of core
formulae that captures SL(∗,∃:). Below, we design such core formulae and establish its
appropriateness. They make intensive use of meet-point terms, a concept introduced in [15]
but that will play a crucial role herein. Informally, given a memory state (s, h), a meet-point
between s(x) and s(y) leading to s(z) is a location ` such that (I) ` reaches s(z), (II) both
locations s(x) and s(y) reach `, and (III) there is no location `′ satisfying these properties
and reachable from s(x) in strictly fewer steps. A meet-point term of the form mz(x, y),
where x, y, z ∈ VAR, is then an expression that, given a memory state (s, h), is intended to
be interpreted by a meet-point between s(x) and s(y) leading to s(z) (if it exists). Figure 3
shows some of the meet-points between x and other program variables, highlighting their
distribution in a memory state. In particular, notice how in the figure, mz(x, u) is different
from mz(u, x), which happens because of the condition (III) and as the two corresponding
locations are in a cycle. We call this type of meet-points asymmetric. We now formalise
these concepts. Given X ⊆ VAR, we write T(X) to denote the set X ∪ {mz(x, y) | x, y, z ∈ X}.
Elements of T(VAR) are called terms. Expressions mz(x, y) are syntactic constructs called
meet-point terms. Terms are denoted with t, t1, t2, . . . , when we do not need to distinguish
between variables and meet-point terms. To give a semantics to these objects, we interpret
the terms by means of the interpretation function J.Ks,h : T(VAR)→ LOC s.t. JxKs,h

def= s(x)
for x ∈ VAR, and Jmz(x, y)Ks,h is defined and takes the value ` iff there are δ1, δ2 ≥ 0 s.t.

hδ1(s(x)) = hδ2(s(y)) = ` and there is δ ≥ 0 such that hδ(`) = s(z);
for every δ′1 ∈ [0, δ1 − 1] and δ′2 ≥ 0, hδ′

1(s(x)) 6= hδ
′
2(s(y)).

One last object is needed in order to define the core formulae. Given a memory state (s, h) and
a finite set of pairs of terms P ⊆fin T(VAR)× T(VAR), we write RemP

s,h to denote the subset
of dom(h) made of the locations that are not in the path between two locations corresponding
to terms in a pair of P. Formally: RemP

s,h

def= dom(h) \
(⋃

(t1,t2)∈P h[Jt1Ks,h, Jt2Ks,h[
)
.

The core formulae are expressions of the form: t1 = t2, seesT(t1, t2)≥β+1 and remP≥β,
where t1, t2 ∈ T(VAR), T ⊆fin T(VAR), P ⊆fin T(VAR) × T(VAR) and β ∈ N. We write
seesT(t1, t2) for seesT(t1, t2)≥1. The satisfaction relation |= is extended to core formulae:

(s, h) |= t1 = t2
def⇔ Jt1Ks,h = Jt2Ks,h; (s, h) |= remP≥β

def⇔ card(RemP
s,h) ≥ β;

(s, h) |= seesT(t1, t2)≥β def⇔ there is δ ≥ β such that hδ(Jt1Ks,h) = Jt2Ks,h and for
all δ′ ∈ [1, δ − 1], hδ

′
(Jt1Ks,h) 6∈ {Jt2Ks,h} ∪ {JtKs,h | t∈T}.

As earlier in Section 3, we write Core(X, α) to denote the set of core formulae restricted
to terms from T(X), where X ⊆fin VAR and β is bounded above by α. In order to become
more familiar with these core formulae, let us consider the memory state (s, h) outlined
in Figure 4. Since both s(x) and s(y) reach s(z), Jmz(x, y)Ks,h is defined, or alternatively
(s, h) |= mz(x, y) = mz(x, y). Therefore, we have that (s, h) |= sees∅(x, mz(x, y)). We also note
that s(u) is a location in the minimal path from s(x) to Jmz(x, y)Ks,h. However, as s(u) is
distinct from these two locations, we conclude that (s, h) |= ¬sees{u}(x, mz(x, y)). Lastly,
let us take for example the sets of locations corresponding to the two paths highlighted in
yellow: h[s(x), s(u)[and h[s(y), s(z)[. The location s(u) does not belong to any of these sets.

S. Demri, E. Lozes, and A. Mansutti 19:11

As it is in dom(h), we conclude that (s, h) |= rem{(x,u),(y,z)}≥1.

Expressing core formulae in SL(∗, ∃:). A crucial point for axiomatising SL(∗,−∗) is that
every core formula is a mere abbreviation for a formula of the logic. This is the property
that leads to an internal axiomatisation. The same holds for SL(∗,∃:) as one can show
that every core formula can be defined in SL(∗,∃:) and, in the forthcoming axiomatisation,
should be considered as an abbreviation. For example, the formula sees∅(x, y)≥β can be
shown equivalent to (strict(reach+(x, y)) ∧ size ≥ β) ∗ >, where strict(ϕ) is a shortcut
for ϕ ∧ ¬(¬emp ∗ ϕ) and states that ϕ holds in the current model, say (s, h) but does not
hold in any submodel (i.e. in (s, h′) where h′ @ h). Similarly, x = mu(y, z) is equivalent to

reach(x, u)∧ (reach(y, x) ∗ reach(z, x))∧ (reach+(x, x)⇒ (reach(y, x) ∗ reach+(x, x))),

whereas mz(x, y)=mw(u, v) is ∃j:〈x z〉(mz(x, y) = j∧ j = mw(u, v)), where j 6∈ {x, y, z, u, v, w}.

I Lemma 7. Every core formula is logically equivalent to a formula of SL(∗,∃:).

4.3 Axiomatisation of the logic of core formulae
As done in Section 3, to axiomatise SL(∗,∃:) we start by extending the axiom system
for the propositional calculus in order to obtain the proof system HC dedicated to Boolean
combinations of core formulae. The axioms, presented in System 4, are divided into axioms
for equalities between terms, whose name is of the form =C

i ; axioms essentially about the
predicates sees, whose name is of the form sC

i ; and axioms essentially about the predicates
rem, whose name is of the form rC

i . In order to obtain this axiom system, the two main
difficulties (which lead to very technical formulae) are given by the distribution of meet-
points within the memory state and the axiomatisation of the predicates sees. For the
former, it is important to distinguish between symmetric and asymmetric meet-points. For
this reason, System 4 uses the formulae def(mz(x, y)) def= mz(x, y)=mz(x, y), which checks if
a meet-point is defined, sym(mz(x, y)) def= mz(x, y)=mz(y, x) for symmetric meet-points, and
asym(mz(x, y)) def= def(mz(x, y)) ∧ ¬sym(mz(x, y)) for asymmetric ones. The definition of these
formulae, as well as the ones below, is extended on a variable x ∈ VAR simply by replacement
with the meet-point mx(x, x) (the two terms are always equivalent, see the axiom (=C

1)). So,
for example def(x) is defined as def(mx(x, x)). For sees predicates, an important distinction
is given by terms corresponding to different locations in the same tree (no cycle is involved)
and terms that correspond to different locations in the same cycle. Hence, we define the
abbreviations before(t1, t2) and samecycle(t1, t2) with the following meanings:
(s, h) |= before(t1, t2) iff Jt1Ks,h 6=Jt2Ks,h and, there is a path from Jt1Ks,h to Jt2Ks,h s.t.

the only location on the path that may belong to a cycle is Jt2Ks,h.
(s, h) |= samecycle(t1, t2) iff Jt1Ks,h 6= Jt2Ks,h and there is a cycle with both Jt1Ks,h and Jt2Ks,h.
They are defined as follows for meet-points (and extended for x ∈ VAR as shown for def(x))

The formulae before(mz(x, y), mv(x, u)) and before(mz(y, x), mv(x, u)) are both defined as
sym(mz(x, y)) ∧ def(mv(x, y)) ∧ def(mv(x, u)) ∧ mz(x, y) 6= mv(x, u) ∧ mz(x, y) 6= mv(y, u);
before(mz(x, y), mw(u, v)) def=

∨
a∈{u,v} before(mz(x, y), mw(x, a)) ∧ mw(x, a) = mw(u, v);

samecycle(mz(x, y), mw(u, v)) def= mz(x, y) = mw(x, u) ∧ mw(u, v) = mz(u, x) ∧ asym(mz(x, u)).

We write t ∈ T (finite set of terms T) to denote
∨

t2∈T t=t2. Like the axiom (AC
2), the ax-

iom (=C
3) performs a substitution of every occurrence of t1 with t2. We have to be careful here:

when substituting a variable x with a meet-point mu(y, z), we only substitute the occurrences
of x that are not inside meet-point terms. For example, sees{x,mx(x,x)}(x, mx(x, x))[x←mu(y, z)]

CSL 2020

19:12 Internal Calculi for Separation Logics

is equal to sees{mu(y,z),mx(x,x)}(mu(y, z), mx(x, x)). By way of example, let us explain why all
the instances of the axiom (=C

6) are valid. Suppose (s, h) |= def(mz(x, y)) ∧ def(mu(x, y)).
Since Jmz(x, y)Ks,h is defined (say equal to `), there are δ1, δ2 ≥ 0 such that

hδ1(s(x)) = hδ2(s(y)) = ` and there is δ ≥ 0 such that hδ(`) = s(z);
for every δ′1 ∈ [0, δ1 − 1] and δ′2 ≥ 0, hδ′

1(s(x)) 6= hδ
′
2(s(y)).

Similarly, as Jmu(x, y)Ks,h is also defined (say equal to `′) , there are also γ1, γ2 ≥ 0 such that
hγ1(s(x)) = hγ2(s(y)) = `′ and there is δ′ ≥ 0 such that hδ′(`′) = s(u);
for every γ′1 ∈ [0, γ1 − 1] and γ′2 ≥ 0, hγ′

1(s(x)) 6= hγ
′
2(s(y)).

Combining the two types of inequality constraints, we can conclude that δ1 = γ1 and therefore
` = `′, i.e. (s, h) |= mz(x, y) = mu(x, y). Soundness of HC is certainly not immediate but this
can be done similarly to the above developments for the axiom (=C

6).

I Lemma 8. HC is sound.

As done in Section 3, in order to establish that HC is complete, we first show its
completeness with respect to core types, where CoreTypes(X, α) is here defined as the set of
formulae

{
ϕ ∈ Conj(Core(X, α))

∣∣∀ψ∈Core(X, α), {ψ | ¬ψ} ⊆Lt ϕ, and (ψ ∧ ¬ψ) 6⊆Lt ϕ
}
.

I Lemma 9. Let ϕ ∈ CoreTypes(X, α). We have ¬ϕ is valid iff `HC ¬ϕ. If `HC ¬ϕ is provable
then it has a proof where all derivation steps only have formulae from Bool(Core(X, α)).

Then, the proof of completeness of HC follows with the same arguments used for Theorem 2.

I Theorem 10. A Boolean combination of core formulae ϕ is valid iff `HC ϕ.

4.4 Constructive elimination of ∃:
We write HC(∃:) to denote the system HC augmented by the axioms and the inference
rule from System 5. In System 5, given an arbitrary object O (this can be a term, a set of
terms, a formula etc.), we write var(O) to denote the set of program variables occurring in O.
For instance, var(mz(x, y)) = {x, y, z}. Axioms from (∃40) to (∃42) and the introduction rule
are classical tautologies of first-order quantification, whereas the other axioms characterise
the peculiar semantics of ∃: . By way of example, let us explain why the axiom (∃45),
equal to sees∅(x, y) ∧ sees{y}(x, t1) ⇒ ∃z:〈x y〉 z = t1 (z 6∈ var({x, y, t1})) is sound.
Suppose (s, h) |= sees∅(x, y) ∧ sees{y}(x, t1). By the semantics of core formulae, we have
∅ 6= h[s(x), Jt1Ks,h[⊆ h[s(x), s(y)[and therefore Jt1Ks,h is defined. Given z 6∈ var({x, y, t1}),
we have (s[z← Jt1Ks,h], h) |= z = t1. This holds because z 6∈ var(t1) as we want to guarantee
Jt1Ks,h = Jt1Ks[z←Jt1Ks,h],h. From ∅ 6= h[s(x), Jt1Ks,h[⊆ h[s(x), s(y)[, we conclude that
h[s(x), s(y)[6= ∅ and Jt1Ks,h ∈ h[s(x), s(y)[∪ {s(y)}. Therefore, (s, h) |= ∃z:〈x y〉 z = t1.
As done in Section 3 for ∗ and −∗, given a formula ∃z:〈x y〉ϕ, where ϕ is in CoreTypes(X, α),
we can show within HC(∃:) that there is a conjunction χ from Conj(Core(X, 2α)) equivalent
to it. By the axiom (∃42), this applies when ϕ is a Boolean combination of core formulae.

I Lemma 11. Let ϕ ∈ Bool(Core(X ∪ {z}, α)) with z 6∈ X ⊇ {x, y}. There is a Boolean
combination of core formulae χ ∈ Bool(Core(X, 2α)) such that `HC(∃:) ∃z:〈x y〉ϕ⇔ χ.

4.5 Eliminating ∗ with a big-step axiom
The proof system HC(∗,∃:) for SL(∗,∃:) is defined as HC(∃:) augmented by the axioms
and the rule from System 6. Its main ingredient is given by the axiom (∗48) which, following
the description in Section 3.4, is clearly a big-step axiom. Indeed, as much as we would
like to give a set of small-step axioms as we did for SL(∗,−∗), we argue that producing

S. Demri, E. Lozes, and A. Mansutti 19:13

(System 4) HC: Axioms for Boolean combinations of core formulae

(=C
1) x = mx(x, x)

(=C
2) t1 = t2 ⇒ t2 = t1

(=C
3) ϕ ∧ t1 = t2 ⇒ ϕ[t1←t2]

(=C
4) def(mx(x, y))⇒ x = mx(x, y)

(=C
5) def(mz(x, y))⇒ def(mz(y, x))

(=C
6) def(mz(x, y)) ∧ def(mu(x, y))⇒ mz(x, y) = mu(x, y)

(=C
7) mz(x, y) = mw(u, v)⇒ def(mw(x, y))

(=C
8) def(mz(x, y)) ∧ def(mv(z, z))⇒ def(mv(x, y))

(=C
9) def(mz(x, y)) ∧ def(mv(x, u))⇒ def(mv(z, z)) ∨ def(mz(v, v))

(=C
10) def(mz(x, y)) ∧ def(mz(u, v))⇒ def(mz(x, u))

(=C
11) sym(mz(x, y)) ∧ def(mz(x, u)) ∧ mz(x, u) 6= mz(y, u)⇒ (mz(x, y) = mz(x, u) ∨ mz(x, y) = mz(y, u))

(=C
12) mz(x, y) = mz(u, v)⇒ sym(mz(x, u)) ∧ (mz(x, y) = mz(x, u) ∨ mz(x, y) = mz(x, v))

(=C
13) sym(mz(x, y)) ∧ asym(mv(x, u))⇒ mv(y, u) = mv(x, u) ∧ mv(u, y) = mv(u, x)

(=C
14) asym(mz(x, y)) ∧ asym(mv(x, u))⇒ mz(x, y) = mv(x, u)

(sC
15) t=t′ ∧ sees{t}∪T(t1, t2)⇒ sees{t,t′}∪T(t1, t2) (sC

16) seesT∪{t}(t1, t2)≥β ⇒ seesT(t1, t2)≥β

(sC
17) seesT(t1, t2)≥β ⇒ seesT∪{t1,t2}(t1, t2)≥β (sC

18) seesT(t1, t2)≥β+2⇒seesT(t1, t2)≥β+1

(sC
19) sees{t3}(t1, t2) ∧ sees{t2}(t1, t3)⇒ t2 = t3 (sC

20) seesT(t1, t2)⇒ def(t1) ∧ def(t2)

(sC
21) sees∅(t1, t1)∧¬sees{t2}(t1, t1)⇔ samecycle(t1, t2) (sC

22) before(t1, t2)⇒ sees∅(t1, t2)

(sC
23) seesT(t1, t2)≥β ∧ seesT′ (t1, t2)≥β′ ⇒ seesT∪T′ (t1, t2)≥max(β, β′)

(sC
24) seesT(t1, t2)≥β1∧ seesT(t2, t3)≥β2 ∧ t2 6∈T∧ t3∈T⇒ seesT(t1, t3)≥β1+β2 ∧¬sees{t2}(t1, t3)

(sC
25) seesT(t1, t3)≥β ∧ ¬sees{t2}(t1, t3)⇒

∨
β1+β2=max(2,β)−2

(seesT(t1, t2)≥β1+1 ∧ seesT(t2, t3)≥β2+1)

(sC
26) seesT(mz(x, y), mw(u, v))⇒ def(mw(x, y))

(sC
27) seesT(mz(x, y), mw(u, v)) ∧ asym(mw(x, u))⇒ mw(u, v) = mw(u, x)

(sC
28) seesT(mz(x, y), mw(u, v)) ∧ sym(mw(x, u)) ∧ mz(x, y) 6= mw(u, v)⇒ before(mz(x, y), mw(u, v))

(sC
29) before(t1, t2) ∧ ¬sees{t3}(t1, t2)⇒ ¬sees∅(t2, t3) ∧ before(t1, t3)

(sC
30) samecycle(t1, t2) ∧ samecycle(t2, t3) ∧ t1 6= t3 ⇒ (sees{t2}(t1, t3)⇔ ¬sees{t2}(t3, t1))

(rC
31) remP≥0

(rC
32) remP≥β + 1⇒ remP≥β

(rC
33) rem{(t1,t2)}∪P≥β ⇒ remP≥β

(rC
34) t1 = t2 ∧ rem{(t1,t3)}∪P≥β ⇒ rem{(t1,t3),(t2,t3)}∪P≥β

(rC
35) t1 = t2 ∧ rem{(t3,t1)}∪P≥β ⇒ rem{(t3,t1),(t3,t2)}∪P≥β

(rC
36) ¬sees∅(t1, t2)≥β2+1 ∧ remP≥β1 ⇒ remP∪{(t1,t2)}≥β1

.−β2

(rC
37) seesT(t1, t2) ∧ ¬sees{t3}(t1, t2) ∧ rem{(t1,t3),(t3,t2)}∪P≥β ⇒ rem{(t1,t2)}∪P≥β

(rC
38) seesT(t1, t2) ∧ ¬sees{t3}(t1, t2) ∧ rem{(t1,t2)}∪P≥β ⇒ rem{(t1,t2),(t1,t3),(t3,t2)}∪P≥β

(rC
39)
(
sees∅(t1, t2)≥β2 ∧

∧
(t3,t4)∈P(sees∅(t3, t4)⇒ sees{t3,t4}(t1, t2) ∧ sees{t1,t2}(t3, t4) ∧ t3 6=t1)

∧ remP∪{(t1,t2)}≥β1
)
⇒ remP≥β1+β2

(System 5) Axioms and inference rule for the guarded quantification ∃:

(∃40) ∃z:〈x y〉ϕ⇒ ∃u:〈x y〉(ϕ[z←u]) J[u 6∈ var(ϕ)]
(∃41) ∃z:〈x y〉(ϕ ∧ ψ)⇔ (∃z:〈x y〉ϕ) ∧ ψ J[z 6∈ var(ψ)]
(∃42) ∃z:〈x y〉(ϕ1 ∨ ϕ2)⇔ (∃z:〈x y〉ϕ1) ∨ (∃z:〈x y〉ϕ2)

∃-Intro: ϕ⇒ ψ
∃z:〈x y〉ϕ⇒ ∃z:〈x y〉ψ

(∃43) sees∅(x, y)⇒ ∃z:〈x y〉 z = x J[z 6∈ {x, y}] (∃44) ¬∃z:〈x y〉 ⊥
(∃45) sees∅(x, y) ∧ sees{y}(x, t1)⇒ ∃z:〈x y〉 z = t1 J[z 6∈ var({x, y, t1})]

(∃46) (x=t1 ∨ seesT′ (x, t1)) ∧ seesT(t1, t2)≥β1+β2 ∧ (t2=y ∨ seesT′′ (t2, y)) ∧ (y=t1 ⇒ x=y)
⇒ ∃z:〈x y〉(seesT(t1, z) ∼1 β1 ∧ seesT(z, t2) ∼2 β2 ∧ z 6∈ {t1, t2})

J
[
{x, y, t1, t2} ⊆ T,T′,T′′, z 6∈ var(T), β1, β2 ∈ N+, ≥ ∈ {∼1,∼2} ⊆ {≥,=}

]
(∃47) ¬∃z:〈x y〉((x 6= z ∧ y 6= z ∧ sees{x,z,y}(x, y)) ∨ ¬sees∅(x, y)) J[z 6∈ {x, y}]

(System 6) Axioms and inference rule for the separating conjunction

(∗48) Γsms(S1) ∗ Γsms(S2)⇔
∨

S s.t. +S(S1,S2,S)Γsms(S)

J[S1,S2 resp. over (X, α1) and (X, α2)]
∗-Intro: ϕ⇒ χ

ϕ ∗ ψ ⇒ χ ∗ ψ

(∗49) (ϕ ∨ ψ) ∗ χ⇒ (ϕ ∗ χ) ∨ (ψ ∗ χ) (∗50) (ϕ ∗ ψ)⇔ (ψ ∗ ϕ) (∗51) (⊥ ∗ ϕ)⇔ ⊥

CSL 2020

19:14 Internal Calculi for Separation Logics

such an axiomatisation for SL(∗,∃:) is unfeasible. In the proof system for SL(∗,−∗), we
found out that given two core types ϕ and ψ, ϕ ∗ ψ is equivalent to a conjunction of core
formulae literals (see the proof sketch of Lemma 3). Similar results hold for the separating
implication −∗ (Lemma 5) and the ∃: quantifier. This property of being equivalent to a
simple conjunction of core formulae literals facilitates the design of small-step axioms. This
is not the case for ∗ within SL(∗,∃:): given two core types ϕ and ψ, the formula ϕ ∗ ψ is
equivalent to a non-trivial disjunction of possibly exponentially many conjunctions. Because
of this, small-step axioms are hard to obtain and some technical developments are needed in
order to produce an adequate axiom system. These developments are centered around the
notions of symbolic memory states and characteristic formulae. A symbolic memory state is
an abstraction on the memory state (s, h) that is guided by the definition of core formulae,
essentially highlighting the properties of (s, h) that are expressible through these formulae,
while removing the ones that are not expressible. Given X ⊆fin VAR and α ∈ N+, a symbolic
memory states S over (X, α) is defined as a finite structure (D, f, r) such that

D is a partition of a subset of T(X), encoding (dis)equalities. We introduce the partial
function [.]D : T(X)→ D such that given t ∈ T(X) returns T ∈ D and t ∈ T, if it exists;
f : D→ D× [1, α] is a partial function encoding paths between terms and their length;
r ∈ [0, α], encoding the number of memory cells (up to α) not in paths between terms.

We denote with SMSX
α the set of these structures. The abstraction SymbX

α(s, h) of a memory
state (s, h) is defined as the symbolic memory state (D, f, r) over (X, α) such that

D
def= {{t1 ∈ T(X) | (s, h) |= t1 = t2} | t2 ∈ T(X)};

f(T) = (T′, β) def⇔ there are t1∈T and t2∈T′ such that (s, h) |= seesT(X)(t1, t2)≥β and
if β < α then (s, h) |= ¬seesT(X)(t1, t2)≥β+1;

r = β
def⇔ (s, h) |= remT(X)×T(X)≥β and if β < α then (s, h) |= ¬remT(X)×T(X)≥β+1.

Thus, a symbolic memory state (D, f, r) over (X, α) simply stores the truth values for equalities,
sees and rem predicates with respect to a memory state. Its semantics is best given through
the characteristic formula Γsms(D, f, r) defined below (sets understood as conjunctions):{

remT(X)×T(X)∼r
∣∣ if r 6=α then (∼ is =) else (∼ is ≥)

} ∧ {t1 6= t2
∣∣ [t1]D or [t2]D undefined, or [t1]D 6= [t2]D

}
∧{t1 = t2

∣∣ [t1]D = [t2]D defined
} ∧ {¬seesT(X)(t1, t2)

∣∣ [t1]D undefined or ∀β ∈ [1, α] : f([t1]D) 6= ([t2]D, β)
}

∧{seesT(X)(t1, t2)=β
∣∣ f([t1]D) = ([t2]D, β) and β < α

} ∧ {seesT(X)(t1, t2)≥β
∣∣ f([t1]D) = ([t2]D, β) and β = α

}
From the definitions of Γsms(S) and SymbX

α(s, h), we can easily prove the following result.

I Lemma 12. For every (s, h) and every S ∈ SMSX
α, (s, h) |= Γsms(S) iff S = SymbX

α(s, h).

Thanks to this lemma, it is easy to see that every satisfiable characteristic formula Γsms(S) of a
symbolic memory state S over (X, α) is equivalent to exactly one core type in CoreTypes(X, α).
Indeed, by definition of core types, the conjunction ϕ ∧ ψ of two core types ϕ and ψ that
are not syntactically equivalent up to associativity and commutativity of ∧ is unsatisfiable.
Hence, by Lemma 12, if a core type ϕ ∈ CoreTypes(X, α) is satisfied by a memory state (s, h),
it must be equivalent to Γsms(SymbX

α(s, h)). By Theorem 10 this equivalence is provable in HC.
The fundamental reason for taking symbolic memory states over memory states is that,

given X and α, there are finitely many symbolic memory states in SMSX
α. This leads to the

definition of the axiom (∗48), which given two characteristic formulae ϕ and ψ computes a
finite disjunction of characteristic formulae that is equivalent to ϕ ∗ ψ. This disjunction is
defined over a new composition operator +S on symbolic memory states that mimicks the
disjoint union + on memory states. More precisely, the following property shall be satisfied.

For all (s, h) and all S1,S2 resp. over (X, α1) and (X, α2), +S(S1,S2, SymbX
α1+α2

(s, h))
iff there are h1 and h2 such that h1 + h2 = h, S1 = SymbX

α1
(s, h1) and S2 = SymbX

α2
(s, h2),

S. Demri, E. Lozes, and A. Mansutti 19:15

where +S ⊆
∑

X,α1,α2
SMSX

α1
×SMSX

α2
×SMSX

α1+α2
, and S1, S2 have satisfiable characteristic

formulae. Defining +S is clearly challenging. Unlike the disjoint union of memory states, +S

is not functional on its first two components. For instance, let S = ({x, mx(x, x)}, ∅, 1) and
let us determine for which S′, we have +S(S,S,S′):
1. As S is the abstraction of the memory states (s, {`1 7→ `2}) and (s, {`2 7→ `1)}) where

s(x) = `1 6= `2, the abstraction of (s, {`1 7→ `2, `2 7→ `1}) must be a solution for S′. More
precisely, this abstraction is (T, {T 7→ (T, 2)}, 0) where T = {x, mx(x, x)}.

2. S is however also the abstraction of (s, {`1 7→ `2}) and (s, {`3 7→ `4)}) such that
s(x) 6∈ {`1, `3}. Then, the abstraction ({x, mx(x, x)}, ∅, 2) must also be a solution for S′.

The main challenge for defining +S is the composition of the two “garbage”: memory cells
that are abstracted with r1 and r2 in SymbX1

α1
(s, h1) and SymbX2

α2
(s, h2) may generate new paths

between program variables in h1 + h2. This possibility was depicted in the first case above.
The definition of +S can be found in [17] and is too long to be presented herein. Roughly
speaking, for ((D, f1, r1), (D, f2, r2), (D, f, r)) being in +S, one needs to witness two graph
homomorphisms from the graphs (D1, f1) and (D2, f2) to (D, f), together with the existence
of a partition that guarantees that paths that do not belong to the homomorphisms can be
generated using the memory cells from the garbage (abstracted by r1 and r2).

Together with the other axioms in System 6, which essentially allows to rewrite every
formula into a disjunction of ϕ∗ψ where ϕ and ψ are characteristic formulae, the axiom (∗48)
allows us to eliminate ∗, as done in Lemma 3 for SL(∗,−∗).

I Lemma 13. Let ϕ ∈ Bool(Core(X, α1)) and ψ ∈ Bool(Core(X, α2)). There is a Boolean
combination of core formulae χ ∈ Bool(Core(X, α1 + α2)) such that `HC(∗,∃:) ϕ ∗ ψ ⇔ χ.

The adequacy of HC(∗,∃:) then stems from Theorem 10 and Lemmata 11 and 13.

I Theorem 14. HC(∗,∃:) is sound and complete for SL(∗,∃:).

4.6 A PSpace upper bound for checking SL(∗, ∃:) satisfiability
In this short section, we explain why the satisfiability problem for SL(∗,∃:) is in PSpace.
Thememory size of a formula ϕ, written |ϕ|m, is defined inductively as: |x = y|m

def= |emp|m =1,
|x ↪→ y|m

def= 2, |∃z:〈x y〉ϕ|m
def= 2× |ϕ|m, |¬ψ|m

def= |ψ|m, |ψ1 ∗ ψ2|m
def= |ψ1|m + |ψ2|m and

|ψ1 ∧ ψ2|m
def= max(|ψ1|m , |ψ2|m). Given ϕ with tree height δ, |ϕ|m ≤ 2δ+1. Intuitively, |ϕ|m

provides an upper bound on the path length between terms and on the size of the garbage
on models for ϕ (above |ϕ|m, ϕ cannot see the difference). As a consequence of the proofs for
the elimination of the connectives ∃: and ∗ in the calculus, for each ϕ in SL(∗,∃:), there
is a Boolean combination of core formulae from Core(var(ϕ), |ϕ|m) logically equivalent to ϕ.

SL(∗,∃:) may require small memory states whose heap has an exponential amount of
memory cells, as shown in Section 4.1 with the formula Rn(x, y). So, to establish a PSpace
bound, we cannot rely on an algorithm that guesses a polynomial-size memory state and
performs model-checking on it without further refinements. Nevertheless, polynomial-size
symbolic memory states are able to abstract a garbage of exponential size or a path between
terms of exponential length by encoding these quantities in binary, which leads to PSpace.

I Theorem 15. The satisfiability problem for SL(∗,∃:) is PSpace-complete.

PSpace-hardness is from [10]. To establish PSpace-easiness, there is a nondeterministic
polynomial-space algorithm that guesses a satisfiable S ∈ SMSvar(ϕ)

|ϕ|m
and that performs a

symbolic model-checking on S against ϕ. This works fine as ∗ and ∃: have symbolic
counterparts that can be decided in polynomial space.

CSL 2020

19:16 Internal Calculi for Separation Logics

5 Conclusion

We presented a method to axiomatise internally separation logics based on the axiomatisation
of Boolean combinations of core formulae. We designed the first proof system for SL(∗,−∗)
that is completely internal and highlights the essential ingredients of the heaplet semantics.
To further illustrate our method, we provided an internal Hilbert-style axiomatisation for the
new separation logic SL(∗,∃:). It contains the “list quantifier” ∃z:〈x y〉 that, we believe,
is of interest for its own sake as it allows to quantify over elements of a list. The completeness
proof, following our general pattern, still reveals to be very complex as not only we had
to invent the adequate family of core formulae but their axiomatisation was challenging.
As far as we know, this is the first axiomatisation of a separation logic having ls and a
guarded form of quantification. Moreover, through a small model property derived from
its proof system, we proved that SL(∗,∃:) has a PSpace-complete satisfiability problem.
Obviously, our proof systems for separation logics are of theoretical interest, for instance to
grasp the essential features of the logics. It is open whether it can help for designing decision
procedures, e.g. to feed provers with axiom instances to speed-up the proof search.

References

1 C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization, interpolation and
complexity. The Journal of Symbolic Logic, 66(3):977–1010, 2001.

2 J. Berdine, C. Calcagno, and P.W. O’Hearn. A decidable fragment of separation logic. In
FST&TCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2004.

3 M. Bozga, R. Iosif, and S. Perarnau. Quantitative Separation Logic and Programs with Lists.
Journal of Automated Reasoning, 45(2):131–156, 2010.

4 R. Brochenin, S. Demri, and E. Lozes. On the Almighty Wand. Information and Computation,
211:106–137, 2012.

5 J. Brotherston. Bunched Logics Displayed. Studia Logica, 100(6):1223–1254, 2012. doi:
10.1007/s11225-012-9449-0.

6 J. Brotherston and M. Kanovich. Undecidability of Propositional Separation Logic and Its
Neighbours. Journal of the Association for Computing Machinery, 61(2), 2014.

7 J. Brotherston and M. Kanovich. On the Complexity of Pointer Arithmetic in Separation
Logic. In APLAS’18, volume 11275 of LNCS, pages 329–349. Springer, 2018.

8 J. Brotherston and J. Villard. Parametric completeness for separation theories. In POPL’14,
pages 453–464. ACM, 2014.

9 C. Calcagno, Ph. Gardner, and M. Hague. From separation logic to first-order logic. In
FoSSaCS’05, volume 3441 of LNCS, pages 395–409. Springer, 2005.

10 C. Calcagno, P.W. O’Hearn, and H. Yang. Computability and Complexity Results for a
Spatial Assertion Language for Data Structures. In FST&TCS’01, volume 2245 of LNCS,
pages 108–119. Springer, 2001.

11 B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable Reasoning in
a Fragment of Separation Logic. In CONCUR’11, volume 6901 of LNCS, pages 235–249.
Springer, 2011.

12 S. Demri and M. Deters. Separation Logics and Modalities: A Survey. Journal of Applied
Non-Classical Logics, 25(1):50–99, 2015.

13 S. Demri, R. Fervari, and A. Mansutti. Axiomatising Logics with Separating Conjunction and
Modalities. In JELIA’19, volume 11468 of LNAI, pages 692–708. Springer, 2019.

14 S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Mery. Separation Logic with One
Quantified Variable. Theory of Computing Systems, 61:371–461, 2017.

https://doi.org/10.1007/s11225-012-9449-0
https://doi.org/10.1007/s11225-012-9449-0

S. Demri, E. Lozes, and A. Mansutti 19:17

15 S. Demri, É. Lozes, and A. Mansutti. The Effects of Adding Reachability Predicates in
Propositional Separation Logic. In FoSSaCS, volume 10803 of LNCS, pages 476–493. Springer,
2018.

16 S. Demri, E. Lozes, and A. Mansutti. The Effects of Adding Reachability Predicates in
Propositional Separation Logic. arXiv:1810.05410, October 2018. 44 pages. Long version
of [15].

17 S. Demri, E. Lozes, and A. Mansutti. Internal Calculi for Separation logics. arXiv:1910.05016,
October 2019.

18 S. Docherty and D. Pym. Modular Tableaux Calculi for Separation Theories. In FoSSaCS’18,
volume 10803 of LNCS, pages 441–458. Springer, 2018.

19 A. Doumane. Constructive completeness for the linear-time µ-calculus. In LICS’17, pages
1–12. IEEE Computer Society, 2017.

20 M. Echenim, R. Iosif, and N. Peltier. The Bernays-Schönfinkel-Ramsey Class of Separation
Logic on Arbitrary Domains. In FoSSaCS’19, volume 11425 of LNCS, pages 242–259. Springer,
2019.

21 D. Galmiche and D. Larchey-Wending. Expressivity properties of Boolean BI through relational
models. In FST&TCS’06, volume 4337 of LNCS, pages 358–369. Springer, 2006.

22 D. Galmiche and D. Méry. Tableaux and Resource Graphs for Separation Logic. Journal of
Logic and Computation, 20(1):189–231, 2010.

23 V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of Alternating-
time temporal logic. Theoretical Computer Science, 353(1-3):93–117, 2006.

24 E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In LICS’99, pages 45–54, 1999.
25 Z. Hou, R. Clouston, R. Goré, and A. Tiu. Modular labelled sequent calculi for abstract

separation logics. ACM Transactions on Computational Logic, 19(2):13:1–13:35, 2018.
26 Z. Hou and A. Tiu. Completeness for a First-Order Abstract Separation Logic. In APLAS’16,

volume 10017 of LNCS, pages 444–463. Springer, 2016.
27 S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In

POPL’01, pages 14–26. ACM, 2001.
28 R. Kaivola. Axiomatising linear time mu-calculus. In CONCUR’95, volume 962 of LNCS,

pages 423–437. Springer, 1995.
29 E. Lozes. Expressivité des Logiques Spatiales. PhD thesis, ENS Lyon, 2004.
30 E. Lozes. Separation Logic preserves the expressive power of classical logic. In SPACE’04,

2004.
31 M. Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic, 169(9):928–969,

2018.
32 A. Mansutti. Extending Propositional Separation Logic for Robustness Properties. In

FST&TCS’18, volume 122 of LIPIcs, pages 42:1–42:23. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

33 P.W. O’Hearn. A Primer on Separation Logic. In Software Safety and Security: Tools for
Analysis and Verification, volume 33 of NATO Science for Peace and Security Series, pages
286–318, 2012.

34 P.W. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

35 R. Piskac, Th. Wies, and D. Zufferey. Automating Separation Logic using SMT. In CAV’13,
volume 8044 of LNCS, pages 773–789. Springer, 2013.

36 D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of
Applied Logic. Kluwer Academic Publishers, 2002.

37 D. Pym, J. Spring, and P.W. O’Hearn. Why Separation Logic Works. Philosophy & Technology,
pages 1–34, 2018.

38 J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS’02, pages
55–74. IEEE, 2002.

CSL 2020

19:18 Internal Calculi for Separation Logics

39 I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus.
Information and Computation, 157(1–2):142–182, 2000.

40 Y. Wang and Q. Cao. On axiomatizations of public announcement logic. Synthese,
190(Supplement-1):103–134, 2013.

41 H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois, Urbana-
Champaign, 2001.

	Introduction
	Preliminaries
	Hilbert-style proof system for SL(*,-*)
	A simple calculus for the core formulae
	A constructive elimination of * to axiomatise SL(*,alloc)
	A constructive elimination of -* to axiomatise SL(*,-*)
	Ingredients of the method

	How to axiomatise internally the separation logic SL(*,exists:rightarrow)
	A guarded logic with 1s: SL(*,exists:rightarrow)
	Core formulae are back!
	Axiomatisation of the logic of core formulae
	Constructive elimination of exists:rightsquigarrow
	Eliminating * with a big-step axiom
	A PSpace upper bound for checking SL(*,exists:rightarrow) satisfiability

	Conclusion

