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Abstract
We discuss a recent convergence of notions of symmetric computation arising in the theory of linear
programming, in logic and in circuit complexity. This leads us to a coherent and robust definition of
problems that are efficiently and symmetrically solvable. This is at once a rich class of problems
and one for which we have methods for proving lower bounds. In this paper, we take a tour through
results which show applications of these methods in a number of areas.
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1 Introduction

It has been said that computer science is the science of abstraction. Aho and Ullman
in their seminal book Foundations of Computer Science [1] call it the “mechanization of
abstraction”. To model a part of the world computationally is to forget (or “abstract away”)
the features that are unnecessary to the computational task at hand and keep only the
essential elements in a suitable data model. For example, a widely used data model in
the world of algorithm design is that of graphs, which captures a collection of entities and
their pairwise relationships. The relationships could reflect compatibility of kidney donors
with patients needing transplants or they could pair riders with drivers in a car-pooling
system. Once the details are abstracted away, we can use exactly the same graph matching
algorithm to find a suitable matching in either system. Yet, in the field of computational
complexity, which studies the resources required by algorithms and aims to elucidate why
some computational problems are inherently intractable, algorithms are usually modelled
as Turing machines, a low-level model working on strings of bits. This mismatch between
the levels of abstraction at which algorithms are formulated, and at which complexity is
analyzed is tied to persistent obstacles in complexity theory.

An important feature that distinguishes an abstract data structure, such as a graph, from
its concrete representation, such as a pointer list, are its symmetries. In a graph, two vertices
may appear identical and therefore interchangeable while their concrete representations are
distinguished by some feature (such as actual pointer values) that is hidden by the abstraction.
Algorithms that work at the higher level of abstraction must respect the symmetries in the
abstract data. We use the term symmetric computation to describe computation at the
abstract level that respects the inherent symmetries of the data.

The mismatch between algorithms working on high-level data structures and complexity
defined in terms of low-level machines is one of the central concerns of the field of descript-
ive complexity, which seeks to formulate a theory of complexity at the level of high-level
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2:2 Symmetric Computation

descriptions. Usually this takes the form of characterizing complexity in terms of definability
in a logic. The paradigmatic result being Fagin’s theorem [22] that the class of problems
definable in existential second-order logic is exactly the class NP. The classic question of
descriptive complexity, of whether there is a logic that exactly characterizes polynomial-time
computation, first posed by Chandra and Harel [13] can be understood as asking whether it
is possible to describe efficient algorithms, whenever they exist, at the level of abstraction of
the data?

In the quest for a logic for P (see [24]), fixed-point logic with counting (FPC) emerged
as a logic of reference. Even though Cai et al. [12] demonstrated three decades ago that
the logic does not express all graph properties in P, the logic has been the focus of much
research in recent years. This is because it has proved remarkably expressive and at the
same time we have powerful techniques for proving inexpressibility results for it. Work in
recent years has shown that FPC can be seen as capturing a natural class of symmetric
algorithms inside P, with equivalent formulations in arising in circuit complexity and the
theory of linear programming. Thus, the methods for proving inexpressibility results give
techniques for showing lower bounds for such algorithms. In this article, I give a brief survey
of such results and methods. The survey does not include any proofs, and not much by way
of definitions. I attempt to motivate and state the results, placing them in a wider narrative
and provide pointers to the original sources.

2 Counting Width

Put simply, FPC is an extension of first-order logic by means of a mechanism for iteration
(usually taken to be an inflationary fixed-point construct) and a mechanism for counting.
The latter allows us to form numerical terms to denote the cardinality of any definable set.
The logic has been extensively studied in the context of descriptive complexity theory. A
good account of the logic and work on it in the 1990s can be found in Otto’s monograph [34].
It was often said at the time that, though Cai, Fürer and Immerman had shown that FPC
cannot express all polynomial-time properties of graphs, all natural properties in P are in
FPC. We now know this is not true. In particular, the study of constraint satisfaction
problems has turned up a host of natural problems that are in P, but not in FPC. Indeed,
the constraint satisfaction problems that are in FPC are exactly the ones of bounded width
(see [5, 10]).

At the same time, research on FPC since the turn of the century has shown the remarkably
rich expressive power of the logic. An important strand of this has been the line of work that
shows that FPC captures all of P on classes of sparse graphs, or more generally structures
with sparse connectivity. This culminates in the result of Grohe [25] which shows that FPC
captures P on any class of graphs which excludes some fixed graph as a minor. Grohe’s
book [25] which gives the proof of this result also provides an excellent, up-to-date definition
of and introduction to the logic FPC in its early chapters. For another overview of the logic
and its expressive power, see the survey [15].

The key method for proving that some class C of structures is not definable in FPC is
based on the expressive power of first-order logic with counting. To be precise, let Ck denote
the fragment of first-order logic where we restrict formulas to have no more than k variables
altogether, but we are allowed to use them compactly by allowing counting quantifiers. That
is, we can write ∃ixθ to denote that there are at least i elements x for which θ(x) holds. It
is known that for any formula ϕ of FPC, there is a fixed value k such that, restricted to
structures with at most n elements, ϕ is equivalent to a formula ϕn of Ck. We write ≡k to
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denote the relation of elementary equivalence for Ck: two structures A and B are said to be
Ck-equivalent, written A ≡k B, if every sentence of Ck true in one structure is also true in
the other. Thus, to show that a class C is not definable in FPC, it suffices to show that C is
not closed under ≡k for any fixed k. This motivates the following definition [17].

I Definition 1. For any isomorphism-closed class of finite structures C, let Cn denote the
collection of structures in C with at most n elements. We write νC : N→ N for the function
such that νC(n) is the least k for which Cn is closed under ≡k. We call νC the counting width
of C.

If C is definable in FPC, νC is bounded by a constant. On the other hand, there are
classes of structures not definable in FPC, indeed problems of very high complexity, which
still have bounded counting width. We can understand the property of having bounded
counting width as a non-uniform version of FPC definability. For any C, the class Cn is a
finite collection of structures (up to isomorphism) which can be defined by a single sentence
ϕn of CνC(n). This sequence of sentences is uniform when it is generated by a single sentence
of FPC. It is also not hard to see that we never need more than n variables to express ϕn,
since any structure on n elements can be described completely, up to isomorphism, by a
sentence of first-order logic with at most n variables. Thus, νC(n) ≤ n for any C whatsoever.

Cai, Fürer and Immerman [12] gave the first construction of a class of graphs of unbounded
counting width, which we call the CFI construction for short. Indeed, the showed that there
is a class C with νC = Ω(n). Such lower bounds were then established for a number of specific
problems, either by a construction inspired by that of Cai et al. (for instance in [14] or [5])
or by means of reductions (see [5] and [9]). The reductions involved are those definable in a
logic such as FPC or fragments of it, such as first-order logic or Datalog. In general, if we
can show that a class C is reducible to a class D by means of such a reduction I, and I takes
structures of size n to structures of size nd, then νC = O(νdD). In particular, if we can bound
the size of I(A) by a linear function in the size of A, we prove that νD = Ω(νC). As was
pointed out in [17], this implies in particular that for any non-uniform constraint satisfaction
problem, the counting width is either O(1) or Ω(n), providing a sharp definability dichotomy.

3 Symmetric Circuits

The claim that definability in FPC is a natural formalization of the notion of solvability by
means of a symmetric polynomial-time algorithm rests on the characterization of FPC as the
class of problems decided by polynomially-uniform symmetric circuits with threshold gates.

Circuits models have been studied in the context of computational complexity because
they seemed a promising route to proving lower bounds. A circuit is really an unfolding of
the behaviour of an algorithm for a fixed size of input. The hope is that the difficulty of the
computation that it represents can then be studied purely combinatorially in the structure
of the circuit. Formally, we have a decision problem that is a language L ⊆ {0, 1}∗. Such
a language can be described by a family of Boolean functions: (fn)n∈ω : {0, 1}n → {0, 1},
and each fn can be represented by a circuit Cn which is a directed acyclic graph where we
think of the vertices as gates suitably labeled by Boolean operators for the internal gates
and by inputs x1, . . . , xn for the gates without incoming edges. The operators we allow on
the internal gates are the basis. The standard Boolean basis (∧,∨,¬) can sometimes be
extended, for instance, with threshold or majority gates.

From our perspective, circuits provide a very low-level model of computation. When we
describe decision problems in a high-level descriptive language, such as FPC, the descriptions
can, of course, be translated to circuits. The circuits we get as a result of such a translation
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2:4 Symmetric Computation

have natural symmetry properties. In particular, imagine a circuit C that takes as input
an n-vertex (directed) graph. That is to say, the inputs to C are n2 variables labelled
xij(1 ≤ i, j,≤ n) representing the potential edges in the graph. Now, if C decides a property
of graphs that is invariant under isomorphisms, the output of the circuit is unchanged if we
permute the vertices of the graph. Given an n-vertex graph G, there are many ways that it
can be mapped onto the inputs of the circuit C, one for each bijection between V (G) – the
vertices of G – and {1, . . . , n}. So the output is unchanged under any permutation π ∈ Sn
acting on the inputs by the action xij 7→ xπ(i)π(j). For circuits obtained from logic, this
invariance property is witnessed by a syntactic invariance condition. That is, any permutation
π ∈ Sn can be extended to an automorphism of C which takes each input xij to xπ(i)π(j).
We call circuits with this syntactic invariance condition symmetric. The definition extends
naturally to relational signatures beyond just graphs. For a relational signature τ , we say
that a circuit is τ -symmetric if it accepts at its inputs the encoding of a τ -structure and
every permutation of the elements of the structure extends to an automorphism of the circuit.
This notion has been studied previously in [21] under the name of generic circuits and in [33]
where they were called explicitly order-invariant circuits.

We establish in [2] that the expressive power of FPC is exactly captured by families
of polynomially-uniform symmetric circuits in a basis that includes the standard Boolean
functions along with either threshold or majority gates. This shows that FPC is, in fact, a
natural circuit complexity class and helps to establish the robustness of the class. Indeed, we
can, besides threshold or majority gates, also allow gates for arbitrary Boolean functions that
are fully symmetric (this is observed in [20], where circuit models are considered using gates
which are not fully symmetric). Here a function f : {0, 1}n → {0, 1} is fully symmetric if it
is unchanged by any permutation of its inputs. Equivalently, f(x) = f(y) whenever x and y
are two binary strings with the same number of 1s. Hence, FPC consists of exactly those
properties that are decidable by symmetric circuits using any fully symmetric functions in
the basis, justifying its claim to be a natural symmetric fragment of P.

One consequence of the circuit characterization of FPC is that we can see the CFI
construction as giving a circuit lower bound. Indeed, like most circuit lower bounds, this one
also works for the non-uniform circuit families. We can prove that any family of polynomial-
size τ -symmetric circuits (even a non-uniform one) accepts a class of structures of bounded
counting width. The relationship can be stated more generally, not just for polynomial size
circuits.

I Theorem 2 ([2]). For any ε > 0 and any family (Cn)n∈ω of symmetric circuits of size
s where s(n) ≤ 2n1−ε , the class of structures accepted by the circuits has counting width
O( log s

logn ).

We can, indeed, prove this relationship directly, without going through the translation
into logic. The usual method of showing that A ≡k B for a pair of structures A and B is
by means of the k-pebble bijection game of Hella [28]. This game can be used directly as a
lower bound method for symmetric circuits (see [19] for an exposition). The key idea is that
we prove in [2] that in a circuit of size s (within the bounds of Theorem 2), the stabilizer
group of each gate has a small support, of size O( log s

logn ). We can then show that a symmetric
circuit with support of size k cannot distinguish two structures A and B on which Duplicator
has a winning strategy in the 2k-pebble bijection game.
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4 Linear Programming

Linear programming is a widely used approach to solving combinatorial optimization problems.
It provides a powerful framework within which optimization problems can be represented,
as well as efficient methods for solving the resulting programs. In particular, it is known
since the work of [29] on the ellipsoid method that there are polynomial-time algorithms that
solve linear programs. In [3], we show that this can be expressed in FPC. That is to say,
we consider a natural representation of linear programs as relational structures, where the
variables and the constrants are unordered sets, and we show that there is an FPC sentence
that defines those linear programs that are feasible and an FPC interpretation that, in any
such program, defines a representation of the optimum value of a linear objective function.

We also consider linear programs that are not given explicitly, but rather in terms of
a separation oracle. The classic example is that of the linear program that encodes the
maximum matching problem. Given a weighted graph G, the linear program that encodes
its matching problem is exponential in the size of G. However, the ellipsoid method can be
used in such cases as long as we have a means of determining, for any vector x, whether
it is in the polytope P described by the constraint matrix and, if it is not, a hyperplane
that separates x from the polytope. This is known as a separation oracle for P . It is shown
in [3] that, as long as a separation oracle for a polytope P is itself definable in FPC, then
the corresponding linear programming optimization problem can also be defined in FPC. By
showing that a separation for the matching problem is definable in FPC we were able to
prove the following, settling a long-standing open question [11].

I Theorem 3 ([3]). The size of a maximum matching in a graph is definable in FPC.

Symmetry of linear programs is a property that has been studied in the literature in
its own right. Yannakakis [38] initiated the study of symmetric extended formulations.
Again, let us consider graphs over the vertex set [n]. We can consider these as functions
G : X → {0, 1} where X = {xij | i, j ∈ [n]} is the set of potential edges. Equivalently, we
can think of graph as a 0-1 valued vector in the Euclidean space RX .

Consider, in particular, P ⊆ {0, 1}X which is the collection of simple cycles of length n.
The convex hull of P , conv(P ) ⊆ RX is known as the travelling salesman polytope or the
Hamiltonian cycle polytope. Solving the travelling salesman problem amounts to optimizing a
linear function over P , and determining whether a graph G : X → {0, 1} has a Hamiltonian
cycle is the same as determining whether there is a point in P consistent with x ≤ G(x)
for all x ∈ X. Thus, if we could represent conv(P ) by a set of linear constraints of size
polynomial in n, we could solve these NP-hard problems in polynomial time. Yannakakis
proved that conv(P ) does not have a polynomial-size symmetric extended formulation. That
is to say, we cannot obtain it as the projection of a polytope Q ⊆ RX×Y using additional
variables Y , as long as Q is symmetric. The notion of symmetry is the natural one. Any
permutation of [n] has a natural action on X and hence on RX . The symmetry requirement
says that for any such permutation π ∈ Sn we can find a permutation σ of Y such that
for xy ∈ RX×Y , xy ∈ Q if, and only if, π(x)σ(y) ∈ Q. While the lower bound proof of
Yannakakis relies heavily on the notion of symmetry, it turns out that this is not essential
to the result. A long line of work originating with the result of Yannakakis culminated
in a proof by Rothvoß [35] that shows that the Hamiltonian cycle polytope does not have
polynomial-size extended formulations, symmetric or not. It is worth remarking that these
lower bound results on the size of the Hamiltonian cycle polytope are obtained by means of
reductions from the matching polytope. That is, even though the problem of determining the
maximum matching in a graph is known to be in polynomial-time, there is no polynomial-size
extended formulation of it that yields a linear program of polynomial-size.

CSL 2020
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We now consider a different way of representing the set Cn ⊆ {0, 1}X as a linear program.
We say that a polytope P ⊆ RX recognizes Cn if Cn ⊆ P and {0, 1}n \ Cn is disjoint from P .
Now, a class C of structures that is decidable in polynomial time necessarily is recognized by
a polynomial-size family of extended polytopes. That is, a P recognizing it can always be
obtained as the projection of some Q ⊆ RX×Y of polynomial size. This was already shown
by Yannakakis [38] and really amounts to establishing that linear programming is complete
for P under (say) logarithmic-space reductions. But, here we have dropped the symmetry
requirement. What classes of structures are recognized by symmetric families of extended
polytopes? It turns out that they are exactly the classes of bounded counting width [6].

I Theorem 4 ([6]). For any ε > 0 and any family (Qn)n∈ω ⊆ RX×Y of symmetric linear
programs of size at most s where s(n) ≤ 2n1−ε , the class of structures accepted has counting
width O( log s

logn ).

This implies, in particular, that there is a family of symmetric linear programs that recognizes
the class of graphs with a perfect matching in this sense, but there is still provably not one
for the class of graphs with a Hamiltonian cycle, in contrast with the results of Yannakakis.

5 Lift-and-Project Hierarchies

In Section 4, we consider extended formulations of linear programs. Such extended for-
mulations are widely used in applications of linear programming (and its extensions) to
combinatorial optimization problems. Typically, we can formulate a combinatorial optimiza-
tion problem as a {0, 1}-integer linear programming problem. The solutions to this form a
set S ⊆ {0, 1}X . The linear programming relaxation takes this formulation and relaxes the
condition that a variable x must take values in the set {0, 1} and replaces it with 0 ≤ x ≤ 1.
This defines a polytope P ⊆ RX which includes all the points in S. Extended formulations are
obtained in an attempt to add additional constraints (including additional variables) so that
the projection onto RX gives us a better approximation of the convex hull of S. There are
several systematic ways of constructing extended formulations that give infinite hierarchies
interpolating between P and conv(S). There are hierarchies, not only of linear programs
but also of semidefinite programs. They include the Sherali-Adams, Lovasz-Schrijver and
Lasserre hierarchies (see [31]).

These hierarchies have an interesting connection with symmetric computation as we have
defined it, and especially with the notion of counting width. The first connection, established
independently by Atserias and Maneva [7] and Malkin [32] is in connection with the Sherali-
Adams relaxations of the graph isomorphism integer program. In essence, they show that
the equivalence relation on graphs that is induced by the kth Sherali-Adams relaxation of
this program is sandwiched between the equivalences ≡k and ≡k+1. One consequence is that
the CFI construction can be used to show that no finite level of the hierarchy gives us graph
isomorphism exactly. See [26] for an alternative account, which also constructs a family of
relaxations that correspond exactly to ≡k. Taking this further, Atserias and Ochremiak [8]
show that relaxations of graph isomorphism based on semi-definite programming cannot do
better. In particular, they extend the FPC simulation of the ellipsoid method from [3] to
show that the class of feasible semidefinite programs itself has bounded counting width. Note
that feasibility of semidefinite programs is not known to be in P, so we would not expect it
to be in FPC, so the non-uniform definition of counting width is essential here.

A further connection between lift-and-project hierarchies and counting width is established
in the context of constraint optimization problems. These form a very general class of
combinatorial optimization problems to which the method of systematic extended formulations
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can be applied. Constraint satisfaction problems (CSP) are usually defined as decision
problems where we are given a collection V of variables, a domain D of values and constraints.
A constraint is a pair (x, R), where x ∈ V k is a tuple of variables and R ⊆ Dk a relation
on D. An assignment h : V → D satisfies the constraint (x, R) if h(x) ∈ R. The problem is
to decide if all the constraints can be simultaneously satisfied. If we fix the domain D in
advance as well as the set Γ of relations on D that can appear in the constraints, we can
see D = (D,Γ) as a finite relational structure. The instance is then a structure A in the
same vocabulary and we define CSP(D) to be the class of structures A such that there is
a homomorphism from A to D. This view of CSP as essentially homomorphism problems
is due to Feder and Vardi [23]. As noted above, we have a known dichotomy with respect
to the counting width of CSP(D): either νCSP(D) = O(1) or νCSP(D) = Ω(n). Interestingly,
this lifts to an interesting dichotomy for constraint optimization problems formulated as
finite-valued CSP.

A finite-valued constraint satisfaction problem (VCSP) is given by a finite set D and a
collection Γ of functions f : Dk → Q+. An instance of the problem is a set V of variables
along with a set C of constraints, each of which is a triple c = (x, f, w) with f ∈ Γ, x ∈ V k
where k is the arity of f and w ∈ Q+. The algorithmic problem is to find an assignment
h : V → D of values to the variables which minimizes

∑
c∈C wcfc(hxc). As usual, we can

obtain a decision problem from the optimization problem by including with an instance an
explicit threshold t. Thus, we think of VCSP(D,Γ) as the decision problem of determining,
given (V,C, t) whether there is an assignment h : V → D such that

∑
c∈C wcfc(hxc) ≤ t.

The following dichotomy is established in [16]:

I Theorem 5. For every D and Γ, either νVCSP(D,Γ) = O(1) or νVCSP(D,Γ) = Ω(n).

Moreover, the cases of unbounded counting width co-incide exactly with the cases known to
be NP-hard, while the bounded width ones are all definable in FPC.

The lower bound on counting width established in Theorem 5 has interesting consequences
for lift-and-project hierarchies. We can define a basic linear programming (BLP) formulation
for any VCSP(D,Γ) and show that it can be constructed by an FPC interpretation from
an instance of VCSP(D,Γ). Moreover, each fixed level of the standard lift-and-project
hierarchies, such as the Lasserre hierarchy, over this program is also given by an FPC
interpretation. Using the fact that solvability of semidefinite programs has bounded counting
width, we can then establish that if νVCSP(D,Γ) = Ω(n), then any bounded number of levels of
the Lasserre hierarchy cannot yield a solution to VCSP(D,Γ). These are strong algorithmic
lower bounds obtained by means of the methods of counting width. In particular, the
following dichotomy is established in [17].

I Theorem 6. If for some (D,Γ), t : N → N is a function such that any instance (V,C)
of VCSP(D,Γ) is solved exacly by considering the t(n)th Lasserre lift of the basic linear
programming relaxation of (V,C), then t(n) = Ω(νVCSP(D,Γ)(n)).

6 Hardness of Approximation

In the 1990s, the field of computational complexity was transformed by the PCP theorem [4],
and the proofs of hardness of approximation that flowed from it. This showed that, assuming
P 6= NP, not only is it impossible to have efficient algorithms to solve various NP-hard
optimization problems exactly, it is also impossible to have efficient algorithms that solve
the problem approximately. In the years since then, this has led to the devleopment of a
thriving field studying the hardness of approximation.

CSL 2020
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For many specific NP-hard optimization problems we know an exact ratio α such that
there is a polynomial-time algorithm that solves the problem α-approximately, but no such
algorithm guaranteeing a better ratio unless P = NP. For instance, consider the problem
Max3SAT, where we are given a Boolean formula ϕ in 3CNF and we are required to
determine the maximum number m of clauses of ϕ that can be simultaneously satisfied. A
trivial algorithm can appoximate the value of m up to a ratio of 7

8 , but unless P = NP,
no polynomial-time algorithm can guarantee an approximation ration of 7

8 + ε for any
ε [27]. There are other problems where there is a gap between the best known achievable
approximation ratio and the best known lower bound. For instance, it is known that the size
of a vertex cover in a graph can be approximated up to a factor of 2 by a polynommial-time
alogrithm. On the other hand, we know that unless P = NP, there is no algorithm that will
achieve an approximation ratio better than

√
2 [30]. It is conjectured that the lower bound

can be improved to 2− ε, but this remains open.
In [9] we were able to reproduce these lower bounds as unconditional inexpressibility

results for FPC. That is, we can prove that there is no term of FPC that can define, given a
Boolean formula ϕ in 3CNF, a number that is guaranteed to be within 7

8 + ε of the maximum
number of clauses satisfiable in ϕ. Similarly, we cannot define in FPC a number guaranteed
to be within a factor of

√
2 of the size of the minimum vertex cover in a graph. In short, even

if P = NP we can still say that there is no polynomial-time symmetric algorithm that achieves
such approximation ratios. On the other hand, the algorithms that achieve the upper bounds
for these problems are easily seen to be in FPC, i.e. they can be implemented symmetrically.
Thus, one can see the hardness of approximation results as telling us something fundamental
about the limits of symmetric computation, regardless of whether or not P = NP.

The PCP theorem established the hardness of approximating Max3SAT by giving a
reduction from the satisfiability decision problem to itself. It gives a way of translating (in
polynomial time) a Boolean formula ϕ into a formula ϕ′ such that if ϕ is satisfiable than so
is ϕ′ and if ϕ is not satisfiable than in ϕ′, no more than a 1− ε fraction of the clauses can be
simultaneously satisfied (for some explicit constant ε). The value of ε can then be amplified
to be arbitrarily close to 1

8 by further reductions as in [27]. To prove the undefinability of
the approximation in FPC, what we show is that the 3CNF formulas that are satisfiable
and those that are at most 7

8 + ε-satisfiable cannot be separated by any class of bounded
counting width.

I Theorem 7 ([9]). For any ε > 0, if C is a class of 3CNF formulas that contains all
satisfiable formulas and does not contain any that are not ( 7

8 + ε)-satisfiable, then νC = Ω(n).

Theorem 7 is established by means of a reduction from the problem Max3XOR of
maximizing the number of satisfiable clauses in a 3XOR formula. A gap similar to that in
Theorem 7 is first established for 3XOR.

I Theorem 8 ([9]). For any ε > 0, if C is a class of 3XOR formulas that contains all
satisfiable formulas and does not contain any that are not ( 1

2 + ε)-satisfiable, then νC = Ω(n).

This is proved by means a variant of the CFI construction. In previous versions of the CFI
construction, the aim is to construct a pair of structures A and B which are ≡k-equivalent,
but differ minimally with respect to some property of interest (such as satisfiability, or graph
3-colourability). The equivalence with respect to ≡k is, of course, proved using Spoiler-
Duplicator games. In the present instance, the aim is to show indistinguishability of a pair
of structures which differ significantly on some numeric parameter (such as the number of
clauses that can be satisfied, or the size of the smallest vertex cover). This poses significant
new challenges.
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While the work reported in [9] establishes counting-width lower bounds for approximation
of Max3SAT, Max3XOR and Vertex Cover, there is a substantial body of work on
hardness of approximation that we have only begun to explore from the point of view of
definability. It would be interesting to establish bounds for problems like MaxCut and
Max2SAT where there are gaps between the best known upper and lower bounds for
approximability in the context of polynomial-time algorithms. What would be even more
exciting would be to show a bound for symmetric algorithms that was stronger than one
known for general polynomial-time alogorithms.

7 Arithmetic Circuits

As a final topic, we turn to another model of computation, that of arithmetic circuits. These
are intended to model computation at a level where arithmetic operations such as addition
and multiplication are of unit cost (see [37]).

Formally, an arithmetic circuit over a field K and a set of variables X is a directed acyclic
graph where every input (i.e. node of indegree 0) is labelled by an element of X or an element
of K, and every internal node is labelled either + (a sum gate) or × (a product gate). A
distinguished output gate can then be seen as computing a polynommial in the ring K[X].
In the field of arithmetic circuit complexity, we are concerned with determining for various
polynomials, what is the size of the smallest circuit that computes it.

Two polynomials (strictly speaking they are families of polynomials) that are much
studied in the field are the determinant and the permanent. They are both defined on a
set of variables X representing the entries of an n× n matrix, so X = {xij | 1 ≤ i, j ≤ n}.
The determinant is defined as det(X) =

∑
π∈Sn(−1)sgn(π) ∏

i xiπ(i), where sgn(π) is 0 if
π is an even permutation and 1 if it is an odd permutation. The permanent is defined
similarly, but without the sign. So, perm(X) =

∑
π∈Sn

∏
i xiπ(i). Written this way, the

size of the expressions defining the polynomials is exponential in n, due to the sum over n!
permutations. Nonetheless, it is known that there are polynomial-size circuits for computing
the determinant, and these can be easily obtained from polynomial time algorithms for
computing it. On the other hand, it is conjectured that there are no polynomial-size circuits
for computing the permanent. Indeed, this is equivalent to Valiant’s conjecture that VP is
different to VNP, the analogue of the P 6= NP conjecture for arithmetic circuits [36].

It is clear from their definitions that both det(X) and perm(X) are invariant under
permutations of the variables X which are induced by the natural action of Sn. In other
words, for any permutation π ∈ Sn, if we permute X by mapping xij to xπ(i)π(j), it does not
change either det(X) or perm(X). So, it makes sense to ask whether these polynomials can
be computed by polynomial-size symmetric circuits in the sense of Section 3. The definition
of such circuits is an easy extension of the idea presented in that section: an arithmetic
circuit on the variable set X = {xij | 1 ≤ i, j ≤ n} is symmetric if every permutation π ∈ Sn
acting on the indices extends to an automorphism of the circuit. In recent work [18], we
have been able to show that det(X) can, indeed, be computed by polynomial-size symmetric
circuits, and perm(X) provably cannot. The upper bound for the determinant is obtained
by showing that known fast parallel algorithms for computing the determinant can be done
symmetrically. Note that the standard algorithm based on Gaussian elimination cannot be
carried out symmetrically in polynomial time. This is known from the counting width lower
bounds on solvability of systems of linear equations.

For the lower bound on computing the permanent, we rely on another CFI-like construction.
To be precise, we show that we can construct for each k, a pair of bipartite graphs G and H
such that G ≡k H but G and H have different numbers of perfect matchings. This is then
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related to arithmetic circuits by means of a translation. If we had a polynomial-size arithmetic
circuit for computing perm(X), we could get a polynomial-size circuit with Boolean inputs
which computes the number of perfect matchings in a bipartite graph. But, for such circuits,
we can show that the output must be invariant under ≡k for some constant k.

One interesting aspect of this proof is the role of perfect matchings in a graph. We know
that the decision problem of determining whether or not a graph has a perfect matching
has bounded counting width. For bipartite graphs, a construction of Blass, Gurevich and
Shelah [11] shows that it has width 2, and the result of Anderson et al. [3] shows that even
for general graphs, it is constant. Nevertheless, it turns out that the number of perfect
matchings is not a ≡k-invariant for any k, even for bipartite graphs.

8 Conclusion

The notion of symmetry in computation arises naturally when we consider algorithms
described at a high-level of abstraction and how they are translated to low-level models. The
tension between preserving symmetry and efficient implementation rests to some extent on
the fact that we cannot efficiently detect symmetries, e.g. we do not know how to efficiently
determine if two graphs are isomorphic. What is remarkable is that a number of distinct
notions of symmetry, arising in different fields, such as database theory, combinatorial
optimization and circuit complexity converge on a common core. At the heart of the theory
that emerges from this core is a graded approximation of isomorphism – the equivalence
relations ≡Ck – which has itself been widely studied from many independent directions. This
leads to a coherent and robust notion of efficient symmetric computation. On the one hand
it is a remarkably powerful model and on the other hand, we have methods for proving lower
bounds for it. There seems to be a wealth of possible areas of application for it.
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