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Abstract
In this paper we study the class EqP of automatic equivalence structures of the form E = (D, E)
where the domain D is a regular language of polynomial growth and E is an equivalence relation on
D. Our goal is to investigate the following two foundational problems (in the theory of automatic
structures) aimed for the class EqP . The first is to find algebraic characterizations of structures
from EqP , and the second is to investigate the isomorphism problem for the class EqP . We provide
full solutions to these two problems. First, we produce a characterization of structures from EqP

through multivariate polynomials. Second, we present two contrasting results. On the one hand, we
prove that the isomorphism problem for structures from the class EqP is undecidable. On the other
hand, we prove that the isomorphism problem is decidable for structures from EqP with domains of
quadratic growth.
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1 Introduction

Automatic structures are relational structures A = (D,R1, . . . , Rk) where the domain D is a
regular language and every relation Ri ⊆ Dri is recognized by a finite automaton with ri
many synchronous heads [3, 8]. They constitute a robust class of finitely presented structures
with good algorithmic and often algebraic properties; in particular, the model checking
problem for first-order logic (and some of its extensions such as (FO +∃∞)–logic) is decidable
over automatic structures [3, 7, 11]. However, going beyond first-order logic, problems quickly
become undecidable over automatic structures, e.g. the reachability problem is undecidable
for automatic structures.

An important problem in the theory of automatic structures is the isomorphism problem.
The problem asks to design an algorithm that given two automatic structures decides if the
structures are isomorphic. Blumensath and Grädel proved that the isomorphism problem
is undecidable [3]. Furthermore, it turns out that the isomorphism problem for automatic
structures is complete for the first level of the analytical hierarchy Σ1

1 [9]. In addition, Nies
[15] proved that the problem remains Σ1

1-complete for the class of undirected graphs and
partial orders, and Kuske, Liu and Lohrey [4] showed that the problem is Σ1

1-complete
for even automatic linear orders. In contrast, the isomorphism problem is decidable for
automatic ordinals [10] and Boolean algebras [9]. These decidability results follow from full
characterization results for automatic ordinals and Boolean algebras [10, 9]. Interestingly,
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21:2 Automatic Equivalence Structures of Polynomial Growth

full characterizations of isomorphism types do not immediately imply decidability of the
isomorphism problem for automatic structures. For instance, Thomas and Oliver [16] proved
that automata presented finitely generated groups are virtually abelian. However, it is still
unknown if the isomorphism problem for this class of automatic groups is decidable.

The class of equivalence structures, these are structures of the form (D,E) where E
is an equivalence relation on D, are among the simplest algebraic structures (in terms of
descriptions of the their isomorphism types). The isomorphism type of each such structure
(D,E) is fully characterized by the function f : N+ ∪ {∞} → N ∪ {∞} defined as follows:

f(n) = the number of equivalence classes of size n (1)

This description immediately implies that the isomorphism problem for automatic equivalence
structures is a Π0

1-predicate. It had been a long-standing open question if the isomorphism
problem for automatic equivalence structures is decidable. Kuske, Liu and Lohrey [4]
proved that the isomorphism problem over automatic equivalence structures is Π0

1-complete,
and hence undecidable. It is worth to mention the following simple observation from [4].
There is an algorithm that, given two automatic isomorphic equivalence structures, builds
a computable isomorphism between them. This is in spite the fact that the isomorphism
problem for automatic equivalence relations is undecidable.

In light of the (undecidability) results above, the following question arises. Find classes
of automatic structures for which the isomorphism problem is decidable. One approach to
address the question is to put algebraic restrictions on the class of automatic structures. For
instance, one can consider the classes of automatic torsion free abelian groups and ask if
the isomorphism problem for this class of structures is decidable. The second approach is to
consider classes of automatic structures whose domains belong to some robust class of regular
languages. For instance, in [2, 18, 13] automatic structures with unary domains are studied; it
is proved the isomorphism problem is decidable for unary automatic linear orders, equivalence
structures, and trees. Although, we still do not know if the isomorphism problem for unary
automatic structures is decidable. Bárány [1] initiated the study of automatic structures
with domains of polynomial growth. He provided examples of universal structures in this
class and proved that the isomorphism problem in this class of structures is undecidable. The
third way to address the problem is to combine the above two approaches by restricting both
the class of structures and the class of regular domains. This is exactly what we do in this
paper. We focus on automatic equivalence structures of the form (D,E) where D is a regular
language of polynomial growth and E is an equivalence relation on D. We denote this class
of automatic structures by EqP . The choice of this class is partly motivated by the facts
mentioned above: (1) The isomorphism types of equivalence structures have full descriptions,
and (2) the isomorphism problem for automatic equivalence structures is undecidable.

In this paper we thus address two foundational problems for the class EqP . The first is
to find algebraic characterizations of structures from EqP , and the second is to investigate
the isomorphism problem for the class EqP . We fully solve these two problems. First, we
produce a characterization of automatic equivalence structures from EqP in the language
of multivariate polynomials. Second, we present two contrasting results. On the one hand,
we prove that the isomorphism problem for automatic structures from the class EqP is
undecidable. On the other hand, we prove that the isomorphism problem is decidable for
structures from EqP with domains bounded by a quadratic growth.
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2 Summary of results

Let N = {0, 1, 2, . . . } and N+ = {1, 2, . . . } be the sets of nonnegative and positive integers.
Polynomials f ∈ N[x1, . . . , xk] are viewed as functions f : Nk → N. The number k is also
denoted by var(f); the degree of g is denoted by deg(f).

An equivalence structure E = (D,E) consists of a domain D and an equivalence relation
E on D. We denote by [x] = {y ∈ D | (x, y) ∈ E} the equivalence class of x ∈ D. As
described in (1), the isomorphism type of E can be described by specifying the number of
equivalence classes of every finite or infinite size. Since we will only deal with countable
domains, there is only one infinite cardinality. We defer the formal definition of automatic
structures to Section 3.

Let D be a regular language. Its growth is the function grD that for each n computes
the number of strings of length n that belong to D. We say that the language D has a
polynomial growth if its growth function grD is bounded by a polynomial in n. We denote
by EqP the class of all automatic equivalence structures (D,E) such that D is a regular
language of polynomial growth. Here is a simple yet an important example of a structure
from EqP :

I Example 1. Consider the equivalence structure E = (D,E) defined as follows: The domain
is D = 0∗1∗2∗3∗ and the equivalence relation E consists of pairs (u, v) from the domain
such that (u, v) ∈ E if and only if |u|0 + |u|1 = |v|0 + |v|1 and |u|2 + |u|3 = |v|2 + |v|3. Here,
|w|σ denotes the number of times σ appears in w. It is easy to see that the equivalence
structure E is automatic. A set of representatives is a subset R ⊆ D containing exactly one
element from each equivalence class. An example of a regular set of representatives of E
is the language 0∗2∗. Note that the class [0t02t2 ] has size (t0 + 1)(t2 + 1). One could say
that the polynomial g(t0, t2) = (t0 + 1)(t2 + 1) defines E up to isomorphism: for each tuple
(t0, t2) ∈ N2 it contains a class of size g(t0, t2).

This example suggests us to give the following definition (construction):

I Definition 2. For a function g : Nk → N, the equivalence structure E(g) is defined (up
to isomorphism) as follows. The number of classes of size s ∈ N+ in E(g) is given by the
cardinality |{t̄ ∈ Nk | g(t̄) = s}|. Furthermore E(g) has no infinite classes.

Note that E(g) can have infinitely many classes of a certain size s. For instance, if
g(t0, t1) = t0 is the polynomial in two variables t0, t1, then for all s ∈ N+ there are infinitely
many classes of size s in E(g). However, all classes in E(g) are finite. We remark that tuples
which are mapped to 0 are irrelevant for the definition of E(g). Our characterization theorem
for equivalence structures from the class EqP is the following:

I Theorem 3. Let E be an equivalence structure and k ∈ N. Then the following statements
are equivalent:
1. E is isomorphic to an automatic equivalence structure (D,E) where D has growth O(nk).
2. E is a finite disjoint union of equivalence structures E(g1), . . . ,E(gm) where each gi is

a polynomial with natural coefficients and var(gi) + deg(gi) ≤ k + 1 and a number of
infinite classes (which must be finitely many if k = 0).

Furthermore, this correspondence is effective.

The decomposition into equivalence structures E(gi) defined by polynomials gi is obtained
by applying a result from Woods [22] who characterized counting functions of Presburger
definable relations. The bound on the degree and the number of variables is obtained by a
growth argument.

CSL 2020



21:4 Automatic Equivalence Structures of Polynomial Growth

The characterization theorem provides us with two contrasting results. The first result is
undecidability of the isomorphism problem for the class EqP .

I Theorem 4. There exists a number k ≥ 0 such that it is Π0
1-complete to decide whether

two automatic equivalence structures of growth O(nk) are isomorphic.

The proof of Theorem 4 follows the ideas of the undecidability proof of [4], which uses
the MRDP-theorem [14]. The second result is decidability of the isomorphism problem for
structures from EqP of quadratic growth:

I Theorem 5. It is decidable whether two given automatic equivalence structures of growth
O(n2) are isomorphic.

The proof idea of Theorem 5 is to reduce it to equality of multisets defined by quadratic
polynomials, which can be decided with the help of the theory of quadratic Diophantine
equations. The outline of the paper is as follows. After giving the necessary definitions in
Section 3 we prove the characterization theorem (Theorem 3) in Section 4. In Section 5 we
prove the undecidability result (Theorem 4) and in Section 6 we prove Theorem 5.

3 Preliminaries

We presuppose basic definitions in regular languages and first-order logic. Let us recall
the definition of automatic structures. The convolution of k words v1, . . . , vk where vi =
ai,1 · · · ai,ni

is the word (a1,1, . . . , ak,1) · · · (a1,m, . . . , ak,m) of length m = max{n1, . . . , nk}
over the alphabet Σk

� = (Σ ∪ {�})k where ai,j = � for all nj < i ≤ m and 1 ≤ j ≤ k. It
is denoted by v1 ⊗ v2 ⊗ · · · ⊗ vk. A relation R ⊆ Dk over a language D is automatic if
⊗Ri = {v1⊗· · ·⊗vk | (v1, . . . , vk) ∈ R} is regular. A relational structure A = (D,R1, . . . , Rm)
is automatic if the domain D is a regular language and each relation Ri automatic. Given
an automatic structure A = (D,R1, . . . , Rm) and a first-order formula ϕ(x̄) with infinity
quantifiers ∃∞, one can compute an automaton recognizing ⊗{v̄ | A |= ϕ(v̄)}, see [8, 3].
Here a formula of the form ∃∞xϕ(x, ȳ) states that there are infinitely many elements x
satisfying ϕ(x, ȳ). In particular, if ϕ(x) is such a formula then the restriction of A to
{v ∈ D | A |= ϕ(v)} is also automatic.

The growth function of a language L is the function n 7→ |{w ∈ L | |w| = n}|. It is known
that a regular language has growth O(nk) if and only if it can be written as a finite union
of languages defined by regular expressions of the form x0y

∗
0 · · ·x`y∗`x`+1 where 0 ≤ ` ≤ k,

see [21]. Furthermore, we can compute such regular expressions such that the union is disjoint
and that each expression is unambiguous, i.e. the function (i0, . . . , i`) 7→ x0y

i0
0 · · ·x`y

i`
` x`+1

is injective, cf. [21, Proof of Lemma 3].

Semilinear sets and Presburger arithmetic. A set S ⊆ Nk is semilinear if it is a finite
union of linear sets

L = v̄0 + 〈v̄1, . . . , v̄n〉 = {v̄0 +
n∑
i=1

λiv̄i | λ1, . . . , λn ∈ N}.

A linear set is fundamental if the period vectors v̄1, . . . , v̄n are linearly independent in
Rk. It is known that every semilinear set is a finite disjoint union of fundamental linear sets
[6] and that such a representation can be computed effectively. In the one-dimensional case
this means that every semilinear set S ⊆ N is a finite disjoint union of singleton sets and
arithmetic progressions {a+ bn | n ∈ N} with a, b ∈ N, b 6= 0.
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An important theorem which connects context-free languages and semilinear sets is
Parikh’s theorem. For an ordered alphabet Σ = {a1, . . . , ak} the Parikh mapping Φ: Σ∗ → Nk
is defined by Φ(w) = (|w|a1 , . . . , |w|ak

). Parikh’s theorem states that for every context-free
language L ⊆ Σ∗ the Parikh image Φ(L) = {Φ(w) | w ∈ L} is effectively semilinear [17].
Recall that Presburger arithmetic is the first-order logic over the structure (N,+, 0,≤). It is
known that a relation R ⊆ Nk is definable by a Presburger formula ϕ(x1, . . . , xk) if and only
if R is semilinear, and this correspondence is effective [5].

Counting functions. Given a formula ϕ(s̄, t̄) of Presburger arithmetic, we will in our
arguments employ the counting function c(t̄) = |{s̄ | ϕ(s̄, t̄)}| where we assume that this
quantity is finite. For example, given the formula ϕ(s, t1, t2) = ∃x(s = x+x∧ t1 ≤ s∧s ≤ t2)
the function c(t1, t2) = |{s | ϕ(s, t1, t2)}| counts the number of even numbers s between t1
and t2.

We will also use quasi-polynomials. A quasi-polynomial is a function g : Nk → Q such
that there is a k-dimensional lattice Λ ⊆ Zk (that is, Λ is a finite index subgroup of
Zk) and polynomials qλ+Λ(t̄) such that g(t̄) = qλ+Λ(t̄) for all t̄ ∈ λ + Λ, where λ + Λ
belongs to the quotient set Zk/Λ. Notice that each coset λ + Λ ∈ Zk/Λ is semilinear. A
piecewise quasi-polynomial is a function g : Nk → Q such that there exist a finite partition⋃
i(Pi ∩Nk) = Nk with rational polyhedra Pi and quasi-polynomials gi such that g(t̄) = gi(t̄)

for all t̄ ∈ Pi ∩ Nk. Recall that a rational polyhedron is the finite intersection of half-spaces
{(x1, . . . , xk) ∈ Rk |

∑k
i=1 aixi ≤ b} where the coefficients a1, . . . , ak and the right hand

side b are integers. If P ⊆ Rk is a rational polyhedron then P ∩ Nk is clearly effectively
Presburger-definable and hence effectively semilinear.

We will need the following two theorems:

I Theorem 6 ([22]). For every Presburger formula ϕ(s̄, t̄) the function c(t̄) = |{s̄ | ϕ(s̄, t̄)}| is
piecewise quasi-polynomial. Furthermore, the representation of c can be effectively computed.

For example the counting function c(t1, t2) from above which counts the number of
even numbers between t1 and t2 can be seen to be piecewise quasi-polynomial: Choose the
polyhedron P = {(x1, x2) ∈ R2 | x1 ≤ x2} and the lattice Λ = 2Z× 2Z. Then c(t1, t2) = 0
for all (t1, t2) ∈ N2 \ P and

c(t1, t2) =


t2−t1

2 + 1, for (t1, t2) ∈ P ∩ Λ,
t2−t1+1

2 , for (t1, t2) ∈ P ∩ (((1, 0) + Λ) ∪ ((0, 1) + Λ)),
t2−t1

2 , for (t1, t2) ∈ P ∩ ((1, 1) + Λ).

Since every semilinear set is a disjoint union of fundamental linear sets for every counting
function c of a Presburger formula there exists a finite partition Nk =

⋃
i Li and polynomials

gi such that each Li is a fundamental linear set and the counting function c coincides with
gi on Li. Furthermore, this representation is effectively computable. Theorem 6 can be
strengthened for the special case where the tuple s̄ is a single variable:

I Theorem 7 ([20]). For every Presburger formula ϕ(y, z̄) there exists a formula ψ(x, z̄)
which states that x is the number of elements y such that ϕ(y, z̄) holds.

Multisets. A multiset over a set A is a function M : A → N∞ where N∞ = N ∪ {∞}.
The number M(a) is the multiplicity of a in M . The support of M is the set supp(M) =
{a ∈ A | M(a) > 0}. We call M finite if its support is finite and every multiplicity is
finite. If f : A → B is a function and X ⊆ A, then we define f(X) to be the multiset

CSL 2020



21:6 Automatic Equivalence Structures of Polynomial Growth

over B with f(X)(b) = |f−1({b}) ∩ X|. Instead of f(A) we also write Rg(f), which is
the range of f . The union and difference of two multisets M1,M2 : A → N∞ is defined
by (M1 ]M2)(a) = M1(a) + M2(a) and (M1 \M2)(a) = max(M1(a) −M2(a), 0) where
n−∞ = 0 for all n ∈ N∞. We define M1 ⊆ M2 iff M1(a) ≤ M2(a) for all a ∈ A. Given a
multiset M over A and a subset S ⊆ A, we define M � S as (M � S)(a) = M(a) if a ∈ S and
(M � S)(a) = 0 otherwise.

4 Characterization: Proof of Theorem 3

Our proof consists of several lemmas. To prove the implication (2)→ (1), we first observe
that the class of automatic equivalence structures with polynomially bounded growth is
closed under disjoint union.

I Lemma 8. Let E1 = (D1, E1) and E2 = (D2, E2) be two automatic equivalence structures.
Then there exists an automatic equivalence structure E = (D,E) isomorphic to the disjoint
union of E1 and E2. If D1 and D2 have growth O(nk) then also D has growth O(nk).

Proof. Say D1, D2 ⊆ Σ∗ and let #1,#2 /∈ Σ be fresh symbols. The disjoint union E1 ∪E2 is
isomorphic to (D,E) where D = #1D1 ∪#2D2 and E =

⋃
i∈{1,2}{(#iu,#iv) | (u, v) ∈ Ei}.

For n ≥ 1 we have |D ∩ Σn| = |D1 ∩ Σn−1|+ |D2 ∩ Σn−1| ≤ O(nk). J

To complete the proof of the implication (2) → (1), it suffices to consider equivalence
structures of the form E(g) and equivalence structures where all classes are infinite. If E
consists of n ∈ N infinite classes, then E is isomorphic to (0∗, E) where two words 0i and
0j are equivalent iff i and j are congruent mod n. If E consists of infinitely many infinite
classes then E is isomorphic to (0∗1∗, E) where two words are equivalent iff the number of
0’s is equal.

I Lemma 9. Given a non-zero polynomial g ∈ N[t1, . . . , tk] with degree d one can compute
an automatic equivalence structure (D,E) isomorphic to E(g) where the growth of D is
O(nk+d−1).

Proof. Kuske, Lohrey, Liu [4] construct a finite automaton A = (Q,Σ, I,∆, F ) over the
alphabet Σ = {1, . . . , k} such that the number of accepting runs of A on 1t1 · · · ktk is
g(t1, . . . , tk) for all t1, . . . , tk ∈ N. A run in A can be described as a sequence of transitions

(q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ ∆∗.

Let D ⊆ ∆∗ be the set of all accepting runs of A, which is a regular language, and let two
runs be E-equivalent iff they are runs on the same word. Notice that E is automatic and
(D,E) is isomorphic to E(g). The number of accepting runs of A on words of length n ∈ N
is bounded by∑

t1+···+tk=n
g(t1, . . . , tk) ≤ O(nk−1) · g(n, . . . , n) ≤ O(nk+d−1),

which concludes the proof. J

With respect to Lemma 8, note that the class EqP is closed under the product operation
(although this fact is not used in our arguments). Namely, let E1 = (D1, E1) and E2 = (D2, E2)
be two structures from EqP . Then the equivalence structure E1 · E2 = (D1 ×D2;E1 · E2),
where ((x, y), (x′, y′)) ∈ E1 · E2 iff (x, x′) ∈ E1 and (y, y′) ∈ E2, belong to EqP .
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In the rest of the section, we prove the implication (1)→ (2). We consider an automatic
equivalence structure E = (D,E) and show that it can be decomposed as stated in Theorem 3.
We will start with some preprocessing. First one can define the set of elements in finite
E-classes by the formula ϕfin(x) = ¬∃∞y Exy. Hence we can assume that all classes are
finite.

I Lemma 10. If D ⊆ 0∗ then E contains only finitely many infinite classes.

Proof. We call a set C ⊆ 0∗ eventually d-periodic (d ∈ N) if there exists a number t ∈ N
such that for all i ≥ t we have 0i ∈ C iff 0i+d ∈ C. Let A be a deterministic finite automaton
(DFA) for ⊗E with transition function δ. We claim that there are numbers t ≥ 0 and d ≥ 1
such that δ(q, (0, �)t) = δ(q, (0, �)t+d) for all states q in A. Clearly, for every state q there
are numbers tq ≥ 0 and dq ≥ 1 such that δ(q, (0, �)tq ) = δ(q, (0, �)tq+dq ). Then it suffices to
take the maximum over all tq and the product of all dq over all states q.

Let C be an equivalence class and let 0i ∈ C be the shortest word. By the property
above we have (0i, 0j) ∈ E iff (0i, 0j+d) ∈ E for all j ≥ i+ t, i.e. C is eventually d-periodic.
Any d+ 1 infinite eventually d-periodic sets cannot be pairwise disjoint, which proves the
claim. J

If D has growth O(nk), then we can assume that D ⊆ 0∗ · · · k∗ as stated in the next
lemma.

I Lemma 11 ([1]). If A = (D,R1, . . . , Rm) is an automatic structure where D has growth
O(nk) then there exists an automatic structure A′ = (D′, R′1, . . . , R′m) which is isomorphic
to A and D′ ⊆ 0∗1∗ · · · k∗.

In the following assume that D ⊆ 0∗ · · · k∗ and that every E-class is finite. Let R ⊆ D
be the set of minimal elements from the equivalence classes with respect to the length-
lexicographical order. A standard pumping argument shows that there exists a constant
b ∈ N such that the length difference between any two equivalent elements is bounded by b.

I Lemma 12. There exists b ∈ N such that (u, v) ∈ E implies ||u| − |v|| ≤ b.

Proof. Let b the number of states in an automaton A for ⊗E. Assume that |v| > |u|+ b

(the other case is symmetric). The word u ⊗ v is accepted by A and has a suffix of the
form �b+1 ⊗ w for some suffix w of v. In this suffix A visits some state twice, and hence a
nonempty infix of �b+1 ⊗ w can be pumped, yielding infinitely many equivalent elements to
u. This contradicts the assumption that all classes are finite. J

I Lemma 13. There is a Presburger formula ϕ(t0, . . . , tk, s0, . . . , sk) stating that r =
0t0 · · · ktk ∈ R, v = 0s0 · · · ksk ∈ D and (r, v) ∈ E.

Proof. Since E ∩R×D is an automatic relation the set L = ⊗(E ∩R×D) is by definition
a regular language over the alphabet Γ = {0, . . . , k, �}2. Notice that the restriction of the
Parikh mapping Φ to L is injective since the letters in words of L are naturally ordered. By
Parikh’s theorem Φ(L) is effectively semilinear and hence effectively definable by Presburger
formula. This allows to construct a formula ϕ stating that there exists a vector x ∈ Φ(L)
indexed by pairs in Γ such that∑

j∈{0,...,k,�} x(i,j) = ti for all 0 ≤ i ≤ k∑
i∈{0,...,k,�} x(i,j) = sj for all 0 ≤ j ≤ k.

This concludes the proof. J

CSL 2020



21:8 Automatic Equivalence Structures of Polynomial Growth

Now we are ready to finish the proof of Theorem 3. Let ϕ be the formula from Lemma 13.
By Theorem 6 the counting function c(t̄) = |{s̄ | ϕ(t̄, s̄)}| is a piecewise quasi-polynomial
function, and one can compute a representation of c. If r = 0t0 · · · ktk ∈ R then c(t0, . . . , tk)
is the size of the equivalence class of r; otherwise c(t0, . . . , tk) = 0. By definition of E(c) we
have E(c) ∼= E. It remains to decompose E(c) into equivalence structures E(hi) defined by
polynomials hi and prove that deg(hi) + var(hi) ≤ k + 1.

We can assume that c is presented by a finite partition Nk+1 =
⋃
i Li and polynomials gi

such that each Li is a fundamental linear set and c coincides with gi on Li [6]. Let hi be the
function obtained from gi by substituting the linear representation of vectors in Li into gi.
More formally, let Li = v̄0 + 〈v̄1, . . . , v̄`〉 where the period vectors are linearly independent
and let αi : N` → Nk+1 be defined by αi(λ1, . . . , λ`) = v̄0 +

∑`
j=1 λj v̄j . Then gi ◦ αi is a

polynomial and E is isomorphic to the disjoint union
⋃
i E(gi ◦ αi).

Now fix i and let hi = gi ◦ αi, which is a polynomial in the variables λ1, . . . , λ`. It
remains to show that deg(hi) + ` ≤ k + 1. Let Ri = R ∩ {0t0 · · · ktk | t̄ ∈ Li} and
Di = {v ∈ D | ∃r ∈ Ri : (v, r) ∈ E}. Then E(hi) is isomorphic to the restriction of E to Di.
The representatives in Ri of length n are

Ri,n = {0t0 · · · ktk | ∃λ̄ ∈ N` : αi(λ̄) = t̄,
∑
j

tj = n}.

Each r ∈ Ri,n is only equivalent to words of length at least n, since r is length-lexicographically
minimal in its class, and at most n+ b, by Lemma 12. Since b is a constant we know that
|{v ∈ Di | n ≤ |v| ≤ n+ b}| = O(nk) and hence∑

r∈Ri,n

|[r]| = |
⋃

r∈Ri,n

[r]| = O(nk). (2)

For a tuple λ̄ = (λ1, . . . , λ`) let len(λ̄) be the sum of all entries in αi(λ̄), which is an affine
function in λ̄, namely len(λ1, . . . , λ`) = a0 +

∑`
j=1 ajλj where aj ∈ N is the sum of all entries

in v̄i. Since αi is injective, none of the vectors v̄i can be the zero vector and therefore we
must have a1, . . . , a` ≥ 1. We obtain∑

len(λ1,...,λ`)=n

hi(λ1, . . . , λ`) =
∑

len(λ1,...,λ`)=n

gi(αi(λ1, . . . , λ`))

=
∑

0t0 ···ktk∈Ri,n

gi(t0, . . . , tk) =
∑

r∈Ri,n

c(r) (2)= O(nk).

Let a be the least common multiple of a1, . . . , a` and assume that n = a0 + a ·m for some
m ∈ N. We restrict the left handside to those tuples (λ1, . . . , λ`) where each ajλj is divisible
by a, i.e. aj · λj = a · µj for some µj . We get∑

µ1+···+µ`=m
hi(aµ1, . . . , aµ`) = O(nk).

The number of tuples (µ1, . . . , µ`) ∈ N` with m/(`− 1) ≤ µj for all j and µ1 + · · ·+ µ` = m

is Ω(m`−1) = Ω(n`−1) because in the coordinates 1 to ` − 1 we can pick any integer in
the interval [m/(`− 1),m/`] and pick µ` ≥ m/` such that the sum equals n. This implies
Ω(n`−1) · hi(am′, . . . , am′) ≤ O(nk) where m′ = m/(`− 1). Since m′ = Θ(n) the degree of
hi must satisfy `− 1 + deg(hi) ≤ k.
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5 Undecidability: Proof of Theorem 4

Using Theorem 3 we can state an equivalent formulation of the isomorphism problem for
automatic equivalence structures with growth O(nk). For this we define two sets. The first
set is the set of polynomials f such that the number of variables in f plus the degree of f is
not greater than k + 1:

Pk = {f ∈ N[x1, . . . , x`] | 0 ≤ ` ≤ k + 1, var(f) + deg(f) ≤ k + 1}.

The second set defines a collection of multi-sets determined by tuples of polynomials from
Pk. Formally:

Mk =
{

m⊎
i=1

Rg(fi) | f1, . . . , fm ∈ Pk, m ∈ N

}
.

I Definition 14. Let P be a set of polynomials. A P-representation for a multiset M over
N is a list of polynomials (f1, . . . , fm) ∈ Pm such that M =

⊎m
i=1 Rg(fi).

For example, the list (x, x2) is a representation of the multiset {0, 0, 1, 1, 2, 3, 4, 4, 5, 6, . . . }.
The decision problem P-Multiset-Eq asks whether two given P-representations define the
same multiset.

I Lemma 15. For each constant k ≥ 0, the isomorphism problem for automatic equivalence
structures of growth O(nk) is equivalent to Pk-Multiset-Eq.

Proof. The equivalence follows basically from Theorem 3. However, we need to pay attention
to infinite equivalence classes and multisets containing 0.

First we observe that the isomorphism problem for automatic equivalence structures
of growth O(nk) is equivalent to the question whether F � N+ = G � N+ for two given
multisets F,G ∈ Mk, i.e. we exclude 0 from the multisets. Let us call this decision
problem Pk-Pos-Multiset-Eq. To solve the isomorphism problem we first compute for
the given equivalence structures representative sets for the set of infinite equivalence classes
and compare their cardinality. If they are unequal, we reject. Otherwise we restrict
the equivalence structures to those elements which are contained in finite classes. By
Theorem 3 we can compute representations

⋃
i E(fi) and

⋃
i E(gi) for the restricted equivalence

structures where fi, gi ∈ Pk. Then the equivalence structures are isomorphic if and only if
(
⊎
i Rg(fi)) � N+ = (

⊎
i Rg(gi)) � N+. Conversely, given two Mk-multisets F =

⊎
i Rg(fi)

and G =
⊎
i Rg(gi), we have F � N+ = G � N+ if and only if

⋃
i E(fi) and

⋃
i E(gi) are

isomorphic. By Theorem 3 we can compute two automatic structures equivalent to
⋃
i E(fi)

and
⋃
i E(gi), respectively.

It remains to prove the equivalence of Pk-Pos-Multiset-Eq and Pk-Multiset-Eq.
Since Rg(x1) is the multiset containing 0 infinitely often, we have (

⊎
i Rg(fi)) � N+ =

(
⊎
i Rg(gi)) � N+ if and only if

⊎
i Rg(fi) ∪ Rg(x1) =

⊎
i Rg(gi) ∪ Rg(x1). This yields a

reduction from Pk-Pos-Multiset-Eq to Pk-Multiset-Eq. For the other direction, suppose
we are given two multisets F =

⊎
i Rg(fi) and G =

⊎
i Rg(gi) fromMk. Then F = G if and

only if F (0) = G(0) and F � N+ = G � N+. The latter is equivalent to the Pk-Multiset-
Eq-instance

⋃
i E(fi) =

⋃
i E(gi). To test F (0) = G(0) it suffices to show how to compute

Rg(g)(0) for a given polynomial g ∈ N[x1, . . . , x`]. First notice that Rg(g)(0) is the number
of solutions ū ∈ N` for g(ū) = 0. If ū, v̄ ∈ N` are tuples with the same non-zero coordinates
then g(ū) = 0 if and only if g(v̄) = 0. Hence g(ū) = 0 either has zero, one, or infinitely many
solutions, and it suffices to search for solutions in ū ∈ {0, 1}`. J
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We also consider the related problem over sets. Let us write Img(f) for the image of
a polynomial f ∈ N[x1, . . . , xk], i.e. the set {f(x̄) | x̄ ∈ Nk}. If P is a set of polynomials,
a P-representation for a set M ⊆ N is a list of polynomials (f1, . . . , fm) ∈ Pm such
that M =

⋃m
i=1 Img(fi). The decision problem P-Set-Eq asks whether two given P-

representations define the same set.

I Lemma 16. If k ∈ N, then Pk-Set-Eq is reducible to Pk+1-Multiset-Eq.

Proof. Let (f1, . . . , fm, g1, . . . , gm) be an instance for Pk-Set-Eq. If fi : Nk → N then let
f ′i : Nk+1 → N be the polynomial defined by f ′i(x̄, y) = fi(x̄) for all x̄ ∈ Nk, y ∈ N, and
similarly g′i. Since every element has either multiplicity 0 or ∞ in Rg(f ′i) and Rg(g′i) we have

m⋃
i=1

Img(fi) =
n⋃
i=1

Img(gi) ⇐⇒
m⊎
i=1

Rg(f ′i) =
n⊎
i=1

Rg(g′i).

The polynomials f ′i , g′i have one more variable and hence belong to Pk+1. J

Proof of Theorem 4. We use the MRDP-theorem [14] stating that a set of natural numbers
X ⊆ N is recursively enumerable if and only if it is Diophantine, i.e. there exists a polynomial
p(x, y1, . . . , yk) ∈ Z[x, y1, . . . , yk] such that

X = {a ∈ N | ∃y1, . . . , yk ∈ N : p(a, y1, . . . , yk) = 0}.

Let X ⊆ N be a Σ0
1-complete set and p ∈ Z[x, x1, . . . , xk] be a polynomial as above defining

X.1 By splitting p into its monomials with positive and negative coefficients we obtain
polynomials p1, p2 ∈ N[x, x1, . . . , xk] such that

a ∈ X ⇐⇒ ∃y1, . . . , yk ∈ N : p1(a, y1, . . . , yk) = p2(a, y1, . . . , yk). (3)

If we define N = {(x, y) | x 6= y ∈ N}, then a ∈ X is also equivalent to

{(p1(a, ȳ), p2(a, ȳ)) | ȳ ∈ Nk} 6⊆ N. (4)

Using the injective pairing function C(x, y) = (x+ y)2 + 3x+ y we can alternatively state
this by

Img(C(p1(a, ȳ), p2(a, ȳ))) 6⊆ Img(C(y, x+ y + 1)) ∪ Img(C(x+ y + 1, y)).

Since A 6⊆ B iff A 6= A ∪ B we obtain a reduction from X to the complement of Pm-Set-
Eq where m is bounded in a function of var(p) and deg(p). Hence Pm-Set-Eq is Π0

1-hard.
Therefore also Pm+1-Multiset-Eq and the isomorphism problem over automatic equivalence
structures of growth O(nm+1) is Π0

1-hard. J

6 Decidability: Proof of Theorem 5

Now we prove Theorem 5 by proving:

I Theorem 17. The problem P2-Multiset-Eq is decidable.

To prove Theorem 17 we proceed in three steps. First we reduce it to the case that the
multisets have only finite multiplicities. In the second step we test equality of the multisets
on their “unbounded linear part” and reduce the problem to testing equality of unions of
degree-two polynomial ranges. In the third step we provide a decision procedure for the
latter problem.

1 It is known that p can be chosen to have degree at most four [14, Section 1.2].
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6.1 Closure properties
I Lemma 18. If f ∈ N[x1, . . . , xk] has degree d and T ⊆ Nk is semilinear, then f(T ) is a
finite union of ranges Rg(gi) where var(gi) ≤ k and deg(gi) = d. The polynomials gi can be
computed effectively. In particular, f(T ) belongs effectively toMd+k−1.

Proof. Let T =
⋃
i Ti be a representation of T as a disjoint union of fundamental linear

sets Ti. Since f(T ) =
⊎
i f(Ti) we can assume that T is a fundamental linear set, say

T = v̄0 + 〈v̄1, . . . , v̄m〉 where the period vectors are linearly independent; in particular, we
have m ≤ k. Consider the polynomial g ∈ N[λ1, . . . , λm] defined by

g(λ1, . . . , λm) = f(v̄0 +
m∑
j=1

λj v̄j),

which satisfies f(T ) = Rg(g) and deg(g) = deg(f) = d. J

I Lemma 19. If F ∈M2 and S ⊆ N is semilinear, then F � S belongs effectively toM2.

Proof. Let F =
⊎m
i=1 Rg(fi) with f1, . . . , fm ∈ P2. Since F � S =

⊎m
i=1(Rg(fi) � S) we

can assume that F = Rg(f) for some f ∈ P2. First assume that deg(f) ≤ 1. Since S is
semilinear and f is an affine function, the set L = {t̄ | f(t̄) ∈ S} is effectively semilinear. By
Lemma 18 we know that Rg(f) � S = f(L) belongs toM2. Now assume that deg(f) = 2,
i.e. f(t) = at2 + bt+ c for some a 6= 0, b, c ∈ N. Since f is injective, the multiset F = Rg(f)
is a set, and therefore F � S = F ∩ S. Consider a representation of S as a finite disjoint
union S =

⋃
i Si of singleton sets and arithmetic progressions. Since F ∩ S =

⊎
i(F ∩ Si) we

can assume that S itself is either a singleton or an arithmetic progression. If S = {s} then
Rg(f) ∩ S is either empty or {s}, which can be decided. Assume S = {e+ dn | n ∈ N} for
some e ∈ N and d ≥ 1. It is enough to prove that T = {t ∈ N | ∃n ∈ N : at2 + bt+ c = e+dn}
is effectively semilinear, since then, Rg(f) ∩ S = f(T ) belongs toM2 by Lemma 18.

Notice that t ∈ T if and only if at2 + bt+ c is congruent to e mod d and at2 + bt+ c ≥ e.
Define the function h : Zd → Zd with h(t) = at2+bt+c. We obtain a semilinear representation
for {t ∈ N | f(t) ≡ e (mod d)} from h−1(e + Zd). Finally, we intersect this set with the
interval [t0,∞) where t0 is the smallest number with at20 + bt0 + c ≥ e to obtain T . J

6.2 Reduction to multisets with finite multiplicities
Let P2,fin ⊆ P2 be the set of all polynomials of the form:

f = a

f(t) = at2 + bt+ c where a 6= 0 or b 6= 0,
f(s, t) = as+ bt+ c where a, b 6= 0

Notice that Rg(g) of a polynomial g ∈ P2 has finite multiplicities, i.e. Rg(g)(a) < ∞ for
all a ∈ N, if and only if g ∈ P2,fin. LetM2,fin be the set of all multisets

⊎m
i=1 Rg(fi) where

f1, . . . , fm ∈ P2,fin. We will show that P2-Multiset-Eq is reducible to P2,fin-Multiset-Eq
and start with a useful lemma.

I Lemma 20. If F = Rg(f) with f ∈ P2, then one can construct a Presburger formula
ϕ(x, y) stating that F (x) = y <∞.

Proof. Suppose f has two variables, say f(s, t) = as+ bt+ c. If a = 0, then F contains every
number of the form bt + c infinitely often, and does not contain any other number. The
case b = 0 is similar. If both a 6= 0 and b 6= 0, then F has only finite multiplicities. Using
Theorem 7 we can count for a given number x the number |{s ∈ N | ∃t ∈ N : as+ bt+ c = x}|.
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Suppose f has one variable, say f(t) = at2 + bt + c. If a = b = 0, then F contains only c
infinitely often. Otherwise F contains each number of the form at2 + bt+ c exactly once. J

I Lemma 21. P2-Multiset-Eq is reducible to P2,fin-Multiset-Eq.

Proof. Given two multisets F,G ∈M2 and let F∞ = {n ∈ N | F (n) =∞} and G∞ = {n ∈
N | G(n) =∞}. We have

F = G ⇐⇒ F∞ = G∞ and (F � F∞ = G � G∞)

where the complements are taken with respect to N. Using Lemma 20 we can compute the
semilinear sets F∞ and G∞ and test whether F∞ = G∞. Using Lemma 19 we can compute
P2-representations for F � F∞ and G � G∞. J

6.3 Elimination of linear polynomials
Let P2,0 ⊆ P2 be the set of all polynomials f(t) = at2 + bt+ c where a 6= 0 and b, c ∈ N and
polynomials f = a, and letM2,0 be the corresponding set of multisets.

I Lemma 22. P2,fin-Multiset-Eq is reducible to P2,0-Multiset-Eq.

Proof. Given two multisets F,G ∈M2,fin where F =
⊎
i Rg(fi) and G =

⊎
i Rg(gi). Let F1

be the restriction of the union
⊎
i Rg(fi) to those polynomials fi with deg(fi) ≤ 1 and F2 be

the restriction to those polynomials of degree 2, and similarly G1, G2 for
⊎
i Rg(gi).

Since polynomials of degree 2 are injective, the maximum multiplicity in F2 and G2 is
bounded by the total number, say k, of polynomials fi and gi, respectively. Hence, if F = G

then |F1(a)−G1(a)| ≤ k for all a ∈ N. We can verify the latter property using the Presburger
formulas ϕF1(x, y) and ϕG1(x, y) from Lemma 20, and return a negative instance if either
one of the properties is violated (since F 6= G).

Now assume that the maximum multiplicity in F1 \G1 and in G1 \ F1 is bounded by k.
One can verify that F = G if and only if

(F1 \G1) ] F2 = (G1 \ F1) ]G2, (5)

using the definition of difference between two multisets. If both supp(F1\G1) and supp(G1\F1)
are finite, then also F1\G1 and G1\F1 are finite and we can return the instance (5). Otherwise
we claim that F 6= G, and hence we return a negative instance. Towards a contradiction
assume F = G and that supp(F1 \G1) is infinite. The set supp(F1 \G1) is in fact effectively
semilinear by Lemma 20 since

supp(F1 \G1) = {x ∈ N | F1(x) > G1(x)}.

Therefore the growth of supp(F1 \ G1) is Ω(n) whereas the growth of supp(G2) is O(
√
n)

because it is a finite union of ranges of quadratic polynomials and singletons. This contradicts
the fact that supp(F1 \G1) ⊆ supp(G2). J

6.4 Decicision procedure for degree-two polynomials
In preparation for the decidability proof of P2,0-Multiset-Eq we show the following lemma
concerning the solutions of quadratic Diophantine equations. The growth function of a subset
M ⊆ N is the function n 7→ |M ∩ [1, n]|.
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I Lemma 23. Let f, g ∈ N[x] with deg(f) = deg(g) = 2. Let S = {(x, y) ∈ N2 | f(x) = g(y)}
and Sx be the projection to the first component. Then exactly one of the following cases
holds:
1. the growth of Sx is Ω(n) and S is infinite and semilinear.
2. the growth of Sx is o(n).
It is decidable whether (1) or (2) holds. Moreover, if (1) holds then S can be effectively
computed.

Proof. We follow the analysis of quadratic bivariate Diophantine equations from [19]. Con-
sider the equation

ax2 + cy2 + dx+ ey + f = 0 (6)

where a, c 6= 0, d ≥ 0, e ≤ 0 and f ∈ N. Define D = −4ac 6= 0, E = −2ae, F = d2 − 4af
and Y = 2ax+ d. Then (6) implies DY 2 = (Dy + E)2 +DF − E2. If N = E2 −DF and
X = Dy + E then we obtain the generalized Pell equation

X2 −DY 2 = N. (7)

Let L be the set of solutions (X,Y ) ∈ N2 of (7) and let LY be the projection to the second
component. Notice that the transformation (x, y) 7→ (X,Y ) = (Dy + E, 2ax + d) is an
injective function from S to L, and that if the growth of Sx is Ω(n) then also the growth
of LY is Ω(n). Also notice that if X2 = DY 2 +N and Y ≥ 1 then X2 ≤ max(D, |N |) · Y 2,
hence X is linearly bounded in Y for all solutions (X,Y ) ∈ L.

We will do a case distinction:
1. If D < 0 then any solution (X,Y ) of (7) satisfies X2 + Y 2 ≤ N . Then L is finite, and

hence also S is finite.
2. If D > 0 is a square number then L is finite, hence also S is finite.
3. If D > 0 and N = 0, then (7) is solvable if and only if D is a square number. In this case

the solutions of (7) are L = {(
√
DY, Y ) | Y ∈ N}. Hence the solutions of (6) are of the

form

S = {(x, y) ∈ N2 | Dy + E =
√
D(2ax+ d)}.

From the equation we can compute a semilinear representation of S.
4. Now suppose that D > 0 is not a square number and N 6= 0. In this case we will

show that LY , and therefore also Sx, has growth o(n). Let t, u ∈ N be the smallest
solution of the Pell equation t2 − Du2 = 1, the so called fundamental solution. We
define an equivalence relation on Z2 where two pairs (X,Y ) and (X ′, Y ′) are equivalent
if X + Y

√
D = (X ′ + Y ′

√
D)(t+ u

√
D)m for some m ∈ Z. It is known that the set of

solutions of (7) over Z is a finite union of equivalence classes, see [12, Theorem 8-8, 8-9].
Hence the number of solutions (X,Y ) ∈ L with X +

√
DY ≤ n is bounded by O(logn).

Since X is linearly bounded in Y for all solutions (X,Y ) ∈ L, this implies that LY has
growth O(logn), which is contained in o(n).

This concludes the proof. J

I Theorem 24. P2,0-Multiset-Eq is decidable.

Proof. We will prove how to solve the following inclusion problem: Given polynomials
f, g1, . . . , gm ∈ P2,0, test whether

Rg(f) ⊆
m⊎
i=1

Rg(gi) (8)
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holds and, if so, compute a P2,0-representation for [
⊎m
i=1 Rg(gi)] \ Rg(f). Then, given an

instance (f1, . . . , fm, g1, . . . , gn) of P2,0-Multiset-Eq, we can test
⊎
i Rg(fi) ⊆

⊎
i Rg(gi) as

follows (the other inclusion is symmetric):
1. Initialize G0 =

⊎m
i=1 Rg(gi).

2. For all 1 ≤ k ≤ m:
a. Test whether Rg(fk) ⊆ Gk−1,
b. If so, compute Gk = Gk−1 \ Rg(fk) otherwise return “no”.

3. Return “yes”.

It remains to show how to solve the defined inclusion problem. We assume that the
polynomials gi are sorted by var(gi), i.e. there exists some 0 ≤ ` ≤ m such that var(gi) = 1
for all 1 ≤ i ≤ ` and var(gi) = 0 for all `+ 1 ≤ i ≤ m, i.e.

⊎m
i=`+1 Rg(gi) is a finite multiset.

Case 1. If f = a, then we can test whether there exists some i such that a ∈ Rg(gi). If
there is no such index, we reject. Otherwise pick such an index i. If 1 ≤ i ≤ ` then we
decompose Rg(gi) \ {a} into the finite set {gi(0), . . . , gi(x0 − 1)} and Rg(gi(x+ x0 + 1)).
If `+ 1 ≤ i ≤ m we can remove gi from the list.

Case 2. If f(x) = ax2 + bx+ c with a 6= 0 we test for each 1 ≤ i ≤ ` whether the solution set

Si = {(x, y) ∈ N2 | f(x) = gi(y)}

is infinite and semilinear, and, if so, compute a semilinear representation for it using
Lemma 23. Let Di = {x ∈ N | f(x) ∈ Rg(gi)} for all 1 ≤ i ≤ m. Notice that (8) is
equivalent to

⋃m
i=1Di = N. We rearrange the indices such that exactly the sets S1, . . . , Sk

are infinite and semilinear and hence by Lemma 23 the sets Dk+1, . . . , D` have growth
o(n). The sets D`+1, . . . , Dm have at most size 1. Define X =

⋃k
i=1Di, which is effectively

semilinear since each set Di is the projection of Si to the first component. We also define
subsets Xi ⊆ Di for all 1 ≤ i ≤ k by

Xi = Di \
i−1⋃
j=1

Xj ,

which form a disjoint union X1 ∪ · · · ∪Xk of X. Compute the semilinear sets Yi = {y ∈
N|∃x ∈ Xi : (x, y) ∈ Si} for 1 ≤ i ≤ k. Then we have f(Xi) = g(Yi) for all 1 ≤ i ≤ k. We
can rewrite (8) as

f(X) ] f(N \X) ⊆
k⊎
i=1

(gi(Yi) ] gi(N \ Yi)) ]
m⊎

i=k+1
Rg(gi).

Since f(Xi) = g(Yi) and f(N \X) is disjoint from all sets gi(N \ Yi), this is equivalent to

f(N \X) ⊆
m⊎

i=k+1
Rg(gi) =: G.

We will do a case distinction.
Case 2a. If N \X is finite, then we can test for each x ∈ N \X whether f(x) belongs to
G and compute a representation for G \ {f(x)}, as above in case 1.

Case 2b. If N \X is infinite we claim that X ∪Dk+1 ∪ · · · ∪Dm 6= N and hence (8) does
not hold. Assume that X∪Dk+1∪· · ·∪Dm = N and therefore N\X ⊆ Dk+1∪· · ·∪Dm.
Since N \ X is infinite and semilinear, its growth must be Ω(n). However, all sets
Dk+1, . . . , Dm have growth o(n), contradiction.

Notice that we can distinguish cases 2a and 2b since X is effectively semilinear. J



M. Ganardi and B. Khoussainov 21:15

7 Conclusion

We have characterized automatic equivalence structures over polynomially growing domains,
and have investigated the decidability of the isomorphism problem. Since equivalence
structures can be viewed as trees of height 2, as a next step one could study automatic trees
over polynomially growing domains. Also it is still open whether the isomorphism problem
over unary automatic structures is decidable (automatic structures whose domains are unary
regular languages).
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