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Abstract
We show that the expressive power of order-invariant first-order logic collapses to first-order logic
over hollow trees. A hollow tree is an unranked ordered tree where every non leaf node has at most
four adjacent nodes: two siblings (left and right) and its first and last children. In particular there is
no predicate for the linear order among siblings nor for the descendant relation. Moreover only the
first and last nodes of a siblinghood are linked to their parent node, and the parent-child relation
cannot be completely reconstructed in first-order.
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1 Introduction

First-order logic (FO) is a classical formalism for expressing properties over finite structures.
It is the building block of many other formalisms that are highly expressive such as MSO or
logics using fixpoints such as LFP. An important and desirable feature of FO, and of all its
extensions mentioned above, is that it expresses only intrinsic properties of the structure, i.e.
properties invariant under isomorphisms. A limitation of FO is that it cannot express some
simple properties. In particular, as it cannot distinguish between nodes that are related via
some automorphism, it cannot always go through all the nodes of a structure in order to
perform simple tasks such as counting them.

In many scenarios, in particular in computer science, the structures under investigation
are stored on a disk: this yields an implicit order among the elements of the structure. It
is then reasonable to use this order within the logical formalism. In the case of FO this
means adding a new binary predicate that is interpreted as a linear order. However, we
want to do this in such a way that closure under isomorphisms is retained: the expressible
properties should only depend on the structure and not on the way it is stored on the disk,
the latter being arbitrary and subject to change. When this property is verified we say that
the formula is order-invariant and we denote by < -inv FO the set of first-order formulas
that are order-invariant. We stress that being order-invariant is not a decidable property [4]
hence < -inv FO is not a recursive set of formulas.

Obtaining a “real” logic (in the sense of Gurevich, in particular with a recursive syntax)
that has exactly the same expressive power as < -inv FO is a challenging question. Solving
the same question for <-inv LFP would solve the longstanding quest of finding a logic for
PTime as it follows from Immermann-Vardi Theorem that <-inv LFP captures PTime.

In order to find a logic for < -inv FO, it is useful to understand a bit better its expressive
power; such is the goal of this paper.
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23:2 Order-Invariant First-Order Logic over Hollow Trees

An example, attributed to Gurevich, shows that < -inv FO is in general strictly more
expressive than FO [1]. Another key result shows that < -inv FO retains the local property
of FO [7]. It seems that it requires dense structures for < -inv FO to express strictly more
than FO. For instance when the structures are trees it has been shown that < -inv FO has
exactly the same expressive power than FO [4]. In [4] a “tree” is either a binary tree, where
every node has at most three neighbors: its parent, its left child and its right child or, an
unranked unordered tree where every node is related to its parent and all of its children, but
no order is assumed among siblings.

The question of whether < -inv FO = FO over any class of structures of bounded
treewidth was left open in [4], where it is only shown that, over structures of bounded
treewidth, < -inv FO can only express properties definable in MSO.

In order to show that < -inv FO collapses to FO over a class of structures of bounded
treewidth, it is tempting to reduce the case of bounded treewidth to the case of trees, using
tree decompositions. When trying this strategy one immediately faces two difficulties. The
first one is, given two FO similar structures (in this introduction we informally say that two
structures are “FO similar” if they satisfy the same FO sentences of quantifier rank k for
some k sufficiently large and depending on the context), to exhibit a tree decomposition for
each of them such that the resulting tree decompositions are FO similar. Once this is done,
we can apply the known result over trees showing that the tree decompositions actually agree
on all order-invariant properties of a given quantifier rank: they are < -inv FO similar. The
second difficulty is then to lift the order-invariance similarity from the tree decompositions
to the original structures.

The second difficulty could be solved easily if we could interpret the original structure
within its tree decomposition. Unfortunately this cannot be done in first-order (this requires
reachability as an element of the structure could appear in bags arbitrarily far away within
the tree decomposition). This problem can be eliminated by assuming “domino treewidth”,
i.e. that an element appears in a bounded number of bags, which is equivalent to assuming
bounded degree of the structure on top of bounded treewidth [5].

Even when assuming bounded degree, the first difficulty remains and we still do not know
the precise expressive power of < -inv FO over structures of bounded degree and pathwidth 2!
This paper is an attempt toward solving the pathwidth 2 case.

We show that < -inv FO collapses to FO over the class of hollow trees. Hollow trees are
first-order structures with two binary relations that are interpreted so that the resulting
structure is a tree with the following features: each node has at most four neighbors: its
first child, its last child and possibly a left and a right sibling. One of the binary relation
denotes the sibling relation while the other one denotes the partial parent-child relation. This
model strictly extends the case of binary trees as a node may have arbitrarily many children.
However it is less powerful than the unranked ordered model as a node is not directly related
to its parent, unless it is the first or last of its children. Note that because of its locality,
FO cannot reconstruct the complete parent-child relation of every node within a hollow tree
(this can be done in MSO or using the transitive closure of the sibling relation).

It is not immediate to see how hollow trees are related to structures of pathwidth 2 and
of bounded degree. It turns out that if in the model of hollow trees we only had one binary
relation and could not distinguishing between the (partial) parent-child relation and the
sibling one, then we would have a model that is FO equivalent to structures of bounded
degree and pathwidth 2 in the sense that there exist FO-interpretations from one to the
other (as depicted in the conclusion). In particular the collapse of < -inv FO to FO in one
of them would imply the collapse in the other as we explain in Section 2.4. We leave the
extension of our result to this class of structures as an open problem.
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Our proof follows a strategy similar to the case of binary trees: we first exhibit a set
of operations over hollow trees (actually over structures FO similar to hollow trees) that
preserve order-invariance similarity. We then show that if two hollow trees are FO similar
then one of them can be transformed using our set of operations into the other, lifting FO
similarity to < -inv FO similarity. The first part is standard and makes use of the locality
of < -inv FO [7]. The second part is more combinatorial and forms the main technical
contribution of this paper.

Related work. Besides the papers already mentioned above, there exist several other
publications related to our work. We will make use in our proof of the fact that < -inv FO ⊆
MSO over classes of graphs of bounded treewidth, which has been initially claimed in [4].
Another proof of this result, extended to a broader class called “decomposable structures”,
can be found in [6].

If testing order invariance is undecidable for FO it is decidable for its two variable
fragment [13].

Several authors considered order-invariance for more expressive logics (first-order with
modulo predicates [11], MSO [6]) or with more expressive numerical predicates [9, 8, 2, 12].
Our proof technique follows lines similar to [4, 11] but is mildly related to the others.

Due to space limitations many of the proofs are omitted or just sketched in this long
abstract. They can be found at https://hal.inria.fr/hal-02310749/document

2 Preliminaries

2.1 General notations
We consider relational structures and use classical terminology for them. We use Σ to denote
a relational schema and Σ-structure to denote a structure over Σ. Our structures are always
finite and are denoted through calligraphic upper-case letters and their domain through
the corresponding standard upper-case letter. For instance, A would denote the domain of
the structure A. For a relation symbol R ∈ Σ and a Σ-structure A, we denote by RA the
interpretation of R in A.

Given a relational signature Σ, first-order logic, FO(Σ), and monadic second-order
logic, MSO(Σ), are defined in the standard way (see, e.g., [10]). The main formalism of
interest here is order-invariant first-order logic, denoted < -inv FO(Σ). A sentence ϕ in
FO(Σ ∪ {<}) belongs to < -inv FO(Σ) if for every Σ-structure A, whether (A, <A) |= ϕ is
independent of the choice of the linear order <A on A. In that case, we write A |= ϕ. For
any L ∈ {FO(Σ),MSO(Σ), < -inv FO(Σ)} and two Σ-structures A and B, we write A ≡Lk B
to mean that A and B satisfy the same sentences of L of quantifier rank at most k. As usual
we omit Σ when it is clear from the context.

We use the standard notion of FO-interpretations in order to define a new structure
from an existing one. Given a FO-interpretation I, we call arity of I the number of free
variables in the formula of I which defines the domain of the new structure, and depth of I
the maximum among the quantifier ranks of the formulas defining the domain and the new
relations. It is a well known result that for every A,B, and I of arity a and depth d, and for
every k ∈ N, if A ≡Lak+d B then I(A) ≡Lk I(B).

Let A be a structure over a vocabulary containing the binary relation symbol R. We say
that U ⊆ A is R-stable if ∀x ∈ U,∀y ∈ A, (R(x, y) ∨R(y, x))→ y ∈ U .
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23:4 Order-Invariant First-Order Logic over Hollow Trees

For a set σ of symbols, we define the vocabulary Pσ := {Ps : s ∈ σ}, where every Ps is a
unary relation symbol.

As usual the Gaifman graph of a relational structure A is the (unoriented) graph whose
vertices are the elements of the domain of the structure and the edges relate two vertices
that appear in the same tuple of a relation of A. We denote by distA(x, y) the distance
between x and y in the Gaifman graph of A. Given two sets S and T of elements of A and
m ∈ N, we say that S and T are m-distant in A, if distA(x, y) ≥ m for all x ∈ S and all
y ∈ T . The k-neighborhood N k

A(x) of some x ∈ A is the substructure of A induced by
{y ∈ A : distA(x, y) ≤ k} together with an additional constant interpreted as x. The k-type
tpkA(x) of x in A is the isomorphism class of its k-neighborhood. We extend those definitions
to tuples of elements in the usual way, fixing the tuples pointwise.

For k ∈ N, we define the k-enrichment Ek(A) of a Σ-structure A as A itself where each
element has been recolored with its k-type. Ek(A) is a structure over the vocabulary Σ
augmented with a unary predicate for every k-type over Σ: there are a finite number of them
as long as we consider classes of structures of bounded degree.

2.2 Hollow trees

An unranked ordered tree is a tree with a successor relation among the children of any node.
We see unranked ordered trees as structures over the signature composed of two binary
relation symbols S and S′, where S is interpreted as the parent-child relation, and S′ as the
horizontal successor. A set of nodes that share the same parent is called a siblinghood.

We define a mapping H from the set of unranked ordered trees to structures over two
binary predicates S and E. Given an unranked ordered tree T , H(T ) is defined as follows:

its domain is T
H(T ) |= S(x, y) iff T |= S(x, y) and y is either the first or the last of its siblings
E is interpreted as the symmetrical closure of S′

The image of H is the set of hollow trees, denoted H. If P = H(T ) then T is the underlying
tree structure of P.

In other words, within a hollow tree, only the two children at the endpoints of a siblinghood
know their parent. Notice that we do not distinguish between the first and last child, nor do
we between the left and right sibling. This makes the model more general, as explained in
Section 2.4. An example of hollow tree is given in the left part of Figure 1.

•

• • • •

• • • • •

• •

•

• • • •

• • • • •

• •

Figure 1 An example of hollow tree (left) and of hollow quasitree (right). The dotted arrows
represent S and the plain (symmetrical) lines represent E.

Given a finite alphabet σ, we define Hσ, the set of hollow trees over σ, as the set of
colored extensions of hollow trees using the vocabulary Pσ, where the interpretations of the
predicates of Pσ partition the domain.
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2.3 Main result
If C is a class of structures, we say that < -inv FO = FO over C if for each property
definable in < -inv FO, there exists a first-order formula expressing this property over all
structures of C. Notice that for every σ, Hσ is a class of structures of treewidth 2. Therefore
< -inv FO ⊆MSO over Hσ [4]. The main result we prove in this paper is:

I Theorem 1. For all σ, < -inv FO = FO over Hσ

We outline the proof here, and give more details in the rest of this paper.

Proof sketch. Our goal is to find some function f such that, ∀α ∈ N,∀P,Q ∈ Hσ, if
P ≡FO

f(α) Q then P ≡<-inv FO
α Q. This means that the equivalence relation ≡FO

f(α) refines
≡<-inv FO
α . Both equivalence relations being of finite index and the former being definable in

FO for every fixed α, the result follows.
To show this we fix some α ∈ N and consider two hollow trees P and Q, such that

P ≡FO
f(α) Q for a large enough f(α). The general idea is to modify Q through some operations

that are invisible to all formulas of < -inv FO of quantifier rank less than α, until we reach P .
This will ensure that P ≡<-inv FO

α Q.
We will use two kinds of operations as described in Section 3: “swap operations”,

which preserve < -inv FO, and one which preserves MSO (and a fortiori < -inv FO as
< -inv FO ⊆MSO over Hσ by [4]).

The MSO-preserving operation will be used in Section 3.3, in order to pump Q to make
sure that every neighborhood type is present at least as many times in Q as in P.

Once this is done, we explain in Section 4 how to transform Q with swap operations in
order to include P into it. Since Q may be larger than P , there could be some extra material
in Q that we call “loops”. The last step is to remove those loops and this is the goal of
Section 6.

When performing the swap operations, there will be a constant need for reorganizing the
S-edges (in particular to make sure that the loops are S-stable). Section 5 and Section 6.3
compile the results that allow us to do so. J

2.4 Bi-FO-interpretations and corollaries
Before we give more details about the proof of our main result, we recall in this section a
classical tool for reducing the collapse of < -inv FO to FO from one class of structures to
another. We then state a few corollaries of Theorem 1.

Let C1, C2 be two classes of structures over the respective vocabularies τ1 and τ2.
We say that C1 is bi-FO-interpretable through C2 if there exist two FO-interpretations

I12 and I21, respectively from τ1 to τ2, and from τ2 to τ1, such that for every A ∈ C1,
I12(A) ∈ C2 and I21(I12(A)) ' A, where ' denotes the existence of an isomorphism between
two structures. The following result is rather straightforward:

I Lemma 2. If C1 is bi-FO-interpretable through C2 and < -inv FO = FO over C2, then
< -inv FO = FO over C1

Recall that in the definition of hollow trees the relation E is symmetric. This turns out
to be more general than choosing E as an arbitrary directed binary relation as shown in
the following result where a directed hollow tree is defined as for hollow trees but with
a directed binary relation E. Note that we do not assume that E is a successor relation
among siblings, the direction of E could be arbitrary, but the result below works in particular
when E is a successor relation. Via a simple bi-FO-interpretation which uses extra colors to
encode the direction of the edges, we get the following result:

CSL 2020



23:6 Order-Invariant First-Order Logic over Hollow Trees

I Corollary 3. For every σ, < -inv FO = FO on the class of σ directed hollow trees

Define a path over σ as a word over the alphabet σ, where the successor edges are
symmetrical (the argument used in the proof of Corollary 3 guarantees that paths are a
more general model than words). The class of paths over σ is obviously bi-FO-interpretable
through Hσ: just add a S-parent to the endpoints of the path, and then forget about it.
Thus we get:

I Corollary 4. For every alphabet σ, < -inv FO = FO on the class of paths over σ.

Similarly, a straightforward bi-FO-interpretation together with Theorem 1 give us back
the result from [4] that < -inv FO = FO on ranked trees.

3 Swaps and pumping

In this section we provide a few operations, denoted swaps, that preserve ≡<-inv FO
k . Although

the k-type of every element will be left unchanged, applying these operations may break the
somewhat rigid structure of hollow trees. In order to work with the intermediate structures,
we loosen the definition of hollow trees and define hollow quasitrees as follows:

I Definition 5. For k > 0 and σ a set of colors, we define the set of hollow k-quasitrees
on σ, quasi-Hkσ, as the set of all finite structures over {E,S} ∪ Pσ such that the k-type of
any of their elements is the k-type of some element in some hollow tree in Hσ, and which
are such that their relation E is acyclic.

In other words a hollow quasitree differs from a hollow tree by its relation S which may
not induce a tree structure: a node may have its S-children in two distinct siblinghoods and
a hollow quasitree may have cycles using the relation S (but not using only the relation E).
Note that by definition Hσ ⊆ quasi-Hkσ for every k. An example of what a hollow quasitree
could look like is given in the right part of Figure 1. Note that locally, it looks like a hollow
tree.

Let T ∈ quasi-Hkσ. We define the support of T as its restriction to the vocabulary
Pσ ∪ {E}. The n-enriched support of T , denoted Suppn(T ), is the support of its n-
enrichment (and not the other way around). Hence, it keeps in memory the local behavior
within T . The set End(T ) of endpoints of T is the set of elements of the support having
degree one. A connected component of the support of T is called a thread1. Note that by
E-acyclicity of T , each of its threads is a path, hence contains exactly two endpoints. We
say that a hollow k-quasitree has the matching endpoints property if the two endpoints
of each thread have the same S-parent. Note that a hollow tree has the matching endpoints
property. Notice also that in a hollow k-quasitree, any thread of length less than 2k + 1
has matching endpoints. For x, y ∈ T belonging to the same thread, [x, y] denotes the set
of elements that lie between them (formally, those who disconnect x from y in Supp0(T )),
including x and y. We naturally define [x, y[ as [x, y] \ {y}.

The following lemma, implicit in the proof of locality of < -inv FO by Grohe and
Schwentick [7], will allow us to prove that our operations preserve order-invariance equivalence:

I Lemma 6. Let Σ be a relational vocabulary and let p, α ∈ N. There exists oΣ
p (α) ∈ N such

that for every structure A over Σ, and for every p-tuples of elements ā, b̄ ∈ Ap that have the
same oΣ

p (α)-type in A, there are two orders <āb̄ and <b̄ā on A such that

1 A thread is nothing other than a siblinghood when the quasitree is a tree.
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(A, <āb̄) ≡FO
α (A, <b̄ā)

āb̄ is an initial segment of <āb̄
b̄ā is an initial segment of <b̄ā

Our operations are divided into three families depending on whether we modify the
relation S, the relation E, or whether we do a global pumping,

In the following, R is a hollow (m+ 1)-quasitree on σ.

3.1 crossing-S-swaps
Let a, a′, a′′, b, b′, b′′ ∈ R be such that S(a, a′), S(a, a′′), S(b, b′), S(b, b′′) and such that
tpmR(a, a′, a′′) = tpmR(b, b′, b′′). LetR− := R\{S(a, a′), S(a, a′′), S(b, b′), S(b, b′′)} and assume
that the sets {a′, a′′}, {b′, b′′} and {a, b} are pairwise (2m+ 3)-distant in R−.

Then R′ := R−∪{S(a, b′), S(a, b′′), S(b, a′), S(b, a′′)} is called the m-guarded crossing-
S-swap between a and b in R (see Figure 2).

a
•

a′ a′′

b
•

b′ b′′

−→
a
•

a′ a′′

b
•

b′ b′′

Figure 2 The crossing-S-swap between a and b.

I Note 7. A particular case where the distance condition is met is when distR(a, b) ≥ 2m+5.

I Lemma 8. For all α ∈ N there exists s(α) ∈ N such that for all m ≥ s(α), and every
hollow (m+ 1)-quasitree R,

if R′ is the m-guarded crossing-S-swap between a and b in R,
then R′ ≡<-inv FO

α R, and ∀x ∈ R, tpm+1
R′ (x) = tpm+1

R (x). Moreover R′ ∈ quasi-Hm+1
σ

and Suppm+1(R′) = Suppm+1(R).

Proof sketch. In order to prove that R′ ≡<-inv FO
α R we need to exhibit a linear order over

R and one over R′ such that we can play an α-round Ehrenfeucht-Fraïssé game between
the resulting ordered structures. The linear orders are constructed using Lemma 6 applied
to (a′, a′′) and (b′, b′′) and the structure R−. A simple FO-interpretation is then used to
transfer the corresponding orders onto R and R′. Proving that the type of an element is
unchanged is straightforward. J

3.2 E-swaps
We define four different kinds of E-swaps.

Let a, b, a′, b′ ∈ R be such that E(a, b), E(a′, b′), a, b and a′, b′ appear in two different
threads of R and such that {a, b, a′, b′} and End(R) are (2m + 3)-distant in Supp0(R).
Furthermore, assume that tpmR(a, b) = tpmR(a′, b′). Let R′ := R \ {E(a, b), E(a′, b′)} ∪
{E(a, b′), E(a′, b)}.

Then R′ is called the m-guarded crossing-E-swap between ab and a′b′ in R (c.f.
Figure 3).

CSL 2020
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a b

a′ b′

� •

♦ ◦

| | | |

| | | |

−→
a b′

a′ b

� ◦

♦ •

| | | |

| | | |

Figure 3 Illustration of the m-guarded crossing-E-swap between ab and a′b′ in R.

Let a, b, b′, a′ ∈ R appear in that order in a single thread of R, such that E(a, b), E(a′, b′),
and such that {a, b, a′, b′} and End(R) are (2m + 3)-distant in Supp0(R). Furthermore,
assume that tpmR(a, b) = tpmR(a′, b′). Let R′ := R \ {E(a, b), E(a′, b′)} ∪ {E(a, b′), E(a′, b)}.
Then R′ is called the m-guarded mirror-E-swap at [b, b′] in R (c.f. Figure 4).

a b b′ a′

◦ •>>>| | | | | | −→
a b′ b a′

◦ •<<<| | | | | |

Figure 4 Illustration of the m-guarded mirror-E-swap at [b, b′] in R.

Consider now a, b, c, d, a′, b′, c′, d′ ∈ R appearing in that order in a single thread of R
such that E(a, b), E(c, d), E(a′, b′), E(c′, d′) and such that {a, b, c, d, a′, b′, c′, d′} and End(R)
are (2m + 3)-distant in Supp0(R). Furthermore, assume that tpmR(a, b) = tpmR(a′, b′) and
tpmR(c, d) = tpmR(c′, d′).
Let R′ := R \ {E(a, b), E(a′, b′), E(c, d), E(c′, d′)} ∪ {E(a, b′), E(a′, b), E(c, d′), E(c′, d)}. R′
is called the m-guarded segment-E-swap between [b, c] and [b′, c′] in R (c.f. Figure 5).

a b c d a′ b′ c′ d′

� • ~ ◦ ♦| | | | | | | | | | −→
a b′ c′ d a′ b c d′

� ◦ ~ • ♦| | | | | | | | | |

Figure 5 Illustration of the m-guarded segment-E-swap between [b, c] and [b′, c′] in R.

Finally, let a, b, a′, b′, a′′, b′′ be elements of R appearing in that order in a single thread of
R, such that E(a, b), E(a′, b′) and E(a′′, b′′) and {a, b, a′, b′, a′′, b′′} and End(R) are (2m+3)-
distant in Supp0(R). Furthermore, suppose that tpmR(a, b) = tpmR(a′, b′) = tpmR(a′′, b′′).

Let R′ := R \ {E(a, b), E(a′, b′), E(a′′, b′′)} ∪ {E(a, b′), E(a′, b′′), E(a′′, b)}. R′ is called
the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in R (c.f.
Figure 6).

As long as m is large enough, all the m-guarded E-swaps preserve ≡<-inv FO
α and the

(m+ 1)-type of every element:

I Lemma 9. For all α ∈ N there exists s(α) ∈ N such that for every m ≥ s(α) and every
hollow (m+ 1)-quasitree R, if R′ is either

the m-guarded crossing-E-swap between ab and a′b′ in R
the m-guarded mirror-E-swap at [b, b′] in R
the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in R
the m-guarded segment-E-swap between [b, c] and [b′, c′] in R

then R′ ≡<-inv FO
α R, ∀x ∈ R, tpm+1

R′ (x) = tpm+1
R (x) and R′ ∈ quasi-Hm+1

σ .

Proof sketch. The proof is a tedious case analysis. Basically it amounts to the following
idea: if the elements involved in the swap are far away from each other then we can use
Lemma 6 in the structure R minus the E-edges of interest, and get orders on R and R′
which make these structures similar as in the proof of Lemma 8.
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a b a′ b′ a′′ b′′

� • ◦ ♦| | | | | | | | −→
a b′ a′′ b a′ b′′

� ◦ • ♦| | | | | | | |

Figure 6 Illustration of the m-guarded contiguous-segment-E-swap between [b, a′] and [b′, a′′] in
R.

On the other hand, if the elements are close to each other, then the fact that they share
the same type induces some periodicity on their neighborhoods. These neighborhoods can
therefore be decomposed into several consecutive similar pieces. We can then apply Lemma 6
to these smaller components to conclude. J

3.3 Pumping
The next operation makes use of the fact that < -inv FO ⊆MSO over hollow trees. Hence
our hollow trees can be “pumped” in order to duplicate some of their parts.

Given a structure A and a k-type τ , we denote by |A|τ the number of elements of A whose
k-type is τ . We will essentially use 0-types as our structures will be enriched by recoloring
each element by its k-type. In view of this we denote by [[A]] the function τ 7→ |A|τ whose
domain is the set of 0-types over the considered vocabulary.

Let d,D ∈ N, and f, g be functions from a same domain to N. We say that f ≤Dd g if for
every x in the domain:

if f(x) ≤ d, then f(x) = g(x)
if f(x) 6= g(x), then g(x) ≥ f(x) +D

By f < g, we mean that ∀x, f(x) < g(x) or f(x) = g(x) = 0.

In the following proposition < -inv FO can be replaced by MSO.

I Proposition 10. ∀α, n, d ∈ N,∃M ∈ N,∀D ∈ N,∀P,Q ∈ Hσ, if P ≡FO
M Q, then there

exists Q′ ∈ Hσ such that Q′ ≡<-inv FO
α Q and [[En+1(P)]] ≤Dd [[En+1(Q′)]].

Proof sketch. This is a pumping argument: by setting M large enough, we make sure
in FO that if a (n + 1)-type has more occurrences in P than in Q, then it has enough
occurrences in Q so that we can find a context in Q containing at least one occurrence,
and no occurrence of a rare type, such that we can duplicate this context inside Q without
changing its MSO-type. J

4 Inclusion and pseudo-inclusion

Recall that our ultimate goal is to show that if two hollow trees agree on the same FO
sentences of quantifier rank f(α) then they agree on all < -inv FO sentences of quantifier
rank α. For this, we will show that if P and Q are hollow trees that agree on all FO sentences
of quantifier rank f(α) then we can use operations such as the swap operations described in
Section 3 to transform Q into P . As these operations preserve < -inv FO we get the desired
result.

In this section we perform the first step towards transforming Q into P. We show
that using the swap operations we can transform Q into Q′ so that Q′ “includes” P. The
resulting structure Q′ will be a hollow quasitree. In the next sections we will continue the
transformation and remove from Q′ all the extra material it contains, deriving P.
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In order to define what we mean by “inclusion” we need the notion of a n-abstract context
of a hollow quasitree. Intuitively this is a S-stable n-enriched substructure. More formally,
given a hollow quasitree T ∈ quasi-Hnσ and a set U of its domain that is S-stable, then
C := T|U , together with the function tpn(.) that maps x ∈ U to its n-type in T , is called a
n-abstract context denoted C = Ctxtn(T |U ). The set of n-abstract contexts is denoted
Ctxtnσ. Note that tpn(x) denotes tpnT (x) and not tpnC(x). We need to remember, at least
locally, how C was glued to the rest of T in order to preserve n-types when moving C to
some other place.

We are now ready to define the notion of “inclusion”. We actually define both “inclusions”
and “pseudo-inclusions”. We will need to pseudo-include a hollow quasitree into another
(Proposition 12), and then to include an abstract context into a hollow quasitree (Propos-
ition 13). Since a hollow k-quasitree T ∈ quasi-Hkσ can be seen as a k-abstract context
(T = Ctxtk(T |T )), we only need to define (pseudo-)inclusions from an abstract context into
a hollow quasitree.

I Definition 11. Let k ∈ N, U ∈ Ctxtkσ and Q ∈ quasi-Hkσ. We say that h : U → Q is a
k-pseudo-inclusion if h is injective and for all x, y, z ∈ U the following is verified:
1. tpkQ(h(x)) = tpk(x),
2. if x and y are in the same thread of U then h(x) and h(y) are also on the same thread of
Q and if moreover z ∈ [x, y] then h(z) ∈ [h(x), h(y)],

3. if U |= E(x, y) and t is the E-neighbor of h(x) in [h(x), h(y)] then t is the image of y
by an isomorphism (induced by the fact that they share the same k-type) between the
n-neighborhood of x and that of h(x).

If U |= E(x, y) and Q 6|= E(h(x), h(y)) then {x, y} is said to be a jumping pair for h,
and tpk−1

Q (h(x), t), where t is the E-neighbor of h(x) in [h(x), h(y)], is called its type.2
A k-pseudo-inclusion is said to be reduced if there is at most one jumping pair of a given

type.
A k-pseudo-inclusion is called a k-inclusion if it has no jumping pairs, that is if it

preserves E.

The last condition of pseudo-inclusion is a complication induced by the fact that E is not
oriented and that we thus cannot distinguish between the two siblings of a node. It ensures
that h preserves the neighborhoods in the right order. We can now state the main result of
this section. Note that the precondition that Q has more realizations for each type than U or
P will not be a problem in view of Proposition 10. The second proposition is stronger than
the first one as it derives inclusion instead of pseudo-inclusion, but it requires the stronger
hypothesis that every occurring type has strictly more realizations in Q than in U .

I Proposition 12. For every α,m ∈ N, there exists N ∈ N such that ∀P,Q ∈ quasi-HN+1
σ ,

if [[EN+1(P)]] ≤ [[EN+1(Q)]], then there exists Q′ ∈ quasi-Hm+1
σ such that Q′ ≡<-inv FO

α Q,
[[Em+1(Q′)]] = [[Em+1(Q)]] and h that is a (m+ 1)-pseudo-inclusion from P into Q′.

I Proposition 13. For every α,m ∈ N, there exists N ∈ N such that ∀U ∈ CtxtN+1
σ ,

∀Q ∈ quasi-HN+1
σ , if [[EN+1(U)]] < [[EN+1(Q)]], then there exists Q′ ∈ quasi-Hm+1

σ such that
Q′ ≡<-inv FO

α Q, [[Em+1(Q′)]] = [[Em+1(Q)]] and U is (m+ 1)-included in Q′.

Proof sketch. Both propositions have a similar proof: we first prove Proposition 12, and
explain afterwards how to move from pseudo-inclusions to inclusions.

2 This is an ease of notation; to be more precise, we should make the type of a jumping pair symmetrical.
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We define the pseudo-inclusion h step by step, extending the domain of h thread by
thread and, inside each thread, from one of its endpoint to the other. At each step we modify
Q using E-swaps, if necessary.

We give a special treatment to short threads and portions of the long threads that are
close to the endpoints: in that case, no modification of Q is required as the cardinality
precondition ensures the presence of the necessary sequences within Q. We then move to the
parts of the long threads that are far from the endpoints, adding them one node at a time to
the domain of the pseudo-inclusion. Note that as all the elements involved in the E-swaps to
come are distant from the endpoints, the E-swaps involved are guarded.

Let x′ be the last node of the current thread t that has been given an image by h, and
let x be the next node to which we want to extend the domain of h. By hypothesis, we know
that there exists a node y /∈ Im(h) far from any endpoint, that has the same (m+ 1)-type as
x. We denote by y′ the neighbor of y that has the same m-type as x′, and by x̂ the neighbor
of h(x′) having the same m-type as x.

We proceed to a case analysis depending on the relative position of y, y′, h(x′) and x̂. If
y′, y are on the same thread as h(x′), x̂ and in the same direction (in particular when y = x̂),
we simply set h(x) to y and we are done. If not, one of the E-swaps will place y to the
desired position.

For instance, if y′, y are on the same thread as h(x′), x̂ but in the reverse direction
(c.f. Figure 7, where the double line represents Im(h)), then we consider the m-guarded
mirror-E-swap at [x̂, y] in Q and extend h by setting h(x) to y.

h(x′) x̂ y y′

>>>| | | | | |
−→ h(x′) y

<<<| | | | | |

Figure 7 h(x′), x̂ and y′, y are in the same thread, but in reverse order: we use a mirror-E-swap.

Now, if y is on a thread that does not intersect Im(h) (c.f. Figure 8), we consider the
m-guarded crossing-E-swap between h(x′)x̂ and y′y in Q, and extend h by setting h(x) to y.

h(x′) x̂

y′ y

•

◦

| | | |

| | | |

−→

h(x′) y
◦

•

| | | |

| | | |

Figure 8 y is on a thread disjoint from Im(h): we use a crossing-E-swap.

If y′, y are in the same direction as h(x′), x̂, and are between h(z) and h(z′) where z and
z′ are consecutive node of the current thread (c.f. Figure 9).

Then we consider the m-guarded segment-E-swap between [u′, y′] and [h(z′), h(x′)] in Q,
and extend h by setting h(x) to y.

h(z)

u′

y′ y h(z′) h(x′)

x̂
• ◦| | | | | | | | | | −→

h(z)

h(z′)

h(x′)

y

u′ y′

•◦| | | | | | | | | |

Figure 9 y′, y are between the images of two already included neighbors: we use a segment-E-swap.

There are a few other cases that are treated similarly. This concludes the proof for
pseudo-inclusion.
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For Proposition 13, as we wish to construct an inclusion, we need to make sure that there
is no “jump” in the mapping.

Note that among all the previously mentioned cases, only one didn’t guarantee the absence
of a jump, namely when y′, y are on the same thread as h(x′), x̂ and in the right direction,
but when y 6= x̂. We then use the stronger hypothesis on the number of types in Q, which
guarantees that there also exist z, z′ verifying the same conditions as y, y′ (cf. Figure 10).
We consider the m-guarded contiguous-segment-E-swap between [x̂, y′] and [y, z′] in Q, and
extend h by setting h(x) to y. h is now an inclusion.

h(x′) x̂ y′ y z′ z
• ◦| | | | | | | |

−→ h(x′) y z
◦ •| | | | | | | |

Figure 10 y′, y, z′, z and h(x′), x̂ are on the same thread, in the same order: we use a contiguous-
segment-E-swap to avoid a jump in the inclusion.

J

5 Tools for reorganizing S-edges

In the previous section, we have seen how to “rewrite” Q using E-swap operations in order to
pseudo-include P into the resulting quasitree. By definition, the pseudo-inclusion h of P into
Q respects the enriched support but can be completely wild relatively to the S-edges. For
instance, in Q, the endpoints of a thread may not have the same S-parent. In this section
we show how to use S-swaps in order to ensure that our pseudo-inclusion mapping takes into
account (to various degrees) the S-edges. We say that two nodes of a quasitree are S-siblings
if they share the same S-parent.

In Section 5.1, we show how to make sure that the pseudo-inclusion respects the S-siblings
relation. In Section 5.2 we show how to ensure that the image of a pseudo-inclusion is S-stable.
S-stability is required to define and operate on the loops, as will be established in Section 6.

5.1 S-siblings re-association
The following Lemma shows how to modify a pseudo-inclusion in order for it to preserve the
S-siblings relation. Note that it doesn’t necessarily mean that the image structure has the
matching endpoint property because the initial structure itself may not have this property
as it is derived from a quasitree.

I Lemma 14. ∀α,m ∈ N,∃N ∈ N,∀W ∈ CtxtNσ ,∀Q ∈ quasi-HNσ , if h : W → Q is a N-
pseudo-inclusion, then there exists some Q′ ∈ quasi-Hm+1

σ and some (m+1)-pseudo-inclusion
h′ : W → Q′ such that Q′ ≡<-inv FO

α Q, Suppm+1(Q′) ' Suppm+1(Q) and, if x and y are
S-siblings in W, then so are h′(x) and h′(y) in Q′.

Proof sketch. We correct the S-edges two by two: let x, y be two S-siblings in W such that
h(x), h(y) are not S-siblings in Q, and let z ∈ Q be the S-sibling of h(x).

z and h(y) must have the same (N − 2)-type: we can use a crossing-E-swap or a mirror-
E-swap (depending on whether they are the endpoints of a same thread) to exchange their
positions and make sure h(x) and h(y) are S-siblings.

However, for these swaps to be guarded, we must operate far enough from the endpoints.
This can be done as long as we choose N large enough. J
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A particular case of the previous lemma is when W is a hollow tree and h is surjective:
then Q′ has the matching endpoints property. This result will be useful in the proof of
Proposition 18.

5.2 S-stabilization
The image of a pseudo-inclusion has no reason to be S-stable, thus neither has its complement.
However, this is a crucial requirement to apply the results presented in the next section,
Section 6, in order to remove the extra material not in the image of the pseudo-inclusion.

The next result provides a method to ensure that the image (and its complement) of a
pseudo-inclusion is S-stable.

Recall that a pseudo-inclusion is said to be reduced if there is at most one jumping pair
of a given type. At the end of this process, we get a reduced pseudo-inclusion, which will
allow us to minimize the complement of its image in Section 6.1.

I Proposition 15. For every α,m ∈ N, there exist N, d,D ∈ N such that, for every P ∈ Hσ,
Q ∈ quasi-HN+1

σ such that [[EN+1(P)]] ≤Dd [[EN+1(Q)]] and P is (N + 1)-pseudo-included
in Q through some h, there are some h′ and Q′ ∈ quasi-Hm+1

σ such that Q′ ≡<-inv FO
α Q,

Suppm+1(Q′) ' Suppm+1(Q), h′ is a reduced (m + 1)-pseudo-inclusion of P in Q′ and
Q′ \ Im(h′) is S-stable in Q′.

Proof sketch. We consider all the pairs of elements x, y which break the S-stability of Im(h),
i.e. such that S(x, y), x ∈ Im(h) and y 6∈ Im(h). If there are many of them, then at least two
of them are far from each other and we can apply a crossing-S-swap to correct the mapping h.
We end up with a bounded number of problematic pairs that can be corrected separately. J

6 Removing unnecessary material

In this section we show how to remove the material in Q that is not present in the image of
the pseudo-inclusion of P . From the previous section we can assume that the pseudo-inclusion
mapping preserves the S-siblings relation and that its image is S-stable. The remaining part
of Q is then a union of “loops” in the sense that they connect nodes that have the same type.
After defining properly the notion of loop, we will use in Section 6.1 a pumping argument in
order to reduce the size of the loop to some constant while preserving ≡<-inv FO

α . In Section 6.2
we then show how to remove small loops without affecting the order-invariant equivalence
class. Finally, in Section 6.3 we show that if a hollow tree and a hollow quasitree have the
same enriched support, then they are ≡<-inv FO

α : this concludes the proof of Theorem 1.
We start with the definition of an abstract loop.
Let n ∈ N. Let Typenσ[2] denote the set of (n − 1)-types for pairs over the vocabulary

Pσ ∪ {E,S}, of degree ≤ 4. Let Σn be the vocabulary enriching Pσ ∪ {E,S} with two unary
symbols J1

τ and J2
τ for every τ ∈ Typenσ[2].

Let h be a reduced n-pseudo-inclusion from P ∈ Hσ to Q ∈ quasi-Hnσ, such that
V := Q \ Im(h) is S-stable.

Let Q+ be an extension of Q to Σn obtained in the following way. Since h is reduced, for
every τ ∈ Typenσ[2], there is at most one jumping pair of type τ . If there isn’t, J1

τ and J2
τ are

interpreted as the empty set. Else, let {x, x′} be this pair, and u′ (resp. u) be the E-neighbor
of h(x) (resp. h(x′)) in [h(x), h(x′)]. Interpret J1

τ as {h(x), u′} and J2
τ as {h(x′), u} (the

assignments x 7→ 1 and x′ 7→ 2 are arbitrary). This is illustrated on the left part of Figure 11,
where the double line represents Im(h). We say that Q+ is a h-jump-extension of Q.
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23:14 Order-Invariant First-Order Logic over Hollow Trees

We define V+ = Ctxtn(Q+|V ) as the extension of Ctxtn(Q|V ) to Σn where every J iτ is
defined consistently with Q+ (i.e. ∀x ∈ V,V+ |= J iτ (x) iff Q+ |= J iτ (x)). This process is
illustrated in Figure 11. V+ is called an n-abstract loop. Let Lnσ be the set of n-abstract
loops.

h(x) h(x′)
| | | | | |

| |

|
J1
τ J2

τ

| |

| |

|
J1
τ J2

τ

Figure 11 Example of a h-jump-extension Q+ of Q (on the left), and its associated abstract loop
V+ of support V := Q \ Im(h) (on the right).

Every Σn-structure will have a ’+’ symbol in its name. When we omit it, we mean
the reduction of the structure to Pσ ∪ {E,S} (for instance, from V+ ∈ Lnσ, we get V :=
Ctxtn(Q|V ) ∈ Ctxtnσ).

6.1 Loop minimization

It will be crucial to bound the size of the loops left by a pseudo-inclusion. The following
result does this using a simple pumping argument.

I Proposition 16. For every α, n ∈ N, there exists N ∈ N such that for every P ∈ Hσ,
Q ∈ quasi-Hnσ and reduced n-pseudo-inclusion h : P → Q, if V := Q \ Im(h) is S-stable then
there exists some Q′ ∈ quasi-Hnσ and a reduced n-pseudo-inclusion h′ : P → Q′ such that
Q′ ≡<-inv FO

α Q, U := Q′ \ Im(h′) is S-stable and |U | ≤ N .

6.2 Loop elimination

It now remains to get rid of the small loops. This is a consequence of the “aperiodicity”
of < -inv FO: we cannot distinguish in < -inv FO between k and k + 1 copies of the same
object if k is sufficiently large. Starting from a small loop, we can use the inclusion results
of Section 4 to recreate many copies of the loop within Q, then, according to the following
proposition, get rid of one copy using aperiodicity.

I Proposition 17. ∀α ∈ N,∃l ∈ N,∀m ∈ N,∃n ∈ N,∀M ∈ N,∃K ∈ N such that for every
abstract loop U+ ∈ Ln+1

σ and every Q ∈ quasi-Hn+1
σ such that |U | ≤M , (l+ 1) · [[En+1(U)]] <

[[En+1(Q)]] and such that for every (n+ 1)-type χ that occurs in U , |Q|χ ≥ K, there exists
Q′ ∈ quasi-Hmσ such that Q′ ≡<-inv FO

α Q and [[Em(Q)]] = [[Em(Q′)]] + [[Em(U)]]

Proof sketch. The proof is based on the well known result that first-order formulas of
quantifier-rank k cannot distinguish between a linear order of length 2k and a linear order of
length 2k + 1 (see, for instance, [10]). Hence if a loop is repeated at least 2k + 1 times, we
can eliminate one instance without changing the ≡<-inv FO

k class of the structure.
First, we include many copies of the loop in Q. The inclusion may not preserve S-edges:

the next step is to re-associate these S-edges with crossing-S-swaps in order for these copies
to be isomorphic. This is made possible by the hypothesis on the number of occurrences of
types appearing in U : it gives us room to make sure the crossing-S-swaps are guarded.

Once this is done, we can remove one copy in a < -inv FO-indistinguishable way. J
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6.3 S-parents re-association

We now turn to the last step of the proof of Theorem 1.
After the removal of the extra material in Q, we have transformed our initial hollow

tree Q into a hollow quasitree having the same number of occurrences of any type as the
initial P . They both have the same threads but may differ with their S-edges. The following
proposition states that they are ≡<-inv FO

α , thus ending the proof of Theorem 1.
The techniques used in the proof of the following proposition are strongly reminiscent of

those used in [3]; it requires a notion of vertical-S-swaps adapted to hollow trees.

I Proposition 18. ∀α ∈ N, there exists n1 ∈ N such that ∀P ∈ Hσ,∀Q ∈ quasi-Hn1
σ , if

Suppn1(P) ' Suppn1(Q) then P ≡<-inv FO
α Q.

7 Conclusion

We have shown that < -inv FO = FO over hollow trees. In order to lift this result to
structures of pathwidth 2 and bounded degree, it suffices to show that < -inv FO = FO
over structures that have the same underlying graph than hollows trees, but without the
possibility to distinguish a sibling from a child. In other words, there is only one binary
relation that is the union of E and S. It turns out that there is a bi-FO-interpretation from
structures of pathwidth 2 and bounded degree through this class of structures, as illustrated
in Figure 12.

x•
••

•

•
• •

•

•

12
3

4

5
6 7

8

9
←→

x

1 9

2 6 8

3 5

4

7

Figure 12 From a typical pathwidth 2 graph of degree 3 to a hollow tree where E and S are
indistinguishable.

Unfortunately our proof does not extend to this class of structures as it was crucial in
our proof to distinguish between E-swaps and S-swaps. We leave this generalization as an
open problem.

We also have no idea yet on what to do when the degree is not assumed to be bounded,
as we are then also facing the second difficulty mentioned in the introduction, namely
reinterpreting the initial structure within its tree representation.

In this paper we bypassed the first problem mentioned in the introduction, finding similar
tree decompositions given similar structures, by working directly on trees. This problem
seems unavoidable when working with graphs. There are examples of similar structures of
treewidth 2 that do not have any similar tree decompositions of width 2. It might even be
the case that for all k there are two similar structures of treewidth 2 that do not have similar
tree decomposition of width k. If that were true, completely new ideas would be needed to
solve the treewidth 2 case.
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