
Revisiting the Duality of Computation: An
Algebraic Analysis of Classical Realizability Models
Étienne Miquey
Équipe Gallinette, INRIA
LS2N, Université de Nantes, France
etienne.miquey@inria.fr

Abstract
In an impressive series of papers, Krivine showed at the edge of the last decade how classical
realizability provides a surprising technique to build models for classical theories. In particular, he
proved that classical realizability subsumes Cohen’s forcing, and even more, gives rise to unexpected
models of set theories. Pursuing the algebraic analysis of these models that was first undertaken
by Streicher, Miquel recently proposed to lay the algebraic foundation of classical realizability
and forcing within new structures which he called implicative algebras. These structures are a
generalization of Boolean algebras based on an internal law representing the implication. Notably,
implicative algebras allow for the adequate interpretation of both programs (i.e. proofs) and their
types (i.e. formulas) in the same structure.

The very definition of implicative algebras takes position on a presentation of logic through
universal quantification and the implication and, computationally, relies on the call-by-name λ-
calculus. In this paper, we investigate the relevance of this choice, by introducing two similar
structures. On the one hand, we define disjunctive algebras, which rely on internal laws for the
negation and the disjunction and which we show to be particular cases of implicative algebras. On
the other hand, we introduce conjunctive algebras, which rather put the focus on conjunctions and
on the call-by-value evaluation strategy. We finally show how disjunctive and conjunctive algebras
algebraically reflect the well-known duality of computation between call-by-name and call-by-value.

2012 ACM Subject Classification Theory of computation→ Logic; Theory of computation→ Proof
theory; Theory of computation → Type theory

Keywords and phrases realizability, model theory, forcing, proofs-as-programs, λ-calculus, classical
logic, duality, call-by-value, call-by-name, lattices, tripos

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.30

Related Version An extended version of this paper including proofs and further details is available
at: https://hal.archives-ouvertes.fr/hal-02305560.

Funding This research was partially funded by the ANII research project FCE_1_2014_1_104800.

Acknowledgements The author would like to thank Alexandre Miquel to which several ideas in this
paper, especially the definition of conjunctive separators, should be credited.

1 Introduction

It is well-known since Griffin’s seminal work [13] that a classical Curry-Howard correspondence
can be obtained by adding control operators to the λ-calculus. Several calculi were born
from this idea, amongst which Krivine λc-calculus [20], defined as the λ-calculus extended
with Scheme’s call/cc operator (for call-with-current-continuation). Elaborating on this
calculus, Krivine’s developed in the late 90s the theory of classical realizability [20], which
is a complete reformulation of its intuitionistic twin. Originally introduced to analyze the
computational content of classical programs, it turned out that classical realizability also
provides interesting semantics for classical theories. While it was first tailored to Peano
second-order arithmetic (i.e. second-order type systems), classical realizability actually scales

© Étienne Miquey;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:etienne.miquey@inria.fr
https://doi.org/10.4230/LIPIcs.CSL.2020.30
https://hal.archives-ouvertes.fr/hal-02305560
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Revisiting the Duality of Computation

to more complex classical theories like ZF [21], and gives rise to surprisingly new models. In
particular, its generalizes Cohen’s forcing [21, 30] and allows for the direct definition of a
model in which neither the continuum hypothesis nor the axiom of choice holds [23].

Algebraization of classical realizability. During the last decade, the algebraic structure of
the models that classical realizability induces has been actively studied. This line of work
was first initiated by Streicher, who proposed the concept of abstract Krivine structure [38],
followed among others by Ferrer, Frey, Guillermo, Malherbe and Miquel who introduced other
structures peculiar to classical realizability [8, 9, 6, 10, 11, 40]. In addition to the algebraic
study of classical realizability models, these works had the interest of building the bridge with
the algebraic structures arising from intuitionistic realizability. In particular, Streicher showed
in [38] how classical realizability could be analyzed in terms of triposes [37], the categorical
framework emerging from intuitionistic realizability models, while the later work of Ferrer et
al. [8, 9] connected it to Hofstra and Van Oosten’s notion of ordered combinatory algebras [16].
More recently, Alexandre Miquel introduced the concept of implicative algebra [31], which
appear to encompass the previous approaches and which we present in this paper.

Implicative algebras. In addition to providing an algebraic framework conducive to the
analysis of classical realizability, an important feature of implicative structures is that they
allow us to identify realizers (i.e. λ-terms) and truth values (i.e. formulas). Concretely,
implicative structures are complete lattices equipped with a binary operation a→ b satisfying
properties coming from the logical implication. As we will see, they indeed allow us to
interpret both the formulas and the terms in the same structure. For instance, the ordering
relation a 4 b will encompass different intuitions depending on whether we regard a and b as
formulas or as terms. Namely, a 4 b will be given the following meanings:

the formula a is a subtype of the formula b;
the term a is a realizer of the formula b;
the realizer a is more defined than the realizer b.

In terms of the Curry-Howard correspondence, this means that we not only identify types
with formulas and proofs with programs, but we also identify types and programs.

Side effects. Following Griffin’s discovery on control operators and classical logic, several
works have renewed the observation that within the proofs-as-programs correspondence, with
side effects come new reasoning principles [19, 18, 29, 14, 17]. More generally, it is now clear
that computational features of a calculus may have consequences on the models it induces.
For instance, computational proofs of the axiom of dependent choice can be obtained by
adding a quote instruction [19], using memoisation [15, 33] or with a bar recursor [25]. Yet,
such choices may also have an impact on the structures of the corresponding realizability
models: the non-deterministic operator t is known to make the model collapse on a forcing
situation [22], while the bar recursor requires some continuity properties [25].

If we start to have a deep understanding of the algebraic structure of classical realizability
models, the algebraic counterpart of side effects on these structures is still unclear. As a first
step towards this problem, it is natural to wonder: does the choice of an evaluation strategy
have algebraic consequences on realizability models? This paper aims at bringing new tools
for addressing this question.

Outline of the paper. We start by recalling the definition of Miquel’s implicative algebras
and their main properties in Section 2. We then introduce the notion of disjunctive algebras

É. Miquey 30:3

in Section 3, which naturally arises from the negative decomposition of the implication
A→ B = ¬A`B. We explain how this decomposition induces realizability models based on
a call-by-name fragment of Munch-Maccagnoni’s system L [35], and we show that disjunctive
algebras are in fact particular cases of implicative algebras. In Section 4, we explore the
positive dual decomposition A→ B = ¬(A⊗ ¬B), which naturally corresponds to a call-by-
value fragment of system L. We show the corresponding realizability models naturally induce
a notion of conjunctive algebras. Finally, in Section 5 we revisit the well-known duality of
computation through this algebraic structures. In particular, we show how to pass from
conjunctive to disjunctive algebras and vice-versa, while inducing isomorphic triposes.

Most of the proofs have been formalized in the Coq proof assistant, in which case their statements
include hyperlinks to their formalizations1.

2 Implicative algebras

2.1 Krivine classical realizability in a glimpse

We give here an overview of the main characteristics of Krivine realizability and of the models
it induces2. Krivine realizability models are usually built above the λc-calculus, a language of
abstract machines including a set of terms Λ and a set of stacks Π (i.e. evaluation contexts).
Processes t ? π in the abstract machine are given as pairs of a term t and a stack π.

Krivine realizability interprets a formula A as a set of closed terms |A| ⊆ Λ, called the
truth value of A, and whose elements are called the realizers of A. Unlike in intuitionistic
realizability models, this set is actually defined by orthogonality to a falsity value ‖A‖ made of
stacks, which intuitively represents a set of opponents to the formula A. Realizability models
are parameterized by a pole ⊥⊥, a set of processes in the underlying abstract machine which
somehow plays the role of a referee betweens terms and stacks. The pole allows us to define
the orthogonal set X⊥⊥ of any falsity value X ⊆ Π by: X⊥⊥ , {t ∈ Λ : ∀π ∈ X, t ? π ∈ ⊥⊥}.
Valid formulas A are then defined as the ones admitting a proof-like realizer3 t ∈ |A|.

Before defining implicative algebras, we would like to draw the reader’s attention on an
important observation about realizability: there is an omnipresent lattice structure, which
is reminiscent of the concept of subtyping [3]. Given a realizability model it is indeed
always possible to define a semantic notion of subtyping: A 4 B , ‖B‖ ⊆ ‖A‖. This
informally reads as “A is more precise than B”, in that A admits more opponents than B.
In this case, the relation 4 being induced from (reversed) set inclusions comes with a richer
structure of complete lattice, where the meet ∧ is defined as a union and the join ∨ as an
intersection. In particular, the interpretation of a universal quantifier ‖∀x.A‖ is given by
an union

⋃
n∈N ‖A[n/x]‖ =

c
n∈N ‖A[n/x]‖, while the logical connective ∧ is interpreted

as the type of pairs × i.e. with a computation content. As such, realizability corresponds
to the following picture: ∀ =

c
∧ = × . This is to compare with forcing, that can

be expressed in terms of Boolean algebras where both the universal quantifier and the
conjunction are interpreted by meets without any computational content: ∀ = ∧ =

c
[1].

1 Available at https://gitlab.com/emiquey/ImplicativeAlgebras/
2 For a detailed introduction on this topic, we refer the reader to [20] or [32].
3 One specificity of Krivine classical realizability is that the set of terms contains the control operator cc

and continuation constants kπ . Therefore, to preserve the consistency of the induced models, one has to
consider only proof-like terms, i.e. terms that do not contain any continuations constants see [20, 32].

CSL 2020

https://gitlab.com/emiquey/ImplicativeAlgebras/

30:4 Revisiting the Duality of Computation

2.2 Implicative algebras
Implicative structures are tailored to represent both the formulas of second-order logic and
realizers arising from Krivine’s λc-calculus. For their logical facet, they are defined as
meet-complete lattices (for the universal quantification) with an internal binary operation
satisfying the properties of the implication:

I Definition 1. An implicative structure is a complete lattice (A,4) equipped with an
operation (a, b) 7→ (a→ b), such that for all a, a0, b, b0 ∈ A and any subset B ⊆ A:
1. If a0 4 a and b 4 b0 then (a→ b) 4 (a0 → b0).
2.

c
b∈B(a→ b) = a→

c
b∈B b

It is then immediate to embed any closed formula of second-order logic within any
implicative structure. Obviously, any complete Heyting algebra or any complete Boolean
algebra defines an implicative structure with the canonical arrow. More interestingly, any
ordered combinatory algebras, a structure arising naturally from realizability [16, 39, 38, 7],
also induces an implicative structure [34]. Last but not least, any classical realizability model
induces as expected an implicative structure on the lattice (P(Π),⊇) by considering the
arrow defined by4: a→ b , a⊥⊥ · b = {t · π : t ∈ a⊥⊥, π ∈ b} ([31, 34].

Interestingly, if any implicative structure A trivially provides us with an embedding of
second-order formulas, we can also encode λ-terms with the following definitions:

ab ,
k
{c : a 4 b→ c} λf ,

k

a∈A
(a→ f(a))

In both cases, one can understand the meet as a conjunction of all the possible approximations
of the desired term. From now on, we will denote by tA (resp. AA) the interpretation of the
closed λ-term t (resp. formula A). Notably, these embeddings are at the same time:
1. Sound with respect to the β-reduction, in the sense that (λf)a 4 f(a) (and more generally,

one can show that if t→β u implies tA 4 uA);
2. Adequate with respect to typing, in the sense that if t is of type A, then we have tA 4 AA

(which can reads as “t realizes A”).
In the case of certain combinators, including Hilbert’s combinator k and s, their interpreta-
tions as λ-term is even equal to the interpretation of their principal types, that is to say that
we have kA =

c
a,b∈A(a→ b→ a) and sA =

c
a,b,c∈A((a→ b→ c)→ (a→ b)→ a→ c). This

justifies the definition ccA ,
c
a,b(((a→ b)→ a)→ a).

Implicative structure are thus suited to interpret both terms and their types. To give an
account for realizability models, one then has to define a notion of validity:

I Definition 2 (Separator). Let (A,4,→) be an implicative structure. We call a separator
over A any set S ⊆ A such that for all a, b ∈ A, the following conditions hold:
1. If a ∈ S and a 4 b, then b ∈ S.
2. kA ∈ S, and sA ∈ S.

3. If (a→ b) ∈ S and a ∈ S, then b ∈ S.

A separator S is said to be classical if ccA ∈ S and consistent if ⊥ /∈ S. We call implicative
algebra any implicative structure (A,4,→,S) equipped with a separator S over A.

Intuitively, thinking of elements of an implicative structure as truth values, a separator
should be understood as the set which distinguishes the valid formulas (think of a filter in a

4 This is actually nothing more than the definition of the falsity value ‖A⇒ B‖.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#ImplicativeStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#betarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#imp_betared
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#separator

É. Miquey 30:5

Boolean algebra). Considering the elements as terms, it should rather be viewed as the set
of valid realizers. Indeed, conditions (2) and (3) ensure that all closed λ-terms are in any
separator5. Reading a 4 b as “the formula a is a subtype of the formula b”, condition (2)
ensures the validity of semantic subtyping. Thinking of the ordering as “a is a realizer of the
formula b”, condition (2) states that if a formula is realized, then it is in the separator.

I Example 3. Any Krivine realizability model induces an implicative structure (A,4,→)
where A = P(Π), a 4 b⇔ a ⊇ b and a→ b = a⊥⊥ · b. The set of realized formulas, namely
S = {a ∈ A : ∃t ∈ a⊥⊥, t proof-like}, defines a valid separator [31].

2.3 Internal logic & implicative tripos
In order to study the internal logic of implicative algebras, we define an entailment relation:
we say that a entails b and we write a `S b if a→ b ∈ S. This relation induces a preorder
on A. Then, by defining products a× b and sums a+ b through their usual impredicative
encodings in System F6, we recover a structure of pre-Heyting algebra with respect to the
entailment relation: a `S b→ c if and only if a× b `S c.

In order to recover a Heyting algebra, it suffices to consider the quotient H = A/∼=S
by the equivalence relation ∼=S induced by `S , which is naturally equipped with an order
relation: [a] 4H [b] , a `S b (where we write [a] for the equivalence class of a ∈ A).
Likewise, we can extend the product, the sum and the arrow to equivalences classes to obtain
a Heyting algebra (H,4H,∧H,∨H,→H).

Given any implicative algebra, we can define construction of the implicative tripos is
quite similar. Recall that a (set-based) tripos is a first-order hyperdoctrine T : Setop → HA
which admits a generic predicate. To define a tripos, we roughly consider the functor of
the form I ∈ Setop 7→ AI . Again, to recover a Heyting algebra we quotient the product AI
(which defines an implicative structure) by the uniform separator S[I] defined by:

S[I] , {a ∈ AI : ∃s ∈ S.∀i ∈ I.s 4 ai}

I Theorem 4 (Implicative tripos [31]). Let (A,4,→,S) be an implicative algebra. The
following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J]

[(ai)i∈I] 7→ [(af(j))j∈J]

Observe that we could also quotient the product AI by the separator product SI . Actually,
the quotientAI/SI is in bijection with (A/S)I , and in the case where S is a classical separator,
A/S is actually a Boolean algebra, so that the product (A/S)I is nothing more than a
Boolean-valued model (as in the case of forcing). Since S[I] ⊆ SI , the realizability models
that can not be obtained by forcing are exactly those for which S[I] 6= SI (see [31]).

3 Decomposing the arrow: disjunctive algebras

We shall now introduce the notion of disjunctive algebra, which is a structure primarily
based on disjunctions, negations (for the connectives) and meets (for the universal quantifier).
Our main purpose is to draw the comparison with implicative algebras, as an attempt to

5 The latter indeed implies the closure of separators under application.
6 That is to say that we define a× b ,

c
c∈A((a→ b→ c)→ c) and a+ b ,

c
c∈A((a→ c)→ (b→ c)→ c).

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ha_adjunction
https://emiquey.gitlab.io/ImplicativeAlgebras/ImplicativeAlgebras.html

30:6 Revisiting the Duality of Computation

justify eventually that the latter are more general than the former, and to lay the bases
for a dualizable definition. In the seminal paper introducing linear logic [12], Girard refines
the structure of the sequent calculus LK, introducing in particular negative and positive
connectives for disjunctions and conjunctions7. With this finer set of connectives, the usual
implication can be retrieved using either the negative disjunction: A→ B , ¬A`B or the
positive conjunction: A→ B , ¬(A⊗ ¬B).

In 2009, Munch-Maccagnoni gave a computational account of Girard’s presentation for
classical logic [35]. In his calculus, named L, each connective corresponds to the type of a
particular constructor (or destructor). While L is in essence close to Curien and Herbelin’s
λµµ̃-calculus [4] (in particular it is presented with the same paradigm of duality between
proofs and contexts), the syntax of terms does not include λ-abstraction (and neither does
the syntax of formulas includes an implication). The two decompositions of the arrow
evoked above are precisely reflected in decompositions of λ-abstractions (and dually, of
stacks) in terms of L constructors. Notably, the choice of a decomposition corresponds to a
particular choice of an evaluation strategy8 for the encoded λ-calculus: picking the negative
` connective corresponds to call-by-name, while the decomposition using the ⊗ connective
reduces in a call-by-value fashion.

We shall begin by considering the call-by-name case, which is closer to the situation of
implicative algebras. The definition of disjunctive structures and algebras are guided by an
analysis of the realizability model induced by L̀ , that is Munch-Maccagnoni’s system L restric-
ted to the fragment corresponding to negative formulas: A,B := X | A`B | ¬A | ∀X.A [35].
To leave room for more details on disjunctive algebras, we elude here the introduction of L̀
and its relation to the call-by-name λ-calculus, we refer the interested reader to the extended
version.

3.1 Disjunctive structures
We are now going to define the notion of disjunctive structure. Since we choose negative
connectives and in particular a universal quantifier, we should define commutations with
respect to arbitrary meets. The realizability interpretation for L̀ provides us with a safeguard
in this regard, since in the corresponding models, if X /∈ FV (B) the following equalities9
hold:
1. ‖∀X.(A`B)‖V = ‖(∀X.A) `B‖.
2. ‖∀X.(B `A)‖V = ‖B ` (∀X.A)‖.

3. ‖¬(∀X.A)‖V =
⋂
S∈P(V0) ‖¬A{X := Ṡ}‖V

Algebraically, the previous proposition advocates for the following definition (remember that
the order is defined as the reversed inclusion of primitive falsity values (whence ∩ is

b
) and

that the ∀ quantifier is interpreted by
c
):

I Definition 5 (Disjunctive structure). A disjunctive structure is a complete lattice (A,4)
equipped with a binary operation (a, b) 7→ a ` b, together with a unary operation a 7→ ¬a,
such that for all a, a′, b, b′ ∈ A and for any B ⊆ A:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a` b 4 a′ ` b′

3.
c
b∈B(b` a) = (

c
b∈B b) ` a

4.
c
b∈B(a` b) = a` (

c
b∈B b)

5. ¬
c
a∈A a =

b
a∈A ¬a

7 We insist on the fact that even though we use linear notations afterwards, nothing will be linear here.
8 Phrased differently, this observation can be traced back to different works, for instance by Blain-Levy [28,
Fig. 5.10], Laurent [26] or Danos, Joinet and Schellinx [5].

9 Technically, V0 is the set of closed values which, in this setting, are evaluation contexts (think of Π in
usual Krivine models), and ‖A‖V ∈ P(V0) is the (ground) falsity value of a formula A.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#ParStructure

É. Miquey 30:7

Observe that the commutation laws imply the value of the internal laws when applied to the
maximal element>: 1. >` a = > 2. a`> = > 3. ¬> = ⊥

We give here some examples of disjunctive structures.

I Example 6 (Dummy disjunctive structure). Given any complete lattice (L,4), defining
a` b , > and ¬a , ⊥ gives rise to a dummy structure that fulfills the required properties.

I Example 7 (Complete Boolean algebras). Let B be a complete Boolean algebra. It encom-
passes a disjunctive structure defined by:

A , B a 4 b , a 4 b a` b , a ∨ b ¬a , ¬a

I Example 8 (L̀ realizability models). Given a realizability interpretation of L̀ , we define:

A , P(V0)
a 4 b , a ⊇ b

a` b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}
¬a , [a⊥⊥] = {[t] : t ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values9, and (·, ·) and [·] are the maps corresponding
to ` and ¬. The resulting quadruple (A,4,`,¬) is a disjunctive structure.

Following the interpretation of the λ-terms in implicative structures, we can embed
L̀ terms within disjunctive structures. We do not have the necessary space here to fully
introduce here10, but it is worth mentioning that the orthogonality relation t⊥⊥e is interpreted
via the ordering tA 4 eA (as suggested in [8, Theorem 5.13] by the definition of an abstract
Krivine structure and its pole from an ordered combinatory algebra).

3.2 The induced implicative structure

As expected, any disjunctive structure directly induces an implicative structure through the
definition a →̀ b , ¬a` b:

I Proposition 9. If (A,4,`,¬) is a disjunctive structure, then (A,4, →̀) is an implicative
structure.

Therefore, we can again define for all a, b of A the application ab as well as the abstraction
λf for any function f from A to A; and we get for free the properties of these encodings in
implicative structures.

Up to this point, we have two ways of interpreting a λ-term into a disjunctive structure:
either through the implicative structure which is induced by the disjunctive one, or by
embedding into the L̀ -calculus which is then interpreted within the disjunctive structure.
As a sanity check, we verify that both coincide:

I Proposition 10 (λ-calculus). Let A` = (A,4,`,¬) be a disjunctive structure, and A→ =
(A,4, →̀) the implicative structure it canonically defines, we write ι for the corresponding
inclusion. Let t be a closed λ-term (with parameter in A), and JtK his embedding in L̀ . Then
we have ι(tA→) = JtKA

` .

10 See the extended version for more details.

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_top_l
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_top_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#neg_top
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Dummies.html#dummy_par
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#cba_pa
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#PS_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html

30:8 Revisiting the Duality of Computation

3.3 Disjunctive algebras
We shall now introduce the notion of disjunctive separator. To this purpose, we adapt
the definition of implicative separators, using standard axioms11 for the disjunction and
the negation instead of Hilbert’s combinators s and k. We thus consider the following
combinators:

s̀1 ,
c
a∈A [(a` a)→ a]

s̀2 ,
c
a,b∈A [a→ (a` b)]

s̀3 ,
c
a,b∈A [(a` b)→ b` a]

s̀4 ,
c
a,b,c∈A [(a→ b)→ (c` a)→ (c` b)]

s̀5 ,
c
a,b,c∈A [(a` (b` c))→ ((a` b) ` c)]

Separators for A are defined similarly to the separators for implicative structures, replacing
the combinators k, s and cc by the previous ones.

I Definition 11 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:

1. If a ∈ S and a 4 b then b ∈ S.
2. s̀1, s̀2, s̀3, s̀4 and s̀5 are in S.

3. If a→ b ∈ S and a ∈ S then b ∈ S.

A separator S is said to be consistent if ⊥ /∈ S. We call disjunctive algebra the given of
a disjunctive structure together with a separator S ⊆ A.

I Remark 12. The reader may notice that in this section, we do not distinguish between
classical and intuitionistic separators. Indeed, L̀ and the corresponding fragment of the
sequent calculus are intrinsically classical. As we shall see thereafter, so are the disjunctive
algebras: the negation is always involutive modulo the equivalence ∼=S (Proposition 16).

I Remark 13 (Generalized modus ponens). The modus ponens, that is the unique deduc-
tion rule we have, is actually compatible with meets. Consider a set I and two families
(ai)i∈I , (bi)i∈I ∈ AI , we have:

a `I b `I a
`I b

where we write a `I b for (
c
i∈I ai → bi) ∈ S and `I a for (

c
i∈I ai) ∈ S. As our axioms are

themselves expressed as meets, the results that we will obtain internally (that is by deduction
from the separator’s axioms) can all be generalized to meets.

I Example 14 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra,
B induces a disjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator
for the induced disjunctive structure. In fact, the filters for B are exactly its separators.

I Example 15 (L̀ realizability model). Remember from Example 8 that any model of classical
realizability based on the L̀ -calculus induces a disjunctive structure. As in the implicative
case, the set of formulas realized by a closed term12 defines a valid separator.

11These axioms can be found for instance in Whitehead and Russell’s presentation of logic [41]. In fact,
the fifth axiom is deducible from the first four as was later shown by Bernays [2]. For simplicity reasons,
we preferred to keep it as an axiom.

12Proof-like terms in L̀ simply correspond to closed terms.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#ParAlgebra
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#mod_pon_inf
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#CBA_PA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html

É. Miquey 30:9

3.4 Internal logic
As in the case of implicative algebras, we say that a entails b and write a `S b if a→ b ∈ S.
Through this relation, which is again a preorder relation, we can relate the primitive negation
and disjunction to the negation and sum type induced by the underlying implicative structure:

a+ b ,
k

c∈A
((a→ c)→ (b→ c)→ c) (∀a, b ∈ A)

In particular, we show that from the point of view of the separator the principle of double
negation elimination is valid and the disjunction and this sum type are equivalent:

I Proposition 16 (Implicative connectives). For all a, b ∈ A, the following holds:
1. ¬a `S a→ ⊥
2. a→ ⊥ `S ¬a

3. a `S ¬¬a
4. ¬¬a `S a

5. a` b `S a+ b

6. a+ b `S a` b

3.5 Induced implicative algebras
In order to show that any disjunctive algebra is a particular case of implicative algebra, we
first verify that Hilbert’s combinators belong to any disjunctive separator:

I Proposition 17 (Combinators). We have: 1. kA ∈ S 2. sA ∈ S 3. ccA ∈ S

As a consequence, we get the expected theorem:

I Theorem 18. Any disjunctive algebra is a classical implicative algebra.

Since any disjunctive algebra is actually a particular case of implicative algebra, the con-
struction leading to the implicative tripos can be rephrased entirely in this framework. In
particular, the same criteria allows us to determine whether the implicative tripos is iso-
morphic to a forcing tripos. Notably, a disjunctive algebra admitting an extra-commutation
rule the negation ¬ with arbitrary joins (¬

b
a∈A a =

c
a∈A ¬a) will induce an implicative

algebra where the arrow commutes with arbitrary joins. In that case, the induced tripos
would collapse to a forcing situation (see [31]).

4 A positive decomposition: conjunctive algebras

4.1 Call-by-value realizability models
While there exists now several models build of classical theories constructed via Krivine
realizability [22, 24, 25, 29], they all have in common that they rely on a presentation of
logic based on negative connectives/quantifiers. If this might not seem shocking from a
mathematical perspective, it has the computational counterpart that these models all build
on a call-by-name calculus, namely the λc-calculus13. In light of the logical consequences
that computational choices have on the induced theory, it is natural to wonder whether the
choice of a call-by-name evaluation strategy is anecdotal or fundamental.

As a first step in this direction, we analyze here the algebraic structure of realizability
models based on the L⊗ calculus, the positive fragment of Munch-Maccagnoni’s system L

13Actually, there is two occurrences of realizability interpretations for call-by-value calculus, including
Munch-Maccagnoni’s system L, but both are focused on the analysis of the computational behavior of
programs rather than constructing models of a given logic [35, 27].

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#lm:pc6
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#neg_imp_bot
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#imp_bot_neg
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#dni_entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#dne_entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#par_or
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#or_par
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#psep_cc
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ParAlgebras.html#PA_IA

30:10 Revisiting the Duality of Computation

corresponding to the formulas defined by: A,B ::= X | ¬A | A ⊗ B | ∃X.A. Through the
well-known duality between terms and evaluation contexts [4, 35], this fragment is dual to
the L̀ calculus and it naturally allows to embed the λ-terms evaluated in a call-by-value
fashion. We shall now reproduce the approach we had for L̀ : guided by the analysis of the
realizability models induced by the L⊗ calculus, we first define conjunctive structures. We
then show how these structures can be equipped with a separator and how the resulting
conjunctive algebras lead to the construction of a conjunctive tripos. We will finally show in
the next section how conjunctive and disjunctive algebras are related by an algebraic duality.

4.2 Conjunctive structures
As in the previous section, we will not introduce here the L⊗ calculus and the corresponding
realizability models (see the extended version for details). Their main characteristic is that,
being build on top of a call-by-value calculus, a formula A is primitively interpreted by its
ground truth value |A|v ∈ P(VO) which is a set of values. Its falsity and truth values are then
defined by orthogonality [35, 27]. Once again, we can observe the existing commutations in
these realizability models. Insofar as we are in a structure centered on positive connectives,
we especially pay attention to the commutations with joins. As a matter of fact, in any L⊗

realizability model, we have that if X /∈ FV (B):

1. |∃X.(A⊗B)|V = |(∃X.A)⊗B|V .
2. |∃X.(B ⊗A)|V = |B ⊗ (∃X.A)|V .

3. |¬(∃X.A)|V =
⋂
S∈P(V0) |¬A{X := Ṡ}|V

Since we are now interested in primitive truth values, which are logically ordered by inclusion
(in particular, the existential quantifier is interpreted by unions, thus joins), the previous
proposition advocates for the following definition:

I Definition 19 (Conjunctive structure). A conjunctive structure is a complete join-semilattice
(A,4) equipped with a binary operation (a, b) 7→ a⊗ b, and a unary operation a 7→ ¬a, such
that for all a, a′, b, b′ ∈ A and for all subset B ⊆ A we have:
1. if a 4 a′ then ¬a′ 4 ¬a
2. if a 4 a′ and b 4 b′ then a⊗ b 4 a′ ⊗ b′
3.

b
b∈B(a⊗ b) = a⊗ (

b
b∈B b)

4.
b
b∈B(b⊗ a) = (

b
b∈B b)⊗ a

5. ¬
b
a∈A a =

c
a∈A ¬a

As in the cases of implicative and disjunctive structures, the commutation rules imply
that: 1. ⊥⊗a = ⊥ 2. a⊗⊥ = ⊥ 3. ¬⊥ = >

I Example 20 (Dummy conjunctive structure). Given a complete lattice L, the following
definitions give rise to a dummy conjunctive structure: a⊗ b , ⊥ ¬a , >.

I Example 21 (Complete Boolean algebras). Let B be a complete Boolean algebra. It embodies
a conjunctive structure, that is defined by:
A , B a 4 b , a 4 b a⊗ b , a ∧ b ¬a , ¬a

I Example 22 (L⊗ realizability models). As for the disjunctive case, we can abstract the
structure of the realizability interpretation of L⊗ to define:

A , P(V0)
a⊗ b , {(V1, V2) : V1 ∈ a ∧ V2 ∈ b}

a 4 b , a ⊆ b
¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥}

where ⊥⊥ is the pole, V0 is the set of closed values and (·, ·) and [·] are the maps corresponding
to ⊗ and ¬. The resulting quadruple (A,4,⊗,¬) is a conjunctive structure.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#TensorStructure
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tensor_bot_l
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tensor_bot_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tensor_top
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Dummies.html#dummy_tensor
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#CBA_TS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html

É. Miquey 30:11

It is worth noting that even though we can define an arrow by a ⊗→ b , ¬(a⊗¬b), it does
not induce an implicative structure: indeed, the distributivity law is not true in general14. In
turns, we have another distributivity law which is usually wrong in implicative structure:

(
j

a∈A
a) ⊗→ b =

k

a∈A
(a ⊗→ b)

k

b∈B

(a ⊗→ b) 64 a ⊗→ (
k

b∈B

b)

Actually, implicative structures where both are true corresponds precisely to a degenerated
forcing situation.

Here again, we can define an embedding of L⊗ into any conjunctive structure which is
sound with respect to typing and reductions15.

4.3 Conjunctive algebras

The definition of conjunctive separators turns out to be more subtle than in the disjunctive
case. Among others things, conjunctive structures mainly axiomatize joins, while the
combinators or usual mathematical axioms that we could wish to have in a separator are
more naturally expressed via universal quantifications, hence meets. Yet, an analysis of
the sequent calculus underlying L⊗ type system15, shows that we could consider a tensorial
calculus where deduction systematically involves a conclusion of the shape ¬A. This justifies
to consider the following combinators16:

s⊗1 ,
c
a∈A ¬ [¬(a⊗ a)⊗ a]

s⊗2 ,
c
a,b∈A ¬ [¬a⊗ (a⊗ b)]

s⊗3 ,
c
a,b∈A ¬ [¬(a⊗ b)⊗ (b⊗ a)]

s⊗4 ,
c
a,b,c∈A ¬ [¬(¬a⊗ b)⊗ (¬(c⊗ a)⊗ (c⊗ b))]

s⊗5 ,
c
a,b,c∈A ¬ [¬(a⊗ (b⊗ c))⊗ ((a⊗ b)⊗ c)]

and to define conjunctive separators as follows:

I Definition 23 (Separator). We call separator for the disjunctive structure A any subset
S ⊆ A that fulfills the following conditions for all a, b ∈ A:

1. If a ∈ S and a 4 b then b ∈ S.
2. s⊗1 , s

⊗
2 , s

⊗
3 , s

⊗
4 and s⊗5 are in S.

3. If ¬(a⊗ b) ∈ S and a ∈ S then ¬b ∈ S.
4. If a ∈ S and b ∈ S then a⊗ b ∈ S.

A separator S is said to be classical if besides ¬¬a ∈ S implies a ∈ S.

I Remark 24 (Modus Ponens). If the separator is classical, it is easy to see that the modus
ponens is valid: if a ⊗→ b ∈ S and a ∈ S, then ¬¬b ∈ S by (3) and thus b ∈ S.

I Example 25 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra, B
induces a conjunctive structure in which it is easy to verify that the combinators s̀1, s̀3, s̀3, s̀4
and s̀5 are equal to the maximal element >. Therefore, the singleton {>} is a valid separator.

I Example 26 (L⊗realizability model). As expected, the set of realized formulas by a proof-like
term: defines a valid separator for the conjunctive structures induced by L⊗ realizability
models.

14For instance, it is false in L⊗ realizability models.
15 See the extended version for more details.
16Observe that are directly dual to the combinators for disjunctive separators and that they can be

alternatively given the shape ¬
b

_∈A

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tarrow_join
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#TensorAlgebra
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#MP_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#CBA_KTA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html

30:12 Revisiting the Duality of Computation

I Example 27 (Kleene realizability). We do not want to enter into too much details here, but
it is worth mentioning that realizability interpretations à la Kleene of intuitionistic calculi
equipped with primitive pairs (e.g. (partial) combinatory algebras, the λ-calculus) induce
conjunctive algebras. Insofar as many Kleene realizability models takes position against
classical reasoning (for ∀X.X ∨ ¬X is not realized and hence its negation is), these algebras
have the interesting properties of not being classical (and are even incompatible with a classical
completion).

I Remark 28 (Generalized axioms). Once again, the axioms (3) and (4) generalize to meet
of families (ai)i∈I , (bi)i∈I :

`I ¬(a⊗ b) `I a
`I ¬b

`I a `I b
`I a⊗ b

where we write `I a for (
c
i∈I ai) ∈ S and where the negation and conjunction of families

are taken pointwise. Once again, the axioms being themselves expressed as meets, this means
that any result obtained from the separator’s axioms (but the classical one) can be generalized
to meets.

4.4 Internal logic
As before, we consider the entailment relation defined by a `S b , (a ⊗→ b) ∈ S. Observe
that if the separator is not classical, we do not have that a `S b and a ∈ S entails17 b ∈ S.
Nonetheless, this relation still defines a preorder in the sense that:

I Proposition 29 (Preorder). For any a, b, c ∈ A, we have:
1. a `S a 2. If a `S b and b `S c then a `S c

Intuitively, this reflects the fact that despite we may not be able to extract the value of a
computation, we can always chain it with another computation expecting a value.

Here again, we can relate the negation ¬a to the one induced by the arrow a ⊗→ ⊥:

I Proposition 30 (Implicative negation). For all a ∈ A, the following holds:
1. ¬a `S a ⊗→ ⊥ 2. a ⊗→ ⊥ `S ¬a 3. a `S ¬¬a 4. ¬¬a `S a

As in implicative structures, we can define the abstraction and application of the λ-
calculus:

λf ,
k

a∈A
(a ⊗→ f(a)) ab ,

k
{¬¬c : a 4 b ⊗→ c}

Observe that here we need to add a double negation, since intuitively ab is a computation of
type ¬¬c rather than a value of type c. In other words, values are not stable by applications,
and extracting a value from a computation requires a form of classical control. Nevertheless,
for any separator we have:

I Proposition 31. If a ∈ S and b ∈ S then ab ∈ S.

Similarly, the beta reduction rule now involves a double-negation on the reduced term:

17Actually we can consider a different relation a `¬ b , ¬(a⊗ b) for which a `¬ b and a ∈ S entails ¬b.
This one turns out to be useful to ease proofs, but from a logical perspective, the significant entailment
is the one given by a `S b.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#MP_inf
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#id_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#C6_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tneg_imp_bot
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#imp_bot_tneg
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#dni_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#dne_t
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#app_closed
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#nentails

É. Miquey 30:13

I Proposition 32. (λf)a 4 ¬¬f(a)

We show that Hilbert’s combinators k and s belong to any conjunctive separator:

I Proposition 33 (k and s). We have:
1. (λxy.x)A ∈ S 2. (λxyz.x z (y z))A ∈ S

By combinatorial completeness, for any closed λ-term t we thus have the a combinatorial
term t0 (i.e. a composition of k and s) such that t0 →∗ t. Since S is closed under application,
tA0 also belong to S. Besides, since for each reduction step tn → tn+1, we have tAn 4 ¬¬tAn+1,
if the separator is classical18, we can thus deduce that it contains the interpretation of t :

I Theorem 34 (λ-calculus). If S is classical and t is a closed λ-term, then tA ∈ S.

Once more, the entailment relation induces a structure of (pre)-Heyting algebra, whose
conjunction and disjunction are naturally given by a× b , a⊗ b and a+ b , ¬(¬a⊗ ¬b):

I Proposition 35 (Heyting Algebra). For any a, b, c ∈ A For any a, b, c ∈ A, we have:

1. a× b `S a
2. a× b `S b

3. a `S a+ b

4. b `S a+ b

5. a `S b ⊗→ c iff a×b `S c

We can thus quotient the algebra by the equivalence relation ∼=S and extend the previous
operation to equivalence classes in order to obtain a Heyting algebra A/ ∼=S . In particular,
this allows us to obtain a tripos out of a conjunctive algebra by reproducing the construction
of the implicative tripos in our setting:

I Theorem 36 (Conjunctive tripos). Let (A,4,→,S) be a classical19 conjunctive algebra.
The following functor (where f : J → I) defines a tripos:

T : I 7→ AI/S[I] T (f) :
{
AI/S[I] → AJ/S[J]

[(ai)i∈I] 7→ [(af(j))j∈J]

5 The duality of computation, algebraically

In [4], Curien and Herbelin introduce the λµµ̃ in order to emphasize the so-called duality
of computation between terms and evaluation contexts. They define a simple translation
inverting the role of terms and stacks within the calculus, which has the notable consequence
of translating a call-by-value calculus into a call-by-name calculus and vice-versa. The
very same translation can be expressed within L, in particular it corresponds to the trivial
translation from mapping every constructor on terms (resp. destructors) in L⊗ to the
corresponding constructor on stacks (resp. destructors) in L̀ . We shall now see how this
fundamental duality of computation can be retrieved algebraically between disjunctive and
conjunctive algebras.

We first show that we can simply pass from one structure to another by reversing the
order relation. We know that reversing the order in a complete lattice yields a complete

18Actually, since we always have that if ¬¬¬¬a ∈ S then ¬¬a ∈ S, the same proof shows that in the
intuitionistic case we have at ¬¬tA ∈ S.

19For technical reasons, we only give the proof in case where the separator is classical (recall that it allows
to directly use λ-terms), but as explained, by adding double negation everywhere the same reasoning
should work for the general case as well. Yet, this is enough to express our main result in the next
section which only deals with the classical case.

CSL 2020

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#beta_reduction
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tsep_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tsep_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#tsep_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#Heyting_and_l
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#Heyting_and_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#Heyting_or_l
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#Heyting_or_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html#Heyting_adj
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.TensorAlgebras.html

30:14 Revisiting the Duality of Computation

lattice in which meets and joins are exchanged. Therefore, it only remains to verify that the
axioms of disjunctive and conjunctive structures can be deduced through this duality one
from each other, which is the case.
I Proposition 37. Let (A,4,`,¬) be a disjunctive structure. Let us define:
A⊗ , A` a / b , b 4 a a⊗ b , a` b ¬a , ¬a

then (A⊗, /,⊗,¬) is a conjunctive structure.
I Proposition 38. Let (A,4,⊗,¬) be a conjunctive structure. Let us define:
A` , A⊗ a / b , b 4 a a` b , a⊗ b ¬a , ¬a

then (A⊗, /,⊗,¬) is a disjunctive structure.
Intuitively, by considering stacks as realizers, we somehow reverse the algebraic structure,

and we consider as valid formulas the ones whose orthogonals were valid. In terms of
separator, it means that when reversing a structure we should consider the separator defined
as the preimage through the negation of the original separator.
I Theorem 39. Let (A⊗,S⊗) be a conjunctive algebra, the set S` , {a ∈ A : ¬a ∈ S⊗}
defines a valid separator for the dual disjunctive structure A`.
I Theorem 40. Let (A`,S`) be a disjunctive algebra. The set S⊗ , {a ∈ A : ¬a ∈ S`}
defines a classical separator for the dual conjunctive structure A⊗.

It is worth noting that reversing in both cases, the dual separator is classical. This is
to connect with the fact that classical reasoning principles are true on negated formulas.
Moreover, starting from a non-classical conjunctive algebra, one can reverse it twice to get a
classical algebra. This corresponds to a classical completion of the original separator S: it is
easy to see that a ∈ S implies ¬¬a ∈ S, hence S ⊆ {a : ¬¬a ∈ S}.

Actually, the duality between disjunctive and (classical) conjunctive algebras is even
stronger, in the sense that through the translation, the induced triposes are isomorphic.
Remember that an isomorphism ϕ between two (Set-based) triposes T , T ′ is defined as
a natural isomorphism T ⇒ T ′ in the category HA, that is as a family of isomorphisms
ϕI : T (I) ∼→ T ′(I) (indexed by all I ∈ Set) that is natural in I.
I Theorem 41 (Main result). Let (A,S) be a disjunctive algebra and (Ā, S̄) its dual con-
junctive algebra. The following family of maps defines a tripos isomorphism:

ϕI :
{
Ā/S̄[I] → A/S[I]

[ai] 7→ [¬ai]

6 Conclusion

6.1 An algebraic view on the duality of computation
To sum up, in this paper we saw how the two decompositions of the arrow a→ b as ¬a` b

and ¬(a⊗¬b), which respectively induce decompositions of a call-by-name and call–by-value
λ-calculi within Munch-Maccagnoni’s system L [35], yield two different algebraic structures
reflecting the corresponding realizability models. Namely, call-by-name models give rise to
disjunctive algebras, which are particular cases of Miquel’s implicative algebras [31]; while
conjunctive algebras correspond to call-by-value realizability models.

The well-known duality of computation between terms and contexts is reflected here by
simple translations from conjunctive to disjunctive algebras and vice-versa, where the under-
lying lattices are simply reversed. Besides, we showed that (classical) conjunctive algebras
induce triposes that are isomorphic to disjunctive triposes. The situation is summarized in
Figure 1, where ⊗¬¬ denotes classical conjunctive algebras.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html#PS_TS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html#TS_PS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html#TA_PA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html#PA_KTA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Duality.html

É. Miquey 30:15

`-algebras

→-algebras ⊗-algebras

⊗¬¬-algebras

Boolean algebras

instance
translation

Thm. 18

Ex.
7

Thm. 39

Ex. 25

Thm. 40

Figure 1 Final picture.

6.2 From Kleene to Krivine via negative translation

We could now re-read within our algebraic landscape the result of Oliva and Streicher
stating that Krivine realizability models for PA2 can be obtained as a composition of Kleene
realizability for HA2 and Friedman’s negative translation [36, 30]. Interestingly, in this
setting the fragment of formulas that is interpreted in HA2 correspond exactly to the positive
formulas of L⊗, so that it gives rise to an (intuitionistic) conjunctive algebra. Friedman’s
translation is then used to encode the type of stacks within this fragment via a negation. In the
end, realized formulas are precisely the ones that are realized through Friedman’s translation:
the whole construction exactly matches the passage from a intuitionistic conjunctive structure
defined by Kleene realizability to a classical implicative algebras through the arrow from
⊗-algebras to →-algebras via `-algebras.

6.3 Future work

While Theorem 41 implies that call-by-value and call-by-name models based on the L⊗ and
L̀ calculi are equivalents, it does not provide us with a definitive answer to our original
question. Indeed, just as (by-name) implicative algebras are more general than disjunctive
algebras, it could be the case that there exists a notion of (by-value) implicative algebras
that is strictly more general than conjunctive algebras and which is not isomorphic to a
by-name situation.

Also, if we managed to obtain various results about conjunctive algebras, there is still
a lot to understand about them. Notably, the interpretation we have of the λ-calculus is
a bit disappointing in that it does not provide us with an adequacy result as nice as in
implicative algebras. In particular, the fact that each application implicitly gives rise to a
double negation breaks the compositionality. This is of course to connect with the definition
of truth values in by-value models which requires three layers and a double orthogonal. We
thus feel that many things remain to understand about the underlying structure of by-value
realizability models.

Finally, on a long-term perspective, the next step would be to understand the algebraic
impact of more sophisticated evaluation strategy (e.g., call-by-need) or side effects (e.g., a
monotonic memory). While both have been used in concrete cases to give a computational
content to certain axioms (e.g., the axiom of dependent choice [15]) or model constructions
(e.g., forcing [21]), for the time being we have no idea on how to interpret them in the realm
of implicative algebras.

CSL 2020

30:16 Revisiting the Duality of Computation

References
1 John L. Bell. Set Theory: Boolean-Valued Models and Independence Proofs. Oxford: Clarendon

Press, 2005.
2 P. Bernays. Axiomatische Untersuchung des Aussagen-Kalküls der "Principia Mathematica".

Mathematische Zeitschrift, 25:305–320, 1926.
3 Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of

system F with subtyping, pages 750–770. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.
doi:10.1007/3-540-54415-1_73.

4 Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of ICFP
2000, SIGPLAN Notices 35(9), pages 233–243. ACM, 2000. doi:10.1145/351240.351262.

5 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. LKQ and LKT : Sequent calculi
for second order logic based upon dual linear decompositions of classical implication. In
Advances in Linear Logic, 1995.

6 W. Ferrer and O. Malherbe. The category of implicative algebras and realizability. ArXiv
e-prints, December 2017. arXiv:1712.06043.

7 W. Ferrer Santos, M. Guillermo, and O. Malherbe. A Report on Realizability. ArXiv e-prints,
2013. arXiv:1309.0706.

8 W. Ferrer Santos, M. Guillermo, and O. Malherbe. Realizability in OCAs and AKSs. ArXiv
e-prints, 2015. arXiv:1512.07879.

9 Walter Ferrer Santos, Jonas Frey, Mauricio Guillermo, Octavio Malherbe, and Alexandre
Miquel. Ordered combinatory algebras and realizability. Mathematical Structures in Computer
Science, 27(3):428–458, 2017. doi:10.1017/S0960129515000432.

10 Jonas Frey. Realizability Toposes from Specifications. In Thorsten Altenkirch, editor, 13th
International Conference on Typed Lambda Calculi and Applications (TLCA 2015), volume 38 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 196–210, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TLCA.2015.
196.

11 Jonas Frey. Classical Realizability in the CPS Target Language. Electronic Notes in Theoretical
Computer Science, 325(Supplement C):111–126, 2016. The Thirty-second Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXII). doi:10.1016/j.entcs.
2016.09.034.

12 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

13 Timothy G. Griffin. A Formulae-as-type Notion of Control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90, pages
47–58, New York, NY, USA, 1990. ACM. doi:10.1145/96709.96714.

14 Hugo Herbelin. An Intuitionistic Logic that Proves Markov’s Principle. In LICS 2010,
Proceedings, 2010. doi:10.1109/LICS.2010.49.

15 Hugo Herbelin. A Constructive Proof of Dependent Choice, Compatible with Classical Logic.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012, pages 365–374. IEEE Computer Society, 2012.
doi:10.1109/LICS.2012.47.

16 Pieter Hofstra and Jaap Van Oosten. Ordered partial combinatory algebras. Mathematical
Proceedings of the Cambridge Philosophical Society, 134(3):445–463, 2003. doi:10.1017/
S0305004102006424.

17 Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau, and Nicolas
Tabareau. The Definitional Side of the Forcing. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, pages 367–376, New York, NY, USA,
2016. ACM. doi:10.1145/2933575.2935320.

18 Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. Extending Type Theory with Forcing.
In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer

https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1145/351240.351262
http://arxiv.org/abs/1712.06043
http://arxiv.org/abs/1309.0706
http://arxiv.org/abs/1512.07879
https://doi.org/10.1017/S0960129515000432
https://doi.org/10.4230/LIPIcs.TLCA.2015.196
https://doi.org/10.4230/LIPIcs.TLCA.2015.196
https://doi.org/10.1016/j.entcs.2016.09.034
https://doi.org/10.1016/j.entcs.2016.09.034
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/96709.96714
https://doi.org/10.1109/LICS.2010.49
https://doi.org/10.1109/LICS.2012.47
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.1145/2933575.2935320

É. Miquey 30:17

Science, LICS ’12, pages 395–404, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/LICS.2012.49.

19 J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc., 308:259–276, 2003.
20 J.-L. Krivine. Realizability in classical logic. In Interactive models of computation and program

behaviour. Panoramas et synthèses, 27, 2009.
21 J.-L. Krivine. Realizability algebras: a program to well order R. Logical Methods in Computer

Science, 7(3), 2011. doi:10.2168/LMCS-7(3:2)2011.
22 J.-L. Krivine. Realizability algebras II : new models of ZF + DC. Logical Methods in Computer

Science, 8(1):10, February 2012. 28 p. doi:10.2168/LMCS-8(1:10)2012.
23 J.-L. Krivine. Quelques propriétés des modèles de réalisabilité de ZF, February 2014. URL:

http://hal.archives-ouvertes.fr/hal-00940254.
24 Jean-Louis Krivine. On the Structure of Classical Realizability Models of ZF. In Hugo

Herbelin, Pierre Letouzey, and Matthieu Sozeau, editors, 20th International Conference on
Types for Proofs and Programs (TYPES 2014), volume 39 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 146–161, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2014.146.

25 Jean-Louis Krivine. Bar Recursion in Classical Realisability: Dependent Choice and Continuum
Hypothesis. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference
on Computer Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.25.

26 Olivier Laurent. A study of polarization in logic. PhD thesis, Université de la Méditerranée -
Aix-Marseille II, March 2002. URL: https://tel.archives-ouvertes.fr/tel-00007884.

27 Rodolphe Lepigre. A Classical Realizability Model for a Semantical Value Restriction. In
Peter Thiemann, editor, Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings,
volume 9632 of Lecture Notes in Computer Science, pages 476–502. Springer, 2016. doi:
10.1007/978-3-662-49498-1_19.

28 Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of
Semantics Structures in Computation. Springer, 2004. doi:10.1007/978-94-007-0954-6.

29 A. Miquel. Forcing as a Program Transformation. In LICS, pages 197–206. IEEE Computer
Society, 2011. doi:10.1109/LICS.2011.47.

30 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative
translation. Logical Methods in Computer Science, 7(2):188–202, 2011. doi:10.2168/LMCS-7(2:
2)2011.

31 Alexandre Miquel. Implicative algebras: a new foundation for realizability and forcing. ArXiv
e-prints, 2018. arXiv:1802.00528.

32 Étienne Miquey. Classical realizability and side-effects. Ph.D. thesis, Université Paris Diderot
; Universidad de la República, Uruguay, November 2017. URL: https://hal.inria.fr/
tel-01653733.

33 Étienne Miquey. A Sequent Calculus with Dependent Types for Classical Arithmetic. In LICS
2018, pages 720–729. ACM, 2018. doi:10.1145/3209108.3209199.

34 Étienne Miquey. Formalizing Implicative Algebras in Coq. In Jeremy Avigad and Assia Mah-
boubi, editors, Interactive Theorem Proving, pages 459–476. Springer International Publishing,
2018. doi:10.1007/978-3-319-94821-8_27.

35 Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability. In Erich Grädel and Re-
inhard Kahle, editors, Computer Science Logic ’09, volume 5771 of Lecture Notes in Computer
Science, pages 409–423. Springer, Heidelberg, 2009. doi:10.1007/978-3-642-04027-6_30.

36 P. Oliva and T. Streicher. On Krivine’s Realizability Interpretation of Classical Second-Order
Arithmetic. Fundam. Inform., 84(2):207–220, 2008. URL: http://iospress.metapress.com/
content/f51774wm73404583/.

CSL 2020

https://doi.org/10.1109/LICS.2012.49
https://doi.org/10.2168/LMCS-7(3:2)2011
https://doi.org/10.2168/LMCS-8(1:10)2012
http://hal.archives-ouvertes.fr/hal-00940254
https://doi.org/10.4230/LIPIcs.TYPES.2014.146
https://doi.org/10.4230/LIPIcs.CSL.2016.25
https://tel.archives-ouvertes.fr/tel-00007884
https://doi.org/10.1007/978-3-662-49498-1_19
https://doi.org/10.1007/978-3-662-49498-1_19
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.2168/LMCS-7(2:2)2011
http://arxiv.org/abs/1802.00528
https://hal.inria.fr/tel-01653733
https://hal.inria.fr/tel-01653733
https://doi.org/10.1145/3209108.3209199
https://doi.org/10.1007/978-3-319-94821-8_27
https://doi.org/10.1007/978-3-642-04027-6_30
http://iospress.metapress.com/content/f51774wm73404583/
http://iospress.metapress.com/content/f51774wm73404583/

30:18 Revisiting the Duality of Computation

37 Andrew M. Pitts. Tripos theory in retrospect. Mathematical Structures in Computer Science,
12(3):265–279, 2002. doi:10.1017/S096012950200364X.

38 Thomas Streicher. Krivine’s classical realisability from a categorical perspective. Mathematical
Structures in Computer Science, 23(6):1234–1256, 2013. doi:10.1017/S0960129512000989.

39 Jaap van Oosten. Studies in Logic and the Foundations of Mathematics. In Realizability: An
Introduction to its Categorical Side, volume 152 of Studies in Logic and the Foundations of
Mathematics, pages ii–. Elsevier, 2008. doi:10.1016/S0049-237X(13)72046-9.

40 Jaap van Oosten and Zou Tingxiang. Classical and Relative Realizability. Theory and
Applications of Categories, 31:571–593, March 2016.

41 Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cambridge University
Press, 1925–1927.

https://doi.org/10.1017/S096012950200364X
https://doi.org/10.1017/S0960129512000989
https://doi.org/10.1016/S0049-237X(13)72046-9

	Introduction
	Implicative algebras
	Krivine classical realizability in a glimpse
	Implicative algebras
	Internal logic & implicative tripos

	Decomposing the arrow: disjunctive algebras
	Disjunctive structures
	The induced implicative structure
	Disjunctive algebras
	Internal logic
	Induced implicative algebras

	A positive decomposition: conjunctive algebras
	Call-by-value realizability models
	Conjunctive structures
	Conjunctive algebras
	Internal logic

	The duality of computation, algebraically
	Conclusion
	An algebraic view on the duality of computation
	From Kleene to Krivine via negative translation
	Future work

