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Abstract
Is there an equilibrium for distributed consensus when all agents except one collude to steer the
decision value towards their preference? If an equilibrium exists, then an n− 1 size coalition cannot
do better by deviating from the algorithm, even if it prefers a different decision value. We show
that an equilibrium exists under this condition only if the number of agents in the network is
odd and the decision is binary (among two possible input values). That is, in this framework we
provide a separation between binary and multi-valued consensus. Moreover, the input and output
distribution must be uniform, regardless of the communication model (synchronous or asynchronous).
Furthermore, we define a new problem - Resilient Input Sharing (RIS), and use it to find an iff
condition for the (n− 1)-resilient equilibrium for deterministic binary consensus, essentially showing
that an equilibrium for deterministic consensus is equivalent to each agent learning all the other
inputs in some strong sense. Finally, we note that (n− 2)-resilient equilibrium for binary consensus
is possible for any n. The case of (n − 2)-resilient equilibrium for multi-valued consensus is left
open.
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1 Introduction

In recent years, there is a growing interest in distributed algorithms for networks of rational
agents that may deviate from the prescribed algorithm in order to increase their profit
[1, 2, 3, 6, 13]. For example, an agent may have a higher profit if zero is decided in a
consensus algorithm, or an agent may prefer to be (or not to be) the elected leader in a
leader election algorithm. The goal is to design distributed algorithms that reach equilibrium,
that is, where no agent can profit by cheating.

In this paper we study the consensus problem in a network of rational agents, in which
each agent has a preferred decision value. We consider (n− 1)-resilient equilibrium, that is,
an equilibrium that is resilient to any coalition of up to n − 1 agents that may collude in
order to increase their expected profit (utility). This problem was proposed in [3] and studied
also in [4], where the authors suggest an (n− 1)-resilient equilibrium for binary consensus in
a synchronous ring.
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20:2 Consensus in Equilibrium

We prove that in any (n − 1)-resilient equilibrium for binary consensus, the output of
the agents must be the XOR of the inputs of all agents. Thus, due to validity, there is no
(n− 1)-resilient equilibrium for binary consensus in even sized networks, and the algorithm
in [4] works well only for odd sized networks. Still, we show that the algorithm in [4] reaches
(n− 2)-resilient equilibrium for binary consensus with uniform input distribution, for any n.

We further show that multi-valued consensus is impossible, i.e., there is no (n−1)-resilient
equilibrium for multi-valued consensus for r > 2 where r is the number of possible values,
thus surprisingly there is a computational gap between binary and multi-valued consensus
in this model. Note that it was previously shown that in this game theoretic model, leader
election is also not equivalent to consensus [4].

Furthermore, we show that in this model, deterministic binary consensus is equivalent to
resilient input sharing (RIS), a natural problem in distributed computing in which each agent
i shares its input with all other agents in the network (a variant of the knowledge sharing
problem defined in [4]). That is, in any odd sized network with uniform input distribution,
any algorithm for RIS can be transformed into a (n−1)-resilient equilibrium for deterministic
binary consensus and vice versa. Thus, providing a sufficient and necessary condition for
(n− 1)-resilient equilibrium for deterministic binary consensus.

1.1 Our Contributions
are as follows:
(§3.1) Any (n − 1)-resilient equilibrium for binary consensus decides on the XOR of all

input values.
(§3.2) In any (n − 1)-resilient equilibrium for binary consensus the input and output

distributions are uniform.
(§3.2.1) The protocol suggested in [4] reaches (n − 2)-resilient equilibrium for binary

consensus with uniform input distribution, for any n.
(§4) There is no (n− 1)-resilient equilibrium for multi-valued consensus for r > 2 possible

inputs.
(§5) Deterministic (n− 1)-resilient equilibrium for binary consensus in a network exists iff :

1. The network size is odd.
2. The input distribution is uniform.
3. An equilibrium for Resilient Input Sharing (RIS) is possible in the network topology.

The model, notations and some definitions are given in Section 2, and we discuss our results
and further thoughts in Section 6.

1.2 Related Work
The secret sharing problem [16] initiated the connection between distributed computing and
game theory. Further works in this line of research considered multiparty communication
with Byzantine and rational agents [1, 8, 11, 12, 15].

In [3], the first distributed protocols for a network of rational agents are presented,
specifically protocols for fair leader election. In [4], the authors continue this line of research
by providing basic building blocks for game theoretic distributed algorithms, namely a
wake-up and knowledge sharing building blocks that are in equilibrium, and equilibria for
consensus, renaming, and leader election are presented using these building blocks. The
consensus algorithm in [4] claims to reach (n− 1)-resilient equilibrium in a ring or complete
network, using the knowledge sharing building block to share the input of all processors in
the network, and outputting the XOR of all inputs. Consensus was further researched in [14],
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where the authors show that there is no ex-post Nash equilibrium for rational consensus, and
present a Nash equilibrium that tolerates f failures under some minimal assumptions on the
failure pattern. Equilibrium for fair leader election and fair coin toss are also presented and
discussed in [17], where it is shown to be resilient only to coalitions of sub-linear size, and a
modification to the leader election protocol from [3, 4] that is resilient to every coalition of
size Θ(

√
n) is proposed.

In [5], the authors examine the impact of a-priori knowledge of the network size on the
equilibrium of distributed algorithms, assuming the id space is unlimited and thus vulnerable
to a Sybil attack [9]. In [7] the authors remove this assumption and assume the id space is
bounded, examining the relation between the size of the id space and the number of agents
in the network in which an equilibrium is possible.

2 Model

We use the standard message-passing model, where the network is a bidirectional graph
G = (V, E) with |V | = n nodes, each node representing a rational agent, following the model
in [2, 3]. We assume n is a-priori known to all agents, G is 2-vertex-connected, and all
agents start the protocol together, i.e., all agents wake-up at the same time. We can use the
Wake-Up [4] building block to relax this assumption. In Sections 3 and 4 the results apply
for both synchronous and asynchronous communication networks, while Section 5 assumes a
synchronous network.

In the consensus problem, each agent i has an id idi and an input Ii ∈ {0, ...r − 1} and
must output a decision Di ∈ {0, ...r − 1,⊥}. The ⊥ output can be output by an agent
to abort the protocol when a deviation by another agent is detected. A protocol achieves
consensus if it satisfies the following [10]:

Agreement: All agents decide on the same value, ∀i, j : Di = Dj .
Validity: If v was decided then it was the input of some agent, ∀j∃i : Dj = Ii.
Termination: Every agent eventually decides, ∀i : Di 6= ⊥.

I Definition 1 (Protocol Outcome). The outcome of the protocol is determined by the
input and output of all agents. An outcome is legal if it satisfies agreement, validity, and
termination, otherwise the outcome is erroneous.

Considering individual rational agents, each agent i has a utility function Ui over the
possible outcomes of the protocol. The higher the value assigned by Ui to an outcome, the
better this outcome is for i. We assume the utility function Ui of each agent i satisfies
Solution Preference [3]:

I Definition 2 (Solution Preference). The utility function Ui of any agent i never assigns a
higher utility to an erroneous outcome than to a legal one.

Thus, the Solution Preference guarantees that an agent never has an incentive to sabotage
the protocol, that is, to prefer an outcome that falsifies either agreement or validity, or
termination. However, agents may take risks that might lead to erroneous outcomes if these
risks also lead to a legal outcome which increases their expected utility, that is, if these risks
increase the expected utility that the agent is expected to gain.

An intuitive example for a utility function of an agent I with a preference towards a
decision value of 1 is:

Ui =
{
1 ∃j : Ij = 1 ∧ ∀k : Dk = 1 (1 is decided by all agents)
0 otherwise (0 is decided or erroneous outcome)

OPODIS 2019
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All agents are given a protocol at the start of the execution, but any agent may deviate
and execute a different protocol if it increases its expected utility. A protocol is said to reach
equilibrium if no agent can unilaterally increase its expected utility by deviating from the
protocol.

I Definition 3 (Nash Equilibrium1). A protocol Φ is said to reach equilibrium if, for any
agent i, there is no protocol Ψ 6= Φ that i may execute and leads to a higher expected utility
for i, assuming all other agents follow Φ.

2.1 Coalitions
We define a coalition of size t as a set of t rational agents that cooperate to increase the
utility of each agent in t. A protocol that reaches t-resilient equilibrium [3] is resilient to
coalitions of size up to t, that is, no group of t agents or less has an incentive to collude and
deviate from the protocol. We assume coalition members may agree on a deviation from the
protocol in advance, but can communicate only over the network links during the protocol
execution.

I Definition 4 (t-resilient Equilibrium). A protocol Φ is said to reach t-resilient equilibrium
if, for any group of agents C ⊂ V s.t., |C| ≤ t, there is no protocol Ψ(6= Φ) that agents in C

may execute and which would lead to a higher expected utility for each agent in C, assuming
all agents not in C follow Φ.

The same intuitive example for a utility function above holds for a coalition, in which the
coalition has a preference towards a decision value 1.

2.2 Notations
The following notations are used throughout this paper:

S−i - all possible input vectors of agents in V \ {i}.
#(b) - the number of agents in V that receive b as input.
#−i(b) - the number of agents in V \ {i} that receive b as input.
Ii - the input of agent i.
Di - the output value decided by agent i at the end of the algorithm.
r - the number of possible input and output values. For binary consensus: r = 2.

3 Necessary Conditions for (n− 1)-resilient Consensus

I Theorem 5. The decision of any (n− 1)-resilient equilibrium for binary consensus must
be the XOR of all inputs, that is, ∀i : Di =

⊕
j∈V

Ij =
∑

j∈V

Ij mod 2

Before we turn to the proof of Theorem 5 given in sections 3.1 and 3.2, note that according
to this theorem, if n is even and all inputs are 1 the decision must be 0, contradicting validity
and leading to the following corollary:

I Corollary 6. There is no (n− 1)-resilient equilibrium for binary consensus for even sized
networks

1 Previous works defined equilibrium over each step of the protocol. For convenience, this definition is
slightly different, but it is easy to see that it is equivalent.
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3.1 Output is the XOR of the Inputs
Here we prove Theorem 5 based on the following two theorems, that are proved in Section 3.2:

I Theorem 7. If the distribution over the inputs is not uniform, there is no (n− 1)-resilient
equilibrium for consensus, i.e.: ∀v1, v2 : P [Ii = v1] = P [Ii = v2] = 1

r

I Theorem 8. In any (n− 1)-resilient equilibrium for consensus, given any n− 1 inputs, the
distribution over the possible decision values is uniform: ∀s ∈ S−i, v ∈ {0, ...r − 1} : P [Di =
v|s] = 1

r

Notice that while the proof of theorem 5 holds only for binary consensus, theorems 7
and 8 are correct for multi-valued consensus as well.

Proof of Theorem 5. We prove that the decision value of binary consensus must be the
XOR of all inputs using induction on #(1), the number of agents in the network whose input
value is 1.

In the base case #(1) = 0, the input of all agents is 0. By validity the decision must be 0.
For clarity of exposition we spell out the next case of the induction, #(1) = 1, i.e., the

input of one agent is 1 and of all other n− 1 agents is 0. Assume by contradiction that the
probability that 0 is decided in this case is greater than 0, i.e.,

∃i ∈ V : P [Di = 0 | #−i(0) = 0 ∧ Ii = 1] = p > 0

Let s0 be an input configuration for a coalition in which all members of the coalition (i.e.,
V \ {i}) claim to receive 0 as input, i.e., #−i(1) = 0. Notice that:

P [Di = 0| s0] = P [Ii = 0] · P [Di = 0 | s0 ∧ Ii = 0] + P [Ii = 1] · P [Di = 0 | s0 ∧ Ii = 1]
= P [Ii = 0] · P [Di = 0 | base case ] + P [Ii = 1] · P [Di = 0 | s0 ∧ Ii = 1]
= P [Ii = 0] · 1 + P [Ii = 1] · p

By Theorem 7 (and since this is binary consensus) it follows that:

P [Di = 0| s0] = 1
2 · 1 + 1

2 · p >
1
2

Thus, contradicting Theorem 8 and proving that, ∀i ∈ V : P [Di = 0 |#−i(0) = 0 ∧ Ii = 1] = 0
Thus if #(1) = 1, the decision value must be 1, proving the first induction step.

By the inductive assumption, ∀#(1) < m the decision value of the consensus must be the
XOR of all inputs, i.e., #(1) mod 2. Let sm−1 be an input configuration for the coalition
(V \ {i}) in which #−i(1) = m− 1, that is, m− 1 members of the coalition claim to receive
1, and the rest 0.

From Theorem 8 (and since this is binary consensus) we get:

P [Di = (m mod 2) | sm−1] = 1
2

If Ii = 0 (which from Theorem 7 happens with probability 1
2 ) and the coalition acts as if its

input is sm−1, then #(1) = m− 1. By the induction hypothesis, in such a case the decision
value of the consensus must be m− 1 mod 2. To satisfy the equation above it must hold that:

P [Di = (m mod 2) | sm−1 ∧ Ii = 1] = 1

Hence, in case #(1) = m, the decision value must be m mod 2 - the XOR of all inputs. J

OPODIS 2019
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3.2 Proving Theorems 7 and 8

While the above proof holds only for binary consensus, the following lemmas and theorems
are correct for multi-valued consensus.

I Lemma 9. In any (n− 1)-resilient equilibrium for consensus, for any v ∈ {0, . . . , r − 1},
given any n− 1 inputs, the probability to decide v is the same:

∀i ∈ V, s1, s2 ∈ S−i, v : P [Di = v|s1] = P [Di = v|s2]

Proof. Assume by contradiction that ∃i ∈ V, s1, s2 ∈ S−i, v : P [Di = v|s1] < P [Di = v|s2].
A coalition C = V \ {i} with a preference to decide v, and that receives s1 as input, has an
incentive to deviate and act as if their input is s2, contradicting equilibrium. J

I Lemma 10. In any (n−1)-resilient equilibrium for consensus, for any input v ∈ {0, . . . , r−
1}, the probability to decide v is the same as the probability to receive v as an input:

∀i ∈ V, s ∈ S−i, v : P [Di = v|s] = P [Ii = v]

Proof. For any v, if all inputs are v then by validity v is decided. For any agent i, let
s̃ = (v, . . . , v) ∈ S−i, then due to validity, the probability that v is decided is at least
P [Ii = v], i.e., P [Di = v|s̃] ≥ P [Ii = v]. By Lemma 9 this is true for any s ∈ S−i.
Thus, P [Di = v] ≥ P [Ii = v]. Since

∑
v

P [Di = v] = 1 and
∑
v

P [Ii = v] = 1, then:

∀s ∈ S−i, v : P [Di = v|s] = P [Ii = v]. J

Proof of Theorem 7. Assume by contradiction that ∃v1, v2 : P [Ii = v1] > P [Ii = v2].
If all agents receive as input the same value v1, then by validity v1 is decided. Given

s = (v1, . . . , v1) ∈ S−i, the probability that v1 is decided is at least the probability that the
input of agent i is v1, i.e., P [Di = v1|s] ≥ P [Ii = v1].

If n− 1 agents receive v1 as input and one agent receives v2 6= v1 as input the decision
must not be v1 otherwise P [Di = v1|s] > P [Ii = v1] contradicting Lemma 10, thus due to
validity the decision must be v2 when n− 1 agents receive v1 and one agent receives v2.

Let s′ = (v2, v1, . . . , v1) ∈ S−i. If agent i receives v1 as input then as stated above v2 is
decided, thus: P [Di = v2|s′] ≥ P [Ii = v1] > P [Ii = v2], contradicting Lemma 10.

Thus, the input distribution must be uniform, i.e.: ∀v1, v2 : P [Ii = v1] = P [Ii = v2] =
1
r . J

Proof of Theorem 8. Combining Lemma 10 with Theorem 7 :

∀s ∈ S−i, v ∈ {0, ...r − 1} : P [Di = v|s] = P [Ii = v] = 1
r

J

3.2.1 (n− 2)-resilient Binary Consensus for any n

A binary consensus protocol for any n is presented in [4] combining a leader election algorithm
with a XOR on selected inputs. In Appendix A we prove that this protocol reaches (n− 2)-
resilient equilibrium for binary consensus for any n, when the input distribution is uniform.
Note that the algorithm in [4] does not work in any network topology, but on any network in
which Resilient Input Sharing is possible (see [4] and Section 5).
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4 No (n− 1)-resilient Equilibrium for Multi Valued Consensus

Here we discuss multi-valued consensus, where the agreement is between r > 2 possible
values rather than two values. Applying the same logic as in the proof of Theorem 5 one can
deduce:

I Lemma 11.
1. ∀i ∈ V, v ∈ {0, . . . , r − 1} : P [Di = v|#(0) = n− 1 ∧#(v) = 1] = 1
2. ∀i ∈ V, v ∈ {0, . . . , r − 1} : P [Di = 0|#(0) = n− 2 ∧#(v) = 2] = 1

Proof. The proof is the same as the first and second induction steps in the proof of Theorem 5.
J

I Theorem 12. There is no (n− 1)-resilient equilibrium for multi-valued consensus for any
r > 2.

Proof. Assume towards a contradiction that there is an (n − 1)-resilient equilibrium for
multi-valued consensus for some r > 2. Let v, u ∈ {1, . . . , r − 1} s.t. v 6= u. Denote by X

any configuration in which the input of one agent is v, of another is u, and of the rest is 0.
In a run of the protocol starting from X, due to validity the network’s decision value must
be either 0 or u or v. We prove that none of these values can be decided in an equilibrium,
reaching a contradiction. Consider some Agent i and coalition V \ {i}. Define sv and su as
follows:

sv := a configuration in which #−i(0) = n− 2, #−i(v) = 1
su := a configuration in which #−i(0) = n− 2, #−i(u) = 1

Assume towards a contradiction that P [Di = 0|sv ∧ Ii = u] = p > 0. Notice that (sv ∧ Ii =
u) ∈ X.

By point 2 of Lemma 11, if Ii = v and the coalition acts as if their input vector is sv,
then i must decide 0. By Theorem 7, P [Ii = v] = 1

r , therefore, P [Di = 0|sv] ≥ 1
r + p

r > 1
r ,

contradicting Lemma 10. Thus, in an equilibrium starting from configuration X, the decision
value cannot be 0.

Assume towards a contradiction that: P [Di = v|sv ∧ Ii = u] = p > 0.
Notice that from point 1 of Lemma 11, if Ii = 0 and the coalition acts as if their input

vector is sv, then i must decide upon v. As before we get: P [Di = v|sv] ≥ 1
r + p

r > 1
r ,

contradicting Lemma 10. Thus, in an equilibrium starting from configuration X, the decision
value cannot be v.

Applying the symmetric claim for u, with a coalition that acts as if their input vector is
su, we get that in an equilibrium starting from configuration X, the decision value cannot
be u.

Thus, no value from {0, u, v} can be decided in an (n − 1)-resilient equilibrium for
multi-valued consensus starting with configuration X. Hence, due to validity there is no
(n− 1)-resilient equilibrium for r-valued consensus for any r > 2. J

5 Necessary and Sufficient conditions for Deterministic Consensus

The necessary conditions from Section 3 are extended here into necessary and sufficient
conditions for a deterministic (n−1)-resilient equilibrium for binary consensus. Deterministic
means that the step of each agent in each round of the algorithm is determined completely
by its input and the history of messages it has received up until the current round. In
Appendix C some difficulties in trying to extend our proof to non-deterministic algorithms
are provided. For the sufficient condition, a new problem - Resilient Input Sharing (RIS), a
variant of knowledge sharing [4], is introduced.

OPODIS 2019
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Figure 1 Messages sent by agent A at round 0. RA is a random number chosen by A.

I Theorem 13. A deterministic (n− 1)-resilient equilibrium for consensus exists iff:
1. n is odd
2. The input distribution is uniform
3. There exists an algorithm for deterministic RIS (defined below).

5.1 The Resilient Input Sharing Problem
In the RIS problem, agents in V share their binary inputs while each agent i assumes
V \ {i} are in a coalition. Intuitively, each agent requires all other agents to commit their
inputs before or simultaneously to them learning about its input. The motivation for this
requirement is that we consider problems in which (1) all agents compute the same function
on the inputs, and (2) if any one input is unknown, then any output in the range of the
function is still equally possible [4, 5]. Therefore the above requirement ensures that the
coalition cannot affect the computation after learning the remaining (honest) agent’s input,
which is necessary for the computation to reach (n− 1)-resilient equilibrium. We use the
following definitions:

Kt
j- Agent j’s knowledge at the beginning of round t, including any information the

coalition could have shared with it.
Agent j is an i-knower(t)- if at the beginning of round t it can make a ’good’ guess about
Ii, i.e., ∃b ∈ {0, 1} : P [Ii = b|Kt

j ] > P [Ii = b]
Know(i, t) - the group of all i-knowers at the beginning of round t. In a RIS algorithm,
Know(i, 0) = ∅ and Know(i,∞) = V \ {i}

Consider for example the network in Figure 1. At Round 0, A sends two different
messages, whose XOR is its input, to B and C. At Round 1, B and C can pass these
messages to D, even if this would not happen in a correct run. Thus: Know(A, 2) = {D},
and Know(A, 3) = {B, C, D}.

5.1.1 The RIS Problem
A solution to the RIS problem satisfies the following conditions:

1. Termination - the algorithm must eventually terminate.
2. Input-sharing - at termination, each agent knows the inputs of all other agents.
3. Resilient - at any round t, Agent i does not receive new information from agents in

Know(i, t).

Notice: in a consensus protocol, if j is an i-knower(t), and j can still influence the
output at round t, then the protocol is not an (n − 1)-resilient equilibrium. Thus, in an
(n − 1)-resilient equilibrium for consensus, no new information can be sent to i from any
i-knower(t) at round t.
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5.2 The effect of messages in a XOR computation
We prove that at the end of a distributed XOR computing algorithm, if an agent is given
all the chains of messages that have affected its run, it can infer the input of every other
agent (Theorem 19). This result applies for both deterministic and non-deterministic XOR
algorithms.
I Remark 14. In synchronous networks, an agent can pass information to its neighbor through
a silent round. Hereafter, every protocol in which informative silent rounds (explained in
the proof of Lemma 20 and defined formally in Appendix B) occur is altered, and a special
message EMPTY is sent instead on the corresponding link.
I Remark 15. Hereafter, we consider networks in which every agent knows the topology of
the network before the algorithm starts. Otherwise, the coalition could always cheat and
choose a topology in which RIS is not possible (for example, 1-connected topology)

I Definition 16 (Messages recipient). Let R be a run of the protocol and C ⊆ V a group of
agents.

Recv(C, t, R) = {i ∈ V |i received a message from C in round t of R}

I Definition 17 (Agents affected by a message). In a run R, let m be a message sent at
round tm to dstm = agent j from srcm. Then:

Aff(m,R,tm) = {j} - Agent j is directly affected by m.
∀k > 0 : Aff(m,R,tm+k) = Aff(m,R,tm+k−1) ∪ Recv(Aff(m,R,tm+k−1),R,tm+k) - Agents
that were recursively affected by m.

Aff(m,R,t) illustrates that a message may affect more than just its recipient; Its potential
effect propagates through the network, reaching different agents through other messages.

I Definition 18 (All the (chains of) messages that have an effect on agent i in run R).
Aff(i,R) = { < m, tm, srcm, dstm >, m sent in R |i ∈ Aff(m,R,Tend)} (R terminates at
Tend)

I Theorem 19 (The encoding of all inputs). Let R be a run of a distributed XOR computing
algorithm. Let i, j ∈ V , Agent i can compute Ij from the following information:
1. Ii - its input.
2. Decision value i.e., the XOR of all inputs.
3. Aff(i,R) - all the messages in R that have an effect on Agent i.
To prove Theorem 19, assume the following base case is correct (to be proved in the sequel):

I Lemma 20. Theorem 19 is correct for a network of size 3, V = {i, j, k}.

Proof of Theorem 19. Let G = (V, E) be a network where n > 3, such that i, j ∈ V . Create
a new network G′ in which agents i and j are as in G, but all other agents in V \ {i, j} are
clustered into one ’virtual’ agent k. A distributed XOR algorithm for G′ is:

Agent k chooses n− 2 bits such that the XOR of these bits is its Ik.
Agents i and j behave in G′ as if they were in G, explicitly attaching to each message
the id of its destination, while k emulates the behavior of the other n− 2 agents in V ,
attaching to each message the id of its source.

Let IR
i and DR

i be the input and output of i in run R. For any run R of the algorithm in
G, ∃R′ - a run of the algorithm in G′ s.t.,: (1) IR

i =IR′

i , IR
j =IR′

j , (2) DR
i =DR′

i and (3)
Aff(i,R) ⊇ Aff(i,R′).
From lemma 20 we know that from DR′

i , IR′

i and Aff(i,R′), I ′j can be computed. Therefore:
∀i 6= j ∈ V : - DR

i , IR
i and Aff(i,R) are enough to compute IR

j . J

OPODIS 2019
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Proof of 20. V = {i, j, k}. Assume towards a contradiction that ∃R1, R2, two runs of the
algorithm such that
1. IR1

i = IR2
i - Agent i’s inputs in R1 and R2 are the same.

2.
⊕

l∈V IR1
l =

⊕
l∈V IR2

l - The decision value is the same in both R1 and R2.
3. Aff(i,R1) = Aff(i,R2) - Exactly the same set of messages affect i in both runs.
4. IR1

j 6= IR2
j - Agent j’s input in R1 is different than in R2.

Clearly from 1, 2, and 4 it must be that IR1
k 6= IR2

k .
Towards a contradiction we construct run R3, in which i’s and k’s inputs are the same as

in R1 and j’s input is the same as in R2, but the decision value (XOR) in R3 is the same as
in R1.

In R3, agents i and k start to perform their steps according to R1 until the first round
in which i or k receive a message that either does not receive in that round in R1. Agent j

behaves the same as in R2, until the first round, denoted round T − 1, in which it receives a
message m it does not receive in that round in R2. Notice that it is legal for all agents to
act this way in round 0. Further, if i and k can continue according to R1 and j can continue
according to R2 until termination, then i outputs the same value as it would in R1, which is
incorrect for R3.

Observation 1 From round T until termination j cannot send messages to i in either R1
or R2 or otherwise, m’s effect would propagate to i, causing - Aff(i,R1) 6= Aff(i,R2),
contradicting point 3 of the assumptions.

Observation 2 Similarly from round T until termination, j cannot send messages to i in R3
or otherwise, let t ≥ T be the first round (after T ) of R3 in which j sends a message to i.
In R1 - j does not send a message to i in round t (see Observation 1). This means that
this silent round t of R1 between j and i is informative (it tells i that the run is R1/R2
and not R3). Since we do not allow informative silent rounds (see Remark 14), we reach
a contradiction.

Notice that by point 3 in the assumptions, after T j cannot even communicate with i through
k, since m’s effect would propagate to i through k. From the two observations above, from
round T of R3, j cannot communicate with i, and from i’s perspective, j is running R1.
The same logic applies for k - the first round in which it is illegal for k to act according
to R1, is a round after which k cannot send messages to i (even not through j). Thus i’s
experience throughout R3 is the same as in R1, resulting in i making an incorrect output.
Contradiction. J

5.3 Deterministic (n− 1)-resilient Consensus implies RIS, completing
the proof

In a deterministic synchronous binary consensus protocol, in which all agents start at the
same round, for each input vector the run of the algorithm is fully determined.

Let us look at a network running some deterministic binary consensus, with agent i ∈ V

and coalition V \ {i}. Intuitively, agents in the coalition can choose in advance an input
vector to be used in the algorithm. Thus, from the coalition’s perspective, there can be
only two possible runs - R0 in which Ii = 0, and R1 in which Ii = 1. For each agent in the
coalition, there is the first round in which R0 and R1 differ, at that point this agent knows Ii.
Thus, each agent in the coalition is in one of two states - knows nothing about Ii or knows
Ii, this is in contrast to non-deterministic algorithms, see for example Figure 1.



I. Harel, A. Jacob-Fanani, M. Sulamy, and Y. Afek 20:11

Below we transform any deterministic (n− 1)-resilient equilibrium for binary consensus
into a deterministic RIS. In Appendix C the difficulties in the non-deterministic case are
explained.

I Theorem 21. If there exists a deterministic (n − 1)-resilient equilibrium for binary
consensus, A on network G = (V, E) then there exists an algorithm Ã for RIS, on G.

Proof. In Ã, each agent i runs A with the following modifications:
For each message m that i receives, i appends < m, srcm, dstm, tm > to a local buffer B

of messages that has affected it.
Agent i appends B to each message it sends.
Agent i adds to B all the information piggy-bagged on incoming messages.

In this new algorithm Ã, every message propagates in the network, reaching all the agents
it affects. By the end of the algorithm, the buffer maintained by agent i contains Aff(i,R),
where R is the run of the original consensus protocol A. By theorem 5, A is a XOR computing
protocol, and by theorem 19, i’s buffer contains enough information to infer all inputs. Thus
Ã is an RIS protocol.

It remains to prove that Ã is resilient. An input sharing protocol is resilient (Subsection 5.1)
if at any round t, i does not receive new information from agents in Know(i, t). As stated
before, this demand applies for (n − 1)-resilient equilibrium for binary consensus as well.
Thus, to show that Ã is resilient, it is enough to show that ∀i ∈ V :

In each round t of Ã, i receives messages from the same neighbors it receives from in A

In each round t of Ã, ∀j 6= i: j ∈ Know(i, t) in Ã =⇒ j ∈ Know(i, t) in A

The first point is immediate from the construction of Ã. For the second point - observe some
agent j at round t of A, which is not an i-knower in A. For j to become an i-knower(t) in Ã,
the coalition must send j enough information by t for it to make a ’good’ guess about Ii.
There are two kind of paths in G by which the coalition can send information to j - paths
that do not pass through i, and paths that do.

Through paths not including i, the coalition can pass information in the same pace for
both A and Ã. Since j /∈ Know(i, t) in A, using these paths alone is not enough to make
j an i-knower(t) in Ã. Regarding paths that include i - as argued in the beginning of this
subsection, in a deterministic (n− 1)-resilient equilibrium for binary consensus, if a member
of the coalition has any information about Ii, then that member knows Ii. Therefor, in A, i

should not receive messages from members of Know(i, t) at round t. Thus if the coalition
has information it wants to pass to j, it cannot do so using paths including agent i, since i

does not accept and propagate messages from i-knowers. To conclude, if j is an i-knower in
Ã, j is an i-knower in A. Since A is (n− 1)-resilient equilibrium for consensus, Ã is resilient
as well. J

5.3.1 Completing the proof, necessary and sufficient conditions for
deterministic Consensus

Proof of Theorem 13⇐. Assume that the 3 conditions are realized, and let us suggest a
simple (n− 1)-resilient equilibrium for binary consensus: run the RIS algorithm and output
the XOR of all inputs. Since the RIS algorithm is resilient, no coalition has an incentive to
cheat. J

Proof of Theorem 13⇒. Assume that (n − 1)-resilient equilibrium for binary consensus
exists. By 6 and 7, n is odd and the input distribution is uniform. By theorem 21, RIS is
possible. J

OPODIS 2019
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6 Discussion

Surprisingly, while there is an equilibrium for binary consensus resilient to coalitions of n− 1
agents, no such equilibrium exists for multi valued consensus. This is the first model we know
of in which there is a separation between binary and multi valued consensus. Intuitively, this
is because a coalition with a preference towards v has an incentive to cheat and act as if
the input of all agents in the coalition is v, thus lowering the number of possible decision
values (due to validity) to two values, at most. Consider for example the standard bit-by-bit
reduction from binary to multi valued consensus, the probability to decide v is now at least
1
2 instead of 1

r , since the decision value is determined by the decision on the first bit of the
coalition input that differs from the input of the honest agent. We conjecture that this
intuition holds even for smaller coalitions, up to a single cheater. The results in §3 and §4
hold regardless of the network topology, scheduling models, or cryptographic solutions, as
they are based solely on the input values and utility of the agents.

Furthermore, we present necessary and sufficient conditions for (n−1)-resilient equilibrium
for binary deterministic consensus using the resilient input sharing (RIS) problem. This
in fact means that an agent cannot hide its input from the rest of the network in any
(n− 1)-resilient equilibrium protocol that computes XOR, i.e., even though we only compute
the XOR of inputs, at the end of the protocol all agents can deduce the input values of all
other agents.

There are several open directions for research:
Extending the equivalence result to non-deterministic consensus and RIS.
Can binary consensus be solved without the conditions of even size and uniform input for
coalitions of a smaller size, such as n− 2 or n

2 ?
Does an equilibrium for multi-valued consensus exist for coalitions of size n− 2 or less?
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Essentially, the protocol suggested in [4] when n is even, performs input sharing in parallel
to leader election, then outputs the XOR of all inputs without the leader’s input. It is easy
to see that this protocol for consensus satisfies agreement, validity, and termination.

For the rest of this section, let V be the agents in a network of even size, executing the
protocol in Algorithm 1, with coalition C = V \{i, j}. Also, we assume the input distribution
is uniform, i.e., ∀i ∈ V : P [Ii = 0] = P [Ii = 1] = 1

2 .

I Theorem 22. Algorithm 1 is an (n− 2)-resilient-equilibrium for binary consensus.

Proof of Theorem 22 follows after the following observation and lemmas:
If no agent deviates from the protocol in Algorithm 1, then the decision value of the

consensus is uniformly distributed. Therefore, if after the coalition C deviates, the probability
to decide a value preferred by C is still ≤ 1/2, C has no incentive to cheat.

I Lemma 23. If at the end of the knowledge sharing step, i learns the true value of Ij (or
vice versa), C has no incentive to deviated from the protocol.

Proof. In this case at least one of the inputs of agents i and j is not omitted from the XOR
performed by i or/and j. Since the coalition has no influence on these inputs, which are
uniformly distributed, the result of the XOR is also uniformly distributed, and they have no
incentive to cheat. J

Following Observation A.0 and Lemma 23 it remains to consider the case in which the
coalition can cheat each of i and j about the input, or id, and/or random value selected in
step 1, of the other.

I Lemma 24. C has no incentive to share with i and j two sets of ids and random values
that disagree.

Proof. Assume C has a preference towards v. Denote by X the case in which the coalition
forced i and j to elect two different leaders. Notice that to achieve this the coalition must
provide i and j two different sets of ids and random values for all the other agents.

In case X the decision value of i is independent of the decision value of j. Following [4]
∀k, l ∈ V : P [leaderk = l] = 1

n . Thus,

∀k ∈ {i, j} : P [leaderk 6= k] = n− 1
n

If i does not elect itself as leader, then (based of the uniform input distribution) Di = v with
probability 1

2 . Hence:

P [Di = v|X] = P [leaderi 6= i|X] · 1
2 + P [leaderi = i|X] · P [Di = v|X ∧ leaderi = i]

≤ P [leaderi 6= i|X] · 1
2 + 1

n

= n− 1
2n

+ 1
n

= n + 1
2n

The same goes for agent j. Since the decision of i is independent of the decision of j (by
solution preference, the coalition succeeds only if Di = Dj = v):

∀n > 2 : P [Di = v ∧Dj = v|X] = P [Di = v|X] · P [Dj = v|X] ≤ (n + 1
2n

)
2

<
1
2
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Since the probability to decide v when executing the protocol in Algorithm 1 with no
deviation is 1

2 , there is no incentive for C to share different ids or random values with i than
it shares with j (and vice versa). J

I Lemma 25. C has no incentive to share a set of input values with i and a set with j, that
disagree.

Proof. Assume C has a preference towards v, and denote by Y the case in which the coalition
provides a set of input values with i and a set with j, that disagree. Like in the previous
proof, the decision values of i and j are independent. By 24, both agents i and j elect the
same leader, hence that at least one of them is not elected. W.l.o.g, i is not the leader. When
i calculates the XOR (step 5), Ii is not omitted from the calculation. Since the set of inputs
provided to i is independent for Ii (provided by knowledge-sharing being resilient), and since
C does not know in advance Ii, which is uniformly distributed, the result of the XOR is
uniformly distributed. I.e.: P [Di = v|Y ] = 1

2 . Since the probability to reach consensus on
v when running Algorithm 1 with no deviation is 1

2 , there is no incentive for C to share
different input values with i, than it shares with j. J

Proof of Theorem 22. From lemmas 23, 24 and 25, we know that, in any run of the
algorithm, both i and j obtain the same knowledge K. Since the decision value is uniformly
distributed in a correct run, then for any legal knowledge sharing K: P [Di = 0] = P [Di =
1] = 1

2 . This means that C has no incentive to choose in advance either a specific set of
random values or input values or ids. J

B Informative Silent Rounds and Informative Messages

For this section, let R be a run of a distributed XOR algorithm A in network G = (V, E).

I Definition 26 (Link experiences). For any Agent i ∈ V at any round t, for all (i, j) ∈ E

define the incoming link experience of i to be:

ILE(i, j, t) =
{
m (j sends message m to i at round t)
silence (j does not send any message to i at round t)

Similarly, define the outgoing link experience of i with j at round t to be:

OLE(i, j, t) =
{
m (i sends message m to j at round t)
silence (i does not send any message to j at round t)

I Definition 27 (Round of an agent). For i ∈ V at round t:
Ii := Agent i’s input.
in(i, t) := All incoming link experiences i has with its neighbors at round t.
out(i, t) := All outgoing link experiences i has with its neighbors at round t.
D(i, t) ∈ {0, 1, ?} := The decision value of i. As long as t is not the final round, D(i, t) =?
round(i, t) =< Ii, in(i, t), out(i, t), D(i, t) > := Round t from agent i’s perspective

I Definition 28 (Run of an agent). For i ∈ V , define R(i) to be the projection of R on i:

R(i) :=< round(i, 0), round(i, 1), ...round(i, Tend) >

OPODIS 2019
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I Definition 29 (Prefix and suffix of a run). For i ∈ V :

R(i)0...t :=< round(i, 0), round(i, 1), ...round(i, t) >

I.e. the prefix of R(i) up to round t. Each prefix of a run has a set of possible legal suffixes
of the form:

S(i)t+1... :=< round(i, t + 1), round(i, t + 2), ... >

I Definition 30 (Informative link experience). Intuitively, informative link experiences are
ILE after which i’s execution may be altered. Let i, j ∈ V . Denote e1 to be a legal ILE that
i has at round t of R with j. e1 is informative if there exists:

e2 := Another ILE that i has with j at round t (e1 6= e2)
out := A set of outgoing link experiences i had with its neighbors at round t

in := A set of incoming link experiences i had with its neighbors at round t not including
j.
D := A decision value.

Such that the following holds:
1. Both < Ii, in

⋃
{e1}, out, D > and < Ii, in

⋃
{e2}, out, D > are legal rounds for agent

i in a run of A with prefix R(i)0...t−1

2. ∃ S(i)t+1... - a suffix of i’s run, such that:

P [S(i)t+1... | R(i)0...t−1∧ < Ii, in
⋃
{e1}, out, D >] 6=

P [S(i)t+1... | R(i)0...t−1∧ < Ii, in
⋃
{e2}, out, D >]

I Definition 31 (Informative silent round). In Subsection 5.2, an informative silent round is
actually an incoming link experience i has with j at round t, such that:
1. ILE(i, j, t) = silence
2. ILE(i, j, t) is informative

C Difficulties in extending Theorem 21 to Non Deterministic Case

Figure 2 A snippet of agents A and C’s knowledge regarding IB in a non-deterministic XOR
computing algorithm. RB is a random number chosen by B.

Figure 2 depicts a counter example in a non-deterministic algorithm to the construction in
Theorem 21. A and C cannot make a good guess regarding IB on their own. If however, they
were able to combine the information they have acquired, they would become B-knowers. In
the original algorithm, B can still receive (send) messages from (to) A and C (they are not
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B-knowers). Applying the construction in Theorem 21 on this non-deterministic algorithm,
agent A would have been able to pass C its array of messages, and B would have to let it
pass through, thus creating an A-C ’shortcut’ through B.
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