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Abstract
Financial institutions nowadays are looking into technologies for permissioned blockchains. A major
effort in this direction is Hyperledger, an open source project hosted by the Linux Foundation and
backed by a consortium of over a hundred companies. A key component in permissioned blockchain
protocols is a byzantine fault tolerant (BFT) consensus engine that orders transactions. However,
currently available BFT solutions in Hyperledger (as well as in the literature at large) are inadequate
for financial settings; they are not designed to ensure fairness or to tolerate the selfish behavior that
inevitably arises when financial institutions strive to maximize their own profit.

We present FairLedger, a permissioned BFT blockchain protocol, which is fair, deigned to deal
with rational behavior, and, no less important, easy to understand and implement. Our secret sauce
is a new communication abstraction called detectable all-to-all (DA2A), which allows us to detect
players (byzantine or rational) that deviate from the protocol and punish them. We implement
FairLedger in the Hyperledger open source project using the Iroha framework – one of the biggest
projects therein. To evaluate FairLegder’s performance, we also implement it in the PBFT framework
and compare the two protocols. Our results show that in failure-free scenarios in wide-area settings,
FairLedger achieves better throughput than both Iroha’s implementation and PBFT.
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1 Introduction

As of today, support for financial transactions between institutions is limited, slow, and
costly. For example, an oversees money transfer between two banks might take several days
and entail fees of tens of dollars. The source of this cost (in term of both time and money) is
the need for a reliable clearing house; sometimes this even requires physical phone calls at the
end of the day. At the same time, emerging decentralized cryptocurrencies like Bitcoin [42]
complete transactions within less than hour, at a cost of microcents. It is therefore not
surprising that financial institutions are looking into newer technologies to bring them up to
speed and facilitate trading in today’s global economy.

The most prominent technology considered in this context is that of a blockchain, which
implements a secure peer-to-peer ledger of financial transactions on top of a consensus engine.
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A major effort in this direction is Hyperledger [28], an open-source project hosted by the
Linux Foundation and backed by a consortium of more than a hundred companies. Unlike
anonymous cryptocurrencies with open participation, in blockchains for financial institutions
– also called permissioned blockchains – every participant is pre-known and certified, so that
it has to be responsible for its actions in the real world. Permissioned blockchains [28, 40, 45]
thus abandon the slow and energy-consuming proof-of-work paradigm of Bitcoin, and tend
to go back to more traditional distributed consensus protocols. Because of the high stakes,
malicious deviations from the protocol (due to bugs or attacks), rare as they might be, should
never compromise the service. Such deviations are modeled as byzantine faults [34], and to
deal with them, proposed solutions use byzantine fault tolerant (BFT) consensus protocols.

Yet we believe that dealing with byzantine failures is only a small part of what is required
in permissioned blockchains. In fact, a break-in that causes a bank’s software to behave
maliciously is so unusual that it is a top news story and is investigated by the FBI. On the
other hand, financial institutions always try to maximize their own profit, and would never
use a system that discriminates against them. Moreover, they can be expected to selfishly
deviate from the protocol whenever they can benefit from doing so. In particular, financial
entities typically receive a fee for every transaction they append to the shared ledger, and
can thus be expected to attempt to game the system in a way that maximizes the rate of
their own transactions in the ledger. Such rational behavior, if not carefully considered, not
only can discriminate against some entities, but may also compromise safety.

Thus, in the FinTec context, one faces a number of important challenges that were not
always emphasized in previous BFT work: (1) fairness in terms of the opportunities each
participant gets to append transactions to the ledger; (2) expected rational behavior by all
players; and (3) optimized failure-free performance in wide-area setting, given that financial
institutions are usually very secure and inter-institutional platforms would be deployed over
a secure WAN. In addition, it is important to stress (4) protocol simplicity, because complex
protocols are inherently bug-prone and easier to attack. In this work we develop FairLedger,
a new permissioned BFT blockchain protocol for the Hyperledger framework, which addresses
all of these challenges. Our protocol is fair, designed for rational participants, optimized for
the failure-free case, simple to understand, and easy to implement. Specifically, we show that
following the protocol is an equilibrium, and that when rational participants do follow the
protocol, they all get perfectly fair shares of the ledger.

Given that byzantine failures are rare, our philosophy is to optimize for the normal mode
when they do not occur (as also emphasized in some previous works, e.g., Zyzzyva [32]). For
this mode, we design a simple protocol that provides high performance when all players are
rational but not byzantine. Under byzantine failures, the normal mode protocol remains safe
and fair, but may lose progress. Upon detecting that a rogue participant is attempting to
prevent progress, we switch to the alert mode. At this point, it is expected that real-world
authorities (such as the FBI or Interpol) will step in to investigate the break-in. But such
an investigation may take days to complete, and in the time being, the service remains
operational – albeit slower – using the alert mode protocol.

An important lesson learned from the deployment of Paxos-like protocols in real systems
such as ZooKeeper [31] and etcd [19] is that systems will only be used if they are easy to
understand, implement, and maintain. Like these systems, we follow the Vertical Paxos [4,33]
approach of using a fixed set of participants (sometimes called quorum) for sequencing
transactions and reconfiguring this set upon failures. Specifically, we designate a committee
consisting of all the participants who are interested in issuing transactions and have them run
a sequencing protocol to order their transactions. A complementary master service monitors
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the committee’s progress and initiates reconfiguration when needed. Including all interested
players in the committee is instrumental for fairness – this way, all committee members
benefit from sequencing batches that include transactions by all of them.

We assume a loosely synchronous model, where a master can use a coarse time bound (e.g.,
one minute) to detect lack of progress. This bound is only used for failure recovery, and does
not otherwise affect performance. A key feature of our alert mode is that whenever participants
deviate from the protocol in a way that jeopardizes progress, they are accurately detected
and so can be removed from the committee. Unlike in other Hyperledger protocols [45],
FairLedger never indicts correct participants, allowing the system to heal itself following
attacks.

The sequencing protocol uses all-to-all exchange of signed messages among committee
members. Since the committee includes all participants and all messages are signed, the
protocol can ensure safety despite byzantine failures of almost any minority. Specifically, for
f failures, our protocol is correct whenever the number of participants satisfies n ≥ 2f + 3.
The flip side is that it is enough for one participant to withhold a single message in order to
prevent progress. Such a deviation from the protocol is tricky to detect as one participant can
claim that it had sent a message to another, while the recipient claims that the message has
not arrived. To deal with such deviations, we define a new communication abstraction, which
we call detectable all-to-all (DA2A). Besides the standard broadcast and deliver API, DA2A
exposes a detect method that returns an accurate and complete set of deviating participants.

We implement FairLedger’s sequencing protocol in Iroha [45], which is part of the
Hyperledger [28] open-source project, and compare its performance to their implementation.
Specifically, since Iroha’s implementation is modular, we are able to replace their BFT
consensus protocol, (which is based on [23]), with our sequencing protocol without changing
other components (e.g., communication, cryptographic, and database libraries). Experiments
over WAN emulation [48] show that FairLeadger outperforms Iroha’s BFT protocol in the
vast majority of the tested scenarios (both in normal mode and in alert mode).

Since the Iroha system consists of many components (e.g., GRPC [30] communication) that
may induce overhead, we also implement FairLedger’s sequencing protocol in the PBFT [17]
framework, which provides a clean environment to evaluate raw consensus performance. Our
results show that Fairledger’s latency is better than PBFT’s in both the normal and alert
modes. Fairledger’s throughput exceeds PBFT’s in normal mode but is inferior to it in the
alert mode, although PBFT’s advantage diminishes as the system scale grows.

In summary, this paper makes the following contributions:

1. We define a fair distributed ledger abstraction for rational participants.

2. We define a detectable all-to-all (DA2A) abstraction as a building block for such ledgers.

3. We design FairLedger, the first BFT blockchain protocol that ensures strong fairness
when all participants are rational. FairLedger is safe under byzantine failures of almost
any minority, and detects and punishes deviating (byzantine and rational) participants.
It is also simple to understand and implement.

4. We substitute Iroha, which is one of the Hyperledger’s existing sequencing protocol, with
FairLedger with improved performance. We also implement FairLedger’s sequencing
protocol in the PBFT framework; FairLedger outperforms PBFT in the normal mode
but achieves slightly lower throughput in the alert mode.

OPODIS 2019
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2 Problem Definition and System Model

We consider a set of players, each representing a real-world financial entity, jointly attempting
to agree on a shared ledger of financial transactions. Every player has an unbounded stream
of transactions that it wants to append to the ledger and we assume that the player benefits
from doing so. A principal goal for our service is fairness, that is, providing all entities with
equal opportunities for appending transactions.

2.1 Byzantine and rational behavior
Traditional distributed systems are managed by a single organization, where deviation from
the protocol – referred to as byzantine behavior – is explained as a bug or by the deviating
entity being hacked, and only a small subset of the players are byzantine. In this work,
however, we seek a protocol that coordinates among many organizations that trade with
financial assets. We thus have to take into account that every entity may behave rationally,
and deviate from the protocol if doing so increases its benefit.

To reason about such rational behavior we assume that each entity can be either byzantine
or rational [5,36,41]. A rational entity has a known utility function that it tries to maximize
and deviates from the protocol only if this increases its utility, whereas a byzantine entity
can deviate arbitrarily from the protocol (e.g., crash, withhold messages, or send incorrect
protocol messages), i.e., its utility function is unknown.

Our system involves two types of entities – players and auditors. Players (e.g., banks)
propose transactions to append to the ledger, while auditors oversee the system. The same
physical entity may be both a player and an auditor, but other entities (e.g., government
central banks) may also act as auditors. There are initially n players and any number of
auditors. The number of byzantine players is bounded by a known parameter f , where
n ≥ 2f + 3. At most a minority of the auditors can be byzantine.

In order to prove that a protocol is correct in our model, we need to show that following
the protocol is an equilibrium for rational entities even in the presence of f byzantine faults.

2.2 Distributed fair ledger
A ledger is an abstract object that maintains a log (i.e., sequence) of transactions from
some domain T . It supports two operations with the following sequential specification: An
append(t), t ∈ T , changes the state of the log by appending t to its end. A read(l) operation
returns the last l transactions in the log. The log is initially empty.

The utility function of a rational player is the ratio of transactions that it appends to
the ledger, i.e., the number of transactions it appends to the ledger out of the total number
of transactions in the ledger. Between two ledgers with the same ratio, the longer one is
preferred. This models players who care about the overall system progress but care more
about getting their fair share of it.

The utility function of an auditor is the committee size in case progress is being made,
and 0 in case the system stalls. In other words, the auditors aim to ensure the system’s
overall health. In case an entity acts as an auditor and as a player, the auditor’s utility is
the dominating and the player’s utility breaks ties.

We require ’strict fairness. Intuitively, this means that for every player p1 that follows the
protocol, at any point when the log contains k transactions appended by p1, the log does not
contain more than k + 1 transactions appended by any other player. In the full paper [35] we
formalize and extend this definition to allow differential quality of service, whereby different
players are allocated different shares of the log and these shares may change over time.
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2.3 System model
We assume that players have been certified by some trusted certification authority known to
all players. In addition, we assume a PKI [44]: each player has a unique pair of public and
private cryptographic keys, where the public keys are known to all players, and the adversary
does not have enough computational power to unravel non-byzantine players’ private keys.

We assume reliable communication channels between pairs of players. As in previous
works on permissioned blockchains [23,28,45], we assume that there is a known upper bound
∆ on message latency. Nevertheless, our sequencing protocol is safe and fair even if the bound
does not hold. We exploit this bound to detect failures when the protocol stalls because a
rogue player deviates from the protocol by withholding messages. Thus, the bound can be
set very conservatively (e.g., in the order of minutes) so as to avoid false detection.

3 Solution Components

Our goal is to design a ledger that financial institutions will be able to use. Such a protocol,
besides being fair, secure against malicious attacks, and resilient to selfish behavior, must be
simple to understand, implement, and maintain. Therefore, although we appreciate complex
protocols with many corner cases and clever optimizations, we try here to keep the design as
simple as possible. The simple design not only reduces vulnerabilities, it also makes it much
easier to reason about selfish behavior.

Committee and master. We adopt the Vertical Paxos [4, 33] paradigm, where a single
committee (known to all) partakes in agreeing on all transactions. Initially, the committee
consists of all players. By requiring all committee members to endorse transactions, we
create an incentive for all of them to append to the log batches including transactions from
all of them. To handle cases when committee members stop responding (e.g., due to a crash
or an attack), a complementary master service performs reconfiguration: detecting such
members and removing (or replacing) them. Thus, we logically implement two components:
(1) a committee that runs the sequencing protocol and (2) a master responsible for progress.
The master is implemented by auditors using a minority-resilient synchronous BFT protocol
like [21]; its impact on overall system performance is small, and so we do not optimize its
implementation. For the remainder of this paper, we abstract away this protocol and simply
treat the master as a single trusted authority.

Detection of misbehavior. The master’s ability to evict deviating (byzantine or rational)
players relies on its ability to detect deviations from the protocol. We divide the possible
deviations into two categories: active and passive. An active deviation occurs when a player
sends messages that do not coincide with the protocol. By singing all messages with private
keys, we achieve non-repudiation, i.e., messages can be linked to their senders and provide
evidence of misbehavior, which the master can use to detect deviation.

Passive deviation, which stalls the protocol by withholding messages, is much harder
to detect. For example, if the protocol hangs waiting for p1 to take an action following a
message it expects from p2, we cannot, in general, know if p2 is the culprit (because it never
sent a message to p1) or p1 is at fault.

To address this challenge we present our novel DA2A broadcast abstraction, which
supports broadcast(m) and deliver(m) operations for the players and a detect() operation
for the master. Every player pi invokes broadcast(m) for some message m s.t. all the other
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players should deliver(m). The detect() operation performed by the master returns a set S

of players that deviate from the protocol together with corresponding proofs:

I Definition 1 (Detectability). For every two players pj , pi s.t. pi does not deliver a message
from pj , S contains pj (with a proof of pj ’s deviation) in case pj did not perform broadcast(m)
properly, and otherwise, it contains pi (with a proof of pi’s deviation). Moreover, S contains
only deviating players.

Note that in case S is empty, all the players follow the protocol, meaning that all the
players broadcast a message and deliver messages broadcast by all other players.

4 FairLedger Protocol

We present our detectable all-to-all building block in Section 4.1, then use it for our sequencing
protocol in Section 4.2, and for the recovery protocol in Section 4.3. In Section 4.4, we
informally argue that following the protocol is a Nash equilibrium. For space limitations, the
full correctness proof (including game theoretical analysis) is deferred to the full paper [35].

4.1 Detectable all-to-all (DA2A)

(a) direct all-to-all. (b) relayed all-to-all.

Figure 1 All-to-all communication patterns.

Communication patterns. We start by discussing two ways to implement all-to-all com-
munication over reliable links. The simplest way to do so is direct all-to-all, in which
broadcast(m) sends message m to all other players (see Figure 1a). This implementation has
the optimal cost of 1 hop and n(n− 1) messages, but cannot reveal any information about
passive deviations: In case pi does not deliver a message from pj , the master has no way
of knowing whether pj did not send a message to pi, or pi is lying about not receiving the
message.

Another approach, which we call relayed all-to-all, designates a subset of the players as
relays. A broadcast(m) sends m to all players, and when a relay receives a message for the
first time, it forwards it to all players (see Figure 1b). With r relays, (r + 1)n2 messages are
sent.

DA2A implementation. DA2A has two modes: normal and alert. Every instance of DA2A
starts in the normal mode, in which a broadcast uses direct all-to-all and also informs the
master of the broadcast. A detect() operation proceeds follows:

Wait 2∆ time for all players to inform it of their broadcasts.
In case inform messages are missing from some subset of players P ⊂ Π , detect()
returns P .
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Otherwise, the master waits 2∆ time to make sure that all messages that had been sent
have arrived, and then queries all players if they deliver messages from all players.
If none of the players complains, detect() returns {}.
Otherwise, the master picks a player pi that did not deliver a message from player pj and
instructs all players to switch to the alert mode in which they re-broadcast their messages
using relayed all-to-all with 2f + 1 players different from pi and pj acting as relays.
After waiting 2∆ time, the master again queries all players if they deliver messages from
all players. For every two players pj and pi s.t. pi does not deliver a message from pj ,
the master asks the relays whether they received a message from pj . The relays’ replies
are signed and used as proof of a deviation. In case f + 1 relays say yes, the return set
includes pi. Otherwise, it includes pj .

Correctness. We now prove the detectability property (Definition 1) of our DA2A broadcast.

I Theorem 2. If no more than f + 1 players deviates from the protocol, then (1) detect()
never returns a player that does not deviate and (2) for every two players pi, pj s.t. pi does
not deliver a message from pj, detect() returns either pi or pj.

Proof. Consider two players pj and pi s.t. pi does not deliver a message from pj in the alert
mode. In case f + 1 relays tell the master that they received a message from pj , then by the
protocol detect() includes pi in its return set, and otherwise it includes pj . Since pi does not
deliver a message from pj , we get that either pi or pj deviated. Thus, since the master picks
2f + 1 relays other than pi and pj , we get that no more than f relays deviate. Therefore,
whenever f + 1 relays report that they received a message from pj , at least one non-deviating
relay forwarded the message from pj to pi, meaning that pi deviated by not delivering it. In
addition, since we have 2f + 1 relays, at most f of which deviate, we get at least f + 1 are
not deviating. Therefore, in case fewer than f + 1 relays report that they received a message
from pj , we get that pj did not send its message to all relays, i.e., has deviated. J

4.2 Sequencing protocol
The sequencing protocol works in epochs, where in each epoch every participating player
gets an opportunity to append one transaction (or one fixed-size batch of transactions) to
the log. To ensure fairness, we commit all the epoch’s transactions to the log atomically
(all-or-nothing). Recall that we assume that players always have transactions to append.

An append(t) operation locally buffers t for inclusion in an ensuing epoch, and waits for
it to be sequenced. Each epoch consists of three DA2A communication rounds among players
participating in the current epoch (see Figure 2), proceeding as follows:
1. Broadcast a transaction from the local buffer; upon receiving transactions from all, order

them by some deterministic rule and sign the hash h of the sequence.
2. Broadcast h; receive from all and verify that all players signed the same hash.
3. Broadcast 〈commit, epoch, h〉 (signed), and append to local ledger (and return) when

receive the same message f + 1 times.

If any messages are not received, the protocol hangs. The purpose of the first round is to
broadcast all the transactions of the epoch. The second round ensures safety; at the end of
this round each player validates that all other players signed the same hash of transactions,
meaning that only this hash can be committed in the current epoch. The last round ensures
recoverability during reconfiguration as we explain in Section 4.3 below. Note that we achieve
fairness by waiting for all players; an epoch is committed only if all the players sign the same
hash, and since each player signs a hash that contains its own transaction, we get that either
all the players’ transactions appear in the epoch, or the epoch is not committed.
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Read operations. Since all players make progress together, they all have up-to-date local
copies of the ledger. A read(l) operation simply returns the last l committed transactions in
the local ledger. To make sure byzantine players do not lie about committed transactions, a
returned batch of transactions st for epoch k is associated with a proof, which is either (1) a
newConfig message from the master that includes st (more details below), or (2) f + 1 epoch
k round 3 messages, each of which contains a hash of st.

D
A
2
A

Data 
propagation

TX

TX

TX

D
A
2
A

H(     )

H(     )

Agreement

D
A
2
A

Recoverability 
guarantees

H(     )

TX

TX

TX

Figure 2 Sequencing protocol.

Asynchronous broadcast. The first round of our sequencing protocol exchanges transactions
(data), the second round exchanges hashes of the transactions (meta-data), and the last
round exchanges commit messages (meta-data). Hence, the first round consumes most of
the bandwidth. In order to increase throughput, we decouple data from meta-data and
asynchronously broadcast transactions (i.e., execute the first round) of every epoch as soon
as possible. However, in order to be able to validate transactions, we perform rounds 2 and
3 sequentially.

In other words, we divide our communication into a data path and a meta-data path,
where the data path is out-of-order and the meta-data path orders the data. This is a common
approach, used, for example, in atomic broadcast algorithms that use reliable broadcast to
exchange messages and a consensus engine to order them [13,20].

4.3 Recovery
To detect deviations that prevent progress, we use the detect() operation exposed by DA2A.
Recall that the sequencing protocol is an infinite sequence of DA2A instances. Therefore,
the master sequentially invokes detect() operations in all DA2A instances. If it returns a
non-empty set S, the master invokes reconfiguration.

During reconfiguration the master first stops the current configuration and learns its
closing state by sending a reconfig message to the current committee. To prove to the players
on the committee that a reconfiguration is indeed necessary, the master attaches to the
reconfig message proof reconfiguration is warranted. This can be evidence of active deviation,
or a proof of passive deviation returned from DA2A detect(). When a player receives a
reconfig message, it validates the proof for the reconfiguration, sends its local state (ledger)
to the master, and waits for a newConfig message from the master. When a player receives
newConfig with a new configuration, it validates that every player removal is justified by a
proof, and ignores requests that do not have a valid proof.

State transfer. Note that while a byzantine player cannot make the master believe that
an uncommitted epoch has been committed (a committed epoch must be signed by all the
epoch’s players), it can omit a committed epoch when asked (by the master) about its local
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state. Such behavior, if not addressed, could potentially lead to a safety violation: suppose
that some byzantine player p does not broadcast its last message in the third round in epoch
k, but delivers messages from all other players. In this case, p has proof that epoch k is
committed, and may return these transactions in response to a read. However, no other
player has proof that epoch k is committed and p withholds epoch k’s commit from the
master. In this case, the new configuration will commit different transactions in epoch k,
which will lead to a safety violation when a read operation will be performed.

The third round of the epoch is used to overcome this potential problem. If the master
observes that some player receives all messages in the second round of epoch k, it concludes
that some byzantine player may have committed this epoch. Therefore, in this case, the
master includes epoch k in the closing state. Since the private keys of byzantine players are
unavailable to the master, it signs the epoch with its own private key, and sends it to all
players in the new configuration (committee) as the opening state. A player that sees an
epoch with the master’s signature refers to it as if it is signed by all players. (Recall that the
master is a trusted entity, emulated by a BFT protocol.)

4.4 Rationality – proof sketch

We now informally argue that following the protocol is an equilibrium for all rational
committee players. The formal proof of appears in the full paper [35].

Since a round 2 message is required from all committee members in order for an epoch to
be committed, and since no committee member will sign a hash on a sequence that excludes
its transaction (otherwise its ratio in the ledger will decrease), we get that a player on the
committee cannot be excluded from a committed epoch. Therefore, players cannot increase
their ratio in the ledger by active deviation. Moreover, since the master may punish them for
an active deviation by removing them from the committee, following the protocol dominates
any active deviation.

As for passive deviations, a possible strategy for a rational player pi is to try to “frame”
another player pj and get it removed by the master, in which case pi’s ratio in the ledger will
grow. It can try to do this by not sending messages to pj or by lying about not delivering
pj ’s messages. In order to prove Nash equilibrium we need to show that if all rational players
but a player pi follow the protocol, then even if all f byzantine players help pi (and so f + 1
players deviate from the protocol), pi still cannot frame another player and get it removed:
This follows from Theorem 2.

Moreover, since we assume that among ledgers with the same ratio players prefer longer
ones, sending protocol messages as fast as possible dominates slower sending.

5 FairLedger implementations

We implement FairLedger based on Iroha’s framework, written in C++. For better comparison
we only change Iroha’s consensus algorithm (called Sumeragi [46]) with our sequencing
protocol, while keeping other components almost untouched (e.g., cryptographic components,
communication layer, and client API). This implementation is described in Section 5.1.

In order to evaluate the FairLedger protocol itself, independently of the Hyperledger
framework, we implement another version of FairLedger’s sequencing protocol based on
PBFT’s code structure, written in C++ as well, as described in Section 5.2.
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5.1 Hyperledger implementation

The Hyperledger framework consists of two types of entities, players (committee members in
our case) that run the protocol, and clients that generate transactions and send them to
players for sequencing.

The FairLedger protocol at each player is orchestrated by a single thread, referred to as
logic thread. The logic thread receives transactions from clients as well as messages from
other players into a wait-free incoming event queue. The connections between clients and
players are implemented as GRPC sessions [30] (internally using TCP) sending Protobuf
messages [29]. The logic thread maintains a map of epoch numbers to epoch states. An
epoch state consists of verified events of that epoch, one event slot per player.

Upon receiving a new message, the logic thread verifies it and decides based on the epoch
state whether it needs to broadcast a message to other players. Whenever broadcast is
required, the logic thread creates and signs the new message, determines the set of its destina-
tions (based on the epoch state), and creates send-message tasks, one per destination. These
tasks are handed over to a work-stealing thread pool, in which each thread communicates
with its destination over a GRPC connection (See Figure 3).

PeerPeerPeer

Logic 
thread

GRPC

Incoming 
queue Thread pool

Epoch to state map

dispatch 
send ClientClientClient

Figure 3 FairLedger implementation in Hyperledger.

Iroha is built in a modular fashion, which allows us to swap Sumeragi with FairLedger in a
straightforward way. Our evaluation (in Section 6.2) shows that additional Iroha components
beyond the consensus engine adversely affect performance. Yet, these components are
essential for Hyperledger. For example, Iroha supports multiple operating systems (including
Android and iOS) and can be activated from java script code (via a web interface). Such
features are essentials for client-facing systems like Iroha, and using standard libraries such
as GRPC enables simple and clean development, which is less prone to bugs.

5.2 Standalone implementation

To eliminate the effect of the overhead induced the Hyperledger framework, we further
evaluate the FairLedger protocol by itself, independently of the additional components. To
this end, we employ the PBFT code [17] as our baseline. PBFT uses UDP channels, and is
almost entirely self-contained, it depends only on one external library, for cryptography.

In this implementation of FairLedger, the logic thread directly communicates with clients
and players over UDP. As in our Hyperledger implementation, the logic thread uses a map
of epoch numbers to epoch states, and follows the same logic for generating messages.

Using UDP requires us to handle packet loss. We use a dedicated timer thread that wakes
up periodically, (after a delay determined according to the line latency), verifies the progress
of the minimal unfinished epoch, and requests missing messages from the minimal epoch if
needed.
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6 Evaluation

We now evaluate our FairLedger protocol using the two prototypes. The Hyperledger
prototype is comparable to Iroha, and the standalone prototype is comparable to PBFT.

6.1 Experiment setup
Configuration. We conduct our experiments on Emulab [48]. We allocate 32 servers: 16
Emulab D710 machines for protocol players, and 16 Emulab PC3000 machines for request-
generating threads (clients). Each D710 is a standard machine with a 2.4 GHz 64-bit Quad
Core Xeon E5530 Nehalem processor, and 12 GB 1066 MHz DDR2 RAM. Each PC3000 is a
single 3GHz processor machine with 2GB of RAM.

Given that our system is intended for deployment over WAN among financial institutions,
we configure the network latency among players to 20ms. In Emulab, the communication
takes place over a shared 1Gb LAN, denoted S-LAN. Each client is connected to a single
(local) player with a zero latency 1Gb LAN. In case clients need to communicate directly
with remote players (as they do in Iroha’s design), they do so over S-LAN, i.e., with a latency
penalty. We benchmark the system at its throughput saturation point.

In our Hyperledger prototype evaluation, we use version v0.75. Since in normal mode we
assume no byzantine behavior, we configure Iroha with no faulty players, so it signs each
transaction once. The request-generating threads create transactions formatted according to
Iroha’s specification (given in Protobuf), which consists of a few hundreds of bytes of data.

In our standalone prototype evaluation, we create packets of a similar size, namely 512B
of data, as this is the transaction size in our expected use case.

Test scenarios. We compare Iroha and PBFT to FairLedger’s two operation modes – the
failure-free normal mode and the alert mode activated in case of attacks.

We evaluate the alert mode both under attack of a single byzantine player, and without
an attack. In the alert mode we assume that f=1, and hence employ 3 relays. In the attack
scenario the byzantine player remains undetectable by the master. Specifically, one of the
relays withholds messages that it needs to send to one of the other relays.

6.2 Hyperledger
In order to deal with f failures, FairLedger needs 2f+3 players, and Iroha needs 3f+1.
Therefore, we scale our evaluation from 5 to 9 players. Iroha’s clients perform asynchronous
operations, and so the operation latency is always zero. Hence, we focus this comparison on
throughput.

Figure 4 compares the two modes of FairLedger with Iroha. Results show that FairLedger’s
normal mode has much higher throughput (up to 3.5x) than Iroha’s and the difference grows
with the number of players. In both algorithms, due to the usage of GRPC, the bottleneck
is the broadcast. FairLedger commits more transactions per broadcast, since each epoch
consists of one message from every player, whereas Iroha pays the cost of broadcast for every
client request. Therefore, Iroha suffers more as the broadcast cost increases (as we have more
players to send messages to).

FairLedger’s alert modes incur a 44% reduction in throughput with 5 players, and even
more as the number of players increases, because the relays worsen the bottleneck by issuing
additional broadcast operations. Byzantine behavior slightly improves performance since
withholding messages reduces the load on the relays. However, this effect is negligible.
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Figure 4 Throughput of FairLedger and Iroha over simulated WAN.

6.3 Standalone prototype
We evaluate our FairLedger prototype that is based on PBFT’s code structure. We configure
PBFT parameters in a way that maximizes PBFT’s throughput, enabling batching and
enough outstanding client-requests to saturate the system. We indeed achieve similar results
to those reported in recent work running PBFT over WAN [40]. Again, since in order to deal
with f failures PBFT requires 3f+1 players and FairLedger 2f + 3, we run the evaluation
with 7 to 16 players. Figure 5 shows the throughput and latency achieved by the protocols.

First, we observe that the absolute throughput is 5x higher than with Iroha. This is thanks
to PBFT’s optimized bare-metal approach, which sacrifices modularity and maintainability
for raw performance. We further see that FairLedger’s normal mode has higher throughput
than PBFT. This is because PBFT’s clients are directed to a single player (referred to as
primary or leader), while FairLedger’s clients address their nearest player, distributing the
load evenly among them.

Figure 5 Throughput and latency of FairLedger and PBFT over simulated WAN.

FairLedger’s alert mode with three relays reduces throughput by 30%-40% compared to
the normal mode. Note that with 7 players, PBFT achieves about 16% higher throughput
than FairLedger’s alert mode, but as the number of players increases, the gap closes, reaching
9% lower throughput than PBFT’s with 16 players.
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We measure latency below the saturation point. The results for all configuration sizes are
similar, and so we depict in Figure 7 only the results with 10 nodes. Error bars depict the
standard deviation. The average latency of FairLedger clients in the normal mode is 64ms,
which is close to the network latency of 3 rounds of 20ms. Indeed when communicating over
WAN, the performance penalty of signing and verifying signatures is negligible. PBFT’s
average latency is about 106ms, and consists of 3 PBFT rounds and 2 client-primary
communication steps.

The average latency of FairLedger’s alert mode with a byzantine relay is 86ms, since it
consists of 4 rounds of communication. The reason is that one player is always one round
behind the rest due to missing the byzantine player’s message. Since in the third round he
require messages from f+1 players (and not all of them), there is no need to wait for the
lagging player’s round 3 message, and the epoch ends after 4 rounds. The latency of the
alert modes without byzantine players is 64ms, similarly to the normal mode.

7 Related Work

Fairness and rationality. Our work is indebted to recent works that combine game theory
and distributed systems [2,3,5,9,24,25,36,41,47] to implement different cooperative services.
In particular, we adopt a BAR-like model [5, 36, 41]. As in previous works on BAR fault
tolerance [5, 36], we assume non-colluding rational players, whereas colluding players are
deemed byzantine. As in [41], we do not assume altruistic players – all non-byzantine players
are rational in our model.

Practical byzantine fault tolerant consensus protocols [1, 6–8,15,16,18,23,32,37–40,49]
have been studied for more than two decades, but to the best of our knowledge, only three
consider some notion of fairness [7,9,40], and only one of which deals with rational players [9].

One of the important insights in Prime [7] is that the freedom of the leader to propose
transactions must be restricted and verified by other participants. To this end, Prime extends
PBFT [16] with three additional all-to-all communication rounds at the beginning, in which
participants distribute among them self transactions they wish to append to the ledger. The
leader proposes in round 4 a batch of transactions that includes all sets of transactions it gets
in round 3 from 2f + 1 participants. Since each transaction proposed by some participant is
passed to the leader by at least 2f + 1 participants, its participant may expect its transaction
to be proposed. In case a participant send a request and the leader does not propose it for
some time T , the participant votes to replace the leader. As a result, Prime guarantees that
during synchronous periods every transaction is committed in a bounded time T .

Similarly to FairLedger, Prime uses batching to commit transactions of different partici-
pants atomically together, and uses a PKI to ensure fairness and provide proofs that the
batches are valid. However, their fairness guarantee is weaker than ours. Since the first three
rounds are asynchronous (i.e., participants do not wait to hear from all, but rather echo
messages as soon as they receive them), there is no bound on the ratio of transactions issued
by different participants that are committed during T . More importantly, Prime assumes
that all non-byzantine participants follow the protocol, and we do not see a simple way to
adjust to overcome rational behavior. For example, there is no incentive for participants to
echo transactions issued by other participants in the first three rounds; to the contrary – the
less they echo, the less transactions from other participants will be proposed by the leader.

Honeybadger [40] is a recent protocol for permissioned blockchians, which is built on top
of an optimization of the atomic broadcast algorithm by Cachin et al. [13]. It works under
fully asynchronous assumptions and provides probabilistic guarantees. Honeybadger assumes
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a model with n servers and infinitely many clients. In brief, clients submit transactions
to all the servers, and servers agree on their order in epochs. In each epoch, participants
pick a batch of transactions (previously submitted to them by clients) and use an efficient
variation of Bracha’s reliable broadcast [11] to disseminate the batches. Then, participants
use a randomized binary consensus algorithm by Ben-Or et al. [10] for every batch to agree
whether or not to include it in the epoch.

Similarly to FairLedger, they use epochs to batch transactions proposed by different
players, and commit them atomically together. Their (probabilistic) fairness guarantee is
stronger than the one in Prime: they bound the number of epochs (and accordingly the
number of transactions) that can be committed before any transaction that is successfully
submitted to n− f servers. However, if we adapt their protocol to our model where we do
not consider clients and require fairness among players, we observe that their guarantee is
weaker than ours: Since communication is asynchronous, it may take arbitrarily long for a
transaction by player pi to get (be submitted) to n− f players, and in the meantime, other
players may commit an unbounded number of transactions. In addition, their protocol uses
building blocks (e.g., Bracha’s broadcast [11] and Ben-Or et al. [10] randomized consensus)
that are not designed to deal with rational behavior. Moreover, rational players that wish to
increase their ratio in the ledger will not include transactions issued by other players in their
batches.

The only practical work that deals with rational players we are aware of is Helix [9].
However, in contrast to our work, Helix provide only probabilistic fairness guarantees and
relies on a randomness beacon.

Finally, it worth noting that Prime, Honeybadger, and Helix are much more complex
than FairLedger. Prime’s and Helix’s description in [7] and [9], respectively, is spread over
more than 6 double column pages, and the reader is referred to their full paper versions for
more details. Honeybadger combines several building blocks (e.g., the atomic broadcast by
Cachin et al. [13]), each of which is complex by itself.

BFT protocols and assumptions. The vast majority of the practical BFT protocols [6,8,23,
32,37–39,49], staring with PBFT [16] assume a model with n symmetric servers (participants)
that communicate via reliable eventually synchronous channels. Therefore, they can tolerate
at most f < n/3 byzantine failures [26], and cannot accurately detect participants’ passive
deviations (withholding a message or lying about not receiving it); intuitively, it is impossible
to distinguish whether a player maliciously withholds its message or the message is just
slow. Since passively deviating participants cannot be accurately detected, they cannot be
punished or removed, and thus byzantine participants can forever degradate performance [18],
and rational behavior cannot be disincentivize.

We, in contrast, assume synchronous communication, which together with the use of
a PKI allows FairLedger to be simple, tolerate almost any minority of byzantine failures,
guarantee fairness, detect passive as well as active deviations, and penalize deviating players.
FairLedger uses the synchrony bound only to detect and remove byzantine players that
prevent progress, allowing it to be very long (even minutes) without hurting normal case
performance. To reduce the cost of using a PKI, FairLedger signs only the hashes of the
messages. Moreover, in WAN networks the cost of PKI is reduced due to longer channels
delays.

As illustrated by works on Prime [7] and Aardvark [18] most BFT protocols are vulnerable
to performance degradation caused by byzantine participants. To remedy this, Aardvark
focuses on improving the worst case scenario. We, on the other hand, follow the approach



K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi 4:15

taken in Zyzzyva [32], and optimize the failure-free scenario. We take this approach because
byzantine failures are rare in financial settings, and one can expect break-ins to be investigated
remedied.

We implement FairLedger inside Iroha [45], which is part of the Hyperledger [28] project.
Specifically, we substitute the ledger protocol in Iroha, which was originally based on the
BFT protocol in BChain [23], with FairLedger. In brief, their protocol consists of a chain
of 3f + 1 participants, where the first f + 1 order transactions. To deal with a passively
deviating participant that withholds messages in the chain, they transfer both the sender
and the receiver (although only one of them deviates from the protocol) to the back of the
chain, where they do not take part in ordering transactions. Similarly to FairLedger, they
assume synchrony with coarse time bounds and use it to detect passive deviations. However,
in contrast to FairLedger, they do no accurately detect byzantine players and punish correct
ones as well. Moreover, since the head of the chain decides on the transaction order, Iroha
does not guarantee fairness.

Broadcast primitives. In order to detect passive deviation we define DA2A, a new detectable
all-to-all communication abstraction. Even though many practical byzantine broadcasts [12–
14,20,22,27,43] were proposed in the past, DA2A is the first to extend its API with a detect()
method, which accurately returns all misbehaving players.

8 Discussion

Blockchains are widely regarded as the trading technology of the future; industry leaders
in finance, banking, manufacturing, technology, and more are dedicating significant efforts
towards advancing this technology. The heart of a blockchain is a distributed shared ledger
protocol. In this paper, we developed FairLedger, a novel shared ledger protocol for the
blockchain setting. Our protocol features the first byzantine fault-tolerant consensus engine
to ensure fairness when all players are rational. It is also simple to understand and implement.
We integrated our protocol into Hyperledger, a leading industry blockchain for business
framework, and showed that it achieves superior performance to existing protocols therein.
We further compared FairLedger to PBFT in a WAN setting, achieving better results in
failure-free scenarios.
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