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Abstract
This paper considers the triangle finding problem in the CONGEST model of distributed computing.
Recent works by Izumi and Le Gall (PODC’17), Chang, Pettie and Zhang (SODA’19) and Chang
and Saranurak (PODC’19) have successively reduced the classical round complexity of triangle
finding (as well as triangle listing) from the trivial upper bound O(n) to Õ(n1/3), where n denotes
the number of vertices in the graph. In this paper we present a quantum distributed algorithm that
solves the triangle finding problem in Õ(n1/4) rounds in the CONGEST model. This gives another
example of quantum algorithm beating the best known classical algorithms in distributed computing.
Our result also exhibits an interesting phenomenon: while in the classical setting the best known
upper bounds for the triangle finding and listing problems are identical, in the quantum setting the
round complexities of these two problems are now Õ(n1/4) and Θ̃(n1/3), respectively. Our result
thus shows that triangle finding is easier than triangle listing in the quantum CONGEST model.
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1 Introduction

Background. The problem of detecting triangles in graphs has recently become the target
of intensive research by the distributed computing community [1, 5, 6, 7, 8, 9, 18, 25].
This problem comes in two main variants: the triangle finding problem and the triangle
listing problem. Given as input a graph G = (V,E), the triangle finding problem asks to
decide1 whether the graph contains a triangle (i.e., three vertices u, v, w ∈ V such that
{u, v}, {u,w}, {v, w} ∈ E), while the triangle listing problem asks to output all the triangles
of G. A solution to the latter version, obviously, gives a solution to the former version.
Besides its theoretical interest, another motivation for considering these problems is that

1 Another version of the triangle finding problem asks to output one triangle of G (or report that the
graph has no triangle). It is easy to see that the two versions are essentially equivalent: a triangle can
be found by applying O(log |V |) times an algorithm solving the decision version.
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for several graph problems faster distributed algorithms are known over triangle-free graphs
(e.g., [16, 26]). The ability to efficiently check whether the network is triangle-free (or detect
which part of the network is triangle-free) is essential when considering such algorithms.

One of the main models to study graph-theoretic problems in distributed computing is
the CONGEST model. In this model the graph G = (V,E) represents the topology of the
network, the computation proceeds with round-based synchrony and each vertex can send
one O(logn)-bit message to each adjacent vertex per round, where n denotes the number of
vertices. Initially, each vertex knows only the local topology of the network, i.e., the set of
edges incident to itself. The triangle finding and listing problems ask, respectively, to decide
if G contains a triangle and to list all triangles of G. The trivial strategy is for each vertex
to send the list of all its neighbors to each neighbor (all the triangles can then be listed
locally, i.e., without further communication). Since each list can contain up to n vertices,
this requires O(n) rounds in the CONGEST model.

In 2017, Izumi and Le Gall [18] gave the first nontrivial distributed algorithms for triangle
detection in the CONGEST model: they constructed a Õ(n2/3)-round randomized algorithm2

for triangle finding and a Õ(n3/4)-round randomized algorithm for triangle listing. This was
soon improved by Chang, Pettie and Zhang [6], who obtained a Õ(

√
n)-round randomized

algorithm for both the triangle finding and listing problems. The key idea leading to this
improvement was to decompose the graph into components with low mixing time, and then
apply recent routing techniques [13, 14] that make possible to achieve efficient routing in
graphs with low mixing time. The complexity of the resulting distributed algorithm was
dominated by the cost required to compute the graph decomposition. Very recently, Chang
and Saranurak [7] developed a much more efficient method to decompose the graph into
components with low mixing time, which immediately leads to Õ(n1/3)-round randomized
algorithms for the triangle finding and listing problems. Since a matching lower bound
Ω̃(n1/3) is known for triangle listing [25], the randomized round complexity of the triangle
listing problem is thus now settled, up to possible polylogarithmic factors.3 For the triangle
finding problem, on the other hand, essentially no nontrivial lower bound is known. Two
exceptions are, first, the very weak lower bound obtained by Abboud, Censor-Hillel, Khoury
and Lenzen [1] in the CONGEST model and, second, a lower bound obtained by Drucker,
Kuhn and Oshman [9] for the much weaker CONGEST-BROADCAST model (where at
each round the vertices can only broadcast a single common message to all other vertices)
under a conjecture in computational complexity theory. This leads to the following intriguing
question: is triangle finding easier than triangle listing?

Another related, but much stronger, model is the CONGEST-CLIQUE model. In this
model at each round messages can even be sent between non-adjacent vertices, which makes
bandwidth management significantly easier. In the CONGEST-CLIQUE model, Dolev,
Lenzen and Peled [8] first showed that the triangle listing problem (and thus the triangle
finding problem as well) can be solved deterministically in Õ(n1/3) rounds for general graphs,
which is tight since the lower bound Ω̃(n1/3) by Pandurangan, Robinson and Scquizzato [25]
mentioned above holds in this model as well. Note that this lower bound also means that
triangle listing in the CONGEST-CLIQUE model is not easier than triangle listing in the
CONGEST model, at least as far as randomized algorithms are concerned. For the triangle

2 In this paper the notations Õ(·) and Ω̃(·) remove poly(log(n)) factors.
3 An interesting open problem, however, is to determine the deterministic round complexity of these

problems. To our knowledge, no deterministic algorithm with sublinear round complexity is known in
the CONGEST model.
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Table 1 Prior results on the round complexity of distributed triangle finding and listing, and our
new result. Here n denotes the number of vertices of the graph. Note that any upper bound for
the listing problem (in particular, the upper bound from [7]) holds for the finding problem as well.
Similarly, note that any lower bound for the quantum CONGEST-CLIQUE model (in particular,
the lower bound from [25]) holds for the weaker classical and quantum CONGEST models as well.

Model Setting Problem Complexity Paper

CONGEST-CLIQUE Classical Listing Õ(n1/3) Dolev et al. [8]

CONGEST-CLIQUE Classical Finding O(n0.1572) Censor-Hillel et al. [5]

CONGEST Classical Listing Õ(n1/3) Chang and Saranurak [7]

CONGEST Quantum Finding Õ(n1/4) This paper

CONGEST-BROADCAST Classical Finding Ω
(

n

e
√

log n log n

)
Drucker et al. [9]

CONGEST-CLIQUE Quantum Listing Ω
(

n1/3

log n

)
Pandurangan et al. [25]

finding problem, on the other hand, the better upper bound O(n0.1572) has been obtained
by Censor-Hillel et al. [5] by implementing fast matrix multiplication algorithms in the
distributed setting. The CONGEST-CLIQUE model is thus a setting in which triangle
finding is easier than triangle listing.

Table 1 summarizes the best known bounds on the round complexity of triangle finding
and listing discussed so far.

Quantum distributed computing. Quantum versions of the main models studied in distrib-
uted computing can be easily defined by allowing quantum information, i.e., quantum bits
(qubits), to be sent through the edges of the network instead of classical information, i.e., bits.
In particular, in the quantum version of the CONGEST model, which we will simply call the
“quantum CONGEST model” below, each vertex can send one message of O(logn) qubits
to each adjacent vertex per round. While a seminal work by Elkin et al. [10] showed that
for many important graph-theoretical problems the quantum CONGEST model is not more
powerful than the classical CONGEST model, Le Gall and Magniez [20] recently showed that
one problem can be solved more efficiently in the quantum setting: computing the diameter
of the network. More precisely, they constructed a Õ(

√
nD)-round quantum algorithm for

the exact computation of the diameter of the network (here D denotes the diameter), while
it is known that any classical algorithm in the CONGEST model requires Ω̃(n) rounds,
even for graphs with constant diameter [11]. In the CONGEST-CLIQUE model as well,
a quantum algorithm faster than the best known classical algorithms has been obtained
recently for the All-Pair Shortest Path problem [17]. In the LOCAL model, which is another
fundamental model in distributed computing, separations between the computational powers
of the classical and quantum versions have also been reported [12, 21].

When discussing the classical randomized complexity of triangle listing in the CONGEST
and CONGEST-CLIQUE models, we mentioned the Ω̃(n1/3)-round lower bound by Pandur-
angan, Robinson and Scquizzato [25]. This lower bound is based on an information-theoretic
argument that actually holds even in the quantum setting. In view of the recent matching
upper bound in the classical setting [7], we can conclude that for triangle listing the quantum
CONGEST model is not more powerful than the classical CONGEST model. An intriguing
question is whether quantum communication can help solving faster the triangle finding
problem in the CONGEST model. In particular, can we break the Õ(n1/3) barrier for triangle
finding in the quantum setting?

STACS 2020
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Our result. In this paper we break this barrier. Our main result is the following theorem.

I Theorem 1. In the quantum CONGEST model, the triangle finding problem can be solved
with probability at least 1 − 1/poly(n) in Õ(n1/4) rounds, where n denotes the number of
vertices in the network.

In comparison, as already explained, in the classical CONGEST model the best known upper
bound on the randomized round complexity of triangle finding is Õ(n1/3). Our result thus
gives another example of quantum algorithm beating the best known classical algorithms in
distributed computing. It also exhibits an interesting phenomenon: while in the classical
setting the best known upper bounds for the triangle finding and listing problems are both
Õ(n1/3), in the quantum setting the round complexity of the former problem becomes Õ(n1/4)
while the round complexity of the latter problem remains Θ̃(n1/3). Theorem 1 thus shows
that triangle finding is easier than triangle listing in the quantum CONGEST model.

Overview of our approach. Our approach starts similarly to the classical algorithms
developed by Chang, Pettie and Zhang [6] and Chang and Saranurak [7]. As in [6], by using
an expander decomposition of the network, the triangle finding problem over the whole
network is reduced to the task of detecting whether the subnetwork induced by a set of edges
Ein∪Eout contains a triangle. We denote the latter problem FindTriangleInSubnetwork.
Here Ein and Eout are two subsets of edges that satisfy specific conditions. In particular, the
subnetwork induced by the edges in Ein is guaranteed to have low mixing time (but in general
nothing can be said about the mixing time of the subnetwork induced by Ein ∪ Eout). We
use the algorithm from [7] to compute the expander decomposition efficiently, which implies
that an efficient algorithm for FindTriangleInSubnetwork gives an efficient algorithm
for the triangle finding problem over the whole network. More precisely, a Õ(n1/4)-round
algorithm for FindTriangleInSubnetwork leads to a Õ(n1/4)-round algorithm for the
triangle finding problem. The details of this reduction are described in Section 3.

Our main approach to solve the problem FindTriangleInSubnetwork is to apply the
framework for quantum distributed search developed in [20]. We briefly sketch the main
ideas. Let us write V ⊆ V the set of vertices of the graph induced by the edges in Ein ∪Eout.
We will partition V into t = Θ̃(

√
n) subsets V1,V2, . . . ,Vt each containing Õ(

√
n) vertices.

Let us write Λ = [t]× [t]× [t]. We will try to find a triple (i, j, k) ∈ Λ for which there exist
u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle. To do this, we partition the
set Λ into t subsets Λ1, · · · ,Λt each containing t2 = Θ̃(n) triples and consider the following
search problem: find an index ` ∈ [t] such that the set Λ` contains a triple (i, j, k) for which
there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle. Quantum distributed
search enables us to solve this problem in Õ(

√
tδ) rounds in the quantum CONGEST model

if a checking procedure (i.e., a procedure that on input ` checks if the set Λ` contains a triple
(i, j, k) for which there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that {u, v, w} is a triangle) can
be implemented in δ rounds.

The checking procedure distributes the Θ̃(n) triples in Λ` among the vertices of the
network proportionally to the degree of the vertices. In particular, vertices with very low
degree do not receive any triple. This technique is essentially the same as for the main
procedure in the classical algorithm by Chang, Pettie and Zhang [6]. Next, each vertex
owning a triple (i, j, k) checks whether there exist u ∈ Vi, v ∈ Vj and w ∈ Vk such that
{u, v, w} is a triangle, which requires gathering information of all the edges with extremities
in these sets. Since the subnetwork induced by the edges in Ein has low mixing time, we
would like to use the same classical routing techniques [13, 14] as used in the main procedure
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of the classical algorithms [6, 7]. Special care is nevertheless required to ensure that we can
apply those routing techniques. (This was not needed in [6, 7] since these prior works used
a different approach: each vertex simply loaded all the necessary edges from Λ in Õ(n1/3)
rounds. In comparison, we need to guarantee that the necessary edges from Λ`, for a fixed `,
can be loaded in negligible time.) We solve this difficulty by carefully defining the sets Λ` so
that the the same edge is not requested by two distinct vertices at the same time (this is the
contents of Lemma 10 in Section 4.2).

Another technical difficulty is how to handle vertices with very high degree. In the
classical setting this was trivial, since it was enough to gather in Õ(n1/3) rounds all the
information about the edges of the network at one of these high-degree vertices. Since we
want to construct a Õ(n1/4)-round quantum algorithm we cannot use this approach. Instead,
we develop an approach based on the well-known protocol from the two-party quantum
computation complexity of the disjointness function [4]. This is explained in Section 4.1.

Other related works. The triangle finding problem is also a central problem in quantum
query complexity. While many quantum query algorithms have been designed in this setting
[2, 19, 22, 23], they are based on quantum techniques (e.g., quantum walk search and learning
graphs) that do not seem to lead to efficient algorithms in the distributed setting.

2 Preliminaries

Graph theory. All the graphs considered in this paper are undirected and unweighted. For
any graph G = (V,E) and any vertex u ∈ V , we denote deg(u) the degree of u and N (u)
the set of neighbors of u. We write n = |V | and m = |E|. For any set E′ ⊆ E, we denote
degE′(u) the number of edges in E′ incident to u and write NE′ the set of all neighbors
v ∈ N (u) such that {u, v} ∈ E′. We denote diam(G) the diameter of G and mix(G) the
mixing time of G, i.e., the number of steps of a random walk over G needed to obtain a
distribution close to the stationary distribution (we refer to [13] for a precise definition). For
any positive integer t, we write [t] = {1, 2, . . . , t}.

We will use the following lemma from [6] in our main algorithm.

I Lemma 2 (Lemma 4.2 in [6]). Consider a graph with m edges and n vertices. Let p
be such that p2m ≥ 400(logn)2. Suppose that the degree of any vertex of the graph is at
most mp/(20 logn). Generate a subset S by letting each vertex join S independently with
probability p. Then with probability at least 1−1/poly(n), the number of edges in the subgraph
induced by S is at most 6p2m.

Classical distributed computing. In the classical CONGEST model, the graph G = (V,E)
represents the topology of the network. The computation proceeds with round-based
synchrony and each vertex can send one O(logn)-bit message to each adjacent vertex per
round. All links (corresponding to the edges of G) are reliable and suffer no faults. Each
vertex has a distinct identifier from a domain I with |I| = poly(n). It is also assumed that
each vertex can access an infinite sequence of local random bits. Initially, each vertex knows
nothing about the topology of the network except the set of edges incident to itself and the
value of n.

Our quantum algorithm will be based on several classical distributed algorithms from the
literature. A first crucial ingredient is the following recent result by Chang and Saranurak [7]
that shows how to efficiently compute a good expander decomposition of the graph.

STACS 2020
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I Theorem 3 ([7]). In the classical CONGEST model, there is a O(n0.1)-round algorithm
that computes with probability at least 1− 1/poly(n) a partition

V = V1 ∪ V2 ∪ · · · ∪ Vs

of the vertex set V that satisfies the following two conditions:
for each i ∈ [s], the subgraph induced by the vertex set Vi has mixing time O(poly(logn));
the number of inter-component edges (i.e., the number of edges with one endpoint in Vi
and one endpoint in Vj, for i 6= j) is at most |E|/10.

We will also use the following technical lemma from [6] that shows how to compute
efficiently a new ID assignment that gives a good estimation of the degree of any vertex of
the graph.

I Lemma 4 (Lemma 4.1 in [6]). In the classical CONGEST model, there is a O(diam(G) +
logn)-round deterministic algorithm that computes a bijective map γ : V → {1, . . . , |V |} and
a function d : {1, . . . , |V |} → {0, 1, . . . , blog2(n)c} satisfying the following conditions:
(i) γ(u) ≤ γ(v) implies blog2(deg(u))c ≤ blog2(deg(v))c for any u, v ∈ V ;
(ii) d(γ(u)) = blog2(deg(u))c for all u ∈ V .

More precisely, after running the algorithm each vertex u knows γ(u) and can locally compute
d(y) for any y ∈ {0, 1, . . . , |V |}.

We will also use the following result by Ghaffari, Kuhn and Su [13] about randomized
routing in networks with small mixing time (see also the discussion in Section 3 of [7]).

I Theorem 5 ([13]). In the classical CONGEST model, there exists a O(mix(G) · no(1))-
round algorithm that builds a distributed data structure. This data structure enables the
vertices to implement the following routing task with probability at least 1 − 1/poly(n) in
O(mix(G) · no(1)) rounds: given a set of point-to-point routing requests, each given by the
IDs of the corresponding source-destination pair and such that each vertex u is the source
and the destination of at most O(deg(u)) messages, delivers all the messages.

Quantum distributed computing. We assume that the reader is familiar with the basic
concepts of quantum computation and refer to, e.g., [24] for a good reference. The quantum
CONGEST model is defined (see [10, 20] for details) as the quantum version of the classical
CONGEST model, where the only difference is that each exchanged message consists of
O(logn) quantum bits instead of O(logn) bits. In particular, initially the vertices of the
network do not share any entanglement.

For the quantum CONGEST model, Le Gall and Magniez [20] introduced a framework for
quantum distributed search, which can be seen as a distributed implementation of Grover’s
search [15], one of the most important centralized quantum algorithms. Let X be a finite
set and f : X → {0, 1} be a Boolean function over X. Let u be an arbitrary vertex of the
network (e.g., an elected leader). Assume that vertex u can evaluate the function f in r
rounds: assume that there exists an r-round distributed checking procedure C such that
vertex u, when receiving as input x ∈ X, outputs f(x). Now consider the following problem:
vertex u should find one element x ∈ X such that f(x) = 1 (or report that no such element
exists). The trivial strategy is to compute f(x) for each x ∈ X one by one, which requires
r|X| rounds. Ref. [20] showed that in the quantum CONGEST model this problem can be
solved with probability at least 1− 1/poly(|X|) in Õ(r

√
|X|) rounds.

As explained in [20], the procedure C is often described as a classical (deterministic
or randomized) procedure. It can then be quantized using standard techniques: one first
transforms it to a reversible map using standard techniques [3] and then converts it into a
quantum procedure.
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FindTriangleInSubnetwork

Input: a connected subgraph Gin = (V in, Ein) of G and a set of edges Eout ⊆ E
joining vertices in V in to vertices in V \ V in

(each vertex u ∈ G knows if u ∈ V in and gets NEin(u) and NEout(u))
Promise: (i) mix(Gin) = poly(logn)

(ii) degEin(u) ≥ degEout(u) for all u ∈ V in

Goal: detect if there exists a triangle {u, v, w} with u, v, w ∈ V in ∪ V out and
{u, v}, {u,w}, {v, w} ∈ Ein ∪ Eout

Figure 1 Problem FindTriangleInSubnetwork.

3 Reduction to Triangle finding over Subnetworks

In this section we present the reduction by Chang, Pettie and Zhang [6] from triangle finding
over the whole network to triangle finding over subnetworks with small mixing time. In
this section again, G = (V,E) represents the whole network on which we want to solve the
triangle finding problem, and we write n = |V |.

Triangle finding over subnetworks with small mixing time. We now present the computa-
tional problem considered, which we denote FindTriangleInSubnetwork (the description
is also summarized in Figure 1).

The input of FindTriangleInSubnetwork is a connected subgraph Gin = (V in, Ein)
of G such that mix(Gin) = poly(logn), and a set of edges Eout ⊆ E joining vertices in V in

to vertices in V \ V in that satisfies the following condition:

degEin(u) ≥ degEout(u) for all u ∈ V in.

We write V out the set of vertices in V \ V in that appear as an endpoint of an edge in Eout.
The goal is to detect if there is a triangle in the subgraph of G induced by the edge set
Ein ∪Eout. Note that such a triangle is either a triangle of Gin, or consists of two vertices
in V in and one vertex in V out. Note that, while Gin (the subnetwork induced by Ein) has
small mixing time, in general nothing can be said about the mixing time of the subnetwork
induced by Ein ∪ Eout.

The reduction. Chang, Pettie and Zhang [6] proved that when a good expander decomposi-
tion of the network is known, triangle finding over the whole network can be efficiently reduced
to solving several instances of FindTriangleInSubnetwork. Combined with Theorem 3,
this gives an efficient reduction from triangle finding to FindTriangleInSubnetwork,
which we state in the following theorem. For completeness we include a sketch of the proof
(we refer to [6, 7] for the details).

I Theorem 6 ([6, 7]). Assume that there exists an r-round distributed algorithm A that
solves the problem FindTriangleInSubnetwork with probability at least 1−1/n3 and uses
only the edges in Ein ∪ Eout for communication. Then there exists a O(r logn+ n0.1)-round
distributed algorithm that solves the triangle finding problem over the whole graph G = (V,E)
with probability at least 1− 1/poly(n).

STACS 2020
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Sketch of the proof. The first step of the reduction computes a good decomposition of the
whole network G in O(n0.1) rounds using Theorem 3. Let V = V1 ∪ V2 ∪ · · · ∪ Vs, for some
integer s ≤ n, denote the decomposition and Einter denote the set of inter-component edges.
By definition, the set Einter satisfies |Einter| ≤ 0.1|E|.

For any index i ∈ [s], let us write Gi = (Vi, Ei) the subgraph of G induced by Vi. We say
that a vertex u ∈ Vi is good if degEi

(u) ≥ degEinter(u); otherwise we say that u is bad. Let
Einter
i be the set of edges in Einter that are adjacent to a good vertex of Gi. Let Enew

i be the
set of edges in Ei that are adjacent to a bad vertex of Gi. Define the set

Enew = Einter ∪ Enew
1 ∪ · · · ∪ Enew

s

and observe that |Enew| ≤ |Einter|+ 2|Einter| ≤ 0.3|E|.
The triangles in G can be classified into the following four types.
Type 1: triangles with three vertices in a same component Gi.
Type 2: triangles with two vertices in a same component Gi and the third vertex in
another component Gj , in which the two vertices in Vi are good.
Type 3: triangles with two vertices in a same component Gi and the third vertex in
another component Gj , in which at least one of the two vertices in Vi is bad.
Type 4: triangles with three vertices in distinct components.

For each index i ∈ [s], we use Algorithm A to solve FindTriangleInSubnetwork
on instance (Gin, Eout) with Gin = Gi and Eout = Einter

i . A crucial point is that this
can be done for all i’s in parallel by “doubling” the bandwidth (i.e., by using 2r rounds
in total), since Algorithm A on instance (Gin, Eout) only uses the edges in Ei ∪ Einter

i for
communication. Indeed, the communication networks are disjoint for all instances, except for
the intercomponent edges that can be shared by two instances. This detects all the triangles
of types 1 and 2 in the graph.

Another crucial observation is that all remaining potential triangles (i.e., the triangles of
type 3 and 4) have their three edges contained in the set Enew. It is thus enough to recurse on
this set, i.e., to repeat the same methodology with E replaced by Enew. Since |Enew| ≤ 0.3|E|,
after O(logn) levels of recursion the algorithm finishes. The overall complexity of this second
part is thus O(r logn) rounds. J

4 Main Quantum Algorithm

In the classical CONGEST model, Chang, Pettie and Zhang [6] have shown that the problem
FindTriangleInSubnetwork can be solved with high probability in Õ(n1/3) rounds using
only the edges in Ein ∪ Eout for communication, which leads to a Õ(n1/3)-round classical
algorithm for triangle finding via Theorem 6. Our main technical result is the following
theorem.

I Theorem 7. In the quantum CONGEST model, there is a Õ(n1/4)-round quantum al-
gorithm that solves the problem FindTriangleInSubnetwork with probability at least
1− 1/n3 and uses only the edges in Ein ∪ Eout for communication.

Theorem 1 then immediately follows from Theorem 6 and Theorem 7.
The goal of this section is to prove Theorem 7. For brevity we write V = V in ∪ V out and

E = Ein ∪ Eout. We also write n̄ = |V| and m̄ = |E|. Note that m̄ ≥ n̄/2 since the graph
(V, E) is connected. Let S ⊆ V be the subset of all vertices u ∈ V such that

degE(u) ≥ m̄/
√
n̄.
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Observe that |S| ≤ 2
√
n̄.

In Section 4.1 below we present a Õ(n1/4)-round quantum algorithm that detects the
existence of a triangle containing at least one vertex from S. We then describe, in Section 4.2,
our main technical contribution: a Õ(n1/4)-round quantum algorithm that detects the
existence of a triangle under the assumption S = ∅. The quantum algorithm of Theorem 7
then follows by combining these two algorithms, since (as already observed in prior works [6, 7])
detecting whether there exists a triangle with no vertex in S reduces to the case S = ∅.

Let us provide some explanations about why detecting the existence of a triangle with no
vertex in S reduces to the case S = ∅. One natural approach is to focus on the subgraph
where all the nodes in S are removed. This approach nevertheless does not immediately work
since this may make the graph disconnected and may significantly reduce the number of edges
(in which case Lemma 2 may not anymore be applicable). Instead, we now briefly describe a
method that keeps the graph connected and the number of edges (almost) unchanged. The
idea is simply to “virtually” replace each node u ∈ S by a star of degree

√
n̄ and spread

the degE(u) incident edges of u evenly into the leaves of the star so that each leaf has
degE(u)/

√
n̄ < m̄/

√
n̄ incident edges. Since |S| ≤ 2

√
n̄, this can be done by introducing only

Θ(n̄) virtual nodes.

4.1 Finding a triangle containing (at least) one high-degree vertex
In this subsection we describe how to detect, in Õ(n1/4) rounds, the existence of a triangle
with edges in E that contains at least one vertex from S. We will use the following lemma,
which is a straightforward application of the framework for distributed quantum search
described in Section 2, but can also be seen as an adaptation of the quantum protocol
by Buhrman, Cleve and Wigderson [4] for the disjointness function in two-party quantum
communication complexity.

I Lemma 8. Consider any two adjacent vertices u and v, each owning a set Tu ⊆ V

and a set Tv ⊆ V , respectively. There is a quantum algorithm that checks if Tu ∩ Tv 6= ∅
with high probability in Õ(

√
min{|Tu|, |Tv|}) rounds. Moreover, this algorithm only uses

communication along the edge {u, v}.

Proof. Consider the subnetwork consisting only of the two vertices u and v and the edge
{u, v}. Set X = Tu and define the function

f(x) =
{

1 if x ∈ Tv,
0 otherwise,

for any x ∈ X. Obviously, for any x ∈ X, vertex u can compute the value f(x) in 2 rounds.
We can thus apply the quantum distributed search framework of Section 2 with vertex u
acting as a leader, which enables u to check whether there exists x ∈ X such that x ∈ Tv in
Õ(
√
|Tu|) rounds.

By symmetry there also exists a quantum algorithm that enables vertex v to decide
whether Tu ∩ Tv 6= ∅ in Õ(

√
|Tv|) rounds. Combining these two algorithms gives the claimed

complexity. J

We now explain how our quantum algorithm works. First of all, observe that since each
vertex u receives as input NEin(u) and NEout(u), each vertex knows whether it is in S or
not. Each vertex first tells this to all its neighbors. This requires 1 round of communication.

Each vertex u ∈ V then computes, locally, the set

Tu = NE(u) ∩ S = (NEin(u) ∪NEout(u)) ∩ S.
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Note that for each edge {u, v} ∈ E , there exists w ∈ S such that {u, v, w} is in a triangle
with three edges in E if and only if Tu ∩ Tv 6= ∅. Thus, for each edge {u, v} ∈ E , the vertices
u and v use the quantum algorithm of Lemma 8 to decide whether Tu ∩ Tv 6= ∅ or not. Since
this algorithm only communicates through the edge {u, v}, it can be applied in parallel to
all edges {u, v} ∈ E . This gives overall round complexity Õ(

√
|S|) = Õ(n1/4).

4.2 Finding a triangle with only low-degree vertices
In this subsection we assume that the inequality

degE(u) < m̄/
√
n̄.

holds for all vertices u ∈ V, i.e., we assume that S = ∅. We show how to detect, in Õ(n1/4)
rounds, the existence of a triangle with edges in E in this case as well.

Partitioning the set V. Let us write t =
⌊√

n̄/(30 log n̄)
⌋
. We randomly partition the set

V into t subsets V1, . . . ,Vt as follows: each vertex u ∈ V selects an integer i uniformly at
random in the set [t] and joins the set Vi. Vertex u ∈ V then tells its neighbors the value i,
which can be done in 1 round. Each vertex therefore learns in which sets its neighbors have
been included.

For any i, j ∈ [t], let E(Vi,Vj) denote all the edges in E with one endpoint in Vi and one
endpoint in Vj . Our analysis will rely on the following lemma.

I Lemma 9. With probability 1− 1/poly(n), the following statement is true: for all i, j ∈ [t],

|E(Vi,Vj)| = O

(
m̄(log n̄)2

n̄

)
.

Proof. Let us first consider the case i = j. We apply Lemma 2 over the graph generated by
the vertex set V and using the probability p = 1/t. Note that

p2m̄ = m̄

(
⌊√

n̄/(30 log n̄)
⌋
)2
≥ n̄/2

(
√
n̄/(30 log n̄))2

≥ 400(log n̄)2

and
m̄p

20 log n̄ = m̄

20 log n̄
⌊√

n̄/(30 log n̄)
⌋ ≥ m̄√

n̄
,

which implies that the two conditions in Lemma 2 are satisfied.
In the case i 6= j, we apply Lemma 2 over the graph generated by the vertex set V again,

but using the probability p = 2/t. The conclusion is the same. J

Partitioning the triples of indices. Let us write Λ the set of all triples (i, j, k) with i, j, k ∈
[t], i.e., Λ = [t]× [t]× [t]. Let us partition this set into t sets Λ1, . . . ,Λt, each containing t2
triples, as follows. For each ` ∈ [t], define the set Λ` as:

Λ` =
{

(i, j, 1 + (i+ j + ` mod t)) | (i, j) ∈ [t]× [t])
}
.

Our analysis will rely on the following lemma, which immediately follows from the definition
of the sets Λ`.

I Lemma 10. The following statements are true for all ` ∈ [t] and all triples (i, j, k) ∈ Λ`:
there is no index i′ ∈ [t] \ {i} such that (i′, j, k) ∈ Λ`;
there is no index j′ ∈ [t] \ {j} such that (i, j′, k) ∈ Λ`;
there is no index k′ ∈ [t] \ {k} such that (i, j, k′) ∈ Λ`.
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Assigning the triples to vertices. For each ` ∈ [t], we assign the t2 = Θ(n̄/(log n̄)2) triples
in Λ` to the vertices in V in. The assignment should be made carefully, so that each vertex
is assigned a number of triples proportional to its degree and, additionally, all the vertices
know to which vertex each triple in Λ` is assigned. To achieve this goal we use the same
approach as in [6], which is based on the ID assignment of Lemma 4.

We first apply Lemma 4 to the subnetwork Gin in order to obtain an ID assignment
γ : V in → {1, . . . , |V in|} and the degree estimator function

d : {1, . . . , |V in|} → {0, 1, . . . ,
⌊
log2 |V in|

⌋
}

satisfying the properties in the lemma. This requires O(diam(Gin) + logn) = O(mix(Gin) +
logn) = poly(logn) rounds. For any vertex u ∈ V in, define the quantity

ru = 2d(γ(u))

m̄/n̄
.

Note that since d(γ(u)) = blog2(degEin(u))c, the quantity ru is an approximation of the ratio
between degEin(u) and the average degree of the subgraph (V, E). Observe that∑

u∈V in

ru ≥
∑
u∈V in

degEin(u)/2
m̄/n̄

= |E
in|

m̄/n̄
≥ n̄/2,

since |Ein| ≥ m̄/2. Now define the quantity

qu =
{

0 if ru ≤ 1/4,
drue otherwise,

and observe that∑
u∈V in

qu ≥
∑
u∈V in

ru −
|V in|

4 ≥ n̄

4 ≥ t
2. (1)

We can now explain the assignment of the triples from Λ`. We fix an arbitrary order
(known to all the vertices of the network) on the triples of each Λ`. For concreteness, let
us choose the lexicographic order. We start by assigning to the vertex u1 ∈ V in such that
γ(u1) = 1 the first qu1 triples of Λ` in the lexicographic order, then assign to the vertex
u2 ∈ V in such that γ(u2) = 2 the next qu2 triples from Λ` in the lexicographic order, and
repeat the process until all the triples of Λ` have been assigned (Equation (1) guarantees
that all triples are assigned by this process). For each vertex u ∈ V in, let us write Λu` ⊆ Λ`
the set of triples assigned to u.

A crucial observation is that each vertex of the network can locally compute, for any
` ∈ [t] and any triple (i, j, k) ∈ Λ`, the ID of the vertex to which (i, j, k) is assigned, since
each vertex knows the value d(y) for all y ∈ {0, 1 . . . , |V in|}.

Description of the quantum search algorithm. Consider the function

f : [t]→ {0, 1}

defined as follows. For any ` ∈ [t], we have f(`) = 1 if and only if there exists a triple
(i, j, k) ∈ Λ` such that the graph G has a triangle with one vertex in the set Vi, one vertex
in Vj , one vertex in Vk and its three edges in E . Our quantum algorithm implements the
quantum distributed search framework described in Section 2 with X = [t] to detect if there
exists one index ` ∈ [t] such that f(`) = 1. This approach obviously detects the existence of
a triangle with three edges in E , i.e., it solves our problem. The complexity of this approach,
as explained in Section 2, is Õ(

√
tδ) = Õ(n1/4δ) rounds, where δ is the round complexity

of the checking procedure. We present below a checking procedure with round complexity
δ = Õ(mix(Gin)). Since mix(Gin) = poly(logn) from our assumption on Gin, the overall
round complexity is Õ(n1/4), as claimed.
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Description of the checking procedure. We now describe a classical randomized checking
procedure that enables the leader, on an input ` ∈ [t], to evaluate the value f(`). As explained
in Section 2 such a classical procedure can then be converted into a quantum procedure using
standard techniques. In the checking procedure, the leader first broadcasts the information
“`” to all the vertices of the network. This can be done in diam(Gin) ≤ mix(Gin) rounds.
Then each vertex u ∈ V in checks, for each (i, j, k) ∈ Λu` , whether there exists a triangle with
one vertex in Vi, one vertex in Vj , one vertex in Vk with three edges in E . In order to do
that, vertex u simply needs to collect all the edges in E(Vi,Vj) ∪ E(Vi,Vk) ∪ E(Vj ,Vk) for
each (i, j, k) ∈ Λu` . From Lemma 9 and from the definition of the set Λ`, this requires

Õ

(
m̄

n̄
× qu

)
= Õ

(
m̄

n̄
× bruc

)
= Õ (degEin(u))

incoming messages. Conversely, let us consider the number of outgoing messages needed to
gather the information about the edges. Lemma 10 guarantees that the information about
each edge only needs to be communicated to one vertex, which implies that each vertex u is
the source of degEin(u) messages. Theorem 5 thus implies that the checking procedure can
be implemented in O(mix(Gin) · no(1)) rounds. The leader then checks if one of the vertices
in V in found a triangle, which can be done in O(diam(Gin)) = O(mix(Gin)) rounds.

In order to reduce the complexity from O(mix(Gin) · no(1)) to Õ(mix(Gin)) we simply
need to modify slightly the routing scheme from [13], exactly as done in the classical case
(see Section 3 of [7]).
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